

# **TEST REPORT**

|                                                                                                                                                                                                                       | KCTL Inc.            |                      | Report No ·       |                         |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------|-------------------|-------------------------|--|
| 65, Sinwon-ro, Yeongtong-gu,<br>Suwon-si, Gyeonggi-do, 16677, Korea                                                                                                                                                   |                      |                      | R19-SRF0013-B     | KCT                     |  |
| TEL: 82-31-285-0894 FAX: 82-505-299-8311<br>www.kctl.co.kr                                                                                                                                                            |                      |                      | Page (1) of (29)  |                         |  |
| 1. Client                                                                                                                                                                                                             |                      |                      |                   |                         |  |
| ∘ Name                                                                                                                                                                                                                | : Samsung E          | lectronics           | Co., Ltd.         |                         |  |
| ∘ Address . 129, Samsung-ro, `<br>Rep. of Korea                                                                                                                                                                       |                      |                      | gtong-gu, Suwon-s | si, Gyeonggi-do, 16677, |  |
| ∘ Date of                                                                                                                                                                                                             | Receipt : 2019-01-25 |                      |                   |                         |  |
| 2. Use of Re                                                                                                                                                                                                          | eport : -            |                      |                   |                         |  |
| 3. Name of                                                                                                                                                                                                            | Product and Model    | : Mobile Pł          | none / SM-A105F/I | DS                      |  |
| 4. Manufacturer and Country of Origin : Samsung Electronics Co., Ltd. / Korea                                                                                                                                         |                      |                      |                   |                         |  |
| 5. FCC ID                                                                                                                                                                                                             |                      | : A3LSMA             | A3LSMA105F        |                         |  |
| 6. Date of T                                                                                                                                                                                                          | est : 2019-01-29     | -01-29 to 2019-02-15 |                   |                         |  |
| 7. Test Standards : FCC Part 15 Subpart C, 15.249                                                                                                                                                                     |                      |                      |                   |                         |  |
| 8. Test Results : Refer to the test result in the test report                                                                                                                                                         |                      |                      |                   |                         |  |
|                                                                                                                                                                                                                       |                      |                      |                   |                         |  |
| Affirmation                                                                                                                                                                                                           | Tested by            | VID                  | Technical Manag   | jer                     |  |
|                                                                                                                                                                                                                       | Name : Euijung Kim   | Signature)           | Name : Bongok I   | Ko Signature)           |  |
| 2019-02-22                                                                                                                                                                                                            |                      |                      |                   |                         |  |
|                                                                                                                                                                                                                       |                      |                      |                   |                         |  |
| KCTL Inc.                                                                                                                                                                                                             |                      |                      |                   |                         |  |
| As a test result of the sample which was submitted from the client, this report does not guarantee the whole product quality. This test report should not be used and copied without a written agreement by KCTL Inc. |                      |                      |                   |                         |  |
|                                                                                                                                                                                                                       |                      |                      |                   |                         |  |

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 <u>www.kctl.co.kr</u> Report No.: KR19-SRF0013-B



Page (2) of (29)

| port revision history |                               |         |  |  |  |
|-----------------------|-------------------------------|---------|--|--|--|
| Date                  | Revision                      | Page No |  |  |  |
| 2019-02-15            | Initial report                | -       |  |  |  |
| 2019-02-19            | Updated measurement equipment | 29      |  |  |  |
| 2019-02-22            | Updated a note                | 6, 18   |  |  |  |
|                       |                               |         |  |  |  |
|                       |                               |         |  |  |  |
|                       |                               |         |  |  |  |
|                       |                               |         |  |  |  |
|                       |                               |         |  |  |  |
|                       |                               |         |  |  |  |
|                       |                               |         |  |  |  |

This report shall not be reproduced except in full, without the written approval of KCTL Inc. This document may be altered or revised by KCTL Inc. personnel only, and shall be noted in the revision section of the document. Any alteration of this document not carried out by KCTL Inc. will constitute fraud and shall nullify the document.

This test report is a general report that does not use the KOLAS accreditation mark and is not related to KOLAS accreditation.



65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 <u>www.kctl.co.kr</u> Report No.: KR19-SRF0013-B



Page (3) of (29)

# CONTENTS

| 1.  | Gei      | neral information                        | 4 |
|-----|----------|------------------------------------------|---|
| 2.  | Dev      | vice information                         | 4 |
| 2.1 |          | Accessory information                    | 5 |
| 2.2 | <u>)</u> | Information about derivative model       | 5 |
| 2.3 | 8.       | Frequency/channel operations             | 5 |
| 3.  | Ant      | enna requirement                         | 6 |
| 4.  | Sur      | nmary of tests                           | 6 |
| 5.  | Mea      | asurement uncertainty                    | 7 |
| 6.  | Mea      | asurement results explanation example    | 8 |
| 7 T | ēst r    | results                                  | 9 |
| 7.1 |          | Occupied Bandwidth                       | 9 |
| 7.2 | 2.       | Duty Cycle Calculation1                  | 1 |
| 7.3 | 8.       | Field Strength of Fundamental1           | 3 |
| 7.4 | ŀ.       | Radiated spurious emissions & band edge1 | 6 |
| 7.5 | 5.       | AC Conducted emission                    | 7 |
| 8.  | Mea      | asurement equipment2                     | 9 |

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR19-SRF0013-B



Page (4) of (29)

### 1. General information

| Client         | : | Samsung Electronics Co., Ltd.                                                 |
|----------------|---|-------------------------------------------------------------------------------|
| Address        | : | 129, Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677,<br>Rep. of Korea |
| Manufacturer   | : | Samsung Electronics Co., Ltd.                                                 |
| Address        | : | 129, Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677,<br>Rep. of Korea |
| Laboratory     | : | KCTL Inc.                                                                     |
| Address        | : | 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea              |
| Accreditations | : | FCC Site Designation No: KR0040, FCC Site Registration No: 687132             |
|                |   | VCCI Registration No. : R-3327, G-198, C-3706, T-1849                         |
|                |   | Industry Canada Registration No. : 8035A-2                                    |
|                |   | KOLAS No.: KT231                                                              |

### 2. Device information

| : | Mobile Phone                                     |
|---|--------------------------------------------------|
| : | SM-A105F/DS                                      |
| : | SM-A105F, SM-A105G/DS, SM-A105G                  |
| : | Bluetooth(BDR/EDR/BLE), ANT+_2 402 Mz ~ 2 480 Mz |
|   | WIFI(802.11b/g/n20)_2 412   ₩z ~ 2 472   ₩z      |
|   | LTE Band 5_824.7 Mt ~ 844 Mt                     |
|   | LTE Band 2_1 850.7 Mb ~ 1 900 Mb                 |
|   | LTE Band 41_2 498.5 Mt ~ 2 680 Mt                |
|   | GSM 850_824.2 M₺ ~ 848.8 M₺                      |
|   | GSM 1900_1850.2 MHz ~ 1909.8 MHz                 |
|   | WCDMA 850_826.4 Mtz ~ 846.6 Mtz                  |
|   | WCDMA 1900_1 852.4 Mlz ~ 1 907.6 Mlz             |
| : | Bluetooth(BDR/EDR)_ GFSK, π/4DQPSK, 8DPSK        |
|   | Bluetooth(BLE), ANT+_GFSK                        |
|   | WIFI(802.11b/g/n20)_DSSS, OFDM                   |
|   | LTE_QPSK, 16QAM                                  |
|   | GSM_GMSK, 8-PSK                                  |
|   | WCDMA_QPSK                                       |
| : | Bluetooth(BDR/EDR)_79ch                          |
|   | Bluetooth(BLE)_40ch                              |
|   | ANT+_79ch                                        |
|   | WIFI(802.11b/g/n20)_13ch                         |
|   | :                                                |

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 <u>www.kctl.co.kr</u> Report No.: KR19-SRF0013-B



Page (5) of (29)

| Power source           | : DC 3.85 V                          |
|------------------------|--------------------------------------|
| Antenna specification  | : LDS Antenna                        |
| Software version       | : A105F.001                          |
| Hardware version       | : REV1.0                             |
| Test device serial No. | : Conducted_R38M109JC6H, R38M109J4XW |
|                        | Radiated_R38M10PXDTJ, R38M109JB1B    |
| Operation temperature  | : -30 °C ~50 °C                      |

### 2.1. Accessory information

| Equipment               | Manufacturer                        | Model      | Serial No.     | Power source                   |
|-------------------------|-------------------------------------|------------|----------------|--------------------------------|
| Earphone information    | ALMUS                               | EHS61ASFWE | -              | -                              |
| Travel Adapter          | Samsung<br>Electronics Co.,<br>Ltd. | ETA0U84IWE | R37K9RC6DD3RC3 | AC 100-240V<br>50-60 Hz, 0.15A |
| Micro USB Data<br>Cable | Samsung<br>Electronics Co.,<br>Ltd. | ECB-DU68WE | -              | -                              |

### 2.2. Information about derivative model

The difference between basic model and derivative models is:

-SM-A105F, SM-A105G: It does not support Dual-Sim card, support Single-Sim card and changed from Dual SIM tray to Single SIM tray.

-SM-A105G/DS: LTE B28 is enabled.

### 2.3. Frequency/channel operations

This device contains the following capabilities: Bluetooth(BDR/EDR/BLE), ANT+, WIFI(802.11b/g/n20), LTE Band 5, LTE Band 2, LTE Band 41, GSM 850, GSM 1900, WCDMA 850, WCDMA 1900

| Ch. | Frequency (Mb) |
|-----|----------------|
| 00  | 2 402          |
|     |                |
| 39  | 2 441          |
|     |                |
| 78  | 2 480          |

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR19-SRF0013-B



### 3. Antenna requirement

Requirement of FCC part section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

- The transmitter has permanently attached LDS Antenna (internal antenna) on board.

### 4. Summary of tests

| FCC Part section(s)           | Parameter                                                     | Test results |
|-------------------------------|---------------------------------------------------------------|--------------|
| -                             | Occupied bandwidth                                            | Pass         |
| 15.249(a)(e)                  | Field strength of fundamental,<br>Field strength of harmonics | Pass         |
| 15.35(c)                      | Duty Cycle Calculation                                        | Pass         |
| 15.205(a),                    | Spurious emission                                             | Pass         |
| 15.209(a),<br>15.249(d)(e)    | Band-edge, restricted band                                    | Pass         |
| 15.207(a) Conducted Emissions |                                                               | Pass         |

#### Notes:

1. All modes of operation and data rates were investigated. The test results shown in the following sections represent the worst case emissions.

- 2. According to exploratory test no any obvious emission were detected from 9 kl/z to 30 Ml/z. Although these tests were performed other than open field site, adequate comparison measurements were confirmed against 30 m open field site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 414788.
- 3. The fundamental of the EUT was investigated in three orthogonal orientations X, Y and Z. It was determined that Y orientation was worst-case orientation. Therefore, all final radiated testing was performed with the EUT in X orientation
- 4. The test procedure(s) in this report were performed in accordance as following.
  - ANSI C63.10-2013

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR19-SRF0013-B



### 5. Measurement uncertainty

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.10-2013.

All measurement uncertainty values are shown with a coverage factor of k=2 to indicated a 95 % level of confidence. The measurement data shown herein meets of exceeds the  $U_{\text{CISPR}}$  measurement uncertainty values specified in CISPR 16-4-2 and thus, can be compared directly to specified limits to determine compliance.

| Parameter                    | Expanded uncertainty(±dB) |                |  |
|------------------------------|---------------------------|----------------|--|
| Conducted RF power           | <b>1.76</b> dB            |                |  |
| Conducted spurious emissions | <b>4.03</b> dB            |                |  |
|                              | 9 kHz ~30 MHz:            | <b>2.28</b> dB |  |
|                              | 30 MHz ~ 300 MHz          | <b>4.98</b> dB |  |
| Radiated spurious emissions  | 300 MHz ~ 1 000 MHz       | <b>5.14</b> dB |  |
|                              | 1 GHz ~6 GHz              | <b>6.70</b> dB |  |
|                              | Above 6 GHz               | <b>6.60</b> dB |  |
| Conducted emissions          | 9 kHz ~ 150 kHz           | <b>3.66</b> dB |  |
|                              | 150 kHz ~ 30 MHz          | <b>3.26</b> dB |  |



65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr

Page (8) of (29)



### 6. Measurement results explanation example

The offset level is set in the spectrum analyzer to compensate the RF cable loss factor between EUT conducted output port and spectrum analyzer.

With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

| Frequency (Mb) | Factor(dB) | Frequency (Mz) | Factor(dB) |
|----------------|------------|----------------|------------|
| 30             | 10.03      | 9000           | 12.38      |
| 100            | 10.44      | 10000          | 12.30      |
| 200            | 10.50      | 11000          | 12.68      |
| 300            | 10.64      | 12000          | 12.95      |
| 400            | 10.71      | 13000          | 13.14      |
| 500            | 10.75      | 14000          | 13.21      |
| 600            | 10.74      | 15000          | 13.21      |
| 700            | 10.79      | 16000          | 13.41      |
| 800            | 10.87      | 17000          | 13.36      |
| 900            | 10.94      | 18000          | 13.45      |
| 1000           | 10.90      | 19000          | 13.51      |
| 2000           | 11.18      | 20000          | 13.49      |
| 3000           | 11.44      | 21000          | 13.52      |
| 4000           | 11.73      | 22000          | 13.68      |
| 5000           | 11.99      | 23000          | 13.72      |
| 6000           | 12.15      | 24000          | 13.71      |
| 7000           | 12.21      | 25000          | 13.76      |
| 8000           | 12.41      | 26000          | 13.94      |

#### Note.

Offset(dB) = RF cable loss(dB)

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

# 7 Test results 7.1. Occupied Bandwidth

| FUT | Attonuator | Spoctrum analyzor |
|-----|------------|-------------------|
| EOT | Allendator | Spectrum analyzer |

Report No.:

KR19-SRF0013-B

Page (9) of (29)

#### <u>Limit</u>

According to §2.1049(h) Transmitters employing digital modulation techniques—when modulated by an input signal such that its amplitude and symbol rate represent the maximum rated conditions under which the equipment will be operated. The signal shall be applied through any filter networks, pseudo-random generators or other devices required in normal service. Additionally, the occupied bandwidth shall be shown for operation with any devices used for modifying the spectrum when such devices are optional at the discretion of the user.

#### Test procedure

ANSI C63.10-2013 - Section 6.9.3

#### Test settings

The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission.

The following procedure shall be used for measuring 99% power bandwidth:

- a) The instrument center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW.
- b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW, and VBW shall be approximately three times the RBW, unless otherwise specified by the applicable requirement.
- c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2.
- d) Step a) through step c) might require iteration to adjust within the specified range.
- e) Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.
- f) Use the 99% power bandwidth function of the instrument (if available) and report the measured bandwidth.
- g) If the instrument does not have a 99% power bandwidth function, then the trace data points are recovered and directly summed in linear power terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5% of the total is reached; that frequency is recorded as the lower frequency. The upper frequency. The 99% power bandwidth is the difference between these two frequencies.
- h) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s).



65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 <u>www.kctl.co.kr</u> Report No.: KR19-SRF0013-B

Page (10) of (29)



#### Test results

| 10311034113 | -             | -                  |  |  |
|-------------|---------------|--------------------|--|--|
| Test mode   | Frequency(Mb) | 99 % bandwidth(Mb) |  |  |
|             | 2 402         | 0.884              |  |  |
| ANT+        | 2 441         | 0.884              |  |  |
|             | 2 480         | 0.884              |  |  |



65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR19-SRF0013-B KCTL

Page (11) of (29)

### 7.2. Duty Cycle Calculation

#### <u>Test setup</u>

EUT

| A.U        |  |
|------------|--|
| Attenuator |  |
|            |  |



### <u>Limit</u>

According to §15.35(c), Unless otherwise specified, e.g., §§15.255(b), and 15.256(I)(5), when the radiated emission limits are expressed in terms of the average value of the emission, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value. The exact method of calculating the average field strength shall be submitted with any application for certification or shall be retained in the measurement data file for equipment subject to Supplier's Declaration of Conformity.

#### Test procedure

ANSI C63.10-2013 - Section 7.5

#### <u>Test settings</u>

Unless otherwise specified, when the radiated emission limits are expressed in terms of the average value of the emission, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 s (100 ms). In cases where the pulse train exceeds 0.1 s, the measured field strength shall be determined during a 0.1 s interval.64 The following procedure is an example of how the average value may be determined. The average field strength may be found by measuring the peak pulse amplitude (in log equivalent units) and determining the duty cycle correction factor (in dB) associated with the pulse modulation as shown in Equation (10):

 $\delta$  (dB) = 20log(Δ) ( $\delta$  is the duty cycle correction factor (dB),  $\Delta$  is the duty cycle (dimensionless))

This correction factor may then be subtracted from the peak pulse amplitude (in dB) to find the average emission. This correction may be applied to all emissions that demonstrate the same pulse timing characteristics as the fundamental emission (e.g., the fundamental and harmonic emissions). In cases where the pulse train is truly random or pseudo random, some regulatory agencies may accept a declaration by the manufacturer of the worst-case value of tON. The duty cycle correction is determined as follows:

- a) Adjust and configure any EUT switches, controls, or input data streams to ensure that the EUT is transmitting or encoded to obtain the "worst-case" pulse ON time.
- b) Couple the final radio frequency output signal to the input of a spectrum analyzer. This may be performed by a radiated, direct connection (i.e., conducted) or by a "near-field" coupling method. The signal received shall be of sufficient level to trigger adequately the spectrum analyzer sweep display.
- c) Adjust the center frequency of the spectrum analyzer to the center of the RF signal.
- d) Set the spectrum analyzer for ZERO SPAN.
- e) Adjust the SWEEP TIME to obtain at least a 100 ms period of time on the horizontal display axis of the spectrum analyzer.
- f) If the pulse train is periodic (i.e., consists of a series of pulses that repeat in a characteristic pattern over a constant time period), and the period (T) is less than or equal to 100 ms, then:

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr



Page (12) of (29)

- 1) Set the TRIGGER on the spectrum analyzer to capture at least one period of the pulse train, including any blanking intervals.
- 2) Determine the total maximum pulse "ON time" (tON) over one period of the pulse train. An example of a periodic pulse train and the associated period is shown in Figure 14. If the pulse train contains pulses of different widths, then tON is determined by summing the duration of all of the pulses within the pulse train [i.e.,  $tON = \Sigma(t1 + t2 + ...tn)$ ].
- 3) The duty cycle is then determined by dividing the total maximum "ON time" by the period of the pulse train (tON/T).
- g) If the pulse train is nonperiodic or is periodic with a period that exceeds 100 ms, or as an alternative to step f), then:
  - 1) Set the TRIGGER on the spectrum analyzer to capture the greatest amount of pulse "ON time" over 100 ms.
  - 2) Find the 100 ms period that contains the maximum "on time"; this may require summing the duration of multiple pulses as described in step f2).
  - 3) Determine the duty cycle by dividing the total maximum "ON time" by 100 ms (tON/100 ms).
- h) Determine the duty cycle correction factor by applying Equation (10) to the duty cycle determined in the preceding steps.

#### Test results

| Frequency(Mb) | Operating Mode | On time(ms) | DCCF (dB) |  |  |
|---------------|----------------|-------------|-----------|--|--|
| 2 402         | ANT+           | 0.929       | -42.92    |  |  |

### Notes:

DCCF = 20log10 (number of pulses in 100 ms x (on time / 100 ms))

<sup>= 20</sup>log10 (4 x (0.929 ms/100 ms)) = -42.92 dB



65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 <u>www.kctl.co.kr</u> Report No.: KR19-SRF0013-B



Page (13) of (29)

### 7.3. Field Strength of Fundamental



#### <u>Limit</u>

According to §15.249(a)(e), Except as provided in paragraph (b) of this section, the field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:

| Fundamental<br>frequency | Field strength of fundamental<br>(millivolts/meter) |     | Field strength of harmonics<br>(microvolts/meter) |
|--------------------------|-----------------------------------------------------|-----|---------------------------------------------------|
| 902-928 MHz              |                                                     | 50  | 500                                               |
| 2400-2483.5 MHz          |                                                     | 50  | 500                                               |
| 5725-5875 MHz            |                                                     | 50  | 500                                               |
| 24.0-24.25 GHz           |                                                     | 250 | 2500                                              |

As shown in §15.35(b), for frequencies above 1000 MHz, the field strength limits in paragraphs (a) and (b) of this section are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For point-to-point operation under paragraph (b) of this section, the peak field strength shall not exceed 2500 millivolts/meter at 3 meters along the antenna azimuth.

#### Test procedure

ANSI C63.10-2013

#### Test settings

#### Peak field strength measurements

1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest

- 2. RBW = as specified in table
- 3. VBW  $\geq$  (3×RBW)
- 4. Detector = peak
- 5. Sweep time = auto
- 6. Trace mode = max hold
- 7. Allow sweeps to continue until the trace stabilizes

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 <u>www.kctl.co.kr</u> Report No.: KR19-SRF0013-B

Page (14) of (29)



| Table. RBW as a f   | unction of frequency |
|---------------------|----------------------|
| Frequency           | RBW                  |
| 9 kHz to 150 kHz    | 200 Hz to 300 Hz     |
| 0.15 MHz to 30 MHz  | 9 kHz to 10 kHz      |
| 30 MHz to 1 000 MHz | 100 kHz to 120 kHz   |
| > 1 000 MHz         | 1 MHz                |

#### Average field strength measurements

Average field strength data is determined by applying the duty cycle correction factor (DCCF) found in Section 7.3 to the measured peak field strength values.

#### Test results

| Frequency | Pol.  | Reading  | Cable<br>Loss | Amp<br>Gain | Antenna<br>Factor | DCCF   | Result                       | Limit                        | Margin |
|-----------|-------|----------|---------------|-------------|-------------------|--------|------------------------------|------------------------------|--------|
| (MHz)     | (V/H) | (dB(µV)) | (dB)          | (dB)        | (dB)              | (dB)   | (dB( <i>µ</i> V/ <b>m</b> )) | (dB( <i>µ</i> V/ <b>m</b> )) | (dB)   |
| Peak data |       |          |               |             |                   |        |                              |                              |        |
| 2401.64   | Н     | 113.39   | 3.71          | -59.67      | 28.56             | -      | 85.99                        | 113.98                       | 27.99  |
| 2441.02   | Н     | 120.03   | 3.74          | -59.63      | 28.64             | -      | 92.78                        | 113.98                       | 21.20  |
| 2479.84   | Н     | 118.69   | 3.77          | -59.57      | 28.71             | _      | 91.59                        | 113.98                       | 22.39  |
|           |       |          |               | Averag      | ge Data           |        |                              |                              |        |
| 2401.64   | Н     | 113.39   | 3.71          | -59.67      | 28.56             | -42.92 | 43.07                        | 93.98                        | 50.91  |
| 2441.02   | Н     | 120.03   | 3.74          | -59.63      | 28.64             | -42.92 | 49.86                        | 93.98                        | 44.12  |
| 2479.84   | Н     | 118.69   | 3.77          | -59.57      | 28.71             | -42.92 | 48.67                        | 93.98                        | 45.31  |

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 <u>www.kctl.co.kr</u> Report No.: KR19-SRF0013-B



Page (15) of (29)



65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR19-SRF0013-B

Page (16) of (29)



### 7.4. Radiated spurious emissions & band edge

#### <u>Test setup</u>

The diagram below shows the test setup that is utilized to make the measurements for emission from 9 kHz to 30 MHz Emissions



The diagram below shows the test setup that is utilized to make the measurements for emission from 30 Mz to 1 Gz emissions.



The diagram below shows the test setup that is utilized to make the measurements for emission from 1  $\mathbb{G}_{\mathbb{Z}}$  to the tenth harmonic of the highest fundamental frequency or to 40  $\mathbb{G}_{\mathbb{Z}}$  emissions, whichever is lower.



65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR19-SRF0013-B

Page (17) of (29)



#### <u>Limit</u>

According to section 15.209(a), except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

| Frequency (Mb) | Field strength ( $\mu$ /m) | Measurement distance (m) |
|----------------|----------------------------|--------------------------|
| 0.009 - 0.490  | 2 400/F(kHz)               | 300                      |
| 0.490 - 1.705  | 24 000/F(kHz)              | 30                       |
| 1.705 - 30     | 30                         | 30                       |
| 30 - 88        | 100**                      | 3                        |
| 88 - 216       | 150**                      | 3                        |
| 216 - 960      | 200**                      | 3                        |
| Above 960      | 500                        | 3                        |

\*\*Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 Mb, 76-88 Mb, 174-216 Mb or 470-806 Mb. However, operation within these frequency bands is permitted under other sections of this part, e.g., Section 15.231 and 15.241.

According to section 15.205(a) and (b), only spurious emissions are permitted in any of the frequency bands listed below:

| MHz                   | MHz                   | MHz               | GHz           |
|-----------------------|-----------------------|-------------------|---------------|
| 0.009 - 0.110         | 16.42 - 16.423        | 399.9 - 410       | 4.5 - 5.15    |
| 0.495 - 0.505         | 16.694 75 - 16.695 25 | 608 - 614         | 5.35 - 5.46   |
| 2.173 5 - 2.190 5     | 16.804 25 - 16.804 75 | 960 – 1 240       | 7.25 - 7.75   |
| 4.125 - 4.128         | 25.5 - 25.67          | 1 300 – 1 427     | 8.025 - 8.5   |
| 4.177 25 - 4.177 75   | 37.5 - 38.25          | 1 435 – 1 626.5   | 9.0 - 9.2     |
| 4.207 25 - 4.207 75   | 73 - 74.6             | 1 645.5 – 1 646.5 | 9.3 - 9.5     |
| 6.215 - 6.218         | 74.8 - 75.2           | 1 660 – 1 710     | 10.6 - 12.7   |
| 6.267 75 - 6.268 25   | 108 - 121.94          | 1 718.8 – 1 722.2 | 13.25 - 13.4  |
| 6.311 75 - 6.312 25   | 123 - 138             | 2 200 – 2 300     | 14.47 - 14.5  |
| 8.291 - 8.294         | 149.9 - 150.05        | 2 310 – 2 390     | 15.35 - 16.2  |
| 8.362 - 8.366         | 156.524 75 - 156.525  | 2 483.5 – 2 500   | 17.7 - 21.4   |
| 8.376 25 - 8.386 75   | 25                    | 2 690 – 2 900     | 22.01 - 23.12 |
| 8.414 25 - 8.414 75   | 156.7 - 156.9         | 3 260 – 3 267     | 23.6 - 24.0   |
| 12.29 - 12.293        | 162.012 5 - 167.17    | 3 332 – 3 339     | 31.2 - 31.8   |
| 12.519 75 - 12.520 25 | 167.72 - 173.2        | 3 345.8 – 3 358   | 36.43 - 36.5  |
| 12.576 75 - 12.577 25 | 240 - 285             | 3 600 – 4 400     | Above 38.6    |
| 13.36 - 13.41         | 322 - 335.4           |                   |               |

The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in section 15.209. At frequencies equal to or less than 1 000 Mb, compliance with the limits in section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasipeak detector. Above 1 000 Mb, compliance with the emission limits in section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in section 15.35 apply to these measurements.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR19-SRF0013-B



Page (18) of (29)

#### Test procedure

ANSI C63.10-2013

#### Test settings

#### Peak field strength measurements

8. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest

- 9. RBW = as specified in table
- 10. VBW  $\geq$  (3×RBW)
- 11. Detector = peak
- 12. Sweep time = auto
- 13. Trace mode = max hold
- 14. Allow sweeps to continue until the trace stabilizes

|                     | unction of nequency |
|---------------------|---------------------|
| Frequency           | RBW                 |
| 9 kHz to 150 kHz    | 200 Hz to 300 Hz    |
| 0.15 MHz to 30 MHz  | 9 kHz to 10 kHz     |
| 30 MHz to 1 000 MHz | 100 kHz to 120 kHz  |
| > 1 000 MHz         | 1 MHz               |

### Table. RBW as a function of frequency

#### Average field strength measurements

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1 MHz
- 3. VBW =  $1/T \ge 1$  Hz
- 4. Averaging type was set to RMS to ensure that video filtering was applied in the power domain
- 5. Detector = peak
- 6. Sweep time = auto
- 7. Trace mode = max hold
- 8. Trace was allowed to run for at least 50 times(1/duty cycle) traces

### Notes:

- The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1 Mb for Peak detection and frequency above 1 Gb. The resolution bandwidth of test receiver/spectrum analyzer is 1 Mb and the video bandwidth is 1 kb(≥1/T) for Average detection (AV) at frequency above 1 Gb. (where T = pulse width)
- 2. f < 30 MHz, extrapolation factor of 40 dB/decade of distance.  $F_d = 40log(D_m/Ds)$
- $f \ge 30$  Mb, extrapolation factor of 20 dB/decade of distance.  $F_d = 20log(D_m/Ds)$  Where:

 $F_d\text{=}$  Distance factor in  $\ensuremath{\,\mathrm{dB}}$ 

D<sub>m</sub>= Measurement distance in meters

- D<sub>s</sub>= Specification distance in meters
- 3. Factors(dB) = Antenna factor(dB/m) + Cable loss(dB) + or Amp. gain(dB) + or  $F_d(dB)$
- 4. The worst-case emissions are reported however emissions whose levels were not within 20 dB of respective limits were not reported.
- 5. Average test would be performed if the peak result were greater than the average limit.
- 6. <sup>1)</sup> mean is restricted band.
- 7. According to part 15.31(f)(2), an extrapolation factor of 40 dB/decade is applied because measured distance of radiated emission is 3 m.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 <u>www.kctl.co.kr</u> Report No.: KR19-SRF0013-B

Page (19) of (29)



#### Test results (Below 30 №) – Worst case: ANT+ Middle frequency

| Frequency | Pol.  | Reading   | Cable<br>Loss | Amp<br>Gain | Antenna<br>Factor | DCCF       | Result                       | Limit                        | Margin |
|-----------|-------|-----------|---------------|-------------|-------------------|------------|------------------------------|------------------------------|--------|
| (MHz)     | (V/H) | (dB(µV))  | (dB)          | (dB)        | (dB)              | (dB)       | (dB( <i>µ</i> V/ <b>m</b> )) | (dB( <i>µ</i> V/ <b>m</b> )) | (dB)   |
|           |       | No spurio | ous emissio   | ns were de  | etected with      | in 20 dB o | f the limit.                 |                              |        |



65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR19-SRF0013-B

Page (20) of (29)



#### Test results (Below 1 000 ₩) – Worst case: ANT+ Middle frequency

| Frequency | Pol.            | Reading  | Cable<br>Loss | Amp<br>Gain | Antenna<br>Factor | DCCF | Result                       | Limit                        | Margin |
|-----------|-----------------|----------|---------------|-------------|-------------------|------|------------------------------|------------------------------|--------|
| (MHz)     | (V/H)           | (dB(µV)) | (dB)          | (dB)        | (dB)              | (dB) | (dB( <i>µ</i> V/ <b>m</b> )) | (dB( <i>µ</i> V/ <b>m</b> )) | (dB)   |
|           | Quasi peak data |          |               |             |                   |      |                              |                              |        |
| 35.82     | V               | 29.70    | 1.19          | -26.87      | 12.58             | -    | 16.60                        | 40.00                        | 23.40  |
| 99.96     | V               | 26.10    | 2.14          | -25.14      | 8.60              | -    | 11.70                        | 43.50                        | 31.80  |
| 205.09    | V               | 25.10    | 3.16          | -25.65      | 10.09             | -    | 12.70                        | 43.50                        | 30.80  |
| 233.22    | Н               | 25.80    | 3.38          | -25.24      | 11.16             | -    | 15.10                        | 46.00                        | 30.90  |
| 743.07    | V               | 22.80    | 6.37          | -24.02      | 21.75             | -    | 26.90                        | 46.00                        | 19.10  |



65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR19-SRF0013-B KCTL

Page (21) of (29)

#### Test results (Above 1 000 Mb)

#### <u>ANT+</u>

#### Low Channel

| Frequency              | Pol.         | Reading  | Cable<br>Loss | Amp<br>Gain | Antenna<br>Factor | DCCF | Result                       | Limit                        | Margin |  |  |
|------------------------|--------------|----------|---------------|-------------|-------------------|------|------------------------------|------------------------------|--------|--|--|
| (MHz)                  | (V/H)        | (dB(µV)) | (dB)          | (dB)        | (dB)              | (dB) | (dB( <i>µ</i> V/ <b>m</b> )) | (dB( <i>µ</i> V/ <b>m</b> )) | (dB)   |  |  |
| Peak data              |              |          |               |             |                   |      |                              |                              |        |  |  |
| 2 296.33 <sup>1)</sup> | Н            | 73.23    | 3.64          | -59.70      | 28.36             | -    | 45.53                        | 74.00                        | 28.47  |  |  |
| 2 336.881)             | Н            | 76.07    | 3.67          | -59.70      | 28.44             | -    | 48.48                        | 74.00                        | 25.52  |  |  |
| 2 367.19 <sup>1)</sup> | Н            | 78.89    | 3.69          | -59.69      | 28.50             | -    | 51.39                        | 74.00                        | 22.61  |  |  |
| 2 507.66               | Н            | 76.40    | 3.79          | -59.55      | 28.76             | -    | 49.41                        | 74.00                        | 24.59  |  |  |
| 2 539.92               | Н            | 75.83    | 3.81          | -59.56      | 28.83             | -    | 48.91                        | 74.00                        | 25.09  |  |  |
| 4 804.55 <sup>1)</sup> | Н            | 61.40    | 5.34          | -60.83      | 32.80             | -    | 38.71                        | 74.00                        | 35.29  |  |  |
| 7 206.11               | V            | 60.28    | 6.71          | -61.37      | 35.91             |      | 41.53                        | 74.00                        | 32.47  |  |  |
|                        | Average Data |          |               |             |                   |      |                              |                              |        |  |  |

No spurious emissions were detected within 20 dB of the limit.



65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR19-SRF0013-B



Page (22) of (29)



65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 <u>www.kctl.co.kr</u> Report No.: KR19-SRF0013-B



Page (23) of (29)

| Middle | Channel |
|--------|---------|
| maarc  | Onumer  |

| Frequency                                                      | Pol.  | Reading  | Cable<br>Loss | Amp<br>Gain | Antenna<br>Factor | DCCF | Result     | Limit      | Margin |
|----------------------------------------------------------------|-------|----------|---------------|-------------|-------------------|------|------------|------------|--------|
| (MHz)                                                          | (V/H) | (dB(µV)) | (dB)          | (dB)        | (dB)              | (dB) | (dB(#V/m)) | (dB(µV/m)) | (dB)   |
| Peak data                                                      |       |          |               |             |                   |      |            |            |        |
| 1 732.97                                                       | Н     | 78.82    | 3.17          | -60.25      | 26.73             | -    | 48.46      | 74.00      | 25.54  |
| 2 301.95                                                       | Н     | 75.38    | 3.64          | -59.71      | 28.37             | -    | 47.68      | 74.00      | 26.32  |
| 2 373.91 <sup>1)</sup>                                         | Н     | 77.99    | 3.69          | -59.68      | 28.51             | -    | 50.51      | 74.00      | 23.49  |
| 2 507.89                                                       | Н     | 76.92    | 3.79          | -59.55      | 28.76             | -    | 49.92      | 74.00      | 24.08  |
| 2 544.45                                                       | Н     | 74.57    | 3.81          | -59.55      | 28.83             | -    | 47.67      | 74.00      | 26.33  |
| 2 575.63                                                       | Н     | 79.03    | 3.84          | -59.56      | 28.89             | -    | 52.20      | 74.00      | 21.80  |
| 4 882.941)                                                     | V     | 62.11    | 5.39          | -61.07      | 32.84             | -    | 39.27      | 74.00      | 34.73  |
| 7 323.921)                                                     | Н     | 61.70    | 6.76          | -61.58      | 36.02             | -    | 42.90      | 74.00      | 31.10  |
| Average Data                                                   |       |          |               |             |                   |      |            |            |        |
| No spurious emissions were detected within 20 dB of the limit. |       |          |               |             |                   |      |            |            |        |



65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR19-SRF0013-B



Page (24) of (29)



65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 <u>www.kctl.co.kr</u> Report No.: KR19-SRF0013-B



Page (25) of (29)

#### High Channel

| Frequency              | Pol.         | Reading  | Cable<br>Loss | Amp<br>Gain | Antenna<br>Factor | DCCF | Result                       | Limit                        | Margin |  |
|------------------------|--------------|----------|---------------|-------------|-------------------|------|------------------------------|------------------------------|--------|--|
| (MHz)                  | (V/H)        | (dB(µV)) | (dB)          | (dB)        | (dB)              | (dB) | (dB( <i>µ</i> V/ <b>m</b> )) | (dB( <i>µ</i> V/ <b>m</b> )) | (dB)   |  |
| Peak data              |              |          |               |             |                   |      |                              |                              |        |  |
| 2 342.50 <sup>1)</sup> | Н            | 72.67    | 3.67          | -59.70      | 28.45             | -    | 45.09                        | 74.00                        | 28.91  |  |
| 2 376.641)             | Н            | 74.77    | 3.69          | -59.68      | 28.52             | -    | 47.30                        | 74.00                        | 26.70  |  |
| 2 483.75 <sup>1)</sup> | V            | 72.31    | 3.77          | -59.57      | 28.72             | -    | 45.23                        | 74.00                        | 28.77  |  |
| 2 514.77               | Н            | 78.80    | 3.79          | -59.55      | 28.78             | -    | 51.82                        | 74.00                        | 22.18  |  |
| 2 549.45               | V            | 75.75    | 3.82          | -59.55      | 28.84             | -    | 48.86                        | 74.00                        | 25.14  |  |
| 4 960.42 <sup>1)</sup> | V            | 60.52    | 5.45          | -60.72      | 32.88             | -    | 38.13                        | 74.00                        | 35.87  |  |
| 7 439.92 <sup>1)</sup> | V            | 57.66    | 6.81          | -61.80      | 36.14             | -    | 38.81                        | 74.00                        | 35.19  |  |
|                        | Average Data |          |               |             |                   |      |                              |                              |        |  |

No spurious emissions were detected within 20  $\,\mathrm{dB}\,$  of the limit.



65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR19-SRF0013-B



Page (26) of (29)



65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR19-SRF0013-B



Page (27) of (29)

### 7.5. AC Conducted emission Test setup



### <u>Limit</u>

According to 15.207(a), for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50uH/50 ohm line impedance stabilization network (LISN). Compliance with the provision of this paragraph shall on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower applies at the boundary between the frequencies ranges.

| Frequency of Emission (Mk) | Conducted  | ed limit (dBµV/m) |  |  |
|----------------------------|------------|-------------------|--|--|
| Frequency of Emission (MZ) | Quasi-peak | Average           |  |  |
| 0.15 – 0.50                | 66 - 56*   | 56 - 46*          |  |  |
| 0.50 - 5.00                | 56         | 46                |  |  |
| 5.00 - 30.0                | 60         | 50                |  |  |

### Measurement procedure

- 1. The EUT was placed on a wooden table of size, 1 m by 1.5 m, raised 80 cm in which is located 40 cm away from the vertical wall and 1.5m away from the side wall of the shielded room.
- 2. Each current-carrying conductor of the EUT power cord was individually connected through a  $50\Omega/50\mu$ H LISN, which is an input transducer to a spectrum analyzer or an EMI/Field Intensity Meter, to the input power source.
- 3. Exploratory measurements were made to identify the frequency of the emission that had the highest amplitude relative to the limit by operating the EUT in a range of typical modes of operation, cable position, and with a typical system equipment configuration and arrangement. Based on the exploratory tests of the EUT, the one EUT cable configuration and arrangement and mode of operation that had produced the emission with the highest amplitude relative to the limit was selected for the final measurement.
- 4. The final test on all current-carrying conductors of all of the power cords to the equipment that comprises the EUT (but not the cords associated with other non-EUT equipment is the system) was then performed over the frequency range of 0.15 Mb to 30 Mb.
- 5. The measurements were made with the detector set to peak amplitude within a bandwidth of 10 kHz or to quasi-peak and average within a bandwidth of 9 kHz. The EUT was in transmitting mode during the measurements.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 <u>www.kctl.co.kr</u> Report No.: KR19-SRF0013-B



Page (28) of (29)

### Test results



#### Final Result

|     | N_A Phase - |          |          |      |          |          |          |          |        |        |
|-----|-------------|----------|----------|------|----------|----------|----------|----------|--------|--------|
| No. | Frequency   | Reading  | Reading  | c.f  | Result   | Result   | Limit    | Limit    | Margin | Margin |
|     |             | QP       | CAV      |      | QP       | CAV      | QP       | AV       | QP     | CAV    |
|     | [MHz]       | [dB(uV)] | [dB(uV)] | [dB] | [dB(uV)] | [dB(uV)] | [dB(uV)] | [dB(uV)] | [dB]   | [dB]   |
| 1   | 0.35161     | 36.9     | 24.4     | 9.8  | 46.7     | 34.2     | 58.9     | 48.9     | 12.2   | 14.7   |
| 2   | 0.46474     | 31.8     | 20.7     | 9.9  | 41.7     | 30.6     | 56.6     | 46.6     | 14.9   | 16.0   |
| 3   | 0.59012     | 30.2     | 15.0     | 9.9  | 40.1     | 24.9     | 56.0     | 46.0     | 15.9   | 21.1   |
| 4   | 0.69257     | 30.5     | 15.0     | 9.8  | 40.3     | 24.8     | 56.0     | 46.0     | 15.7   | 21.2   |
| 5   | 1.03174     | 26.5     | 11.7     | 9.8  | 36.3     | 21.5     | 56.0     | 46.0     | 19.7   | 24.5   |
| 6   | 1.83966     | 27.1     | 15.0     | 9.7  | 36.8     | 24.7     | 56.0     | 46.0     | 19.2   | 21.3   |
| 7   | 3.63772     | 29.0     | 19.7     | 9.8  | 38.8     | 29.5     | 56.0     | 46.0     | 17.2   | 16.5   |
| 8   | 12.68117    | 25.7     | 16.9     | 10.6 | 36.3     | 27.5     | 60.0     | 50.0     | 23.7   | 22.5   |
|     |             |          |          |      |          |          |          |          |        |        |
|     | L1_A Phase  |          |          |      |          |          |          |          |        |        |
| No. | Frequency   | Reading  | Reading  | c.f  | Result   | Result   | Limit    | Limit    | Margin | Margin |
|     |             | QP       | CAV      |      | QP       | CAV      | QP       | AV       | QP     | CAV    |
|     | [MHz]       | [dB(uV)] | [dB(uV)] | [dB] | [dB(uV)] | [dB(uV)] | [dB(uV)] | [dB(uV)] | [dB]   | [dB]   |
| 1   | 0.19815     | 20.5     | 3.6      | 9.8  | 30.3     | 13.4     | 63.7     | 53.7     | 33.4   | 40.3   |
| 2   | 0.25171     | 18.3     | 4.8      | 9.6  | 27.9     | 14.4     | 61.7     | 51.7     | 33.8   | 37.3   |
| 3   | 1.22656     | 23.4     | 11.2     | 9.7  | 33.1     | 20.9     | 56.0     | 46.0     | 22.9   | 25.1   |
| 4   | 28.57712    | 8.0      | 2.7      | 11.1 | 19.1     | 13.8     | 60.0     | 50.0     | 40.9   | 36.2   |

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 <u>www.kctl.co.kr</u> Report No.: KR19-SRF0013-B

Page (29) of (29)



### 8. Measurement equipment

| Equipment Name              | Manufacturer         | Model No.                                     | Serial No.  | Next Cal. Date |
|-----------------------------|----------------------|-----------------------------------------------|-------------|----------------|
| Spectrum Analyzer           | R & S                | FSV30                                         | 101437      | 19.08.01       |
| Wideband Power Sensor       | R & S                | NRP-Z81                                       | 102398      | 20.01.25       |
| ATTENUATOR                  | R & S                | DNF<br>Dämpfungsglied<br>10 dB in<br>N-50 Ohm | 31212       | 19.05.14       |
| EMI TEST RECEIVER           | R&S                  | ESCI                                          | 100732      | 19.08.23       |
| Bi-Log Antenna              | SCHWARZBECK          | VULB 9168                                     | 583         | 20.05.04       |
| Amplifier                   | SONOMA<br>INSTRUMENT | 310N                                          | 284608      | 19.08.23       |
| COAXIAL FIXED<br>ATTENUATOR | Agilent              | 8491B-003                                     | 2708A18758  | 20.05.04       |
| Horn antenna                | ETS.lindgren         | 3116                                          | 00086635    | 19.05.10       |
| Horn antenna                | ETS.lindgren         | 3117                                          | 161225      | 19.05.18       |
| AMPLIFIER                   | L-3 Narda-MITEQ      | AMF-7D-01001800<br>-22-10P                    | 2003683     | 19.05.15       |
| AMPLIFIER                   | L-3 Narda-MITEQ      | JS44-18004000-33<br>-8P                       | 2000997     | 19.08.02       |
| LOOP Antenna                | R&S                  | HFH2-Z2                                       | 100355      | 20.08.24       |
| Antenna Mast                | Innco Systems        | MA4640-XP-ET                                  | -           | -              |
| Turn Table                  | Innco Systems        | DT2000                                        | 79          | -              |
| Antenna Mast                | Innco Systems        | MA4000-EP                                     | 303         | -              |
| Turn Table                  | Innco Systems        | DT2000                                        | 79          | -              |
| Highpass Filter             | WT                   | WT-A1698-HS                                   | WT160411001 | 19.05.14       |
| TWO-LINE V -<br>NETWORK     | R&S                  | ENV216                                        | 101584      | 19.04.05       |
| EMI TEST RECEIVER           | R&S                  | ESCI                                          | 101408      | 19.08.23       |
| Vector Signal<br>Generator  | R & S                | SMBV100A                                      | 257566      | 20.01.04       |
| Signal Generator            | R&S                  | SMR40                                         | 100007      | 19.05.15       |
| Cable Assembly              | RadiAll              | 2301761768000PJ                               | 1724.659    | -              |
| Cable Assembly              | gigalane             | RG-400                                        | -           | -              |
| Cable Assembly              | HUER+SUHNER          | SUCOFLEX 104                                  | MY4342/4    | -              |

End of test report