

CERTIFICATION TEST REPORT

Report Number. : 4790360891-E2V2

Applicant: SAMSUNG ELECTRONICS CO., LTD.

129 SAMSUNG-RO, YEONGTONG-GU, SUWON-SI,

GYEONGGI-DO, 16677, KOREA

Model: SM-A137F/DSN

FCC ID : A3LSMA137F

EUT Description: GSM/WCDMA/LTE Phone + BT/BLE, DTS/UNII a/b/g/n/ac and NFC

Test Standard(s): FCC CFR47 PART 22 SUBPART H

FCC CFR47 PART 24 SUBPART E FCC CFR47 PART 27 SUBPART M

Date Of Issue:

2022-04-25

Prepared by:

UL Korea, Ltd.

26th floor, 152, Teheran-ro, Gangnam-gu Seoul, 06236, Korea

Suwon Test Site: UL Korea, Ltd. Suwon Laboratory 218 Maeyeong-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16675, Korea

TEL: (031) 337-9902 FAX: (031) 213-5433

REPORT NO: 4790360891-E2V2 FCC ID: A3LSMA137F

DATE: 2022-04-25

Revision History

Rev.	Issue Date	Revisions	Revised By
V1	2022-04-22	Initial issue	Yeonhee Lim
V2	2022-04-25	Updated to address TCB's question	Yeonhee Lim

TABLE OF CONTENTS

1. A	TTESTATION OF TEST RESULTS	4
2. TE	EST METHODOLOGY	5
3. F	ACILITIES AND ACCREDITATION	5
4. C	ALIBRATION AND UNCERTAINTY	6
4.1.	MEASURING INSTRUMENT CALIBRATION	6
4.2.	SAMPLE CALCULATION	6
4.3.	MEASUREMENT UNCERTAINTY	6
4.4.	DECISION RULE	6
5. E	QUIPMENT UNDER TEST	7
5.1.	DESCRIPTION OF EUT	7
5.2.	MAXIMUM OUTPUT POWER	7
5.3.	DESCRIPTION OF AVAILABLE ANTENNAS	9
5.4.	WORST-CASE ORIENTATION	10
5.5.	DESCRIPTION OF TEST SETUP	11
6. TE	EST AND MEASUREMENT EQUIPMENT	13
7. SUN	MMARY TABLE	14
8. PEA	AK TO AVERAGE RATIO	15
8.1.	CONDUCTED PEAK TO AVERAGE RESULT	16
9. LI	MITS AND CONDUCTED RESULTS	19
_	OCCUPIED BANDWIDTH	_
	1.1. OCCUPIED BANDWIDTH RESULTS	
	BAND EDGE EMISSIONS	
	OUT OF BAND EMISSIONS	
	3.1. OUT OF BAND EMISSIONS RESULT	
9.4.	FREQUENCY STABILITY	50
	4.1. FREQUENCY STABILITY RESULTS	
<i>9.5.</i> 9.	RADIATED POWER (ERP & EIRP)	54 55
	FIELD STRENGTH OF SPURIOUS RADIATION	
	6.1. SPURIOUS RADIATION PLOTS	

REPORT NO: 4790360891-E2V2 DATE: 2022-04-25 FCC ID: A3LSMA137F

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: SAMSUNG ELECTRONICS CO., LTD.

EUT DESCRIPTION: GSM/WCDMA/LTE Phone + BT/BLE, DTS/UNII a/b/g/n/ac and NFC

MODEL NUMBER: SM-A137F/DS

SERIAL NUMBER: 42009c3cca5cc8a7 (CONDUCTED);

R38T4001ZCM, R38T4001X0Y (RADIATED);

DATE TESTED: 2022-04-05 ~ 2022-04-19;

APPLICABLE STANDARDS

STANDARD TEST RESULTS

FCC PART 22H, 24E, 27M Pass

UL Korea, Ltd. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Korea, Ltd. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Korea, Ltd. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Korea, Ltd. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by IAS, any agency of the Federal Government, or any agency of any government.

Approved & Released For UL Korea, Ltd. By:

Tested By:

Seokhwan Hong Suwon Lab Engineer UL Korea, Ltd. Yeonhee Lim Suwon Lab Engineer UL Korea, Ltd.

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with following methods.

- 1. FCC CFR 47 Part 2.
- 2. FCC CFR 47 Part 22.
- 3. FCC CFR 47 Part 24.
- 4. FCC CFR 47 Part 27.
- 5. ANSI TIA-603-E, 2016
- 6. ANSI C63.26, 2015
- 7. KDB 971168 D01 Power Meas License Digital Systems v03r01

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 218 Maeyeong-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do,16675, Korea. Line conducted emissions are measured only at the 218 address. The following table identifies which facilities were utilized for radiated emission measurements documented in this report. Specific facilities are also identified in the test results sections.

218 Maeyeong-ro						
☐ Chamber 1(3m semi-anechoic chamber)						
☐ Chamber 2(3m semi-anechoic chamber)						
☐ Chamber 3(3m semi-anechoic chamber)						
☐ Chamber 4(3m Full-anechoic chamber)						
☐ Chamber 5(3m Full-anechoic chamber)						

UL Korea, Ltd. is accredited by IAS, Laboratory Code TL-637. The full scope of accreditation can be viewed at https://www.iasonline.org/wp-content/uploads/2017/05/TL-637-cert-New.pdf.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

EIRP = PSA reading with EUT worst orientation (dBm) + Path loss (dB) – cable loss(between the SG and substitution antenna) + Substitution Antenna Factor (dBi)

ERP = PSA reading with EUT worst orientation (dBm) + Path loss (dB) – cable loss(between the SG and substitution antenna)

(Path loss = Signal generator output – PSA reading with substitution antenna)

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	3.02 dB
Radiated Disturbance, 30 MHz to 1 GHz	4.05 dB
Radiated Disturbance, 1 GHz to 18 GHz	5.78 dB
Radiated Disturbance, 18 GHz to 40 GHz	5.58 dB

Uncertainty figures are valid to a confidence level of 95%.

4.4. DECISION RULE

Decision rule for statement(s) of conformity is based on Procedure 2, Clause 4.4.3 in IEC Guide 115:2007.

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is a GSM/WCDMA/LTE Phone + BT/BLE, DTS/UNII a/b/g/n/ac and NFC This test report addresses the WWAN operational mode.

5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum average radiated ERP / EIRP output powers as follows:

Note: Conducted output power results were excerpted from RF exposure test report. (4790360891-S1 FCC Report SAR)

GSM

FCC Part 22/24							
Band	Frequency Range		Conducted Radiated		iated		
	[MHz]		Avg [dBm]	Avg [mW]	Avg [dBm]	Avg [mW]	
CCMSEO	924 940	GPRS	32.57	1807.17	28.34	682.34	
GSM850	824~849	EGPRS	26.46	442.59	21.26	133.66	
CSM1000	1950 1010	GPRS	29.72	937.56	30.63	1156.11	
GSM1900	1850~1910	EGPRS	25.51	355.63	27.69	587.49	

WCDMA

FCC Part 22							
Band	Frequency Range	Modulation	Cond	ucted	Radi	ated	
_ = 55	[MHz]		Avg [dBm]	Avg [mW]	Avg [dBm]	Avg [mW]	
Band 5	David 5 004 040	Rel. 99	24.29	268.53	21.20	131.83	
band 5	824~849	HSDPA	23.19	208.45	19.24	83.95	

LTE Band 5

	FCC Part 22							
Band	Frequency Range	BandWidth	Modulation	Conducted		Radiated		
	[MHz]	[MHz]		Avg [dBm]	Avg [mW]	Avg [dBm]	Avg [mW]	
			QPSK	22.94	196.79	19.16	82.41	
	829.0 - 844.0	10	16QAM	22.02	159.22	18.27	67.14	
			64QAM	21.28	134.28			
			QPSK	23.25	211.35	19.17	82.60	
	826.5 - 846.5	5	16QAM	22.38	172.98	18.77	75.34	
Band 5			64QAM	21.31	135.21			
Band 5			QPSK	23.16	207.01	19.73	93.97	
	825.5 - 847.5	3	16QAM	22.50	177.83	18.58	72.11	
			64QAM	21.37	137.09			
			QPSK	23.08	203.24	19.27	84.53	
	824.7 - 848.3	1.4	16QAM	22.40	173.78	18.46	70.15	
			64QAM	21.51	141.58			

LTE Band 41

			FCC F	Part 27			
Band	Frequency Range	BandWidth	Modulation	Conducted		Radiated	
	[MHz]	[MHz]		Avg [dBm]	Avg [mW]	Avg [dBm]	Avg [mW]
			QPSK	23.41	219.28	25.08	322.11
	2506 - 2680	20	16QAM	22.21	166.34	24.24	265.46
			64QAM	21.36	136.77		
			QPSK	23.05	201.84	25.07	321.37
Daniel 44	2503.5 - 2682.5	15	16QAM	21.97	157.40	23.77	238.23
			64QAM	21.33	135.83		Avg [mW] 322.11 265.46 321.37
Band 41			QPSK	23.40	218.78	24.64	291.07
	2501 - 2685	10	16QAM	22.31	170.22	24.14	259.42
			64QAM	21.35	136.46		
			QPSK	23.02	200.45	24.44	277.97
	2498.5 - 2687.5	5	16QAM	22.18	165.20	23.67	232.81
			64QAM	21.40	138.04		

5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes a internal antenna for the supported bands with a maximum peak gain as follow:

Frequency (MHz)	Peak Gain (dBi)
GSM1900 1850 ~ 1915 MHz	-0.38
GSM850 / WCDMA Band 5 / LTE Band 5 824 ~ 849 MHz	-2.16
LTE Band 41 2496 ~ 2690 MHz	3.65

Following modes should be considered as worst-case scenario for all other measurements.

- GSM GPRS/EGPRS
- UMTS REL 99/HSDPA

For all LTE Bands, the worst-case scenario for all measurements is based on the average conducted output power measurement investigation results. Output power measurements were measured on QPSK, 16QAM, 64QAM modulations. However, the out of band emissions and spurious radiation were only performed on bandwidth and RB offset(with RB size 1) with the highest power in QPSK.

Highest power setting for each bands								
LTE Band	Frequency (MHz)	Bandwidth (MHz)	RB size	RB offset				
	826.5		1	12				
5	836.5	5	1	12				
	846.5		1	12				
	2506.0		1	49				
41	2593.0	20	1	49				
	2680.0		1	49				

The fundamental and radiated spurious emission were investigated in three orthogonal orientations X, Y and Z, it was determined that below orientation was worst-case orientation for each band.

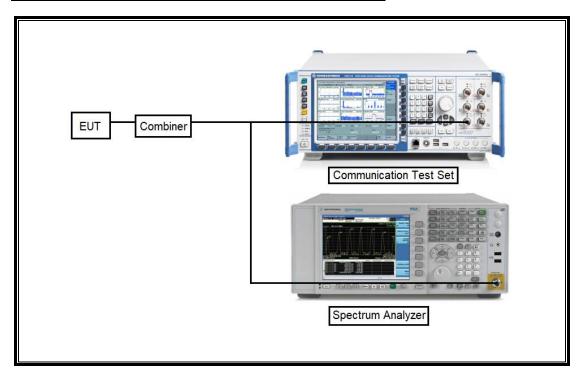
Band		ERP/EIRP		RSE		
Band	Х	Y	Z	х	Y	Z
GSM850	-	0	-	-	0	-
GSM1900	0	-	-	-	0	-
WCDMA B5	-	-	0	-	-	0
LTE B5	-	0	-	-	-	0
LTE B41	0	-	-	-	-	0

Note: For ERP/EIRP testing, the EUT didn't attached with travel adapter. But radiated spurious testing, the EUT attached with travel adapter for the worst case condition. The EUT is continuously communicated with the call box during the tests.

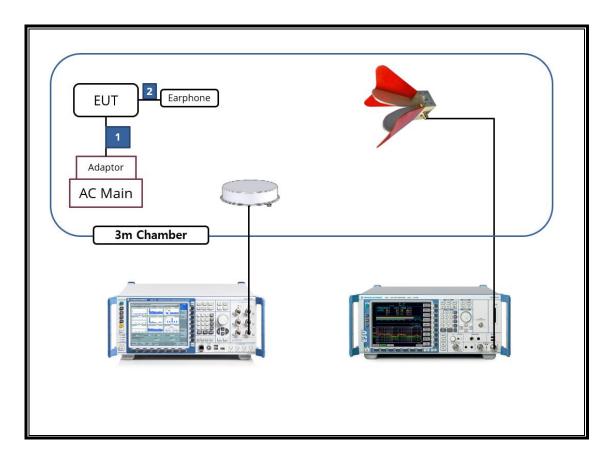
5.5. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Support Equipment List								
Description Manufacture Model Serial Number FCC ID								
Charger	SAMSUNG	EP-TA800	R37MANQ1E72SE3	N/A				
Data Cable	SAMSUNG	EP-DN980	GH39-02115A BWE	N/A				
Earphone	SAMSUNG	GH59-15055A	EHS64AVFWE	N/A				


I/O CABLE

	I/O Cable List						
Cable No.	Port	# of identical ports	Connector Type	Cable Type	Cable Length (m)	Remarks	
1	DC Power	1	C to C Type	Shielded	1.0 m	N/A	
2	Audio	2	Mini-jack	Unshielded	0.7 m	N/A	


TEST SETUP

The EUT is continuously communicated with the call box during the tests.

SETUP DIAGRAM FOR TESTS (CONDUCTED TEST SETUP)

SETUP DIAGRAM FOR TESTS (RADIATED TEST SETUP)

Page 12 of 65

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

	Test Equi	oment List		
Description	Manufacturer	Model	S/N	Cal Due
Antenna, Tuned Dipole 400~1000 MHz	ETS	3121D DB4	00164753	2023-02-0
Directional Antenna	Cobham	FPA3-0.8-6.0R/1329	110367-0003	N/A
Directional Antenna	Cobham	FPA3-0.8-6.0R/1329	80108-0004	N/A
Antenna, Horn, 40 GHz	ETS	3116C	00166155	2022-08-0
Antenna, Horn, 40 GHz	ETS	3116C	00168645	2023-10-1
Preamplifier	ETS	3116C-PA	00168841	2022-08-0
Antenna, Bilog, 30MHz-1GHz	SCHWARZBECK	VULB9163	750	2022-08-1
Antenna, Bilog, 30MHz-1GHz	SCHWARZBECK	VULB9163	845	2022-08-
Antenna, Bilog, 30MHz-1GHz	SCHWARZBECK	VULB9163	749	2022-08-
Antenna, Horn, 18 GHz	ETS	3115	00167211	2022-07-2
Antenna, Horn, 18 GHz	ETS	3115	00161451	2022-08-
Antenna, Horn, 18 GHz	ETS	3117	00168724	2022-07-2
Antenna, Horn, 18 GHz	ETS	3117	00168717	2022-08-
Communications Test Set	R&S	CMW500	169796	2023-01-0
DC Power Supply	Agilent / HP	E3640A	MY54226395	2022-08-0
Preamplifier, 1000 MHz	Sonoma	310N	341282	2022-08-0
Preamplifier, 1000 MHz	Sonoma	310N	370599	2022-08-0
Preamplifier, 1000 MHz	Sonoma	310N	351741	2022-08-0
Preamplifier, 18 GHz	Miteq	AFS42-00101800-25-S-42	1876511	2022-08-0
Preamplifier, 18 GHz	Miteq	AFS42-00101800-25-S-42	2029168	2022-08-0
Preamplifier, 18 GHz	Miteq	AFS42-00101800-25-S-42	1896138	2022-08-0
Spectrum Analyzer, 44 GHz	Agilent / HP	N9030A	MY54170614	2022-08-0
Spectrum Analyzer, 44 GHz	Agilent / HP	N9030A	MY54490312	2022-08-0
EMI Test Receive, 40 GHz	R&S	ESU40	100439	2022-08-0
EMI Test Receive, 40 GHz	R&S	ESU40	100457	2022-08-0
High Pass Filter 1.2GHz	Micro-Tronics	HPM50108-02	G005	2022-08-0
High Pass Filter 1.2GHz	Micro-Tronics	HPM50108-02	G006	2022-08-0
High Pass Filter 2.8GHz	Micro-Tronics	HPM50111-02	010	2022-08-0
High Pass Filter 2.8GHz	Micro-Tronics	HPM50111-02	011	2022-08-0
High Pass Filter 4GHz	Micro-Tronics	HPM50118-02	G001	2022-08-0
High Pass Filter 4GHz	Micro-Tronics	HPM50118-02	G002	2022-08-0
Attenuator	PASTERNACK	PE7087-10	A009	2022-08-0
Attenuator	PASTERNACK	PE7087-10	A001	2022-08-0
Attenuator	PASTERNACK	PE7087-10	A008	2022-08-0
Attenuator	PASTERNACK	PE7004-10	2	2022-08-0
Attenuator	PASTERNACK	PE7395-10	A011	2022-08-0
Antenna, Loop, 9kHz-30MHz	R&S	HFH2-Z2	100418	2023-10-0
Temperature Chamber	ESPEC	SH-642	93001109	2022-08-0
Power Splitter	MINI-CIRCUITS	WA1534	UL003	2023-01-
Power Splitter	MINI-CIRCUITS	WA1534	UL004	2023-01-
IXM 5G Wireless Test Platform	KEYSIGHT	E7515B	MY58120110	2023-01-
744 50 WII GOSS TEST FIRMOTTI		ftware	111100120110	2020-01-0
Description	Manufacturer	Model	Vers	ion
	UL	CLT	Ver	
Antenna port test software				
Antenna port test software Radiated software	UL	ULEMC	Ver	

Page 13 of 65

7. SUMMARY TABLE

FCC Part Section	Test Description	Test Limit	Test Condition	Test Result
22.913(d) 24.232(d) 27.50(d)(5)	Peak to average ratio	< 13dB		Pass
2.1049	Occupied Band width (99%)	N/A		Pass
22.917(a) 24.238(a)	Band Edge / Conducted Spurious Emission	-13dBm		Pass
27.53(m)	Conducted Spurious Emission	-25dBm	Conducted	Pass
27.53(m)	Emission mask	Section 9.2.2		Pass
2.1046	Conducted output power	N/A		Pass
22.355 24.235 27.54	Frequency Stability	2.5PPM		Pass
22.913(a)(5)	Effective Radiated Power	38.5dBm		Pass
24.232(c) 27.50(h)(2)	Equivalent Isotropic Radiated Power	33dBm	Radiated	Pass
22.917(a) 24.238(a)	Radiated Spurious Emission	-13dBm		Pass
27.53 (m)		-25dBm		Pass

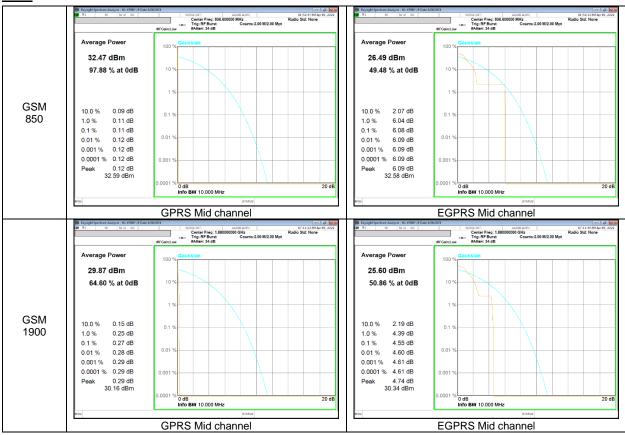
FCC ID: A3LSMA137F 8. PEAK TO AVERAGE RATIO

Test Procedure

Per KDB 971168 D01 Power Meas License Digital Systems v03r01;

The transmitter output was connected to a CMW500 Test Set and configured to operate at maximum power. The PAR were measured on the Spectrum Analyzer.

Test Spec

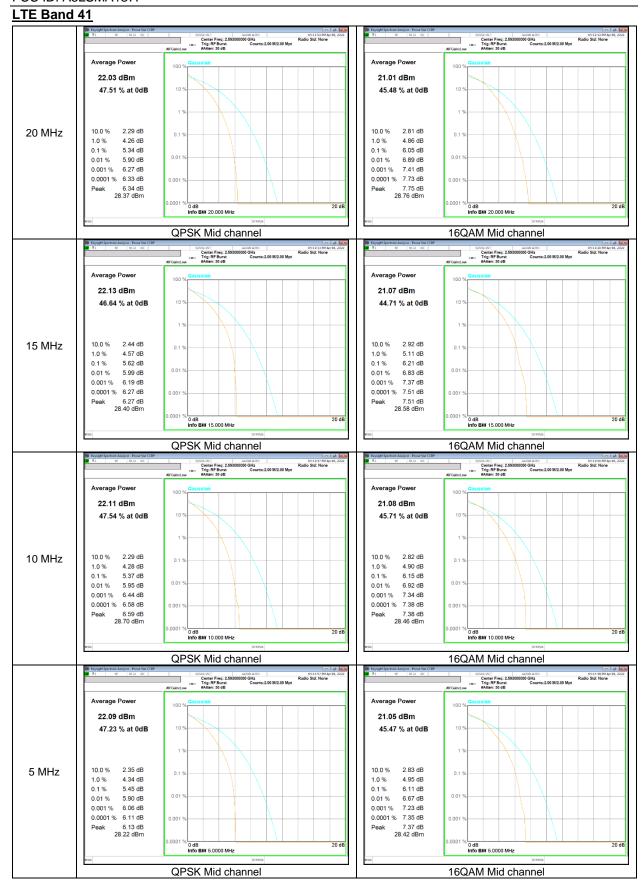

In addition, when the transmitter power is measured in terms of average value, the peak-to-average ratio of the power shall not exceed 13 dB.

RESULTS

See the following pages.

8.1. CONDUCTED PEAK TO AVERAGE RESULT

GSM



WCDMA

Page 17 of 65

9. LIMITS AND CONDUCTED RESULTS

9.1. OCCUPIED BANDWIDTH

RULE PART(S)

FCC: §2.1049

LIMITS

For reporting purposes only

TEST PROCEDURE

The transmitter output was connected to a calibrated coaxial cable and coupler, the other end of which was connected to a spectrum analyzer. The occupied bandwidth was measured with the spectrum analyzer at middle channel in each band. The -26dB bandwidth was also measured and recorded.

(KDB 971168 D01 Power Meas License Digital Systems v03r01)

RESULTS

See the following pages.

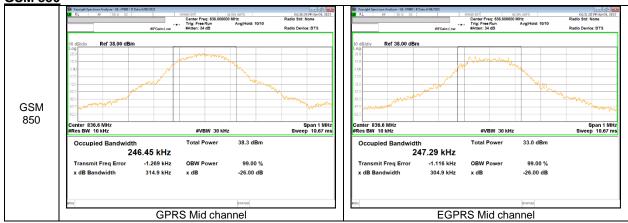
	_	
	\sim	1
	1 - C N	
_	17.71	,

Dond	Modulation	£ [NAL 1—1	99% BW	-26dB BW
Band	Modulation	f [MHz]	(kHz)	(kHz)
850	GPRS	836.6	246.5	314.9
650	EGPRS	630.0	247.3	304.9
1000	GPRS	1880.0	244.0	319.9
1900	EGPRS	1880.0	248.1	324.4

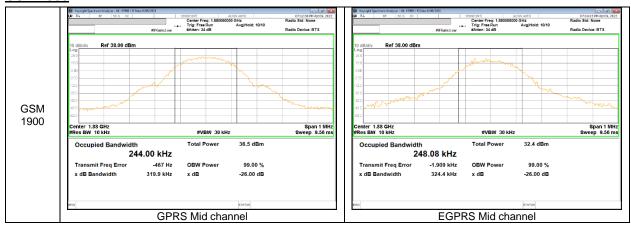
- WCDMA

Dond	Madulation	£ [NAL I=1	99% BW	-26dB BW
Band	Modulation	f [MHz]	(MHz)	(MHz)
DE	Rel.99	936.6	4.162	4.663
B5	HSDPA	836.6	4.176	4.647

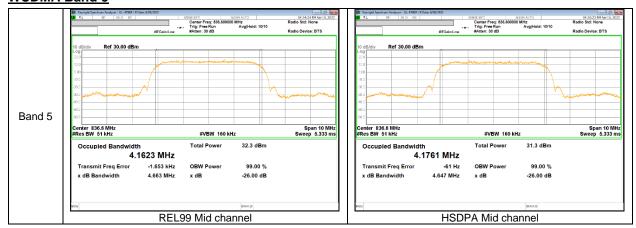
- LTE Band 5

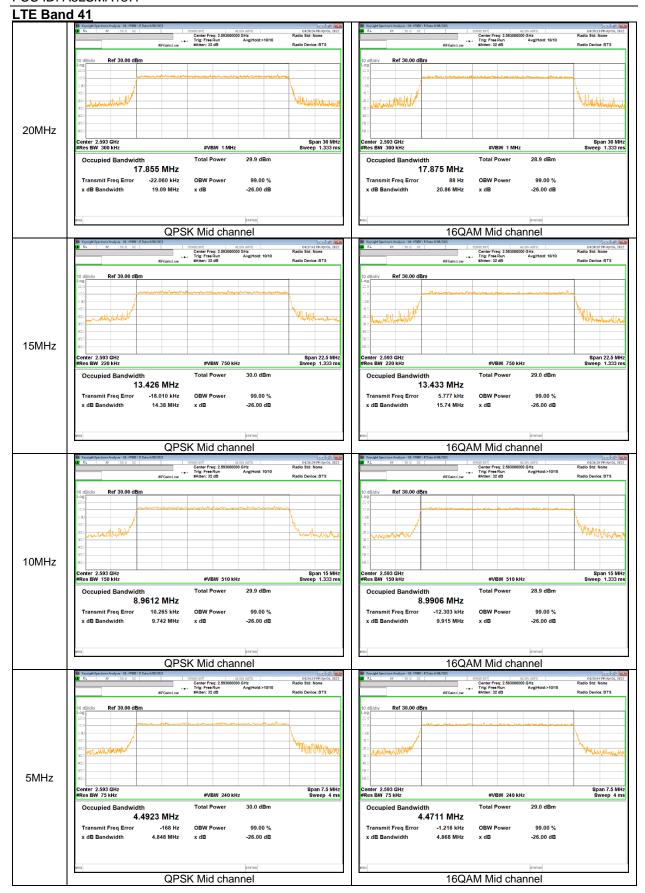

ETE Balla 0					
Band	BW	Modulation	f [MHz]	99% BW	-26dB BW
Danu				(MHz)	(MHz)
	4014	QPSK	836.5	8.964	9.673
	10M	16QAM		8.940	9.546
	EN4	QPSK	926 F	4.478	4.887
LTE B5	5M	16QAM	836.5	4.471	4.876
LIEBS	21.4	QPSK	936 F	2.684	2.880
	3M	16QAM	836.5	2.677	2.911
	1 414	QPSK	836.5	1.095	1.295
	1.4M	16QAM		1.081	1.273

- LTE Band 41


Band	BW	Modulation	f [MHz]	99% BW	-26dB BW
Danu	DVV			(MHz)	(MHz)
	2014	QPSK	2593.0	17.855	19.090
	20M	16QAM		17.875	20.860
	4514	QPSK	2593.0	13.426	14.380
LTE B41	15M	16QAM		13.433	15.740
LIE D41	1014	QPSK	2593.0	8.961	9.742
	10M	16QAM		8.991	9.915
	5M	QPSK	2593.0	4.492	4.848
		16QAM		4.471	4.868

9.1.1. OCCUPIED BANDWIDTH RESULTS


GSM 850


GSM 1900

WCDMA Band 5

Page 23 of 65

D: A3LSMA137F

BAND EDGE EMISSIONS

RULE PART(S)

9.2.

FCC: §22.359, §22.917, §24.238, §27. 53

LIMITS

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log (P) dB.

(m) (4) For mobile digital stations, the attenuation factor shall be not less than 40 + 10 log (P) dB on all frequencies between the channel edge and 5 megahertz from the channel edge, 43 + 10 log (P) dB on all frequencies between 5 megahertz and X megahertz from the channel edge, and 55 + 10 log (P) dB on all frequencies more than X megahertz from the channel edge, where X is the greater of 6 megahertz or the actual emission bandwidth as defined in paragraph (m)(6) of this section. In addition, the attenuation factor shall not be less that 43 + 10 log (P) dB on all frequencies between 2490.5 MHz and 2496 MHz and 55 + 10 log (P) dB at or below 2490.5 MHz. Mobile Satellite Service licensees operating on frequencies below 2495 MHz may also submit a documented interference complaint against BRS licensees operating on channel BRS Channel 1 on the same terms and conditions as adjacent channel BRS or EBS licensees.

TEST PROCEDURE

Per KDB 971168 D01 Power Meas License Digital Systems v03r01

The transmitter output was connected to a CMW500 Test Set and configured to operate at maximum power. The band edge emissions were measured at the required operating frequencies in each band on the Spectrum Analyzer.

GSM

- a) Set the RBW = $1 \sim 5\%$ of OBW(GSM850 8.2KHz, GSM1900 9.1KHz)
- b) Set VBW ≥ 3 × RBW;
- c) Set span ≥ 1.5 times the OBW;
- d) Sweep time = 1S;
- e) Detector = RMS;
- f) Ensure that the number of measurement points ≥ 2*Span/RBW;
- g) Trace mode = Average(100);
- h) Add duty cycle correction factor (9dB)

WCDMA/LTE

- a) Set the RBW = 1 ~ 1.5 % of OBW(Typically limited to a minimum RBW of 1% of the OBW)
- b) Set VBW ≥ 3 × RBW:
- c) Set span ≥ 1.5 times the OBW;
- d) Sweep time = Auto;
- e) Detector = RMS;
- f) Ensure that the number of measurement points ≥ 2*Span/RBW;
- g) Trace mode = Average (100);

REPORT NO: 4790360891-E2V2

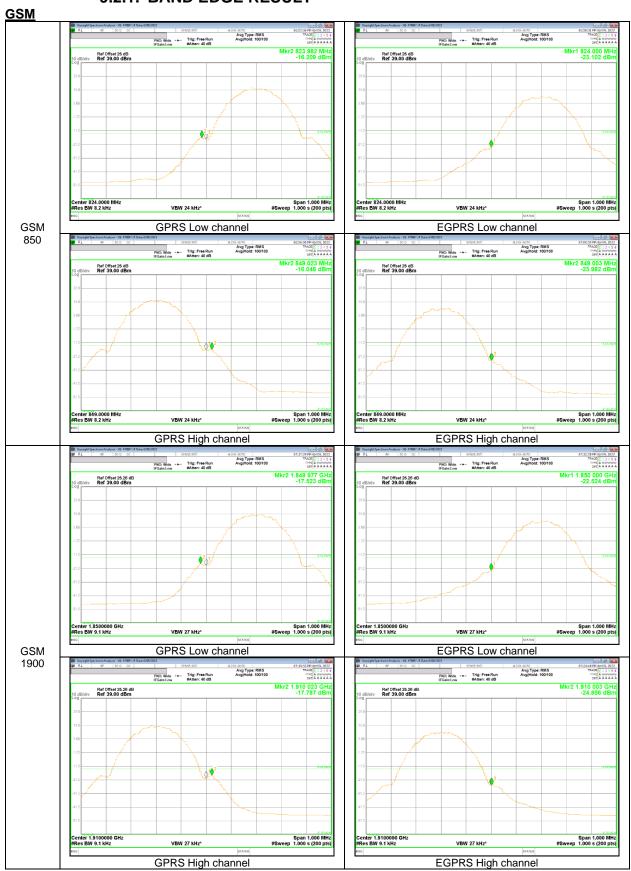
FCC ID: A3LSMA137F

NOTE1

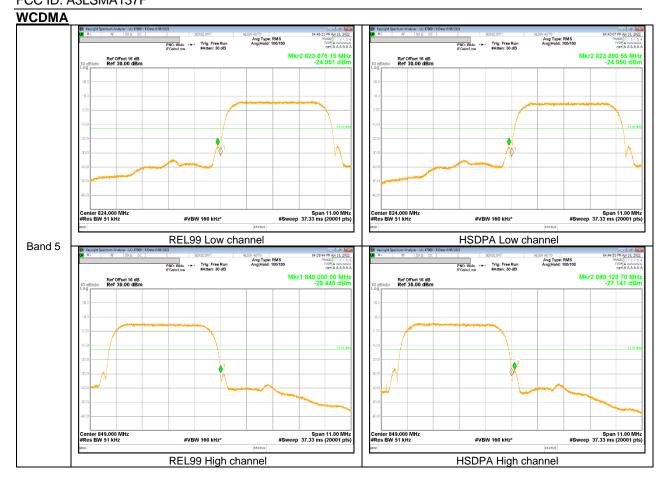
Note that the spurious emissions outside of the channel include narrowband signals. These signals are all below the -13dBm / -25dBm limits. Although the measurement bandwidth is less than the reference bandwidth of 1MHz no addental correction is applied as ANSI C63.26 section 4.2.3 only requires the correction to be applied when the OBW of the emission being measured is wider than the measurement bandwidth (Where the OBW of the signal under measurement is less than the RBW of the measuring instrument, no bandwidth correction or integration will be required.) Plots for low and high channels show the level of the emission measured with the reduced bandwidth and the level of the same emission measured using the integration method over the 1MHz reference bandwidth are very close, indicating the emissions are narrowband.

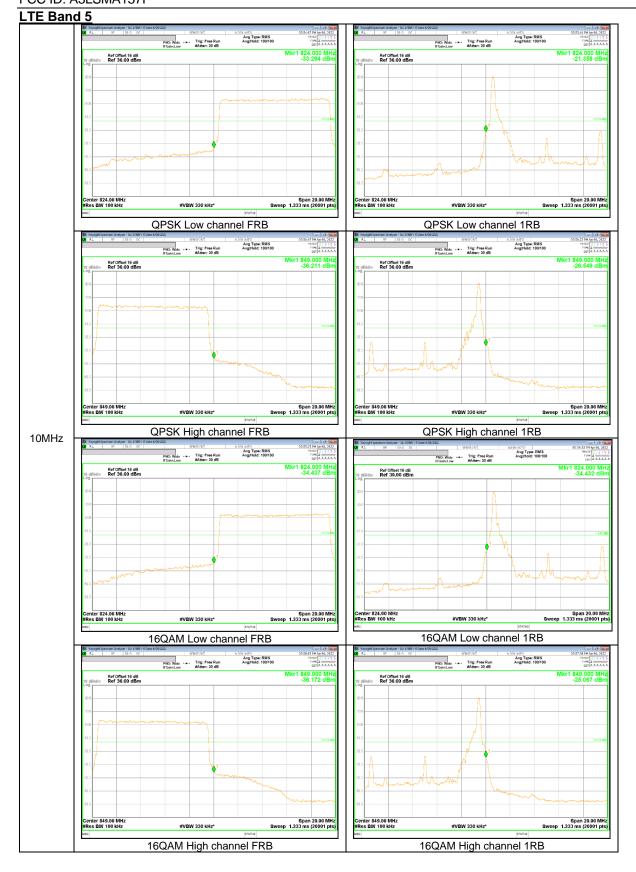
NOTE2

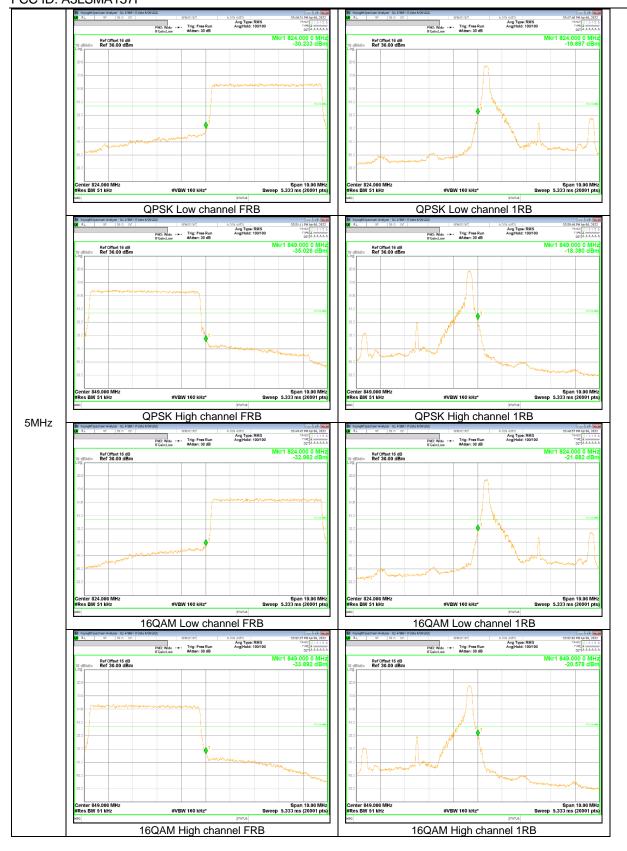
For Band-Edge extended:

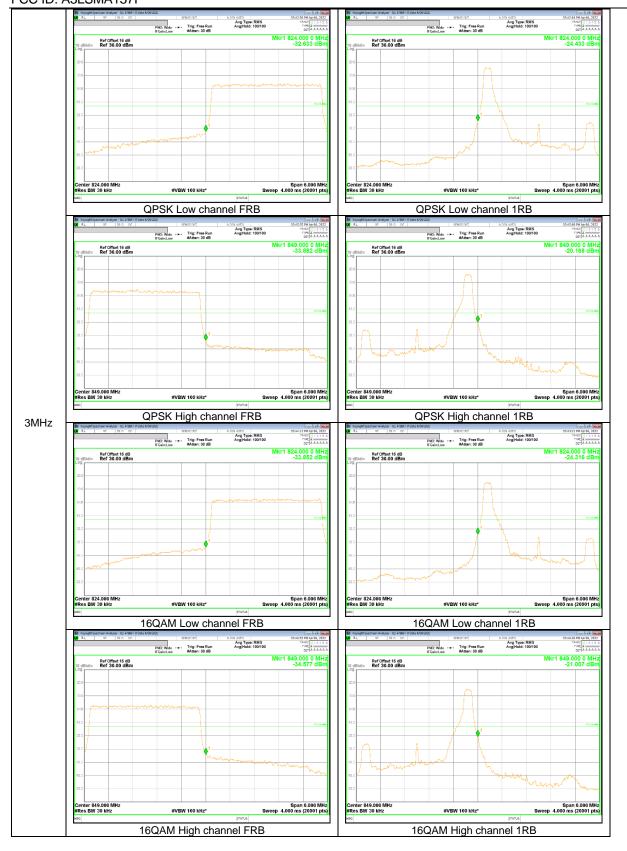

<u> </u>			
CH BW	RB Used	CF for emissions more than	CF for emissions more than
(MHz)	(kHz)	100kHz	1MHz
1.4	15	+8.2 dB	+18.2 dB
3	30	+5.2 dB	+15.2 dB
5	51	+2.9 dB	+12.9 dB
10	100	N/A	+10.0 dB
15	150	N/A	+8.2 dB
20	200	N/A	+7.0 dB

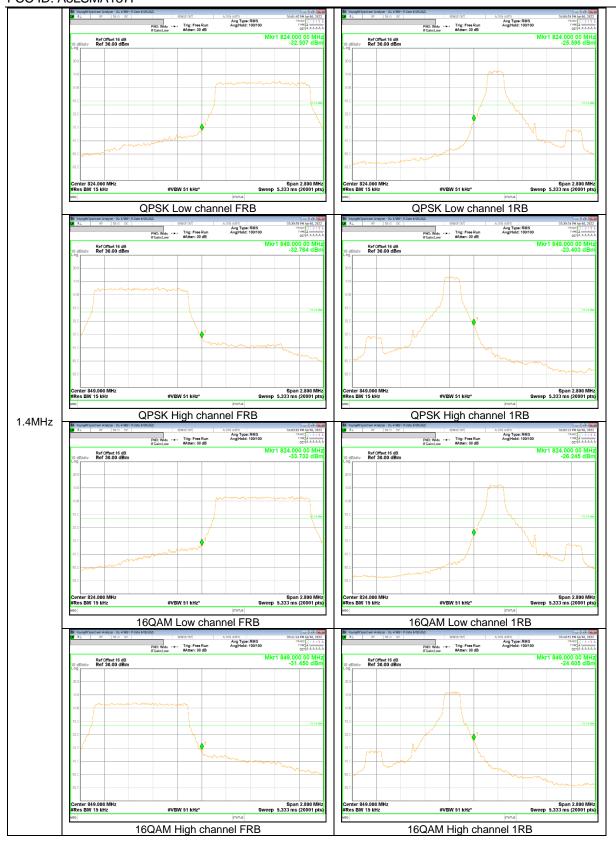
For the band edge value measured in [RB Used], even if [CF for emissions reference bandwidth 100kHz/1MHz] is applied, it is below -13dBm.

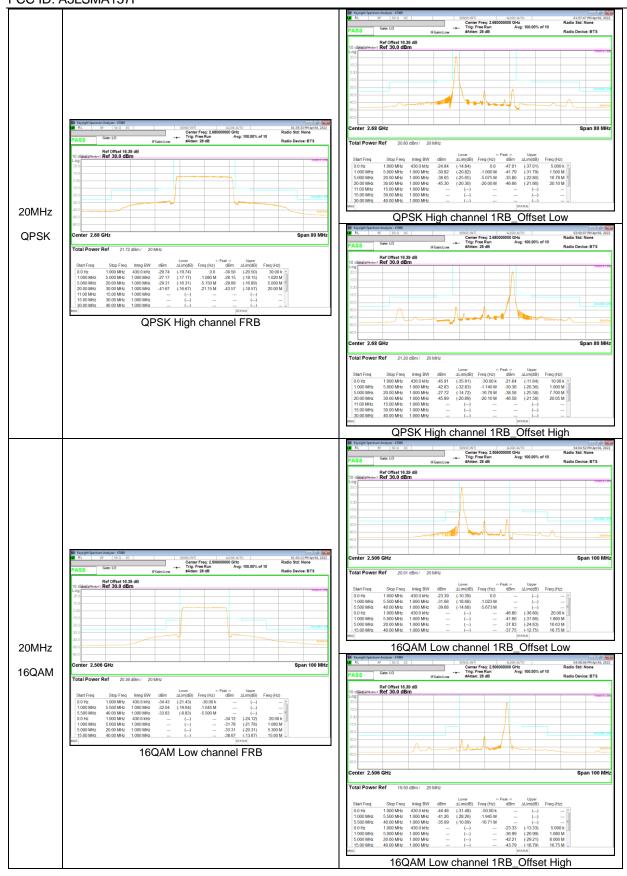

RESULTS

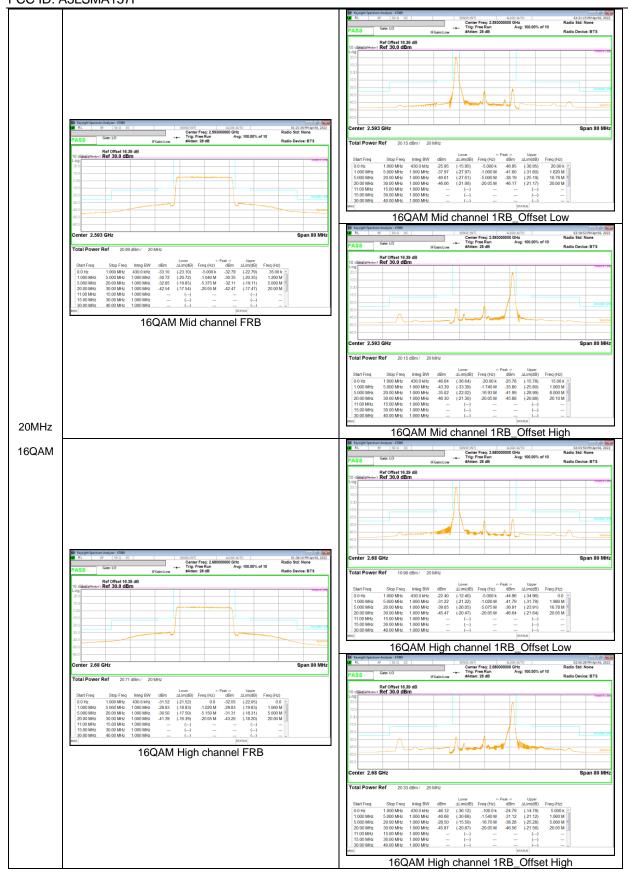

See the following pages.


9.2.1. BAND EDGE RESULT




Page 26 of 65





Page 32 of 65

