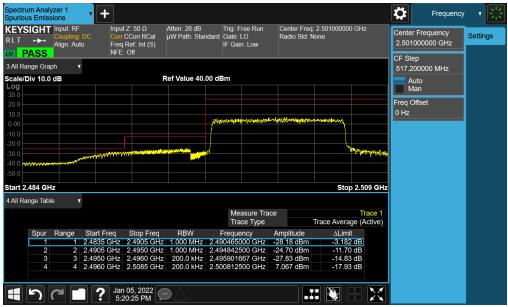
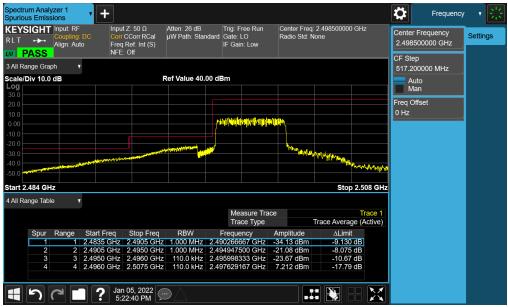


EYSIGHT Input: RF T ↔ Coupling: DC Align: Auto	Input Z: 50 Ω Atten: 26 dE Corr CCorr RCal μW Path: St Freq Ref: Int (S) NFE: Off		Center Freq: 2.503500000 G Radio Std: None	Center	Frequency Setting
IRange Graph				CF Ste 517.20	p 00000 MHz
ale/Div 10.0 dB	Ref Value 4	0.00 dBm			
				Freq O 0 Hz	ffset
00			-		
				and the second	
0 and a second s	nann na stalla an talla a sharan an talla a sharan a			rientespilligelieneg	
irt 2.476 GHz			Stop 2	.515 GHz	
Il Range Table 🛛 🔻					
		Measure Trace Trace Type	Trace Average	Trace 1 (Active)	
1 1 2.476	t Freq Stop Freq RBW 33 GHz 2.4905 GHz 1.000 MH	z 2.489645000 GHz -2			
3 3 2.495	05 GHz 2.4950 GHz 1.000 MH 50 GHz 2.4960 GHz 300.0 kH 50 GHz 2.5148 GHz 300.0 kH	z 2.495958333 GHz -3		3	


Plot 7-85. Lower ACP Plot (LTE Band 41(PC3) - 15MHz QPSK - Full RB)

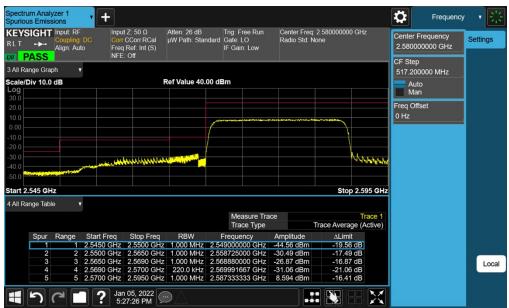
Plot 7-86. Upper ACP Plot (LTE Band 41(PC3) - 15MHz QPSK - Full RB)

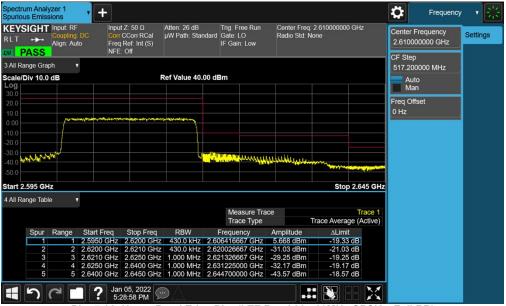
FCC ID: A3LSMA135U	POLIEST* Proud to be part of @ element	PART 27 MEASUREMENT REPORT	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 60 of 80
1M2112270166-05.A3L	01/03/2022 - 02/07/2022	Portable Handset		Page 60 of 89
© 2022 PCTEST	•			V2.0 3/28/2021


Plot 7-87. Lower ACP Plot (LTE Band 41(PC3) - 10MHz QPSK - Full RB)

Plot 7-88. Upper ACP Plot (LTE Band 41(PC3) - 10MHz QPSK - Full RB)

FCC ID: A3LSMA135U		PART 27 MEASUREMENT REPORT	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 61 of 90
1M2112270166-05.A3L	3L 01/03/2022 – 02/07/2022 Portable Handset			Page 61 of 89
© 2022 PCTEST	•			V2.0 3/28/2021


Plot 7-89. Lower ACP Plot (LTE Band 41(PC3) - 5MHz QPSK – Full RB)


Plot 7-90. Upper ACP Plot (LTE Band 41(PC3) - 5MHz QPSK - Full RB)

FCC ID: A3LSMA135U		PART 27 MEASUREMENT REPORT	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 62 of 89
1M2112270166-05.A3L	01/03/2022 - 02/07/2022	/07/2022 Portable Handset		Page 62 01 69
© 2022 PCTEST	•			V2.0 3/28/2021

Plot 7-91. Lower Band Edge Plot (LTE Band 38 - 20MHz QPSK – Full RB)


Plot 7-92. Upper Band Edge Plot (LTE Band 38 - 20MHz QPSK – Full RB)

FCC ID: A3LSMA135U	PCTEST Proud to be part of @ element	PART 27 MEASUREMENT REPORT	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 62 of 90
1M2112270166-05.A3L	01/03/2022 – 02/07/2022 Portable Handset			Page 63 of 89
© 2022 PCTEST	•			V2.0 3/28/2021

	Input: RF Coupling: DC Align: Auto	Input Z: 50 Ω Corr CCorr RCal Freq Ref: Int (S) NFE: Off	Atten: 26 dB µW Path: Star	dard G	rig: Free Run Sate: LO F Gain: Low	Center Freq: Radio Std: N	2.577500000 Ione) GHz	2.5775	Frequency 00000 GHz	Setting
Range Gra	ph v								CF Step) 0000 MHz	
e/Div 10.0			Ref Value 40.	00 dBr	n				Aut		
]									Ma		
									Freq Of	fset	1
				1mm			and a second second		0 Hz		
			_	1							
			'	1							
p — — —		un mainternation and						Variability			
	and the second second	The second of the second second second					-				
0											
	17						Stor	2.589 GHz			
t 2.550 GH	16						Sto	o 2.589 GHz			
	16						Stop				
t 2.550 GH	16				Measure Trac Trace Type			Trace 1			
t 2.550 GH Range Tab	le v	⊥ t Freg Stop Freg	RBW	Fr	Trace Type		Stop Trace Avera ALimi	Trace 1 ge (Active)			
t 2.550 GH	le v Range Sta	t Freq Stop Freq 03 GHz 2.5550 GH					Trace Avera	Trace 1 ge (Active) t			
t 2.550 GH Range Tab	le ▼ Range Sta 1 2.55		z 1.000 MHz	2.554 2.564	Trace Type equency 715000 GHz 150000 GHz	Amplitude	Trace Avera ∆Limi	Trace 1 ge (Active) t			
t 2.550 GH Range Tab Spur	le v Range Sta <u>1 2.55</u> 2 2.55	03 GHz 2.5550 GH 50 GHz 2.5650 GH 50 GHz 2.5690 GH	z 1.000 MHz z 1.000 MHz z 1.000 MHz	2.554 2.564 2.568	Trace Type equency 715000 GHz 150000 GHz 993333 GHz	Amplitude -40.43 dBm	Trace Avera ∆Limi -15.43	Trace 1 ge (Active) t dB dB			
t 2.550 GH Range Tab Spur 1 2	Range Sta 1 2.55 2 2.55 3 2.56 4 2.56	03 GHz 2.5550 GH 50 GHz 2.5650 GH	z 1.000 MHz z 1.000 MHz z 1.000 MHz z 220.0 KHz	2.554 2.564 2.568 2.569	Trace Type equency 715000 GHz 150000 GHz 993333 GHz 9411667 GHz	Amplitude -40.43 dBm -28.38 dBm	Trace Avera ∆Limi 15.43 15.38	Trace 1 ge (Active) t dB dB dB dB dB			

Plot 7-93. Lower Band Edge Plot (LTE Band 38 - 15MHz QPSK - Full RB)

Plot 7-94. Upper Band Edge Plot (LTE Band 38 - 15MHz QPSK - Full RB)

FCC ID: A3LSMA135U	PCTEST Proud to be part of @ element	PART 27 MEASUREMENT REPORT	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 64 of 80
1M2112270166-05.A3L	01/03/2022 - 02/07/2022	1/03/2022 – 02/07/2022 Portable Handset		Page 64 of 89
© 2022 PCTEST	•	•		V2.0 3/28/2021

	Input: RF Coupling: Align: Auto		t Z: 50 Ω CCorr RCal Ref: Int (S)	Atten: 26 dB µW Path: Star	dard Ga	i: Free Run te: LO Gain: Low	Center Freq Radio Std: N	: 2.575000000 None) GHz		requency 00000 GHz	Settings
l Range Gra				Ref Value 40.							000 MHz	
le/Div 10.0	dB			Ref value 40.	JU ABM					Auto Mar		
0 0 0					-	e-decisional second	hjare off of the second second			Freq Off: 0 Hz	set	
0								×	\			
	AN A		MM MM MANAGEMENT						horan			
0 t 2.558 GH	Iz							Stop	2.583 GHz			
l Range Tab	e v					Measure Tra			Trace 1			
	Range	Start Freq	Stop Freq	RBW		Trace Type quency	Amplitude	Trace Avera				
Sour				1.000 MHz		66667 GHz	-42.16 dBm	-17.16				
Spur 1		2.5600 GHz				50000 GHz	-31.24 dBm	-18.24				
Spur 1 2	2		2.5690 GHz	1.000 MHz	2.56888	30000 GHz	-26.15 dBm	-16.15	dB			
1 2 3	3	2.5650 GHz										
1	3 4	2.5690 GHz	2.5700 GHz			91667 GHz	-29.69 dBm 11.87 dBm	-19.69				

Plot 7-95. Lower Band Edge Plot (LTE Band 38 - 10MHz QPSK – Full RB)

Plot 7-96. Upper Band Edge Plot (LTE Band 38 - 10MHz QPSK - Full RB)

FCC ID: A3LSMA135U		PART 27 MEASUREMENT REPORT	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 65 of 90
1M2112270166-05.A3L	01/03/2022 – 02/07/2022 Portable Handset			Page 65 of 89
© 2022 PCTEST	•			V2.0 3/28/2021

	Input: RF Coupling: E Align: Auto		Z: 50 Ω CCorr RCal Ref: Int (S)	Atten: 26 dB µW Path: Star	idard Ga	g: Free Run ite: LO Gain: Low	Center Freq: Radio Std: N	: 2.57250000 Ione	0 GHz	and the second s	Frequency 00000 GHz	Settings
M Range Grap										CF Step 517.200) 0000 MHz	
ale/Div 10.0	dB			Ref Value 40.	00 dBm					Aut Ma		
.0										Freq Off 0 Hz	iset	1
					provense	anderstan with	\					1
.0												
0.0		-2000-000000000000000000000000000000000		AND IN THE REAL PROPERTY OF			and a state of the	Waren martile	when the			
.0	ng the stand of the state							- 1 , -	And a start and a start and a start a s			
art 2.558 GH	2							Sto	p 2.583 GHz			
All Range Table	e 🔻											
						Measure Trac Trace Type		Trace Avera	Trace 1 ige (Active)			
Spur		Start Freq	Stop Freq	RBW 1.000 MHz			Amplitude -39.07 dBm	∆Lim -14.0				
2			2.5650 GHz				-37.47 dBm	-24.4				
			2.5690 GHz 2.5700 GHz				-23.33 dBm	-13.3				
3	4 2					91667 GHz	-25.05 dBm	-15.0				

Plot 7-97. Lower Band Edge Plot (LTE Band 38 - 5MHz QPSK - Full RB)

Plot 7-98. Upper Band Edge Plot (LTE Band 38 - 5MHz QPSK - Full RB)

FCC ID: A3LSMA135U		PART 27 MEASUREMENT REPORT	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 66 of 89
1M2112270166-05.A3L	01/03/2022 - 02/07/2022	2 Portable Handset		Page 66 01 69
© 2022 PCTEST	•			V2.0 3/28/2021

7.5 Radiated Power (EIRP)

Test Overview

Equivalent Isotropic Radiated Power (EIRP) measurements are performed using the substitution method described in ANSI/TIA-603-E-2016 with the EUT transmitting into an integral antenna. Measurements on signals operating below 1GHz are performed using vertically and horizontally polarized tuned dipole antennas. Measurements on signals operating above 1GHz are performed using vertically and horizontally polarized broadband horn antennas. All measurements are performed as RMS average measurements while the EUT is operating at maximum power, and at the appropriate frequencies.

Test Procedures Used

KDB 971168 D01 v03r01 - Section 5.2.1

ANSI/TIA-603-E-2016 - Section 2.2.17

Test Settings

- Radiated power measurements are performed using the signal analyzer's "channel power" measurement capability for signals with continuous operation. For signals with burst transmission, the signal analyzer's "time domain power" measurement capability is used
- 2. RBW = 1 5% of the expected OBW, not to exceed 1MHz
- 3. VBW \ge 3 x RBW
- 4. Span = 1.5 times the OBW
- 5. No. of sweep points > 2 x span / RBW
- 6. Detector = RMS
- 7. Trigger is set to "free run" for signals with continuous operation with the sweep times set to "auto". Trigger is set to enable triggering only on full power bursts with the sweep time set less than or equal to the transmission burst duration
- 8. The integration bandwidth was roughly set equal to the measured OBW of the signal for signals with continuous operation. For signals with burst transmission, the "gating" function was enabled to ensure that measurements are performed during times in which the transmitter is operating at its maximum power
- 9. Trace mode = trace averaging (RMS) over 100 sweeps
- 10. The trace was allowed to stabilize

FCC ID: A3LSMA135U	PCTEST Poud to be part of @ element	PART 27 MEASUREMENT REPORT	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 67 of 90
1M2112270166-05.A3L	01/03/2022 - 02/07/2022	Portable Handset		Page 67 of 89
© 2022 PCTEST				V2.0 3/28/2021

The EUT and measurement equipment were set up as shown in the diagram below.

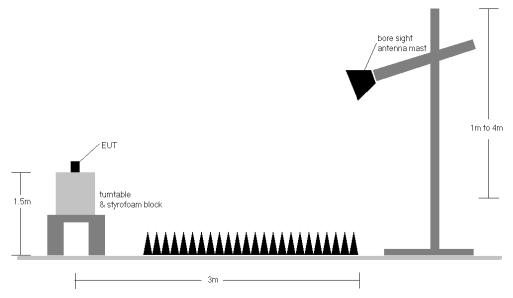


Figure 7-4. Radiated Test Setup >1GHz

Test Notes

- 1) The EUT was tested in three orthogonal planes and in all possible test configurations and positioning. The worst case emissions are reported with the EUT positioning, modulations, RB sizes and offsets, and channel bandwidth configurations shown in the tables below.
- 2) This unit was tested with its standard battery.

FCC ID: A3LSMA135U	Poctest of element	PART 27 MEASUREMENT REPORT	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 69 of 90
1M2112270166-05.A3L	01/03/2022 - 02/07/2022	Portable Handset		Page 68 of 89
© 2022 PCTEST	÷			V2.0 3/28/2021

Bandwidth	Mod.	Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Ant. Gain [dBi]	RB Size/Offset	Substitute Level [dBm]	EIRP [dBm]	EIRP [Watts]	EIRP Limit [dBm]	Margin [dB]
10 MHz	QPSK	2310.0	Н	115	214	9.30	1 / 49	11.61	20.91	0.123	23.98	-3.07
	16-QAM	2310.0	Н	115	214	9.30	1 / 49	10.56	19.86	0.097	23.98	-4.12
	QPSK	2307.5	Н	115	214	9.29	1/0	10.49	19.78	0.095	23.98	-4.20
IHz	QPSK	2310.0	Н	115	214	9.30	1/0	10.24	19.55	0.090	23.98	-4.43
5 M	QPSK	2312.5	Н	115	214	9.31	1/0	10.32	19.63	0.092	23.98	-4.35
	16-QAM	2310.0	Н	115	214	9.30	1 / 24	9.17	18.47	0.070	23.98	-5.51
10 MHz	Opposite Pol.	2310.0	V	107	119	9.30	1 / 49	10.48	19.78	0.095	23.98	-4.20

Table 7-2. EIRP Data (LTE Band 30)

Bandwidth	Mod.	Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Ant. Gain [dBi]	RB Size/Offset	Substitute Level [dBm]	EIRP [dBm]	EIRP [Watts]	EIRP Limit [dBm]	Margin [dB]
N	QPSK	2510.0	V	122	80	9.20	1/0	15.20	24.40	0.276	33.01	-8.61
MHz	QPSK	2535.0	V	129	80	9.24	1 / 50	14.45	23.69	0.234	33.01	-9.32
20 1	QPSK	2560.0	V	136	110	9.25	1/0	14.28	23.53	0.226	33.01	-9.48
2	16-QAM	2510.0	V	122	80	9.20	1/0	13.92	23.12	0.205	33.01	-9.89
N	QPSK	2507.5	V	122	80	9.20	1/0	14.87	24.07	0.255	33.01	-8.94
MHz	QPSK	2535.0	V	129	80	9.24	1 / 74	13.95	23.19	0.208	33.01	-9.82
15	QPSK	2562.5	V	136	110	9.25	1 / 37	14.40	23.65	0.232	33.01	-9.36
.	16-QAM	2507.5	V	122	80	9.20	1 / 37	13.88	23.08	0.203	33.01	-9.93
N	QPSK	2505.0	V	122	80	9.20	1/0	14.81	24.00	0.251	33.01	-9.01
MHz	QPSK	2535.0	V	129	80	9.24	1 / 49	13.82	23.06	0.202	33.01	-9.95
10	QPSK	2565.0	V	136	110	9.25	1/0	14.24	23.49	0.224	33.01	-9.52
	16-QAM	2505.0	V	122	80	9.20	1/0	13.82	23.01	0.200	33.01	-10.00
N	QPSK	2502.5	V	122	80	9.19	1/0	14.65	23.84	0.242	33.01	-9.17
MHz	QPSK	2535.0	V	129	80	9.24	1/0	13.71	22.95	0.197	33.01	-10.06
5 N	QPSK	2567.5	V	136	110	9.25	1 / 12	14.28	23.53	0.226	33.01	-9.48
	16-QAM	2502.5	V	122	80	9.19	1 / 12	13.55	22.74	0.188	33.01	-10.27
20 MHz	Opposite Pol.	2510.0	Н	135	351	9.20	1 / 0	11.93	21.13	0.130	33.01	-11.88

Table 7-3. EIRP Data (LTE Band 7)

Bandwidth	Mod.	Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Ant. Gain [dBi]	RB Size/Offset	Substitute Level [dBm]	EIRP [dBm]	EIRP [Watts]	EIRP Limit [dBm]	Margin [dB]
N	QPSK	2506.0	Н	100	1	9.20	1 / 50	17.75	26.95	0.495	33.01	-6.06
MHz	QPSK	2593.0	Н	130	357	9.23	1/0	16.90	26.13	0.410	33.01	-6.88
20 1	QPSK	2680.0	Н	130	351	9.49	1/0	14.44	23.93	0.247	33.01	-9.08
5	16-QAM	2506.0	Н	100	1	9.20	1 / 50	16.62	25.82	0.382	33.01	-7.19
N	QPSK	2503.5	Н	100	1	9.19	1 / 37	17.82	27.02	0.503	33.01	-5.99
MHz	QPSK	2593.0	н	130	357	9.23	1 / 37	17.03	26.26	0.423	33.01	-6.75
15	QPSK	2682.5	Н	130	351	9.50	1 / 37	14.24	23.74	0.237	33.01	-9.27
-	16-QAM	2503.5	Н	100	1	9.19	1 / 37	16.55	25.75	0.376	33.01	-7.26
N	QPSK	2501.0	Н	100	1	9.19	1 / 25	17.85	27.04	0.505	33.01	-5.97
MHz	QPSK	2593.0	Н	130	357	9.23	1 / 25	16.99	26.22	0.419	33.01	-6.79
10 1	QPSK	2685.0	Н	130	351	9.51	1 / 25	14.25	23.76	0.238	33.01	-9.25
-	16-QAM	2501.0	Н	100	1	9.19	1 / 25	16.63	25.82	0.382	33.01	-7.19
N	QPSK	2498.5	н	100	1	9.18	1 / 12	17.63	26.82	0.480	33.01	-6.19
MHz	QPSK	2593.0	н	130	357	9.23	1 / 12	17.01	26.24	0.421	33.01	-6.77
2 W	QPSK	2687.5	н	130	351	9.52	1 / 12	14.17	23.68	0.233	33.01	-9.33
	16-QAM	2498.5	Н	100	1	9.18	1 / 12	16.54	25.73	0.374	33.01	-7.28
20 MHz	Opposite Pol.	2506.0	V	138	100	9.20	1 / 99	17.29	26.49	0.446	33.01	-6.52

Table 7-4. EIRP Data (LTE Band 41(PC2))

FCC ID: A3LSMA135U		PART 27 MEASUREMENT REPORT	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 60 of 90
1M2112270166-05.A3L	01/03/2022 - 02/07/2022	Portable Handset		Page 69 of 89
© 2022 PCTEST	•			V2.0 3/28/2021

Bandwidth	Mod.	Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Ant. Gain [dBi]	RB Size/Offset	Substitute Level [dBm]	EIRP [dBm]	EIRP [Watts]	EIRP Limit [dBm]	Margin [dB]
N	QPSK	2506.0	Н	132	9	9.20	1 / 50	16.04	25.24	0.334	33.01	-7.77
MHz	QPSK	2593.0	Н	108	1	9.23	1 / 50	15.49	24.72	0.297	33.01	-8.29
20 1	QPSK	2680.0	Н	141	1	9.49	1/0	11.70	21.19	0.132	33.01	-11.82
2	16-QAM	2506.0	Н	132	9	9.20	1 / 50	15.23	24.43	0.277	33.01	-8.58
N	QPSK	2503.5	Н	132	9	9.19	1 / 37	16.04	25.24	0.334	33.01	-7.77
MHz	QPSK	2593.0	Н	108	1	9.23	1 / 37	15.53	24.76	0.299	33.01	-8.25
15	QPSK	2682.5	Н	141	1	9.50	1 / 37	11.58	21.08	0.128	33.01	-11.93
	16-QAM	2503.5	Н	132	9	9.19	1 / 37	15.14	24.34	0.271	33.01	-8.67
N	QPSK	2501.0	Н	132	9	9.19	1 / 25	16.00	25.19	0.330	33.01	-7.82
MHz	QPSK	2593.0	н	108	1	9.23	1 / 25	15.53	24.76	0.299	33.01	-8.25
101	QPSK	2685.0	Н	141	1	9.51	1 / 25	11.59	21.10	0.129	33.01	-11.91
	16-QAM	2501.0	Н	132	9	9.19	1 / 25	15.17	24.36	0.273	33.01	-8.65
N	QPSK	2498.5	Н	132	9	9.18	1/0	15.92	25.11	0.324	33.01	-7.90
MHz	QPSK	2593.0	Н	108	1	9.23	1 / 12	15.58	24.81	0.303	33.01	-8.20
2 1	QPSK	2687.5	Н	141	1	9.52	1 / 12	11.62	21.13	0.130	33.01	-11.88
	16-QAM	2498.5	Н	132	9	9.18	1 / 12	15.18	24.37	0.273	33.01	-8.64
20 MHz	Opposite Pol.	2506.0	V	110	109	9.20	1 / 99	15.82	25.02	0.318	33.01	-7.99

Table 7-5. EIRP Data (LTE Band 41(PC3)/38)

FCC ID: A3LSMA135U	PCTEST Proud to be part of @ element	PART 27 MEASUREMENT REPORT	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dego 70 of 90
1M2112270166-05.A3L	01/03/2022 - 02/07/2022	Portable Handset		Page 70 of 89
© 2022 PCTEST	•	•		V2.0 3/28/2021

7.6 Radiated Spurious Emissions Measurements

Test Overview

Radiated spurious emissions measurements are performed using the field strength conversion method described in KDB 971168 with the EUT transmitting into an integral antenna. Measurements on signals operating below 1GHz are performed using horizontally and vertically polarized tuned dipole antennas. Measurements on signals operating above 1GHz are performed using vertically and horizontally polarized broadband horn antennas. All measurements are performed as RMS measurements while the EUT is operating at maximum power, and at the appropriate frequencies.

Test Procedures Used

KDB 971168 D01 v03r01 - Section 5.8

Test Settings

- 1. RBW = 100kHz for emissions below 1GHz and 1MHz for emissions above 1GHz
- 2. VBW \ge 3 x RBW
- 3. Span = 1.5 times the OBW
- 4. No. of sweep points \geq 2 x span / RBW
- 5. Detector = RMS
- 6. Trace mode = Average (Max Hold for pulsed emissions)
- 7. The trace was allowed to stabilize

FCC ID: A3LSMA135U		PART 27 MEASUREMENT REPORT	MSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dago 71 of 90
1M2112270166-05.A3L	01/03/2022 - 02/07/2022	Portable Handset		Page 71 of 89
© 2022 PCTEST	•	•		V2.0 3/28/2021

The EUT and measurement equipment were set up as shown in the diagram below.

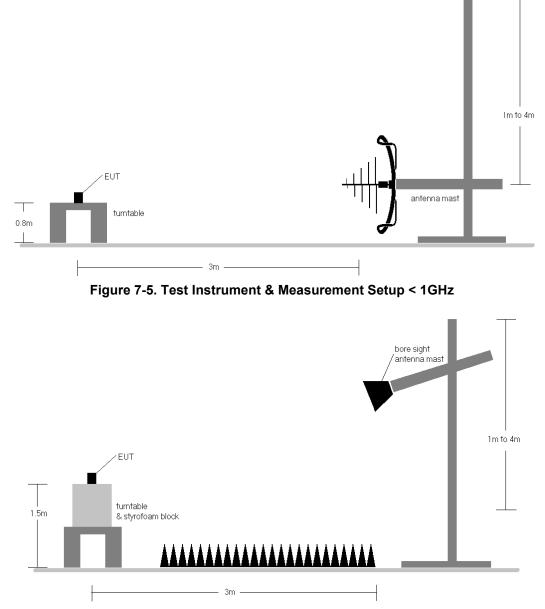
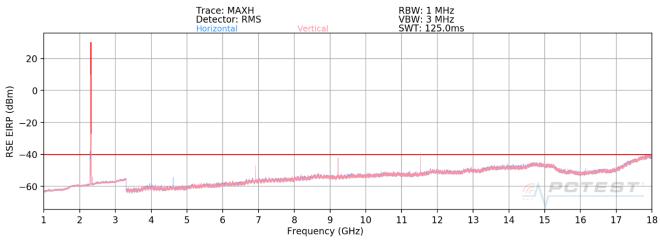


Figure 7-6. Test Instrument & Measurement Setup >1 GHz

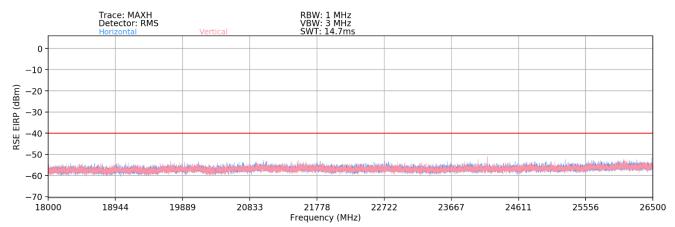

FCC ID: A3LSMA135U		PART 27 MEASUREMENT REPORT	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 72 of 90
1M2112270166-05.A3L	01/03/2022 - 02/07/2022	Portable Handset		Page 72 of 89
© 2022 PCTEST	•			V2.0 3/28/2021

- Field strengths are calculated using the Measurement quantity conversions in KDB 971168 Section 5.8.4.
 a) E(dBµV/m) = Measured amplitude level (dBm) + 107 + Cable Loss (dB) + Antenna Factor (dB/m)
 b) EIRP (dBm) = E(dBµV/m) + 20logD 104.8; where D is the measurement distance in meters.
- 2) The EUT was tested in three orthogonal planes and in all possible test configurations and positioning. The worst case emissions are reported with the EUT positioning, modulations, RB sizes and offsets, and channel bandwidth configurations shown in the tables below.
- 3) This unit was tested with its standard battery.
- 4) The spectrum is measured from 9kHz to the 10th harmonic of the fundamental frequency of the transmitter. The worst-case emissions are reported.
- 5) Emissions below 18GHz were measured at a 3 meter test distance while emissions above 18GHz were measured at a 1 meter test distance with the application of a distance correction factor.
- 6) The "-" shown in the following RSE tables are used to denote a noise floor measurement.

FCC ID: A3LSMA135U	PCTEST° Poud to be part of @ element	PART 27 MEASUREMENT REPORT	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 72 of 90
1M2112270166-05.A3L	01/03/2022 - 02/07/2022	Portable Handset		Page 73 of 89
© 2022 PCTEST	•	•		V2.0 3/28/2021



Bandwidth (MHz):		10							
Frequency (MHz):		2310.0							
RB / Offset:		1/25							
Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	EIRP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
939.21	V	-	-	-89.21	25.42	43.21	-52.04	-40.00	-12.04

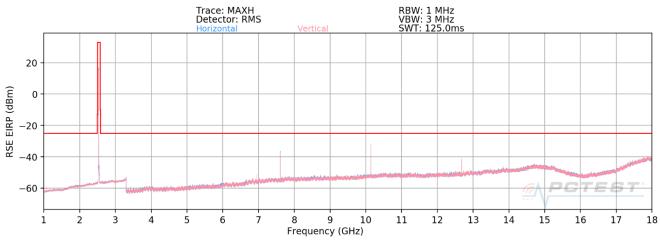

Table 7-6. Radiated Spurious Data (LTE Band 30 – Mid Channel)

FCC ID: A3LSMA135U	PCTEST* Proud to be part of @ element	PART 27 MEASUREMENT REPORT	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dego 74 of 90
1M2112270166-05.A3L	01/03/2022 - 02/07/2022	Portable Handset		Page 74 of 89
© 2022 PCTEST	•			V2.0 3/28/2021

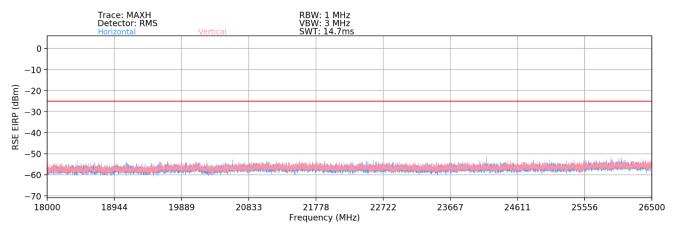
Bandwidth (MHz): 10 Frequency (MHz): 2310.0 RB / Offset: 1 / 0									
Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	EIRP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
4620.00	V	112	339	-70.56	1.79	38.23	-57.03	-40.00	-17.03
6930.00	V	110	356	-69.93	7.40	44.47	-50.79	-40.00	-10.79
9240.00	V	178	63	-73.06	11.88	45.82	-49.43	-40.00	-9.43
11550.00	V	100	317	-69.98	13.89	50.91	-44.34	-40.00	-4.34
13860.00	V	100	339	-80.64	17.78	44.14	-51.12	-40.00	-11.12
16170.00	V	100	331	-82.82	14.45	38.63	-56.63	-40.00	-16.63
18480.00	V	-	-	-59.89	1.13	48.24	-56.56	-40.00	-16.56
20790.00	V	-	-	-62.23	2.90	47.67	-57.13	-40.00	-17.13

Table 7-7. Radiated Spurious Data (LTE Band 30 - Mid Channel)

FCC ID: A3LSMA135U		PART 27 MEASUREMENT REPORT	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 75 of 90
1M2112270166-05.A3L	01/03/2022 - 02/07/2022	2 Portable Handset		Page 75 of 89
© 2022 PCTEST				V2.0 3/28/2021



Bandwidth (MHz):		20							
Frequency (MHz):	2510.0								
RB / Offset:	1/0								
Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	EIRP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
938.51	V	-	-	-83.98	25.42	48.44	-46.81	-25.00	-21.81


Table 7-8. Radiated Spurious Data (LTE Band 7 – Low Channel)

FCC ID: A3LSMA135U		PART 27 MEASUREMENT REPORT	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 76 of 90
1M2112270166-05.A3L	01/03/2022 - 02/07/2022	Portable Handset		Page 76 of 89
© 2022 PCTEST		•		V2.0 3/28/2021

Bandwidth (MHz): Frequency (MHz):		20 2510.0							
RB / Offset:	RB / Offset: 1 / 99								
Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	EIRP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
5020.00	V	110	54	-76.30	2.05	32.75	-62.51	-25.00	-37.51
7530.00	V	107	77	-66.17	8.60	49.43	-45.83	-25.00	-20.83
10040.00	V	100	59	-67.26	12.00	51.74	-43.51	-25.00	-18.51
12550.00	V	100	45	-72.19	15.12	49.93	-45.33	-25.00	-20.33
15060.00	V	101	33	-79.45	19.42	46.97	-48.28	-25.00	-23.28
17570.00	V	-	-	-79.35	22.44	50.09	-45.17	-25.00	-20.17
20080.00	V	-	-	-59.69	2.31	49.62	-55.18	-25.00	-30.18
22590.00	V	-	-	-62.36	2.99	47.63	-57.17	-25.00	-32.17

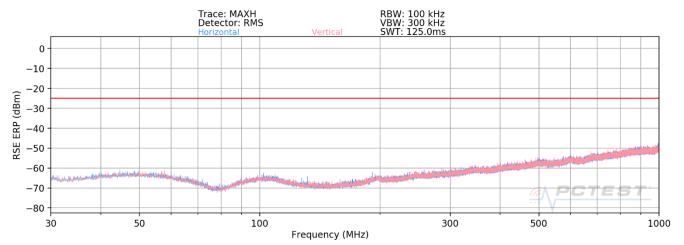
Table 7-9. Radiated Spurious Data (LTE Band 7 – Low Channel)

FCC ID: A3LSMA135U		PART 27 MEASUREMENT REPORT	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 77 of 90
1M2112270166-05.A3L	01/03/2022 - 02/07/2022	Portable Handset		Page 77 of 89
© 2022 PCTEST	•			V2.0 3/28/2021

Bandwidth (MHz):	20
Frequency (MHz):	2535.0
RB / Offset:	1 / 99

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	EIRP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
5070.00	V	101	61	-75.16	2.47	34.31	-60.95	-25.00	-35.95
7605.00	V	101	65	-62.10	8.66	53.56	-41.70	-25.00	-16.70
10140.00	V	107	67	-62.51	12.80	57.29	-37.97	-25.00	-12.97
12675.00	V	101	45	-70.73	15.40	51.67	-43.58	-25.00	-18.58
15210.00	V	105	95	-79.43	18.98	46.55	-48.71	-25.00	-23.71
17745.00	V	-	-	-79.61	24.31	51.70	-43.56	-25.00	-18.56
20280.00	V	-	-	-60.01	2.02	49.01	-55.79	-25.00	-30.79
22815.00	V	-	-	-62.41	3.03	47.62	-57.18	-25.00	-32.18

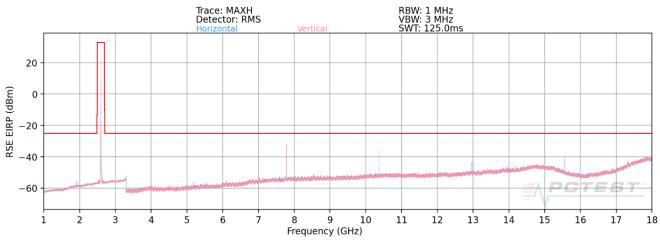
Table 7-10. Radiated Spurious Data (LTE Band 7 – Mid Channel)


Bandwidth (MHz):	20
Frequency (MHz):	2560.0
RB / Offset:	1 / 99

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	EIRP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
5120.00	V	112	70	-75.75	2.67	33.92	-61.34	-25.00	-36.34
7680.00	V	102	57	-62.30	8.90	53.60	-41.66	-25.00	-16.66
10240.00	V	100	69	-62.58	12.54	56.96	-38.30	-25.00	-13.30
12800.00	V	100	40	-72.59	16.60	51.01	-44.24	-25.00	-19.24
15360.00	V	105	66	-78.89	17.15	45.26	-50.00	-25.00	-25.00
17920.00	V	-	-	-79.85	25.52	52.67	-42.59	-25.00	-17.59
20480.00	V	-	-	-59.82	2.14	49.32	-55.48	-25.00	-30.48
23040.00	V	-	-	-61.98	2.96	47.98	-56.82	-25.00	-31.82

Table 7-11. Radiated Spurious Data (LTE Band 7 – High Channel)

FCC ID: A3LSMA135U		PART 27 MEASUREMENT REPORT	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 78 of 89
1M2112270166-05.A3L	01/03/2022 - 02/07/2022	Portable Handset		Page 70 01 09
© 2022 PCTEST				V2.0 3/28/2021



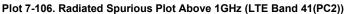
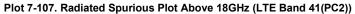

Bandwidth (MHz):	: 20								
Frequency (MHz):	2506.0								
RB / Offset:	1/50								
Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	EIRP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
979.47	V	-	-	-88.88	25.66	43.78	-51.48	-25.00	-26.48

Table 7-12. Radiated Spurious Data (LTE Band 41(PC2) – Low Channel)


FCC ID: A3LSMA135U	PCTEST Proud to be part of @ element	PART 27 MEASUREMENT REPORT	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 70 of 90
1M2112270166-05.A3L	01/03/2022 - 02/07/2022	Portable Handset		Page 79 of 89
© 2022 PCTEST	•			V2.0 3/28/2021

Bandwidth (MHz): Frequency (MHz): RB / Offset:		20 2506.0 1 / 50							
Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	EIRP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
5012.00	V	100	127	-66.46	1.97	42.51	-52.75	-25.00	-27.75
7518.00	V	104	97	-60.31	8.69	55.38	-39.88	-25.00	-14.88
10024.00	V	100	151	-59.95	12.51	59.56	-35.70	-25.00	-10.70
12530.00	V	101	150	-69.15	14.94	52.79	-42.47	-25.00	-17.47
15036.00	V	104	103	-74.65	19.16	51.51	-43.74	-25.00	-18.74
17542.00	V	103	116	-76.28	23.07	53.79	-41.46	-25.00	-16.46
20048.00	V	150	176	-50.37	2.25	58.88	-45.92	-25.00	-20.92
22554.00	V	-	-	-56.03	3.01	53.98	-50.82	-25.00	-25.82

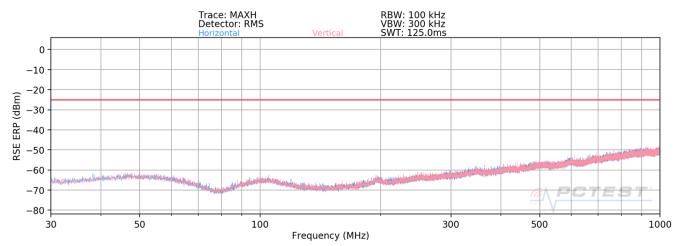
Table 7-13. Radiated Spurious Data (LTE Band 41(PC2) – Low Channel)

FCC ID: A3LSMA135U		PART 27 MEASUREMENT REPORT	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 90 of 90
1M2112270166-05.A3L	01/03/2022 - 02/07/2022	Portable Handset		Page 80 of 89
© 2022 PCTEST	•			V2.0 3/28/2021

Bandwidth (MHz):	20
Frequency (MHz):	2593.0
RB / Offset:	1 / 50

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	EIRP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
5186.00	V	108	120	-69.24	2.42	40.18	-55.07	-25.00	-30.07
7779.00	V	100	120	-55.11	9.92	61.81	-33.45	-25.00	-8.45
10372.00	V	100	100	-64.07	13.34	56.27	-38.99	-25.00	-13.99
12965.00	V	100	104	-73.85	16.73	49.88	-45.38	-25.00	-20.38
15558.00	V	100	81	-71.49	15.73	51.24	-44.02	-25.00	-19.02
18151.00	V	150	333	-52.68	1.18	55.50	-49.30	-25.00	-24.30
20744.00	V	150	205	-54.46	2.73	55.27	-49.53	-25.00	-24.53
23337.00	V	-	-	-56.41	2.88	53.47	-51.33	-25.00	-26.33

Table 7-14. Radiated Spurious Data (LTE Band 41(PC2) – Mid Channel)


Bandwidth (MHz):	20
Frequency (MHz):	2680.0
RB / Offset:	1 / 50

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	EIRP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
5360.00	V	126	123	-72.99	3.28	37.29	-57.97	-25.00	-32.97
8040.00	V	107	124	-58.73	9.48	57.75	-37.51	-25.00	-12.51
10720.00	V	101	137	-68.95	13.52	51.57	-43.69	-25.00	-18.69
13400.00	V	101	112	-72.38	17.49	52.11	-43.14	-25.00	-18.14
16080.00	V	100	140	-76.81	14.12	44.31	-50.95	-25.00	-25.95
18760.00	V	150	253	-49.93	1.31	58.38	-46.42	-25.00	-21.42
21440.00	V	150	272	-55.99	2.95	53.96	-50.84	-25.00	-25.84
24120.00	V	-	-	-54.89	3.38	55.49	-49.31	-25.00	-24.31

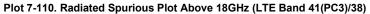
Table 7-15. Radiated Spurious Data (LTE Band 41(PC2) – High Channel)

FCC ID: A3LSMA135U		PART 27 MEASUREMENT REPORT	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 91 of 90
1M2112270166-05.A3L	01/03/2022 - 02/07/2022	Portable Handset		Page 81 of 89
© 2022 PCTEST		•		V2.0 3/28/2021




		20							
Frequency (MHz):		2506.0							
RB / Offset:		1/50							
Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	EIRP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
982.37	V	-	-	-88.80	25.73	43.93	-51.33	-25.00	-26.33


Table 7-16. Radiated Spurious Data (LTE Band 41(PC3)/38 – Low Channel)


FCC ID: A3LSMA135U		PART 27 MEASUREMENT REPORT	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 92 of 90
1M2112270166-05.A3L	01/03/2022 - 02/07/2022	Portable Handset		Page 82 of 89
© 2022 PCTEST				V2.0 3/28/2021

Bandwidth (MHz): Frequency (MHz): RB / Offset;		20 2506.0 1 / 50							
Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	EIRP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
5012.00	V	101	132	-65.19	1.97	43.78	-51.48	-25.00	-26.48
7518.00	V	101	102	-63.25	8.69	52.44	-42.82	-25.00	-17.82
10024.00	V	101	126	-63.08	12.51	56.43	-38.83	-25.00	-13.83
12530.00	V	101	153	-72.25	14.94	49.69	-45.57	-25.00	-20.57
15036.00	V	101	103	-76.37	19.16	49.79	-45.46	-25.00	-20.46
17542.00	V	101	116	-78.40	23.07	51.67	-43.58	-25.00	-18.58
20048.00	V	-	-	-61.27	2.25	47.98	-56.82	-25.00	-31.82
22554.00	V	-	-	-63.99	3.01	46.02	-58.78	-25.00	-33.78

Table 7-17. Radiated Spurious Data (LTE Band 41(PC3)/38 – Low Channel)

FCC ID: A3LSMA135U		PART 27 MEASUREMENT REPORT	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 92 of 90
1M2112270166-05.A3L	01/03/2022 - 02/07/2022	Portable Handset		Page 83 of 89
© 2022 PCTEST	•			V2.0 3/28/2021

Bandwidth (MHz):	20	
Frequency (MHz):	2593.0	
RB / Offset:	1 / 50	

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	EIRP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
5186.00	V	100	120	-70.07	2.42	39.35	-55.90	-25.00	-30.90
7779.00	V	100	117	-57.05	9.92	59.87	-35.39	-25.00	-10.39
10372.00	V	101	102	-67.08	13.34	53.26	-42.00	-25.00	-17.00
12965.00	V	104	104	-76.53	16.73	47.20	-48.06	-25.00	-23.06
15558.00	V	101	80	-73.67	15.73	49.06	-46.20	-25.00	-21.20
18151.00	V	-	-	-60.91	1.18	47.27	-57.53	-25.00	-32.53
20744.00	V	-	-	-62.33	2.73	47.40	-57.40	-25.00	-32.40
23337.00	V	-	-	-62.89	2.88	46.99	-57.81	-25.00	-32.81

Table 7-18. Radiated Spurious Data (LTE Band 41(PC3)/38 – Mid Channel)

Bandwidth (MHz):	20
Frequency (MHz):	2680.0
RB / Offset:	1 / 50

Frequency [MHz]	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Field Strength [dBµV/m]	EIRP Spurious Emission Level [dBm]	Limit [dBm]	Margin [dB]
5360.00	V	107	119	-73.68	3.28	36.60	-58.66	-25.00	-33.66
8040.00	V	107	124	-59.71	9.48	56.77	-38.49	-25.00	-13.49
10720.00	V	100	134	-69.60	13.52	50.92	-44.34	-25.00	-19.34
13400.00	V	100	113	-72.29	17.49	52.20	-43.05	-25.00	-18.05
16080.00	V	102	141	-77.67	14.12	43.45	-51.81	-25.00	-26.81
18760.00	V	-	-	-61.89	1.31	46.42	-58.38	-25.00	-33.38
21440.00	V	-	-	-62.27	2.95	47.68	-57.12	-25.00	-32.12
24120.00	V	-	-	-63.77	3.38	46.61	-58.19	-25.00	-33.19

Table 7-19. Radiated Spurious Data (LTE Band 41(PC3)/38 – High Channel)

FCC ID: A3LSMA135U	Pote for the former of the element	PART 27 MEASUREMENT REPORT	SAMSUNG	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:		Page 84 of 89	
1M2112270166-05.A3L	01/03/2022 - 02/07/2022	Portable Handset		Page 64 01 69	
© 2022 PCTEST				V2.0 3/28/2021	

7.7 Frequency Stability / Temperature Variation

Test Overview and Limit

Frequency stability testing is performed in accordance with the guidelines of ANSI/TIA-603-E-2016. The frequency stability of the transmitter is measured by:

- a.) **Temperature:** The temperature is varied from -30°C to +50°C in 10°C increments using an environmental chamber.
- b.) **Primary Supply Voltage:** The primary supply voltage is varied from 85% to 115% of the nominal value for non hand-carried battery and AC powered equipment. For hand-carried, battery-powered equipment, primary supply voltage is reduced to the battery operating end point which shall be specified by the manufacturer.

Test Procedure Used

ANSI/TIA-603-E-2016

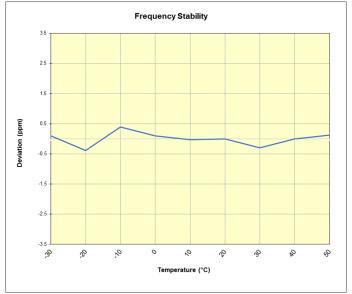
Test Settings

- 1. The carrier frequency of the transmitter is measured at room temperature (20°C to provide a reference).
- 2. The equipment is turned on in a "standby" condition for fifteen minutes before applying power to the transmitter. Measurement of the carrier frequency of the transmitter is made within one minute after applying power to the transmitter.
- 3. Frequency measurements are made at 10°C intervals ranging from -30°C to +50°C. A period of at least one half-hour is provided to allow stabilization of the equipment at each temperature level.

Test Setup

The EUT was connected via an RF cable to a spectrum analyzer with the EUT placed inside an environmental chamber.

Test Notes


None

FCC ID: A3LSMA135U	PCTEST Proud to be part of @ element	PART 27 MEASUREMENT REPORT	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 95 of 90
1M2112270166-05.A3L	01/03/2022 - 02/07/2022	Portable Handset		Page 85 of 89
© 2022 PCTEST	•			V2.0 3/28/2021

LTE Band 30							
	Operating Frequency (Hz):		2,310,000,000				
	Ref. Voltage (VDC):		4.31				
Voltage (%)	Power (VDC)	Temp (°C)	Frequency (Hz)	Freq. Dev. (Hz)	Deviation (%)		
		- 30	2,310,000,675	225	0.0000097		
		- 20	2,309,999,550	-900	-0.0000390		
		- 10	2,310,001,350	900	0.0000390		
		0	2,310,000,675	225	0.0000097		
100 %	4.31	+ 10	2,310,000,375	-75	-0.0000032		
		+ 20 (Ref)	2,310,000,450	0	0.0000000		
		+ 30	2,309,999,775	-675	-0.0000292		
		+ 40	2,310,000,450	0	0.0000000		
		+ 50	2,310,000,750	300	0.0000130		
Battery Endpoint	3.58	+ 20	2,310,000,450	0	0.0000000		

Table 7-20. LTE Band 30 Frequency Stability Data

Plot 7-111. LTE Band 30 Frequency Stability Chart

FCC ID: A3LSMA135U		PART 27 MEASUREMENT REPORT	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 86 of 80
1M2112270166-05.A3L	01/03/2022 - 02/07/2022	Portable Handset		Page 86 of 89
© 2022 PCTEST	•			V2.0 3/28/2021