
PCTEST

13, Heungdeok 1-ro, Giheung-gu, Yongin-si, Gyeonggi-do, 16954 South Korea Tel. 031.660.7319 / Fax 031.660.7318 http://www.pctest.com

PART 22 MEASUREMENT REPORT

Applicant Name:

Samsung Electronics Co., Ltd. 129, Samsung-ro, Yeongtong-gu, Suwon-si Gyeonggi-do, 16677, Korea

Date of Testing:

05/13/2021 - 06/01/2021 **Test Site/Location:** PCTEST Lab. Yongin-Si, Gyeonggi-do, South Korea **Test Report Serial No.:** 1K210511001902-02.A3L

FCC ID:

A3LSMA127FN

Applicant Name:

Samsung Electronics Co., Ltd.

Application Type: Model: EUT Type: FCC Classification: FCC Rule Part: Test Procedure(s): Certification SM-A127F/DSN Portable Handset PCS Licensed Transmitter Held to Ear (PCE) 22 ANSI C63.26-2015, ANSI/TIA-603-E-2016, KDB 971168 D01 v03r01

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in §2.947. Test results reported herein relate only to the item(s) tested.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

Prepared by

Ń

Reviewed by

FCC ID: A3LSMA127FN	Post State S	PART 22 MEASUREMENT REPORT	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 1 of 59
1K210511001902-02.A3L	05/13/2021 - 06/01/2021	Portable Handset		Page 1 of 58
© 2021 PCTEST				V 1.0

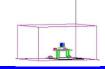


TABLE OF CONTENTS

1.0	INTF	RODUCTION	4
	1.1	Scope	4
	1.2	PCTEST Test Location	4
	1.3	Test Facility / Accreditations	4
2.0	PRC	DUCT INFORMATION	5
	2.1	Equipment Description	5
	2.2	Device Capabilities	5
	2.3	Test Configuration	5
	2.4	EMI Suppression Device(s)/Modifications	5
	2.5	Software and Firmware	5
3.0	DES	CRIPTION OF TESTS	6
	3.1	Evaluation Procedure	6
	3.2	Radiated Power and Radiated Spurious Emissions	6
4.0	MEA	ASUREMENT UNCERTAINTY	7
5.0	TES	T EQUIPMENT CALIBRATION DATA	8
6.0	SAM	IPLE CALCULATIONS	9
7.0	TES	T RESULTS	11
	7.1	Summary	11
	7.2	Occupied Bandwidth	12
	7.3	Spurious and Harmonic Emissions at Antenna Terminal	19
	7.4	Band Edge Emissions at Antenna Terminal	35
	7.5	Radiated Power (ERP)	42
	7.6	Radiated Spurious Emissions Measurements	45
	7.7	Frequency Stability / Temperature Variation	54
8.0	CON	NCLUSION	58

FCC ID: A3LSMA127FN	Poud to be part of @ element	PART 22 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dega 2 of 59
1K210511001902-02.A3L	05/13/2021 - 06/01/2021	Portable Handset	Page 2 of 58
© 2021 PCTEST	•	•	V 1.0

PART 22 MEASUREMENT REPORT

				EF	RP	Emission
Mode	Bandwidth	Modulation	Modulation Tx Frequency Range [MHz]		Max. Power [dBm]	Designator
GSM/GPRS	245.5 kHz	GMSK	824.2 - 848.8	0.733	28.65	246KGXW
EDGE	244.7 kHz	8-PSK	824.2 - 848.8	0.170	22.30	245KG7W
WCDMA	4.15 MHz	Spread Spectrum	826.4 - 846.6	0.072	18.60	4M15F9W
	10 MHz	QPSK	829.0 - 844.0	0.064	18.05	9M06G7D
		16QAM	829.0 - 844.0	0.049	16.91	9M02W7D
	5 MHz	QPSK	826.5 - 846.5	0.062	17.92	4M54G7D
LTE Band 5 3 MHz		16QAM	826.5 - 846.5	0.049	16.91	4M54W7D
	2 M⊔ -	QPSK	825.5 - 847.5	0.062	17.89	2M72G7D
		16QAM	825.5 - 847.5	0.049	16.91	2M72W7D
	1.4 MHz	QPSK	824.7 - 848.3	0.061	17.87	1M10G7D
	1.4 10172	16QAM	824.7 - 848.3	0.046	16.60	1M10W7D

FCC ID: A3LSMA127FN	Poul to be part of & element	PART 22 MEASUREMENT REPORT	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 2 of 50
1K210511001902-02.A3L	05/13/2021 - 06/01/2021	Portable Handset		Page 3 of 58
© 2021 PCTEST	•	•		V 1.0

1.0 INTRODUCTION

1.1 Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Innovation, Science and Economic Development Canada.

1.2 PCTEST Test Location

These measurement tests were conducted at the PCTEST facility located at 13, Heungdeok 1-ro, Giheung-gu, Yongin-si, Gyeonggi-do, 16954. The measurement facility is compliant with the test site requirements specified in ANSI C63.4-2014.

1.3 Test Facility / Accreditations

Measurements were performed at PCTEST Engineering Lab located in 13, Heungdeok 1-ro, Giheung-gu, Yongin-si, Gyeonggi-do, 16954 South Korea.

- PCTEST is an ISO 17025-2017 accredited test facility under the National Voluntary Laboratory Accreditation Program (NVLAP) with Certificate number 600143-0 for Specific Absorption Rate (SAR), and Electromagnetic Compatibility (EMC) & Telecommunications testing for FCC and Innovation, Science, and Economic Development Canada (ISED) rules.
- PCTEST TCB is a Telecommunication Certification Body (TCB) accredited to ISO/IEC 17065-2012 by A2LA (Certificate number 2041.03) in all scopes of FCC Rules and ISED Standards (RSS).
- PCTEST facility is a registered (26168) test laboratory with the site description on file with ISED.

FCC ID: A3LSMA127FN		PART 22 MEASUREMENT REPORT	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 4 of 59
1K210511001902-02.A3L	05/13/2021 - 06/01/2021	Portable Handset		Page 4 of 58
© 2021 PCTEST	•			V 1.0

2.0 PRODUCT INFORMATION

2.1 Equipment Description

The Equipment Under Test (EUT) is the **Samsung Portable Handset FCC ID: A3LSMA127FN**. The test data contained in this report pertains only to the emissions due to the EUT's licensed transmitters that operate under the provisions of Part 22.

Test Device Serial No.: 2445M, 2950M, 2966M

2.2 Device Capabilities

This device contains the following capabilities:

850/1900 GSM/GPRS/EDGE, 850 WCDMA/HSPA, Multi-band LTE, 802.11b/g/n WLAN, BT (1x, EDR, LE), NFC

2.3 Test Configuration

The EUT was tested per the guidance of ANSI/TIA-603-E-2016 and KDB 971168 D01 v03r01. See Section 3.0 of this test report for a description of the radiated and antenna port conducted emissions tests.

2.4 EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and no modifications were made during testing.

2.5 Software and Firmware

The test was conducted with firmware version A127FXXE0AUE7 installed on the EUT.

FCC ID: A3LSMA127FN	PCTEST Proud to be part of @ element	PART 22 MEASUREMENT REPORT	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 5 of 58
1K210511001902-02.A3L	05/13/2021 - 06/01/2021	Portable Handset		Fage 5 01 56
© 2021 PCTEST	•			V 1.0

3.0 DESCRIPTION OF TESTS

3.1 Evaluation Procedure

The measurement procedures described in the "Land Mobile FM or PM – Communications Equipment – Measurements and Performance Standards" (ANSI/TIA-603-E-2016) and "Measurement Guidance for Certification of Licensed Digital Transmitters" (KDB 971168 D01 v03r01) were used in the measurement of the EUT.

Deviation from Measurement Procedure.....None

3.2 Radiated Power and Radiated Spurious Emissions

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. The test site inside the chamber is a 6m x 5.2m elliptical, obstruction-free area in accordance with Figure 5.7 of Clause 5 in ANSI C63.4-2014. Absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections for measurements above 1GHz. For measurements below 1GHz, the absorbers are removed. A raised turntable is used for radiated measurement. The turn table is a continuously rotatable, remote-controlled, metallic turntable and 2 meters (6.56 ft.) in diameter. The turn table is flush with the raised floor of the chamber in order to maintain its function as a ground plane. An 80cm tall test table made of Innco is placed on top of the turn table. An Innco table is placed on top of the test table to bring the total table height to 1.5m.

The equipment under test was transmitting while connected to its integral antenna and is placed on a turntable 3 meters from the receive antenna. The receive antenna height is adjusted between 1 and 4 meter height, the turntable is rotated through 360 degrees, and the EUT is manipulated through all orthogonal planes representative of its typical use to achieve the highest reading on the receive spectrum analyzer.

For radiated power measurements, substitution method is used per the guidance of ANSI/TIA-603-E-2016. A halfwave dipole is substituted in place of the EUT. For emissions above 1GHz, a horn antenna is substituted in place of the EUT. The substitute antenna is driven by a signal generator with the level of the signal generator being adjusted to obtain the same receive spectrum analyzer level previously recorded from the spurious emission from the EUT. The power of the emission is calculated using the following formula:

P_{d [dBm]} = P_{g [dBm]} - cable loss [dB] + antenna gain [dBd/dBi];

where P_d is the dipole equivalent power, P_g is the generator output into the substitution antenna, and the antenna gain is the gain of the substitute antenna used relative to either a half-wave dipole (dBd) or an isotropic source (dBi). The substitute level is equal to $P_{g \text{ [dBm]}}$ – cable loss [dB].

For radiated spurious emissions measurements and calculations, conversion method is used per the formulas in KDB 971168 Section 5.8.4. Field Strength (EIRP) is calculated using the following formulas:

 $E_{[dB\muV/m]}$ = Measured amplitude level $_{[dBm]}$ + 107 + Cable Loss $_{[dB]}$ + Antenna Factor $_{[dB/m]}$ And EIRP $_{[dBm]}$ = $E_{[dB\muV/m]}$ + 20logD - 104.8; where D is the measurement distance in meters.

All radiated measurements are performed in a chamber that meets the site requirements per ANSI C63.4-2014. Additionally, radiated emissions below 30MHz are also validated on an Open Area Test Site to assert correlation with the chamber measurements per the requirements of KDB 414788 D01.

Radiated power and radiated spurious emission levels are investigated with the receive antenna horizontally and vertically polarized per ANSI/TIA-603-E-2016.

FCC ID: A3LSMA127FN	Froud to be part of @ element	PART 22 MEASUREMENT REPORT	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 6 of 59
1K210511001902-02.A3L	05/13/2021 - 06/01/2021	Portable Handset		Page 6 of 58
© 2021 PCTEST	•	•		V 1.0

4.0 MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.4-2014. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95% level of confidence. The measurement uncertainty shown below meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Contribution	Expanded Uncertainty (±dB)
Conducted Bench Top Measurements	1.20
Radiated Disturbance (<1GHz)	3.01
Radiated Disturbance (>1GHz)	5.56
Radiated Disturbance (>18GHz)	3.16

FCC ID: A3LSMA127FN	PCTEST Proud to be part of @ element	PART 22 MEASUREMENT REPORT	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dago 7 of 59
1K210511001902-02.A3L	05/13/2021 - 06/01/2021	Portable Handset		Page 7 of 58
© 2021 PCTEST	-	·		V 1.0

5.0 TEST EQUIPMENT CALIBRATION DATA

Test Equipment Calibration is traceable to the National Institute of Standards and Technology (NIST). Measurements antennas used during testing were calibrated in accordance to the requirements of ANSI C63.5-2017.

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	E5515C	Wireless Communications Test Set	2/19/2021	Annual	2/18/2022	MY50262130
Agilent	N9030A	PXA Signal Analyzer	6/29/2020	Annual	6/28/2021	MY49432391
Antritsu	S820E	Cable and Antenna Analyzer	6/29/2020	Annual	6/28/2021	1839097
Antritsu	MA24106A	USB Power Sensor	6/29/2020	Annual	6/28/2021	1244512
Antritsu	MA24106A	USB Power Sensor	2/19/2021	Annual	2/18/2022	1344557
Com-Power	AL-130R	Active Loop Antenna	10/29/2020	Biennial	10/28/2022	10160045
Com-Power	PAM-118A	Preamplifier	6/29/2020	Annual	6/28/2021	551042
Espec	SH-242	Environmental Chamber	9/16/2020	Annual	9/15/2021	93011064
ETS Lindgren	3110C	Biconical Antenna	7/9/2020	Biennial	7/8/2022	00211248
ETS Lindgren	3110C	Biconical Antenna	7/9/2020	Biennial	7/8/2022	00211250
ETS Lindgren	3148B	Log-periodic Antenna	7/9/2020	Biennial	7/8/2022	00211278
ETS Lindgren	3148B	Log-periodic Antenna	7/9/2020	Biennial	7/8/2022	00211263
Keysight Technologies	N9020B	MXA Signal Analyzer	11/13/2020	Annual	11/12/2021	MY55470135
Keysight Technologies	N9030B	PXA Signal Analyzer	5/1/2021	Annual	4/30/2022	MY57142018
Mini-Circuits	ZHDC-16-63-S+	Coupler	6/29/2020	Annual	6/28/2021	F709401716
Mini-Circuits	ZNDC-18-2G-S+	Coupler	6/29/2020	Annual	6/28/2021	F280401542
Mini-Circuits	BW-N10W5+	Attenuator	6/29/2020	Annual	6/28/2021	1607
Mini-Circuits	BW-N10W5+	Attenuator	6/29/2020	Annual	6/28/2021	1607
Rohde & Schwarz	TS-PR18	Preamplifier	6/29/2020	Annual	6/28/2021	102141
Rohde & Schwarz	TS-PR1840	Preamplifier	6/29/2020	Annual	6/28/2021	100049
Rohde & Schwarz	SMBV100B	Signal Generator	11/5/2020	Annual	11/4/2021	101568
Rohde & Schwarz	CMW500	Wideband Radio Communication Tester	6/29/2020	Annual	6/28/2021	116851
Rohde & Schwarz	CMW500	Wideband Radio Communication Tester	2/19/2021	Annual	2/18/2022	131453
Rohde & Schwarz	CMW500	Wideband Radio Communication Tester	2/19/2021	Annual	2/18/2022	131454
Rohde & Schwarz	CMW500	Wideband Radio Communication Tester	2/19/2021	Annual	2/18/2022	150117
Rohde & Schwarz	ENV216	Two-Line V-Network	5/24/2021	Annual	5/23/2022	101319
Rohde & Schwarz	ESW44	EMI Test Receiver 2Hz to 44 GHz	6/29/2020	Annual	6/28/2021	101761
Rohde & Schwarz	FSW43	Signal & Spectrum Analyzer	9/17/2020	Annual	9/16/2021	101250
Rohde & Schwarz	TS-SFUNIT-Rx	Shielded Filter Unit	2/19/2021	Annual	2/18/2022	102131
Rohde & Schwarz	TS-SFUNIT-Rx	Shielded Filter Unit	3/29/2021	Annual	3/28/2022	102151
Schwarzbeck	UHA9105	Dipole Antenna	7/9/2020	Biennial	7/8/2022	91052522
Sunol Sciences	DRH-118	Horn Antenna	8/9/2019	Biennial	8/8/2021	A102416-1
Sunol Sciences	DRH-118	Horn Antenna	1/12/2021	Biennial	1/11/2023	A060215

Table 5-1. Test Equipment

Notes:

For equipment listed above that has a calibration date or calibration due date that falls within the test date range, care was taken to ensure that this equipment was used after the calibration date and before the calibration due date.

FCC ID: A3LSMA127FN	Poud to be part of element	PART 22 MEASUREMENT REPORT	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 8 of 58
1K210511001902-02.A3L	05/13/2021 - 06/01/2021	Portable Handset		Fage o 01 50
© 2021 PCTEST		•		V 1.0

6.0 SAMPLE CALCULATIONS

GSM Emission Designator

Emission Designator = 250KGXW

GSM BW = 250 kHz G = Phase Modulation X = Cases not otherwise covered W = Combination (Audio/Data)

EDGE Emission Designator

Emission Designator = 250KG7W EDGE BW = 250 kHz G = Phase Modulation 7 = Quantized/Digital Info W = Combination (Audio/Data)

WCDMA Emission Designator

Emission Designator = 4M16F9W WCDMA BW = 4.16 MHz E = Frequency Modulation

F = Frequency Modulation 9 = Composite Digital Info W = Combination (Audio/Data)

QPSK Modulation

Emission Designator = 8M62G7D

LTE BW = 8.62 MHz G = Phase Modulation 7 = Quantized/Digital Info D = Data transmission, telemetry, telecommand

QAM Modulation

Emission Designator = 8M45W7D

LTE BW = 8.45 MHz W = Amplitude/Angle Modulated 7 = Quantized/Digital Info D = Data transmission, telemetry, telecommand

FCC ID: A3LSMA127FN	Poul to be part of @ element	PART 22 MEASUREMENT REPORT	SAMSUNG	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 0 of 59	
1K210511001902-02.A3L	05/13/2021 - 06/01/2021	Portable Handset		Page 9 of 58	
© 2021 PCTEST	•	•		V 1.0	

Spurious Radiated Emission

Example: Spurious emission at 3700.40 MHz

The receive spectrum analyzer reading at 3 meters with the EUT on the turntable was -81.0 dBm. The gain of the substituted antenna is 8.1 dBi. The signal generator connected to the substituted antenna terminals is adjusted to produce a reading of -81.0 dBm on the spectrum analyzer. The loss of the cable between the signal generator and the terminals of the substituted antenna is 2.0 dB at 3700.40 MHz. So 6.1 dB is added to the signal generator reading of -30.9 dBm yielding -24.80 dBm. The fundamental EIRP was 25.50 dBm so this harmonic was 25.50 dBm -(-24.80) = 50.3 dBc.

FCC ID: A3LSMA127FN	PCTEST° Proud to be part of @ element	PART 22 MEASUREMENT REPORT	SAMSUNG	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 10 of 59	
1K210511001902-02.A3L	05/13/2021 - 06/01/2021	Portable Handset		Page 10 of 58	
© 2021 PCTEST	•	•		V 1.0	

7.0 TEST RESULTS

7.1 Summary

Company Name:	Samsung Electronics Co., Ltd.
FCC ID:	A3LSMA127FN
FCC Classification:	PCS Licensed Transmitter Held to Ear (PCE)
Mode(s):	GSM/GPRS/EDGE/WCDMA/LTE

Test Condition	Test Description	FCC Part Section(s)	RSS Section(s)	Test Limit	Test Result	Reference
٥	Transmitter Conducted Output Power	2.1046	RSS-132(5.4)	N/A	PASS	See RF Exposure Report
JCTE	Occupied Bandwidth	2.1049	RSS-Gen(6.7)	N/A	PASS	Section 7.2
CONDUCTED	Conducted Band Edge / Spurious Emissions	2.1051, 22.917(a)	RSS-132(5.5)	> 43 + 10log10(P[Watts]) at Band Edge and for all out- of-band emissions	PASS	Sections 7.3, 7.4
Ö	Frequency Stability	2.1055, 22.355	RSS-132(5.3)	< 2.5pp m	PASS	Section 7.7
RADIATED	Effective Radiated Power / Equivalent Isotropic Radiated Power	22.913(a)(5)	RSS-132(5.4)	< 7 Watts max. ERP	PASS	Section 7.5
RADI	Radiated Spurious Emissions	2.1053, 22.917(a)	RSS-132(5.5)	> 43 + 10 log10 (P[Watts]) for all out-of-band emissions	PASS	Section 7.6

Table 7-1. Summary of Test Results

Notes:

- 1) All modes of operation and data rates were investigated. The test results shown in the following sections represent the worst case emissions.
- 2) The analyzer plots were all taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables, directional couplers, and attenuators used as part of the system to maintain a link between the call box and the EUT at all frequencies of interest.
- 3) All antenna port conducted emissions testing was performed on a test bench with the antenna port of the EUT connected to the spectrum analyzer through calibrated cables, attenuators, and couplers.
- 4) All conducted emissions measurements are performed with automated test software to capture the corresponding plots necessary to show compliance. The measurement software utilized is PCTEST EMC Software Tool Beta 8.

FCC ID: A3LSMA127FN	POTEST* Poud to be part of @ element	PART 22 MEASUREMENT REPORT	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dago 11 of 59
1K210511001902-02.A3L	05/13/2021 - 06/01/2021	Portable Handset		Page 11 of 58
© 2021 PCTEST				V 1.0

7.2 Occupied Bandwidth

Test Overview

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured. All modes of operation were investigated and the worst case configuration results are reported in this section.

Test Procedure Used

KDB 971168 D01 v03r01 - Section 4.2

Test Settings

- 1. The signal analyzer's automatic bandwidth measurement capability was used to perform the 99% occupied bandwidth and the 26dB bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = 1 5% of the expected OBW
- 3. VBW \geq 3 x RBW
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep = auto couple
- 7. The trace was allowed to stabilize
- 8. If necessary, steps 2 7 were repeated after changing the RBW such that it would be within
 - 1-5% of the 99% occupied bandwidth observed in Step 7

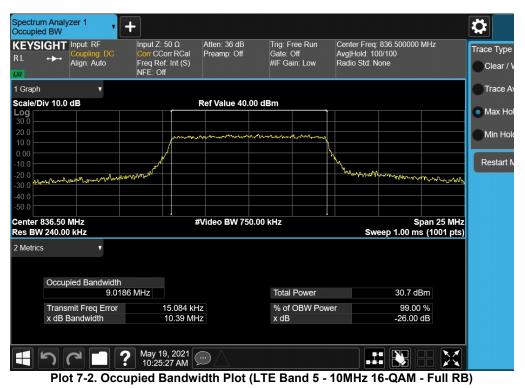
Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-1. Test Instrument & Measurement Setup

<u>Test Notes</u>

None.


FCC ID: A3LSMA127FN	Proud to be part of @ element	PART 22 MEASUREMENT REPORT	SAMSUNG	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dogo 12 of 59	
1K210511001902-02.A3L	05/13/2021 - 06/01/2021	Portable Handset		Page 12 of 58	
© 2021 PCTEST				V 1.0	

LTE Band 5

L ++-	Input: RF Coupling: DC	Input Ζ: 50 Ω Corr CCorr RCa		Trig: Free Run Gate: Off	Avg Hold:>10		Trace T
	Align: Auto	Freq Ref: Int (S) NFE: Off		#IF Gain: Low	Radio Std: N	one	Clea
Graph	•						Trac
cale/Div 10.	0 dB		Ref Value 40.00	dBm			💿 Max
0.0							
0.0				·····			Min
.00		/			\		
0.0		- And			Mar an		Rest
0.0	man and and and and and and and and and a	CUNSTAIN OF				and another state and a state of the former for the state of the state	·····
0.0							
0.0							
nter 836.50			#Video BW 750.	00 kHz		Span 25 N	
es BW 240.0					SW	eep 1.00 ms (1001 p	ots)
Metrics	T						
Occu	upied Bandwidth	25 MHz		Total Power		32.4 dBm	
Tran	smit Freq Error Bandwidth	-2 10.55 M	2 Hz ⁄/Hz	% of OBW Pov x dB	ver	99.00 % -26.00 dB	
		10.001				20.00 40	

Plot 7-1. Occupied Bandwidth Plot (LTE Band 5 - 10MHz QPSK - Full RB)

FCC ID: A3LSMA127FN		PART 22 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 12 of 59
1K210511001902-02.A3L	05/13/2021 - 06/01/2021	Portable Handset	Page 13 of 58
© 2021 PCTEST	•	·	V 1.0

Spectrum Analyzer 1 Occupied BW	' +					
	pling: DC Co n: Auto Fr	put Z: 50 Ω orr CCorr RCal eq Ref: Int (S) FE: Off	Atten: 36 dB Preamp: Off	Trig: Free Run Gate: Off #IF Gain: Low	Center Freq: 836.500000 MHz Avg Hold: 100/100 Radio Std: None	Trace
1 Graph						Tra
Scale/Div 10.0 dB			Ref Value 40.00	dBm		
Log 30.0						• Ma
20.0		~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	m		Mi
10.0		/			\	
-10.0		and the second s			Who was a second	Re
-20.0	non mon land				Mundula hand hand	~~~~~
-30.0						
-50.0						
Center 836.500 MH		#	Video BW 390.0	00 kHz	Span 12.	
Res BW 120.00 kHz					Sweep 1.00 ms (100)1 pts)
2 Metrics	V					
Occupied I				7.4.0	04 7 15	
	4.5352 MF			Total Power	31.7 dBm	
Transmit F x dB Band		-878 H 5.395 MH		% of OBW Pow x dB	er 99.00 % -26.00 dB	
x ab band	maai	0.000 1011		X GD	-20.00 40	
500	?	May 19, 2021 10:26:34 AM				X

Plot 7-3. Occupied Bandwidth Plot (LTE Band 5 - 5MHz QPSK - Full RB)

Plot 7-4. Occupied Bandwidth Plot (LTE Band 5 - 5MHz 16-QAM - Full RB)

FCC ID: A3LSMA127FN		PART 22 MEASUREMENT REPORT	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dego 14 of 59
1K210511001902-02.A3L	05/13/2021 - 06/01/2021	Portable Handset		Page 14 of 58
© 2021 PCTEST	•			V 1.0

Spectrum A Occupied E		+				\$
	HT Input: RF Coupling: DC Align: Auto	Input Ζ: 50 Ω Corr CCorr RCal Freq Ref: Int (S) NFE: Off	Atten: 36 dB Preamp: Off	Trig: Free Run Gate: Off #IF Gain: Low	Center Freq: 836.500000 M Avg Hold: 100/100 Radio Std: None	IHz Trace Typ
1 Graph	•					Trace.
Scale/Div	10.0 dB		Ref Value 40.00) dBm		
Log 30.0						Max H
20.0			the management	reconcertation many		Min He
10.0					\	
10.0					No	Restart
-20.0	allow law we lake whether	han you the second			We by the a manufacture and and	monoraliter
-40.0						
-50.0						
Center 83 Res BW 6			#Video BW 220.	00 kHz	Spa Sweep 12.5 ms	an 7.5 MHz (1001 pts)
2 Metrics	v					
C	occupied Bandwidth					
		35 MHz		Total Power	31.9 dBr	n
	ransmit Freq Error	-1.546 kł		% of OBW Pow		
x	dB Bandwidth	3.128 M	łz	x dB	-26.00 d	В
		May 19, 2021	\frown			
		10:27:48 AM				

Plot 7-5. Occupied Bandwidth Plot (LTE Band 5 - 3MHz QPSK - Full RB)

Plot 7-6. Occupied Bandwidth Plot (LTE Band 5 - 3MHz 16-QAM - Full RB)

FCC ID: A3LSMA127FN	Pour do be part of @ element	PART 22 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 15 of 59
1K210511001902-02.A3L	05/13/2021 - 06/01/2021	Portable Handset	Page 15 of 58
© 2021 PCTEST	·	·	V 1.0

Spectrum Ana Occupied BW		+						‡
KEYSIGH	Coupling DC	Input Z: 50 Ω Corr CCorr RCal Freq Ref: Int (S) NFE: Off	Atten: 36 dB Preamp: Off	Trig: Free Ru Gate: Off #IF Gain: Low		Center Freq: Avg Hold: 10 Radio Std: No		Z Trace Typ
1 Graph	T							Trace
Scale/Div 10	.0 dB		Ref Value 40.00	dBm				
Log 30.0								Max H
20.0				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				Min H
10.0					٦_			
-10.0					Jun a	×.		Restar
-20.0 -30.0	mmmmm	produce in the second s				Mannahury	Mar way to way	monte
-40.0								
-50.0								
Center 836.5 Res BW 33.0			#Video BW 110.0	00 kHz		C.u.r	Span ep 5.87 ms (1	3.5 MHz
2 Metrics	VU KH2					SWE	ep 5.67 ms (1	001 pts)
Occ	upied Bandwidth 1.099	8 MHz		Total Powe	r		31.2 dBm	
Trar	nsmit Freq Error	-256	Ηz	% of OBW		۲.	99.00 %	
	Bandwidth	1.304 MI		x dB			-26.00 dB	
	and	May 19, 2021	\frown					
		10:28:48 AM						

Plot 7-7. Occupied Bandwidth Plot (LTE Band 5 - 1.4MHz QPSK - Full RB)

Plot 7-8. Occupied Bandwidth Plot (LTE Band 5 - 1.4MHz 16-QAM - Full RB)

FCC ID: A3LSMA127FN	Poul to be part of @ element	PART 22 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N: Test Dates:		EUT Type:	Dage 16 of 59
1K210511001902-02.A3L	05/13/2021 - 06/01/2021	Portable Handset	Page 16 of 58
© 2021 PCTEST			V 1.0

GPRS Cell

Plot 7-9. Occupied Bandwidth Plot (GPRS, Ch. 190)

Plot 7-10. Occupied Bandwidth Plot (EDGE, Ch. 190)

FCC ID: A3LSMA127FN		PART 22 MEASUREMENT REPORT	Approved by: Technical Manager		
Test Report S/N: Test Dates:		EUT Type:	Dage 17 of 59		
1K210511001902-02.A3L	05/13/2021 - 06/01/2021	Portable Handset	Page 17 of 58		
© 2021 PCTEST					

WCDMA Cell

Plot 7-11. Occupied Bandwidth Plot (WCDMA, Ch. 4183)

FCC ID: A3LSMA127FN	Poud to be part of @ element	PART 22 MEASUREMENT REPORT	SAMSUNG	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 19 of 59	
1K210511001902-02.A3L	05/13/2021 - 06/01/2021	Portable Handset		Page 18 of 58	
© 2021 PCTEST					

7.3 Spurious and Harmonic Emissions at Antenna Terminal

Test Overview

The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10th harmonic. All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.

The minimum permissible attenuation level of any spurious emission is $43 + 10 \log_{10}(P_{[Watts]})$, where P is the transmitter power in Watts.

Test Procedure Used

KDB 971168 D01 v03r01 - Section 6.0

Test Settings

- 1. Start frequency was set to 30MHz and stop frequency was set to 10GHz (separated into at least two plots per channel)
- 2. Detector = RMS
- 3. Trace mode = trace average for continuous emissions, max hold for pulse emissions
- 4. Sweep time = auto couple
- 5. The trace was allowed to stabilize
- 6. Please see test notes below for RBW and VBW settings

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-2. Test Instrument & Measurement Setup

Test Notes

Per Part 22 and RSS-132, compliance with the applicable limits is based on the use of measurement instrumentation employing a resolution bandwidth 100 kHz or greater for measurements below 1GHz. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emission are attenuated at least 26 dB below the transmitter power.

FCC ID: A3LSMA127FN		PART 22 MEASUREMENT REPORT	SAMSUNG	Approved by: Technical Manager	
Test Report S/N: Test Dates:		EUT Type:		Dage 10 of 59	
1K210511001902-02.A3L	05/13/2021 - 06/01/2021	Portable Handset		Page 19 of 58	
© 2021 PCTEST					

LTE Band 5_

Spectrum Analyzer 1 + O. Swept SA Input Z: 50 Ω Corr CCorr RCal Atten: 30 dB #Avg Type: Power (RMS123456 Trig: Free Run KEYSIGHT Input: RF PNO: Fast Gate: Off Center Free Preamp: Off +++ AWWWWW 924.50000 Align: Auto Freq Ref: Int (S) ANNNNN PASS NFF Off Sig Track: Off Span Mkr1 853.55 MH 1 Spectrum ۷ 151.00000 -61.325 dBm Scale/Div 10 dB Ref Level 20.00 dBm Swept Zero S Log Trace 1 Pass Full Start Freq 849.00000 Stop Freq 1.0000000 AUTO CF Step 15.100000 Auto Man ♦1 Freq Offset 0 Hz X Axis Sca Stop 1.00000 GHz Start 0.84900 GHz #Video BW 300 kHz Log Lin #Res BW 100 kHz Sweep 7.25 ms (3021 pts May 19, 2021 10:35:26 AM ? ÷÷ \geq P Ŋ 5 (\cdots)

Plot 7-13. Conducted Spurious Plot (LTE Band 5 - 10MHz QPSK - 1 RB - Low Channel)

FCC ID: A3LSMA127FN	Poud to be part of @ element	PART 22 MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N: Test Dates:		EUT Type:	Dage 20 of 59
1K210511001902-02.A3L	05/13/2021 - 06/01/2021	Portable Handset	Page 20 of 58
© 2021 PCTEST	•	·	V 1.0

Plot 7-14. Conducted Spurious Plot (LTE Band 5 - 10MHz QPSK - 1 RB - Low Channel)

Plot 7-15. Conducted Spurious Plot (LTE Band 5 - 10MHz QPSK - 1 RB - Mid Channel)

FCC ID: A3LSMA127FN	Proud to be part of @ element	PART 22 MEASUREMENT REPORT	SAMSUNG	Approved by: Technical Manager	
Test Report S/N: Test Dates:		EUT Type:	Daga 21 of 59		
1K210511001902-02.A3L	05/13/2021 - 06/01/2021	Portable Handset		Page 21 of 58	
© 2021 PCTEST					

EYSIGHT Input: RF Coupling: DC Align: Auto	Input Z: 50 Ω Corr CCorr RCal Freq Ref: Int (S) NFE: Off	Atten: 30 dB Preamp: Off	PNO: Fast Gate: Off IF Gain: Low Sig Track: Off	Trig: Free Run A WW WW W	Cente 924.(Span
Spectrum v ale/Div 10 dB		Ref Level 20.00	dBm	Mkr1 849.50 MHz -40.831 dBm	151.0
Trace 1 Pass					Z
00					Start F 849.0
0					Stop F 1.000
.0 1					A
.0					CF Ste 15.10
.0	, ++,==,+,+,+,+,+,+,+,+,+,+,+,+,+,+,+,+,	ndens fan de sen de	*****		Freq C
					0 Hz X Axis
rt 0.84900 GHz es BW 100 kHz		#Video BW 300) kHz	Stop 1.00000 GHz Sweep 7.25 ms (3021 pts	

Plot 7-16. Conducted Spurious Plot (LTE Band 5 - 10MHz QPSK - 1 RB - Mid Channel)

Plot 7-17. Conducted Spurious Plot (LTE Band 5 - 10MHz QPSK - 1 RB - Mid Channel)

FCC ID: A3LSMA127FN	POTEST Proud to be part of @ element	PART 22 MEASUREMENT REPORT	SAMSUNG	Approved by: Technical Manager
Test Report S/N: Test Dates:		EUT Type:		Page 22 of 58
1K210511001902-02.A3L	05/13/2021 - 06/01/2021	Portable Handset		Page 22 01 56
© 2021 PCTEST	V 1.0			