Calibration Laboratory of Schmid \& Partner
 Engineering AG
 Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Service suisse d'étalonnage
C Service suisse d'etalonnage Servizio svizzero di taratura S Swiss Calibration Service

Client
UL Korea (Dymstec)

Accreditation No.: SCS 0108

CALIBRATION CERTIFICATE

Object	D1900V2-SN:5d199		
Calibration procedure(s)	QA CAL-05.v11 Calibration Procedure for SAR Validation Sources between $0.7-3 \mathrm{GHz}$		
Calibration date:	March 19, 2020		
This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.			
All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^{\circ} \mathrm{C}$ and humidity $<70 \%$,			
Calibration Equipment used (M\&TE critical for calibration)			
Primary Standards	ID \#	Cal Date (Certificate No.)	Schedule
Power meter NRP	SN: 104778	03-Apr-19 (No. 217-02892/02893)	Apr-20
Power sensor NRP-Z91	SN: 103244	03-Apr-19 (No. 217-02892)	Apr-20
Power sensor NRP-Z91	SN: 103245	03-Apr-19 (No. 217-02893)	Apr-20
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-19 (No. 217-02894)	Apr-20
Type-N mismatch combination	SN: 5047.2 / 06327	04-Apr-19 (No. 217-02895)	Apr-20
Reference Probe EX3DV4	SN: 7349	31-Dec-19 (No. EX3-7349_Dec19)	Dec-20
DAE4	SN: 601	27-Dec-19 (No. DAE4-601_Dec19)	Dec-20
Secondary Standards	ID \#	Check Date (in house)	Schedule
Power meter E4419B	SN: GB39512475	30-Oct-14 (in house check Feb-19)	In house
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-18)	In house
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-18)	In house
RF generator R\&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-18)	In house
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-19)	In house
	Name	Function	Signatur
Calibrated by:	Michael Weber	Laboratory Technician	
Approved by:	Katja Pokovic	Technical Manager	
This calibration certificate shall not be reproduced except in full without written approval of the laboratory.			

Calibration Laboratory of

Schmid \& Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C
Service suisse d'étalonnage
Servizio svizzero di taratura
S
Swiss Calibration Service
Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL
ConvF
N/A
tissue simulating liquid sensitivity in TSL / NORM x, y, z not applicable or not measured

Accreditation No.: SCS 0108

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak SpatialAveraged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz "

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	$\mathrm{dx}, \mathrm{dy}, \mathrm{dz}=5 \mathrm{~mm}$	
Frequency	$1900 \mathrm{MHz} \pm 1 \mathrm{MHz}$	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	$22.0^{\circ} \mathrm{C}$	40.0	$1.40 \mathrm{mho} / \mathrm{m}$
Measured Head TSL parameters	$(22.0 \pm 0.2){ }^{\circ} \mathrm{C}$	$41.5 \pm 6 \%$	$1.39 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Head TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	---	.--

SAR result with Head TSL

SAR averaged over $1 \mathrm{~cm}^{3}(1 \mathrm{~g})$ of Head TSL	Condition	
SAR measured	250 mW input power	$10.0 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$40.5 \mathrm{~W} / \mathrm{kg} \pm 17.0 \%(\mathrm{k}=2)$

SAR averaged over $10 \mathrm{~cm}^{3}(10 \mathrm{~g})$ of Head TSL	condition	
SAR measured	250 mW input power	$5.20 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$21.0 \mathrm{~W} / \mathrm{kg} \pm \mathbf{1 6 . 5} \%(\mathrm{k}=\mathbf{2})$

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	$22.0^{\circ} \mathrm{C}$	53.3	$1.52 \mathrm{mho} / \mathrm{m}$
Measured Body TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$54.2 \pm 6 \%$	$1.49 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Body TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	$\ldots--$	---

SAR result with Body TSL

SAR averaged over $1 \mathrm{~cm}^{3}(1 \mathrm{~g})$ of Body TSL	Condition	
SAR measured	250 mW input power	$9.80 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Body TSL parameters	normalized to 1 W	$39.8 \mathrm{~W} / \mathrm{kg} \pm 17.0 \%(\mathrm{k}=\mathbf{2})$

SAR averaged over $10 \mathrm{~cm}^{3}(10 \mathrm{~g})$ of Body TSL	condition	
SAR measured	250 mW input power	$5.16 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Body TSL parameters	normalized to 1 W	$20.8 \mathrm{~W} / \mathrm{kg} \pm 16.5 \%(\mathrm{k}=2)$

Appendix (Additional assessments outside the scope of SCS 0108) Antenna Parameters with Head TSL

Impedance, transformed to feed point	$52.5 \Omega+5.6 \mathrm{j} \Omega$
Return Loss	-24.5 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	$49.0 \Omega+6.5 \mathrm{j} \Omega$
Return Loss	-23.5 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.200 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.
The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.
No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

DASY5 Validation Report for Head TSL

Date: 19.03.2020
Test Laboratory: SPEAG, Zurich, Switzerland
DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2-SN:5d199
Communication System: UID 0 - CW; Frequency: 1900 MHz
Medium parameters used: $\mathrm{f}=1900 \mathrm{MHz} ; \sigma=1.39 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=41.5 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Phantom section: Flat Section
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)
DASY52 Configuration:

- Probe: EX3DV4 - SN7349; ConvF(8.6, 8.6, 8.6) @ 1900 MHz ; Calibrated: 31.12.2019
- Sensor-Surface: 1.4 mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.12.2019
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Dipole Calibration for Head Tissue/Pin=250 mW, $\mathrm{d}=10 \mathrm{~mm} /$ Zoom Scan ($7 \times \mathbf{x} \mathbf{x}$)/Cube 0:
Measurement grid: $\mathrm{dx}=5 \mathrm{~mm}, \mathrm{dy}=5 \mathrm{~mm}, \mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=110.5 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.02 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=18.7 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=10 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=5.2 \mathrm{~W} / \mathrm{kg}$
Smallest distance from peaks to all points 3 dB below $=9.2 \mathrm{~mm}$
Ratio of SAR at M2 to SAR at M1 $=54 \%$
Maximum value of SAR $($ measured $)=15.6 \mathrm{~W} / \mathrm{kg}$

DASY5 Validation Report for Body TSL
Date: 19.03.2020
Test Laboratory: SPEAG, Zurich, Switzerland
DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d199
Communication System: UID 0 - CW; Frequency: 1900 MHz
Medium parameters used: $\mathrm{f}=1900 \mathrm{MHz} ; \sigma=1.49 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=54.2 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Phantom section: Flat Section
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)
DASY52 Configuration:

- Probe: EX3DV4 - SN7349; ConvF(8.42, 8.42, 8.42) @ 1900 MHz ; Calibrated: 31.12.2019
- Sensor-Surface: 1.4 mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.12.2019
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Dipole Calibration for Body Tissue/Pin=250 mW, $\mathbf{d = 1 0 m m / Z o o m ~ S c a n ~ (7 x 7 x 7) / C u b e ~ 0 : ~}$
Measurement grid: $\mathrm{dx}=5 \mathrm{~mm}, \mathrm{dy}=5 \mathrm{~mm}, \mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=104.9 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.06 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=17.4 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=9.8 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=5.16 \mathrm{~W} / \mathrm{kg}$
Smallest distance from peaks to all points 3 dB below $=9 \mathrm{~mm}$
Ratio of SAR at M2 to SAR at M1 $=57.8 \%$
Maximum value of SAR $($ measured $)=14.7 \mathrm{~W} / \mathrm{kg}$

Impedance Measurement Plot for Body TSL

Justification for Extended SAR Dipole Calibrations

Instead of the typical annual calibration recommended by measurement standards, longer calibration intervals of up to three years may be considered when it is demonstrated that the SAR target, impedance and return loss of a dipole have remain stable according to the following requirements

KDB 865664 D01v01r04 requirements
a) return loss : <- 20 dB , within 20% of previous measurement
b) impedance : within 5Ω from previous measurement

Dipole Antenna	Head/Body	Date of Measurement	Return Loss (dB)	$\Delta \%$	Impedance (Ω)	$\Delta \Omega$
D1900 V2-SN : 5d199	Head	2020-03-19	-24.53	5.71	52.49	-2.10
		2021-09-08	-25.93		50.39	

c) extrapolated peak SAR : within 10% of that reported in the calibration data

Dipole Antenna	Head/Body	Date of Measurement	extrapolated peak SAR (W/kg)	$\Delta \%$
D1900 V2-SN : 5d199	Head	$2020-03-19$	40.50	0.99
		$2021-09-08$	40.90	

Calibration Laboratory of Schmid \& Partner
 Engineering AG
 Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client
UL Korea (Dymstec)

Certificate No: D2450V2-960_Mar20

CALIBRATION CERTIFICATE

Calibration date:

D2450V2 - SN:960

QA CAL-05.v11
Calibration Procedure for SAR Validation Sources between $0.7-3 \mathrm{GHz}$

March 20, 2020

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^{\circ} \mathrm{C}$ and humidity $<70 \%$.
Calibration Equipment used (M\&TE critical for calibration)

Issued: March 20, 2020
This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid \& Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
Accreditation No.: SCS 0108
The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid
ConvF sensitivity in TSL / NORM x, y, z
N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak SpatialAveraged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz$) "$, March 2010
d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz "

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $\mathrm{k}=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	$\mathrm{dx}, \mathrm{dy}, \mathrm{dz}=5 \mathrm{~mm}$	
Frequency	$2450 \mathrm{MHz} \pm 1 \mathrm{MHz}$	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	$22.0^{\circ} \mathrm{C}$	39.2	$1.80 \mathrm{mho} / \mathrm{m}$
Measured Head TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$38.2 \pm 6 \%$	$1.86 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Head TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	--	-

SAR result with Head TSL

SAR averaged over $1 \mathrm{~cm}^{3}(1 \mathrm{~g})$ of Head TSL	Condition	
SAR measured	250 mW input power	$13.6 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$53.2 \mathrm{~W} / \mathrm{kg} \pm 17.0 \%(\mathrm{k}=2)$

SAR averaged over $10 \mathrm{~cm}^{3}(10 \mathrm{~g})$ of Head TSL	condition	
SAR measured	250 mW input power	$6.28 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{2 4 . 8} \mathrm{~W} / \mathrm{kg} \pm \mathbf{1 6 . 5} \%(\mathrm{k}=\mathbf{2})$

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	$22.0^{\circ} \mathrm{C}$	52.7	$1.95 \mathrm{mho} / \mathrm{m}$
Measured Body TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$51.7 \pm 6 \%$	$2.04 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Body TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	---	---

SAR result with Body TSL

SAR averaged over $1 \mathrm{~cm}^{3}(1 \mathrm{~g})$ of Body TSL	Condition	
SAR measured	250 mW input power	$13.0 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Body TSL parameters	normalized to 1 W	$50.7 \mathrm{~W} / \mathrm{kg} \pm 17.0 \%(\mathrm{k}=2)$

SAR averaged over $10 \mathrm{~cm}^{3}(10 \mathrm{~g})$ of Body TSL	condition	
SAR measured	250 mW input power	$6.09 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Body TSL parameters	normalized to 1 W	$\mathbf{2 4 . 0 \mathrm { W } / \mathrm { kg } \pm 1 6 . 5 \% (\mathrm { k } = \mathbf { 2 })}$

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$55.4 \Omega+2.5 \mathrm{j} \Omega$
Return Loss	-25.0 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	$51.5 \Omega+5.2 j \Omega$
Return Loss	-25.5 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.162 ns

After long term use with 100 W radiated power, only a slight warming of the dipole near the feedpoint can be measured.
The dipole is made of standard seminigid coaxial cable. The center conductor of the feeding line is directly connected to the second am of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.
No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

DASY5 Validation Report for Head TSL
Date: 19.03.2020
Test Laboratory: SPEAG, Zurich, Switzerland
DUT: Dipole 2450 MHz ; Type: D2450V2; Serial: D2450V2 - SN:960
Communication System: UID 0 - CW; Frequency: 2450 MHz
Medium parameters used: $\mathrm{f}=2450 \mathrm{MHz} ; \sigma=1.86 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=38.2 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Phantom section: Flat Section
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)
DASY52 Configuration:

- Probe: EX3DV4 - SN7349; ConvF(7.98, 7.98, 7.98) @ 2450 MHz ; Calibrated: 31.12.2019
- Sensor-Surface: 1.4 mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.12.2019
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Dipole Calibration for Head Tissue/Pin=250 mW, $\mathbf{d = 1 0 \mathrm { mm } / \text { Zoom Scan (7x7x7)/Cube 0: }}$
Measurement grid: $\mathrm{dx}=5 \mathrm{~mm}, \mathrm{dy}=5 \mathrm{~mm}, \mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=117.6$ V/m; Power Drift $=0.05 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=27.0 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=13.6 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=6.28 \mathrm{~W} / \mathrm{kg}$
Smallest distance from peaks to all points 3 dB below $=9 \mathrm{~mm}$
Ratio of SAR at M2 to SAR at M1 $=50.6 \%$
Maximum value of SAR $($ measured $)=22.3 \mathrm{~W} / \mathrm{kg}$

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 20.03.2020
Test Laboratory: SPEAG, Zurich, Switzerland
DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:960
Communication System: UID 0 - CW; Frequency: 2450 MHz
Medium parameters used: $\mathrm{f}=2450 \mathrm{MHz} ; \sigma=2.04 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=51.7 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Phantom section: Flat Section
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)
DASY52 Configuration:

- Probe: EX3DV4 - SN7349; ConvF(8.02, 8.02, 8.02) @ 2450 MHz ; Calibrated: 31.12.2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.12.2019
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:
Measurement grid: $\mathrm{dx}=5 \mathrm{~mm}, \mathrm{dy}=5 \mathrm{~mm}, \mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=110.1 \mathrm{~V} / \mathrm{m}$; Power Drift $=-0.06 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=25.0 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=13 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=6.09 \mathrm{~W} / \mathrm{kg}$
Smallest distance from peaks to all points 3 dB below $=8.5 \mathrm{~mm}$
Ratio of SAR at M2 to SAR at M1 $=53.2 \%$
Maximum value of SAR (measured) $=21.1 \mathrm{~W} / \mathrm{kg}$

Impedance Measurement Plot for Body TSL

File View Ghannel Sweep Calibration Trace Scale Marker System window Help
Ch $1 \mathrm{Avg}=20$
Ch1: Start 2.25000 GHz

10.00	dB \$11						$\geqslant 1$		450000 G	Hz $-2 \mid$	5.540 dB
000											
0.00											
5.00											
-10.00											
-15.00											
-20.00											
-25.00											
-30.00											
$[-35.00$											
-40.00	Ch 1										

Justification for Extended SAR Dipole Calibrations

Instead of the typical annual calibration recommended by measurement standards, longer calibration intervals of up to three years may be considered when it is demonstrated that the SAR target, impedance and return loss of a dipole have remain stable according to the following requirements

KDB 865664 D01v01r04 requirements
a) return loss : <- 20 dB , within 20% of previous measurement
b) impedance : within 5Ω from previous measurement

Dipole Antenna	Head/Body	Date of Measurement	Return Loss (dB)	$\Delta \%$	Impedance (Ω)	$\Delta \Omega$
D2450V2-SN : 960	Head	2020-03-20	-25.00	15.44	55.40	-1.73
		2021-08-02	-28.86		53.67	

c) extrapolated peak SAR : within 10% of that reported in the calibration data

Dipole Antenna	Head/Body	Date of Measurement	extrapolated peak SAR (W/kg)	$\Delta \%$
D2450V2-SN : 960	Head	$2020-03-20$	53.20	4.14
		55.40		

Calibration Laboratory of Schmid \& Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS)

Accreditation No.: SCS 0108

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client UL Korea (Dymstec)

CALIBRATION CERTIFICATE

Calibration Laboratory of

Schmid \& Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst
C
Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
Accreditation No.: SCS 0108
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates
Glossary:
TSL tissue simulating liquid
ConvF sensitivity in TSL / NORM x, y, z
N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak SpatialAveraged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz " ", March 2010
d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz "

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $\mathrm{k}=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	$\mathrm{dx}, \mathrm{dy}, \mathrm{dz}=5 \mathrm{~mm}$	
Frequency	$2600 \mathrm{MHz} \pm 1 \mathrm{MHz}$	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	$22.0^{\circ} \mathrm{C}$	39.0	$1.96 \mathrm{mho} / \mathrm{m}$
Measured Head TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$37.5 \pm 6 \%$	$2.03 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Head TSL temperature change during test	$<0.5^{\circ} \mathrm{C}$	$--\ldots$	----

SAR result with Head TSL

SAR averaged over $1 \mathrm{~cm}^{3}(1 \mathrm{~g})$ of Head TSL	Condition	
SAR measured	250 mW input power	$14.5 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$56.6 \mathrm{~W} / \mathrm{kg} \pm 17.0 \%(\mathrm{k}=2)$

SAR averaged over $10 \mathrm{~cm}^{3}(10 \mathrm{~g})$ of Head TSL	condition	
SAR measured	250 mW input power	$6.44 \mathrm{~W} / \mathrm{kg}$
SAR for nominal Head TSL parameters	normalized to 1 W	$\mathbf{2 5 . 4 \mathrm { W } / \mathrm { kg } \pm 1 6 . 5 \% (k = 2)}$

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$48.2 \Omega-1.8 \mathrm{j} \Omega$
Return Loss	-31.6 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.153 ns

After long term use with 100 W radiated power, only a slight warming of the dipole near the feedpoint can be measured.
The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.
No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by \quad SPEAG

DASY5 Validation Report for Head TSL

Date: 23.04.2021
Test Laboratory: SPEAG, Zurich, Switzerland
DUT: Dipole 2600 MHz ; Type: D2600V2; Serial: D2600V2 - SN: 1178
Communication System: UID 0 - CW; Frequency: 2600 MHz
Medium parameters used: $\mathrm{f}=2600 \mathrm{MHz} ; \sigma=2.03 \mathrm{~S} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=37.5 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Phantom section: Flat Section
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)
DASY52 Configuration:

- Probe: EX3DV4 - SN7349; ConvF(7.84, 7.84, 7.84) @ 2600 MHz ; Calibrated: 28.12.2020
- Sensor-Surface: 1.4 mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 02.11.2020
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Dipole Calibration for Head Tissue/Pin=250 mW, $\mathbf{d = 1 0 m m} /$ Zoom Scan ($7 \times 7 \times 7$)/Cube 0:
Measurement grid: $\mathrm{dx}=5 \mathrm{~mm}, \mathrm{dy}=5 \mathrm{~mm}, \mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=119.4 \mathrm{~V} / \mathrm{m}$; Power Drift $=0.07 \mathrm{~dB}$
Peak SAR (extrapolated) $=29.0 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=14.5 \mathrm{~W} / \mathrm{kg} ; \operatorname{SAR}(10 \mathrm{~g})=6.44 \mathrm{~W} / \mathrm{kg}$
Smallest distance from peaks to all points 3 dB below $=8.9 \mathrm{~mm}$
Ratio of SAR at M2 to SAR at M1 $=50.3 \%$
Maximum value of SAR (measured) $=24.2 \mathrm{~W} / \mathrm{kg}$

Impedance Measurement Plot for Head TSL

Calibration Laboratory of
Schmid \& Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates
Client
UL Korea (Dymstec)

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

CALIBRATION CERTIFICATE

Object
D5GHzV2-SN:1184

Calibration procedure(s)

Calibration date:
QA CAL-22.v5 December 03, 2020

Calibration Procedure for SAR Validation Sources between $3-10 \mathrm{GHz}$

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate
All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^{\circ} \mathrm{C}$ and humidity $<70 \%$.
Calibration Equipment used (M\&TE critical for calibration)

Primary Standards	ID \#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	01-Apr-20 (No. 217-03100/03101)	Apr-21
Power sensor NRP-Z91	SN: 103244	01-Apr-20 (No. 217-03100)	Apr-21
Power sensor NRP-Z91	SN: 103245	01-Apr-20 (No. 217-03101)	Apr-21
Reference 20 dB Attenuator	SN: BH9394 (20k)	31-Mar-20 (No. 217-03106)	Apr-21
Type-N mismatch combination	SN: 310982 / 06327	31-Mar-20 (No. 217-03104)	Apr-21
Reference Probe EX3DV4 DAE4	SN: 3503	31-Dec-19 (No. EX3-3503_Dec19)	Dec-20
	SN: 601	02-Nov-20 (No. DAE4-601_Nov20)	Nov-21
Secondary Standards	ID \#	Check Date (in house)	
Power meter E4419B	SN: GB39512475	$30-$ Oct-14 (in house check Oct-20)	Scheduled Check
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-20)	In house check: Oct-22
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-20)	In house check: Oct-22
RF generator R\&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-20)	In house check: Oct-22
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-20)	In house check: Oct-22 In house check: Oct-21
Calibrated by:	Name	Function	Signature
Callbrated by:	Michael Weber	Laboratory Technician	
Approved by:	Katja Pokovic	Technical Manager	

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.
Issued: December 3, 2020

