

FCC 47 CFR § 2.1093 IEEE Std 1528-2013

SAR EVALUATION REPORT

FOR

GSM/WCDMA/LTE Phone

MODEL NUMBER: SM-A145FB/DS

FCC ID: A3LSMA145F

REPORT NUMBER: 4790716492-S1V5

ISSUE DATE: 2/27/2023

Prepared for SAMSUNG ELECTRONICS CO., LTD. 129 SAMSUNG-RO, YEONGTONG-GU, SUWON-SI, GYEONGGI-DO, 16677, KOREA

Prepared by

UL Korea, Ltd.

26th floor, 152, Teheran-ro, Gangnam-gu Seoul, 06236, Korea

Suwon Test Site: UL Korea, Ltd. Suwon Laboratory 218 Maeyeong-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16675, Korea TEL: (031) 337-9902 FAX: (031) 213-5433

Testing Laboratory

TL-637

Revision History

	-		
Rev.	Date	Revisions	Revised By
V1	2/15/2023	Initial Issue	
V2	2/21/2023	Added FCC ID in Cover and Sec.1 Revised UNII a mode ch.36 target power in Sec.6.3. Revised SAR 5 Room frequency in Sec.8.1. Removed those not used equipment list in Sec.8.2 and Sec 4.3 Revised frequency in Sec.10.5	Hakchul Lee
V3	2/23/2023	Revised SAR 5 Room the permittivity and conductivity levels in Sec.8.1.	Hakchul Lee
V4	2/24/2023	Revised Equipment list in Sec.4.3.	Hakchul Lee
V5	2/27/2023	Added Simultaneous TX highest reported SAR in Sec1.	Hakchul Lee

Page 2 of 54

Table of Contents

1.	. Attestation of Test Results	
1.1	1.1. The Highest Reported SAR for RF expo	sure conditions for each bands6
2.	. Test Specification, Methods and Proced	lures7
3.	. Facilities and Accreditation	
4.	. SAR Measurement System & Test Equip	oment 8
4.	4.1. SAR Measurement System	
4.2	4.2. SAR Scan Procedures	
4.3	4.3. Test Equipment	
5.	. Measurement Uncertainty	
5.	5.1. DECISION RULE	
6.	. Device Under Test (DUT) Information	
6.	6.1. DUT Description	
6.2	6.2. Wireless Technologies	
6.3	6.3. Nominal and Maximum Output Power	
6.4	6.4. Power Back-off Operation	
6.5	6.5. General LTE SAR Test and Reporting C	onsiderations
67	6.6. LTE (TDD) Considerations	
0.0		
7.		ations)
	. RF Exposure Conditions (Test Configur	
7. 8.	. RF Exposure Conditions (Test Configur . Dielectric Property Measurements & Sy	ations)
7. 8. 8.	 RF Exposure Conditions (Test Configur Dielectric Property Measurements & Sy 8.1. Dielectric Property Measurements 	ations)
7. 8. 8.2	 RF Exposure Conditions (Test Configur Dielectric Property Measurements & Sy 8.1. Dielectric Property Measurements 8.2. System Check 	ations)
7. 8. 8.2 8.2 9.	 RF Exposure Conditions (Test Configur Dielectric Property Measurements & Sy 8.1. Dielectric Property Measurements 8.2. System Check Conducted Output Power Measurement 	ations)
7. 8. 8. 8.2 9. 9.	 RF Exposure Conditions (Test Configur Dielectric Property Measurements & Sy 8.1. Dielectric Property Measurements 8.2. System Check Conducted Output Power Measurement 9.1. GSM 	ations)
7. 8. 8.2 9. 9.2	 RF Exposure Conditions (Test Configur Dielectric Property Measurements & Sy 8.1. Dielectric Property Measurements 8.2. System Check Conducted Output Power Measurement 9.1. GSM 9.2. W-CDMA 	ations)
7. 8. 8.2 9. 9.2 9.2	 RF Exposure Conditions (Test Configur Dielectric Property Measurements & Sy 8.1. Dielectric Property Measurements 8.2. System Check Conducted Output Power Measurement 9.1. GSM 9.2. W-CDMA 9.3. LTE 	ations)
7. 8. 8.2 9. 9.2 9.2 9.2 9.2	 RF Exposure Conditions (Test Configur Dielectric Property Measurements & Sy 8.1. Dielectric Property Measurements 8.2. System Check System Check Conducted Output Power Measurement 9.1. GSM 9.2. W-CDMA 9.3. LTE 9.4. Wi-Fi 2.4 GHz (DTS Band) 	ations)
7. 8. 8.2 9. 9.2 9.2 9.2 9.2 9.2	 RF Exposure Conditions (Test Configur Dielectric Property Measurements & Sy 8.1. Dielectric Property Measurements 8.2. System Check 8.2. System Check Conducted Output Power Measurement 9.1. GSM 9.2. W-CDMA 9.3. LTE 9.4. Wi-Fi 2.4 GHz (DTS Band) 9.5. Wi-Fi 5GHz (U-NII Bands) 	ations)
7. 8. 8.2 9. 9.2 9.2 9.2 9.2 9.2	 RF Exposure Conditions (Test Configur Dielectric Property Measurements & Sy 8.1. Dielectric Property Measurements 8.2. System Check	ations)
7. 8. 8. 9. 9. 9. 9. 9. 9. 9. 8. 10.	 RF Exposure Conditions (Test Configur Dielectric Property Measurements & Sy 8.1. Dielectric Property Measurements 8.2. System Check	ations)
7. 8. 8. 9. 9. 9. 9. 9. 9. 9. 8. 9. 9. 10. 10.	 RF Exposure Conditions (Test Configur Dielectric Property Measurements & Sy 8.1. Dielectric Property Measurements	ations)
7. 8. 8.2 9. 9. 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2	 RF Exposure Conditions (Test Configur Dielectric Property Measurements & Sy 8.1. Dielectric Property Measurements	ations)

Page 3 of 54

10.5. LTE Band 41 (20MHz Bandwidth) 48 10.6. Wi-Fi (DTS Band) 49 10.7. Wi-Fi (U-NII Bands) 49 10.8. Bluetooth 51 11. SAR Measurement Variability 51 12. Simultaneous Transmission SAR Analysis 52 12.1. Sum of the SAR for WWAN & Wi-Fi & BT 53 Appendixes 54 4790716492-S1 FCC Report SAR_App A_Photos & Ant. Locations 54 4790716492-S1 FCC Report SAR_App B_Highest SAR Test Plots 54 4790716492-S1 FCC Report SAR_App C_System Check Plots 54 4790716492-S1 FCC Report SAR_App D_SAR Tissue Ingredients 54 4790716492-S1 FCC Report SAR_App E_Probe Cal. Certificates 54 4790716492-S1 FCC Report SAR_App E_Probe Cal. Certificates 54 4790716492-S1 FCC Report SAR_App F_Dipole Cal. Certificates 54 4790716492-S1 FCC Report SAR_App F_Dipole Cal. Certificates 54 4790716492-S1 FCC Report SAR_App G_Proximity Sensor				
10.7. Wi-Fi (U-NII Bands) 49 10.8. Bluetooth 51 11. SAR Measurement Variability 51 12. Simultaneous Transmission SAR Analysis 52 12.1. Sum of the SAR for WWAN & Wi-Fi & BT 53 Appendixes 54 4790716492-S1 FCC Report SAR_App A_Photos & Ant. Locations 54 4790716492-S1 FCC Report SAR_App B_Highest SAR Test Plots 54 4790716492-S1 FCC Report SAR_App C_System Check Plots 54 4790716492-S1 FCC Report SAR_App D_SAR Tissue Ingredients 54 4790716492-S1 FCC Report SAR_App D_SAR Tissue Ingredients 54 4790716492-S1 FCC Report SAR_App D_SAR Tissue Ingredients 54 4790716492-S1 FCC Report SAR_App F_Dipole Cal. Certificates 54 4790716492-S1 FCC Report SAR_App F_Dipole Cal. Certificates 54	10	.5.	LTE Band 41 (20MHz Bandwidth)	48
10.8. Bluetooth	10	.6.	Wi-Fi (DTS Band)	49
11. SAR Measurement Variability 51 12. Simultaneous Transmission SAR Analysis 52 12.1. Sum of the SAR for WWAN & Wi-Fi & BT. 53 Appendixes 54 4790716492-S1 FCC Report SAR_App A_Photos & Ant. Locations 54 4790716492-S1 FCC Report SAR_App B_Highest SAR Test Plots 54 4790716492-S1 FCC Report SAR_App C_System Check Plots 54 4790716492-S1 FCC Report SAR_App D_SAR Tissue Ingredients 54 4790716492-S1 FCC Report SAR_App E_Probe Cal. Certificates 54 4790716492-S1 FCC Report SAR_App F_Dipole Cal. Certificates 54	10	.7.	Wi-Fi (U-NII Bands)	49
12. Simultaneous Transmission SAR Analysis 52 12.1. Sum of the SAR for WWAN & Wi-Fi & BT 53 Appendixes 54 4790716492-S1 FCC Report SAR_App A_Photos & Ant. Locations 54 4790716492-S1 FCC Report SAR_App B_Highest SAR Test Plots 54 4790716492-S1 FCC Report SAR_App C_System Check Plots 54 4790716492-S1 FCC Report SAR_App D_SAR Tissue Ingredients 54 4790716492-S1 FCC Report SAR_App D_SAR Tissue Ingredients 54 4790716492-S1 FCC Report SAR_App D_SAR Tissue Ingredients 54 4790716492-S1 FCC Report SAR_App F_Dipole Cal. Certificates 54	10	.8.	Bluetooth	51
12.1. Sum of the SAR for WWAN & Wi-Fi & BT.53Appendixes544790716492-S1 FCC Report SAR_App A_Photos & Ant. Locations544790716492-S1 FCC Report SAR_App B_Highest SAR Test Plots544790716492-S1 FCC Report SAR_App C_System Check Plots544790716492-S1 FCC Report SAR_App D_SAR Tissue Ingredients544790716492-S1 FCC Report SAR_App E_Probe Cal. Certificates544790716492-S1 FCC Report SAR_App F_Dipole Cal. Certificates54	11.	SAF	R Measurement Variability	51
Appendixes544790716492-S1 FCC Report SAR_App A_Photos & Ant. Locations544790716492-S1 FCC Report SAR_App B_Highest SAR Test Plots544790716492-S1 FCC Report SAR_App C_System Check Plots544790716492-S1 FCC Report SAR_App D_SAR Tissue Ingredients544790716492-S1 FCC Report SAR_App D_SAR Tissue Ingredients544790716492-S1 FCC Report SAR_App E_Probe Cal. Certificates54545454545455545454545455545554565457545654575456545654575454545454545455545454545454545454545454545454545454545554565456545654575456545754565457545654575456545754565457545654575456545754565457 <t< th=""><th>12.</th><th>Sim</th><th>ultaneous Transmission SAR Analysis</th><th>52</th></t<>	12.	Sim	ultaneous Transmission SAR Analysis	52
 4790716492-S1 FCC Report SAR_App A_Photos & Ant. Locations 4790716492-S1 FCC Report SAR_App B_Highest SAR Test Plots 4790716492-S1 FCC Report SAR_App C_System Check Plots 54 4790716492-S1 FCC Report SAR_App D_SAR Tissue Ingredients 54 4790716492-S1 FCC Report SAR_App E_Probe Cal. Certificates 54 4790716492-S1 FCC Report SAR_App F_Dipole Cal. Certificates 	12	.1.	Sum of the SAR for WWAN & Wi-Fi & BT	53
 4790716492-S1 FCC Report SAR_App B_Highest SAR Test Plots 4790716492-S1 FCC Report SAR_App C_System Check Plots 4790716492-S1 FCC Report SAR_App D_SAR Tissue Ingredients 54 4790716492-S1 FCC Report SAR_App E_Probe Cal. Certificates 54 4790716492-S1 FCC Report SAR_App F_Dipole Cal. Certificates 	Δnne	ndiv		- 4
4790716492-S1 FCC Report SAR_App C_System Check Plots	APP	muixe	2S	54
4790716492-S1 FCC Report SAR_App D_SAR Tissue Ingredients				
4790716492-S1 FCC Report SAR_App E_Probe Cal. Certificates	47	90716	492-S1 FCC Report SAR_App A_Photos & Ant. Locations	54
4790716492-S1 FCC Report SAR_App F_Dipole Cal. Certificates	47 47	90716 90716	492-S1 FCC Report SAR_App A_Photos & Ant. Locations 492-S1 FCC Report SAR_App B_Highest SAR Test Plots	54 54
	473 473 473	90716 90716 90716	492-S1 FCC Report SAR_App A_Photos & Ant. Locations 492-S1 FCC Report SAR_App B_Highest SAR Test Plots 492-S1 FCC Report SAR_App C_System Check Plots	54 54 54
4790716492-S1 FCC Report SAR App G Proximity Sensor feature 54	47 47 47 47	90716 90716 90716 90716 90716	492-S1 FCC Report SAR_App A_Photos & Ant. Locations 492-S1 FCC Report SAR_App B_Highest SAR Test Plots 492-S1 FCC Report SAR_App C_System Check Plots 492-S1 FCC Report SAR_App D_SAR Tissue Ingredients	54 54 54 54
	473 473 473 473 473	90716 90716 90716 90716 90716 90716	492-S1 FCC Report SAR_App A_Photos & Ant. Locations 492-S1 FCC Report SAR_App B_Highest SAR Test Plots 492-S1 FCC Report SAR_App C_System Check Plots 492-S1 FCC Report SAR_App D_SAR Tissue Ingredients 492-S1 FCC Report SAR_App E_Probe Cal. Certificates	54 54 54 54 54

Page 4 of 54

1. Attestation of Test Results

Applicant Name		SAMSUNG ELECTRONICS CO.,LTD.			
FCC ID		A3LSMA145F			
Model Number		SM-A145FB/DS			
Applicable Standar	ds	FCC 47 CFR § 2. IEEE Std 1528-20 Published RF exp		ures	
			SAR Limi		
Exposure Category	,		al-average tissue)	Product S	pecific 10g tissue)
General population Uncontrolled expos		1.	1.6 4.0		
RF Exposure Cond	itions	Equipment Class - The Highest Reported SAR (W/kg)			
		PCE	DTS	NII	DSS
Head		0.48	0.22	0.46	<0.10
Body-worn		0.52	0.19	0.49	<0.10
Hotspot		1.00	0.41	0.46	<0.10
Product Specific 10)g	N/A	N/A	1.46	N/A
	Head	0.99	0.70	0.99	0.99
Simultaneous TX	Body-worn	1.05	0.71	1.05	1.05
	Hotspot	1.55	1.41	1.55	1.55
Date Tested		12/20/2022 to 2/15/2023			
Test Results		Pass			

UL Korea, Ltd. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Korea, Ltd. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Korea, Ltd. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Korea, Ltd. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by IAS, any agency of the Federal Government, or any agency of any government.

Approved & Released By:	Prepared By:	
flat	0 13 234	
Justin Park	Hakchul Lee	
Operations Leader	Laboratory Technician	
UL Korea, Ltd. Suwon Laboratory	UL Korea, Ltd. Suwon Laboratory	

Page 5 of 54

1.1. The Highest Reported SAR for RF exposure conditions for each bands

				The Highest Rep	orted SAR (W/kg)		
Equipment	Band	Antonno		10g of tissue			
Class		Antenna -	Head Exposure condition	Body-worn Exposure condition	Hotspot Exposure condition	Product Specific Exposure condition	
	GSM 850	Main. 1	0.481	0.516	1.004	N/A	
	GSM 1900	Main. 2	0.321	0.458	0.436	N/A	
PCE	WCDMA Band V	Main. 1	0.377	0.363	0.777	N/A	
	LTE Band 5	Main. 1	0.369	0.365	0.763	N/A	
	LTE Band 41	Main. 2	0.347	0.241	0.461	N/A	
DTS	2.4GHz WLAN	WiFi/BT Ant	0.217	0.190	0.407	N/A	
UNII	5GHz WLAN	WiFi	0.455	0.494	0.459	1.459	
DSS	Bluetooth	WiFi/BT Ant	0.053	0.038	0.085	N/A	

UL Korea, Ltd. Suwon Laboratory This report shall not be reproduced except in full, without the written approval of UL Korea, Ltd.

Page 6 of 54

2. Test Specification, Methods and Procedures

The tests documented in this report were performed in accordance with FCC 47 CFR § 2.1093, IEEE STD 1528-2013, ANSI C63.26-2015 the following FCC Published RF exposure <u>KDB</u> procedures:

- o 248227 D01 802.11 Wi-Fi SAR v02r02
- o 447498 D04 Interim General RF Exposure Guidance v01
- o 648474 D04 Handset SAR v01r03
- 690783 D01 SAR Listings on Grants v01r03
- o 865664 D01 SAR measurement 100 MHz to 6 GHz v01r04
- 865664 D02 RF Exposure Reporting v01r02
- 941225 D01 3G SAR Procedures v03r01
- 941225 D05 SAR for LTE Devices v02r05
- o 941225 D06 Hotspot Mode v02r01
- o 941225 D07 UMPC Mini Tablet v01r02
- o 971168 D01 Power Meas License Digital System v03r01

In addition to the above, the following information was used:

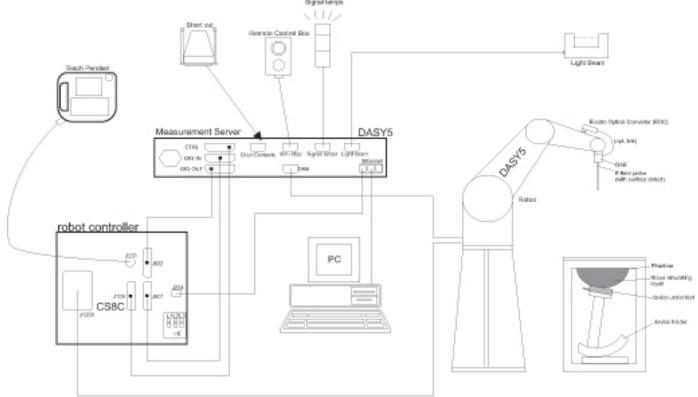
- o TCB workshop October, 2014; RF Exposure Procedures Update (Overlapping LTE Bands)
- o <u>TCB workshop</u> October, 2014; RF Exposure Procedures Update (Other LTE Considerations)
- o <u>TCB workshop</u> October, 2016; RF Exposure Procedures (Bluetooth Duty Factor)
- o <u>TCB workshop</u> October, 2016; RF Exposure Procedures (DUT Holder Perturbations)
- o <u>TCB workshop</u> May, 2017; RF Exposure Procedures (LTE Test Conditions)
- <u>TCB workshop</u> April, 2019; RF Exposure Procedures (Tissue Simulating Liquids (TSL))

3. Facilities and Accreditation

The test sites and measurement facilities used to collect data are located at

Suwon	
SAR 4 Room	SAR 5 Room
SAR 6 Room	

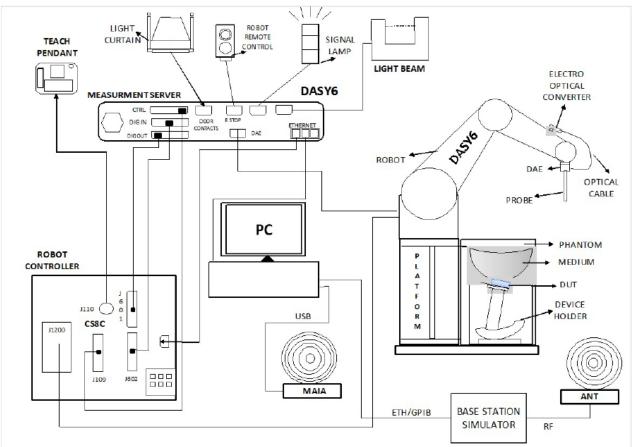
UL Korea, Ltd. is accredited by IAS, Laboratory Code TL-637. The full scope of accreditation can be viewed at;


https://www.iasonline.org/wp-content/uploads/2017/05/TL-637-cert-New.pdf.

Page 7 of 54

4. SAR Measurement System & Test Equipment

4.1. SAR Measurement System


The DASY5 system used for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic Field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, ADconversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP or Win7 and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

Page 8 of 54

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic Field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, ADconversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running Win10 and the DASY6 or 8 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

Page 9 of 54

4.2. SAR Scan Procedures

Step 1: Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. The minimum distance of probe sensors to surface is 2.1 mm. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

Step 2: Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE Standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan). If only one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of Zoom Scans has to be increased accordingly.

Area Scan Parameters extracted from	NKDB 865664 D01	1 SAR Measurement 100 MHz to 6 GHz
-------------------------------------	-----------------	------------------------------------

	\leq 3 GHz	> 3 GHz	
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	$5 \pm 1 \text{ mm}$	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$	
Maximum probe angle from probe axis to phantom surface normal at the measurement location	$30^{\circ} \pm 1^{\circ}$	$20^\circ\pm1^\circ$	
	\leq 2 GHz: \leq 15 mm 2 - 3 GHz: \leq 12 mm	$\begin{array}{l} 3-4 \ \mathrm{GHz:} \leq 12 \ \mathrm{mm} \\ 4-6 \ \mathrm{GHz:} \leq 10 \ \mathrm{mm} \end{array}$	
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be \leq the corresponding x or y dimension of the test device with at least one measurement point on the test device.		

Page 10 of 54

Step 3: Zoom Scan

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The Zoom Scan measures points (refer to table below) within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1 g and 10 g and displays these values next to the job's label.

Zoom Scan Parameters extracted from KDB 865664 D0	1 SAR Measurement 100 MHz to 6 GHz
---	------------------------------------

			\leq 3 GHz	> 3 GHz
Maximum zoom scan spatial resolution Δx_{Zoom} , Δy_{Zoom}			$\leq 2 \text{ GHz}: \leq 8 \text{ mm}$ 2 - 3 GHz: $\leq 5 \text{ mm}^*$	3 – 4 GHz: ≤ 5 mm [*] 4 – 6 GHz: ≤ 4 mm [*]
	uniform grid: $\Delta z_{Zoom}(n)$		\leq 5 mm	$\begin{array}{l} 3-4 \; \mathrm{GHz:} \leq 4 \; \mathrm{mm} \\ 4-5 \; \mathrm{GHz:} \leq 3 \; \mathrm{mm} \\ 5-6 \; \mathrm{GHz:} \leq 2 \; \mathrm{mm} \end{array}$
Maximum zoom scan spatial resolution, normal to phantom surface	n,	$\Delta z_{Z_{com}}(1)$: between 1 st two points closest to phantom surface	\leq 4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm
	grid $\Delta z_{Zoom}(n>1):$ between subsequent points		$\leq 1.5 \cdot \Delta z_{Zoom}(n-1)$	
Minimum zoom scan volume x, y, z		≥ 30 mm	$\begin{array}{l} 3-4 \text{ GHz} \ge 28 \text{ mm} \\ 4-5 \text{ GHz} \ge 25 \text{ mm} \\ 5-6 \text{ GHz} \ge 22 \text{ mm} \end{array}$	
Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.				

When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

Step 4: Power drift measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

Step 5: Z-Scan (FCC only)

The Z Scan measures points along a vertical straight line. The line runs along the Z-axis of a one-dimensional grid. In order to get a reasonable extrapolation the extrapolated distance should not be larger than the step size in Z-direction.

Page 11 of 54

4.3. Test Equipment

The measuring equipment used to perform the tests documented in this report has been calibrated in accordance with the manufacturers' recommendations, and is traceable to recognized national standards.

Dielectric Property Measurements

Name of Equipment	Manufacturer	Type/Model	Serial No.	Cal. Due Date
Netw ork Analyzer	Agilent	E5071C	MY 46522054	8-5-2023
Netw ork Analyzer	ROHDE & SCHWARZ	ZNB 20	102256	8-5-2023
Dielectric Assessment Kit	SPEAG	DAK-12	1158	11-17-2023
Dielectric Assessment Kit	SPEAG	DAK-3.5	1196	7-25-2023
Shorting block	SPEAG	DAK-3.5 Short	SM DAK 200 BA	N/A
Thermometer	LKM	DTM3000	3851	8-3-2023
Thermometer	LKM	DTM3000	3862	8-3-2023

System Check

Name of Equipment	Manufacturer	Type/Model	Serial No.	Cal. Due Date
MXG Analog Signal Generator	Aglient	N5181A	MY 50145882	8-4-2023
MXG Analog Signal Generator	Keysight	N5181B	MY 59100587	8-4-2023
MXG Analog Signal Generator	Keysight	N5173B	MY 59101083	8-4-2023
Pow er Sensor	KEYSIGHT	U2000A	MY60180020	8-3-2023
Pow er Sensor	KEYSIGHT	U2000A	MY 60490008	8-3-2023
Pow er Sensor	KEYSIGHT	U2000A	MY 60160004	8-3-2023
Pow er Sensor	KEYSIGHT	U2000A	MY61010010	8-3-2023
Pow er Amplifier	EXODUS	AMP2027	1410025-AMP2027-10003	11-2-2023
Pow er Amplifier	MINI-CIRCUITS	TVA-R5-13A+	2111006	2-15-2023
		174-10-104+	2111000	1-6-2024
Pow er Amplifier	EXODUS	AMP2027ADB	10002	3-30-2023
	EXODOS	AIVIFZUZIADB	10002	1-6-2024
Directional Coupler	Aglient	772D	MY52180193	8-3-2023
Directional Coupler	H.P	778D	16133	8-3-2023
Directional Coupler	NARDA	4216-10	2836	8-3-2023
Directional Coupler	MINI-CIRCUITS	ZMDC-30-1+	SF569102123	8-3-2023
Low Pass Filter	FILTRON	L140012FL	1410003S	8-3-2023
Low Pass Filter	MICROLAB	LA-60N	3942	8-3-2023
Low Pass Filter	MINI-CIRCUITS	VLF-6000+	S0142	8-2-2023
Low Pass Filter	MINI-CIRCUITS	VLF-3000+	S0143	8-2-2023
Low Pass Filter	MINI-CIRCUITS	NLP-1200	V/III 10201015	8-2-2023
Low Pass Filter	MINI-CIRCUITS	NLP-1200	VUU19301915	1-5-2024
Attenuator	KEYSIGHT	8491B/003	MY39272276	8-3-2023
Attenuator	KEYSIGHT	8491B/010	MY39271981	8-3-2023
Attenuator	KEYSIGHT	8491B/010	MY39272011	8-2-2023
Attenuator	KEYSIGHT	8491B/020	MY 39272301	8-3-2023
Attenuator	KEYSIGHT	8491B/020	MY 39272302	8-2-2023
Attenuator	KEYSIGHT	8491B/003	MY 39272275	8-2-2023
E-Field Probe	SPEAG	EX3DV4	7651	5-30-2023
E-Field Probe	SPEAG	EX3DV4	7645	11-15-2023
E-Field Probe	SPEAG	EX3DV4	7314	5-31-2023
E-Field Probe	SPEAG	EX3DV4	7646	3-29-2023
Data Acquisition Electronics	SPEAG	DAE4	1447	3-25-2023
Data Acquisition Electronics	SPEAG	DAE4	1468	8-18-2023
Data Acquisition Electronics	SPEAG	DA E4	1494	7-18-2023
System Validation Dipole	SPEAG	D835V2	4d174	9-21-2023
System Validation Dipole	SPEAG	D1900V2	5d199	3-25-2023
System Validation Dipole	SPEAG	D2450V2	960	5-22-2023
System Validation Dipole	SPEAG	D2600V2	1097	9-29-2023

Page 12 of 54

Test Equipment (Continued)

System Validation Dipole	SPEAG	D2600V2	1178	4-23-2023
System Validation Dipole	SPEAG	D5GHzV2	1184	11-23-2023
Thormomotor	Lutron	MHB-382SD	AH.50213	8-4-2023
Thermometer	Editori		AT 1.502 15	1-11-2024
Thermometer	Lutron	MHB-382SD	AH.50215	8-9-2023
	Lution	MINB-382SD	A H. 502 15	1-9-2024
Thermometer	Lutron	MHB-382SD	AK.12123	8-9-2023
memorielei	Editori		AR. 12125	1-9-2024
Thermometer	Lutron	MHB-382SD	AK.12103	8-9-2023
Thermometer	Lutron	MHB-382SD	AK.18789	8-9-2023
Thermometer	Lutron	MHB-382SD	AH.45903	8-9-2023
memorieler	Editori	MHB-382SD	A n.45905	1-9-2024
Thermometer	Lutron	MHB-382SD	AK.91463	8-4-2023
Inermometer	Lutron	IVIND-3828D	Art.91403	1-11-2024

Others

Name of Equipment	Manufacturer	Type/Model	Serial No.	Cal. Due Date
Base Station Simulator	R&S	CMW500	150313	8-2-2023
Base Station Simulator	R&S	CMW500	169801	1-5-2024
Base Station Simulator	R&S	CMW500	150314	8-2-2023
Base Station Simulator	R & S	CMW500	162790	8-2-2023
Base Station Simulator	R&S	CMW500	169803	5-27-2023
base station simulator	Ras		109003	1-5-2024
Base Station Simulator	R&S	CMW500	169799	8-2-2023
Base Station Simulator	e Station Simulator R & S CMW500		169800	8-2-2023
Base Station Simulator	R&S	CMW500	169798	8-2-2023

Note(s):

For System Validation Dipole, Calibration interval applied every 2 years according to referencing KDB 865664 guidance.
 Refer to Appendix F that mentioned about justification for Extended SAR Dipole Calibrations. (for blue box items)

3. All equipments were used until Cal.Due data.

Page 13 of 54

5. Measurement Uncertainty

Per KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg and the measured 10-g SAR within a frequency band is < 3.75 W/kg. The expanded SAR measurement uncertainty must be \leq 30%, for a confidence interval of k = 2. If these conditions are met, extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2013 is not required in SAR reports submitted for equipment approval.

5.1. DECISION RULE

Decision rule for statement(s) of conformity is based on Procedures 1, Clause 4.4.2 in IEC Guide 115:2007.

6. Device Under Test (DUT) Information

6.1. DUT Description

Device Dimension	Refer to Appen	Refer to Appendix A.				
Back Cover	⊠ The Back Co	☑ The Back Cover is not removable.				
Battery Options	⊠ The recharg	eable battery is not user accessible				
Wireless Router (Hotspot)		node permits the device to share its cellu pot (Wi-Fi 2.4 GHz)	lar data connection with other Wi-Fi-enabled devices.			
	Mobile Hots	pot (Wi-Fi 5.8 GHz)				
Wi-Fi Direct		abled devices transfer data directly betwee (Wi-Fi 2.4 GHz)	een each other			
		(Wi-Fi 5.2 GHz_UNII-1, Wi-Fi 5.8 GHz_L	JNII-3)			
Test Sample Information	No.	S/N	Notes			
	1	R38TB002JMJ	MAIN Conducted			
	2	R38TB002LDK	MAIN Conducted			
	3	R38T90084FX	MAIN Conducted			
	4	R38T90084VD	MAIN Conducted			
	5	R38T90084BB	Wi-Fi & BT Conducted			
	6	R38TB002D9Z	SAR			
	7	R38TB002JFV	SAR			
	8	R38T90084WY	SAR			
	9	R38T90075LR	SAR			
	10	R38T900844Z	SAR			

Page 14 of 54

6.2. Wireless Technologies

Wireless technologies	Frequency bands	Opera	ting mode	Duty Cycle used for SAR testing		
GSM	850 1900	Voice (GMSK) GPRS (GMSK) EGPRS (8PSK)	GPRS Multi-Slot Class: □ Class 8 - 1 Up, 4 Down □ Class 10 - 2 Up, 4 Down □ Class 12 - 4 Up, 4 Down ⊠ Class 33 - 4 Up, 5 Down	GSM Voice: 12.5% (E)GPRS: 1 Slot: 12.5% 2 Slots: 25% 3 Slots: 37.5% 4 Slots: 50%		
	Does this device support E	DTM (Dual Transfer Mode)?	□ Yes ⊠ No	-		
W-CDMA (UMTS)	Band V	UMTS Rel. 99 (Voice & Da HSDPA (Category 24) HSUPA (Category 6) DC-HSDPA (Category 24) HSPA+ (DL only)		100%		
LTE	FDD Band 5 TDD Band 41	QPSK 16QAM Rel. 10 Does not support (Carrier Aggregation (CA)	100% (FDD) 63.3% (TDD)		
	Does this device support SV-LTE (1xRTT-LTE)? □ Yes ⊠ No					
Wi-Fi	2.4 GHz	802.11b, 802.11g, 802.11ı		SISO : 99.65% (802.11a)		
	5 GHz	802.11a / 802.11n (HT20/4 802.11ac (VHT20/40/80)	40)	SISO : 98.14% (802.11a) 98.53% (802.11.n) 98.2% (802.11ac VHT 80))		
	Does this device support b	oands 5.60 ~ 5.65 GHz? ⊠ ∖	∕es □ No			
	Does this device support E	Band gap channel(s)? 🖂 Yes	s 🗆 No			
Bluetooth	2.4 GHz	Version 5.3 LE		76.7% (DH5)		

Notes:

The Bluetooth protocol is considered source-based averaging. Bluetooth was verified to have the highest duty cycle and was considered 1. and used for SAR Testing. Duty cycle plot for Wi-Fi are in Section.9.5 (2.4GHz) & Section.9.6 (5GHz)

2.

Page 15 of 54

6.3. Nominal and Maximum Output Power

KDB 447498 sec.4.1. at the maximum rated output power and within the tune-up tolerance range specified for the product, but not more than 2 dB lower than the maximum tune-up tolerance limit

RF Air interface	Antenna	Mode	Time Slots	Max. RF Output Pow er (dBm)		(Hotspot & Pro:	Output Power ximity sensor & <-off) (dBm)
				Tune-up Limit	Frame Pw r	Tune-up Limit	Frame Pw r
		Voice	1	34.00	24.97		
		GPRS	1	34.00	24.97		
		GPRS	2	32.00	25.98		
		GPRS	3	30.00	25.74		
GSM850	Main 1 Ant.	GPRS	4	29.50	26.49		
		EGPRS	1	27.50	18.47		
		EGPRS	2	25.50	19.48		
		EGPRS	3	23.00	18.74		
		EGPRS	4	22.00	18.99		
		Voice	1	32.00	22.97	29.00	19.97
		GPRS	1	32.00	22.97	29.00	19.97
		GPRS	2	29.50	23.48	26.50	20.48
		GPRS	3	27.50	23.24	24.00	19.74
GSM1900	Main 2 Ant.	GPRS	4	26.00	22.99	22.00	18.99
		EGPRS	1	26.00	16.97	24.00	14.97
		EGPRS	2	24.50	18.48	21.50	15.48
		EGPRS	3	23.00	18.74	19.50	15.24
		EGPRS	4	21.00	17.99	18.50	15.49

RF Air interface	Antenna	Mode	Max. RF Output Power (dBm)
	Main 1 Ant.	R99	25.50
W-CDMA		HSDPA	23.00
Band V		HSUPA	23.00
		DC-HSDPA	23.00

RF Air interface	Antenna	Mode	Max. RF Output Power (dBm)
LTE Band 5	Main 1 Ant.	QPSK	25.50
LTE Band 41	Main 2 Ant.	QPSK	23.50

Page 16 of 54

WLAN/BT output power Max output power

		Max. RF Output Pow er (dBm)					
RF Air interface	Band	802.11 mode					
		а	b	g	n	ac	
WiFi 2.4 GHz	DTS		16.5 1ch : 15 12ch : 16 13ch : 16	16.5 1ch : 15.0 11ch : 15.0 12ch : 12 13ch : 5	16.5 1ch : 15.0 11ch : 15.0 12ch : 12 13ch : 5		
	UNII-1 & 2A	16.0			16	16	
WiFi 5 GHz (BW : 20MHz)	UNII-2C	36ch : 14.5 100ch : 15.0			36ch : 14.5 100ch : 15.0	36ch : 14.5 100ch : 15.0	
	UNII-3				140ch : 15.0	140ch : 15.0	
	UNII-1 & 2A				15.0	15.0	
WiFi 5 GHz (BW : 40MHz)	UNII-2C				38ch : 11.0 62ch : 13.0	38ch : 11.0 62ch : 13.0	
	UNII-3				102ch : 11.5	102ch : 11.5	
	UNII-1 & 2A					9.0	
WiFi 5 GHz (BW : 80MHz)	UNII-2C					13.0 106ch : 10.0	
	UNII-3					13.0	
RE Air in	RF Air interface		Max. RF Output Pow er (dBm)				
		BDR	EDR	LE			
Blueto	ooth	9.5	8.0	6.5			

Reduced output power

		Reduced. RF Output Pow er (dBm)						
RF Air interface	Band		802.11 mode					
		а	b	g	n	ac		
WiFi 2.4 GHz	DTS		12.0	12.0	12.0			
WiFi 5 GHz (BW : 20MHz)	UNII Bands	11.0			11.0	11.0		
WiFi 5 GHz (BW : 40MHz)	UNII Bands				11.0	11.0		
	UNII -1 & 2A					9.0		
WiFi 5 GHz (BW : 80MHz)	UNII -2C					11.0 106ch : 10		
	UNII -3					11.0		

Note(s):

1. This device uses an independent fixed level power reduction mechanism for WLAN & BT mode operations during RCV operation. Detailed descriptions of the power reduction mechanism are included in the operational description.

6.4. Power Back-off Operation

This device supports multiple power back-off modes: WWAN (Hotspot), WWAN (Proximity sensor) and WWAN (earjack). Each of the power back-off operates within specific exposure conditions for certain technologies. For full details on how each power back-off mode operates, refer to the Operational Description.

Power	Technologies	Exposure Conditions Active			
Back-off mode Supported		Head	Body-worn	Hotspot	Product Specific 10-g
WWAN (Hotspot)	GSM 1900	N/A	N/A	\checkmark	N/A
WWAN (Proximity sensor)	GSM 1900	N/A	N/A	N/A	~
WWAN (Ear-jack)	GSM 1900	N/A	√	N/A	\checkmark

Note(s):

1. Tune-up Limits for WWAN (Hotspot) and WWAN (Proximity Sensor) are all Reduced Average Powers. Please refer to Sec.9 for all conducted power measurements.

2. WWAN Back-off priority: RCV → Hotspot → Ear-jack → Proximity Sensor

3. Body-worn SAR with ear-jack connected is not required due to Body-worn measured at max power is not over 1.2 W/kg.

Product Specific 10g Adjusted SAR Calculation

Wireless technologies	Max Tune-up Limit (dBm)	Reduced Tune-Up Limit (dBm)	Power Factor	Reported SAR Limit (W/kg)
GSM 1900	23.48	20.48	2.00	0.601

Note(s):

1. Tune-up limit powers for GSM 1900 is frame power(dBm).

Hotspot mode supports power reduction. When the measured SAR is scaled to the maximum tune-up limit, the adjusted SAR is < 1.2 W/kg. Therefore, Extremity SAR testing is not required for this band in accordance with KDB 648474 §2.5 b. Refer to §10 for Reported SAR results. If the Reported SAR 1g value in §10 is less than the Reported SAR Limit listed above, then Extremity SAR is not required.
 1 TE 50% PB is scaled up to the Max Tune I b Limit with MPR included

3. LTE 50% RB is scaled up to the Max Tune-Up Limit with MPR included.

 For Reported SAR limit in above table, it was calculated using Max tune-up Limit & Reduced Tune-up limit & Reported SAR 1.2 W/kg. (Reported SAR Limit = 1.2 W/kg / Power factor, Power factor = 10^((Max tune-up limit – Reduced tune-up limit)/10)

Page 18 of 54

6.5. General LTE SAR Test and Reporting Considerations

Item	Description							
Frequency range, Channel Bandwidth,			F	requenc	/ range: 8	824 - 849 M	Hz	
Numbers and Frequencies	Band 5			Ch	annel Ba	ndwidth		
		20 MHz	15 MHz	10 N	1Hz	5 MHz	3 MHz	1.4 MHz
	Low			204	50/	20425/	20415/	20407/
	Low			82	9	826.5	825.5	824.7
	Mid			205	25/	20525/	20525/	20525/
	IVIIC			836	6.5	836.5	836.5	836.5
	High			206		20625/	20635/	20643/
	riigii			84		846.5	847.5	848.3
			Fr			496 - 2690 N	/Hz	
	Band 41			Ch	annel Ba	ndwidth		
		20 MHz	15 MHz	10 N	1Hz	5 MHz	3 MHz	1.4 MHz
	Low		39750	/ 2506.0				
	Low-Mid		40185	/ 2549.5				
	Mid		40620	/ 2593.0				
	Mid-High		41055	/ 2636.5				
	High		41490	/ 2680.0				
LTE transmitter and antenna			R	efer to Ar	pendix A	۱.		
implementation	_				•			
	Table 6	.2.3-1: Maxin	num Power	Reductio	on (MPR)) for Power	Class 1, 2 a	ind 3
	Modulation Channel bandwidth / Transmission bandwidth ((N _{RB})	MPR (dB)	
		1.4	3.0	5	10	15	20	
		MHz	MHz	MHz	MHz	MHz	MHz	
	QPSK	> 5	> 4	> 8	> 12	> 16	> 18	≤ 1
	16 QAM 16 QAM	<u>≤ 5</u> > 5	≤ 4 > 4	≤ 8 > 8	≤ 12 > 12	≤ 16 > 16	≤ 18 > 18	≤ 1 ≤ 2
Maximum power reduction (MPR)	64 QAM	≤ 5	≤ 4	<u> </u>	≤ 12	≤ 16	≤ 18	≤ 2 ≤ 2
	64 QAM	> 5	> 4	> 8	> 12	> 16	> 18	<u>≤</u> 3
	256 QAM			-	≥1	- 10	- 10	<u> </u>
	MPR Built-in b	y design						
	The manufact	urer MPR val	ues are alwag	ys within	the 3GPI	P maximum	MPR allowa	nce but may
	not follow the	default MPR	/alues.					
	A-MPR (additi	onal MPR) wa	as disabled d	luring SA	R testing			
Power reduction	Yes							
	A properly cor	figured base	station simul	ator was	used for	the SAR an	d power mea	asurements:
Spectrum plots for RB configurations	therefore, spe	-						
						Connyuratio		
1	SAR report.							

Notes:

Maximum bandwidth does not support at least three non-overlapping channels in certain channel bandwidths. When a device supports
Overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be
selected for testing per KDB 941225 D05 SAR for LTE devices.

2. LTE Band 41 test channels in accordance with October 2014 TCB workshop for all channels bandwidths.

3. SAR Testing for LTE was performed with the same number of RB and RB offsets transmitting on all TTI frames (maximum TTI).

6.6. LTE (TDD) Considerations

According to KDB 941225 D05 SAR for LTE Devices, for Time-Division Duplex (TDD) systems, SAR must be tested using a fixed periodic duty factor according to the highest transmission duty factor implemented for the device and supported by the defined 3GPP LTE TDD configurations.

LTE TDD Bands support 3GPP TS 36.211 section 4.2 for Type 2 Frame Structure and Table 4.2-2 for uplinkdownlink configurations and Table 4.2-1 for Special subframe configurations.

	Nor	mal cyclic prefix in	downlink	Exten	ded cyclic prefix	in downlink	
Special	DwPTS	UpF	PTS	DwPTS	Up	PTS	
subframe configuration		Normal cyclic prefix in uplink	Extended cyclic prefix in uplink		Normal cyclic prefix in uplink	Extended cyclic prefix in uplink	
0	$6592 \cdot T_{\rm s}$			$7680 \cdot T_{\rm s}$			
1	$19760 \cdot T_{\rm s}$			$20480 \cdot T_{\rm s}$	2102 T	25 <i>6</i> 0 T	
2	$21952 \cdot T_{\rm s}$	$2192 \cdot T_{\rm s}$	$2560 \cdot T_{\rm s}$	$23040 \cdot T_{\rm s}$	$2192 \cdot T_{\rm s}$	$2560 \cdot T_{\rm s}$	
3	$24144 \cdot T_{\rm s}$			$25600 \cdot T_{\rm s}$			
4	$26336 \cdot T_{\rm s}$			$7680 \cdot T_{\rm s}$			
5	$6592 \cdot T_{\rm s}$			$20480 \cdot T_{\rm s}$		5100 T	
6	$19760 \cdot T_{\rm s}$			$23040 \cdot T_{\rm s}$	$4384 \cdot T_{\rm s}$	$5120 \cdot T_{\rm s}$	
7	$21952 \cdot T_{\rm s}$	$4384 \cdot T_{\rm s}$	$5120 \cdot T_{\rm s}$	$12800 \cdot T_s$			
8	$24144 \cdot T_{s}$			-	-	-	
9	$13168 \cdot T_s$			-	_	-	

Table 4.2-1: Configuration of special subframe (lengths of DwPTS/GP/UpPTS).

Calculated Duty Cycle

Uplink-	Downlink-to-				Sub	frame	e Num	nber				
Downlink Configuration	Uplink Switch-point Periodicity	0	1	2	3	4	5	6	7	8	9	Calculated Duty Cycle (%)
0	5 ms	D	S	U	U	U	D	S	U	U	U	63.33
1	5 ms	D	S	U	U	D	D	S	U	U	D	43.33
2	5 ms	D	S	U	D	D	D	S	U	D	D	23.33
3	10 ms	D	S	U	U	U	D	D	D	D	D	31.67
4	10 ms	D	S	U	U	D	D	D	D	D	D	21.67
5	10 ms	D	S	U	D	D	D	D	D	D	D	11.67
6	5 ms	D	S	U	U	U	D	S	U	U	D	53.33

Calculated Duty Cycle = Extended cyclic prefix in uplink x (T_s) x # of S + # of U

Example for Calculated Duty Cycle for Uplink-Downlink Configuration 0: Calculated Duty Cycle = $5120 \times [1/(15000 \times 2048)] \times 2 + 6 \text{ ms} = 63.33\%$ where $T_s = 1/(15000 \times 2048)$ seconds

Note(s):

This device supports uplink-downlink configurations 0-6. The configuration with highest duty cycle was used for SAR Testing: configuration 0 at 63.3% duty cycle.

7. RF Exposure Conditions (Test Configurations)

Refer to Appendix A for the specific details of the antenna-to-antenna and antenna-to-edge(s) distances.

Wireless technologies	RF Exposure Conditions	Antenaa	DUT-to-User Separation	Test Position	Antenna-to- edge/surface	SAR Required	No
				Left Touch	N/A	Yes	
	Head	All Main Antennas	0 mm	Left Tilt (15°)	N/A	Yes	
	neau	An Main Antennas	0 mm	Right Touch	N/A	Yes	
				Right Tilt (15°)	N/A	Yes	
	Body	All Main Antennas	15 mm	Rear	N/A	Yes	
	Bouy	An Main Antennas	15 1111	Front	N/A	Yes	
				Rear	< 25 mm	Yes	
				Front	< 25 mm	Yes	
	Hotspot	Main 1 Ant.	10 mm	Edge 1 (Top)	> 25 mm	No	
	поізрої	iviain i An.	10 mm	Edge 2 (Right)	< 25 mm	Yes	
WWAN				Edge 3 (Bottom)	< 25 mm	Yes	
				Edge 4 (Left)	< 25 mm	Yes	
				Rear	< 25 mm	Yes	
				Front	< 25 mm	Yes	
	Hotspot	Main 2 Ant.	10 mm	Edge 1 (Top)	> 25 mm	No	
	TIOISPOI	Main Z An.	TOTIM	Edge 2 (Right)	> 25 mm	No	
				Edge 3 (Bottom)	< 25 mm	Yes	
				Edge 4 (Left)	< 25 mm	Yes	
				Rear			
				Front			
	Product Specific	All Main Antennas	0 mm	Edge 1 (Top)	Deferte	o notes 2 & 3	
	10-g	An Main Antennas	UIIIII	Edge 2 (Right)	Relefic	110185203	
				Edge 3 (Bottom)			
				Edge 4 (Left)			

Notes:

1. SAR is not required because the distance from the antenna to the edge is > 25 mm as per KDB 941225 D06 Hot Spot SAR.

2. For Phablet devices: When hotspot mode applies, Product specific 10-g SAR is required only for the surfaces and edges with hotspot mode 1-g reported SAR > 1.2 W/kg.

3. For Phablet devices: When hotspot mode applies and power reduction applies to hotspot mode, Product specific 10-g SAR is required for each test position that has and adjusted SAR to maximum power that is > 1.2 W/kg.

4. For Phablet devices: When hotspot mode is not supported, Product specific 10-g SAR is required for all surfaces and edges with an antenna located at ≤ 25mm from that surface or edge in direct contact with a flat phantom, to address interactive hand use exposure conditions

Page 21 of 54

Wireless technologies	RF Exposure Conditions	Antenaa	DUT-to-User Separation	Test Position	Antenna-to- edge/surface	SAR Required	Note								
				Left Touch	N/A	Yes									
	Head		0 mm	Left Tilt (15°)	N/A	Yes									
	Tieau	All Main Antennas	0 mm	Right Touch	N/A	Yes									
		All Maill Antennas		Right Tilt (15°)	N/A	Yes									
	Body		15 mm	Rear	N/A	Yes									
	Body		1311111	Front	N/A	Yes									
				Rear	< 25 mm	Yes									
		2.4G WLAN Ant.		Front	< 25 mm	Yes									
2.4GHz WLAN/BT	Hotopot										5G WLAN Ant.	10 mm	Edge 1 (Top)	< 25 mm	Yes
& 5 CH = 14/L AN	Hotspot	BT Ant.	10 mm	Edge 2 (Right)	> 25 mm	No	1								
5GHz WLAN		DT Ant.		Edge 3 (Bottom)	> 25 mm	No	1								
				Edge 4 (Left)	< 25 mm	Yes									
				Rear	÷	•									
				Front											
	Product Specific			Edge 1 (Top)	D ()										
	10-g	All Main Antennas	0 mm	Edge 2 (Right)	Keter	to notes 2 & 4									
				Edge 3 (Bottom)											
				Edge 4 (Left)	-										

Notes:

1. SAR is not required because the distance from the antenna to the edge is > 25 mm as per KDB 941225 D06 Hot Spot SAR.

2. For Phablet devices: When hotspot mode applies, Product specific 10-g SAR is required only for the surfaces and edges with hotspot mode 1-g reported SAR > 1.2 W/kg.

For Phablet devices: When hotspot mode applies and power reduction applies to hotspot mode, Product specific 10-g SAR is required for each test position that has and adjusted SAR to maximum power that is > 1.2 W/kg.
 For Phablet devices: When hotspot mode is not supported, Product specific 10-g SAR is required for all surfaces and edges with an

4. For Phablet devices: When hotspot mode is not supported, Product specific 10-g SAR is required for all surfaces and edges with an antenna located at ≤ 25mm from that surface or edge in direct contact with a flat phantom, to address interactive hand use exposure conditions.

Page 22 of 54

8. Dielectric Property Measurements & System Check

8.1. Dielectric Property Measurements

The temperature of the tissue-equivalent medium used during measurement must also be within 18° C to 25° C and within $\pm 2^{\circ}$ C of the temperature when the tissue parameters are characterized.

The dielectric parameters must be measured before the tissue-equivalent medium is used in a series of SAR measurements. The Tissue Dielectric parameters (100MHz to 6GHz) should be re-measured after each 3 - 4 days of use; or earlier if the dielectric parameters can become out of tolerance; for example, when the parameters are marginal at the beginning of the measurement series.

Tissue dielectric parameters were measured at the low, middle and high frequency of each operating frequency range of the test device.

Tissue Dielectric Parameters

FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz

Target Frequency (MHz)	He	ad
raiget Frequency (Minz)	ε _r	σ (S/m)
150	52.3	0.76
300	45.3	0.87
450	43.5	0.87
835	41.5	0.90
900	41.5	0.97
915	41.5	0.98
1450	40.5	1.20
1610	40.3	1.29
1800 – 2000	40.0	1.40
2450	39.2	1.80
3000	38.5	2.40
5000	36.2	4.45
5100	36.1	4.55
5200	36.0	4.66
5300	35.9	4.76
5400	35.8	4.86
5500	35.6	4.96
5600	35.5	5.07
5700	35.4	5.17
5800	35.3	5.27
6000	35.1	5.48

SAR test were performed in All RF exposure conditions using Head tissue according to TCB workshop note of April. 2019.

IEEE Std 1528-2013

Refer to Table 3 within the IEEE Std 1528-2013

Dielectric Property Measurements Results: SAR 4 Room

Date	Freq. (MHz) Liquid Parameters		Measured	Target	Delta (%)	Limit ±(%)		
	Head 2600	e'	39.0800	Relative Permittivity (ε_r):	39.08	39.01	0.18	5
	Head 2000	e"	13.4000	Conductivity (σ):	1.94	1.96	-1.27	5
2023-01-25	Head 2500	e'	39.6400	Relative Permittivity (c _r):	39.64	39.14	1.29	5
2023-01-23	Tieau 2000	e"	12.9700	Conductivity (σ):	1.80	1.85	-2.76	5
	Head 2700	e'	39.0700	Relative Permittivity (ε_r):	39.07	38.88	0.48	5
	Tieau 2700	e"	13.3100	Conductivity (o):	2.00	2.07	-3.48	5
	Head 2450	e'	39.6700	Relative Permittivity (ε_r):	39.67	39.20	1.20	5
	Tieau 2430	e"	12.9800	Conductivity (o):	1.77	1.80	-1.76	5
2023-01-25	Head 2400	e'	39.6600	Relative Permittivity (ε_r):	39.66	39.30	0.92	5
2025-01-25	Tieau 2400	e"	13.0700	Conductivity (σ):	1.74	1.75	-0.43	5
	Head 2480	e'	39.6600	Relative Permittivity (ε_r):	39.66	39.16	1.27	5
	Tieau 2400	e"	12.9500	Conductivity (σ):	1.79	1.83	-2.55	5
	Head 2450	e'	39.8300	Relative Permittivity (ε_r):	39.83	39.20	1.61	5
	Tieau 2430	e"	13.2500	Conductivity (σ):	1.81	1.80	0.28	5
2023-01-30	Head 2400	e'	39.9200	Relative Permittivity (ε_r):	39.92	39.30	1.59	5
2023-01-30	Tieau 2400	e"	13.2400	Conductivity (σ):	1.77	1.75	0.87	5
	Head 2480	e'	39.8000	Relative Permittivity (ε_r):	39.80	39.16	1.63	5
	Tieau 2400	e"	13.2500	Conductivity (σ):	1.83	1.83	-0.29	5
	Head 2450	e'	38.8800	Relative Permittivity (ε_r):	38.88	39.20	-0.82	5
	Tiedu 2430	e"	13.0500	Conductivity (σ):	1.78	1.80	-1.23	5
2023-02-10	Head 2400	e'	38.8500	Relative Permittivity (ε_r):	38.85	39.30	-1.14	5
2023-02-10	rieau 2400	e"	13.0200	Conductivity (o):	1.74	1.75	-0.81	5
	Head 2480	e'	38.9400	Relative Permittivity (ε_r):	38.94	39.16	-0.57	5
		e"	12.9600	Conductivity (σ):	1.79	1.83	-2.47	5

SAR 5 Room

Date	Freq. (MHz)		Li	quid Parameters	Measured	Target	Delta (%)	Limit ±(%)
	Head 5250	e'	35.1500	Relative Permittivity (ɛ,):	35.15	35.93	-2.18	5
	Tieau 5250	e"	16.5400	Conductivity (σ):	4.83	4.70	2.68	5
	Head 5260	e'	35.1900	Relative Permittivity (ε_r):	35.19	35.92	-2.04	5
	Head 5260	e"	16.5600	Conductivity (σ):	4.84	4.71	2.78	5
2023-01-26	Head 5600	e'	35.9600	Relative Permittivity (ε_r):	35.96	35.53	1.20	5
2023-01-20	Tieau 5000	e"	16.3400	Conductivity (σ):	5.09	5.06	0.55	5
	Head 5800	e'	35.2400	Relative Permittivity (ε_r):	35.24	35.30	-0.17	5
	Head 5000	e"	16.1400	Conductivity (σ):	5.21	5.27	-1.23	5
	Head 5825	e'	35.2100	Relative Permittivity (ε_r):	35.21	35.30	-0.25	5
	Head 5625	e"	16.1200	Conductivity (σ):	5.22	5.27	-0.93	5
	Head 5250	e'	35.3900	Relative Permittivity (ε_r):	35.39	35.93	-1.51	5
	Head 5250	e"	16.0600	Conductivity (σ):	4.69	4.70	-0.30	5
	Head 5260	e'	35.4000	Relative Permittivity (ε_r):	35.40	35.92	-1.45	5
	Head 5260	e"	16.0500	Conductivity (σ):	4.69	4.71	-0.39	5
2023-01-30	Head 5600	e'	35.2300	Relative Permittivity (ε_r):	35.23	35.53	-0.86	5
2023-01-30	Head 5000	e"	15.9700	Conductivity (σ):	4.97	5.06	-1.73	5
	Head 5800	e'	34.7400	Relative Permittivity (ε_r):	34.74	35.30	-1.59	5
		e"	16.0100	Conductivity (σ):	5.16	5.27	-2.03	5
	Head 5825	e'	34.6600	Relative Permittivity (ɛ,):	34.66	35.30	-1.81	5
	rieau 3025	e"	16.0000	Conductivity (o):	5.18	5.27	-1.67	5

Date	Freq. (MHz)		Li	quid Parameters	Measured	Target	Delta (%)	Limit ±(%)
Date	1 109. (11112)	e'	41,9400	Relative Permittivity (ε_r):	41.94	41.50	1.06	5
	Head 835	e"	20.0600	Conductivity (σ):	0.93	0.90	3.48	5
		e'	42.0100	Relative Permittivity (c _r):	42.01	41.60	0.98	5
2022-12-20	Head 820	e"	20.2800	Conductivity (o _f):	0.92	0.90	2.92	5
		e'	41.9100	Relative Permittivity (c _r):	41.91	41.50	0.99	5
	Head 850	e"	19.9100	Conductivity (σ):	0.94	0.92	2.84	5
		e'	40.9300	Relative Permittivity (c _r):	40.93	40.00	2.33	5
	Head 1900	e"	13.4900	Conductivity (o):	1.43	1.40	1.80	5
2022-12-20	Head 1850	e'	40.9200	Relative Permittivity (ε _r):	40.92	40.00	2.30	5
2022-12-20	Head 1850	e"	13.9400	Conductivity (σ):	1.43	1.40	2.42	5
	Head 1910	e'	40.8800	Relative Permittivity (ɛ _r):	40.88	40.00	2.20	5
	Head 1910	e"	13.4800	Conductivity (σ):	1.43	1.40	2.26	5
	Head 2600	e'	40.5500	Relative Permittivity (ε_r):	40.55	39.01	3.95	5
	Head 2000	e"	13.0600	Conductivity (o):	1.89	1.96	-3.78	5
2022-12-26	Head 2500	e'	40.4600	Relative Permittivity (ε_r):	40.46	39.14	3.38	5
2022-12-20	riead 2500	e"	12.9700	Conductivity (o):	1.80	1.85	-2.76	5
	Head 2700	e'	40.3900	Relative Permittivity (ε_r):	40.39	38.88	3.87	5
		e"	13.1900	Conductivity (o):	1.98	2.07	-4.35	5

UL Korea, Ltd. Suwon Laboratory This report shall not be reproduced except in full, without the written approval of UL Korea, Ltd.

Page 25 of 54

8.2. System Check

SAR system verification is required to confirm measurement accuracy, according to the tissue dielectric media, probe calibration points and other system operating parameters required for measuring the SAR of a test device. The system verification must be performed for each frequency band and within the valid range of each probe calibration point required for testing the device. The same SAR probe(s) and tissue-equivalent media combinations used with each specific SAR system for system verification must be used for device testing. When multiple probe calibration points are required to cover substantially large transmission bands, independent system verifications are required for each probe calibration point. A system verification must be performed before each series of SAR measurements using the same probe calibration point and tissue-equivalent medium. Additional system verification should be considered according to the conditions of the tissue-equivalent medium and measured tissue dielectric parameters, typically every three to four days when the liquid parameters are re-measured or sooner when marginal liquid parameters are used at the beginning of a series of measurements.

System Performance Check Measurement Conditions:

- The measurements were performed in the flat section of the TWIN SAM or ELI phantom, shell thickness: 2.0 ±0.2 mm (bottom plate) filled with Body or Head simulating liquid of the following parameters.
- The depth of tissue-equivalent liquid in a phantom must be ≥ 15.0 cm for SAR measurements ≤ 3 GHz and ≥ 10.0 cm for measurements > 3 GHz.
- The DASY system with an E-Field Probe was used for the measurements.
- The dipole was mounted on the small tripod so that the dipole feed point was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10 mm (above 1 GHz) and 15 mm (below 1 GHz) from dipole center to the simulating liquid surface.
- The coarse grid with a grid spacing of 15 mm was aligned with the dipole.
 For 5 GHz band The coarse grid with a grid spacing of 10 mm was aligned with the dipole.
- Special 7x7x7 (below 3 GHz) and/or 8x8x7 (above 3 GHz) fine cube was chosen for the cube.
- Distance between probe sensors and phantom surface was set to 2.5 mm.
 For 5 GHz band Distance between probe sensors and phantom surface was set to 1.4 mm
- The dipole input power (forward power) was 100 mW.
- The results are normalized to 1 W input power.

Page 26 of 54

Reference Target SAR Values

The reference SAR values can be obtained from the calibration certificate of system validation dipoles.

System Dipole	Serial No.	Cal. Date	Cal. Due Date	Target SAR V	/alues (W/kg)
System Dipole	Senar No.	Cal. Date	Cal. Due Dale	1g/10g	Head
D835V2	4d174	9-21-2022	9-21-2024	1g	9.63
D033V2	40174	9-21-2022	9-21-2024	10g	6.29
D1900V2	5d199	3-25-2022	3-25-2024	1g	39.40
D1900V2	50199	5-20-2022	3-20-2024	10g	20.50
D2450V2	960	3-24-2022	3-24-2023	1g	51.90
D2+30 V2	500	5 24 2022	5 24 2025	10g	24.00
D2600V2	1178	4-23-2021	4-21-2023	1g	56.60
D2000V2	1170	4 20 2021	4 21 2025	10g	25.40
D2600V2	1097	9-29-2021	9-29-2023	1g	57.10
D2000V2	1037	5 25 2021	5 25 2025	10g	25.50
				1g	79.00
				10g	22.90
D5GHzV2	1184	11-23-2022	11-23-2023	1g	81.60
00011272	1104	11 20 2022	11 20 2020	10g	23.10
				1g	79.50
				10g	22.60

Note(s):

1. For System Validation Dipole, Calibration interval applied every 2 years according to referencing KDB 865664 guidance.

2. Refer to Appendix F that mentioned about justification for Extended SAR Dipole Calibrations.

3. All equipments were used until Cal.Due data.

System Check Results

The 1-g and 10-g SAR measured with a reference dipole, using the required tissue-equivalent medium at the test frequency, must be within 10% of the manufacturer calibrated dipole SAR target.

SAR 4 Room

	System	Dipole	т	S.	Measure	d Results	Target	Delta	
Date Tested	Туре	Serial #	Liquid		Zoom Scan to 100 mW	Normalize to 1 W	(Ref. Value)	±10 %	Plot No.
1-25-2023	D2600V2	1097	Head	1g	5.54	55.4	57.10	-2.98	
1-20-2023	D2000V2	1097	neau	10g	2.48	24.8	25.50	-2.75	
1-25-2023	D2450V2	960	Head	1g	5.12	51.2	51.90	-1.35	
1-20-2020	D2430V2	300	ricad	10g	2.36	23.6	24.00	-1.67	
1-30-2023	D2450V2	960	Head	1g	5.03	50.3	51.90	-3.08	
1-30-2023	D2450V2	900	neau	10g	2.31	23.1	24.00	-3.75	
2-10-2023	D2450V2	960	Head	1g	5.43	54.3	51.90	4.62	1
2-10-2023	D2430V2	300	riedu	10g	2.54	25.4	24.00	5.83	r I

SAR 5 Roo	m								
	System	Dipole	т	T.S. Liquid		d Results	Torget	Delta	
Date Tested	Туре	Serial #				Normalize to 1 W	Target (Ref. Value)	±10 %	Plot No.
1-26-2023	D5GHzV2	1184	Head	1g	8.45	84.5	79.00	6.96	2
1-20-2023	0001212	1104	Tieau	10g	2.40	24.0	22.90	4.80	2
1-26-2023	D5GHzV2	1184	Head	1g	8.38	83.8	81.60	2.70	
1-20-2023	DOGHZVZ	1104	Heau	10g	2.34	23.4	23.10	1.30	
1-26-2023	D5GHzV2	1184	Head	1g	7.95	79.5	79.50	0.00	
1-20-2023	(5800)	1104	neau	10g	2.24	22.4	22.60	-0.88	
1-30-2023	D5GHzV2	1184	Head	1g	8.42	84.2	79.00	6.58	
1-30-2023	DOGHZVZ	1104	neau	10g	2.49	24.9	22.90	8.73	
1-30-2023	D5GHzV2	1184	Head	1g	8.68	86.8	81.60	6.37	
1-30-2023	DOGHZVZ	1104	neau	10g	2.51	25.1	23.10	8.66	
1-30-2023	D5GHzV2	1184	Head	1g	7.87	78.7	79.50	-1.01	
1-30-2023	(5800)	1104	neau	10g	2.28	22.8	22.60	0.88	

SAR 6 Room

	System	Dipole	т	S. Measured Results Target		Torget	Delta		
Date Tested	Туре	Serial #		uid	Zoom Scan to 100 mW	Normalize to 1 W	(Ref. Value)	±10 %	Plot No.
2022-12-20	D835V2	4d174	Head	1g	0.99	9.9	9.63	3.12	2
2022-12-20	D035V2	40174	Heau	10g	0.65	6.5	6.29	3.66	3
2022-12-20	D1900V2	5d199	Head	1g	3.93	39.3	39.40	-0.25	4
2022-12-20	D1900V2	50199	Heau	10g	2.03	20.3	20.50	-0.98	4
2022-12-26	D2600V2	1178	Head	1g	5.87	58.7	56.60	3.71	5
202212-20	02000 02	1170	ricau	10g	2.65	26.5	25.40	4.33	5

Page 28 of 54

9. Conducted Output Power Measurements

9.1. GSM

Per KDB 941225 D01 3G SAR Procedures:

SAR test reduction for GPRS and EDGE modes is determined by the source-based time-averaged output power specified for production units, including tune-up tolerance. The data mode with highest specified time-averaged output power should be tested for SAR compliance in the applicable exposure conditions. For modes with the same specified maximum output power and tolerance, the higher number time-slot configuration should be tested.

				_	Ma	aximum Avera	ge Power (dB	m)
Mode	Coding Scheme	Time Slots	Ch No.	Freq. (MHz)	Meas	sured	Tune-	up Limit
					Burst Pwr	Frame Pwr	Burst Pwr	Frame Pwr
0014			128	824.2	32.29	23.26		
GSM (Voice)	CS1	1	190	836.6	32.42	23.39	34.0	25.0
(10100)			251	848.8	32.36	23.33		
			128	824.2	32.27	23.24		
		1	190	836.6	32.50	23.47	34.0	25.0
			251	848.8	32.42	23.39		
			128	824.2	30.52	24.50		
		2	190	836.6	30.41	24.39	32.0	26.0
GPRS	CS1		251	848.8	30.25	24.23		
(GMSK)	031		128	824.2	29.48	25.22		
		3	190	836.6	29.30	25.04	30.0	25.7
			251	848.8	29.12	24.86]	
			128	824.2	28.41	25.40		
		4	190	836.6	28.49	25.48	29.5	26.5
			251	848.8	28.01	25.00		
			128	824.2	25.87	16.84		
		1	190	836.6	25.97	16.94	27.5	18.5
			251	848.8	25.79	16.76		
			128	824.2	23.93	17.91		
		2	190	836.6	24.01	17.99	25.5	19.5
EGPRS	MCS5		251	848.8	23.72	17.70		
(8PSK)	10035		128	824.2	22.71	18.45		
		3	190	836.6	22.57	18.31	23.0	18.7
			251	848.8	22.37	18.11		
			128	824.2	21.62	18.61		
		4	190	836.6	21.49	18.48	22.0	19.0
			251	848.8	21.29	18.28		

GSM850 Measured Results

Notes:

The worst-case configuration and mode for SAR testing is determined to be as follows:

- GMSK (GPRS) mode with 4 time slots for Max power, based on the Tune-up Procedure. Refer to §6.3.
- SAR is not required for EGPRS (8PSK) mode because the maximum output power and tune-up limit is ≤ 1/4dB higher than GMSK GPRS or the adjusted SAR of the highest reported SAR of GMSK GPRS is ≤ 1.2W/kg.

	Coding	Time		Freq.		aximum Avera	ige Power (dB	m)	R	educed Avera Hotspot	•	m)	R	educed Avera Proximity ser	•	m)
Mode	Scheme		Ch No.	(MHz)	Mea	sured	Tune-	up Limit	Mea	sured	Tune-	up Limit	Mea	sured	Tune-	up Limit
					Burst Pwr	Frame Pwr	Burst Pwr	Frame Pwr	Burst Pwr	Frame Pwr	Burst Pwr	Frame Pwr	Burst Pwr	Frame Pwr	Burst Pwr	Frame Pwr
0011			512	1850.2	30.92	21.89			27.17 18.14			27.13	18.10			
GSM (Voice)	CS1	1	661	1880.0	30.95	21.92	32.0	23.0	27.97	18.94	29.0	20.0	27.91	18.88	29.0	20.0
(10.00)			810	1909.8	31.02	21.99			27.68	18.65			27.59	18.56		
			512	1850.2	31.08	22.05			27.15	18.12			27.11	18.08		
		1	661	1880.0	30.90	21.87	32.0	23.0	27.85	18.82	29.0	20.0	28.02	18.99	29.0	20.0
			810	1909.8	30.84	21.81			27.54	18.51			27.73	18.70		
			512	1850.2	28.19	22.17			24.51	18.49			24.54	18.52		
		2	661	1880.0	27.92	21.90	29.5	23.48	25.10	19.08	26.5	20.48	25.24	19.22	26.5	20.48
GPRS	CS1		810	1909.8	28.09	22.07			25.90	19.88			25.79	19.77		
(GMSK)	001	3	512	1850.2	25.67	21.41			22.88	18.62			22.83	18.57	24.0	19.7
			661	1880.0	26.35	22.09	27.5	23.2	23.55	19.29	24.0	19.7	23.70	19.44		
			810	1909.8	27.17	22.91			23.95	19.69			23.98	19.72		
			512	1850.2	24.58	21.57			21.59	18.58		20.0	21.71	18.70	23.0	20.0
		4	661	1880.0	25.24	22.23	26.0	23.0	22.22	19.21	23.0		22.35	19.34		
			810	1909.8	25.78	22.77			22.91	19.90			22.86	19.85		
			512	1850.2	25.00	15.97			22.56	13.53			22.46	13.43		
		1	661	1880.0	25.27	16.24	26.0	17.0	22.97	13.94	24.0	15.0	22.86	13.83	24.0	15.0
			810	1909.8	25.37	16.34			23.02	13.99			22.90	13.87		
			512	1850.2	23.24	17.22			20.15	14.13			20.28	14.26		
		2	661	1880.0	23.62	17.60	24.5	18.5	20.54	14.52	21.5	15.5	20.68	14.66	21.5	15.5
EGPRS	MCS5		810	1909.8	23.71	17.69			20.62	14.60			20.76	14.74		
(8PSK)	IVIC 30		512	1850.2	21.76	17.50			18.72	14.46			18.86	14.60		
		3	661	1880.0	22.19	17.93	23.0	18.7	19.13	14.87	19.5	15.2	19.02	14.76	19.5	15.2
			810	1909.8	22.33	18.07			19.20	14.94			19.11	14.85		
			512	1850.2	20.34	17.33			17.29	14.28			17.19	14.18	18.5	1
		4	661	1880.0	20.74	17.73	21.0	18.0	17.72	14.71	18.5	15.5	17.61	14.60		15.5
			810	1909.8	20.85	17.84			17.79	14.78			17.70	14.69		

Notes:

The worst-case configuration and mode for SAR testing is determined to be as follows:

• GMSK (GPRS) mode with 2 time slots for Max power and Reduced power, based on the Tune-up Procedure. Refer to §6.3.

• SAR is not required for EGPRS (8PSK) mode because the maximum output power and tune-up limit is ≤ 1/4dB higher than GMSK GPRS or the adjusted SAR of the highest reported SAR of GMSK GPRS is ≤ 1.2W/kg.

Page 30 of 54

9.2. W-CDMA

Release 99 Setup Procedures used to establish the test signals

The following tests were completed according to the test requirements outlined in section 5.2 of the 3GPP TS34.121-1 specification. The DUT supports power Class 3, which has a nominal maximum output power of 24 dBm (+1.7/-3.7).

Mode	Subtest	Rel99
	Loopback Mode	Test Mode 2
WCDMA Conorol Sottingo	Rel99 RMC	12.2kbps RMC
WCDMA General Settings	Power Control Algorithm	Algorithm2
	βc/βd	8/15

HSDPA Setup Procedures used to establish the test signals

The following 4 Sub-tests were completed according to Release 5 procedures in section 5.2 of 3GPP TS34.121. A summary of these settings are illustrated below:

	Mode	HSDPA	HSDPA	HSDPA	HSDPA			
	Subtest	1	2	3	4			
	Loopback Mode	Test Mode 1						
	Rel99 RMC	12.2kbps RMC	12.2kbps RMC					
	HSDPA FRC	H-Set 1						
W-CDMA	Power Control Algorithm	Algorithm 2						
General	βc	2/15	11/15	15/15	15/15			
Settings	βd	15/15	15/15	8/15	4/15			
Settings	Bd (SF)	64						
	βc/βd	2/15	11/15	15/8	15/4			
	βhs	4/15	24/15	30/15	30/15			
	MPR (dB)	0	0	0.5	0.5			
	D _{ACK}	8						
	D _{NAK}	8						
HSDPA	DCQI	8						
Specific	Ack-Nack repetition factor	3						
Settings	CQI Feedback (Table 5.2B.4)	4ms						
	CQI Repetition Factor (Table 5.2B.4)	2						
	Ahs=βhs/βc	30/15						

UL Korea, Ltd. Suwon Laboratory This report shall not be reproduced except in full, without the written approval of UL Korea, Ltd.

Issue Date: 2/27/2023

The following 5 Sub-tests were completed according to Release 6 procedures in table C,11.1.3 of 3GPP TS 34.121-1 v13. A summary of these settings are illustrated below:

	Mode	HSPA								
	Subtest	1	2	3	4	5				
	Loopback Mode	Test Mode 1	Test Mode 1							
	Rel99 RMC	12.2 kbps RM	12.2 kbps RMC							
	HSDPA FRC	H-Set 1								
	HSUPA Test	HSPA								
	Power Control Algorithm	Algorithm 2				Algorithm 1				
WCDMA	βc	11/15	6/15	15/15	2/15	15/15				
General	βd	15/15	15/15	9/15	15/15	0				
Settings	βес	209/225	12/15	30/15	2/15	5/15				
	βc/βd	11/15	6/15	15/9	2/15	-				
	βhs	22/15	12/15	30/15	4/15	5/15				
	βed	1309/225	94/75	47/15	56/75	47/15				
	CM (dB)	1	3	2	3	1				
	MPR (dB)	0	2 1 2	2	0					
	DACK	8		-		0				
	DNAK	8	0							
HSDPA	DCQI	8				0				
Specific	Ack-Nack repetition factor	3								
Settings	CQI Feedback (Table 5.2B.4) 4ms									
	CQI Repetition Factor (Table 5.2B.4) 2									
	Ahs = βhs/βc	30/15								
	E-DPDCH	6	8	8	5	0				
	DHARQ	0	0	0	0	0				
	AG Index	20	12	15	17	12				
	ETFCI (from 34.121 Table C.11.1.3)	75	67	92	71	67				
	Associated Max UL Data Rate kbps	242.1	174.9	482.8	205.8	308.9				
	Reference E-TFCIs	5	5	2	5	1				
	Reference E-TFCI	11	11	11	11	67				
HSUPA	Reference E-TFCI PO	4	4	4	4	18				
Specific	Reference E-TFCI	67	67	92	67	67				
Settings	Reference E-TFCI PO	18	18	18	18	18				
	Reference E-TFCI	71	71	71	71	71				
	Reference E-TFCI PO	23	23	23	23	23				
	Reference E-TFCI	75	75	75	75	75				
	Reference E-TFCI PO	26	26	26	26	26				
	Reference E-TFCI	81	81	81	81	81				
	Reference E-TFCI PO	27	27	27	27	27				
	Maximum Channelization Codes	2xSF2				SF4				

Page 32 of 54

DC-HSDPA Setup Procedures used to establish the test signals

The following tests were completed according to procedures in section 7.3.13 of 3GPP TS34.108 v9.5.0. A summary of these settings are illustrated below:

Downlink Physical Channels are set as per 3GPP TS34.121-1 v9.0.0 E.5.0

Table E.5.0: Levels for HSDPA connection setup

		-
Parameter During Connection setup	Unit	Value
P-CPICH_Ec/lor	dB	-10
P-CCPCH and SCH_Ec/lor	dB	-12
PICH _Ec/lor	dB	-15
HS-PDSCH	dB	off
HS-SCCH_1	dB	off
DPCH_Ec/lor	dB	-5
OCNS_Ec/lor	dB	-3.1

Call is set up as per 3GPP TS34.108 v9.5.0 sub clause 7.3.13

The configurations of the fixed reference channels for HSDPA RF tests are described in 3GPP TS 34.121, annex C for FDD and 3GPP TS 34.122.

	Parameter	Unit	Value	l	
	Nominal Avg. Inf. Bit Rate	kbps	60		
	Inter-TTI Distance	TTI's	1		
	Number of HARQ Processes	Proces	6		
		ses	ь		
	Information Bit Payload (N _{INF})	Bits	120		
	Number Code Blocks	Blocks	1		
	Binary Channel Bits Per TTI	Bits	960		
	Total Available SML's in UE	SML's	19200		
	Number of SML's per HARQ Proc.	SML's	3200		
	Coding Rate		0.15		
	Number of Physical Channel Codes	Codes	1		
	Modulation		QPSK		
	Note 1: The RMC is intended to be used for				
	mode and both cells shall transmit	with identi	cal		
	parameters as listed in the table.				
	Note 2: Maximum number of transmission				
	retransmission is not allowed. The		icy and		
	constellation version 0 shall be use	ed.		1	
Inf. Bit Payload	120				
-					
CRC Addition	120 24 CRC				
Code Block					
Segmentation	144				
Turbo-Encoding	432			12	Tail Bits
(R=1/3)				I	1
1st Rate Matching	432				1
for flate flatening	452				1
RV Selection	960				
Try Selection	960				
Physical Channel					
Segmentation					

Table C.8.1.12: Fixed Reference Channel H-Set 12

Figure C.8.19: Coding rate for Fixed reference Channel H-Set 12 (QPSK)

The following 4 Sub-tests for HSDPA were completed according to Release 8 procedures in section 5.2 of 3GPP TS34.121. A summary of subtest settings are illustrated below:

	Mode	HSDPA	HSDPA	HSDPA	HSDPA				
	Subtest	1	2	3	4				
	Loopback Mode	Test Mode 1	Test Mode 1						
	Rel99 RMC	12.2kbps RMC							
	HSDPA FRC	H-Set 12							
	Power Control Algorithm	Algorithm2							
WCDMA General	βc	2/15	11/15	15/15	15/15				
Settings	βd	15/15	15/15	8/15	4/15				
Settings	βd (SF)	64							
	βc/βd	2/15	11/15	15/8	15/4				
	βhs	4/15	24/15	30/15	30/15				
	MPR (dB)	0	0	0.5	0.5				
	DACK	8							
	DNAK	8							
HSDPA	DCQI	8							
Specific	Ack-Nack Repetition factor	3							
Settings	CQI Feedback	4ms							
	CQI Repetition Factor	2							
	Ahs = β hs/ β c	30/15							

HSPA+

HSPA+ is only supported to down link. Therefore, the RF conducted power is not measured.

Page 33 of 54

W-CDMA Band V Measured Results

Мс	de	UL Ch No.	Freq.	Maximur	Maximum Average Power (dBm)			
Wit				Measured Pwr	MPR	Tune-up Limit		
	Rel 99	4132	826.4	24.59				
Release 99	(RMC, 12.2	4183	836.6	24.42	N/A	25.5		
	kbps)	4233	846.6	24.34				
		4132	826.4	22.46				
	Subtest 1	4183	836.6	22.31	0	23.0		
		4233	846.6	22.14				
		4132	826.4	22.42				
	Subtest 2	4183	836.6	22.31	0	23.0		
HSDPA		4233	846.6	22.14				
HODFA		4132	826.4	21.48				
	Subtest 3	4183	836.6	21.36	0.5	22.5		
		4233	846.6	21.21				
		4132	826.4	21.79				
	Subtest 4	4183	836.6	21.73	0.5	22.5		
		4233	846.6	21.55				
		4132	826.4	22.05				
	Subtest 1	4183	836.6	21.95	0	23.0		
		4233	846.6	21.75				
		4132	826.4	20.09				
	Subtest 2	4183	836.6	19.97	2	21.0		
		4233	846.6	19.82				
		4132	826.4	20.98		22.0		
HSUPA	Subtest 3	4183	836.6	20.86	1			
		4233	846.6	20.66				
		4132	826.4	20.11				
	Subtest 4	4183	836.6	20.00	2	21.0		
		4233	846.6	19.78				
		4132	826.4	22.02				
	Subtest 5	4183	836.6	21.85	0	23.0		
		4233	846.6	21.69				
		4132	826.4	22.29				
	Subtest 1	4183	836.6	22.58	0	23.0		
		4233	846.6	22.41				
		4132	826.4	22.31				
	Subtest 2	4183	836.6	22.58	0	23.0		
		4233	846.6	22.43				
DC-HSDPA		4132	826.4	20.77				
	Subtest 3	4183	836.6	21.09	0.5	22.5		
		4233	846.6	20.92	1			
		4132	826.4	21.65	1			
	Subtest 4	4183	836.6	21.93	0.5	22.5		
		4233	846.6	21.78	1	22.0		

9.3. LTE

The following tests were conducted according to the test requirements outlined in section 6.2 of the 3GPP TS36.101 specification.

UE Power Class: 3 (23 +/- 2dBm). The allowed Maximum Power Reduction (MPR) for the maximum output power due to higher order modulation and transmit bandwidth configuration (resource blocks) is specified in Table 6.2.3-1 of the 3GPP TS36.101.

Modulation	Cha	MPR (dB)					
	1.4	3.0	5	10	15	20	
	MHz	MHz	MHz	MHz	MHz	MHz	
QPSK	> 5	> 4	> 8	> 12	> 16	> 18	≤ 1
16 QAM	≤ 5	≤ 4	≤ 8	≤ 12	≤ 16	≤ 18	≤ 1
16 QAM	> 5	> 4	> 8	> 12	> 16	> 18	≤ 2
64 QAM	≤ 5	≤ 4	≤ 8	≤ 12	≤ 16	≤ 18	≤ 2
64 QAM	> 5	> 4	> 8	> 12	> 16	> 18	≤ 3
256 QAM				≥ 1			≤ 5

The allowed A-MPR values specified below in Table 6.2.4.-1 of 3GPP TS36.101 are in addition to the allowed MPR requirements. All the measurements below were performed with A-MPR disabled, by using Network Signaling Value of "NS_01".

Table 6.2.4-1: Additional Maximum Power Reduction (A-MPR)

Network Signalling value	Requirements (subclause)	E-UTRA Band	Channel bandwidth (MHz)	Resources Blocks (N _{RB})	A-MPR (dB)
NS_01	6.6.2.1.1	Table 5.5-1	1.4, 3, 5, 10, 15, 20	Table 5.6-1	N/A

LTE QPSK configuration has the highest maximum average output power per 3GPP standard.

SAR measurement is not required for Higher order modulations. When the highest maximum output power for Higher order modulations are ≤ 0.5 dB higher than the QPSK or when the reported SAR for QPSK configuration is ≤ 1.45 W/kg.

Page 35 of 54

LTE Band 5 Measured Results

DW	Mode	RB Allocation	RB offset	Maximum Average Power (dBm)					
BW (MHz)				Me	asured Pwr (df 20525 836.5 MHz	3m)	MPR	Tune-up Limit	
		1	0		24.42		0.0	25.5	
	QPSK	1	25		24.35		0.0	25.5	
		1	49		24.29		0.0	25.5	
		25	0		23.38		1.0	24.5	
		25	12		23.32		1.0	24.5	
		25	25		23.31		1.0	24.5	
10 141-		50	0		23.35		1.0	24.5	
10 MHz	16QAM	1	0		23.35		1.0	24.5	
		1	25		23.24		1.0	24.5	
		1	49		23.20		1.0	24.5	
		25	0		22.42		2.0	23.5	
		25	12		22.37		2.0	23.5	
		25	25		22.33		2.0	23.5	
		50	0		22.34		2.0	23.5	
BW		DD		Me	easured Pwr (dBm)			Turner	
(MHz)	Mode	RB Allocation	RB offset	20425	20525	20625	MPR	Tune-up Limit	
(826.5 MHz	836.5 MHz	846.5 MHz			
	QPSK	1	0	24.25	24.26	24.33	0.0	25.5	
		1	12	24.24	24.21	24.30	0.0	25.5	
		1	24	24.16	24.19	24.30	0.0	25.5	
		12	0	23.32	23.32	23.37	1.0	24.5	
		12	7	23.33	23.31	23.34	1.0	24.5	
		12	13	23.31	23.33	23.36	1.0	24.5	
5 MHz		25	0	23.32	23.28	23.37	1.0	24.5	
	16QAM	1	0	23.29	23.32	23.34	1.0	24.5	
		1	12	23.25	23.27	23.34	1.0	24.5	
		1	24	23.23	23.27	23.31	1.0	24.5	
		12	0	22.42	22.39	22.40	2.0	23.5	
		12	7	22.41	22.33	22.40	2.0	23.5	
		12	13	22.39	22.35	22.37	2.0	23.5	
		25	0	22.31	22.33	22.43	2.0	23.5	

Page 36 of 54

LTE Band 5 Measured Results (Continued)

DW				Me	asured Pwr (de	3m)		-
BW (MHz)	Mode	RB Allocation	RB offset	20415	20525	20635	MPR	Tune-up Limit
(11112)		Allocation	UNSCL	825.5 MHz	836.5 MHz	847.5 MHz		Linin
		1	0	24.35	24.30	24.44	0.0	25.5
		1	8	24.36	24.30	24.43	0.0	25.5
		1	14	24.32	24.30	24.41	0.0	25.5
	QPSK	8	0	23.30	23.31	23.33	1.0	24.5
		8	4	23.30	23.29	23.32	1.0	24.5
		8	7	23.28	23.30	23.33	1.0	24.5
3 MHz		15	0	23.30	23.34	23.33	1.0	24.5
		1	0	23.19	23.16	23.32	1.0	24.5
		1	8	23.16	23.10	23.29	1.0	24.5
	16QAM	1	14	23.11	23.13	23.29	1.0	24.5
		8	0	22.29	22.41	22.42	2.0	23.5
		8	4	22.32	22.41	22.37	2.0	23.5
		8	7	22.32	22.40	22.39	2.0	23.5
		15	0	22.35	22.35	22.30	2.0	23.5
BW			RB	Me	asured Pwr (de	3m)		T
Вvv (MHz)	Mode	RB Allocation	offset	20407	20525	20643	MPR	Tune-up Limit
()		/		824.7 MHz	836.5 MHz	848.3 MHz		
		1	0	24.33	24.26	24.35	0.0	25.5
		1	3	24.32	24.26	24.34	0.0	25.5
		1 1	3 5	24.32 24.33	24.26 24.27	24.34 24.36	0.0 0.0	25.5 25.5
	QPSK							
	QPSK	1	5	24.33	24.27	24.36	0.0	25.5
	QPSK	1 3	5 0	24.33 24.27	24.27 24.30	24.36 24.26	0.0 0.0	25.5 25.5
1.4 MHz	QPSK	1 3 3	5 0 1	24.33 24.27 24.26	24.27 24.30 24.30	24.36 24.26 24.28	0.0 0.0 0.0	25.5 25.5 25.5
1.4 MHz	QPSK	1 3 3 3	5 0 1 3	24.33 24.27 24.26 24.25	24.27 24.30 24.30 24.30	24.36 24.26 24.28 24.29	0.0 0.0 0.0 0.0	25.5 25.5 25.5 25.5 25.5
1.4 MHz	QPSK	1 3 3 3 6	5 0 1 3 0	24.33 24.27 24.26 24.25 23.32	24.27 24.30 24.30 24.30 23.31	24.36 24.26 24.28 24.29 23.24	0.0 0.0 0.0 0.0 1.0	25.5 25.5 25.5 25.5 25.5 24.5
1.4 MHz	QPSK	1 3 3 6 1	5 0 1 3 0 0	24.33 24.27 24.26 24.25 23.32 23.08	24.27 24.30 24.30 24.30 23.31 23.24	24.36 24.26 24.28 24.29 23.24 23.04	0.0 0.0 0.0 1.0 1.0	25.5 25.5 25.5 25.5 24.5 24.5
1.4 MHz	QPSK 16QAM	1 3 3 6 1 1	5 0 1 3 0 0 3	24.33 24.27 24.26 24.25 23.32 23.08 23.05	24.27 24.30 24.30 23.31 23.24 23.22	24.36 24.26 24.28 24.29 23.24 23.04 23.03	0.0 0.0 0.0 1.0 1.0 1.0	25.5 25.5 25.5 25.5 24.5 24.5 24.5 24.5
1.4 MHz		1 3 3 6 1 1 1	5 0 1 3 0 0 0 3 5	24.33 24.27 24.26 24.25 23.32 23.08 23.05 23.06	24.27 24.30 24.30 23.31 23.24 23.22 23.25	24.36 24.26 24.28 24.29 23.24 23.04 23.03 23.07	0.0 0.0 0.0 1.0 1.0 1.0 1.0 1.0	25.5 25.5 25.5 24.5 24.5 24.5 24.5 24.5
1.4 MHz		1 3 3 6 1 1 1 3	5 0 1 3 0 0 3 5 0	24.33 24.27 24.26 24.25 23.32 23.08 23.05 23.06 23.27	24.27 24.30 24.30 23.31 23.24 23.22 23.25 23.32	24.36 24.26 24.28 24.29 23.24 23.04 23.03 23.07 23.29	0.0 0.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0	25.5 25.5 25.5 24.5 24.5 24.5 24.5 24.5

LTE Band 41 Measured Results

BW		RB	RB			Maximum Av	verage Power	(dBm)		
(MHz)	Mode	Allocation	offset		Ме	asured Pwr (dl	Bm)			T
· · · /				39750	40185	40620	41055	41490	MPR	Tune-up Limit
				2506 MHz	2549.5 MHz	2593 MHz	2636.5 MHz	2680 MHz		Linin
		1	0	21.39	21.00	21.57	21.00	21.61	0.0	23.5
		1	49	21.37	21.03	21.50	21.00	21.60	0.0	23.5
		1	99	21.45	21.07	21.66	21.00	21.65	0.0	23.5
	QPSK	50	0	20.74	20.30	20.89	20.19	20.98	1.0	22.5
		50	24	20.74	20.32	20.93	20.19	20.97	1.0	22.5
		50	50	20.77	20.34	20.99	20.18	20.98	1.0	22.5
20 MHz		100	0	20.75	20.31	20.93	20.18	21.03	1.0	22.5
20 1011 12	20 MHZ	1	0	20.64	20.38	20.64	20.00	20.73	1.0	22.5
		1	49	20.82	20.20	20.97	20.24	20.94	1.0	22.5
		1	99	20.67	20.34	20.94	20.21	20.93	1.0	22.5
	16QAM	50	0	19.71	19.31	19.94	19.23	20.05	2.0	21.5
		50	24	19.71	19.34	19.98	19.23	20.06	2.0	21.5
		50	50	19.77	19.35	20.01	19.17	20.06	2.0	21.5
		100	0	19.73	19.35	20.01	19.15	20.04	2.0	21.5
DW		DD	DD		Me	asured Pwr (dl	Bm)			T
BW (MHz)	Mode	RB Allocation	RB offset	39750	40185	40620	41055	41490	MPR	Tune-up Limit
(/		2506 MHz	2549.5 MHz	2593 MHz	2636.5 MHz	2680 MHz		
		1	0	21.00	21.00	21.60	21.00	21.06	0.0	23.5
		1	37	21.00	21.00	21.56	21.00	21.02	0.0	23.5
		1	74	21.00	21.00	21.58	21.00	21.09	0.0	23.5
	QPSK	36	0	20.22	20.31	20.96	20.26	20.49	1.0	22.5
		36	20	20.24	20.31	20.98	20.22	20.49	1.0	22.5
		36	39	20.25	20.34	20.98	20.22	20.49	1.0	22.5
15 MHz		75	0	20.26	20.32	20.98	20.24	20.48	1.0	22.5
		1	0	20.28	20.00	20.97	20.37	20.30	1.0	22.5
		1	37	20.20	20.00	20.99	20.28	20.19	1.0	22.5
		1	74	20.29	20.58	20.91	20.24	20.01	1.0	22.5
	16QAM	36	0	19.32	19.32	20.02	19.27	19.51	2.0	21.5
		36	20	19.34	19.38	20.06	19.25	19.46	2.0	21.5
		36	39	19.34	19.37	20.06	19.29	19.52	2.0	21.5
		75	0	19.33	19.28	20.03	19.24	19.50	2.0	21.5

LTE Band 41 Measured Results (Continued)

					Me	asured Pwr (dl	3m)			
BW (MHz)	Mode	RB Allocation	RB offset	39750	40185	40620	41055	41490	MPR	Tune-up Limit
(11112)		Allocation	Unset	2506 MHz	2549.5 MHz	2593 MHz	2636.5 MHz	2680 MHz		Liiiit
		1	0	21.00	21.00	21.60	21.00	21.04	0.0	23.5
		1	25	21.00	21.00	21.63	21.00	21.08	0.0	23.5
		1	49	21.00	21.00	21.60	21.00	21.06	0.0	23.5
	QPSK	25	0	20.23	20.27	20.98	20.18	20.40	1.0	22.5
		25	12	20.24	20.31	21.00	20.16	20.42	1.0	22.5
		25	25	20.22	20.31	21.01	20.17	20.41	1.0	22.5
10 MHz		50	0	20.21	20.30	20.98	20.14	20.42	1.0	22.5
		1	0	20.17	20.03	20.91	20.21	20.31	1.0	22.5
		1	25	20.24	20.09	20.93	20.22	20.30	1.0	22.5
		1	49	20.27	20.12	20.92	20.10	20.32	1.0	22.5
	16QAM	25	0	19.27	19.30	20.02	19.23	19.45	2.0	21.5
		25	12	19.28	19.33	20.03	19.23	19.47	2.0	21.5
		25	25	19.30	19.33	20.06	19.24	19.45	2.0	21.5
		50	0	19.29	19.32	20.03	19.19	19.41	2.0	21.5
DW		DD			Me	asured Pwr (dl	Bm)			T
BW (MHz)	Mode	RB Allocation	RB offset	39750	40185	40620	41055	41490	MPR	Tune-up Limit
()		/	oneer	2506 MHz	2549.5 MHz	2593 MHz	2636.5 MHz	2680 MHz		
		1	0	21.00	21.00	21.65	21.00	21.20	0.0	23.5
		1	12	21.00	21.09	21.65	21.00	21.16	0.0	23.5
		1	24	21.00	21.01	21.62	21.00	21.15	0.0	23.5
	QPSK	12	0	20.27	20.35	21.04	20.23	20.49	1.0	22.5
		12	7	20.28	20.35	21.01	20.21	20.48	1.0	22.5
		12	13	20.36	20.38	21.00	20.22	20.47	1.0	22.5
5 MHz		25	0	20.35	20.34	21.00	20.20	20.44	1.0	22.5
5 11112		1	0	20.09	20.45	20.54	20.00	20.61	1.0	22.5
		1	12	20.00	20.52	20.57	20.02	20.59	1.0	22.5
		1	24	20.05	20.46	20.55	20.00	20.60	1.0	22.5
	16QAM	12	0	19.29	19.30	19.97	19.16	19.45	2.0	21.5
		12	7	19.29	19.35	19.98	19.16	19.44	2.0	21.5
		12	13	19.28	19.36	19.98	19.18	19.43	2.0	21.5
		25	0	19.36	19.39	20.05	19.28	19.51	2.0	21.5

Wi-Fi 2.4 GHz (DTS Band) 9.4.

WLAN output power results

Antenna	Mode	Data Rate	Ch #	Freq.	Max.A	Average Power (dBm)		Reduce	d.Average Pow er (dBm)	
Antenna	WDUC	Data Nate	ŬI#	(MHz)	Meas. Avg Pwr	Max. Tune-up Limit	SAR Test (Yes/No)	Meas. Avg Pwr	Max. Tune-up Limit	SAR Test (Yes/No)	
			1	2412.0	14.06	15.0		11.24			
			6	2437.0	15.82	16.5		11.38	12.0		
	802.11b	1 Mbps	11	2462.0	15.21	16.5	Yes	11.70		Yes	
			12	2467.0	15.07	16.0		11.59			
			13	2472.0	15.02	16.0		11.44			
			1	2412.0	Not Required	15.0	No	Not Required	12.0	No	
			2-10	2417-2457	Not Required	16.5	No	Not Required	12.0	No	
WiFi 2.4G	802.11g	6 Mbps	11	2462.0	Not Required	15.0	No	Not Required	12.0	No	
				12	2467.0	Not Required	12.0	No	Not Required	12.0	No
			13	2472.0	Not Required	5.0	No	Not Required	5.0	No	
			1	2412.0	Not Required	15.0	No	Not Required	12.0	No	
			2-10	2417-2457	Not Required	16.5	No	Not Required	12.0	No	
	802.11n	6.5 Mbps	11	2462.0	Not Required	15.0	No	Not Required	12.0	No	
			12	2467.0	Not Required	12.0	No	Not Required	12.0	No	
			13	2472.0	Not Required	5.0	No	Not Required	5.0	No	

Note(s):

1.

SAR is not required for 802.11g/n modes when the adjusted SAR for 802.11b is < 1.2 W/kg. For "Not required", SAR Test reduction was applied from KDB 248227 guidance, Sec. 2.1, b), 1) when the same maximum power is specified for multiple transmission modes in a frequency band, the largest channel bandwidth, lowest order modulation, lowest data rate 2. and lowest order 802.11n/g/ax mode is used for SAR measurement, on the highest measured output power channel in the initial test configuration, for each frequency band. Additional output power measurements were not deemed necessary.

Page 40 of 54

Duty Factor Measured Results for SAR testing

Mode	T on (ms)	Period (ms)	Measured Duty Cycle	Crest Factor (100% / measured duty cycle(%))
802.11b	8.641	8.611	99.7%	1.00

Duty Cycle plots

<u>802.11b</u>

Keysight S															
		Analyzer - 1950	58												
RL	RF	50 Ω	DC	CORREC		SEN	ISE:INT			IN AUTO			0	4:07:29	PM Jan 23, 202
				I	PNO: Fa FGain:L		Trig: RF B Atten: 50 (urst dB		#Avg Typ	be:RMS			T	ACE 1 2 3 4 5 YPE WWWWW DET P N N N N
) dB/div	Re	f 39.86 c	lBm										ΔM		3.641 m -1.61 d
9.9															
9.9				\bigcirc					341						
.86															
14									_						
0.1															
0.1									_					-	
0.1									_						
0.1									+						
D.1															
enter 2		100000 G z	Hz			#VBW	50 MHz				5	Sweep	30.1		Span 0 H (4001 pt:
enter 2 es BW	8 MH	z	iHz ×	8.633 ms		Y 19.35 dE	FUNG	CTION FUT	NCTIC	DN WIDTH		<u> </u>	30.1	3 ms	
enter 2 es BW IN 2 A1 3 A1	8 MH: TRC SCI 1 t 1 t	z		8.633 ms 8.611 ms 8.641 ms	(Δ)	Y	FUNG 3m dB	CTION FU:	NCTIC	DN WIDTH	ę	<u> </u>		3 ms	
enter 2 es BW 1 N 2 A1 3 A1 4	8 MH: TRC SCI 1 t 1 t	z (Δ)		8.611 ms	(Δ)	Y 19.35 dB -1.51 d	FUNG 3m dB	CTION FUI	NCTIC	DN WIDTH	5	<u> </u>		3 ms	(4001 pt:
Enter 2 Es BW MODE 1 Ν 2 Δ1 3 Δ1 4 5 6 7	8 MH: TRC SCI 1 t 1 t	z (Δ)		8.611 ms	(Δ)	Y 19.35 dB -1.51 d	FUNG 3m dB	CTION FU	NCTIC	DN WIDTH	ç	<u> </u>		3 ms	
enter 2 es BW G MODE 1 Ν 2 Δ1 3 Δ1 4 5 6 6 8 9	8 MH: TRC SCI 1 t 1 t	z (Δ)		8.611 ms	(Δ)	Y 19.35 dB -1.51 d	FUNG 3m dB	CTION FUI	NCTIC	DN WIDTH	5	<u> </u>		3 ms	(4001 pt:
enter 2 es BW GMODE 1 Ν 2 Δ1 3 Δ1 4 5 6 6 6 7 8 8 9 9 0	8 MH: TRC SCI 1 t 1 t	z (Δ)		8.611 ms	(Δ)	Y 19.35 dB -1.51 d	FUNG 3m dB	CTION FUI	NCTIO	DN WIDTH	ç	<u> </u>		3 ms	(4001 pt:
es BW <u> </u>	8 MH: TRC SCI 1 t 1 t	z (Δ)		8.611 ms	(Δ)	Y 19.35 dB -1.51 d	FUNG 3m dB	CTION FU	NCTIO	DN WIDTH	<u></u>	<u> </u>		3 ms	(4001 pt:

Page 41 of 54
UL Korea, Ltd. Suwon Laboratory
Doc. No.: 1.0(04)
This report shall not be reproduced except in full, without the written approval of UL Korea, Ltd.

9.5. Wi-Fi 5GHz (U-NII Bands)

WLAN output power Results

								WLANm	ode pow er		
Antenn	Band	Mode	Data Rate	Ch #	Freq.	Max	. Average Pow er		Reduc	ced Average Powe	r
а	(GHz)				(MHz)	Avg Pwr (dBm)	Max. Tune-up Limit (dBm)	SAR Test (Yes/No)	AvgPwr (dBm)	Max. Tune-up Limit (dBm)	SAR Test (Yes/No)
				52	5260.0	15.25					
		802.11a	6 Mbps	56	5280.0	15.34	16.0	Yes	Not Required	11.0	No
		002.11a	0 100053	60	5300.0	14.83	10.0	165	Not Required	11.0	INU
				64	5320.0	14.75					
		802.11n (HT20)	6.5 Mbps		Not Required		16.0	No	Not Required	11.0	No
	5.3 (UNII 2A)	802.11n	13.5 Mbps	54.0	5270.0	Not Required	15.0	No	10.6	11.0	Yes
		(HT40)	13.5 1000	62.0	5310.0	Not Required	15.0	NU	10.6	11.0	163
		802.11ac (VHT20)	6.5 Mbps		Not Required		16.0	No	Not Required	11.0	No
		802.11ac (VHT40)	13.5 Mbps		Not Required		15.0	No	Not Required	11.0	No
		802.11ac (VHT80)	29.3 Mbps		Not Required		9.0	No	Not Required	9.0	Yes
		802.11a		100	5500.0	14.58	15.0				
			6 Mbps	120	5600.0	14.93		Yes	Not Required	11.0	No
			0 Mbps	124	5620.0	15.14	16.0	165	Not Required	11.0	INU
				144	5720.0	15.13					
WiFi		802.11n (HT20)	6.5 Mbps		Not Required		16.0	No	Not Required	11.0	No
5GHz	5.5 (U-NII 2C)	802.11n (HT40)	13.5 Mbps		Not Required		15.0	No	Not Required	11.0	No
	(0.120)	802.11ac (VHT20)	6.5 Mbps		Not Required		16.0	No	Not Required	11.0	No
		802.11ac (VHT40)	13.5 Mbps		Not Required		15.0	No	Not Required	11.0	No
				106	5530.0	Not Required			10.43		
		802.11ac (VHT80)	29.3 Mbps	122	5610.0	Not Required	13.0	No	10.60	11.0	Yes
		(138	5690.0	Not Required			10.35		
				149	5745.0	15.26					
		802.11a	6 Mbps	157	5785.0	15.14	16.0	Yes	Not Required	11.0	No
				165	5825.0	15.16					
		802.11n (HT20)	6.5 Mbps		Not Required		16.0	No	Not Required	11.0	No
	5.8 (U-NII 3)	802.11n (HT40)	13.5 Mbps		Not Required		15.0	No	Not Required	11.0	No
		802.11ac (VHT20)	6.5 Mbps		Not Required		16.0	No	Not Required	11.0	No
		802.11ac (VHT40)	13.5 Mbps		Not Required		15.0	No	Not Required	11.0	No
		802.11ac (VHT80)	29.3 Mbps	155	5775.0	Not Required	13.0	No	10.53	11.0	Yes

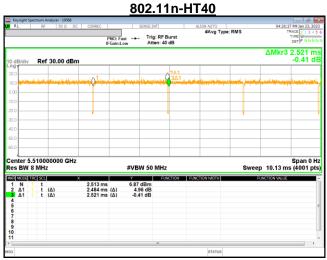
Note(s):

1. For "Not required", SAR Test reduction was applied from KDB 248227 guidance, Sec. 2.1, b), 1) when the same maximum power is specified for multiple transmission modes in a frequency band, the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order 802.11a/g/n/ac mode is used for SAR measurement, on the highest measured output power channel in the initial test configuration, for each frequency band.

2. When the same transmission mode configurations have the same maximum output power on the same channel for the 802.11 a/g/n/ac/ax modes, the channel in the lower order/sequence 802.11 mode (i.e. a, g, n ac then ax) is selected.

3. When the specified maximum output power is the same for both UNII band I and UNII band 2A, begin SAR measurement in UNII band 2A; and if the highest *reported* SAR for UNII band 2A is

 \circ \leq 1.2 W/kg, SAR is not required for UNII band I


• > 1.2 W/kg, both bands should be tested independently for SAR.

Duty Factor Measured Results for SAR testing

Mode	T on (ms)	Period (ms)	Measured Duty Cycle	Crest Factor (100% / measured duty cycle(%))
802.11a	1.453	1.425	98.1%	1.02
802.11n HT40	2.521	2.484	98.5%	1.01
802.11ac-VHT80	2.003	1.967	98.2%	1.02

Duty Cycle plots

iight Spectrum Analyzer - 19568 RF 50 Ω DC CORR	C SENSE:INT Trig Delay411.4 µ: PNO: Fast ↔ Trig: RF Burst IFGein:Low Atten: 40 dB	ALIGN AUTO	04:20:28 PM Jan 23, 2023 TRACE 12 3 4 5 6 TYPE WWWWWW DET P NNNN	
Idiv Ref 29.86 dBm			ΔMkr3 1.453 ms 0.16 dB	
	1		341	
in the second	ana ina ina ina ina ina ina ina ina ina	teres in the state of the state	e din fan die die staat het het het het het het het het het he	
er 5.500000000 GHz 3W 8 MHz	#VBW 50 MHz	Swe	Span 0 Hz ep 5.067 ms (4001 pts)	
DDETROSCL X N 1 t 2.49		FUNCTION WIDTH	FUNCTION VALUE	
1 1 t (Δ) 1.42	6 ms (Δ) 3.06 dB			
.1 1 t (Δ) 1.45	3 ms (Δ) 0.16 dB			
			E	
	m	STATUS	,	

Number of Section ALLIN Ref Section ALLIN Rule Constant Constant<

802.11ac-VHT80

UL Korea, Ltd. Suwon Laboratory This report shall not be reproduced except in full, without the written approval of UL Korea, Ltd.

Page 43 of 54

Bluetooth

Bluetooth output power Results

Dand				Free	Max. Average	Power (dBm)			
Band (GHz)	Antenna	Mode	Ch #	Freq. (MHz)	Meas Pwr	Tune-up Limit			
		0501	0	2402	8.73				
		GFSK (BDR)	39	2441	8.43	9.5			
		(BDI)	78	2480	8.64				
	DT		0	2402	7.53				
2.4	BT Ant.	EDR	39	2441	7.00	8.0			
	706		78	2480	7.23				
			0	2402	4.73				
		LE	19	2440	5.23	6.5			
			39	2480	5.25				

Duty Factor Measured Results

Mode	Туре	T on (ms)	Period (ms)	Measured Duty Cycle	Crest Factor (100% / measured duty cycle(%))
GFSK / BDR	DH5	2.871	3.744	76.68%	1.30

Note(s):

Maximum Duty Cycle is mentioned in Operational description. Detail of BT Duty Cycle refer to Operational description.

Duty Cycle plots

Spectrum Analyzer 1-25910 Swept SA **1**+ #Avg Type: Power (RMS 1 2 3 4 5 6 Trig: RF Burst Input Z: 50 Ω PNO: Fast KEYSIGHT Input: RF Atten: 30 dB Preamp: Off µW Path: Standard IF Gain: Low RL $W \circledast w w w w$ + Freq Ref: Int (S) PNNNN NFE: Adaptive Sig Track: Off Da ΔMkr3 3.744 ms 1 Spectrum ۲ Scale/Div 10 dB Ref Level 20.00 dBm -0.57 dB Log ∆<mark>2∆1 </mark>∧ \bigcirc 10 0 0.00 -10.0 -20.0 -30.0 40.0 -50.0 -60.0 -70.0 Center 2.441000000 GHz Res BW 3.0 MHz Span 0 Hz Sweep 15.3 ms (10001 pts) 5 Marker Table v Mode Trace Scale v Function Function Width Function Value 3.756 ms 2.975 dBm Ν Δ1 t 2.871 ms (Δ) -0.7394 dB 3.744 ms (Δ) -0.5718 dB 2 (Δ) 3 Δ1 (Δ) 4 5 6 Jan 20, 2023 2:24:58 PM ? 5 3

GFSK /BDR

10. Measured and Reported (Scaled) SAR Results

SAR Test Reduction criteria are as follows:

- Reported SAR(W/kg) for WWAN= Measured SAR *Tune-up Scaling Factor
- Reported SAR(W/kg) for Wi-Fi and Bluetooth= Measured SAR * Tune-up scaling factor * Duty Cycle scaling factor
- Duty Cycle scaling factor = 1 / Duty cycle (%)

KDB 447498 D01 General RF Exposure Guidance:

Testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is:

- \leq 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is \leq 100 MHz
- ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
- \leq 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is \geq 200 MHz

KDB 648474 D04 Handset SAR:

With headset attached, when the reported SAR for body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a headset attached to the handset.

KDB 648474 D04 Handset SAR (Phablet Only):

For smart phones, with a display diagonal dimension > 15.0 cm or an overall diagonal dimension > 16.0 cm.

When hotspot mode does not apply, 10-g extremity SAR is required for all surfaces and edges with an antenna located at < 25mm From that surface or edge in direct contact with a flat phantom, to address interactive hand use exposure conditions. When hotspot mode applies, 10-g extremity SAR is required only for the surfaces and edges with hotspot mode 1-g reported SAR > 1.2 W/kg; However, when power reduction applies to hotspot mode the measured SAR must be scaled to the maximum output power, Including tolerance, allowed for phablet modes to compare with the 1.2 W/kg SAR test reduction threshold.

Additional 1-g SAR testing at 5 mm is not required when hotspot mode 10-g extremity SAR is not required for the surfaces and edges; since all 1-g reported SAR < 1.2 W/kg.

KDB 941225 D01 SAR test for 3G devices:

When the maximum output power and tune-up tolerance specified for production units in a secondary mode is $\leq \frac{1}{4}$ dB higher than the primary mode or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for the secondary mode.

KDB 941225 D05 SAR for LTE Devices:

SAR test reduction is applied using the following criteria:

- Start with the largest channel bandwidth and measure SAR for QPSK with 1 RB, and 50% RB allocation, using the RB offset and required test channel combination with the highest maximum output power among RB offsets at the upper edge, middle and lower edge of each required test channel.
- When the reported SAR is > 0.8 W/kg, testing for other Channels is performed at the highest output power level for 1RB, and . 50% RB configuration for that channel.
- Testing for 100% RB configuration is performed at the highest output power level for 100% RB configuration across the Low, Mid and High Channel when the highest reported SAR for 1 RB and 50% RB are > 0.8 W/kg. Testing for the remaining required channels is not needed because the reported SAR for 100% RB Allocation < 1.45 W/kg.
- Testing for 16-QAM modulation is not required because the reported SAR for QPSK is < 1.45 W/Kg and its output power is not more than 0.5 dB higher than that of QPSK.
- Testing for the other channel bandwidths is not required because the reported SAR for the highest channel bandwidth is < 1.45 W/Kg and its output power is not more than 0.5 dB higher than that of the highest channel bandwidth.
- For LTE bands that do not support at least three non-overlapping channels in certain channel bandwidths, test the available non-overlapping channels instead. When a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing; therefore, the requirement for H, M and L channels may not fully apply.

KDB 248227 D01 SAR meas for 802.11:

SAR test reduction for 802.11 Wi-Fi transmission mode configurations are considered separately for DSSS and OFDM. An initial test position is determined to reduce the number of tests required for certain exposure configurations with multiple test positions. An initial test configuration is determined for each frequency band and aggregated band according to maximum output power, channel bandwidth, wireless mode configurations and other operating parameters to streamline the measurement requirements. For 2.4 GHz DSSS, either the initial test position or DSSS procedure is applied to reduce the number of SAR tests; these are mutually exclusive. For OFDM, an initial test position is only applicable to next to the ear, UMPC mini-tablet and hotspot mode configurations, which is tested using the initial test configuration to facilitate test reduction. For other exposure conditions with a fixed test position, SAR test reduction is determined using only the initial test configuration.

The multiple test positions require SAR measurements in head, hotspot mode or UMPC mini-tablet configurations may be reduced according to the highest reported SAR determined using the *initial test position(s)* by applying the DSSS or OFDM SAR measurement procedures in the required wireless mode test configuration(s). The *initial test position(s)* is measured using the highest measured maximum output power channel in the required wireless mode test configuration(s). When the *reported* SAR for the *initial test position* is:

- ≤ 0.4 W/kg, further SAR measurement is not required for the other test positions in that exposure configuration and wireless mode combination within the frequency band or aggregated band. DSSS and OFDM configurations are considered separately according to the required SAR procedures.
- > 0.4 W/kg, SAR is repeated using the same wireless mode test configuration tested in the <u>initial test position</u> to measure the subsequent next closet/smallest test separation distance and maximum coupling test position, on the highest maximum output power channel, until the <u>reported</u> SAR is ≤ 0.8 W/kg or all required test positions are tested.
 - For subsequent test positions with equivalent test separation distance or when exposure is dominated by coupling conditions, the position for maximum coupling condition should be tested.
 - \circ \quad When it is unclear, all equivalent conditions must be tested.
- For all positions/configurations tested using the *initial test position* and subsequent test positions, when the *reported* SAR is > 0.8 W/kg, measure the SAR for these positions/configurations on the subsequent next highest measured output power channel(s) until the *reported* SAR is ≤ 1.2 W/kg or all required test channels are considered.
 - The additional power measurements required for this step should be limited to those necessary for identifying subsequent highest output power channels to apply the test reduction.
- When the specified maximum output power is the same for both UNII 1 and UNII 2A, begin SAR measurements in UNII 2A with the channel with the highest measured output power. If the reported SAR for UNII 2A is ≤ 1.2 W/kg, SAR is not required for UNII 1; otherwise treat the remaining bands separately and test them independently for SAR.
- When the specified maximum output power is different between UNII 1 and UNII 2A, begin SAR with the band that has the higher specified maximum output. If the highest reported SAR for the band with the highest specified power is ≤ 1.2 W/kg, testing for the band with the lower specified output power is not required; otherwise test the remaining bands independently for SAR.

To determine the *initial test position*, Area Scans were performed to determine the position with the *Maximum Value of SAR* (*measured*). The position that produced the highest *Maximum Value of SAR* is considered the worst case position; thus used as the *initial test position*.

Page 46 of 54

10.1. GSM 850

	RF Exposure		PWR	Dist.			Freq.	Pow er	(dBm)	1-g SAI	R (W/kg)	Plot
Antenna	Conditions	Mode	Back-off	(mm)	Test Position	Ch #.	(MHz)	Tune-up limit	Meas.	Meas.	Scaled	No.
					Left Touch	190	836.6	29.50	28.49	0.328	0.414	
	Head	GPRS	N⁄A	0	Left Tilt	190	836.6	29.50	28.49	0.210	0.265	
	Tiedu	4 Slots		0	Right Touch	190	836.6	29.50	28.49	0.381	0.481	1
					Right Tilt	190	836.6	29.50	28.49	0.222	0.280	
	Body-w orn	GPRS	N/A	15	Rear	190	836.6	29.50	28.49	0.409	0.516	2
Main 1		4 Slots		15	Front	190	836.6	29.50	28.49	0.357	0.450	
Ant.						128	824.4	29.50	28.41	0.775	0.996	
					Rear	190	836.6	29.50	28.49	0.796	1.004	3
		0000				251	848.8	29.50	28.01	0.685	0.965	
	Hotspot	GPRS 4 Slots	N/A	10	Front	190	836.6	29.50	28.49	0.346	0.437	
		- 000			Edge 2	190	836.6	29.50	28.49	0.494	0.623	
					Edge 3	190	836.6	29.50	28.49	0.504	0.636	
					Edge 4	190	836.6	29.50	28.49	0.286	0.361	

10.2. GSM 1900

Antonno	RF Exposure	Mada	PWR	Dist.	Test Desition	Ch #.	Freq.	Pow er	(dBm)	1-g SAI	R (W/kg)	Plot
Antenna	Conditions	Mode	Back-off	(mm)	Test Position	Un #.	(MHz)	Tune-up	Meas.	Meas.	Scaled	No.
					Left Touch	661	1880.0	29.50	27.92	0.223	0.321	4
	Head	GPRS	Off	0	Left Tilt	661	1880.0	29.50	27.92	0.154	0.222	
	Main 2	2 Slots	OII	0	Right Touch	661	1880.0	29.50	27.92	0.149	0.214	
					Right Tilt	661	1880.0	29.50	27.92	0.091	0.131	
Main 2 Ant.	Body-w orn	GPRS	Off	15	Rear	661	1880.0	29.50	27.92	0.318	0.458	5
Anı.	Body-w offi	2 Slots	OII	15	Front	661	1880.0	29.50	27.92	0.225	0.324	
					Rear	810	1909.8	26.50	25.90	0.380	0.436	6
	Hotspot	GPRS	On	10	Front	810	1909.8	26.50	25.90	0.258	0.296	
	Ποιδρυί	2 Slots			Edge 3	810	1909.8	26.50	25.90	0.237	0.272	
					Edge 4	810	1909.8	26.50	25.90	0.219	0.251	

10.3. WCDMA Band V

Antonno	RF Exposure	Mada	PWR	Dist.	Test Position	Ch #.	Freq.	Pow er	(dBm)	1-g SAI	R (W/kg)	Plot
Antenna	Conditions	Mode	Back-off	(mm)	Test Position	Un #.	(MHz)	rune-up	Meas.	Meas.	Scaled	No.
					Left Touch	4183	836.6	25.50	24.42	0.238	0.305	
	Head	Rel 99 RMC	N⁄A	0	Left Tilt	4183	836.6	25.50	24.42	0.131	0.168	
	rieau	Rel 99 RIVIC	INA	0	Right Touch	4183	836.6	25.50	24.42	0.294	0.377	7
					Rightt Tilt	4183	836.6	25.50	24.42	0.145	0.186	
Main 1	Body-w.orp	Rel 99 RMC	N⁄A	15	Rear	4183	836.6	25.50	24.42	0.283	0.363	8
Ant.	Main 1 Body-w orn	INCI 33 INING		15	Front	4183	836.6	25.50	24.42	0.251	0.322	
7.116.					Rear	4183	836.6	25.50	24.42	0.606	0.777	9
					Front	4183	836.6	25.50	24.42	0.268	0.344	
	Hotspot	Rel 99 RMC	N/A	10	Edge 2	4183	836.6	25.50	24.42	0.283	0.363	
					Edge 3	4183	836.6	25.50	24.42	0.392	0.503	
					Edge 4	4183	836.6	25.50	24.42	0.145	0.186	

Page 47 of 54

UL Korea, Ltd. Suwon Laboratory Doc. No.: 1.0(04) *This report shall not be reproduced except in full, without the written approval of UL Korea, Ltd.*

10.4. LTE Band 5 (10MHz Bandwidth)

Antenna	KF Evenanura	Mode	PWR	Dist.	Test	Ch #.	Freq.	RB	RB	Pow er	(dBm)	1-g SAI	R (W/kg)	Plot
Antenna	Exposure Conditions	IVIDAE	Back-off	(mm)	Position	Un#.	(MHz)	Allocation	offest	Tune-up	Meas.	Meas.	Scaled	No.
					Left Touch	20525	836.5	1	0	25.50	24.42	0.235	0.301	
					Len Touch	20020	030.5	25	0	24.50	23.38	0.184	0.238	
					Left Tilt	20525	836.5	1	0	25.50	24.42	0.141	0.181	
	Head	QPSK	N/A	0	Lent Hit	20020	050.5	25	0	24.50	23.38	0.111	0.144	
	riedu	QFOR	IWA	0	Right Touch	20525	836.5	1	0	25.50	24.42	0.288	0.369	10
					Nghi Tuuch	20020	030.5	25	0	24.50	23.38	0.234	0.303	
					Right Tilt	20525	836.5	1	0	25.50	24.42	0.157	0.201	
					Night Hit	20020	030.5	25	0	24.50	23.38	0.124	0.160	
					Rear	20525	836.5	1	0	25.50	24.42	0.285	0.365	11
	Body-w orn	QPSK	N/A	15	Nedi	20020	030.5	25	0	24.50	23.38	0.213	0.276	
Main 1	Bouy-wom	QFOR	IWA	15	Front	20525	836.5	1	0	25.50	24.42	0.241	0.309	
Ant.					FIUII	20020	030.5	25	0	24.50	23.38	0.194	0.251	
					Rear	20525	836.5	1	0	25.50	24.42	0.595	0.763	12
					INCOL	20020	050.5	25	0	24.50	23.38	0.480	0.621	
					Front	20525	836.5	1	0	25.50	24.42	0.256	0.328	
					TIOIL	20020	050.5	25	0	24.50	23.38	0.203	0.263	
	Hotspot	QPSK	N/A	10	Edge 2	20525	836.5	1	0	25.50	24.42	0.270	0.346	
	Ποισροι	QION	IWA	10	Luge 2	20020	050.5	25	0	24.50	23.38	0.212	0.274	
					Edge 3	20525	836.5	1	0	25.50	24.42	0.367	0.471	
					Luge J	20020	000.0	25	0	24.50	23.38	0.302	0.391	
					Edge 4	20525	836.5	1	0	25.50	24.42	0.132	0.169	
					Luge 4	20020	000.0	25	0	24.50	23.38	0.105	0.136	

10.5. LTE Band 41 (20MHz Bandwidth)

Antenna	Exposure	Mode	PWR	Dist.	Test	Ch #.	Freq.	RB	RB	Pow er	(dBm)	1-g SAI	R (W/kg)	Plot
Antenna	Conditions	Mode	Back-off	(mm)	Position	UN#.	(MHz)	Allocation	offest	rune-up	Meas.	Meas.	Scaled	No.
					Left Touch	40620	2593.00	1	0	23.50	21.66	0.227	0.347	13
					Lent rouch	40020	2333.00	50	0	22.50	20.99	0.188	0.266	
					Left Tilt	40620	2593.00	1	0	23.50	21.66	0.066	0.101	
	Head	QPSK	N/A	0	Lert filt	40020	2333.00	50	0	22.50	20.99	0.055	0.078	
	Ticad	GION		Ŭ	Right Touch	40620	2593.00	1	0	23.50	21.66	0.139	0.212	
					ragin rouen	40020	2000.00	50	0	22.50	20.99	0.110	0.156	
					Right Tilt	40620	2593.00	1	0	23.50	21.66	0.119	0.182	
					rught fiit	40020	2000.00	50	0	22.50	20.99	0.096	0.136	
					Rear	40620	2593.00	1	0	23.50	21.66	0.158	0.241	14
Main 2	Body-w orn	QPSK	N/A	15	rica	40020	2000.00	50	0	22.50	20.99	0.128	0.181	
Ant.	body wom	GION		10	Front	40620	2593.00	1	0	23.50	21.66	0.125	0.191	
					TION	10020	2000.00	50	0	22.50	20.99	0.103	0.146	
					Rear	40620	2593.00	1	0	23.50	21.66	0.267	0.408	
					. toda	10020	2000.00	50	0	22.50	20.99	0.219	0.310	
					Front	40620	2593.00	1	0	23.50	21.66	0.239	0.365	
	Hotspot	QPSK	N/A	10	TION	10020	2000.00	50	0	22.50	20.99	0.194	0.275	
	. istopot	S. 011		10	Edge 3	40620	2593.00	1	0	23.50	21.66	0.107	0.163	
					Lage o	.0020	2000.00	50	0	22.50	20.99	0.089	0.126	
					Edge 4	40620	2593.00	1	0	23.50	21.66	0.302	0.461	15
					Lage 4	40020	2000.00	50	0	22.50	20.99	0.247	0.350	

10.6. Wi-Fi (DTS Band)

DTS SAR results

Frequency		RF Exposure	PWR	Dist.			Freq.	Area Scan	Duty	Pow er	(dBm)	1-g SAF	R (W/kg)		Plot
Band	Mode	Conditions	Back-off	(mm)	Test Position	Ch #.	(MHz)	Max. SAR (W/kg)	Cycle	Tune-up limit	Meas.	Meas.	Scaled	Note	No.
					Left Touch	11	2462.0	0.102	99.7%	12.00	11.70				
		Head	On	0	Left Tilt	11	2462.0	0.068	99.7%	12.00	11.70				
		Tiedu	On	0	Right Touch	11	2462.0	0.299	99.7%	12.00	11.70	0.202	0.217	1	16
					Rightt Tilt	11	2462.0	0.142	99.7%	12.00	11.70				
2.4GHz	802.11b	Body-w orn	Off	15	Rear	6	2437.0	0.236	99.7%	16.50	15.82	0.162	0.190	1	17
	1 Mbps	Douy-wonn	OII	10	Front	6	2437.0	0.053	99.7%	16.50	15.82				
					Rear	6	2437.0	0.546	99.7%	16.50	15.82	0.347	0.407		18
		Hotspot	Off	10	Front	6	2437.0	0.104	99.7%	16.50	15.82				
		riotopot	U II	10	Edge 1	6	2437.0	0.041	99.7%	16.50	15.82				
					Edge 4	6	2437.0	0.229	99.7%	16.50	15.82	0.151	0.177	2	

Note(s):

1. When the Highest reported SAR is ≤ 0.4 or 1.0 W/kg (1-g or 10-g respectively). Therefore, further SAR measurements within this exposure condition are not required.

2. Highest reported SAR is > 0.4 or 1.0 W/kg (1-g or 10-g respectively). Due to the highest reported SAR for this test position, other test positions in this exposure condition were evaluated until a SAR ≤ 0.8 or 2.0 W/kg (1-g or 10-g respectively) was reported.

Testing for a second channel was required because the reported SAR for this test position was > 0.8 or 2.0 W/kg (1-g or 10-g respectively).
 Additional testing required in order satisfying FCC simultaneous transmission limit criteria.

SAR testing is not required for OFDM mode(s) when the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg.

10.7. Wi-Fi (U-NII Bands)

U-NII 2A SAR Results

Frequency		RF Exposure	PWR	Dist.			Freq.	Area Scan	Duty	Power	(dBm)	1-g SAF	R (W/kg)	10-g SA	R (W/kg)		Plot
Band	Mode	Conditions	Back-off	(mm)	Test Position	Ch #.	(MHz)	Max. SAR (W/kg)	Cycle (%)	Tune-up limit	Meas.	Meas.	Scaled	Meas.	Scaled	Note	No.
					Left Touch	54	5270.0	0.482	98.5%	11.00	10.61						
	802.11n HT 40	Head	On		Left Tilt	54	5270.0	0.551	98.5%	11.00	10.61						
	13.5 Mbps	пеао	Un	0	Right Touch	54	5270.0	0.698	98.5%	11.00	10.61	0.265	0.294			2	
	10.0 11000				Right Tilt	54	5270.0	0.800	98.5%	11.00	10.61	0.410	0.455				19
5.3 GHz		Body-worn	Off	15	Rear	56	5280.0	0.605	98.1%	16.00	15.34	0.322	0.382			1	20
U-NII 2A		Douy-woin	UI	IJ	Front	56	5280.0	0.165	98.1%	16.00	15.34						
	802.11a				Rear	56	5280.0	9.082	98.1%	16.00	15.34			1.230	1.459		21
	6 Mbps	Product	Off	0	Front	56	5280.0	2.434	98.1%	16.00	15.34						
		Specific 10-g	UI		Edge 1	56	5280.0	15.604	98.1%	16.00	15.34			0.897	1.064	2	
					Edge 4	56	5280.0	2.760	98.1%	16.00	15.34						

Note(s):

1. When the Highest reported SAR is ≤ 0.4 or 1.0 W/kg (1-g or 10-g respectively). Therefore, further SAR measurements within this exposure condition are not required.

2. Highest reported SAR is > 0.4 or 1.0 W/kg (1-g or 10-g respectively). Due to the highest reported SAR for this test position, other test positions in this exposure condition were evaluated until a SAR ≤ 0.8 or 2.0 W/kg (1-g or 10-g respectively) was reported.

Testing for a second channel was required because the reported SAR for this test position was > 0.8 or 2.0 W/kg (1-g or 10-g respectively).
 Additional testing required in order satisfying FCC simultaneous transmission limit criteria.

Page 49 of 54

U-NII 2C SAR Results

Frequency		RF Exposure	PWR	Dist.			Freq.	Area Scan	Duty	Power	(dBm)	1-g SAF	R (W/kg)	10-g SA	R (W/kg)		Plot
Band	Mode	Conditions	Back-off	(mm)	Test Position	Ch #.	(MHz)	Max. SAR (W/kg)	Cycle (%)	Tune-up limit	Meas.	Meas.	Scaled	Meas.	Scaled	Note	No.
					Left Touch	122	5610.0	0.478	98.2%	11.00	10.60						
	802.11ac VHT 80	Head	On	0	Left Tilt	122	5610.0	0.549	98.2%	11.00	10.60	0.232	0.259			1	22
	29.3 Mbps	neau	UII	0	Right Touch	122	5610.0	0.445	98.2%	11.00	10.60						
	20.0 11000				Right Tilt	122	5610.0	0.473	98.2%	11.00	10.60						
5.5 GHz		Body-worn	Off	15	Rear	124	5620.0	0.722	98.1%	16.00	15.14	0.398	0.494				23
U-NII 2C		Douy-woili	UI	10	Front	124	5620.0	0.176	98.1%	16.00	15.14	0.066	0.082			2	
	802.11a				Rear	124	5620.0	5.346	98.1%	16.00	15.14			0.835	1.037	2	
	6 Mbps	Product	Off	0	Front	124	5620.0	1.658	98.1%	16.00	15.14						
		Specific 10-g	UI		Edge 1	124	5620.0	18.877	98.1%	16.00	15.14			1.040	1.292		24
					Edge 4	124	5620.0	1.232	98.1%	16.00	15.14						

Note(s):

1. When the Highest reported SAR is ≤ 0.4 or 1.0 W/kg (1-g or 10-g respectively). Therefore, further SAR measurements within this exposure condition are not required.

2. Highest reported SAR is > 0.4 or 1.0 W/kg (1-g or 10-g respectively). Due to the highest reported SAR for this test position, other test positions in this exposure condition were evaluated until a SAR ≤ 0.8 or 2.0 W/kg (1-g or 10-g respectively) was reported.

3. Testing for a second channel was required because the reported SAR for this test position was > 0.8 or 2.0 W/kg (1-g or 10-g respectively).

4. Additional testing required in order satisfying FCC simultaneous transmission limit criteria.

U-NII 3 SAR Results

Frequency		RF Exposure	PWR	Dist.			Freq.	Area Scan	Duty	Power	(dBm)	1-g SAF	R (W/kg)	10-g SA	R (W/kg)		Plot
Band	Mode	Conditions	Back-off	(mm)	Test Position	Ch #.	(MHz)	Max. SAR (W/kg)	Cycle (%)	Tune-up limit	Meas.	Meas.	Scaled	Meas.	Scaled	Note	No.
					Left Touch	155	5775.0	0.354	98.2%	11.00	10.53						
	802.11ac	Head	0-	0	Left Tilt	155	5775.0	0.443	98.2%	11.00	10.53	0.186	0.211			1	25
	VHT 80 29.3 Mbps	nead	On	0	Right Touch	155	5775.0	0.245	98.2%	11.00	10.53						
	20.0 11000				Right Tilt	155	5775.0	0.316	98.2%	11.00	10.53						
5.8 GHz		Body-worn	Off	15	Rear	149	5745.0	0.520	98.1%	16.00	15.26	0.259	0.313			1	26
U-NII 3		Douy-woili	UI	IJ	Front	149	5745.0	0.146	98.1%	16.00	15.26						
	802.11a				Rear	149	5745.0	0.760	98.1%	16.00	15.26	0.380	0.459			2	27
	6 Mbps	Hotspot	Off	10	Front	149	5745.0	0.193	98.1%	16.00	15.26						
		Ποιδροι	UI	10	Edge 1	149	5745.0	0.841	98.1%	16.00	15.26	0.344	0.416				
					Edge 4	149	5745.0	0.264	98.1%	16.00	15.26						

Note(s):

1. When the Highest reported SAR is ≤ 0.4 or 1.0 W/kg (1-g or 10-g respectively). Therefore, further SAR measurements within this exposure condition are not required.

2. Highest reported SAR is > 0.4 or 1.0 W/kg (1-g or 10-g respectively). Due to the highest reported SAR for this test position, other test positions in this exposure condition were evaluated until a SAR ≤ 0.8 or 2.0 W/kg (1-g or 10-g respectively) was reported.

Testing for a second channel was required because the reported SAR for this test position was > 0.8 or 2.0 W/kg (1-g or 10-g respectively).
 Additional testing required in order satisfying FCC simultaneous transmission limit criteria.

10.8. Bluetooth

Frequency		RF Exposure	PWR	Dist.			Freq.	Duty	Pow er	(dBm)	1-g SAI	R (W/kg)	Plot
Band	Mode	Conditions	Back-off	(mm)	Test Position	Ch #.	(MHz)	Cycle	Tune-up limit	Meas.	Meas.	Scaled	No.
					Left Touch	0	2402.0	76.7%	9.50	8.73	0.013	0.020	
		Head	N⁄A	0	Left Tilt	0	2402.0	76.7%	9.50	8.73	0.012	0.019	
		nedu	IVA	U	Right Touch	0	2402.0	76.7%	9.50	8.73	0.034	0.053	28
					Rightt Tilt	0	2402.0	76.7%	9.50	8.73	0.024	0.038	
2 4 CH+	2.4GHz GFSK	Body-w orn	N⁄A	15	Rear	0	2402.0	76.7%	9.50	8.73	0.025	0.038	29
2.40112	GFOR	Douy-wom	IVA	10	Front	0	2402.0	76.7%	9.50	8.73	0.006	0.010	
					Rear	0	2402.0	76.7%	9.50	8.73	0.054	0.085	30
		Hotspot	N⁄A	10	Front	0	2402.0	76.7%	9.50	8.73	0.012	0.018	
		Ποιδροι	IWA	10	Edge 1	0	2402.0	76.7%	9.50	8.73	0.006	0.009	
					Edge 4	0	2402.0	76.7%	9.50	8.73	0.015	0.023	

11. SAR Measurement Variability

In accordance with published RF Exposure KDB 865664 D01 SAR measurement 100 MHz to 6 GHz. These additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

- 1) Repeated measurement is not required when the original highest measured SAR is <0.8 or 2 W/kg (1-g or 10-g respectively); steps 2) through 4) do not apply.
- When the original highest measured SAR is ≥ 0.8 or 2 W/kg (1-g or 10-g respectively), repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 or 3.6 W/kg (~ 10% from the 1-g or 10-g respective SAR limit).
- 4) Perform a third repeated measurement only if the original, first, or second repeated measurement is ≥ 1.5 or 3.75 W/kg (1-g or 10-g respectively) and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

All measured SAR results are below 0.8 W/kg. So Repeated SAR test is not required.

12. Simultaneous Transmission SAR Analysis

RF Exposure Condition	ltem		Si	multaneous tra	Insmission so	cenarios	
Head &	1	WWAN (2G/3G/LTE/NR)	+	DTS			
Body-w orn &	2	WWAN (2G/3G/LTE/NR)	+	UNII			
Hotspot &	3	WWAN (2G/3G/LTE/NR)	+	BT			
Phablet-10g	4	WWAN (2G/3G/LTE/NR)	+	BT	+	UNII	
Notes:							
1. DTS supports Wi-Fi	Direct, Ho	otspot and VoIP.					
2. U-NII supports Wi-Fi	Direct, Ho	otspot and VoIP.					
3. GPRS, W-CDMA, LTE	Esupport	s Hotspot and VolP					
4. U-NII Radio can trans	mit simul	taneously with Bluetooth Rad	io.				
6. BT tethering is consid	dered ab	out each RF exposure conditi	ons.				

Simultaneous Transmission Condition

Simultaneous transmission SAR test exclusion considerations

KDB 447498 D04 Interim General RF Exposure Guidance provides two procedures for determining simultaneous transmission SAR test exclusion: Sum of SAR

Sum of SAR

To qualify for simultaneous transmission SAR test exclusion based upon Sum of SAR the sum of the reported standalone SARs for all simultaneously transmitting antennas shall be below the applicable standalone SAR limit. If the sum of the SARs is above the applicable limit then simultaneous transmission SAR test exclusion may still apply if the requirements of the SAR to Peak Location Ratio (SPLSR) evaluation are met.

Page 52 of 54

12.1. Sum of the SAR for WWAN & Wi-Fi & BT

			Standalone	SAR (W/kg)			Sum of S	AR (W/kg)	
RF Exposure	Test Position	WWAN	DTS	UNII	BT	WWAN + DTS	WWAN + UNII	WWAN + BT	WWAN + BT + UNII
		1	2	3	4	1 + 2	1 + 3	1 + 4	1 + 3 + 4
Head (1-g SAR)	All positions	0.481	0.217	0.455	0.053	0.698	0.936	0.534	0.989
Body-Worn (1-g SAR)	All positions	0.516	0.190	0.494	0.038	0.706	1.010	0.554	1.048
	Rear	1.004	0.407	0.459	0.085	1.411	1.463	1.089	1.548
	Front	0.437	0.407	0.459	0.018	0.844	0.896	0.455	0.914
Hotspot	Edge 1		0.407	0.416	0.009				0.425
(1-g SAR)	Edge 2	0.623							
	Edge 3	0.636							
	Edge 4	0.461	0.177	0.459	0.023	0.638	0.920	0.484	0.943
	Rear			1.459					
	Front			1.459					
Product Specific	Edge 1			1.292					
(10-g SAR)	Edge 2								
	Edge 3								
	Edge 4			1.459					

Note(s): 1. Green value is estimated SAR value.

Conclusion:

Simultaneous Transmission SAR analysis results is satisfied the FCC Limit requirement according to follow procedures with "Sum of SAR".

Page 53 of 54

Appendixes

Refer to separated files for the following appendixes.

4790716492-S1 FCC Report SAR_App A_Photos & Ant. Locations 4790716492-S1 FCC Report SAR_App B_Highest SAR Test Plots 4790716492-S1 FCC Report SAR_App C_System Check Plots 4790716492-S1 FCC Report SAR_App D_SAR Tissue Ingredients 4790716492-S1 FCC Report SAR_App E_Probe Cal. Certificates 4790716492-S1 FCC Report SAR_App F_Dipole Cal. Certificates 4790716492-S1 FCC Report SAR_App G_Proximity Sensor feature

END OF REPORT

Page 54 of 54