

PCTEST

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. 410.290.6652 / Fax 410.290.6654 http://www.pctest.com

HEARING AID COMPATIBILITY

Applicant Name:

Samsung Electronics Co., Ltd. 129, Samsung-ro, Maetan dong, Yeongtong-gu, Suwon-si Gyeonggi-do 16677, Korea

Date of Testing: 1/11/2022 - 1/21/2022 Test Site/Location: PCTEST, Columbia, MD, USA Test Report Serial No.: 1M2112270166-16-R2.A3L Date of Issue: 2/1/2022

FCC ID:

A3LSMA135U

APPLICANT:

SAMSUNG ELECTRONICS CO., LTD.

Scope of Test: Application Type: FCC Rule Part(s): HAC Standard:

DUT Type: Model: Additional Model(s): Test Device Serial No.: Audio Band Magnetic Testing (T-Coil) Certification CFR §20.19(b) ANSI C63.19-2011 285076 D01 HAC Guidance v05 285076 D02 T-Coil testing for CMRS IP v03 Portable Handset SM-A135U SM-A135U1, SM-A135U1/DS *Pre-Production Sample* [S/N: 11208]

C63.19-2011 HAC Category: T3 (SIGNAL TO NOISE CATEGORY)

Note: This revised Test Report (S/N: 1M2112270166-16-R2.A3L) supersedes and replaces the previously issued test report on the same subject device for the same type of testing as indicated. Please discard or destroy the previously issued test report(s) and dispose of it accordingly.

This wireless portable device has been shown to be hearing-aid compatible under the above rated category, specified in ANSI/IEEE Std. C63.19-2011 and has been tested in accordance with the specified measurement procedures. Test results reported herein relate only to the item(s) tested. Hearing-Aid Compatibility is based on the assumption that all production units will be designed electrically identical to the device tested in this report. North American Bands only.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

Randy Ortanez President

FCC ID: A3LSMA135U		HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dage 1 of 90
1M2112270166-16-R2.A3L	1/11/2022 - 1/21/2022	Portable Handset		Page 1 of 80
© 2022 PCTEST				REV 3.5.M

1.	INTRODUCTION	3
2.	DUT DESCRIPTION	4
3.	ANSI C63.19-2011 PERFORMANCE CATEGORIES	6
4.	METHOD OF MEASUREMENT	8
5.	VOLTE TEST SYSTEM SETUP AND DUT CONFIGURATION	. 18
6.	VOWIFI TEST SYSTEM SETUP AND DUT CONFIGURATION	. 22
7.	OTT VOIP TEST SYSTEM AND DUT CONFIGURATION	. 25
8.	FCC 3G MEASUREMENTS	. 28
9.	T-COIL TEST SUMMARY	. 29
10.	MEASUREMENT UNCERTAINTY	. 41
11.	EQUIPMENT LIST	. 42
12.	TEST DATA	. 43
13.	CALIBRATION CERTIFICATES	. 68
14.	CONCLUSION	. 75
15.	REFERENCES	. 76
16.	TEST SETUP PHOTOGRAPHS	. 78

FCC ID: A3LSMA135U	PCTEST* Froud to be part of @ element	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dage 2 of 90
1M2112270166-16-R2.A3L	1/11/2022 - 1/21/2022	Portable Handset		Page 2 of 80
© 2022 PCTEST				REV 3.5.M

1. INTRODUCTION

On July 10, 2003, the Federal Communications Commission (FCC) adopted new rules requiring wireless manufacturers and service providers to provide digital wireless phones that are compatible with hearing aids. The FCC has modified the exemption for wireless phones under the Hearing Aid Compatibility Act of 1998 (HAC Act) in WT Docket 01-309 RM-8658¹ to extend the benefits of wireless telecommunications to individuals with hearing disabilities. These benefits encompass business, social and emergency communications, which increase the value of the wireless network for everyone. An estimated more than 10% of the population in the United States show signs of hearing impairment and of that fraction, almost 80% use hearing aids. Approximately 500 million people worldwide and 30 million people in the United States suffer from hearing loss.

Compatibility Tests Involved:

The standard calls for wireless communications devices to be measured for:

- RF Electric-field emissions
- T-coil mode, magnetic-signal strength in the audio band
- T-coil mode, magnetic-signal frequency response through the audio band
- T-coil mode, magnetic-signal and noise articulation index

The hearing aid must be measured for:

- RF immunity in microphone mode
- RF immunity in T-coil mode

In the following tests and results, this report includes the evaluation for a wireless communications device.

Figure 1-1 Hearing Aid in-vitu

¹ FCC Rule & Order, WT Docket 01-309 RM-8658

FCC ID: A3LSMA135U		HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dage 2 of 90
1M2112270166-16-R2.A3L	1/11/2022 - 1/21/2022	Portable Handset		Page 3 of 80
© 2022 PCTEST		•		REV 3.5.M

2. DUT DESCRIPTION

FCC ID:	A3LSMA135U
Applicant:	Samsung Electronics Co., Ltd.
	129, Samsung-ro, Maetan dong,
	Yeongtong-gu, Suwon-si
	Gyeonggi-do 16677, Korea
Model:	SM-A135U
Additional Model(s):	SM-A135U1, SM-A135U1/DS
Serial Number:	11208
HW Version:	REV1.0
SW Version:	A135USQE0AVA5
Antenna:	Internal Antenna
DUT Type:	Portable Handset

I. LTE Band Selection

This device supports LTE capabilities with overlapping transmission frequency ranges. When the supported frequency range of an LTE band falls completely within an LTE band with a larger transmission frequency range, both LTE bands have the same target power (or the band with the larger transmission frequency range has a higher target power), and both LTE bands share the same transmission path and signal characteristics, hearing-aid compatibility compliance was only assessed for the band with the larger transmission frequency transmission frequency range.

FCC ID: A3LSMA135U	PCTEST* Proud to be part of @ element	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dage 4 of 90
1M2112270166-16-R2.A3L	1/11/2022 - 1/21/2022	Portable Handset		Page 4 of 80
© 2022 PCTEST		·		REV 3.5.M

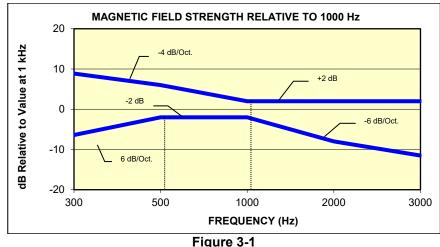
8/18/2020

Table 2-1					
A3LSMA135U HAC Air Interfaces					

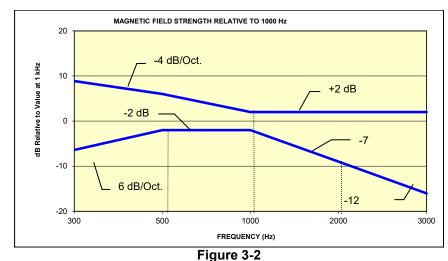
Air-Interface	Band (MHz)	Туре Transport	HAC Tested	Simultaneous But Not Tested	Name of Voice Service	Audio Codec Evaluated	
GSM	850 1900	vo	Yes	Yes: WIFI or BT	CMRS Voice ¹	EFR	
	GPRS/EDGE	VD	Yes	Yes: WIFI or BT	Google Duo ²	OPUS	
	850						
UMTS	1700	VD	Yes	Yes: WIFI or BT	CMRS Voice ¹	NB AMR, WB AMR	
UIVITS	1900						
	HSPA	VD	Yes	Yes: WIFI or BT	Google Duo ²	OPUS	
	680 (B71)		Yes ³				
	700 (B12)						
	780 (B13)						
	790 (B14)	790 (B14)					
	850 (B5)						
LTE (FDD)	850 (B26)	VD		Yes: WIFI or BT	VoLTE ¹ , Google Duo ²	VoLTE: NB AMR, WB AMR, EVS	
	1700 (B4)	VD	Yes	Tes. WIFI OF BT	VOLIE, GOOgle Duo	Google Duo: OPUS	
	1700 (B66)						
	1900 (B2)						
	1900 (B25)						
	2300 (B30)						
	2500 (B7)						
LTE (TDD)	2600 (B41)	VD Yes	Yes	Yes: WIFI or BT	VoLTE ¹ , Google Duo ²	VoLTE: NB AMR, WB AMR, EVS	
	2600 (B38)	VD	res	Tes. WIFI OF BI	VOLTE , GOOgle Duo	Google Duo: OPUS	
	2450						
	5200 (U-NII 1)						
WIFI	5300 (U-NII 2A)	VD	Yes	Yes: GSM, UMTS, or LTE	VoWIFI ² , Google Duo ²	VoWIFI: NB AMR, WB AMR, EVS Google Duo: OPUS	
	5500 (U-NII 2C)						
	5800 (U-NII 3)						
BT	2450	DT	No	Yes: GSM, UMTS, or LTE	N/A	N/A	
Type Transport Notes: V0 = Voice Only 1. Reference level in accordance with 7.4.2.1 of ANSI C63.19-2011 and July 2012 C63 VoLTE Interpretation. D = Digital Data - Not intended for Voice Services 2. Reference level is -20dBm0 in accordance with FCC KDB 285076 D02 VD = CMRS and/or IP Voice over Data Transport 3. LTE B71, while outside the scope of ANSI C63.19 and FCC HAC regulations, was additionally tested according to the existing HAC procedures with currently available test equipment.							

FCC ID: A3LSMA135U		HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager	
Filename:	Test Dates:	DUT Type:		Dama 5 of 00	
1M2112270166-16-R2.A3L	1/11/2022 - 1/21/2022	Portable Handset		Page 5 of 80	
© 2022 PCTEST		·		REV 3.5.M	

3. ANSI C63.19-2011 PERFORMANCE CATEGORIES


I. MAGNETIC COUPLING

Axial and Radial Field Intensity


All orientations of the magnetic field, in the axial and radial position along the measurement plane shall be \geq -18 dB(A/m) at 1 kHz in a 1/3 octave band filter per §8.3.1.

Frequency Response

The frequency response of the axial component of the magnetic field shall follow the response curve specified in EIA RS-504-1983, over the frequency range 300 Hz - 3000 Hz per §8.3.2.

Magnetic field frequency response for Wireless Devices with an axial field ≤-15 dB(A/m) at 1 kHz

Magnetic Field frequency response for wireless devices with an axial field that exceeds -15 dB(A/m) at 1 kHz

FCC ID: A3LSMA135U		HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Demo 6 of 90
1M2112270166-16-R2.A3L	1/11/2022 - 1/21/2022	Portable Handset		Page 6 of 80
© 2022 PCTEST				REV 3.5.M

Signal Quality

The table below provides the signal quality requirement for the intended audio magnetic signal from a wireless device. Only the RF immunity of the hearing aid is measured in T-coil mode. It is assumed that a hearing aid can have no immunity to an interference signal in the audio band, which is the intended reception band for this mode. The only criterion that can be measured is the RF immunity in T-coil mode. This is measured using the same procedure as the audio coupling mode at the same levels.

The signal quality of the axial and radial components of the magnetic field was used to determine the T-coil mode category.

Category	Telephone RF Parameters			
	Wireless Device Signal Quality [(Signal + Noise)-to-noise ratio in dB]			
T1	0 to 10 dB			
T2	10 to 20 dB			
Т3	20 to 30 dB			
T4	> 30 dB			
Table 3-1 Magnetic Coupling Parameters				

Note: The FCC limit for SNNR is 20dB and the test data margins will indicate a margin from the FCC limit for compliance.

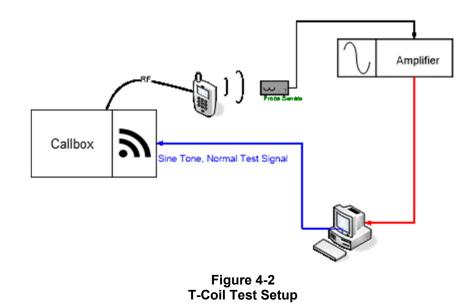
FCC ID: A3LSMA135U		HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dage 7 of 90
1M2112270166-16-R2.A3L	1/11/2022 - 1/21/2022	Portable Handset		Page 7 of 80
© 2022 PCTEST				REV 3.5.M

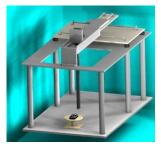
^{© 2022} PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

4. METHOD OF MEASUREMENT

I. Test Setup

The equipment was connected as shown in an RF-shielded chamber:


Figure 4-1 Validation Setup with Helmholtz Coil

FCC ID: A3LSMA135U		HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dage 9 of 90
1M2112270166-16-R2.A3L	1/11/2022 - 1/21/2022	Portable Handset		Page 8 of 80
© 2022 PCTEST				REV 3.5.M

II. Scanning Mechanism

Manufacturer:	TEM
Accuracy:	± 0.83 cm/meter
Minimum Step Size:	0.1 mm
Maximum speed	6.1 cm/sec
Line Voltage:	115 VAC
Line Frequency:	60 Hz
Material Composite:	Delrin (Acetal)
Data Control:	Parallel Port
Dynamic Range (X-Y-Z):	45 x 31.75 x 47 cm
Dimensions:	36" x 25" x 38"
Operating Area:	36" x 49" x 55"
Reflections:	< -20 dB (in anechoic chamber)

Figure 4-3 RF Near-Field Scanner

III. 3GPP2 Normal Test Signal (Speech)

Manufacturer:	3GPP2 (TIA 1042 §3.3.1)
	Modified-IRS weighted, multi-talker speech signal, 4 Male and 4
Stimulus Type:	Female speakers (alternating)
Single Sample Duration:	51.62 seconds
Activity Level:	77.4%
-	

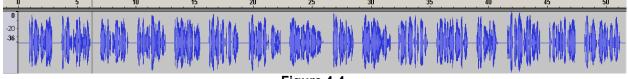
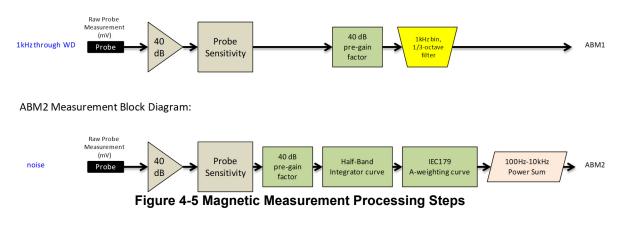



Figure 4-4 Temporal Characteristic of Normal Test Signal

FCC ID: A3LSMA135U		HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Daga 0 of 90
1M2112270166-16-R2.A3L	1/11/2022 - 1/21/2022	Portable Handset		Page 9 of 80
© 2022 PCTEST				REV 3.5.M

ABM1 Measurement Block Diagram:

IV. Test Procedure

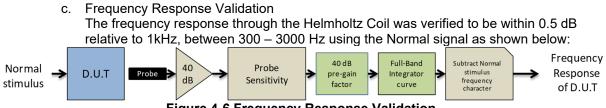
- 1. Ambient Noise Check per C63.19 §7.3.1
 - a. Ambient interference was monitored using a Real-Time Analyzer between 100-10,000 Hz with 1/3 octave filtering.
 - b. "A-weighting" and Half-Band Integration was applied to the measurements.
 - c. Since this measurement was measured in the same method as ABM2 measurements, this level was verified to be more than 10 dB below the lowest measurement signal (which is the highest ABM2 measurement for a T4 WD). Therefore the maximum noise level for a T4 WD with an ABM1 = -18 dBA/m is:

- 2. Measurement System Validation (See Figure 4-1)
 - a. The measurement system including the probe, pre-amplifier and acquisition system were validated as an entire system to ensure the reliability of test measurements.
 - b. ABM1 Validation

The magnetic field at the center of the Helmholtz coil is given by the equation (per C63.19 Annex D.10.1):

$$H_{c} = \frac{NI}{r\sqrt{1.25^{3}}} = \frac{N(\frac{V}{R})}{r\sqrt{1.25^{3}}}$$

Where H_c = magnetic field strength in amperes per meter N = number of turns per coil


For Helmholtz Coil SN: SBI 1052, N=20; r=0.13m; R=10.193Ω and using V=29mV:

$$H_{c} = \frac{20 \cdot (\frac{0.029}{10.193})}{0.13 \cdot \sqrt{1.25^{3}}} = 0.316 \, A \,/\, m \approx -10 \, dB \, (A \,/\, m)$$

Therefore a pure tone of 1kHz was applied into the coils such that 29mV was observed across the resistor. The voltmeter used for measurement was verified to be capable of measurements in the audio band range. This theoretically generates an expected field of -10 dB(A/m) in the center of the Helmholtz coil which was used to validate the probe measurement at -10dB(A/m). This was verified to be within \pm 0.5 dB of the -10dB(A/m) value (see Page 39).

FCC ID: A3LSMA135U	PCTEST Proud to be part of (® element	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager	
Filename:	Test Dates:	DUT Type:		Dere 10 of 90	
1M2112270166-16-R2.A3L	1/11/2022 - 1/21/2022	Portable Handset		Page 10 of 80	
© 2022 PCTEST	•			REV 3.5.M	

8/18/2020

Figure 4-6 Frequency Response Validation

d. ABM2 Measurement Validation

WD noise measurements are filtered with A-weighting and Half-Band Integration over a frequency range of 100Hz - 10kHz to process ABM2 measurements. Below is the verification of the system processing A-weighting and Half-Band integration between system input to output within 0.5 dB of the theoretical result:

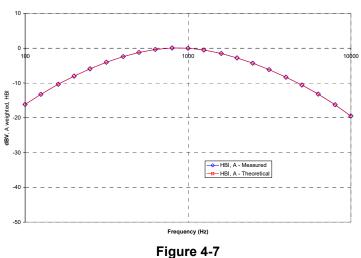
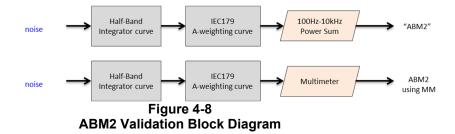

ABM2 Frequency Response Validation				
	HBI, A -	HBI, A -		
f (Hz)	Measured	Theoretical	dB Var.	
	(dB re 1kHz)	(dB re 1kHz)		
100	-16.180	-16.170	-0.010	
125	-13.257	-13.250	-0.007	
160	-10.347	-10.340	-0.007	
200	-8.017	-8.010	-0.007	
250	-5.925	-5.920	-0.005	
315	-4.045	-4.040	-0.005	
400	-2.405	-2.400	-0.005	
500	-1.212	-1.210	-0.002	
630	-0.349	-0.350	0.001	
800	0.071	0.070	0.001	
1000	0.000	0.000	0.000	
1250	-0.503	-0.500	-0.003	
1600	-1.513	-1.510	-0.003	
2000	-2.778	-2.780	0.002	
2500	-4.316	-4.320	0.004	
3150	-6.166	-6.170	0.004	
4000	-8.322	-8.330	0.008	
5000	-10.573	-10.590	0.017	
6300	-13.178	-13.200	0.022	
8000	-16.241	-16.270	0.029	
10000	-19.495	-19.520	0.025	

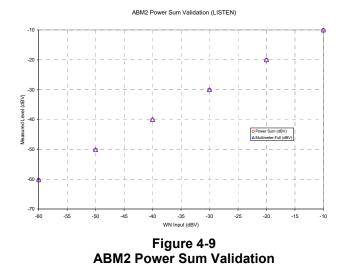
Table 4-1 \/_!:d_t:

FCC ID: A3LSMA135U		HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dage 11 of 90
1M2112270166-16-R2.A3L	1/11/2022 - 1/21/2022	Portable Handset		Page 11 of 80
© 2022 PCTEST				REV 3.5.M

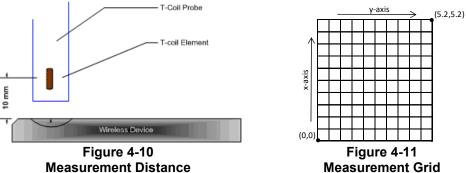

8/18/2020

ABM2 Frequency Response Validation (LISTEN)

ABM2 Frequency Response Validation


The ABM2 result is a power sum from 100Hz to 10kHz with half-band integration and Aweighting. To verify the power sum measurement, a power sum over the full band was measured and verified to track with the source level (See Figure 4-8). Therefore the setup in this step was used to verify the power sum post-processing for ABM2 measurements. See below block diagram:

The power summed output results for a known input were compared to the multi-meter results to verify any deviation in the post-processing implemented with the power-sum.


Table 4-2 ABM2 Power Sum Validation					
WN Input (dBV)	Power Sum (dBV)	Multimeter-Full (dBV)	Dev (dB)		
-60	-60.36	-60.2	0.16		
-50	-50.19	-50.13	0.06		
-40	-40.14	-40.03	0.11		
-30	-30.13	-30.01	0.12		
-20	-20.12	-20	0.12		
-10	-10.14	-10	0.14		

FCC ID: A3LSMA135U		HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dage 12 of 90
1M2112270166-16-R2.A3L	1/11/2022 - 1/21/2022	Portable Handset		Page 12 of 80
© 2022 PCTEST				REV 3.5.M

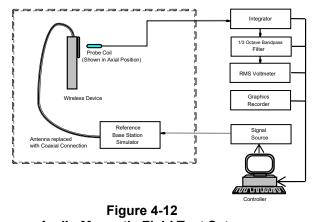
3. Measurement Test Setup

- a. Fine scan above the WD (TEM)
 - i. A multitone signal was applied to the handset such that the phone acoustic output was stable within 1dB over the probe settling time and with the acoustic output level at the C63.19 specified levels (below). The measurement step size was in 2 mm increments at a distance of 10 mm between the surface of the wireless device as shown below (note that in Figure 4-11, the grid is not to scale but merely a graphical representation of the coordinate system in use):

- ii. After scanning, the planar field maximum point was determined. The position of the probe was moved to this location to setup the test using the SoundCheck system.
- iii. These steps were repeated for all T-coil orientations (axial and radial) per Figure 4-13 after a T-coil orientation was fully measured with the SoundCheck system. b. Speech Signal Setup to Base Station Simulator
 - - i. C63.19 Table 7-1 states audio reference input levels for various technologies:

Standard	Technology	Input Level (dBm0)
TIA/EIA/IS-2000	CDMA	-18
J-STD-007	GSM (217)	-16
T1/T1P1/3GPP	UMTS (WCDMA)	-16
iDEN TM	TDMA (22 and 11 Hz)	-18

FCC ID: A3LSMA135U	PCTEST* Froud to be part of @ element	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dega 12 of 90
1M2112270166-16-R2.A3L	1/11/2022 - 1/21/2022	Portable Handset		Page 13 of 80
© 2022 PCTEST		· ·		REV 3.5.M


8/18/2020

- ii. See Section 5 and 6 for more information regarding CMW500 audio level settings for Voice Over LTE (VoLTE) and Voice Over WIFI (VoWIFI) testing.
- iii. See Section 7 for more information regarding audio level settings for Over-The-Top (OTT) Voice Over IP (VoIP) Testing.
- c. Real-Time Analyzer (RTA)
 - i. The Real-Time Analyzer was configured to analyze measurements using 1/3 Octave band weighted filtering.
- d. WD Radio Configuration Selection
 - i. The device was chosen to be tested in the worst-case ABM2 condition (See Section 8 for more information regarding worst-case configurations for UMTS. LTE configuration information can be found in Section 5 and 7. WIFI configuration information can be found in Section 6 and 7.)
 - ii. Supported GSM vocoders were investigated for the worst-case ABM2 condition. GSM-EFR was deemed the worst-case condition for the GSM air interface.
- 4. Signal Quality Data Analysis
 - a. Narrow-band Magnetic Intensity
 - i. The standard specifies a 1kHz 1/3 octave band minimum field intensity for a sine tone. The ABM1 measurements were evaluated at 1kHz with 1/3 octave band filtering over an averaged period of 10 seconds.
 - b. Frequency Response
 - i. The appropriate frequency response curve was measured to curves in Figure 3-1 or Figure 3-2 between 300 3000 Hz using digital linear averaging (limit lines chosen according to measurement found in step 4a). A linear average over 3x the length of the artificial voice signal (3x sampling) was performed. A 10 second delay was configured in the measurement process of the stimulus to ensure handset vocoder latency effects and echo cancellation devices (if any) were appropriately stabilized during measurements.
 - ii. The appropriate post-processing was applied according to the system processing chain illustrated in Figure 4-6. All R10 frequencies were plotted with respect to 0dB at 1kHz value and aligned with respect to the EIA-504 mask.
 - iii. The margin is represented by the closest measured data point on the curve to the EIA-504 limit lines, in dB.
 - c. Signal Quality Index
 - i. Ensuring the WD was at maximum RF power, maximum volume, backlight off, display on, maximum contrast setting, keypad lights on (when possible) with no audio signal through the vocoder, the WD was measured over at least 100 Hz 10,000 Hz, maximized over 5 seconds with a 50ms sample time for the ABM2 measurement (5 second time period is used in noise measurements under standards such as IEEE 269, etc.).
 - ii. After applying half-band integration and A-weighting to the result, a power sum was applied over each 1/3 octave bandwidth frequency for an ABM2 value.
 - iii. This result was subtracted from the ABM1 result in step a, to obtain the Signal Quality.

FCC ID: A3LSMA135U		HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager	
Filename:	Test Dates:	DUT Type:		Dama 44 of 00	
1M2112270166-16-R2.A3L	1/11/2022 - 1/21/2022	Portable Handset		Page 14 of 80	
© 2022 PCTEST				REV 3.5.M	

^{© 2022} PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

V. Test Setup

Audio Magnetic Field Test Setup

Environmental conditions such as temperature and relative humidity are monitored to ensure there are no impacts on system specifications. Proper voltage and power line frequency conditions are maintained with three phase power sources. Environmental noise and reflections are monitored through system checks.

VI. Deviation from C63.19 Test Procedure

Non-conducted RF connection due to inaccessible RF ports.

VII. Air Interface Technologies Tested

All air interfaces which support voice capabilities over a managed CMRS or pre-installed OTT VoIP applications were tested for T-coil unless otherwise noted. See Table 2-1 for more details regarding which modes were tested.

FCC ID: A3LSMA135U		HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dama 45 of 00
1M2112270166-16-R2.A3L	1/11/2022 - 1/21/2022	Portable Handset		Page 15 of 80
© 2022 PCTEST		•		REV 3.5.M

VIII. Wireless Device Channels and Frequencies

1. 2G/3G Modes

The frequencies listed in the table below are those that lie in the center of the bands used for cellular telephony. Low, middle and high channels were tested in each band for FCC compliance evaluation to ensure the maximum emission is captured across the entire band. Only middle channels were evaluated for data modes.

Center Channels and Frequencies							
Test frequencies & associated o	hannels						
Channel Frequency (MHz)							
Cellular 850							
190 (GSM)	836.60						
4183 (UMTS)	836.60						
AWS 1750							
1412 (UMTS)	1730.40						
PCS 1900							
661 (GSM)	1880						
9400 (UMTS)	1880						

Table 4-3
Center Channels and Frequencies

2. 4G (LTE) Modes

The middle channel for every band and bandwidth combination was tested for each probe orientation. The band and bandwidth combination from each probe orientation resulting in the worst-case SNNR was additionally tested using low and high channels for that band and bandwidth combination. Low-mid and mid-high channels were additionally tested for LTE TDD. The middle channels and supported bandwidths from the worst-case bands according to Tables 7-5 and 7-6 were additionally evaluated with OTT VoIP for each probe orientation. See Tables 9-4 to 9-14 as well as 9-21 and 9-22 for LTE bandwidths and channels.

3. WIFI

The middle channel for each IEEE 802.11 standard was tested for each probe orientation. The 2.4GHz IEEE 802.11 standard from each probe orientation resulting in the worst-case SNNR was additionally tested using low and high channels. The 5GHz IEEE 802.11 standard from each probe orientation resulting in the worst-case SNNR was additionally tested on higher U-NII bands as well as applicable low and high channels. See Tables 9-15 to 9-18 as well as 9-23 to 9-26 for WIFI standards and channels.

FCC ID: A3LSMA135U		HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dage 16 of 90
1M2112270166-16-R2.A3L	1/11/2022 - 1/21/2022	Portable Handset		Page 16 of 80
© 2022 PCTEST				REV 3.5.M

IX. Test Flow

The flow diagram below was followed (From C63.19):

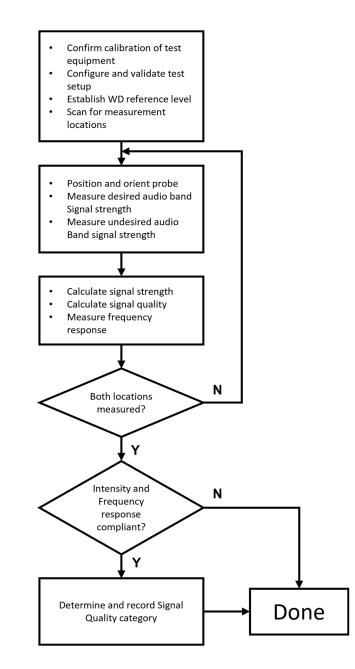


Figure 4-13 C63.19 T-Coil Signal Test Process

FCC ID: A3LSMA135U		HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Demo 17 of 90
1M2112270166-16-R2.A3L	1/11/2022 - 1/21/2022	Portable Handset		Page 17 of 80
© 2022 PCTEST		•		REV 3.5.M

8/18/2020

5. VOLTE TEST SYSTEM SETUP AND DUT CONFIGURATION

I. Test System Setup for VoLTE over IMS T-coil Testing

1. Equipment Setup

The general test setup used for VoLTE over IMS is shown below. The callbox used when performing VoLTE over IMS T-coil measurements is a CMW500. The Data Application Unit (DAU) of the CMW500 was used to simulate the IP Multimedia Subsystem (IMS) server.

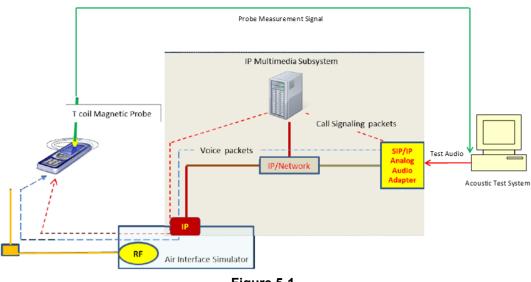


Figure 5-1 Test Setup for VoLTE over IMS T-Coil Measurements

2. Audio Level Settings

According to the July 2012 interpretations by the C63 Committee regarding the appropriate audio levels to be used for VoLTE over IMS T-coil testing, -16dBm0 shall be used for the normal speech input level^{*}. The CMW500 base station simulator was manually configured to ensure that the settings for speech input and full scale levels resulted in the -16dBm0 speech input level to the DUT for the VoLTE over IMS connection.

* http://c63.org/documents/misc/posting/new_interpretations.htm

FCC ID: A3LSMA135U	PCTEST* Proud to be part of @ elefected	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Demo 19 of 90
1M2112270166-16-R2.A3L	1/11/2022 - 1/21/2022	Portable Handset		Page 18 of 80
© 2022 PCTEST		· ·		REV 3.5.M

II. DUT Configuration for VoLTE over IMS T-coil Testing

1. Radio Configuration

An investigation was performed to determine the modulation and RB configuration to be used for testing. The effects of modulation and RB configuration were found to be independent of band and bandwidth; therefore, only one band and bandwidth were used for this investigation. 16QAM, 1RB, 50%RB offset was used for the testing as the worst-case configuration for the handset. See below table for SNNR comparison between different radio configurations:

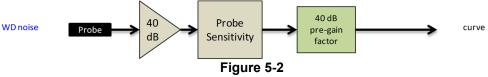
Band	Frequency [MHz]	Channel	Bandwidth [MHz]	Modulation	RB Size	RB Offset	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	SNNR [dB]				
66	1745.0	132322	20	QPSK	1	0	5.15	-39.50	44.65				
66	1745.0	132322	20	QPSK	1	50	5.58	-37.97	43.55				
66	1745.0	132322	20	QPSK	1	99	5.36	-39.64	45.00				
66	1745.0	132322	20	QPSK	50	0	5.37	-47.06	52.43				
66	1745.0	132322	20	QPSK	50	25	5.17	-47.25	52.42				
66	1745.0	132322	20	QPSK	50	50	5.57	-47.28	52.85				
66	1745.0	132322	20	QPSK	100	0	5.52	-47.19	52.71				
66	1745.0	132322	20	16QAM	1	0	5.43	-31.80	37.23				
66	1745.0	132322	20	16QAM	QAM 1 50 5.31		5.31	-30.34	35.65				
66	1745.0	132322	20	16QAM	1	99	5.23	-32.48	37.71				
66	1745.0	132322	20	16QAM	50	0	5.47	-44.58	50.05				
66	1745.0	132322	20	16QAM	50	25	5.25	-44.40	49.65				
66	1745.0	132322	20	16QAM	50	50	5.41	-44.70	50.11				
66	1745.0	132322	20	16QAM	100	0	5.39	-45.41	50.80				
66	1745.0	132322	20	64QAM	1	0	5.57	-33.42	38.99				
66	1745.0	132322	20	64QAM	1	50	5.18	-32.04	37.22				
66	1745.0	132322	20	64QAM	1	99	5.61	-34.00	39.61				
66	1745.0	132322	20	64QAM	50	0	5.55	-44.41	49.96				
66	1745.0	132322	20	64QAM	50	25	5.37	-45.95	51.32				
66	1745.0	132322	20	64QAM	50	50	5.43	-46.08	51.51				
66	1745.0	132322	20	64QAM	100	0	5.37	-47.04	52.41				

Table 5-1 VoLTE over IMS SNNR by Radio Configuration

2. Codec Configuration

An investigation was performed to determine the audio codec configuration to be used for testing. The effects of codec configuration were found to be independent of radio configuration; therefore, only one radio configuration was used for this investigation. The WB AMR 6.60kbps setting was used for the audio codec on the CMW500 for VoLTE over IMS T-coil testing. See below table for comparisons between different codecs and codec data rates:

	Table 5-2									
AN	AMR Codec Investigation – VoLTE over IMS									


Codec Setting:	WB AMR 23.85kbps	WB AMR 6.60kbps	NB AMR 12.2kbps	NB AMR 4.75kbps	Orientation Band / BW		Channel				
ABM1 (dBA/m)	6.03	5.16	5.56	5.52							
ABM2 (dBA/m)	-32.22	-32.08	-32.28	-32.29	Avial	Band 66	132322				
Frequency Response	Pass	Pass	Pass	Pass	Axiai	Axial 20MHz					
S+N/N (dB)	38.25	37.24	37.84	37.81							

FCC ID: A3LSMA135U		HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 19 of 80
1M2112270166-16-R2.A3L © 2022 PCTEST	1/11/2022 - 1/21/2022	Portable Handset		REV 3.5.M 8/18/2020
© 2022 PCTEST				

	EVS Codec investigation - Volite over IMS													
Codec Setting:	EVS Primary SWB 24.4kbps	EVS Primary SWB 9.6kbps	EVS Primary WB 24.4kbps	EVS Primary WB 5.9kbps	EVS Primary NB 24.4kbps	EVS Primary NB 5.9kbps	Orientation	Band / BW	Channel					
ABM1 (dBA/m)	6.86	6.99	5.49	5.91	5.32	6.15		Avial Band 66 20MHz	132322					
ABM2 (dBA/m)	-32.37	-32.75	-32.65	-31.88	-32.10	-32.40	Avial							
Frequency Response	Pass	Pass	Pass	Pass	Pass	Pass	Add		132322					
S+N/N (dB)	39.23	39.74	38.14	37.79	37.42	38.55								

Table 5-3 EVS Codec Investigation - VoLTE over IMS

- Mute on; Backlight off; Max Volume; Max Contrast
- TPC = "Max Power"

Audio Band Magnetic Curve Measurement Block Diagram

3. LTE TDD Uplink-Downlink Configuration Investigation for VoLTE over IMS

An investigation was performed to determine the worst-case Uplink-Downlink configuration for VoLTE over IMS T-Coil testing.

Per 3GPP TS 36.211, the total frame length for each TDD radio frame of length $T_f = 307200 \cdot T_s = 10 \text{ ms}$, where T_s is a number of time units equal to $1/(15000 \times 2048)$ seconds. Additionally, each radio frame consists of 10 subframes, each of length $30720 \cdot T_s = 1 \text{ ms}$, and subframes can be designated as uplink (U), downlink (D), or special subframe (S), depending on the Uplink-Downlink configuration as indicated in Table 4.2-2 of 3GPP TS 36.211. In the transmission duty factor calculation, the special subframe configuration with the shortest UpPTS duration within the special subframe is used and will be applied for measurement. From 3GPP TS 36.211 Table 4.2-1, the shortest UpPTS is 2192 \cdot Ts which occurs in the normal cyclic prefix and special subframe configuration 4.

See table below outlining the calculated transmission duty cycles for each Uplink-Downlink configuration:

Uplink-downlink configuration	Downlink-to-Uplink Switch-point periodicity		Subframe number								Calculated Transmission	
eegu uuoo		0	1	2	3	4	5	6	7	8	9	Duty Cycle (%)
0	5 ms	D	S	U	U	U	D	S	U	U	U	61.4%
1	5 ms	D	S	U	U	D	D	S	U	U	D	41.4%
2	5 ms	D	S	U	D	D	D	S	U	D	D	21.4%
3	10 ms	D	S	U	U	U	D	D	D	D	D	30.7%
4	10 ms	D	S	U	U	D	D	D	D	D	D	20.7%
5	10 ms	D	S	U	D	D	D	D	D	D	D	10.7%
6	5 ms	D	S	U	U	U	D	S	U	U	D	51.4%

Table 5-4 Uplink-Downlink Configurations for Type 2 Frame Structures

FCC ID: A3LSMA135U		HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dega 20 of 90
1M2112270166-16-R2.A3L	1/11/2022 - 1/21/2022	Portable Handset		Page 20 of 80
© 2022 PCTEST		-		REV 3.5.M

a. Power Class 3 Uplink-Downlink Configuration Investigation

Power Class 3 was evaluated with the following radio configuration: channel 40620, 20MHz BW, 16QAM, 1RB, 50%RB offset. For Power Class 3, all configurations (0-6) are supported. The configuration which resulted in the worst SNNR was used for full testing. Uplink-Downlink configuration 2 was used as the worst-case configuration for Power Class 3 VoLTE over IMS T-Coil testing. See table below for the SNNR comparison between each Uplink-Downlink configuration:

Frequency [MHz]	Channel	Bandwidth [MHz]	Modulation	RB Size	RB Offset	UL-DL Configuration	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	SNNR [dB]
2593.0	40620	20	16QAM	1	50	0	1.10	-26.79	27.89
2593.0	40620	20	16QAM	1	50	1	1.04	-27.01	28.05
2593.0	40620	20	16QAM	1	50	2	1.20	-25.86	27.06
2593.0	40620	20	16QAM	1	50	3	0.95	-28.67	29.62
2593.0	40620	20	16QAM	1	50	4	1.00	-28.84	29.84
2593.0	40620	20	16QAM	1	50	5	1.01	-28.57	29.58
2593.0	40620	20	16QAM	1	50	6	1.15	-26.08	27.23

Table 5-5
Power Class 3 VoLTE over IMS SNNR by UL-DL Configuration

b. Power Class 2 Uplink-Downlink Configuration Investigation

Power Class 2 was evaluated with the following radio configuration: channel 40620, 20MHz BW, 16QAM, 1RB, 50%RB offset. For Power Class 2, configurations 1-5 are supported. The configuration which resulted in the worst SNNR was used for full testing. Uplink-Downlink configuration 1 was used as the worst-case configuration for Power Class 2 VoLTE over IMS T-Coil testing. See table below for the SNNR comparison between each Uplink-Downlink configuration:

Frequency [MHz]	Channel	Bandwidth [MHz]	Modulation	RB Size	RB Offset	UL-DL Configuration	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	SNNR [dB]	
2593.0	40620	20	16QAM	1	50	1	0.87	-23.70	24.57	
2593.0	40620	20	16QAM	1	50	2	0.83	-24.37	25.20	
2593.0	40620	20	16QAM	1	50	3	0.95	-26.92	27.87	
2593.0	40620	20	16QAM	1	50	4	1.29	-27.41	28.70	
2593.0	40620	20	16QAM	1	50	5	1.21	-26.35	27.56	

Table 5-6 Power Class 2 VoLTE over IMS SNNR by UL-DL Configuration

Note: LTE TDD B41 Power Class 2 only supports UL-DL configurations 1-5, not 0 or 6.

c. Conclusion

Per the investigations above, UL-DL Configuration 2 was used to evaluate Power Class 3 VoLTE over IMS. UL-DL Configuration 1 was used to evaluate Power Class 2 VoLTE over IMS.

FCC ID: A3LSMA135U	PCTEST* Proud to be part of @witteneed	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Demo 21 of 20
1M2112270166-16-R2.A3L	1/11/2022 - 1/21/2022	Portable Handset		Page 21 of 80
© 2022 PCTEST				REV 3.5.M

6. VOWIFI TEST SYSTEM SETUP AND DUT CONFIGURATION

I. Test System Setup for VoWIFI over IMS T-coil Testing

1. Equipment Setup

The general test setup used for VoWIFI over IMS, or CMRS WIFI Calling, is shown below. The callbox used when performing VoWIFI over IMS T-coil measurements is a CMW500. The Data Application Unit (DAU) of the CMW500 was used to simulate the IP Multimedia Subsystem (IMS) server.

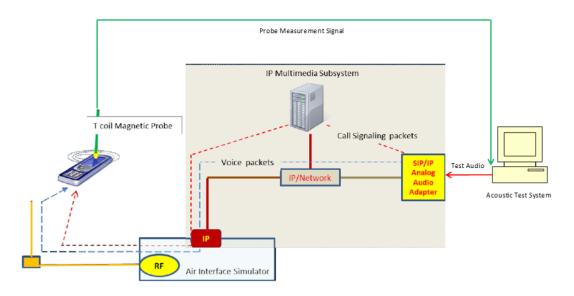


Figure 6-1 Test Setup for VoWIFI over IMS T-Coil Measurements

2. Audio Level Settings

According to KDB 285076 D02 released by the FCC OET regarding the appropriate audio levels to be used for VoWIFI over IMS T-Coil testing, -20dBm0 shall be used for the normal speech input level². The CMW500 base station simulator was manually configured to ensure that the settings for speech input and full scale levels resulted in the -20dBm0 speech input level to the DUT for the VoWIFI over IMS connection.

² FCC Office of Engineering and Technology KDB, "285076 D02 T-Coil Testing for CMRS IP v03," September 13, 2017

FCC ID: A3LSMA135U		HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Demo 22 of 90
1M2112270166-16-R2.A3L	1/11/2022 - 1/21/2022	Portable Handset		Page 22 of 80
© 2022 PCTEST				REV 3.5.M

^{© 2022} PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopyin and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembl of contents thereof, please contact INFO@PCTEST.COM.

II. DUT Configuration for VoWIFI over IMS T-coil Testing

1. Radio Configuration

An investigation was performed on all applicable data rates and modulations to determine the radio configuration to be used for testing. See tables below for SNNR comparison between radio configurations in each IEEE 802.11 standard:

Mode	Channel	Modulation	Data Rate [Mbps]	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	SNNR [dB]
IEEE 802.11b	6	DSSS	1	3.02	-24.39	27.41
IEEE 802.11b	6	DSSS	2	3.05	-27.33	30.38
IEEE 802.11b	6	CCK	5.5	3.09	-27.97	31.06
IEEE 802.11b	6	CCK	11	2.95	-28.51	31.46

Table 6-1 IEEE 802.11b SNNR by Radio Configuration

 Table 6-2

 IEEE 802.11g/a SNNR by Radio Configuration

Mode	Channel	Modulation	Data Rate [Mbps]	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	SNNR [dB]		
IEEE 802.11g	6	BPSK	6	3.15	-30.12	33.27		
IEEE 802.11g	6	BPSK	9	3.12	-32.52	35.64		
IEEE 802.11g	6	QPSK	12	3.14	-32.62	35.76		
IEEE 802.11g	6	QPSK	18	3.19	-32.21	35.40		
IEEE 802.11g	6	16QAM	24	3.22	-32.54	35.76		
IEEE 802.11g	6	16QAM	36	3.29	-30.32	33.61		
IEEE 802.11g	6	64QAM	48	3.18	-33.08	36.26		
IEEE 802.11g	6	64QAM	54	3.20	-32.97	36.17		

 Table 6-3

 IEEE 802.11n/ac 20MHz BW SNNR by Radio Configuration

Mode	Bandwidth [MHz]	Channel	Modulation	MCS Index	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	SNNR [dB]
IEEE 802.11n	20	40	BPSK	0	3.40	-31.30	34.70
IEEE 802.11n	20	40	QPSK	1	3.29	-32.20	35.49
IEEE 802.11n	20	40	QPSK	2	3.30	-29.96	33.26
IEEE 802.11n	20	40	16QAM	3	3.37	-31.26	34.63
IEEE 802.11n	20	40	16QAM	4	3.31	-31.80	35.11
IEEE 802.11n	20	40	64QAM	5	3.32	-31.54	34.86
IEEE 802.11n	20	40	64QAM	6	3.36	-32.80	36.16
IEEE 802.11n	20	40	64QAM	7	3.30	-30.21	33.51
IEEE 802.11ac	20	40	256QAM	8	3.31	-32.94	36.25

FCC ID: A3LSMA135U		HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Demo 22 of 20
1M2112270166-16-R2.A3L	1/11/2022 - 1/21/2022	Portable Handset		Page 23 of 80
© 2022 PCTEST		· ·		REV 3.5.M

Mode	Bandwidth [MHz]	Channel	Modulation	MCS Index	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	SNNR [dB]		
IEEE 802.11n	40	38	BPSK	0	3.19	-29.73	32.92		
IEEE 802.11n	40	38	QPSK	1	3.29	-29.75	33.04		
IEEE 802.11n	40	38	QPSK	2	3.19	-31.00	34.19		
IEEE 802.11n	40	38	16QAM	3	3.25	-31.22	34.47		
IEEE 802.11n	40	38	16QAM	4	3.19	-32.26	35.45		
IEEE 802.11n	40	38	64QAM	5	3.19	-31.99	35.18		
IEEE 802.11n	40	38	64QAM	6	3.15	-32.54	35.69		
IEEE 802.11n	40	38	64QAM	7	3.22	-32.08	35.30		
IEEE 802.11ac	40	38	256QAM	8	3.19	-31.80	34.99		
IEEE 802.11ac	40	38	256QAM	9	3.19	-32.69	35.88		

Table 6-4 IEEE 802.11n/ac 40MHz BW SNNR by Radio Configuration

2. Codec Configuration

An investigation was performed to determine the audio codec configuration to be used for testing. The effects of codec configuration were found to be independent of radio configuration; therefore, only one radio configuration was used for this investigation. The EVS Primary SWB 24.4kbps setting was used for the audio codec on the CMW500 for VoWIFI over IMS T-coil testing. See below table for comparisons between different codecs and codec data rates:

Table 6-5 AMR Codec Investigation – VoWIFI over IMS

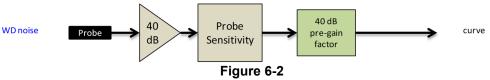

Codec Setting:	WB AMR 23.85kbps	WB AMR 6.60kbps	NB AMR 12.2kbps	NB AMR 4.75kbps	Orientation	Band	Standard	Channel
ABM1 (dBA/m)	6.59	5.20	7.56	7.44	_	2.4GHz	IEEE 802.11b	6
ABM2 (dBA/m)	-23.66	-23.57	-23.98	-24.06	Avial			
Frequency Response	Pass	Pass	Pass	Pass	Axial			
S+N/N (dB)	30.25	28.77	31.54	31.50				

 Table 6-6

 EVS Codec Investigation – VoWIFI over IMS

	_ · · · · · · · · · · · · · · · · · · ·												
Codec Setting:	EVS Primary SWB 24.4kbps	EVS Primary SWB 9.6kbps	EVS Primary WB 24.4kbps	EVS Primary WB 5.9kbps	EVS Primary NB 24.4kbps	EVS Primary NB 5.9kbps	Orientation	Band	Standard	Channel			
ABM1 (dBA/m)	3.04	2.98	5.74	6.41	7.22	6.04							
ABM2 (dBA/m)	-24.22	-24.45	-23.93	-23.21	-23.87	-23.34	Avial	Axial 2.4GHz	IEEE 802.11b				
Frequency Response	Pass	Pass	Pass	Pass	Pass	Pass	Axiai			6			
S+N/N (dB)	27.26	27.43	29.67	29.62	31.09	29.38							

• Mute on; Backlight off; Max Volume; Max Contrast

Audio Band Magnetic Curve Measurement Block Diagram

FCC ID: A3LSMA135U		HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dega 24 of 90
1M2112270166-16-R2.A3L	1/11/2022 - 1/21/2022	Portable Handset		Page 24 of 80
© 2022 PCTEST				REV 3.5.M

7. OTT VOIP TEST SYSTEM AND DUT CONFIGURATION

I. Test System Setup for OTT VoIP T-Coil Testing

1. OTT VoIP Application

Google Duo is a pre-installed application on the DUT which allows for VoIP calls in a held-to-ear scenario. Duo uses the OPUS audio codec and supports a bitrate range of 6kb/s to 75kb/s. All air interfaces capable of a data connection were evaluated with Google Duo.

2. Equipment Setup

A CMW500 callbox was used to perform OTT VoIP T-coil measurements. The Data Application Unit (DAU) of the CMW500 was connected to the internet and allowed for an IP data connection on the DUT. An auxiliary VoIP unit was used to initiate an OTT VoIP call to the DUT. The auxiliary VoIP unit allowed for the configuration and monitoring of the OTT VoIP codec bitrate during a call. Both high and low bitrate settings were evaluated in to determine the worst-case configuration.

3. Audio Level Settings

According to KDB 285076 D02, the average speech level of -20dBm0 shall be used for protocols not specifically listed in Table 7.1 of ANSI C63.19-2011 or the ANSI C63.19-2011 VoLTE interpretation³. The auxiliary VoIP unit allowed for monitoring the signal input level to ensure that the settings for speech input and full scale levels resulted in the -20dBm0 speech input level to the DUT for the OTT VoIP call.

Note: The green highlighted text is approved by FCC under the TCB PAG Re-Use Policy 388624 D01 IV. D. for T-Coil Testing for WI-FI calling and Google Duo.

II. DUT Configuration for OTT VoIP T-Coil Testing

1. Codec Configuration

An investigation was performed for each applicable data mode to determine the audio codec configuration to be used for testing. The effects of codec configuration were found to be independent of radio configuration; therefore, only one radio configuration for each applicable data mode was used for these investigations. The 75kbps codec setting was used for the audio codec on the auxiliary VoIP unit for OTT VoIP T-Coil testing. See below tables for comparisons between codec data rates on all applicable data modes:

Codec Investigation – OTT VoIP (EDGE)								
Codec Setting:	75kbps	6kbps	Orientation	Channel				
ABM1 (dBA/m)) 11.03 11.10							
ABM2 (dBA/m)	-14.61	-14.60	- Axial	400				
Frequency Response	Pass	Pass		190				
S+N/N (dB)	25.64	25.70						

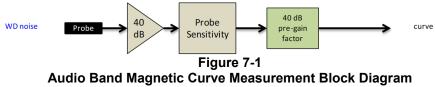
Table 7-1 Codec Investigation – OTT VoIP (EDGE)

³ FCC Office of Engineering and Technology KDB, "285076 D02 T-Coil Testing for CMRS IP v03," September 13, 2017

FCC ID: A3LSMA135U	PCTEST Proud to be part of @ element	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dage 25 of 90
1M2112270166-16-R2.A3L	1/11/2022 - 1/21/2022	Portable Handset		Page 25 of 80
© 2022 PCTEST				REV 3.5.M

Codec In	Codec Investigation – OTT VoIP (HSPA)								
Codec Setting:	75kbps	6kbps	Orientation	Channel					
ABM1 (dBA/m)	11.51	11.38	– Axial						
ABM2 (dBA/m)	-47.48	-47.90		1440					
Frequency Response	Pass	Pass		1412					
S+N/N (dB)	58.99	59.28							

Table 7-2


Table 7-3 Codec Investigation – OTT VoIP (LTE)

Codec Setting:	75kbps	6kbps	Orientation	Band / BW	Channel
ABM1 (dBA/m)	11.46	11.01			
ABM2 (dBA/m)	-28.80	-29.50	Axial	Band 66 20MHz	132322
Frequency Response	Pass	Pass	Axiai		
S+N/N (dB)	40.26	40.51			

Table 7-4 Codec Investigation – OTT VoIP (WIFI)

Codec Setting:	75kbps	6kbps	Orientation	Band	Standard	Channel					
ABM1 (dBA/m)	11.32	11.16		2.4GHz	IEEE 802.11b	6					
ABM2 (dBA/m)	-22.62	-22.80	Axial								
Frequency Response	Pass	Pass	Axia								
S+N/N (dB)	33.94	33.96	3.96								

- .
- Mute on; Backlight off; Max Volume; Max Contrast Radio Configurations can be found in Section 9.II.G .

FCC ID: A3LSMA135U		HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:	DUT Type:	
1M2112270166-16-R2.A3L	1/11/2022 - 1/21/2022	Portable Handset		Page 26 of 80
© 2022 PCTEST		· ·		REV 3.5.M

2. Radio Configuration for OTT VoIP (LTE)

An investigation was performed to determine the worst-case LTE FDD band to be used for OTT VoIP testing. LTE FDD Band 30 was used for the testing as the worst-case configuration for the handset. See below table for SNNR comparison between different LTE FDD bands:

			•••••	/ .					
Band	Frequency [MHz]	Channel	Bandwidth [MHz]	Modulation	RB Size	RB Offset	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	SNNR [dB]
71	680.5	133297	20	16QAM	1	50	11.46	-32.93	44.39
12	707.5	23095	10	16QAM	1	25	11.48	-34.19	45.67
13	782.0	23230	10	16QAM	1	25	11.48	-33.69	45.17
26	831.5	26865	15	16QAM	1	36	11.47	-32.51	43.98
66	1745.0	132322	20	16QAM	1	50	11.43	-28.83	40.26
25	1882.5	26365	20	16QAM	1	50	11.46	-30.02	41.48
30	2310.0	27710	10	16QAM	1	25	11.50	-21.67	33.17
7	2535.0	21100	20	16QAM	1	50	11.46	-26.03	37.49

Table 7-5 OTT VoIP (LTE FDD) SNNR by LTE Band

An investigation was performed to determine the worst-case LTE TDD band to be used for OTT VoIP testing. LTE TDD Band 41 (PC2) was used for the testing as the worst-case configuration for the handset. See below table for SNNR comparison between different LTE TDD bands:

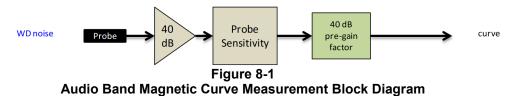
OTT VoIP (LTE TDD) SNNR by LTE Band									
Band	Frequency [MHz]	Channel	Bandwidth [MHz]	Modulation	RB Size	RB Offset	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	SNNR [dB]
41 (PC3)	2593.0	40620	20	16QAM	1	50	11.72	-14.42	26.14
41 (PC2)	2593.0	40620	20	16QAM	1	50	11.54	-12.39	23.93

Т	Table 7-6						
OTT VoIP (LTE T	DD) SNNR b	y LTE Band					

FCC ID: A3LSMA135U		HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dage 27 of 90
1M2112270166-16-R2.A3L	1/11/2022 - 1/21/2022	Portable Handset		Page 27 of 80
© 2022 PCTEST		·		REV 3.5.M

8. FCC 3G MEASUREMENTS

I. UMTS Test Configurations


WB AMR 6.60kbps, 13.6kbps SRB was used for the testing as the worst-case configuration for the handset.

Codec Setting:	WB AMR 23.85kbps	WB AMR 6.60kbps	NB AMR 12.2kbps	NB AMR 4.75kbps	Orientation	Channel
ABM1 (dBA/m)	1.63	0.76	1.04	1.05		
ABM2 (dBA/m)	-50.63	-50.47	-51.23	-51.08	Axial	9400
Frequency Response	Pass	Pass	Pass	Pass	Axiai	9400
S+N/N (dB)	52.26	51.23	52.27	52.13		

Table 8-1 Codec Investigation - UMTS

Mute on; Backlight off; Max Volume; Max Contrast

TPC="All 1s"

FCC ID: A3LSMA135U		HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dage 20 of 90
1M2112270166-16-R2.A3L	1/11/2022 - 1/21/2022	Portable Handset		Page 28 of 80
© 2022 PCTEST	•	÷		REV 3.5.M

9. T-COIL TEST SUMMARY

Section Cellular PCS Cellular PCS Cellular	8.3 Axial PASS PASS PASS	3.2 Radial NA NA	8.3 Axial PASS	3.1 Radial		3.4	(dB)	Rating	
Cellular PCS Cellular PCS	PASS PASS	NA		Radial					
PCS Cellular PCS	PASS		DACC	. to alor	Axial	Radial			
Cellular PCS		NIA	PA33	PASS	PASS	PASS	-3.33	Т3	
PCS	PASS	NA	PASS	PASS	PASS	PASS	0.00		
		NA	PASS	PASS	PASS	PASS	-5.33	Т3	
Celluler	PASS	NA	PASS	PASS	PASS	PASS	0.00		
Celiular	PASS	NA	PASS	PASS	PASS	PASS			
AWS	PASS	NA	PASS	PASS	PASS	PASS	-19.44	Τ4	
PCS	PASS	NA	PASS	PASS	PASS	PASS			
Cellular	PASS	NA	PASS	PASS	PASS	PASS			
AWS	PASS	NA	PASS	PASS	PASS	PASS	-26.98	Τ4	
PCS	PASS	NA	PASS	PASS	PASS	PASS			
B71	PASS	NA	PASS	PASS	PASS	PASS			
B12	PASS	NA	PASS	PASS	PASS	PASS			
B13	PASS	NA	PASS	PASS	PASS	PASS			
B14	PASS	NA	PASS	PASS	PASS	PASS			
B26	PASS	NA	PASS	PASS	PASS	PASS	-5.61	Т3	
B66	PASS	NA	PASS	PASS	PASS	PASS		13	
B25	PASS	NA	PASS	PASS	PASS	PASS			
B30	PASS	NA	PASS	PASS	PASS	PASS			
B7	PASS	NA	PASS	PASS	PASS	PASS			
B30	PASS	NA	PASS	PASS	PASS	PASS	-11.36	Τ4	
B41 (PC3)	PASS	NA	PASS	PASS	PASS	PASS	2.00	To	
B41 (PC2)	PASS	NA	PASS	PASS	PASS	PASS	-3.06	Т3	
B41 (PC2)	PASS	NA	PASS	PASS	PASS	PASS	-3.05	Т3	
IEEE 802.11b	PASS	NA	PASS	PASS	PASS	PASS			
IEEE 802.11g	PASS	NA	PASS	PASS	PASS	PASS	-4.46	Т3	
IEEE 802.11n	PASS	NA	PASS	PASS	PASS	PASS			
IEEE 802.11b	PASS	NA	PASS	PASS	PASS	PASS			
IEEE 802.11g	PASS	NA	PASS	PASS	PASS	PASS	-10.66	Τ4	
IEEE 802.11n	PASS	NA	PASS	PASS	PASS	PASS			
IEEE 802.11a	PASS	NA	PASS	PASS	PASS	PASS			
IEEE 802.11n	PASS	NA	PASS	PASS	PASS	PASS	-8.89	Т3	
IEEE 802.11ac	PASS	NA	PASS	PASS	PASS	PASS			
IEEE 802.11a	PASS	NA	PASS	PASS	PASS	PASS			
IEEE 802.11n	PASS	NA	PASS	PASS	PASS	PASS	-17.00	Т4	
IEEE 802.11ac	PASS	NA	PASS	PASS	PASS	PASS			
	EST°		•	•	REPORT		SAMSUNG	Approved I Quality Mar	
	s: DUT Type:					Page 29 of			
	PCS Cellular AWS PCS B71 B12 B13 B14 B26 B66 B25 B30 B7 B30 B41 (PC3) B41 (PC2) B41 (PC2) B41 (PC2) B41 (PC2) IEEE 802.11b IEEE 802.11b IEEE 802.11b IEEE 802.11b IEEE 802.11a IEEE 802.11a	PCSPASSCellularPASSAWVSPASSPCSPASSBT1PASSB12PASSB13PASSB14PASSB26PASSB26PASSB30PASSB31PASSB30PASSB41 (PC3)PASSB41 (PC2)PASSB41 (PC2)PASSB41 (PC2)PASSIEEE 802.11bPASSIEEE 802.11bPASSIEEE 802.11bPASSIEEE 802.11bPASSIEEE 802.11bPASSIEEE 802.11bPASSIEEE 802.11aPASSIEEE 802.11aPASSIEE	PCS PASS NA Cellular PASS NA AWS PASS NA PCS PASS NA PCS PASS NA B71 PASS NA B12 PASS NA B13 PASS NA B13 PASS NA B13 PASS NA B13 PASS NA B14 PASS NA B26 PASS NA B26 PASS NA B27 PASS NA B30 PASS NA B30 PASS NA B41 (PC3) PASS NA B41 (PC2) PASS NA IEEE 802.11b PASS NA IEEE 802.11b PASS NA IEEE 802.11a PASS NA IEEE 802.11a PASS NA IEEE 802.11a PASS NA	PCS PASS NA PASS Cellular PASS NA PASS AWS PASS NA PASS BCS PASS NA PASS BT1 PASS NA PASS B12 PASS NA PASS B13 PASS NA PASS B14 PASS NA PASS B26 PASS NA PASS B30 PASS NA PASS B41 (PC2) PASS NA PASS B41 (PC2) PASS NA PASS IEEE 802.11n PASS NA PASS IEEE 802.11n PASS NA PASS IEEE 802.11n PASS NA PASS IE	PCS PASS NA PASS PASS Cellular PASS NA PASS PASS AWS PASS NA PASS PASS AWS PASS NA PASS PASS B71 PASS NA PASS PASS B12 PASS NA PASS PASS B13 PASS NA PASS PASS B14 PASS NA PASS PASS B26 PASS NA PASS PASS B30 PASS NA PASS PASS B31 PASS NA PASS PASS B41 (PC2) PASS NA PASS PASS B41 (PC2) PASS NA PASS PASS	PCSPASSNAPASSPASSPASSPASSCellularPASSNAPASSPASSPASSAWSPASSNAPASSPASSPASSPCSPASSNAPASSPASSPASSB71PASSNAPASSPASSPASSB12PASSNAPASSPASSPASSB13PASSNAPASSPASSPASSB14PASSNAPASSPASSPASSB26PASSNAPASSPASSPASSB26PASSNAPASSPASSPASSB30PASSNAPASSPASSPASSB30PASSNAPASSPASSPASSB30PASSNAPASSPASSPASSB41 (PC2)PASSNAPASSPASSPASSB41 (PC2)PASSNAPASSPASSPASSB41 (PC2)PASSNAPASSPASSPASSB41 (PC2)PASSNAPASSPASSPASSB41 (PC2)PASSNAPASSPASSPASSB41 (PC2)PASSNAPASSPASSPASSB41 (PC2)PASSNAPASSPASSPASSB41 (PC2)PASSNAPASSPASSPASSEEE 802.110PASSNAPASSPASSPASSEEE 802.111PASSNAPASSPASSPASSEEE 802.111	PCS PASS NA PASS PA	PCS PASS NA PASS PA	

Table 9-1Consolidated Tabled Results

© 2022 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

8/18/2020

I. Raw Handset Data

Mode	Orientation	Channel	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates					
		128	10.85	-13.18		1.52	24.03	20.00	-4.03	Т3						
	Axial	190	11.07	-13.10	-60.80	1.50	24.17	20.00	-4.17	Т3	2.0, 1.6					
GSM850		251	10.65	-12.68		1.39	23.33	20.00	-3.33	Т3						
G310050		128	0.95	-31.05			32.00	20.00	-12.00	T4						
	Radial	190	0.96	-31.41	-60.58	N/A	32.37	20.00	-12.37	T4	2.4, 0.2					
		251	1.03	-31.73			32.76	20.00	-12.76	T4						
		512	11.12	-14.35		1.49	25.47	20.00	-5.47	Т3						
	Axial	661	10.81	-13.99	-60.80	1.48	24.80	20.00	-4.80	Т3	2.0, 1.6					
CSM1000		810	11.04	-13.74		1.41	24.78	20.00	-4.78	Т3						
GSM1900		512	1.00	-32.23			33.23	20.00	-13.23	T4						
	Radial	661	1.02	-32.00	-60.58	-60.58	-60.58	-60.58	-60.58	-60.58	N/A	33.02	20.00	-13.02	T4	2.2, 2.4
		810	1.00	-31.73			32.73	20.00	-12.73	T4						

Table 9-2 Raw Data Results for GSM

Table 9-3 Raw Data Results for UMTS

Mode	Orientation	Channel	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
		4132	0.85	-50.65		1.79	51.50	20.00	-31.50	T4	
	Axial	4183	0.53	-50.00	-60.80	1.77	50.53	20.00	-30.53	T4	2.0, 1.6
UMTS V		4233	0.86	-50.25		1.69	51.11	20.00	-31.11	T4	
		4132	-6.54	-46.79			40.25	20.00	-20.25	T4	
	Radial	4183	-6.58	-46.53	-60.58	N/A	39.95	20.00	-19.95	T4	2.2, 2.4
		4233	-6.66	-46.28			39.62	20.00	-19.62	T4	
		1312	0.88	-50.95		1.88	51.83	20.00	-31.83	T4	
	Axial	1412	0.96	-50.48	-60.80	1.75	51.44	20.00	-31.44	T4	2.0, 1.6
UMTS IV		1513	0.87	-51.26		1.79	52.13	20.00	-32.13	T4	
0111011		1312	-6.63	-46.09			39.46	20.00	-19.46	T4	
	Radial	1412	-6.78	-46.55	-60.58	N/A	39.77	20.00	-19.77	T4	2.2, 2.4
		1513	-6.78	-46.22			39.44	20.00	-19.44	T4	
		9262	0.63	-50.50		1.90	51.13	20.00	-31.13	T4	
	Axial	9400	0.78	-50.29	-60.80	1.65	51.07	20.00	-31.07	T4	2.0, 1.6
UMTS II		9538	0.93	-49.46		1.99	50.39	20.00	-30.39	T4	
011131		9262	-6.54	-46.23	-60.58		39.69	20.00	-19.69	T4	
	Radial	9400	-6.56	-46.70		N/A	40.14	20.00	-20.14	T4	2.2, 2.4
		9538	-6.37	-45.92			39.55	20.00	-19.55	T4	

Table 9-4 Raw Data Results for LTE B71

Mode	Orientation	Bandwidth	Channel	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
		20MHz	133297	5.39	-35.63		1.54	41.02	20.00	-21.02	T4	
	Axial	15MHz	133297	5.42	-35.81	-59.85	1.73	41.23	20.00	-21.23	T4	2.0, 1.6
	Axiai	10MHz	133297	5.27	-35.77	-59.65	1.59	41.04	20.00	-21.04	T4	2.0, 1.0
LTE Band 71		5MHz	133297	5.51	-35.14		1.63	40.65	20.00	-20.65	T4	
LIE Banu / I		20MHz	133297	-1.74	-38.71			36.97	20.00	-16.97	T4	
	Radial	15MHz	133297	-1.73	-38.88	-60.58	N/A	37.15	20.00	-17.15	T4	2.2. 2.4
	Naulai	10MHz	133297	-1.48	-39.19	-00.56	IVA	37.71	20.00	-17.71	T4	2.2, 2.4
		5MHz	133297	-1.79	-38.65			36.86	20.00	-16.86	T4	

FCC ID: A3LSMA135U		HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dage 20 of 20
1M2112270166-16-R2.A3L	1/11/2022 - 1/21/2022	Portable Handset		Page 30 of 80
© 2022 PCTEST		•		REV 3.5.M

REV 3.5.M 8/18/2020

Mode	Orientation	Bandwidth	Channel	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
		10MHz	23095	5.36	-36.47		1.65	41.83	20.00	-21.83	T4	
	Axial	5MHz	23095	5.17	-35.05	-59.85	1.80	40.22	20.00	-20.22	T4	2.0, 1.6
	Axiai	3MHz	23095	5.52	-35.94	-39.65	1.57	41.46	20.00	-21.46	T4	2.0, 1.0
LTE Band 12		1.4MHz	23095	5.45	-35.70		1.66	41.15	20.00	-21.15	T4	
		10MHz	23095	-1.68	-38.58			36.90	20.00	-16.90	T4	
	Radial	5MHz	23095	-1.41	-38.22	-60.58	N/A	36.81	20.00	-16.81	T4	2.2. 2.4
	Naulai	3MHz	23095	-1.48	-38.86	-00.36	INA	37.38	20.00	-17.38	T4	2.2, 2.4
		1.4MHz	23095	-1.65	-37.14			35.49	20.00	-15.49	T4	

Table 9-5 Raw Data Results for LTE B12

Table 9-6 Raw Data Results for LTE B13

	Mode	Orientation	Bandwidth	Channel	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
		Axial	10MHz	23230	5.46	-36.00	-59.85	1.67	41.46	20.00	-21.46	T4	2.0, 1.6
	TE Band 13		5MHz	23230	5.35	-35.63	-59.65	1.64	40.98	20.00	-20.98	T4	2.0, 1.0
ľ	TE Danu 15	Radial	10MHz	23230	-1.47	-38.83	-60.58	N/A	37.36	20.00	-17.36	T4	2.2, 2.4
		Radiai	5MHz	23230	-1.70	-38.54	-00.56	INA	36.84	20.00	-16.84	T4	2.2, 2.4

Table 9-7Raw Data Results for LTE B14

Mode	Orientation	Bandwidth	Channel	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
	Axial	10MHz	23330	5.31	-34.98	-59.85	1.67	40.29	20.00	-20.29	T4	2.0, 1.6
LTE Band 14		5MHz	23330	5.45	-34.47	-59.65	1.56	39.92	20.00	-19.92	T4	2.0, 1.0
LIE Danu 14	Radial	10MHz	23330	-1.85	-37.84	-60.58	N/A	35.99	20.00	-15.99	T4	2.2. 2.4
	Radiai	5MHz	23330	-1.60	-37.47	-00.56	INA	35.87	20.00	-15.87	T4	2.2, 2.4

Table 9-8Raw Data Results for LTE B26

Mode	Orientation	Bandwidth	Channel	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
		15MHz	26865	5.55	-34.53		1.73	40.08	20.00	-20.08	T4	
		10MHz	26865	5.23	-34.84		1.74	40.07	20.00	-20.07	T4	
	Axial	5MHz	26865	4.98	-34.00	-59.85	1.57	38.98	20.00	-18.98	T4	2.0, 1.6
		3MHz	26865	5.53	-34.31		1.60	39.84	20.00	-19.84	T4	
LTE Band 26		1.4MHz	26865	5.28	-34.52		1.63	39.80	20.00	-19.80	T4	
LTE Danu 20		15MHz	26865	-1.79	-37.36			35.57	20.00	-15.57	T4	
		10MHz	26865	-1.74	-37.88			36.14	20.00	-16.14	T4	
	Radial	5MHz	26865	-1.58	-37.36	-60.58	N/A	35.78	20.00	-15.78	T4	2.2, 2.4
		3MHz	26865	-1.76	-37.82			36.06	20.00	-16.06	T4	
		1.4MHz	26865	-1.49	-38.22			36.73	20.00	-16.73	T4	

Table 9-9 Raw Data Results for LTE B66

						counto no												
Mode	Orientation	Bandwidth	Channel	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates						
		20MHz	132322	5.47	-31.92		1.53	37.39	20.00	-17.39	T4							
		15MHz	132322	5.56	-31.34		1.58	36.90	20.00	-16.90	T4							
	Axial	10MHz	132322	5.46	-31.45	-59.85	1.66	36.91	20.00	-16.91	T4	2.0, 1.6						
	Axiai	5MHz	132322	5.27	-31.00	-59.65	1.72	36.27	20.00	-16.27	T4	2.0, 1.0						
		3MHz	132322	5.08	-30.60	-	1.62	35.68	20.00	-15.68	T4							
LTE Band 66		1.4MHz	132322	5.24	-31.26	-	1.60	36.50	20.00	-16.50	T4							
LIE Danu 60		20MHz	132322	-1.75	-34.53			32.78	20.00	-12.78	T4							
		15MHz	132322	-1.64	-34.96			33.32	20.00	-13.32	T4							
	Radial	10MHz	132322	-1.79	-35.11	-60.58	-60.58	-60.58	-60.58	-60.58	-60.58	-60.58	N/A	33.32	20.00	-13.32	T4	2.2. 2.4
		5MHz	132322	-1.79	-34.38								-60.58	-60.58	-60.58	IVA	32.59	20.00
		3MHz	132322	-1.43	-35.32	1		33.89	20.00	-13.89	T4							
		1.4MHz	132322	-1.92	-34.49	-		32.57	20.00	-12.57	T4							

FCC ID: A3LSMA135U	PCTEST* Proad to be part of @ element	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Demo 21 of 90
1M2112270166-16-R2.A3L	1/11/2022 - 1/21/2022	Portable Handset		Page 31 of 80
© 2022 PCTEST				REV 3.5.M

Table 9-10 Raw Data Results for LTE B25

Mode	Orientation	Bandwidth	Channel	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates	
		20MHz	26365	5.38	-32.01		1.67	37.39	20.00	-17.39	T4		
		15MHz	26365	5.58	-32.11		1.88	37.69	20.00	-17.69	T4		
	Asial	10MHz	26365	5.56	-32.29	-59.85	1.54	37.85	20.00	-17.85	T4	20.16	
	Axial -	5MHz	26365	5.50	-32.46	-59.65	1.88	37.96	20.00	-17.96	T4	2.0, 1.6	
		3MHz	26365	5.50	-32.32		1.66	37.82	20.00	-17.82	T4		
LTE Band 25		1.4MHz	26365	5.56	-32.11		1.64	37.67	20.00	-17.67	T4		
LIE Danu 25		20MHz	26365	-1.77	-35.73			33.96	20.00	-13.96	T4		
		15MHz	26365	-1.87	-35.42	42 94 74 -60.58 N//		33.55	20.00	-13.55	T4		
	Radial -	10MHz	26365	-1.66	-35.94		-60.58		34.28	20.00	-14.28	T4	
		5MHz	26365	-1.74	-35.74			-60.58 N/A	34.00	20.00	-14.00	T4	2.2, 2.4
		3MHz	26365	-2.20	-35.98			33.78	20.00	-13.78	T4	1	
		1.4MHz	26365	-1.81	-35.60	1		33.79	20.00	-13.79	T4	1	

Table 9-11 Raw Data Results for LTE B30

Mode	Orientation	Bandwidth	Channel	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011	Test Coordinates
	Axial	10MHz	27710	5.12	-20.49	-59.85	1.63	25.61	20.00	-5.61	Т3	2.0. 1.6
LTE Band 30		5MHz	27710	5.46	-20.78	-59.65	1.56	26.24	20.00	-6.24	T3	2.0, 1.0
LIE Band 30	Radial	10MHz	27710	-1.84	-29.15	-60.58	N/A	27.31	20.00	-7.31	T3	2.2. 2.4
	Radiai	5MHz	27710	-1.57	-28.98	-00.56	IVA	27.41	20.00	-7.41	T3	2.2, 2.4

Table 9-12Raw Data Results for LTE B7

								•				
Mode	Orientation	Bandwidth	Channel	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
		20MHz	21100	5.66	-27.39		1.57	33.05	20.00	-13.05	T4	
	Axial	15MHz	21100	5.17	-28.05	-59.85	1.69	33.22	20.00	-13.22	T4	2.0, 1.6
	Axiai	10MHz	21100	5.31	-27.79	-59.65	1.68	33.10	20.00	-13.10	T4	2.0, 1.0
LTE Band 7		5MHz	21100	5.40	-27.75		1.71	33.15	20.00	-13.15	T4	
LIE Danu /		20MHz	21100	-1.78	-33.46			31.68	20.00	-11.68	T4	
	Radial	15MHz	21100	-1.36	-33.75	-60.58	N/A	32.39	20.00	-12.39	T4	2.2, 2.4
	raulai	10MHz	21100	-1.75	-33.53	-00.56	IV/A	31.78	20.00	-11.78	T4	2.2, 2.4
		5MHz	21100	-1.55	-33.32			31.77	20.00	-11.77	T4	

Table 9-13Raw Data Results for LTE B41 Power Class 3

Mode	Orientation	Bandwidth	Channel	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
		20MHz	40620	0.92	-26.35		1.86	27.27	20.00	-7.27	T3	
	Axial	15MHz	40620	0.84	-26.26	-59.85	1.67	27.10	20.00	-7.10	Т3	2.8, 1.8
	Axiai	10MHz	40620	0.86	-26.50	-59.65	1.65	27.36	20.00	-7.36	Т3	2.0, 1.0
LTE Band 41		5MHz	40620	1.12	-26.82		1.73	27.94	20.00	-7.94	T3	
(PC3)		20MHz	40620	-4.36	-31.95			27.59	20.00	-7.59	Т3	
	Radial	15MHz	40620	-4.52	-32.73	-60.58	N/A	28.21	20.00	-8.21	Т3	2.2. 1.0
	Raulai	10MHz	40620	-4.63	-31.81	-00.56	INFA	27.18	20.00	-7.18	Т3	2.2, 1.0
		5MHz	40620	-4.66	-32.37			27.71	20.00	-7.71	Т3	

FCC ID: A3LSMA135U		HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Demo 22 of 90
1M2112270166-16-R2.A3L	1/11/2022 - 1/21/2022	Portable Handset		Page 32 of 80
© 2022 PCTEST				REV 3.5.M

8/18/2020

Mode	Orientation	Bandwidth	Channel	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
		20MHz	40620	0.92	-23.79		1.35	24.71	20.00	-4.71	Т3	
		15MHz	41490	0.65	-22.96		1.53	23.61	20.00	-3.61	T3	
		15MHz	41055	0.71	-22.95		1.37	23.66	20.00	-3.66	Т3	
	Axial	15MHz	40620	0.80	-23.36	-59.85	1.59	24.16	20.00	-4.16	Т3	2.8, 1.8
	-	15MHz	40185	1.08	-22.06	-59.65	1.46	23.14	20.00	-3.14	Т3	2.0, 1.0
		15MHz	39750	0.88	-24.67		1.52	25.55	20.00	-5.55	Т3	
		10MHz	40620	0.87	-23.65		1.65	24.52	20.00	-4.52	T3	
LTE Band 41		5MHz	40620	0.88	-24.01		1.72	24.89	20.00	-4.89	Т3	
(PC2)		20MHz	41490	-4.33	-27.39			23.06	20.00	-3.06	Т3	
		20MHz	41055	-4.57	-27.67			23.10	20.00	-3.10	Т3	
		20MHz	40620	-4.91	-28.86			23.95	20.00	-3.95	Т3	
	Padial	20MHz	40185	-4.65	-27.73	60.59	NIZA	23.08	20.00	-3.08	Т3	2.2, 1.0
	Radial	20MHz	39750	-4.50	-29.07	-60.58 N/A 8	IVA	24.57	20.00	-4.57	Т3	2.2, 1.0
		15MHz	40620	-4.52	-29.18		-		24.66	20.00	-4.66	Т3
	10MHz	40620	-4.53	-28.99					24.46	20.00	-4.46	Т3
		5MHz	40620	-4.77	-29.07			24.30	20.00	-4.30	T3	

Table 9-14Raw Data Results for LTE B41 Power Class 2

Table 9-15 Raw Data Results for 2.4GHz WIFI

Mode	Orientation	Channel	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
		1	3.15	-27.90		1.92	31.05	20.00	-11.05	T4	
	Axial	6	3.18	-24.56	-59.85	1.90	27.74	20.00	-7.74	Т3	2.0, 1.6
IEEE		11	3.13	-24.25		1.86	27.38	20.00	-7.38	Т3	
802.11b		1	-4.27	-28.73			24.46	20.00	-4.46	Т3	
	Radial	6	-4.30	-30.16	-60.58	N/A	25.86	20.00	-5.86	Т3	2.2, 2.4
		11	-4.30	-32.42			28.12	20.00	-8.12	Т3	
IEEE	Axial	6	3.24	-30.14	-59.85	1.93	33.38	20.00	-13.38	T4	2.0, 1.6
802.11g	Radial	6	-4.26	-35.12	-60.58	N/A	30.86	20.00	-10.86	T4	2.2, 2.4
IEEE	Axial	6	3.13	-31.43	-59.85	1.87	34.56	20.00	-14.56	T4	2.0, 1.6
802.11n	Radial	6	-4.24	-36.02	-60.58	N/A	31.78	20.00	-11.78	T4	2.2, 2.4

Table 9-16 Raw Data Results for 5GHz WIFI IEEE 802.11a

Mode	Orientation	Bandwidth	U-NII	Channel	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
		20MHz	1	40	3.12	-29.14		1.86	32.26	20.00	-12.26	T4	
		20MHz	2A	56	3.07	-29.09		1.95	32.16	20.00	-12.16	T4	
	Axial	20MHz	2C	120	3.08	-28.97	-59.85	1.86	32.05	20.00	-12.05	T4	2.0, 1.6
	Axidi	20MHz	3	149	3.14	-29.10	-59.65	1.88	32.24	20.00	-12.24	T4	2.0, 1.0
		20MHz	3	157	3.13	-28.63		1.94	31.76	20.00	-11.76	T4	
		20MHz	3	165	3.14	-28.52		1.91	31.66	20.00	-11.66	T4	
IEEE 802.11a													
		20MHz	1	40	-4.37	-34.08			29.71	20.00	-9.71	Т3	
		20MHz	2A	56	-4.36	-33.78			29.42	20.00	-9.42	Т3	
	Radial	20MHz	2C	120	-4.38	-35.53	-60.58	N/A	31.15	20.00	-11.15	T4	2.2, 2.4
	Naulai	20MHz	3	149	-4.29	-34.94	-00.58	INA	30.65	20.00	-10.65	T4	2.2, 2.4
		20MHz	3	157	-4.36	-33.25			28.89	20.00	-8.89	Т3	
		20MHz	3	165	-4.33	-33.57			29.24	20.00	-9.24	Т3	

Table 9-17Raw Data Results for 5GHz WIFI IEEE 802.11n

							••••••••••••••••••••••••••••••••••••••		••=				
Mode	Orientation	Bandwidth	U-NII	Channel	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
	Axial	40MHz	1	38	3.12	-30.76	-59.85	1.91	33.88	20.00	-13.88	T4	2.0, 1.6
IEEE	Axiai	20MHz	1	40	3.17	-30.58	-59.65	1.79	33.75	20.00	-13.75	T4	2.0, 1.0
802.11n													
002.1111	Radial	40MHz	1	38	-4.32	-35.45	-60.58	N/A	31.13	20.00	-11.13	T4	2.2, 2.4
	Naulai	20MHz	1	40	-4.29	-34.44	-00.58	INA	30.15	20.00	-10.15	T4	2.2, 2.4

FCC ID: A3LSMA135U		HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Demo 22 of 90
1M2112270166-16-R2.A3L	1/11/2022 - 1/21/2022	Portable Handset		Page 33 of 80
© 2022 PCTEST				REV 3.5.M

					incoun	101 0			JUZ. 1 10				
Mode	Orientation	Bandwidth	U-NII	Channel	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011	Test Coordinates
	Axial	40MHz	1	38	3.04	-30.75	-59.85	1.90	33.79	20.00	-13.79	T4	2.0. 1.6
	Axiai	20MHz	1	40	3.14	-30.91	-59.65	1.90	34.05	20.00	-14.05	T4	2.0, 1.0
IEEE 802.11ac													
002.1140	Radial	40MHz	1	38	-4.36	-35.68	-60.58	N/A	31.32	20.00	-11.32	T4	2.2. 2.4
	Nauidi	20MHz	1	40	-4.33	-34.66	-00.56	INVA	30.33	20.00	-10.33	T4	2.2, 2.4

Table 9-18Raw Data Results for 5GHz WIFI IEEE 802.11ac

Table 9-19 Raw Data Results for EDGE (OTT VoIP)

ſ							`		/			
	Mode	Orientation	Channel	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
	EDGE850	Axial	190	10.84	-14.49	-59.85	2.00	25.33	20.00	-5.33	Т3	2.0, 1.6
	EDGE000	Radial	190	4.23	-21.55	-60.58	N/A	25.78	20.00	-5.78	Т3	2.2, 2.4
	EDGE1900	Axial	661	11.75	-15.42	-59.85	2.00	27.17	20.00	-7.17	Т3	2.0, 1.6
	LDGL 1900	Radial	661	3.96	-22.59	-60.58	N/A	26.55	20.00	-6.55	Т3	2.2, 2.4

Table 9-20 Raw Data Results for HSPA (OTT VoIP)

			1.041	Batait	coulto ioi			/			
Mode	Orientation	Channel	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
HSPA V	Axial	4183	11.53	-48.39	-59.85	2.00	59.92	20.00	-39.92	T4	2.0, 1.6
NOFA V	Radial	4183	4.45	-42.92	-60.58	N/A	47.37	20.00	-27.37	T4	2.2, 2.4
HSPA IV	Axial	1412	11.46	-47.50	-59.85	2.00	58.96	20.00	-38.96	T4	2.0, 1.6
HOFAN	Radial	1412	4.46	-43.26	-60.58	N/A	47.72	20.00	-27.72	T4	2.2, 2.4
HSPA II	Axial	9400	11.48	-47.73	-59.85	2.00	59.21	20.00	-39.21	T4	2.0, 1.6
HOPAII	Radial	9400	4.47	-42.51	-60.58	N/A	46.98	20.00	-26.98	T4	2.2, 2.4

Table 9-21 Raw Data Results for LTE FDD B30 (OTT VoIP)

Mode	Orientation	Bandwidth	Channel	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates		
	Axial	10MHz	27710	11.42	-21.43	-59.85	2.00	32.85	20.00	-12.85	T4	2.0. 1.6		
	Axiai	5MHz	27710	11.36	-21.51	-59.65	2.00	32.87	20.00	-12.87	T4	2.0, 1.0		
LTE Band 30		10MHz	27710	4.12	-27.72	-60.58		31.84	20.00	-11.84	T4			
LIE Ballu 30	Radial –	5MHz	27735	4.10	-27.26		00.50	60.59	-60.58 N/A	31.36	20.00	-11.36	T4	2.2. 2.4
		5MHz	27710	4.09	-27.67		N/A	31.76	20.00	-11.76	T4	2.2, 2.4		
		5MHz	27685	4.11	-28.09			32.20	20.00	-12.20	T4			

FCC ID: A3LSMA135U		HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Demo 24 of 90
1M2112270166-16-R2.A3L	1/11/2022 - 1/21/2022	Portable Handset		Page 34 of 80
© 2022 PCTEST				REV 3.5.M

REV 3.5.M 8/18/2020

Mode	Orientation	Bandwidth	Channel	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates												
		20MHz	40620	11.68	-12.16		1.38	23.84	20.00	-3.84	Т3													
		15MHz	41490	11.68	-12.33		1.22	24.01	20.00	-4.01	Т3													
		15MHz	41055	11.67	-11.38		1.19	23.05	20.00	-3.05	Т3													
	Axial	15MHz	40620	11.35	-12.16	-59.85	1.44	23.51	20.00	-3.51	Т3	2.0, 1.6												
		15MHz	40185	11.68	-11.85		1.10	23.53	20.00	-3.53	Т3	2.0, 1.0												
		15MHz	39750	11.69	-12.58		1.52	24.27	20.00	-4.27	Т3													
		10MHz	40620	11.41	-12.46		1.44	23.87	20.00	-3.87	Т3													
LTE Band 41		5MHz	40620	11.62	-12.36		1.47	23.98	20.00	-3.98	Т3													
(PC2)		20MHz	40620	-3.62	-29.67			26.05	20.00	-6.05	Т3													
		15MHz	41490	-3.58	-29.90			26.32	20.00	-6.32	Т3													
		15MHz	41055	-3.56	-29.37	-				25.81	20.00	-5.81	Т3											
	Radial	15MHz	40620	-3.61	-29.25	60.59	N/A	25.64	20.00	-5.64	Т3	2.2, 1.0												
	Radiai	15MHz	40185	-3.57	-28.81	-60.58	-60.58	-60.58	-00.58	-00.58	-60.58	-60.58	-60.58	-60.58	-60.58	-60.58	-60.58	-60.58	INFA	25.24	20.00	-5.24	Т3	2.2, 1.0
		15MHz	39750	-3.57	-30.37			26.80	20.00	-6.80	Т3													
	-	10MHz	40620	-3.59	-30.01	-			26.42	20.00	-6.42	Т3												
		5MHz	40620	-3.56	-29.74			26.18	20.00	-6.18	T3													

Table 9-22 Raw Data Results for LTE TDD B41 (PC2) (OTT VoIP)

Table 9-23 Raw Data Results for 2.4GHz WIFI (OTT VoIP)

Mode	Orientation	Channel	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
		1	11.23	-23.73		2.00	34.96	20.00	-14.96	T4	
	Axial	6	11.29	-22.56	-59.85	2.00	33.85	20.00	-13.85	T4	2.0, 1.6
IEEE		11	11.20	-23.07		2.00	34.27	20.00	-14.27	T4	
802.11b	Radial	1	4.16	-28.31	-60.58		32.47	20.00	-12.47	T4	
		6	3.99	-26.85		N/A	30.84	20.00	-10.84	T4	2.2, 2.4
		11	4.02	-26.64			30.66	20.00	-10.66	T4	
IEEE	Axial	6	11.24	-29.47	-59.85	2.00	40.71	20.00	-20.71	T4	2.0, 1.6
802.11g	Radial	6	4.10	-30.09	-60.58	N/A	34.19	20.00	-14.19	T4	2.2, 2.4
IEEE	Axial	6	11.23	-31.12	-59.85	2.00	42.35	20.00	-22.35	T4	2.0, 1.6
802.11n	Radial	6	4.09	-35.50	-60.58	N/A	39.59	20.00	-19.59	T4	2.2, 2.4

 Table 9-24

 Raw Data Results for 5GHz WIFI IEEE 802.11a (OTT VoIP)

Mode	Orientation	Bandwidth	U-NII	Channel	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates
		20MHz	1	40	11.15	-28.35		2.00	39.50	20.00	-19.50	T4	
		20MHz	2A	52	11.40	-28.12		2.00	39.52	20.00	-19.52	T4	
	Axial	20MHz	2A	56	11.09	-27.74	-59.85	2.00	38.83	20.00	-18.83	T4	2.0, 1.6
	Axidi	20MHz	2A	64	11.42	-28.71	-39.63	2.00	40.13	20.00	-20.13	T4	2.0, 1.0
		20MHz	2C	120	11.16	-29.06		2.00	40.22	20.00	-20.22	T4	
IEEE		20MHz	3	157	11.15	-28.26		2.00	39.41	20.00	-19.41	T4	
802.11a													
002.114		20MHz	1	40	4.29	-33.06			37.35	20.00	-17.35	T4	
		20MHz	2A	52	4.46	-33.44			37.90	20.00	-17.90	T4	
	Padial	20MHz	2A	56	4.45	-32.55	60.59	N/A	37.00	20.00	-17.00	T4	2.2, 2.4
	Radial	20MHz	2A	64	4.48	-33.48	-60.58	INA	37.96	20.00	-17.96	T4	2.2, 2.4
		20MHz	2C	120	4.46	-33.91			38.37	20.00	-18.37	T4	
		20MHz	3	157	4.48	-34.18			38.66	20.00	-18.66	T4	

 Table 9-25

 Raw Data Results for 5GHz WIFI IEEE 802.11n (OTT VoIP)

	Mode	Orientation	Bandwidth	U-NII	Channel	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011	Test Coordinates	
		Axial -	40MHz	1	38	11.16	-29.50	-59.85	-29.50 50.85	2.00	40.66	20.00	-20.66	T4	2.0, 1.6
			20MHz	1	40	11.21	-29.90		2.00	41.11	20.00	-21.11	T4	2.0, 1.0	
	IEEE 802.11n														
	802.11n	Radial	40MHz	1	38	4.46	-33.86	60.50	-60.58 N/A -	38.32	20.00	-18.32	T4	22.24	
			20MHz	1	40	4.33	-33.69	-60.58		38.02	20.00	-18.02	T4	2.2, 2.4	

FCC ID: A3LSMA135U		HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Demo 25 of 90
1M2112270166-16-R2.A3L	1/11/2022 - 1/21/2022	Portable Handset		Page 35 of 80
© 2022 PCTEST		·		REV 3.5.M

		1.0		110 11030			*** * *****	- 002.11		•••••				
Mode	Orientation	Bandwidth	U-NII	Channel	ABM1 [dB(A/m)]	ABM2 [dB(A/m)]	Ambient Noise [dB(A/m)]	Frequency Response Margin (dB)	S+N/N (dB)	FCC Limit (dB)	Margin from FCC Limit (dB)	C63.19-2011 Rating	Test Coordinates	
	Axial	40MHz	1	38	11.17	-28.87	-59.85	50.85	2.00	40.04	20.00	-20.04	T4	2.0. 1.6
IEEE	Axial	20MHz	1	40	11.13	-29.58		2.00	40.71	20.00	-20.71	T4	2.0, 1.0	
802.11ac														
002.1140	Radial	40MHz	1	38	4.51	-35.42	-60.58	-60.58 N/A	39.93	20.00	-19.93	T4	2.2. 2.4	
	radial	20MHz	1	40	4.48	-34.79			39.27	20.00	-19.27	T4	2.2, 2.4	

Table 9-26 Raw Data Results for 5GHz WIFI IEEE 802.11ac (OTT VoIP)

II. Test Notes

A. General

- 1. Phone Condition: Mute on; Backlight off; Max Volume; Max Contrast
- 2. 'Radial' orientation refers to radial transverse.
- 3. Hearing Aid Mode (Phone > Settings > Other call settings > Hearing aid compatibility) was set to ON for Frequency Response compliance
- 4. Speech Signal: 3GPP2 Normal Test Signal
- 5. Bluetooth and WIFI were disabled while testing 2G/3G/4G modes.
- 6. Licensed data modes and Bluetooth were disabled while testing WIFI modes.
- 7. The Margin from FCC limit column indicates a margin from the FCC limit for compliance (T3).

B. GSM

- 1. Power Configuration: GSM850: PCL=5, GSM1900: PCL=0;
- 2. Vocoder Configuration: EFR (GSM);

C. UMTS

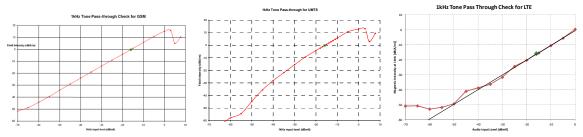
- 1. Power Configuration: TPC= "All 1s";
- 2. Vocoder Configuration: WB AMR 6.60kbps (UMTS);

D. LTE FDD

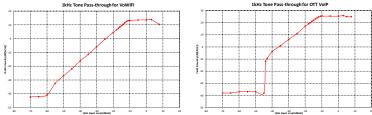
- 1. Power Configuration: TPC = "Max Power"
- 2. Radio Configuration: 16QAM, 1RB, 50%RB offset
- 3. Vocoder Configuration: WB AMR 6.60kbps
- 4. The worst-case band and bandwidth combination for each probe orientation is additionally tested on the low and high channels for those combinations. LTE Band 30 at 10MHz is the worst-case for the Axial and Radial probe orientation however, LTE Band 30 at 10MHz only supports one channel therefore low and high channels were not evaluated.

E. LTE TDD

- 1. Power Configuration: TPC = "Max Power"
- 2. Radio Configuration: 16QAM, 1RB, 50%RB offset
- 3. Power Class 3 Uplink-Downlink configuration: 2
- 4. Power Class 2 Uplink-Downlink configuration: 1
- 5. Vocoder Configuration: WB AMR 6.60kbps
- 6. The worst-case band and bandwidth combination for each probe orientation is additionally tested on the low, low-mid, high-mid, and high channels for those combinations. LTE Band 41 (Power Class 2) at 15MHz is the worst-case for the Axial probe orientation. LTE Band 41 (Power Class 2) at 20MHz is the worst-case for the Radial probe orientation.


FCC ID: A3LSMA135U	PCTEST* Proud to be part of @ element	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dage 26 of 90
1M2112270166-16-R2.A3L	1/11/2022 - 1/21/2022	Portable Handset		Page 36 of 80
© 2022 PCTEST				REV 3.5.M

- F. WIFI
 - 1. Radio Configuration
 - a. IEEE 802.11b: DSSS, 1Mbps
 - b. IEEE 802.11g/a: BPSK, 6Mbps
 - c. IEEE 802.11n/ac 20MHz: QPSK, MCS 2
 - d. IEEE 802.11n/ac 40MHz: BPSK, MCS 0
 - 2. Vocoder Configuration: EVS Primary SWB 24.4kbps
 - 3. The worst-case standard for 2.4GHz WIFI in each probe orientation is additionally tested on the low and high channels. IEEE 802.11b is the worst-case for the Axial and Radial probe orientation.
 - 4. The worst-case standard for 5GHz WIFI in each probe orientation is additionally tested on higher U-NII bands as well as applicable low and high channels. IEEE 802.11a (U-NII 3) is the worst-case for the Axial and Radial probe orientation.
- G. OTT VoIP
 - 1. Vocoder Configuration: 75kbps
 - 2. EDGE Configuration
 - a. MCS Index: 7
 - b. Number of TX slots: 2
 - 3. HSPA Configuration:
 - a. Release: 6
 - b. 3GPP 34.121 Subtest 1
 - 4. LTE FDD Configuration:
 - a. Power Configuration: TPC = "Max Power"
 - b. Radio Configuration: 16QAM, 1RB, 50%RB offset
 - c. LTE Band 30 was the worst-case band from Table 7-5 and was used to test both Axial and Radial probe orientations.
 - d. The worst-case band and bandwidth combination for each probe orientation is additionally tested on the low and high channels for those combinations. LTE Band 30 at 10MHz is the worst-case for the Axial probe orientation however LTE Band 30 at 10MHz only supports one channel therefore low and high channels were not evaluated. LTE Band 30 at 5MHz is the worst-case for the Radial probe orientation.
 - 5. LTE TDD Configuration:
 - a. Power Configuration: TPC = "Max Power"
 - b. Radio Configuration: 16QAM, 1RB, 50%RB offset
 - c. Power Class 2 Uplink-Downlink configuration: 1
 - d. LTE Band 41 (PC2) was the worst-case band from Table 7-6 and was used to test both Axial and Radial probe orientations.
 - e. The worst-case band and bandwidth combination for each probe orientation is additionally tested on the low, low-mid, high-mid, and high channels for those combinations. LTE Band 41 (Power Class 2) at 15MHz is the worst-case for the Axial and Radial probe orientation.
 - 6. WIFI Configuration:
 - a. Radio Configuration
 - i. IEEE 802.11b: DSSS, 1Mbps
 - ii. IEEE 802.11g/a: BPSK, 6Mbps
 - iii. IEEE 802.11n/ac 20MHz: QPSK, MCS 2
 - iv. IEEE 802.11n/ac 40MHz: BPSK, MCS 0
 - b. The worst-case standard for 2.4GHz WIFI in each probe orientation is additionally tested on the low and high channels. IEEE 802.11b is the worst-case for the Axial and Radial probe orientation.


FCC ID: A3LSMA135U		HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Demo 27 of 90
1M2112270166-16-R2.A3L	1/11/2022 - 1/21/2022	Portable Handset		Page 37 of 80
© 2022 PCTEST				REV 3.5.M

c. The worst-case standard for 5GHz WIFI in each probe orientation is additionally tested on higher U-NII bands as well as applicable low and high channels. IEEE 802.11a (U-NII 2A) is the worst-case for the Axial probe orientation.

III. 1 kHz Vocoder Application Check

This model was verified to be within the linear region for ABM1 measurements at -16 dBm0 for GSM, UMTS, and VoLTE over IMS. This measurement was taken in the axial configuration above the maximum location.

This model was verified to be within the linear region for ABM1 measurements at -20 dBm0 for VoWIFI over IMS and OTT VoIP. This measurement was taken in the axial configuration above the maximum location.

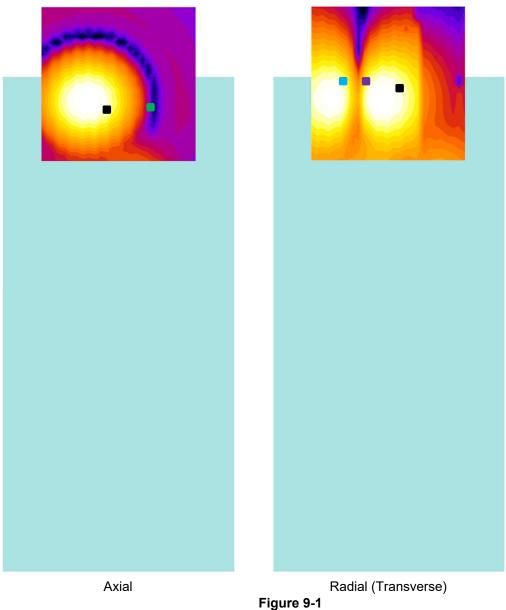
FCC ID: A3LSMA135U	PCTEST. Noted to be part of @ element	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dage 29 of 90
1M2112270166-16-R2.A3L	1/11/2022 - 1/21/2022	Portable Handset		Page 38 of 80
© 2022 PCTEST				REV 3.5.M

IV. T-Coil Validation Test Results

ltem	Target	Result	Verdict		
Axial					
Magnetic Intensity, -10 dBA/m	-10 ± 0.5 dB	-9.818	PASS		
Environmental Noise	< -58 dBA/m	-60.80	PASS		
Frequency Response, from limits	> 0 dB 0.50		PASS		
Radial					
Magnetic Intensity, -10 dBA/m	-10 ± 0.5 dB	-10.317	PASS		
Environmental Noise	< -58 dBA/m	-61.11	PASS		
Frequency Response, from limits	> 0 dB	0.70	PASS		

 Table 9-27

 Helmholtz Coil Verification Table of Results – 01/11/22


Table 9-28Helmholtz Coil Verification Table of Results – 01/17/22

ltem	Target	Result	Verdict
Axial			
Magnetic Intensity, -10 dBA/m	-10 ± 0.5 dB	-9.988	PASS
Environmental Noise	< -58 dBA/m	-59.85	PASS
Frequency Response, from limits	> 0 dB	0.60	PASS
Radial			
Magnetic Intensity, -10 dBA/m	-10 ± 0.5 dB	-10.177	PASS
Environmental Noise	< -58 dBA/m	-60.58	PASS
Frequency Response, from limits	> 0 dB	0.70	PASS

FCC ID: A3LSMA135U		HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Demo 20 of 90
1M2112270166-16-R2.A3L	1/11/2022 - 1/21/2022	Portable Handset		Page 39 of 80
© 2022 PCTEST		·		REV 3.5.M

REV 3.5.M 8/18/2020

V. ABM1 Magnetic Field Distribution Scan Overlays

T-Coil Scan Overlay Magnetic Field Distributions

Notes:

- 1. Final measurement locations are indicated by a black cursor on the contour plots. The axial VoLTE TDD test location is indicated by a green cursor. The radial GSM850 test location is indicated by a blue cursor. The radial LTE TDD test location is indicated by a purple cursor.
- 2. See Test Setup Photographs for actual WD overlay.

FCC ID: A3LSMA135U	PCTEST [•] Proud to be part of @ element	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Demo 40 of 90
1M2112270166-16-R2.A3L	1/11/2022 - 1/21/2022	Portable Handset		Page 40 of 80
© 2022 PCTEST		·		REV 3.5.M

10. MEASUREMENT UNCERTAINTY

Contribution	Data +/- %	Data +/- dB	Data Type	Probability distribution	Divisor	Standard uncertainty	Standard Uncertainty (dB)
ABM Noise	7.0%	0.29	Std. Dev.	Normal k=1	1.00	7.0%	
RF Reflections	4.7%	0.20	Specification	Rectangular	1.73	2.7%	
Reference Signal Level	12.2%	0.50	Specification	Rectangular	1.73	7.0%	
Positioning Accuracy	10.0%	0.41	Uncertainty	Rectangular	1.73	5.8%	
Probe Coil Sensitivity	12.2%	0.50	Specification	Rectangular	1.73	7.0%	
Probe Linearity	2.4%	0.10	Std. Dev.	Normal k=1	1.00	2.4%	
Cable Loss	2.8%	0.12	Specification	Rectangular	1.73	1.6%	
Frequency Analyzer	5.0%	0.21	Specification	Rectangular	1.73	2.9%	
System Repeatability	5.0%	0.21	Std. Dev.	Normal k=1	1.00	5.0%	
WD Repeatability	9.0%	0.37	Std. Dev.	Normal k=1	1.00	9.0%	
Positioner Accuracy	1.0%	0.04	Specification	Rectangular	1.73	0.6%	
Combined standard uncertainty, uc (k=1)						17.7%	0.71
Expanded uncertainty (k=2), 95% confidence level					35.3%	1.31	

Table 10-1 Uncertainty Estimation Table

Notes:

1. Test equipments are calibrated according to techniques outlined in NIS81, NIS3003 and NIST Tech Note 1297.

2. All equipments have traceability according to NIST. Measurement Uncertainties are defined in further detail in

NIS 81 and NIST Tech Note 1297 and UKAS M3003.

Measurement uncertainty reflects the quality and accuracy of a measured result as compared to the true value. Such statements are generally required when stating results of measurements so that it is clear to the intended audience that the results may differ when reproduced by different facilities. Measurement results vary due to the measurement uncertainty of the instrumentation, measurement technique, and test engineer. Most uncertainties are calculated using the tolerances of the instrumentation used in the measurement setup variability, and the technique used in performing the test. While not generally included, the variability of the equipment under test also figures into the overall measurements (so-called Type A uncertainty). This may mean that the Hearing Aid compatibility tests may have to be repeated by taking down the test setup and resetting it up so that there are a statistically significant number of repeat measurements to identify the measurement uncertainty. By combining the repeat measurement results with that of the instrumentation chain using the technique contained in NIS 81 and NIS 3003, the overall measurement uncertainty was estimated.

FCC ID: A3LSMA135U		HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dama 44 of 00
1M2112270166-16-R2.A3L	1/11/2022 - 1/21/2022	Portable Handset		Page 41 of 80
© 2022 PCTEST				REV 3.5.M

11. EQUIPMENT LIST

Table 11-1 Equipment List

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Dell	Latitude E6540	SoundCheck Acoustic Analyzer Laptop	9/29/2020	Biennial	9/29/2022	2655082910
Listen	SoundConnect	Microphone Power Supply	9/24/2020	Biennial	9/24/2022	0899-PS150
RME	Fireface UC	Soundcheck Acoustic Analyzer External Audio Interface	9/29/2020	Biennial	9/29/2022	23792992
Rohde & Schwarz	CMW500	Wideband Radio Communication Tester	2/10/2021	Annual	2/10/2022	161662
Rohde & Schwarz	CMW500	Wideband Radio Communication Tester	3/22/2021	Annual	3/22/2022	162125
Rohde & Schwarz	CMW500	Radio Communication Tester	9/30/2021	Annual	9/30/2022	140144
Rohde & Schwarz	CMW500	Radio Communication Tester	7/19/2021	Annual	7/19/2022	128635
Seekonk	NC-100	Torque Wrench (8" lb)	8/4/2020	Biennial	8/4/2022	21053
TEM	Axial T-Coil Probe	Axial T-Coil Probe	9/23/2020	Biennial	9/23/2022	TEM-1123
TEM	Radial T-Coil Probe	Radial T-Coil Probe	9/23/2020	Biennial	9/23/2022	TEM-1129
TEM		HAC Positioner	N/A		N/A	N/A
TEM		HAC System Controller with Software	N/A		N/A	N/A
TEM	Helmholtz Coil	Helmholtz Coil	9/23/2020	Biennial	9/23/2022	SBI 1052

FCC ID: A3LSMA135U		HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Demo 42 of 90
1M2112270166-16-R2.A3L	1/11/2022 - 1/21/2022	Portable Handset		Page 42 of 80
© 2022 PCTEST		·		REV 3.5.M

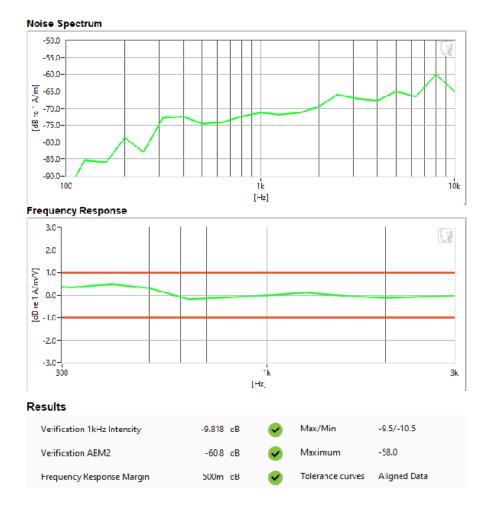
REV 3.5.M 8/18/2020

12. TEST DATA

FCC ID: A3LSMA135U		HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dage 42 of 90
1M2112270166-16-R2.A3L	1/11/2022 - 1/21/2022	Portable Handset		Page 43 of 80
© 2022 PCTEST		·		REV 3.5.M

8/18/2020

DUT: HH Coil - SN: SBI 1052


Type: HH Coil Serial: SBI 1052

Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Axial T-Coil Probe – SN: TEM-1123; Calibrated: 9/23/2020

Helmholtz Coil – SN: SBI 1052; Calibrated: 9/23/2020

FCC ID: A3LSMA135U		HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dage 44 of 90
1M2112270166-16-R2.A3L	1/11/2022 - 1/21/2022	Portable Handset		Page 44 of 80
© 2022 PCTEST				REV 3.5.M

8/18/2020

DUT: HH Coil - SN: SBI 1052

Type: HH Coil Serial: SBI 1052

Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Axial T-Coil Probe – SN: TEM-1123; Calibrated: 9/23/2020

Helmholtz Coil – SN: SBI 1052; Calibrated: 9/23/2020

Noise Spectrum -50.0 -55.0--60.0re 1 A/m] -65.0 -70.0 8 -75.0--80.0 -85.0 -90.0-10k 100 1k [Hz] Frequency Response 3.0· 1 2.0 0.0 [dB re 17/m/ 0.0 - 100 - 1.0 0.0 -2.0 -3.0-300 3k [Hz] Results Verification 1kHz Intensity -9.988 dB Max/Min -9.5/-10.5 -58.0 Verification ABM2 -59.85 dB Maximum Tolerance curves Aligned Data Frequency Response Margin 600m dB

FCC ID: A3LSMA135U		HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dage 45 of 90
1M2112270166-16-R2.A3L	1/11/2022 - 1/21/2022	Portable Handset		Page 45 of 80
© 2022 PCTEST	2022 PCTEST			

DUT: HH Coil - SN: SBI 1052

Type: HH Coil Serial: SBI 1052

Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Radial T-Coil Probe – SN: TEM-1129; Calibrated: 9/23/2020

Helmholtz Coil – SN: SBI 1052; Calibrated: 9/23/2020

Noise Spectrum -50.0 -55.0--60.0re 1 A/m] -65.0 -70.0 8 -75.0--80.0 -85.0--90.0-10k 100 1k [Hz] Frequency Response 3.0· 1 2.0 re 1 A/m///] 1.0 0.0 9 - 1.0 -2.0 -3.0-300 3k [Hz] Results Verification 1kHz Intensity -10.317 dB Max/Min -9.5/-10.5 -58.0 Verification ABM2 -61.11 dB Maximum Tolerance curves Aligned Data Frequency Response Margin /00m dB

FCC ID: A3LSMA135U	PCTEST. Nood to be part of @ element	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dega 46 of 90
1M2112270166-16-R2.A3L	1/11/2022 - 1/21/2022	Portable Handset		Page 46 of 80
© 2022 PCTEST	2022 PCTEST			

DUT: HH Coil - SN: SBI 1052


Type: HH Coil Serial: SBI 1052

Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Radial T-Coil Probe – SN: TEM-1129; Calibrated: 9/23/2020

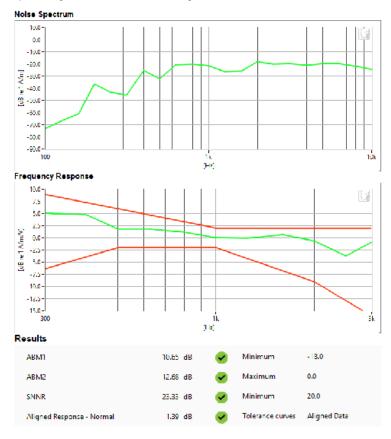
Helmholtz Coil – SN: SBI 1052; Calibrated: 9/23/2020

FCC ID: A3LSMA135U		HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dage 47 of 90
1M2112270166-16-R2.A3L	1/11/2022 - 1/21/2022	Portable Handset		Page 47 of 80
© 2022 PCTEST				REV 3.5.M

8/18/2020

DUT: A3LSMA135U

Type: Portable Handset Serial: 11208


Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Axial T-Coil Probe - SN: TEM-1123; Calibrated: 9/23/2020

Test Configuration:

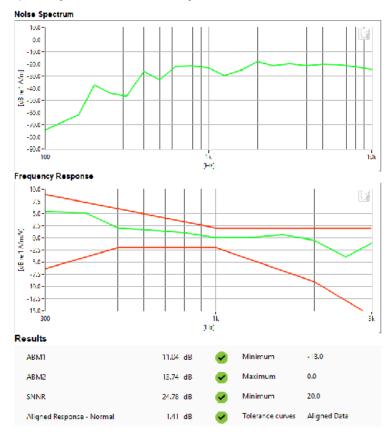
- Mode: GSM850
- Channel: 251
- Speech Signal: 3GPP2 Normal Test Signal

FCC ID: A3LSMA135U	PCTEST* Nout to be part of & element	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dere 49 of 90
1M2112270166-16-R2.A3L	1/11/2022 - 1/21/2022	Portable Handset		Page 48 of 80
© 2022 PCTEST				REV 3.5.M

8/18/2020

DUT: A3LSMA135U

Type: Portable Handset Serial: 11208


Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Axial T-Coil Probe - SN: TEM-1123; Calibrated: 9/23/2020

Test Configuration:

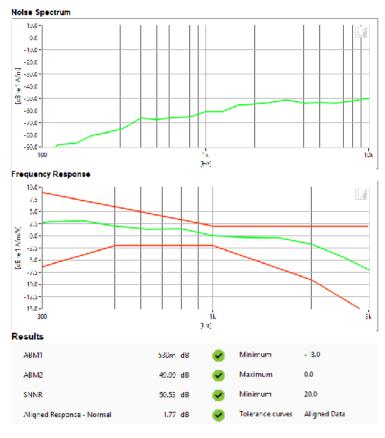
- Mode: GSM1900
- Channel: 810
- Speech Signal: 3GPP2 Normal Test Signal

FCC ID: A3LSMA135U	PCTEST* Nout to be part of & element	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dage 40 of 90
1M2112270166-16-R2.A3L	1/11/2022 - 1/21/2022	Portable Handset		Page 49 of 80
© 2022 PCTEST				REV 3.5.M

REV 3.5.M 8/18/2020

DUT: A3LSMA135U

Type: Portable Handset Serial: 11208


Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Axial T-Coil Probe - SN: TEM-1123; Calibrated: 9/23/2020

Test Configuration:

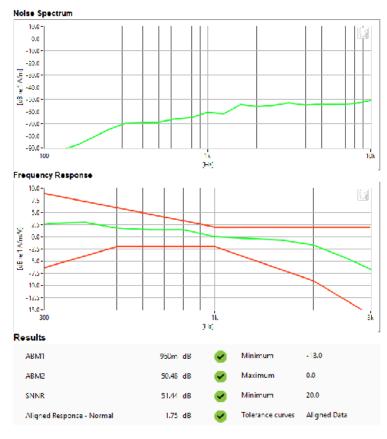
- Mode: UMTS V
- Channel: 4183
- Speech Signal: 3GPP2 Normal Test Signal

FCC ID: A3LSMA135U		HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Daga 50 of 80
1M2112270166-16-R2.A3L	1/11/2022 - 1/21/2022	Portable Handset		Page 50 of 80
© 2022 PCTEST				REV 3.5.M

8/18/2020

DUT: A3LSMA135U

Type: Portable Handset Serial: 11208


Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Axial T-Coil Probe - SN: TEM-1123; Calibrated: 9/23/2020

Test Configuration:

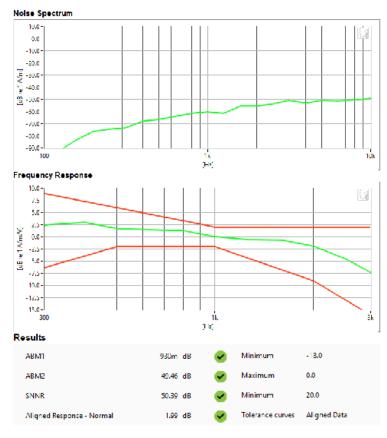
- Mode: UMTS IV
- Channel: 1412
- Speech Signal: 3GPP2 Normal Test Signal

FCC ID: A3LSMA135U	PCTEST* Nout to be part of & element	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Daga 51 of 90
1M2112270166-16-R2.A3L	1/11/2022 - 1/21/2022	Portable Handset		Page 51 of 80
© 2022 PCTEST				REV 3.5.M

8/18/2020

DUT: A3LSMA135U

Type: Portable Handset Serial: 11208


Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Axial T-Coil Probe - SN: TEM-1123; Calibrated: 9/23/2020

Test Configuration:

- Mode: UMTS II
- Channel: 9538
- Speech Signal: 3GPP2 Normal Test Signal

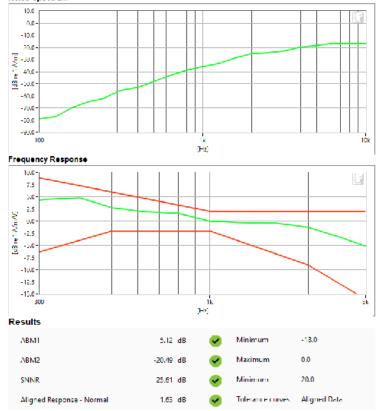
FCC ID: A3LSMA135U	PCTEST* Proud to be part of & element	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Daga 52 of 90
1M2112270166-16-R2.A3L	1/11/2022 - 1/21/2022	Portable Handset		Page 52 of 80
© 2022 PCTEST	2022 PCTEST			

8/18/2020

DUT: A3LSMA135U

Type: Portable Handset Serial: 11208

Measurement Standard: ANSI C63.19-2011


Equipment:

Probe: Axial T-Coil Probe – SN: TEM-1123; Calibrated: 9/23/2020

Test Configuration:

- Mode: LTE FDD Band 30
- Bandwidth: 10MHz
- Channel: 27710
- Speech Signal: 3GPP2 Normal Test Signal

Noise Spectrum

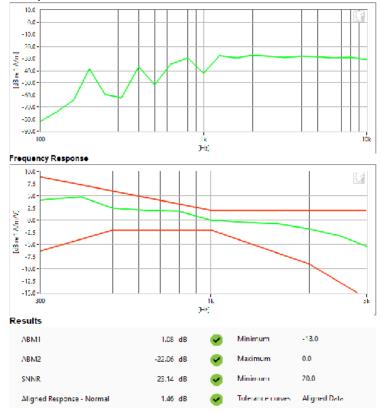
FCC ID: A3LSMA135U	PCTEST* Proud to be part of @ element	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Demo 52 of 90
1M2112270166-16-R2.A3L	1/11/2022 - 1/21/2022	Portable Handset		Page 53 of 80
© 2022 PCTEST				REV 3.5.M

REV 3.5.M 8/18/2020

DUT: A3LSMA135U

Type: Portable Handset Serial: 11208

Measurement Standard: ANSI C63.19-2011


Equipment:

Probe: Axial T-Coil Probe – SN: TEM-1123; Calibrated: 9/23/2020

Test Configuration:

- Mode: LTE TDD Band 41 (PC2)
- Bandwidth: 15MHz
- Channel: 40185
- Speech Signal: 3GPP2 Normal Test Signal

Noise Spectrum

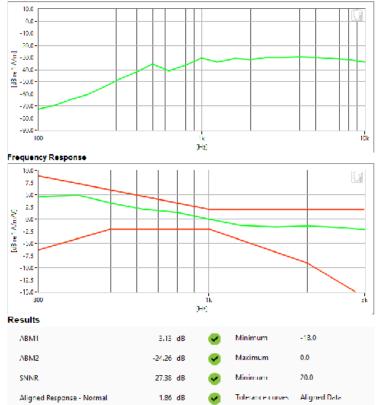
FCC ID: A3LSMA135U		HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Daga 54 of 90
1M2112270166-16-R2.A3L	1/11/2022 - 1/21/2022	Portable Handset		Page 54 of 80
© 2022 PCTEST				REV 3.5.M

8/18/2020

DUT: A3LSMA135U

Type: Portable Handset Serial: 11208

Measurement Standard: ANSI C63.19-2011


Equipment:

Probe: Axial T-Coil Probe – SN: TEM-1123; Calibrated: 9/23/2020

Test Configuration:

- Mode: 2.4 GHz WLAN
- Standard: IEEE 802.11b
- Channel: 11
- Speech Signal: 3GPP2 Normal Test Signal

Noise Spectrum

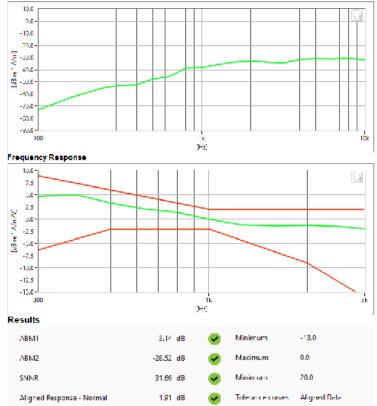
FCC ID: A3LSMA135U		HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Demo 55 of 90
1M2112270166-16-R2.A3L	1/11/2022 - 1/21/2022	Portable Handset		Page 55 of 80
© 2022 PCTEST				REV 3.5.M

8/18/2020

DUT: A3LSMA135U

Type: Portable Handset Serial: 11208

Measurement Standard: ANSI C63.19-2011


Equipment:

Probe: Axial T-Coil Probe – SN: TEM-1123; Calibrated: 9/23/2020

Test Configuration:

- Mode: 5GHz WLAN
- Standard: IEEE 802.11 a
- Channel: 165
- Speech Signal: 3GPP2 Normal Test Signal

Noise Spectrum

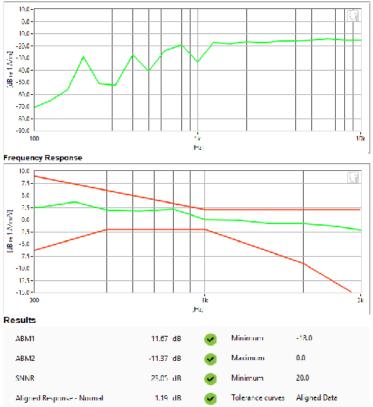
FCC ID: A3LSMA135U		HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Demo EG of 90
1M2112270166-16-R2.A3L	1/11/2022 - 1/21/2022	Portable Handset		Page 56 of 80
© 2022 PCTEST				REV 3.5.M

8/18/2020

DUT: A3LSMA135U

Type: Portable Handset Serial: 11208

Measurement Standard: ANSI C63.19-2011


Equipment:

Probe: Axial T-Coil Probe – SN: TEM-1123; Calibrated: 9/23/2020

Test Configuration:

- VolP Application: Google Duo
- Mode: LTE TDD Band 41 (PC2)
- Bandwidth: 15MHz
- Channel: 41055
- Speech Signal: 3GPP2 Normal Test Signal

FCC ID: A3LSMA135U		HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dega E7 of 90
1M2112270166-16-R2.A3L	1/11/2022 - 1/21/2022	Portable Handset		Page 57 of 80
© 2022 PCTEST		· ·		REV 3.5.M

REV 3.5.M 8/18/2020

DUT: A3LSMA135U

Type: Portable Handset Serial: 11208

Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Radial T-Coil Probe - SN: TEM-1129; Calibrated: 9/23/2020

Test Configuration:

- Mode: GSM850
- Channel: 128

FCC ID: A3LSMA135U	PCTEST Proud to be part of @element	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dere 59 of 90
1M2112270166-16-R2.A3L	1/11/2022 - 1/21/2022	Portable Handset		Page 58 of 80
© 2022 PCTEST		· ·		REV 3.5.M

8/18/2020

DUT: A3LSMA135U

Type: Portable Handset Serial: 11208

Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Radial T-Coil Probe – SN: TEM-1129; Calibrated: 9/23/2020

Test Configuration:

- Mode: GSM1900 •
- Channel: 810 .

FCC ID: A3LSMA135U		HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 59 of 80
1M2112270166-16-R2.A3L	1/11/2022 - 1/21/2022	Portable Handset		Page 59 01 60
© 2022 PCTEST				REV 3.5.M

DUT: A3LSMA135U

Type: Portable Handset Serial: 11208

Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Radial T-Coil Probe - SN: TEM-1129; Calibrated: 9/23/2020

Test Configuration:

- Mode: UMTS V
- Channel: 4233

FCC ID: A3LSMA135U	PCTEST Proad to be part of @ element	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 60 of 80
1M2112270166-16-R2.A3L	1/11/2022 - 1/21/2022	Portable Handset		Page 60 01 60
© 2022 PCTEST				REV 3.5.M

8/18/2020

DUT: A3LSMA135U

Type: Portable Handset Serial: 11208

Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Radial T-Coil Probe – SN: TEM-1129; Calibrated: 9/23/2020

Test Configuration:

- Mode: UMTS IV •
- Channel: 1513 .

FCC ID: A3LSMA135U		HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dere 61 of 90
1M2112270166-16-R2.A3L	1/11/2022 - 1/21/2022	Portable Handset		Page 61 of 80
© 2022 PCTEST		·		REV 3.5.M

DUT: A3LSMA135U

Type: Portable Handset Serial: 11208

Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Radial T-Coil Probe – SN: TEM-1129; Calibrated: 9/23/2020

Test Configuration:

- Mode: UMTS II •
- Channel: 9538 .

FCC ID: A3LSMA135U		HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Demo 62 of 90
1M2112270166-16-R2.A3L	1/11/2022 - 1/21/2022	Portable Handset		Page 62 of 80
© 2022 PCTEST				REV 3.5.M

DUT: A3LSMA135U

Type: Portable Handset Serial: 11208

Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Radial T-Coil Probe - SN: TEM-1129; Calibrated: 9/23/2020

Test Configuration:

- Mode: LTE FDD Band 30
- Bandwidth: 10MHz
- Channel: 27710

Noise Spectrum

FCC ID: A3LSMA135U		HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Demo 62 of 90
1M2112270166-16-R2.A3L	1/11/2022 - 1/21/2022	Portable Handset		Page 63 of 80
© 2022 PCTEST		-		REV 3.5.M

8/18/2020

DUT: A3LSMA135U

Type: Portable Handset Serial: 11208

Measurement Standard: ANSI C63.19-2011

Equipment:

Probe: Radial T-Coil Probe - SN: TEM-1129; Calibrated: 9/23/2020

Test Configuration:

- Mode: LTE TDD Band 41 (PC2)
- Bandwidth: 20MHz
- Channel: 41490

Noise Spectrum

SNNR

23.06 dB

20.0

Minimum

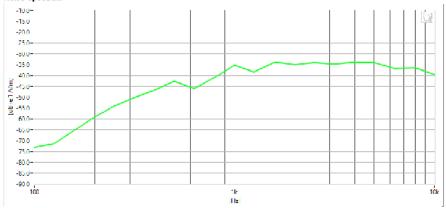
FCC ID: A3LSMA135U	PCTEST* Noud to be part of @ element	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dage 64 of 90
1M2112270166-16-R2.A3L	1/11/2022 - 1/21/2022	Portable Handset		Page 64 of 80
© 2022 PCTEST				REV 3.5.M

8/18/2020

DUT: A3LSMA135U

Type: Portable Handset Serial: 11208

Measurement Standard: ANSI C63.19-2011


Equipment:

Probe: Radial T-Coil Probe - SN: TEM-1129; Calibrated: 9/23/2020

Test Configuration:

- Mode: 2.4 GHz WLAN
- Standard: IEEE 802.11b
- Channel: 1

Noise Spectrum

Results

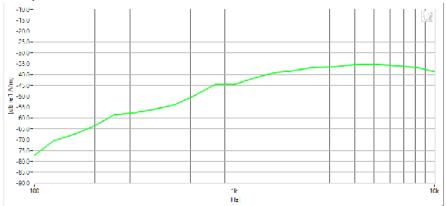
ABM1	-4.27 dB	<	Minimum	-18.0
ABM2	-28.73 dB	<	Maximum	0.0
SNNR	24.46 dB	~	Minimum	20.0

FCC ID: A3LSMA135U		HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Page 65 of 80
1M2112270166-16-R2.A3L	1/11/2022 - 1/21/2022	Portable Handset		Page 65 01 60
© 2022 PCTEST		·		REV 3.5.M

DUT: A3LSMA135U

Type: Portable Handset Serial: 11208

Measurement Standard: ANSI C63.19-2011


Equipment:

Probe: Radial T-Coil Probe - SN: TEM-1129; Calibrated: 9/23/2020

Test Configuration:

- Mode: 5GHz WLAN
- Standard: IEEE 802.11a
- Channel: 157

Noise Spectrum

Results

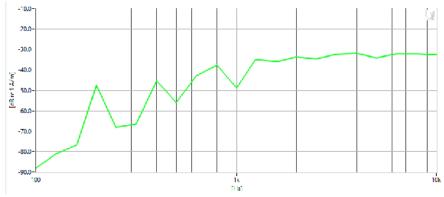
ABM1	-4.36 dB	•	Minimum	-18.0
ABM2	-33.25 dB	~	Maximum	0.0
SNNR	28.89 dB	~	Minimum	20.0

FCC ID: A3LSMA135U		HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Demo 66 of 90
1M2112270166-16-R2.A3L	1/11/2022 - 1/21/2022	Portable Handset		Page 66 of 80
© 2022 PCTEST				REV 3.5.M

DUT: A3LSMA135U

Type: Portable Handset Serial: 11208

Measurement Standard: ANSI C63.19-2011


Equipment:

Probe: Radial T-Coil Probe – SN: TEM-1129; Calibrated: 9/23/2020

Test Configuration:

- VolP Application: Google Duo
- Mode: LTE TDD Band 41 (PC2)
- Bandwidth: 15MHz
- Channel: 40185

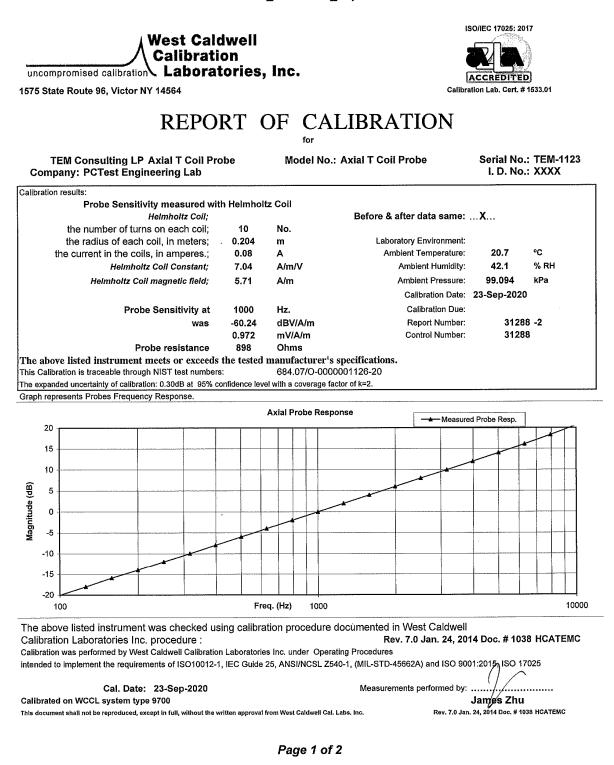
Noise Spectrum

ABM1	-3.57	dB	•	Minimum	- 18.0
ABM2	-28.81	сB	~	Maximum	0.0
SNNR	25.24	dB	~	Minimum	20.0

FCC ID: A3LSMA135U	PCTEST*	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dege 67 of 90
1M2112270166-16-R2.A3L	1/11/2022 - 1/21/2022	Portable Handset		Page 67 of 80
© 2022 PCTEST				REV 3.5.M

13. CALIBRATION CERTIFICATES

FCC ID: A3LSMA135U		HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Demo 69 of 90
1M2112270166-16-R2.A3L	1/11/2022 - 1/21/2022	Portable Handset		Page 68 of 80
© 2022 PCTEST		·		REV 3.5.M


© 2022 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

8/18/2020

	West Caldwell Calibration Laboratories Inc.	
	Certificate of Conformanc	e
	for	
	AXIAL T COIL PROBE Manufactured by: TEM CONSULTING Model No: AXIAL T COIL PROBE Serial No: TEM-1123 Calibration Recall No: 31288	
ba cal	Submitted By:	
	Customer: ANDREW HARWELL	
A	Company: PCTEST ENGINEERING LAB Address: 6660-B DOBBIN ROAD COLUMBIA MD 21045	
	The subject instrument was calibrated to the indicated specification using standards traceable to SI through the National Institute of Standards and Technology or to accepted values of natural physical constants. This document certifies that the instrument met the following specification up its return to the submitter.	oon
	West Caldwell Calibration Laboratories Procedure No. AXIALTCTEMC //AA Upon receipt for Calibration, the instrument was found to be: 10/13/201	
	Upon receipt for Calibration, the instrument was found to be: 10/13/201	
	Within (X)	
	tolerance of the indicated specification. See attached Report of Calibration. The information supplied relates to the calibrated item listed above and statment of conformance for ALL given specifications and standards fall under the decision rule: A=(L-(U95)), where A is acceptance limit, L is manufacturer specifications and U95 is confidence level of 95% at k=2. The includes but not limited to:1. Measured value does not meet manufacturer's tolerance, 2.Manufacturer's tolerance is too small compared to calibration and measurment capability uncertainties, 3. Test uncertainty ratio does not meet the 4:1 ratio due to test instrumentation limitations. The decision rule has been communicated and approved by customer during contract	s
	West Caldwell Calibration Laboratories' calibration control system meets the following requirements, ISO 10012-1 MIL STD 45662A, ANSI/NCSL Z540-1, IEC Guide 25, ISO 9001:201 and ISO 17025	5,
	Note: With this Certificate, Report of Calibration is included, Approved by:	
	Calibration Date: 23-Sep-20 James Zhy	
	Certificate No: 31288 - 2 Quality Manager ISO/IEC 17025:2017	
Ì	QA Doc. #1051 Rev. 3.0 5/29/20 Certificate Page 1 of 1	
	West Caldwell	
	uncompromised calibration Laboratories, Inc. 1575 State Route 96, Victor, NY 14564, U.S.A. Calibration Lab. Cert. # 1533.01	

FCC ID: A3LSMA135U	PCTEST* Proud to be part of @ element	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dere 60 of 80
1M2112270166-16-R2.A3L	1/11/2022 - 1/21/2022	Portable Handset		Page 69 of 80
© 2022 PCTEST				REV 3.5.M

HCATEMC_TEM-1123_Sep-23-2020

FCC ID: A3LSMA135U	PCTEST Proud to be part of @ element	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dega 70 of 90
1M2112270166-16-R2.A3L	1/11/2022 - 1/21/2022	Portable Handset		Page 70 of 80
© 2022 PCTEST				REV 3.5.M

HCATEMC_TEM-1123_Sep-23-2020

West Caldwell Calibration Laboratories Inc.

1575 State Route 96, Victor NY 14564 Tel. (585) 586-3900 FAX (585) 586-4327

Calibration Data Record

TEM Consulting LP Axial T Coil Probe Company: PCTest Engineering Lab ^{for} Model No.: Axial T Coil Probe

Serial No.: TEM-1123

Test	Function	Tolera	nce	Me	asured val	ues
				Before	Out	Remarks
1.0	Probe Sensitivity at	1000 Hz.	dBV/A/m	-60.24		
			dB			
2.0	Probe Level Linearity		6	6.03		
		Ref. (0 dB)	0	0.00		
			-6	-6.03		
			-12	-12.05		
			Hz			
3.0	Probe Frequency Response		100	-20.0		
			126	-18.0		
			158	-15.9		
			200	-14.0		
			251	-12.0		
			316	-10.0		
			398	-8.0		
			501	-6.0		
			631	-4.0		
			794	-2.0		
		Ref. (0 dB)	1000	0.0		
			1259	2.0		
			1585	4.0		
			1995	6.0		
			2512	8.0		
			3162	10.0		
			3981	12.0		1
			5012	14.0		
			6310	16.1		
			7943	18.3		
			10000	20.7		

Instruments u	sed for calibration:		Date of Cal.	Traceablity No.	Due Date
HP	34401A	S/N US360641	2-Jul-2020	,610119	2-Jul-2021
HP	34401A	S/N US361024	2-Jul-2020	,610119	2-Jul-2021
HP	33120A	S/N US360437	2-Jul-2020	,610119	2-Jul-2021
B&K	2133	S/N 1583254	1-Jul-2020	684.07/O-0000001126-20	1-Jul-2021

Cal. Date: 23-Sep-2020 Calibrated on WCCL system type 9700

This document shall not be reproduced, except in full, without the written approval from West Caldwell Cal, Labs, Inc.

Tested by: James Zhu

Rev. 7.0 Jan. 24, 2014 Doc. # 1038 HCATEMC

Page 2 of 2

FCC ID: A3LSMA135U		HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Dega 71 of 90
1M2112270166-16-R2.A3L	1/11/2022 - 1/21/2022	Portable Handset		Page 71 of 80
© 2022 PCTEST		·		REV 3.5.M

	West C	aldwell Ca	librati	ion Laborato	ories Inc.	
	Certifi	cate o	of C	Confor	mance	
			for			
		RADL Manufactured by Model No: Serial No: Calibration Reca		L PROBE TEM CONSULTING RADIAL T COIL PF TEM-1129 31288		
1 Section 1		5	Submitted	By:		
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Customer:	ANDREV	V HARWELL		
		Company: Address:		ENGINEERING LAH OBBIN ROAD BIA	3 MD 21045	
	SI through the National physical constants. This its return to the submit	l Institute of Standa document certifies ter.	rds and To that the in	echnology or to accept istrument met the follo	owing specification upon	
(ASSISTED)	West Caldwell Calibrat	ion Laboratories P	rocedure N	Io. RADIAL T TEM	1c /aA 19/13/2020	1. 9000
	Upon receipt for Calibr	ation, the instrume	nt was fou	nd to be:	19/13/2020	
(an an Garáin	Within	(X)				
	tolerance of the indicate The information suppli- for ALL given specifica acceptance limit, L is m includes but not limited 2.Manufacturer's tolera uncertainties, 3. Test un limitations. The decision	ed relates to the cal- tions and standards anufacturer specifi- to: 1. Measured val- ance is too small con- ncertainty ratio doe	ibrated ite s fall under cations and lue does no npared to s not meet	m listed above and start the decision rule: A= d U95 is confidence lev thet manufacturer's calibration and measu the 4:1 ratio due to te:	tment of conformance (L-(U95)), where A is vel of 95% at k=2. This s tolerance, irment capability st instrumentation	
	West Caldwell Calibrat requirements, ISO 1001 and ISO 17025	ion Laboratories' c 2-1 MIL STD 4566	alibration 2A, ANSI/	control system meets t NCSL Z540-1, IEC Gu	the following uide 25, ISO 9001:2015,	
	Note: With this Certificate, I	Report of Calibration is	included.	Approved	d by:	
	Calibration Date:	23-Sep-20			James Zhu	
1000 1000 1000 1000 1000 1000 1000 100	Certificate No:	31288 - 1		-	ality Manager	
XIII	QA Doc. #1051 Rev. 3.0 5/29/20		ificate Page		/IEC 17025:2017	- A
		st Caldwell libration	Inc		CCREDITED	
	ompromised calibration 🥄 🕻 5 State Route 96, Victor, N		, INC.	1	on Lab. Cert. # 1533.01	
					A A A A A A A A A A A A A A A A A A A	

FCC ID: A3LSMA135U		HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Demo 70 of 90
1M2112270166-16-R2.A3L	1/11/2022 - 1/21/2022	Portable Handset		Page 72 of 80
© 2022 PCTEST				REV 3.5.M

HCRTEMC_TEM-1129_Sep-23-2020

1575 State Route 96, Victor NY 14564

REPORT OF CALIBRATION

on results:					
Probe Sensitivity measured w	th Helmhol	tz Coil			
Helmholtz Coil;			Before & after data same:	X	
			Laboratory Environments		
				20.7	°C
• •			•		% RH
					kPa
Hennioldz Con magnetic Held,	5.70	800			KI G
Proho Sonoitivity of	4000	Ll.w		23-36p-2020	
=				24200	4
was			•		-1
Prohe resistance			Control Admibel.	51200	
ove listed instrument meets or exceed	s the tested	manufacturer's si	pecifications.		
anded uncertainty of calibration: 0.30dB at 95%	confidence leve	el with a coverage facto	or of k=2.		
epresents Probes Frequency Response.					
		Radial Probe Respo	nse		
0			Measure	ed Probe Resp.	
5					
0 .					
5					
5					
5					
5					
5					
5					
i a > 0	the number of turns on each coil; the radius of each coil, in meters; the current in the coils, in amperes.; <i>Helmholtz Coil Constant;</i> <i>Helmholtz Coil magnetic field;</i> Probe Sensitivity at was Probe resistance ove listed instrument meets or exceeds oration is traceable through NIST test number anded uncertainty of calibration: 0.30dB at 95% of presents Probes Frequency Response.	the number of turns on each coil; 10 the radius of each coil, in meters; 0.204 the current in the coils, in amperes.; 0.08 <i>Helmholtz Coil Constant;</i> 7.04 <i>Helmholtz Coil magnetic field;</i> 5.70 Probe Sensitivity at 1000 was -60.37 0.959 Probe resistance 897 ove listed instrument meets or exceeds the tested bration is traceable through NIST test numbers: nded uncertainty of calibration: 0.30dB at 95% confidence leve presents Probes Frequency Response.	the number of turns on each coil; 10 No. the radius of each coil, in meters; 0.204 m the current in the coils, in amperes.; 0.08 A Helmholtz Coil Constant; 7.04 A/m/V Helmholtz Coil magnetic field; 5.70 A/m Probe Sensitivity at 1000 Hz. was -60.37 dBV/A/m 0.959 mV/A/m Probe resistance 897 Ohms over listed instrument meets or exceeds the tested manufacturer's sj pration is traceable through NIST test numbers: 684.07/O-00000 nded uncertainty of calibration: 0.30dB at 95% confidence level with a coverage factor presents Probes Frequency Response. Radial Probe Respon	the number of turns on each coil; 10 No. the radius of each coil, in meters; 0.204 m Laboratory Environment: the current in the coils, in amperes.; 0.08 A Ambient Temperature: Helmholtz Coil Constant; 7.04 A/m/V Ambient Humidity: Helmholtz Coil magnetic field; 5.70 A/m Ambient Pressure: Calibration Date: Probe Sensitivity at 1000 Hz. Re-calibration Due: was -60.37 dBV/A/m Report Number: 0.959 mV/A/m Control Number:	the number of turns on each coil; 10 No. the radius of each coil, in meters; 0.204 m Laboratory Environment: the current in the coils, in amperes.; 0.08 A Ambient Temperature: 20.7 Helmholtz Coil Constant; 7.04 A/m/V Ambient Humidity: 42.1 Helmholtz Coil magnetic field; 5.70 A/m Ambient Pressure: 99.094 Calibration Date: 23-Sep-2020 Probe Sensitivity at 1000 Hz. Re-calibration Due: was -60.37 dBV/A/m Report Number: 31288 0.959 mV/A/m Control Number: 31288 0.959 mV/A/m Control Number: 31288 0.959 mV/A/m Control Number: 31288 probe resistance 897 Ohms over listed instrument meets or exceeds the tested manufacturer's specifications. bration is traceable through NIST test numbers: 684.07/O-0000001126-20 nded uncertainty of calibration: 0.30dB at 95% confidence level with a coverage factor of k=2. presents Probes Frequency Response. Radial Probe Response

Calibrated on WCCL system type 9700

James Zhu

This document shall not be reproduced, except in full, without the written approval from West Caldwell Cal. Labs. Inc. Rev. 7.0 Jan. 24, 2014 Doc. # 1038 HCRTEMC

Page 1 of 2

FCC ID: A3LSMA135U	PCTEST *	HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager	
Filename:	Test Dates:	DUT Type:		Dama 70 of 00	
1M2112270166-16-R2.A3L	1/11/2022 - 1/21/2022	Portable Handset		Page 73 of 80	
© 2022 PCTEST				REV 3.5.M	

HCRTEMC_TEM-1129_Sep-23-2020

West Caldwell Calibration Laboratories Inc.

1575 State Route 96, Victor NY 14564 Tel. (585) 586-3900 FAX (585) 586-4327

Calibration Data Record

TEM Consulting LP Radial T Coil Probe Company: PCTest Engineering Lab ^{for} Model No.: Radial T Coil Probe

Serial No.: TEM-1129

Test	Function	Tolerance		Measured values		
			····.	Before	Out	Remarks
1.0	Probe Sensitivity at	1000 Hz.	dBV/A/m	-60.37		
			dB			
2.0	Probe Level Linearity		6	6.04		
		Ref. (0 dB)	0	0.00		
			-6	-6.03		
			-12	-12.05		
			Hz			
3.0	Probe Frequency Response		100	-20.0		
			126	-18.0		
			158	-16.0		
			200	-14.0		
			251	-12.0		
			316	-10.0		
			398	-8.0		
			501	-6.0		
			631	-4.0		
			794	-2.0		
		Ref. (0 dB)	1000	0.0		
			1259	2.0		
			1585	4.0		
			1995	6.0		
			2512	8.0		
			3162	10.0		
			3981	12.0		
			5012	14.0		
			6310	16.1		
			7943	18.3		
			10000	20.7		

Instrument	is used for calibration:		Date of Cal.	Traceability No.	Due Date
HP	34401A	S/N US360641	2-Jul-2020	,610119	2-Jul-2021
HP	34401A	S/N US361024	2-Jul-2020	,610119	2-Jul-2021
HP	33120A	S/N US360437	2-Jul-2020	.610119	2-Jul-2021
B&K	2133	S/N 1583254	1-Jul-2020	684.07/O-0000001126-20	1-Jul-2021

Cal. Date: 23-Sep-2020

Calibrated on WCCL system type 9700 This document shall not be reproduced, except in full, without the written approval from West Caldwell Cal, Labs, inc. Tested by: James Zhu

Rev. 7.0 Jan. 24, 2014 Doc. # 1038 HCRTEMC

Page 2 of 2

FCC ID: A3LSMA135U		HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager	
Filename:	Test Dates:	DUT Type:		Dama 74 of 00	
1M2112270166-16-R2.A3L	1/11/2022 - 1/21/2022	Portable Handset		Page 74 of 80	
© 2022 PCTEST		·		REV 3.5.M	

14. CONCLUSION

The measurements indicate that the wireless communications device complies with the HAC limits specified in accordance with the ANSI C63.19 Standard and FCC WT Docket No. 01-309 RM-8658. Precise laboratory measures were taken to assure repeatability of the tests. The tested device complies with the requirements in respect to all parameters specific to the test. The test results and statements relate only to the item(s) tested.

The measurement system and techniques presented in this evaluation are proposed in the ANSI standard as a means of best approximating wireless device compatibility with a hearing-aid. The literature is under continual re-construction.

FCC ID: A3LSMA135U		HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager	
Filename:	Test Dates:	DUT Type:		Dama 75 af 00	
1M2112270166-16-R2.A3L	1/11/2022 - 1/21/2022	Portable Handset		Page 75 of 80	
© 2022 PCTEST				REV 3.5.M	

REV 3.5.M 8/18/2020

15. REFERENCES

- 1. ANSI C63.19-2011, American National Standard for Methods of Measurement of Compatibility between Wireless communication devices and Hearing Aids.", New York, NY, IEEE, May 2011
- FCC Office of Engineering and Technology KDB, "285076 D01 HAC Guidance v05," September 13, 2017
- FCC Office of Engineering and Technology KDB, "285076 D02 T-Coil Testing for CMRS IP v03," September 13, 2017
- 4. FCC Public Notice DA 06-1215, Wireless Telecommunications Bureau and Office of Engineering and Technology Clarify Use of Revised Wireless Phone Hearing Aid Compatibility Standard, June 6, 2006
- 5. FCC 3G Review Guidance, Laboratory Division OET FCC, May/June 2006
- 6. Berger, H. S., "Compatibility Between Hearing Aids and Wireless Devices," Electronic Industries Forum, Boston, MA, May, 1997
- 7. Berger, H. S., "Hearing Aid and Cellular Phone Compatibility: Working Toward Solutions," Wireless Telephones and Hearing Aids: New Challenges for Audiology, Gallaudet University, Washington, D.C., May, 1997 (To be reprinted in the American Journal of Audiology).
- 8. Berger, H. S., "Hearing Aid Compatibility with Wireless Communications Devices, " IEEE International Symposium on Electromagnetic Compatibility, Austin, TX, August, 1997.
- Bronaugh, E. L., "Simplifying EMI Immunity (Susceptibility) Tests in TEM Cells," in the 1990 IEEE International Symposium on Electromagnetic Compatibility Symposium Record, Washington, D.C., August 1990, pp. 488-491
- 10. Byme, D. and Dillon, H., The National Acoustics Laboratory (NAL) New Procedure for Selecting the Gain and Frequency Response of a Hearing Aid, Ear and Hearing 7:257-265, 1986.
- Crawford, M. L., "Measurement of Electromagnetic Radiation from Electronic Equipment using TEM Transmission Cells, " U.S. Department of Commerce, National Bureau of Standards, NBSIR 73-306, Feb. 1973.
- Crawford, M. L., and Workman, J. L., "Using a TEM Cell for EMC Measurements of Electronic Equipment," U.S. Department of Commerce, National Bureau of Standards. Technical Note 1013, July 1981.
- 13. EHIMA GSM Project, Development phase, Project Report (1st part) Revision A. Technical-Audiological Laboratory and Telecom Denmark, October 1993.
- 14. EHIMA GSM Project, Development phase, Part II Project Report. Technical-Audiological Laboratory and Telecom Denmark, June 1994.
- EHIMA GSM Project Final Report, Hearing Aids and GSM Mobile Telephones: Interference Problems, Methods of Measurement and Levels of Immunity. Technical-Audiological Laboratory and Telecom Denmark, 1995.
- 16. HAMPIS Report, Comparison of Mobile phone electromagnetic near field with an upscaled electromagnetic far field, using hearing aid as reference, 21 October 1999.

FCC ID: A3LSMA135U		HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager
Filename:	Test Dates:	DUT Type:		Demo 76 of 90
1M2112270166-16-R2.A3L	1/11/2022 - 1/21/2022	Portable Handset		Page 76 of 80
© 2022 PCTEST				REV 3.5.M

- 17. Hearing Aids/GSM, Report from OTWIDAM, Technical-Audiological Laboratory and Telecom Denmark, April 1993.
- 18. IEEE 100, The Authoritative Dictionary of IEEE Standards Terms, Seventh Edition.
- Joyner, K. H, et. al., Interference to Hearing Aids by the New Digital Mobile Telephone System, Global System for Mobile (GSM) Communication Standard, National Acoustic Laboratory, Australian Hearing Series, Sydney 1993.
- Joyner, K. H., et. al., Interference to Hearing Aids by the Digital Mobile Telephone System, Global System for Mobile Communications (GSM), NAL Report #131, National Acoustic Laboratory, Australian Hearing Series, Sydney, 1995.
- 21. Kecker, W. T., Crawford, M. L., and Wilson, W. A., "Contruction of a Transverse Electromagnetic Cell", U.S. Department of Commerce, National Bureau of Standards, Technical Note 1011, Nov. 1978.
- 22. Konigstein, D., and Hansen, D., "A New Family of TEM Cells with enlarged bandwidth and Optimized working Volume," in the Proceedings of the 7th International Symposium on EMC, Zurich, Switzerland, March 1987; 50:9, pp. 127-132.
- 23. Kuk, F., and Hjorstgaard, N. K., "Factors affecting interference from digital cellular telephones," Hearing Journal, 1997; 50:9, pp 32-34.
- 24. Ma, M. A., and Kanda, M., "Electromagnetic Compatibility and Interference Metrology," U.S. Department of Commerce, National Bureau of Standards, Technical Note 1099, July 1986, pp. 17-43.
- Ma, M. A., Sreenivashiah, I., and Chang, D. C., "A Method of Determining the Emission and Susceptibility Levels of Electrically Small Objects Using a TEM Cell," U.S. Department of Commerce, National Bureau of Standards, Technial Note 1040, July 1981.
- 26. McCandless, G. A., and Lyregaard, P. E., Prescription of Gain/Output (POGO) for Hearing Aids, Hearing Instruments 1:16-21, 1983
- 27. Skopec, M., "Hearing Aid Electromagnetic Interference from Digital Wireless Telephones, "IEEE Transactions on Rehabilitation Engineering, vol. 6, no. 2, pp. 235-239, June 1998.
- 28. Technical Report, GSM 05.90, GSM EMC Considerations, European Telecommunications Standards Institute, January 1993.
- Victorian, T. A., "Digital Cellular Telephone Interference and Hearing Aid Compatibility—an Update," Hearing Journal 1998; 51:10, pp. 53-60
- 30. Wong, G. S. K., and Embleton, T. F. W., eds., AIP Handbook of Condenser Microphones: Theory, Calibration and Measurements, AIP Press.

FCC ID: A3LSMA135U		HAC (T-COIL) TEST REPORT	SAMSUNG	Approved by: Quality Manager	
Filename:	Test Dates:	DUT Type:		Dama 77 of 00	
1M2112270166-16-R2.A3L	1/11/2022 - 1/21/2022	Portable Handset		Page 77 of 80	
© 2022 PCTEST		-		REV 3.5.M	

^{© 2022} PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.