

FCC BT LE REPORT

Certification

Applicant Name: SAMSUNG Electronics Co., Ltd. Date of Issue: July 15, 2022

Test Site/Location: 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383 KOREA

Address: 129, Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggido, 16677, Rep. of Korea

Report No.: HCT-RF-2207-FC012

FCC ID:	A3LSMA047M
APPLICANT:	SAMSUNG Electronics Co., Ltd.
Model:	SM-A047M/DS
Additional Model:	SM-A047M
EUT Type:	Mobile Phone
Average Output Power:	8.68 dBm (7.37 mW)
Frequency Range:	2 402 MHz ~ 2 480 MHz
Modulation type	GFSK
FCC Classification:	Digital Transmission System(DTS)
FCC Rule Part(s):	Part 15.247

Engineering Statement:

The measurements shown in this report were made in accordance with the procedures indicated, and the emissions from this equipment were found to be within the limits applicable. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them. It is further stated that upon the basis of the measurements made, the equipment tested is capable of operation in accordance with the requirements of the FCC Rules under normal use and maintenance.

REVIEWED BY

Report prepared by : Chang Hee Hwang Engineer of Telecommunication Testing Center

++

Report approved by : Seul Ki Lee Manager of Telecommunication Testing Center

This test results were applied only to the test methods required by the standard.

This laboratory is not accredited for the test results marked *. The above Test Report is the accredited test result by (KS Q) ISO/IEC 17025 and KOLAS(Korea Laboratory Accreditation Scheme), which signed the ILAC-MRA. (HCT Accreditation No.: KT197)

* The report shall not be reproduced except in full(only partly) without approval of the laboratory.

Version

TEST REPORT NO.	DATE	DESCRIPTION
HCT-RF-2207-FC012	July 15, 2022	- First Approval Report

Table of Contents

REVIEWED BY	2
1. EUT DESCRIPTION	5
2. TEST METHODOLOGY	6
EUT CONFIGURATION	6
EUT EXERCISE	6
GENERAL TEST PROCEDURES	6
DESCRIPTION OF TEST MODES	7
3. INSTRUMENT CALIBRATION	7
4. FACILITIES AND ACCREDITATIONS	7
FACILITIES	7
EQUIPMENT	7
5. ANTENNA REQUIREMENTS	8
6. MEASUREMENT UNCERTAINTY	8
7. DESCRIPTION OF TESTS	9
8. SUMMARY TEST OF RESULTS	24
9. TEST RESULT	25
9.1 DUTY CYCLE	25
9.2 6 dB BANDWIDTH	30
9.3 OUTPUT POWER	39
9.4 POWER SPECTRAL DENSITY	41
9.5 BAND EDGE/ CONDUCTED SPURIOUS EMISSIONS	44
9.6 RADIATED SPURIOUS EMISSIONS	53
9.7 RADIATED RESTRICTED BAND EDGES	60
9.8 POWERLINE CONDUCTED EMISSIONS	63
10. LIST OF TEST EQUIPMENT	67
11. ANNEX A_ TEST SETUP PHOTO	69

1. EUT DESCRIPTION

Model	SM-A047M/DS	SM-A047M/DS				
Additional Model	SM-A047M					
EUT Type	Mobile Phone					
Power Supply	DC 3.85 V					
Frequency Range	2 402 MHz ~ 2 480 MHz					
		1M Bit/s :	8.938 dBm (7.83 mW)			
	Peak	2M Bit/s :	9.058 dBm (8.05 mW)			
	(For information only)	125k Bit/s :	8.856 dBm (7.68 mW)			
Max BE Output Bower		500k Bit/s :	8.909 dBm (7.78 mW)			
Max. RF Output Power		1M Bit/s :	8.68 dBm (7.37 mW)			
	Average	2M Bit/s :	8.65 dBm (7.32 mW)			
	Average	125k Bit/s :	8.57 dBm (7.19 mW)			
		500k Bit/s :	8.62 dBm (7.28 mW)			
Modulation Type	GFSK					
Bluetooth Version	5.0					
Number of Channels	40 Channels					
Date(s) of Tests	July 04, 2022 ~ July 14, 2022					
Serial number	Radiated : R38T500FL9F Conducted : R38T500RXI	PL				

2. TEST METHODOLOGY

FCC KDB 558074 D01 15.247 Meas Guidance v05r02 dated April 02, 2019 entitled "guidance for compliance measurements on digital transmission system, frequency hopping spread spectrum system, and hybrid system devices and the measurement procedure described in ANSI C63.10(Version : 2013) 'the American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices'.

EUT CONFIGURATION

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

EUT EXERCISE

The EUT was operated in the engineering mode to fix the Tx frequency that was for the purpose of the measurements. According to its specifications, the EUT must comply with the requirements of the Section 15.207, 15.209 and 15.247 under the FCC Rules Part 15 Subpart C.

GENERAL TEST PROCEDURES

Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 6.2 of ANSI C63.10. (Version :2013) Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-peak and average detector modes.

Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane below 1 GHz. Above 1 GHz with 1.5 m using absorbers between the EUT and receive antenna. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3 m away from the receiving antenna, which varied from 1 m to 4 m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the max. emission, the relative positions of this hand-held transmitter (EUT) was rotated through three orthogonal axes according to the requirements in Section 6.6.5 of ANSI C63.10. (Version: 2013)

DESCRIPTION OF TEST MODES

The EUT has been tested under operating condition. Test program used to control the EUT for staying in continuous transmitting and receiving mode is programmed.

3. INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment's, which is traceable to recognized national standards.

Especially, all antenna for measurement is calibrated in accordance with the requirements of C63.5 (Version : 2017).

4. FACILITIES AND ACCREDITATIONS

FACILITIES

The SAC(Semi-Anechoic Chamber) and conducted measurement facility used to collect the radiated data are located at the 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383, Rep. of KOREA.

The site is constructed in conformance with the requirements of ANSI C63.4. (Version :2014) and CISPR Publication 22.

Detailed description of test facility was submitted to the Commission and accepted dated April 02, 2018 (Registration Number: KR0032).

EQUIPMENT

Radiated emissions are measured with one or more of the following types of Linearly polarized antennas: tuned dipole, bi-conical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with pre-selectors and quasi-peak detectors are used to perform radiated measurements.

Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test

Receivers. Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

5. ANTENNA REQUIREMENTS

According to FCC 47 CFR §15.203

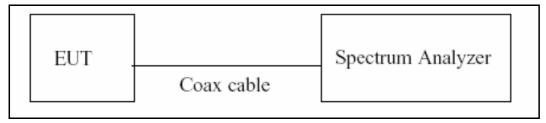
"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

- (1) The antennas of this E.U.T are permanently attached.
- (2) The E.U.T Complies with the requirement of §15.203

6. MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.10-2013.

All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95 % level of confidence.


The measurement data shown herein meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Parameter	Expanded Uncertainty (dB)
Conducted Disturbance (150 kHz ~ 30 MHz)	2.00 (Confidence level about 95 %, <i>k</i> =2)
Radiated Disturbance (9 kHz ~ 30 MHz)	4.40 (Confidence level about 95 %, <i>k</i> =2)
Radiated Disturbance (30 MHz ~ 1 GHz)	5.74 (Confidence level about 95 %, k=2)
Radiated Disturbance (1 GHz ~ 18 GHz)	5.51 (Confidence level about 95 %, <i>k</i> =2)
Radiated Disturbance (18 GHz ~ 40 GHz)	5.92 (Confidence level about 95 %, <i>k</i> =2)
Radiated Disturbance (Above 40 GHz)	5.48 (Confidence level about 95 %, k=2)

7. DESCRIPTION OF TESTS

7.1. Duty Cycle

Test Configuration

Test Procedure

The transmitter output is connected to the Spectrum Analyzer.

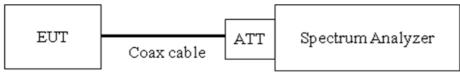
We tested according to the zero-span measurement method, 6.0)b) in KDB 558074 v05r02.

The largest available value of RBW is 8 MHz and VBW is 50 MHz.

The zero-span method of measuring duty cycle shall not be used if $T \le 6.25$ microseconds. (50/6.25 = 8)

The zero-span method was used because all measured T data are > 6.25 microseconds and both RBW and VBW are > 50/T.

- 1. RBW = 8 MHz (the largest available value)
- 2. VBW = 8 MHz (≥ RBW)
- 3. SPAN = 0 Hz
- 4. Detector = Peak
- 5. Number of points in sweep > 100
- 6. Trace mode = Clear write
- 7. Measure T_{total} and T_{on}
- 8. Calculate Duty Cycle = Ton/ Ttotal and Duty Cycle Factor = 10log(1/Duty Cycle)



7.2. 6 dB Bandwidth

<u>Limit</u>

The minimum permissible 6 dB bandwidth is 500 kHz.

Test Configuration

Test Procedure

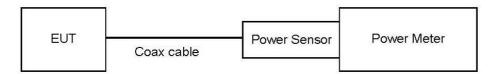
The transmitter output is connected to the Spectrum Analyzer.

The Spectrum Analyzer is set to

(Procedure 8.2 in KDB 558074 v05r02, Procedure 11.8.1 in ANSI 63.10-2013)

- 1) RBW = 100 kHz
- 2) VBW \geq 3 x RBW
- 3) Detector = Peak
- 4) Trace mode = max hold
- 5) Sweep = auto couple
- 6) Allow the trace to stabilize
- 7) We tested 6 dB bandwidth using the automatic bandwidth measurement capability of a spectrum analyzer. X dB is set 6 dB.

Note : We tested OBW using the automatic bandwidth measurement capability of a spectrum analyzer.



7.3. Output Power

<u>Limit</u>

The maximum permissible conducted output power is 1 Watt.

Test Configuration

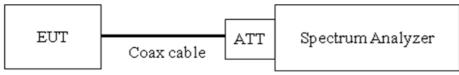
Test Procedure

The transmitter output is connected to the Power Meter.

- Peak Power (Procedure 11.9.1.3 in ANSI 63.10-2013)
- : Measure the peak power of the transmitter.
- Average Power (Procedure 8.3.2.3 in KDB 558074 v05r02, Procedure 11.9.2.3 in ANSI 63.10-2013)
 - 1) Measure the duty cycle.
 - 2) Measure the average power of the transmitter. This measurement is an average over both the on and off periods of the transmitter.
 - 3) Add 10 log (1/x), where x is the duty cycle, to the measured power in order to compute the average power during the actual transmission times.

Sample Calculation

- Conducted Output Power(Peak) = Measured Value + ATT loss + Cable loss
- Conducted Output Power(Average) = Measured Value + ATT loss + Cable loss + Duty Cycle Factor



7.4. Power Spectral Density

<u>Limit</u>

The transmitter power density average over 1-second interval shall not be greater than 8 dBm in any 3 kHz BW.

Test Configuration

Test Procedure

The transmitter output is connected to the Spectrum Analyzer.

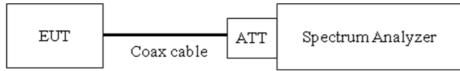
We tested according to Procedure 8.4 in KDB 558074 v05r02, Procedure 11.10 in ANSI 63.10-2013.

The spectrum analyzer is set to :

- 1) Set analyzer center frequency to DTS channel center frequency.
- 2) Set span to at least 1.5 times the OBW.
- 3) RBW = $3 \text{ kHz} \le \text{RBW} \le 100 \text{ kHz}$.
- 4) VBW \geq 3 x RBW.
- 5) Sweep = auto couple
- 6) Detector = power averaging (rms) or sample detector (when rms not available).
- 7) Ensure that the number of measurement points in the sweep \geq [2 × span / RBW].
- 8) Employ trace averaging (rms) mode over a minimum of 100 traces
- 9) Use the peak marker function to determine the maximum amplitude level.
- 10) Use the peak marker function to determine the maximum amplitude level within the RBW. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.
- 11) if then duty factor shall be added to adjust the result if the duty cycle is less than 98 %

Sample Calculation

Power Spectral Density = Measured Value + ATT loss + Cable loss


7.5. Conducted Band Edge(Out of Band Emissions) & Conducted Spurious Emissions

<u>Limit</u>

The maximum conducted (average) output power was used to demonstrate compliance, then the peak power in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 30 dB relative to the maximum in-band peak PSD level in 100 kHz.

[Conducted > 30 dBc]

Test Configuration

Test Procedure

The transmitter output is connected to the spectrum analyzer.

(Procedure 8.5 in KDB 558074 v05r02, Procedure 11.11 in ANSI 63.10-2013)

- 1) RBW = 100 kHz
- 2) VBW \geq 3 x RBW
- 3) Set span to encompass the spectrum to be examined
- 4) Detector = Peak
- 5) Trace Mode = max hold
- 6) Sweep time = auto couple
- 7) Ensure that the number of measurement points $\ge 2 \times \text{Span/VBW}$
- 8) Allow trace to fully stabilize.
- 9) Use peak marker function to determine the maximum amplitude level.

Measurements are made over the 30 MHz to 25 GHz range with the transmitter set to the lowest, middle, and highest channels.

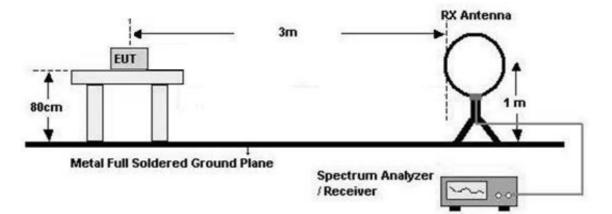
Factors for frequency

Freq(MHz)	Factor(dB)
30	10.04
100	10.07
200	10.12
300	10.17
400	10.20
500	10.21
600	10.21
700	10.23
800	10.24
900	10.26
1000	10.27
2000	10.41
2400	10.43
2500	10.45
3000	10.52
4000	10.60
5000	10.71
6000	10.73
7000	10.80
8000	10.85
9000	10.91
10000	10.97
11000	11.02
12000	11.10
13000	11.19
14000	11.16
15000	11.21
16000	11.22
17000	11.25
18000	11.30
19000	11.32
20000	11.36
21000	11.48
22000	11.55
23000	11.55
24000	11.59
25000	11.68

Note : 1. 2 400 ~ 2 500 MHz is fundamental frequency range.

2. Factor = Attenuator loss(10 dB) + Cable loss(1ea)

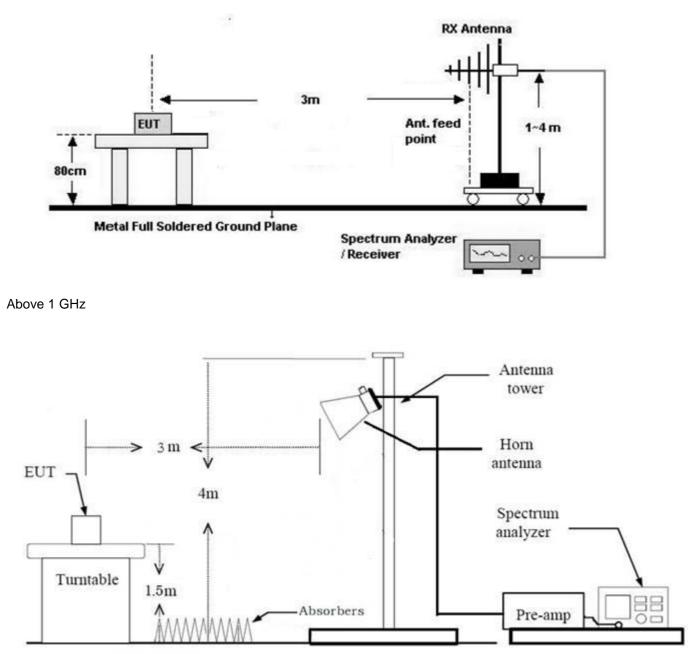
FCC ID: A3LSMA047M


7.6. Radiated Test

<u>Limit</u>

Frequency (MHz)	Field Strength (μV/m)	Measurement Distance (m)	
0.009 – 0.490	2400/F(kHz)	300	
0.490 – 1.705	24000/F(kHz)	30	
1.705 – 30	30	30	
30-88	100	3	
88-216	150	3	
216-960	200	3	
Above 960	500	3	

Test Configuration


Below 30 MHz

Report No.: HCT-RF-2207-FC012

30 MHz - 1 GHz

Test Procedure of Radiated spurious emissions(Below 30 MHz)

- 1. The EUT was placed on a non-conductive table located on semi-anechoic chamber.
- 2. The loop antenna was placed at a location 3 m from the EUT
- 3. The EUT is placed on a turntable, which is 0.8 m above ground plane.
- 4. We have done x, y, z planes in EUT and horizontal and vertical polarization and Parallel to the ground plane in detecting antenna.
- 5. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 6. Distance Correction Factor(0.009 MHz 0.490 MHz) = 40log(3 m/300 m) = 80 dB
 - Measurement Distance : 3 m
- 7. Distance Correction Factor(0.490 MHz 30 MHz) = 40log(3 m/30 m) = 40 dB
 - Measurement Distance : 3 m
- 8. Spectrum Setting
 - Frequency Range = 9 kHz ~ 30 MHz
 - Detector = Peak
 - Trace = Maxhold
 - RBW = 9 kHz
 - VBW \ge 3 x RBW
- 9. Total = Measured Value + Antenna Factor(A.F) + Cable Loss(C.L) + Distance Factor(D.F)

10. Measurement value only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.

KDB 414788 OFS and Chamber Correlation Justification

Base on FCC 15.31 (f) (2): measurements may be performed at a distance closer than that specified in the regulations; however, an attempt should be made to avoid making measurements in the near field.

OFS and chamber correlation testing had been performed and chamber measured test result is the worst case test result.

Test Procedure of Radiated spurious emissions(Below 1 GHz)

- 1. The EUT was placed on a non-conductive table located on semi-anechoic chamber.
- 2. The EUT is placed on a turntable, which is 0.8 m above ground plane.
- 3. The Hybrid antenna was placed at a location 3 m from the EUT, which is varied from 1m to 4 m to find out the highest emissions.
- 4. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.
- 5. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 6. Spectrum Setting
 - (1) Measurement Type(Peak):
 - Measured Frequency Range : 30 MHz 1 GHz
 - Detector = Peak
 - Trace = Maxhold
 - RBW = 100 kHz
 - VBW \ge 3 x RBW
 - (2) Measurement Type(Quasi-peak):
 - Measured Frequency Range : 30 MHz 1 GHz
 - Detector = Quasi-Peak
 - RBW = 120 kHz
 - In general, (1) is used mainly
- 7. Total = Measured Value + Antenna Factor(A.F) + Cable Loss(C.L)

8. Measurement value only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.

Test Procedure of Radiated spurious emissions (Above 1 GHz)

- 1. The EUT is placed on a turntable, which is 1.5 m above ground plane.
- 2. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.
- 3. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 4. EUT is set 3 m away from the receiving antenna, which is varied from 1 m to 4 m to find out the highest emissions.
- 5. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 6. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 7. The unit was tested with its standard battery.
- 8. Spectrum Setting (Method 8.6 in KDB 558074 v05r02, Procedure 11.12 in ANSI 63.10-2013)
 - (1) Measurement Type(Peak):
 - Measured Frequency Range : 1 GHz 25 GHz
 - Detector = Peak
 - Trace = Max hold
 - RBW = 1 MHz
 - VBW \ge 3 x RBW
 - (2) Measurement Type(Average):
 - Duty cycle < 98 %, duty cycle variations are less than ± 2 %
 - Measured Frequency Range : 1 GHz 25 GHz
 - Detector = RMS
 - Averaging type = power (*i.e.*, RMS)
 - RBW = 1 MHz
 - VBW \ge 3 x RBW
 - Sweep time = auto.
 - Trace mode = average (at least 100 traces).
 - Correction factor shall be added to the measurement results prior to comparing to the emission limit in order to compute the emission level that would have been measured had the test been performed at 100 percent duty cycle.
- Duty Cycle Factor (dB) : Please refer to the please refer to section 9.1

9. Measurement value only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.

- 10. Distance extrapolation factor = 20log (test distance / specific distance) (dB)
- 11. Total (Measurement Type : Peak)
 - = Peak Measured Value + Antenna Factor(A.F) + Cable Loss(C.L) Amp Gain(A.G)
 - + Distance Factor(D.F)

Total (Measurement Type : Average)

- = Average Measured Value + Antenna Factor(A.F) + Cable Loss(C.L) Amp Gain(A.G)
 - + Distance Factor(D.F) + Duty Cycle Factor

Test Procedure of Radiated Restricted Band Edge

- 1. The EUT is placed on a turntable, which is 1.5 m above ground plane.
- 2. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.
- 3. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 4. EUT is set 3 m away from the receiving antenna, which is varied from 1 m to 4 m to find out the highest emissions.
- 5. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 6. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 7. The unit was tested with its standard battery.
- 8. Spectrum Setting
 - (1) Measurement Type(Peak):
 - Measured Frequency Range : 2310 MHz ~ 2390 MHz/ 2483.5 MHz ~ 2500 MHz
 - Detector = Peak
 - Trace = Max hold
 - RBW = 1 MHz
 - VBW \ge 3 x RBW
 - (2) Measurement Type(Average):
 - Duty cycle < 98 %, duty cycle variations are less than ± 2 %
 - Measured Frequency Range : 2310 MHz \sim 2390 MHz/ 2483.5 MHz \sim 2500 MHz
 - Detector = RMS
 - Averaging type = power (*i.e.*, RMS)
 - RBW = 1 MHz
 - VBW \ge 3 x RBW
 - Sweep time = auto.
 - Trace mode = average (at least 100 traces).
 - Correction factor shall be added to the measurement results prior to comparing to the emission limit in order to compute the emission level that would have been measured had the test been performed at 100 percent duty cycle.
 - Duty Cycle Factor (dB) : Please refer to the please refer to section 9.1.
- 9. Measurement value only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.

- 10. Distance extrapolation factor = 20log (test distance / specific distance) (dB)
- 11. Total(Measurement Type : Peak)
 - = Peak Measured Value + Antenna Factor(A.F) + Cable Loss(C.L) + Distance Factor(D.F)
 - Total(Measurement Type : Average)
 - = Average Measured Value + Antenna Factor(A.F) + Cable Loss(C.L) + Distance Factor(D.F)
 - + Duty Cycle Factor

7.7. AC Power line Conducted Emissions

<u>Limit</u>

For an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN).

Fragueney Denge (MHT)	Limits (dBµV)				
Frequency Range (MHz)	Quasi-peak	Average			
0.15 to 0.50	66 to 56 ^(a)	56 to 46 ^(a)			
0.50 to 5	56	46			
5 to 30	60	50			

^(a)Decreases with the logarithm of the frequency.

Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power line (LINE and NEUTRAL) and ground at the power terminals.

Test Configuration

See test photographs attached in Annex A for the actual connections between EUT and support equipment.

Test Procedure

- 1. The EUT is placed on a wooden table 80 cm above the reference ground plane.
- 2. The EUT is connected via LISN to a test power supply.
- 3. The measurement results are obtained as described below:
- 4. Detectors : Quasi Peak and Average Detector.

Sample Calculation

Quasi-peak(Final Result) = Measured Value + Correction Factor

7.8. Worst case configuration and mode

Radiated Test

- 1. All modes of operation were investigated and the worst case configuration results are reported.
 - Mode : Stand alone, Stand alone + External accessories(Earphone, etc)
 - Worstcase : Stand alone
- 2. EUT Axis:
 - Radiated Spurious Emissions : Y
 - Radiated Restricted Band Edge : X
- All packet length of operation were investigated and the test results are worst case in lowest packet length. (Worst case :1M Bit/s 37 Byte, 2M Bit/s 37 Byte)

(125k, 500k, 1M Bit/s all have the same 1MHz Band width and only Worst result is attached.)

- 4. All datarate of operation were investigated and the worst case configuration results are reported.
 - Worst case : 1 M, 2 M
- 5. All position of loop antenna were investigated and the test result is a no critical peak found at all positions.Position : Horizontal, Vertical, Parallel to the ground plane
- 6. SM-A047M/DS, SM-A047M were tested and the worst case results are reported.
- (Worst case : SM-A047M/DS)

AC Power line Conducted Emissions

1. All modes of operation were investigated and the worst case configuration results are reported.

- Mode : Stand alone + External accessories(Earphone, etc)+Travel Adapter, Stand alone + Travel Adapter
- Worstcase : Stand alone + Travel Adapter
- 2. SM-A047M/DS, SM-A047M were tested and the worst case results are reported.

(Worst case : SM-A047M/DS)

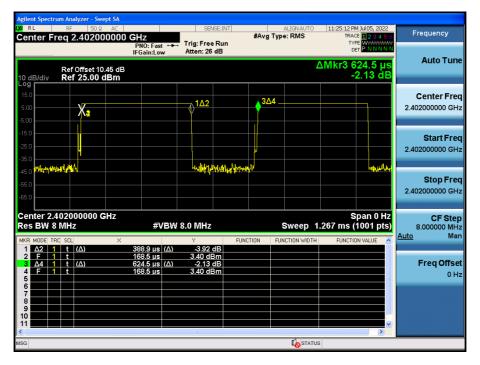
Conducted test

- 1. The EUT was configured with packet length of highest power.
 - ALL supported mode tested.
 - Worst Results refer to Notes for each test item
- 2. SM-A047M/DS, SM-A047M were tested and the worst case results are reported.

(Worst case : SM-A047M/DS)

8. SUMMARY TEST OF RESULTS

Test Description	FCC Part Section(s)	Test Limit	Test Condition	Test Result
6 dB Bandwidth	§15.247(a)(2)	> 500 kHz		PASS
Conducted Maximum Output Power	§15.247(b)(3)	< 1 Watt		PASS
Power Spectral Density	§15.247(e)	< 8 dBm / 3 kHz Band	Conducted	PASS
Band Edge (Out of Band Emissions)	§15.247(d)	Conducted > 30 dBc		PASS
AC Power line Conducted Emissions	§15.207	cf. Section 7.7		PASS
Radiated Spurious Emissions	§15.247(d), 15.205, 15.209	cf. Section 7.6	Dedicted	PASS
Radiated Restricted Band Edge	§15.247(d), 15.205, 15.209	cf. Section 7.6	Radiated	PASS

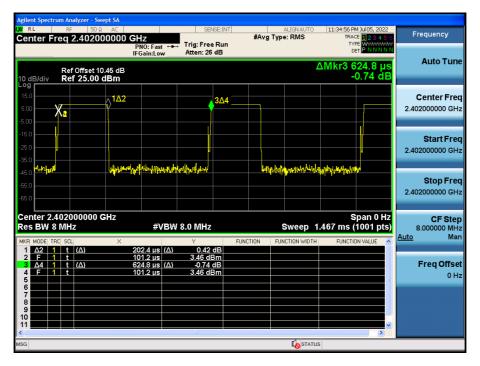

9. TEST RESULT

9.1 DUTY CYCLE

Data rate (Bit/s)	Packet length (Byte)	T _{on} (ms)	T _{total} (ms)	Duty Cycle	Duty Cycle Factor (dB)
1M	37	0.389	0.624	0.6227	2.06
T IVI	255	2.135	2.500	0.8540	0.69
2M	37	0.202	0.625	0.3239	4.90
	255	1.076	1.876	0.5736	2.41
125k	37	3.100	3.750	0.8267	0.83
	255	17.03	17.50	0.9733	0.12
500k	37	1.067	1.877	0.5684	2.45
	255	4.550	5.000	0.9100	0.41

■ 1M Bit/s (37 Byte) Test Plots

Duty Cycle (Low-CH 0)

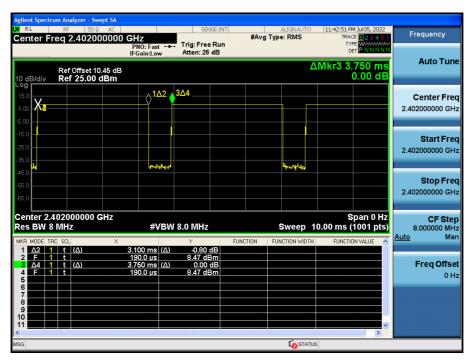

IM Bit/s (255 Byte) Test Plots

Duty Cycle (Low-CH 0)

LXI RL	rum Analyzer - Sw RF 50 ຊ req 2.4020(AC 00000 GH P	NO: Fast 🔸	Trig: Free		#Avg	ALIGN AUTO Type: RMS	TRA	M Jul 05, 2022 CE 23456 PE WWWWWWW DET PNNNNN	Frequency
10 dB/div	Ref Offset 10 Ref 25.00).45 dB	Gain:Low	Atten: 26 o	18		Ĺ	Mkr3 2	.500 ms 0.02 dB	Auto Tune
Log 15.0 5.00				< <mark>2</mark>				1∆2	3∆4	Center Freq 2.402000000 GHz
-15.0 -25.0 -35.0										Start Freq 2.402000000 GHz
-45.0 -55.0 -65.0			Nu ¹ AA-wash					har and a filler		Stop Freq 2.402000000 GHz
Center 2.4 Res BW 8		GHz	#VBW	∜ 8.0 MHz Y	FU	NCTION	Sweep 5	.000 ms (Span 0 Hz (1001 pts) ^{ON VALUE}	CF Step 8.000000 MHz <u>Auto</u> Man
1 Δ2 1 2 F 1 3 Δ4 1 4 F 1 5 5	t (Δ) t t (Δ) t	1.9 2.5	35 ms (∆) 60 ms 00 ms (∆) 60 ms	-0.95 d 4.95 dB -0.02 d 4.95 dB	m B					Freq Offset 0 Hz
6 7 8 9 10										
11				Ш			STATU	s	>	

2M Bit/s (37 Byte) Test Plots

Duty Cycle (Low-CH 0)

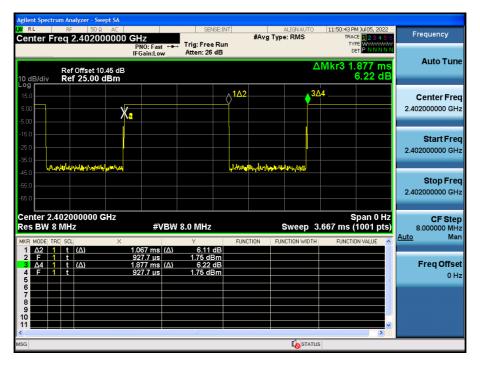

2M Bit/s (255 Byte) Test Plots

Duty Cycle (Low-CH 0)

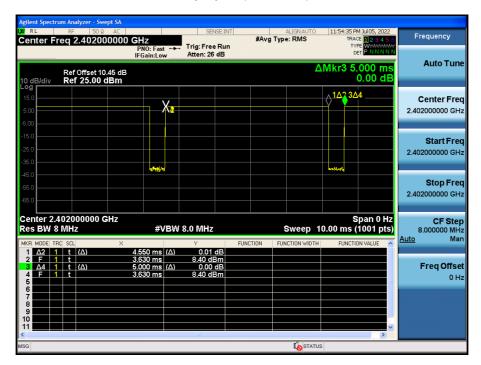
Agilent Spectr	Tum Analyzer - Swept SA		SENSE:INT	ALIGNAUTO	11:38:49 PM Jul 05, 2022	-
	req 2.40200000	OGHz PNO: Fast ↔	Trig: Free Run	#Avg Type: RMS	TRACE 1 2 3 4 5 6 TYPE WWWWWW DET P NNNNN	Frequency
10 dB/div	Ref Offset 10.45 dB Ref 25.00 dBm	IFGain:Low	Atten: 26 dB	Ĺ	∆Mkr3 1.876 ms 3.20 dB	Auto Tune
Log 15.0 5.00	Xa		<u></u> 1∆2	3Δ4		Center Freq 2.402000000 GHz
-15.0 -25.0 -35.0						Start Free 2.402000000 GHz
-45.0 -55.0 -65.0	ajhiyodiyyofirqadaajayyyo			Allen Multine and all		Stop Freq 2.402000000 GHz
Res BW 8		#VBW	8.0 MHz	•	Span 0 Hz I.000 ms (1001 pts)	CF Step 8.000000 MHz Auto Mar
MKR MODE TR 1 Δ2 1 2 F 1	RC SCL Χ t (Δ)	1.076 ms (Δ) 872.0 μs	∀ 5.66 dB 1.78 dBm	FUNCTION FUNCTION WIDTH	FUNCTION VALUE	
3 <u>A</u> 4 1 4 F 1 5	ť (Δ)	1.876 ms (Δ) 872.0 μs	3.20 dB 1.78 dBm			Freq Offsel 0 Hz
6 7 8 9 10						
11			III		×	
MSG				Ko statu	IS	

125k Bit/s(37 Byte) Test Plots

Duty Cycle (Low-CH 0)


I 125k Bit/s(255 Byte) Test Plots

Duty Cycle (Low-CH 0)


■ 500k Bit/s(37 Byte) Test Plots

Duty Cycle (Low-CH 0)

■ 500k Bit/s(255 Byte) Test Plots

Duty Cycle (Low-CH 0)

9.2 6 dB BANDWIDTH

Mode (Bit/s)	Channel	6 dB Bandwidth (kHz)	Limit (kHz)	
1M(37)	0	728.3		
	19	724.6	> 500	
	39	741.5		
1M(255)	0	708.4	> 500	
	19	699.0		
	39	710.0		
2M(37)	0	1270	> 500	
	19	1268		
	39	1281		
	0	1268	> 500	
2M(255)	19	1266		
	39	1282		
125k(37)	0	640.1	> 500	
	19	637.6		
	39	657.3		
125k(255)	0	641.8	> 500	
	19	681.2		
	39	656.5		
500k(37)	0	713.9	> 500	
	19	712.0		
	39	716.7		
500k(255)	0	715.9		
	19	704.8	> 500	
	39	713.8		

Note:

Worst case test Plot Only

1M Bit/s: 255 Byte

2M Bit/s: 255 Byte

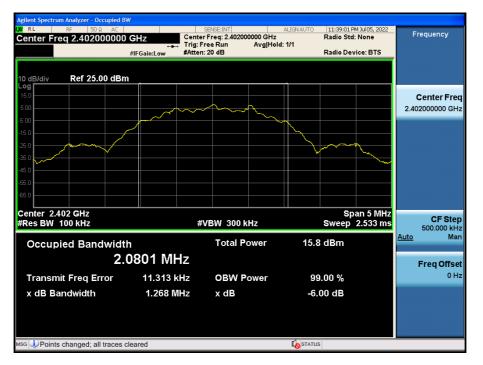
125k Bit/s: 37 Byte

500k Bit/s: 255 Byte

■ 1 MBit/s (255 Byte) Test Plots

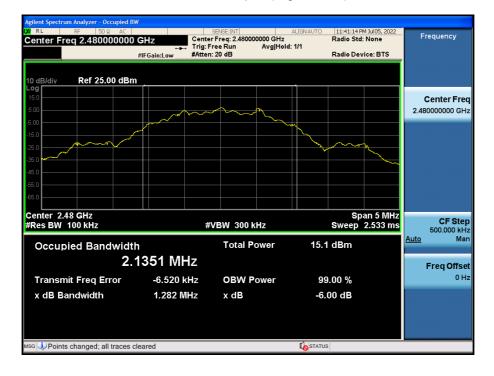
6 dB Bandwidth plot (Low-CH 0)

6 dB Bandwidth plot (Mid-CH 19)



6 dB Bandwidth plot (High-CH 39)

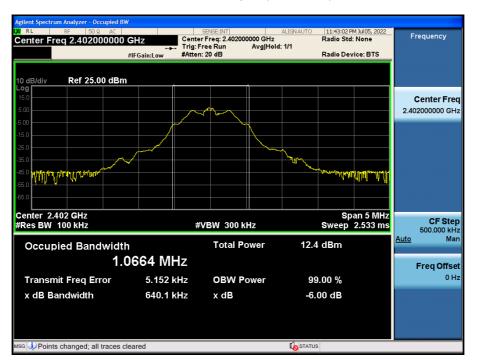
2 MBit/s (255 Byte) Test Plots



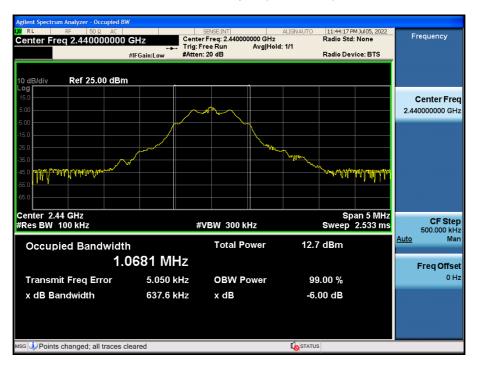
6 dB Bandwidth plot (Low-CH 0)

6 dB Bandwidth plot (Mid-CH 19)

Agilent Spectrum Analyzer - Occupied BW					
0/4/ RL RF 50Ω AC Center Freq 2.4400000000 (Trig: I	SENSE:INT er Freq: 2.440000000 GHz Free Run Avg Ho n: 20 dB		11:40:17 PM Jul 05, 2022 Radio Std: None Radio Device: BTS	Frequency
10 dB/div Ref 25.00 dBm					
5.00		- m			Center Freq 2.440000000 GHz
-5.00					
-35.0					
-65.0					
Center 2.44 GHz #Res BW 100 kHz	#	#VBW 300 kHz		Span 5 MHz Sweep 2.533 ms	CF Step 500.000 kHz
Occupied Bandwidth		Total Power	16.2	dBm	<u>Auto</u> Man
2.0	Freq Offset				
Transmit Freq Error	8.790 kHz	OBW Power		0.00 %	0 Hz
x dB Bandwidth	1.266 MHz	x dB	-6.	00 dB	
мsg 🔱 Points changed; all traces cle	eared			3	



6 dB Bandwidth plot (High-CH 39)



125k Bit/s(37 Byte) Test Plots

6 dB Bandwidth plot (Low-CH 0)

6 dB Bandwidth plot (Mid-CH 19)

6 dB Bandwidth plot (High-CH 39)



■ 500k Bit/s(255 Byte) Test Plots

6 dB Bandwidth plot (Low-CH 0)

6 dB Bandwidth plot (Mid-CH 19)

6 dB Bandwidth plot (High-CH 39)

9.3 OUTPUT POWER

Peak Power

Data rate	Packet length	LEN	lode	Measured	Limit
(Bit/s)	(Byte)	Frequency [MHz]	Channel	Power(dBm)	(dBm)
		2402	0	8.483	
	37	2440	19	8.938	
1M		2480	39	8.035	_
I IVI		2402	0	8.460	
	255	2440	19	8.900	_
		2480	39	7.926	_
		2402	0	8.593	_
	37	2440	19	9.058	
214		2480	39	8.180	_
2M		2402	0	8.576	_
	255	2440	19	9.020	
		2480	39	8.151	20
		2402	0	8.471	30
	37	2440	19	8.856	
125k		2480	39	7.928	
120K		2402	0	8.382	_
	255	2440	19	8.808	_
		2480	39	7.879	
		2402	0	8.459	
	37	2440	19	8.909	
5001		2480	39	7.978	
500k		2402	0	8.408	
	255	2440	19	8.849	
		2480	39	7.903	

Note :

- 1. Power meter offset = Attenuator loss + Cable loss
- 2. We apply to the offset in the 2.4 GHz range that was rounded off to the closest tenth dB.

So, 10.45 dB is offset for 2.4 GHz Band.

FCC ID: A3LSMA047M

Average Power

Data rate	Packet length	LEN	lode	Measured Power	Duty Cycle Factor	Result	Limit (dBm)
(Bit/s)	(Byte)	Frequency [MHz]	Channel	(dBm)	(dB)	(dBm)	(abiii)
		2402	0	6.14	2.06	8.20	
	37	2440	19	6.62	2.06	8.68	
414		2480	39	5.47	2.06	7.53	
1M	255	2402	0	7.55	0.69	8.24	
		2440	19	7.95	0.69	8.64	
		2480	39	6.84	0.69	7.53	
		2402	0	3.32	4.90	8.22	
	37	2440	19	3.75	4.90	8.65	
014		2480	39	2.68	4.90	7.58	
2M		2402	0	5.59	2.41	8.00	
	255	2440	19	6.23	2.41	8.64	
		2480	39	4.97	2.41	7.38	20
		2402	0	7.34	0.83	8.17	30
	37	2440	19	7.74	0.83	8.57	
1054		2480	39	6.66	0.83	7.49	
125k		2402	0	8.07	0.12	8.19	
	255	2440	19	8.44	0.12	8.56	
		2480	39	7.37	0.12	7.49	
		2402	0	5.67	2.45	8.12	
	37	2440	19	6.17	2.45	8.62	
5001	-	2480	39	5.02	2.45	7.47	
500k		2402	0	7.84	0.41	8.25	
	255	2440	19	8.30	0.41	8.71	
		2480	39	7.08	0.41	7.49	

Note :

1. Power meter offset = Attenuator loss + Cable loss

2. We apply to the offset in the 2.4 GHz range that was rounded off to the closest tenth dB.

So, 10.45 dB is offset for 2.4 GHz Band.

9.4 POWER SPECTRAL DENSITY

				Test Res	ult	
Frequency (MHz)	Channel No.	Mode	Measured Power(dBm)	Duty Cycle Factor(dB)	Measured Power(dBm) + Duty Cycle Factor(dB)	Limit (dBm)
2402	0		-0.705	2.06	1.352	
2440	19	1 MBit/s	0.384	2.06	2.441	
2480	39	37 Byte	-0.653	2.06	1.404	
2402	0	1 MBit/s	0.898	0.69	1.583	
2440	19	255 Byte	1.239	0.69	1.924	
2480	39	200 Byle	0.536	0.69	1.221	
2402	0	2 MBit/s	-3.877	4.90	1.018	
2440	19		-4.060	4.90	0.835	
2480	39	37 Byte	-4.018	4.90	0.877	
2402	0	2 MBit/s	-3.226	2.41	-0.812	
2440	19	255 Byte	-2.545	2.41	-0.131	
2480	39	200 Byle	-4.159	2.41	-1.745	8 dBm /
2402	0	125k	1.585	0.83	2.412	3 kHz
2440	19	37 Byte	2.292	0.83	3.119	
2480	39	37 Byle	0.778	0.83	1.605	
2402	0	125k	2.300	0.12	2.417	
2440	19	255 Byte	2.645	0.12	2.762	
2480	39	200 Byle	1.569	0.12	1.686	
2402	0	500k	-1.138	2.45	1.316	
2440	19	37 Byte	-1.115	2.45	1.339	
2480	39	Sr Byle	-2.004	2.45	0.450	
2402	0	500k	0.691	0.41	1.101	
2440	19		1.321	0.41	1.731	
2480	39	255 Byte	0.403	0.41	0.813	

Note :

1. Spectrum measured Value not plot data.

The PSD results in plot is already including the actual values of loss for the attenuator and cable combination.

- 2. Spectrum offset = Attenuator loss + Cable loss
- 3. We apply to the offset in the 2.4 GHz range that was rounded off to the closest tenth dB.

So, 10.45 dB is offset for 2.4 GHz Band.

4. Worst case test Plot Only : 125k Bit/s (37 Byte)

I 125k Bit/s (37 Byte) Test Plots

Power Spectral Density (Low-CH 0)

Power Spectral Density (Mid-CH 19)

Power Spectral Density (High-CH 39)

9.5 BAND EDGE/ CONDUCTED SPURIOUS EMISSIONS

Test Result : please refer to the plot below.

In order to simplify the report, attached plots were only the worst case channel and data rate.

[BAND EDGE]

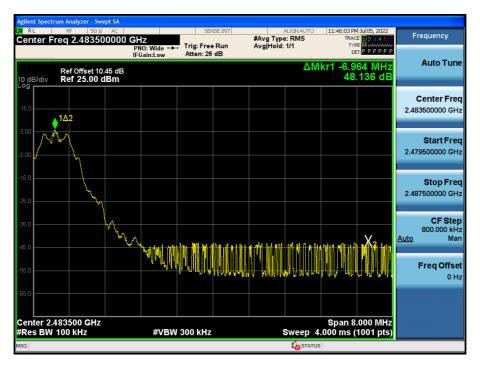
				Test	Result
Frequency	Mode	Channel No.	Position	Measured	Limit
(MHz)	Mode	Chamiler No.	POSILION	Level	(dBc)
				(dB)	
2402		0	Lower	49.983	30
2480	1M Bit/s 37 Byte	39	Upper	49.341	30
2402	1M Dit/o 255 Duto	0	Lower	50.733	30
2480	1M Bit/s 255 Byte	39	Upper	49.844	30
2402	2M Bit/s 37 Byte	0	Lower	31.641	30
2480	ZIVI DII/S 37 Dyte	39	Upper	49.209	30
2402	2M Bit/s 255 Byte	0	Lower	31.545	30
2480	ZIVI DIL/S 200 Dyte	39	Upper	49.676	30
2402	105k Dit/o 07 Duto	0	Lower	49.316	30
2480	125k Bit/s 37 Byte	39	Upper	48.136	30
2402	125k Bit/o 255 Buto	0	Lower	48.215	30
2480	125k Bit/s 255 Byte	39	Upper	48.600	30
2402	EOOK Dit/o 27 Dito	0	Lower	50.374	30
2480	500k Bit/s 37 Byte	39	Upper	49.819	30
2402		0	Lower	50.766	30
2480	500k Bit/s 255 Byte	39	Upper	49.543	30

Note :

- 1. Worst case test Plot
 - (1) Lower 2M Bit/s (255 Byte)
 - (2) Upper 125k Bit/s (37 Byte)

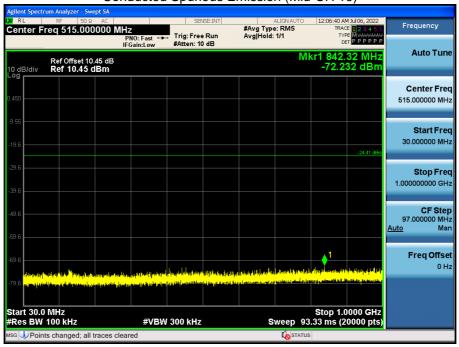
[CONDUCTED SPURIOUS EMISSIONS]

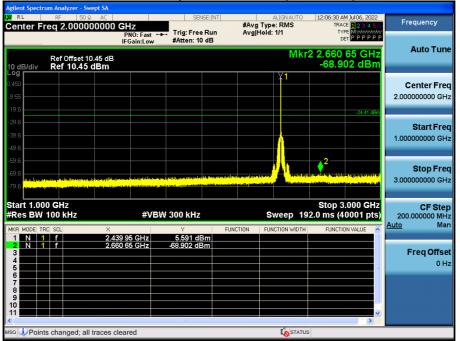
Note : Worst case test Plot 2M Bit/s (37 Byte)

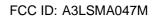


2M Bit/s (255 Byte) Test Plots –Band Edge

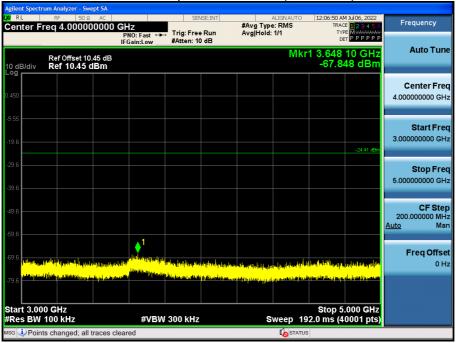
I 125k Bit/s (37 Byte) Test Plots -Band Edge


High-CH 39

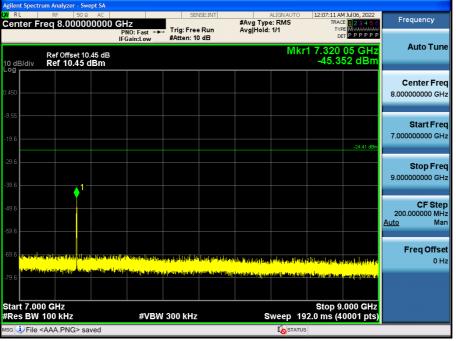

2M Bit/s (37 Byte) Test Plots -Conducted Spurious Emission


30 MHz ~ 1 GHz

Conducted Spurious Emission (Mid-CH 19)

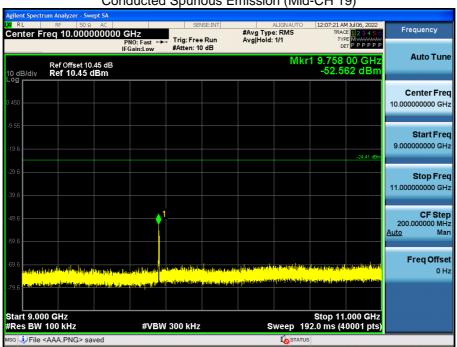

1 GHz ~ 3 GHz

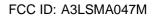
3 GHz ~ 5 GHz


Conducted Spurious Emission (Mid-CH 19)

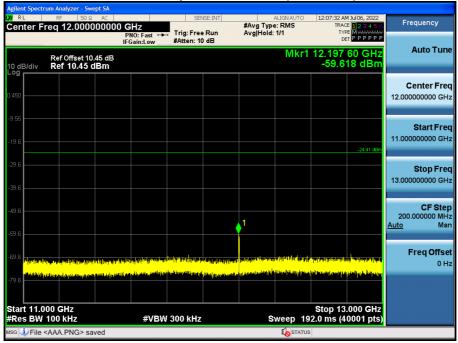
5 GHz ~ 7 GHz

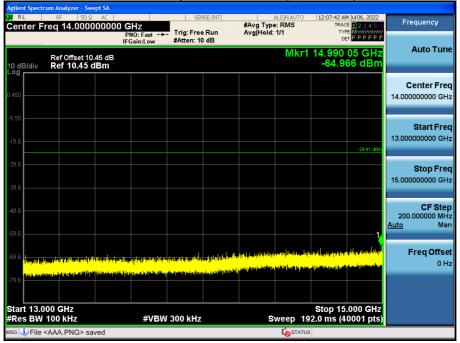
Frequency #Avg Type: RMS Avg|Hold: 1/1 Center Freq 6.000000000 GHz PNO: Fast ↔ IFGain:Low #Atten: 10 dB TYPE MWWWWWW DET P P P P P Auto Tune Mkr1 6.797 85 GHz -69.429 dBm Ref Offset 10.45 dB Ref 10.45 dBm **Center Freq** 6.00000000 GHz Start Freq 5.00000000 GHz Stop Freq 7.000000000 GHz CF Step 200.000000 MHz Auto Man 1 **Freq Offset** 0 Hz Stop 7.000 GHz Sweep 192.0 ms (40001 pts) Start 5.000 GHz #Res BW 100 kHz #VBW 300 kHz File <AAA.PNG> saved

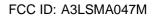



7 GHz ~ 9 GHz

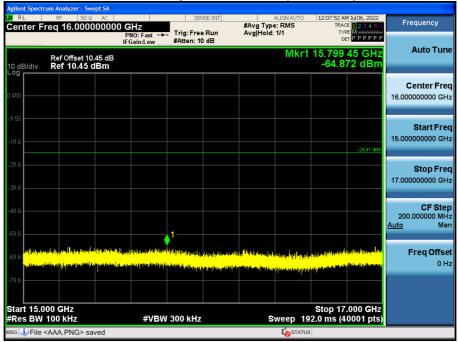
Conducted Spurious Emission (Mid-CH 19)

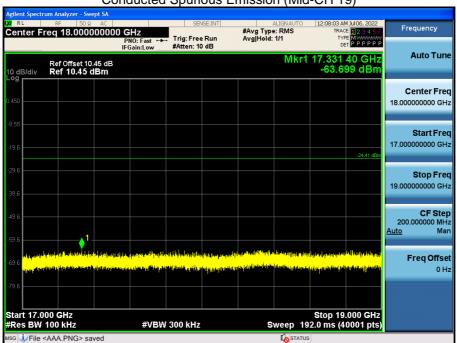

9 GHz ~ 11 GHz

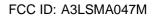



11 GHz ~ 13 GHz

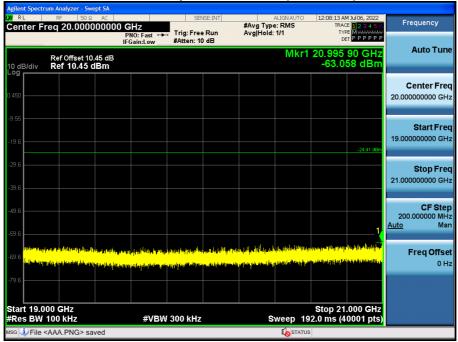
Conducted Spurious Emission (Mid-CH 19)

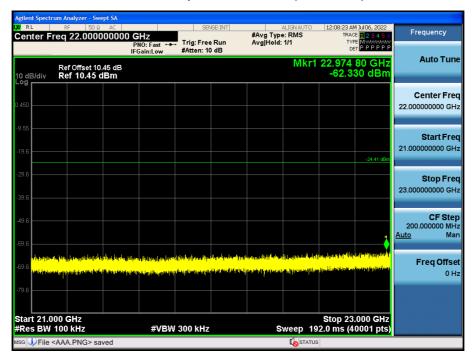

13 GHz ~ 15 GHz




15 GHz ~ 17 GHz

Conducted Spurious Emission (Mid-CH 19)


17 GHz ~ 19 GHz



19 GHz ~ 21 GHz

Conducted Spurious Emission (Mid-CH 19)

21 GHz ~ 23 GHz

23 GHz ~ 25 GHz

9.6 RADIATED SPURIOUS EMISSIONS

Frequency Range : 9 kHz – 30 MHz

Frequency	Measured Value	A.F+C.L+D.F	POL	Total	Limit	Margin				
[MHz]	[dBµV]	[dBµV/m]	[dB]							
	No Critical peaks found									

Note:

1. The Measured of emissions are attenuated more than 20 dB below the permissible limits or the field strength is too small to be measured.

- 2. Distance extrapolation factor = 40log (specific distance / test distance) (dB)
- 3. Limit line = specific Limits (dBµV) + Distance extrapolation factor

Frequency Range : Below 1 GHz

Frequency	Measured Value	A.F+C.L	POL	Total	Limit	Margin				
[MHz]	[MHz] [dBµV] [dB/m] [H/V] [dBµV/m] [dBµV/m]									
	No Critical peaks found									

Note:

1. Radiated emissions measured in frequency range from 30 MHz to 1000 MHz were made

with an instrument using Quasi peak detector mode.

Frequency Range : Above 1 GHz

Mode : 1 MBit/s (37 Byte)

Operation	Mode:	СН	Low
-----------	-------	----	-----

Frequency	Measured Value	Duty Cycle Factor	A.F + C.L - A.G + D.F	Pol.	Total	Limit	Margin	Measurement
[MHz]	[dBµV]	[dB]	[dB/m]	[H/V]	[dBµV/m]	[dBµV/m]	[dB]	Туре
4804	42.85	0.00	3.98	V	46.83	73.98	27.15	PK
4804	30.52	2.06	3.98	V	36.56	53.98	17.42	AV
7206	40.82	0.00	12.53	V	53.35	73.98	20.64	PK
7206	28.65	2.06	12.53	V	43.24	53.98	10.75	AV
4804	43.15	0.00	3.98	Н	47.13	73.98	26.85	PK
4804	30.94	2.06	3.98	Н	36.98	53.98	17.00	AV
7206	41.28	0.00	12.53	Н	53.81	73.98	20.18	PK
7206	29.56	2.06	12.53	Н	44.15	53.98	9.84	AV

Operation Mode: CH Mid

Frequency	Measured Value	Duty Cycle Factor	A.F + C.L - A.G + D.F	Pol.	Total	Limit	Margin	Measurement
[MHz]	[dBµV]	[dB]	[dB/m]	[H/V]	[dBµV/m]	[dBµV/m]	[dB]	Туре
4880	42.69	0.00	4.07	V	46.76	73.98	27.22	PK
4880	30.28	2.06	4.07	V	36.41	53.98	17.57	AV
7320	41.92	0.00	11.58	V	53.50	73.98	20.49	PK
7320	30.82	2.06	11.58	V	44.46	53.98	9.52	AV
4880	43.23	0.00	4.07	Н	47.30	73.98	26.68	PK
4880	31.32	2.06	4.07	Н	37.45	53.98	16.53	AV
7320	42.26	0.00	11.58	Н	53.84	73.98	20.15	PK
7320	31.17	2.06	11.58	Н	44.81	53.98	9.17	AV

Operation Mode: CH High

Frequency	Measured Value	Duty Cycle Factor	A.F + C.L - A.G + D.F	Pol.	Total	Limit	Margin	Measurement
[MHz]	[dBµV]	[dB]	[dB/m]	[H/V]	[dBµV/m]	[dBµV/m]	[dB]	Туре
4960	41.65	0.00	4.77	V	46.42	73.98	27.56	PK
4960	30.82	2.06	4.77	V	37.65	53.98	16.33	AV
7440	42.64	0.00	11.99	V	54.63	73.98	19.35	PK
7440	31.43	2.06	11.99	V	45.48	53.98	8.50	AV
4960	42.48	0.00	4.77	Н	47.25	73.98	26.73	PK
4960	31.26	2.06	4.77	Н	38.09	53.98	15.89	AV
7440	42.95	0.00	11.99	Н	54.94	73.98	19.04	PK
7440	32.53	2.06	11.99	н	46.58	53.98	7.40	AV

Mode : 2 MBit/s (37 Byte)

Frequency	Measured Value	Duty Cycle Factor	A.F + C.L - A.G + D.F	Pol.	Total	Limit	Margin	Measurement
[MHz]	[dBµV]	[dB]	[dB/m]	[H/V]	[dBµV/m]	[dBµV/m]	[dB]	Туре
4804	41.29	0.00	3.98	V	45.27	73.98	28.71	PK
4804	30.54	4.90	3.98	V	39.42	53.98	14.56	AV
7206	30.96	0.00	12.53	V	43.49	73.98	30.50	PK
7206	28.21	4.90	12.53	V	45.64	53.98	8.35	AV
4804	42.72	0.00	3.98	Н	46.70	73.98	27.28	PK
4804	30.88	4.90	3.98	Н	39.76	53.98	14.22	AV
7206	40.12	0.00	12.53	Н	52.65	73.98	21.34	PK
7206	28.67	4.90	12.53	Н	46.10	53.98	7.89	AV

Operation Mode: CH Low

Operation Mode: CH Mid

Frequency	Measured Value	Duty Cycle Factor	A.F + C.L - A.G + D.F	Pol.	Total	Limit	Margin	Measurement Type
[MHz]	[dBµV]	[dB]	[dB/m]	[H/V]	[dBµV/m]	[dBµV/m]	[dB]	туре
4880	42.51	0.00	4.07	V	46.58	73.98	27.40	PK
4880	30.86	4.90	4.07	V	39.83	53.98	14.15	AV
7320	40.77	0.00	11.58	V	52.35	73.98	21.64	PK
7320	28.56	4.90	11.58	V	45.04	53.98	8.94	AV
4880	43.43	0.00	4.07	Н	47.50	73.98	26.48	PK
4880	31.24	4.90	4.07	Н	40.21	53.98	13.77	AV
7320	41.67	0.00	11.58	Н	53.25	73.98	20.74	PK
7320	29.77	4.90	11.58	Н	46.25	53.98	7.73	AV

Operation Mode: CH High

Frequency	Measured Value	Duty Cycle Factor	A.F + C.L - A.G + D.F	Pol.	Total	Limit	Margin	Measurement
[MHz]	[dBµV]	[dB]	[dB/m]	[H/V]	[dBµV/m]	[dBµV/m]	[dB]	Туре
4960	42.97	0.00	4.77	V	47.74	73.98	26.24	PK
4960	31.05	4.90	4.77	V	40.72	53.98	13.26	AV
7440	41.51	0.00	11.99	V	53.50	73.98	20.48	PK
7440	29.56	4.90	11.99	V	46.45	53.98	7.53	AV
4960	43.16	0.00	4.77	Н	47.93	73.98	26.05	PK
4960	31.33	4.90	4.77	Н	41.00	53.98	12.98	AV
7440	42.48	0.00	11.99	Н	54.47	73.98	19.51	PK
7440	30.21	4.90	11.99	Н	47.10	53.98	6.88	AV

■ 1 MBit/s 37 Byte Test Plots (Worst case : Y-H)

Radiated Spurious Emissions plot - Average Result (Ch.39 3rd Harmonic)

Spectrum	Spectrum 2	X SI	bectrum 3	X				[₩
Ref Level 97.00 d	Вµ∨	🖷 RB	W 1 MHz					,
) dB 👄 SWT 1	l0 ms 👄 VB	W 3 MHz	Mode Swe	ер			
Count 100/100								
●1Rm AvgPwr●2Pk C	lirw							
				M	1[1]			32.53 dBµV 93922 GHz
90 dBµV					I	I	7.43	93922 GH2
80 dBµV								
70 dBµV								
, o aop.								
co. do. 44								
60 dBµV								
50 dBµV								
40 dBµV			WW WW	NUL IN				
30 dBpv	սետություն	استلال المسالية	hw", <u>N</u> 1		Huston Mills	Ulanhundahan	بالبالي المراب	المساحينا لحاسط
30 gBhA	and a sheld new	AN ALCANO DA MAR			AND AND AND AND	An or all Mathematic	a . What ha	արտա թոլ
20 dBuV								
20 UBHV								
10 dBµV	-							
0 dBµV								
CF 7.44 GHz	1	1	691	pts			Span	15.0 MHz

Radiated Spurious Emissions plot – Peak Result (Ch.39 3rd Harmonic)

Spectrun	n Sp	ectrum 2	X Sp	ectrum 3	×				
Ref Leve	97.00 dBµ	v	🖷 RB	W 1 MHz					
e Att		B 👄 SWT 1	.0 ms 👄 VB	W 3 MHz	Mode Swe	ер			
Count 100,	·								
●1Pk Max●	2Pk Clrw								
					M	1[1]			ŀ2.95 dBµV 07598 GHz
90 dBµV								7.44	07398 GH2
80 dBµV									
70 dBµV									
70 abpv									
60 dBµV									
50 dBµV									
					M1				
40 dBuV-				moundurth	whenture				
replanner	uhul when when	Marin Mahan	Mudriman	1. MAN 1	444.004	maria	entronetation	harlinger Ha	And all and the second
HULLEV HULLEV 30 dBUV	արհանդերություն	lwh/ ^{wm} h/w	4,641,71,414MP	աթ՝ ազ	`4¶ °V	han han dia ta	Ւասվություն	haulundartta	MAMAALAMU
30 dBµV—									
20 dBµV									
10 dBµV									
o doubl									
0 dBµV								_	
CF 7.44 Gł	Ηz			691	pts			Span	15.0 MHz

2 MBit/s 37 Byte Test Plots (Worst case : Y-H)

Radiated Spurious Emissions plot - Average Result (Ch.39 3rd Harmonic) ₽ Spectrum 2 \mathbf{X} Spectrum Spectrum 3 X Ref Level 97.00 dBµV RBW 1 MHz 0 dB - SWT 10 ms - VBW 3 MHz Att Mode Sweep Count 100/100 ●1Rm AvgPwr●2Pk Clrv 30.21 dBµV 7.4383719 GHz M1[1] 90 dBµV 80 dBµV 70 dBµV-60 dBµV∙ 50 dBµV 40 dBuV W WWWWWWWWWWWWW Mary and Mapper Makesthe adaption of the wayaut hugh waland back Myran Myran (20 dBµV 10 dBµV 0 dBµV-691 pts Span 15.0 MHz CF 7.44 GHz

Radiated Spurious Emissions plot – Peak Result (Ch.39 3rd Harmonic)

Spectrun	n Sp	ectrum 2	🗶 St	ectrum 3	X				
Ref Leve	97.00 dBµ'	v	🔵 RB	W 1 MHz					
🖷 Att		B 👄 SWT 1	.0 ms 👄 VB	W 3 MHz	Mode Swe	ер			
Count 100,									
⊖1Pk Max●	2Pk Clrw								
					M	1[1]			12.48 dBμV
90 dBµV						I	I	7.44	19320 GHz
80 dBµV									
70 dBµV—									
, o app.									
60 dBµV									
60 авµv—									
50 dBµV									
						M1			
AOLOBHY	warman	الماللاليهاسياسيل	harmoulour	NI	no-unalite constants	and the second	wenter all the	when the here	- haberton
hilly	หน้าแป้ เสขาปแป	N NAME AND AND A DESCRIPTION OF A DESCRI	about Mr. Malla	Mu den Mun	Hall Waypoor	, Ալլույ ^{ինի} կ հ _ն թա	alusitAlinii Alusa	المعالية أحمال	1 LAND BALLAN
30 dBµV	1. 20% (J. 1. 0. 44	n all alle note . A	loo.00M - o. d	A.d a	nats aska.	<i>የ</i> ግም ግም		ha li addindi. a A	Acad a season o
20 dBµV									
20 000									
10 10 11									
10 dBµV									
0 dBµV									
CF 7.44 Gł	Hz			691	pts			Span	15.0 MHz

Note:

Plot of worst case are only reported.

9.7 RADIATED RESTRICTED BAND EDGES

Mode : 1 MBit/s (37 Byte)

Operating Frequency

2402 MHz, 2480 MHz

Channel No.

0 CH, 39 CH

Frequency	Measured Value	Duty Cycle Factor	A.F.+C.L+D.F	Ant. Pol.	Total	Limit	Margin	Measurement Type
[MHz]	[dBµV]	[dB]	[dB/m]	[H/V]	[dBµV/m]	[dBµV/m]	[dB]	
2390.0	28.90	0.00	34.50	Н	63.40	73.98	10.58	PK
2390.0	8.36	2.06	34.50	Н	44.92	53.98	9.06	AV
2390.0	27.41	0.00	34.50	V	61.91	73.98	12.07	PK
2390.0	8.21	2.06	34.50	V	44.77	53.98	9.21	AV
2483.5	35.78	0.00	34.87	Н	70.66	73.98	3.32	PK
2483.5	12.31	2.06	34.87	Н	49.24	53.98	4.74	AV
2483.5	34.73	0.00	34.87	V	69.60	73.98	4.38	PK
2483.5	11.27	2.06	34.87	V	48.20	53.98	5.78	AV

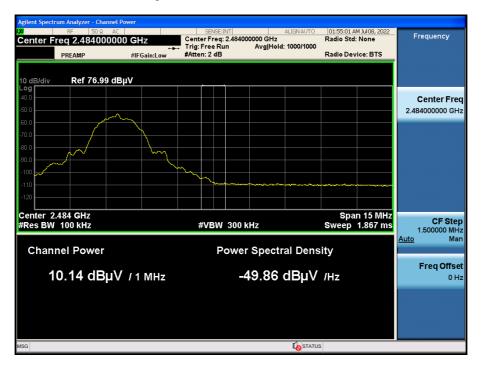
Mode : 2 MBit/s (37 Byte)

Operating Frequency Channel No. 2402 MHz, 2480 MHz

0 CH, 39 CH

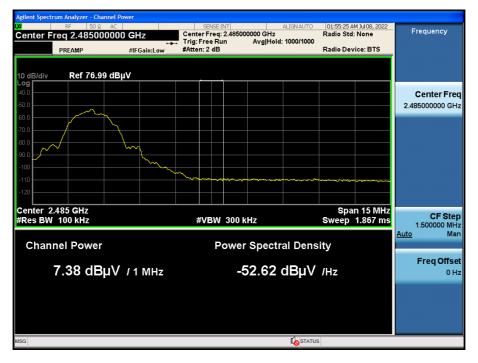
Frequency	Measured Value	Duty Cycle Factor	A.F.+C.L+D.F	Ant. Pol.	Total	Limit	Margin	Measurement Type
[MHz]	[dBµV]	[dB]	[dB/m]	[H/V]	[dBµV/m]	[dBµV/m]	[dB]	
2390.0	28.54	0.00	34.50	Н	63.04	73.98	10.94	PK
2390.0	8.02	4.90	34.50	Н	47.42	53.98	6.56	AV
2390.0	27.42	0.00	34.50	V	61.92	73.98	12.06	PK
2390.0	7.82	4.90	34.50	V	47.23	53.98	6.75	AV
2483.5	36.13	0.00	34.87	Н	71.01	73.98	2.97	PK
#2484	10.14	4.90	34.87	н	49.91	53.98	4.07	AV
#2485	7.38	4.90	34.87	н	47.15	53.98	6.83	AV
2485.5	11.37	4.90	34.87	н	51.14	53.98	2.84	AV

Note : integration method Used (ANSI C63.10 Section11.13.3)

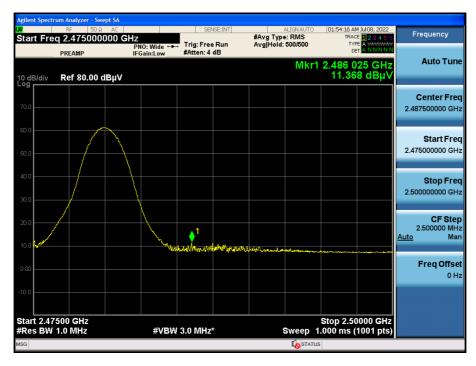

Mode : 2 MBit/s (37 Byte) Test Plots

#Avg Type: RMS Avg|Hold: 500/500 Frequency Start Freq 2.475000000 GHz HZ PNO: Wide ↔ Trig: Free Run IFGain:Low #Atten: 6 dB RACE TYPE DET PREAMP Mkr1 2.483 675 GHz 36.134 dBµV Auto Tune 10 dB/div Ref 80.00 dBµV **Center Freq** 2.487500000 GHz Start Freq 2.475000000 GHz **−**♦¹ Stop Freq 2.500000000 GHz w. CF Step 2.500000 MHz Man Auto **Freq Offset** 0 Hz Start 2.47500 GHz #Res BW 1.0 MHz Stop 2.50000 GHz Sweep 1.000 ms (1001 pts) #VBW 3.0 MHz To ST

Radiated Restricted Band Edges plot – Peak Result (Ch.39, X-H)


Radiated Restricted Band Edges plot – Average Result (Ch.39, X-H)

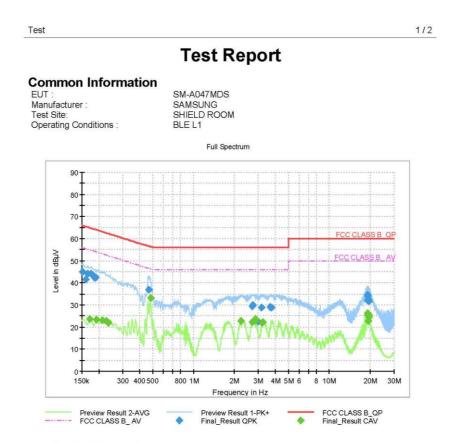
Integration method Used_ 2484 MHz



Radiated Restricted Band Edges plot – Average Result (Ch.39, X-H)

Integration method Used_ 2485 MHz

Radiated Restricted Band Edges plot - Average Result (Ch.39, X-H)


Note:

Plot of worst case are only reported.

9.8 POWERLINE CONDUCTED EMISSIONS

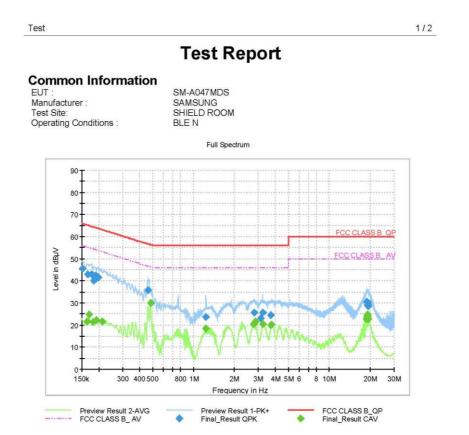
Conducted Emissions (Line 1)

Final Result QPK

Frequency (MHz)	QuasiPeak (dBµV)	Limit (dBµV)	Margin (dB)	Bandwidth (kHz)	Line	Filter	Corr. (dB)
0.1523	44.92	65.88	20.96	9.000	L1	OFF	9.6
0.1613	41.64	65.40	23.76	9.000	L1	OFF	9.6
0.1658	44.01	65.17	21.16	9.000	L1	OFF	9.6
0.1748	44.19	64.73	20.54	9.000	L1	OFF	9.6
0.1860	42.31	64.21	21.91	9.000	L1	OFF	9.6
0.1905	42.44	64.02	21.57	9.000	L1	OFF	9.6
0.4695	36.97	56.52	19.55	9.000	L1	OFF	9.7
2.7073	29.32	56.00	26.68	9.000	L1	OFF	9.8
2.7433	29.90	56.00	26.10	9.000	L1	OFF	9.8
3.0020	22.53	56.00	33.47	9.000	L1	OFF	9.8
3.1685	28.76	56.00	27.24	9.000	L1	OFF	9.8
3.6455	29.27	56.00	26.73	9.000	L1	OFF	9.8
3.7558	28.85	56.00	27.15	9.000	L1	OFF	9.8
19.0400	34.74	60.00	25.26	9.000	L1	OFF	10.3
19.0558	32.15	60.00	27.85	9.000	L1	OFF	10.3
19.0603	34.06	60.00	25.94	9.000	L1	OFF	10.3
19.3078	32.64	60.00	27.36	9.000	L1	OFF	10.4
19.5373	31.62	60.00	28.38	9.000	L1	OFF	10.4

Final_Result_CAV

FCC ID: A3LSMA047M


Test

2/2

Frequency (MHz)	CAverage (dBµV)	Limit (dBµV)	Margin (dB)	Bandwidth (kHz)	Line	Filter	Corr. (dB)
0.1725	23.58	54.84	31.25	9.000	L1	OFF	9.6
0.1928	23.34	53.92	30.58	9.000	L1	OFF	9.6
0.2130	23.10	53.09	29.99	9.000	L1	OFF	9.6
0.2265	22.89	52.58	29.69	9.000	L1	OFF	9.6
0.2355	22.00	52.25	30.26	9.000	L1	OFF	9.6
0.4808	33.09	46.33	13.23	9.000	L1	OFF	9.7
2.2370	22.93	46.00	23.07	9.000	L1	OFF	9.8
2.6983	22.11	46.00	23.89	9.000	L1	OFF	9.8
2.8468	23.64	46.00	22.36	9.000	L1	OFF	9.8
2.8648	23.21	46.00	22.79	9.000	L1	OFF	9.8
3.2023	21.91	46.00	24.09	9.000	L1	OFF	9.8
3.2248	22.33	46.00	23.67	9.000	L1	OFF	9.8
19.0400	26.11	50.00	23.89	9.000	L1	OFF	10.3
19.0603	25.44	50.00	24.56	9.000	L1	OFF	10.3
19.0828	25.28	50.00	24.72	9.000	L1	OFF	10.3
19.3010	22.68	50.00	27.32	9.000	L1	OFF	10.4
19.5013	25.26	50.00	24.74	9.000	L1	OFF	10.4
19.5418	24.66	50.00	25.34	9.000	L1	OFF	10.4

Conducted Emissions (Line 2)

Final_Result_QPK

Frequency (MHz)	QuasiPeak (dBµV)	Limit (dBµV)	Margin (dB)	Bandwidth (kHz)	Line	Filter	Corr. (dB)
0.1523	45.68	65.88	20.20	9.000	N	OFF	9.6
0.1658	42.86	65.17	22.31	9.000	N	OFF	9.6
0.1770	43.01	64.63	21.62	9.000	N	OFF	9.6
0.1838	40.21	64.31	24.10	9.000	N	OFF	9.6
0.1905	42.48	64.02	21.53	9.000	N	OFF	9.6
0.1995	41.50	63.63	22.13	9.000	N	OFF	9.6
0.4628	35.67	56.64	20.97	9.000	N	OFF	9.7
1.2335	23.61	56.00	32.39	9.000	N	OFF	9.7
2.7793	25.62	56.00	30.38	9.000	N	OFF	9.8
3.1438	23.00	56.00	33.00	9.000	N	OFF	9.8
3.2405	25.69	56.00	30.31	9.000	N	OFF	9.8
3.7108	24.41	56.00	31.59	9.000	N	OFF	9.8
19.0220	30.71	60.00	29.29	9.000	N	OFF	10.4
19.0378	29.32	60.00	30.68	9.000	N	OFF	10.4
19.0603	30.20	60.00	29.80	9.000	N	OFF	10.4
19.0670	28.80	60.00	31.20	9.000	N	OFF	10.4
19.0895	29.08	60.00	30.92	9.000	N	OFF	10.4
19.3348	28.64	60.00	31.36	9.000	N	OFF	10.4

Final_Result_CAV

FCC ID: A3LSMA047M

Test

2/2

Frequency (MHz)	CAverage (dBµV)	Limit (dBµV)	Margin (dB)	Bandwidth (kHz)	Line	Filter	Corr. (dB)
0.1635	21.59	55.28	33.69	9.000	N	OFF	9.6
0.1703	24.68	54.95	30.27	9.000	N	OFF	9.6
0.1815	21.25	54.42	33.17	9.000	N	OFF	9.6
0.1928	22.13	53.92	31.79	9.000	N	OFF	9.6
0.2130	21.60	53.09	31.48	9.000	N	OFF	9.6
0.4830	29.97	46.29	16.32	9.000	N	OFF	9.7
1.2313	18.41	46.00	27.59	9.000	N	OFF	9.7
2.7770	20.47	46.00	25.53	9.000	N	OFF	9.8
2.8445	21.59	46.00	24.41	9.000	N	OFF	9.8
3.2428	20.46	46.00	25.54	9.000	N	OFF	9.8
3.7063	20.04	46.00	25.96	9.000	N	OFF	9.8
3.7243	20.30	46.00	25.70	9.000	N	OFF	9.8
18.7925	22.81	50.00	27.19	9.000	N	OFF	10.4
18.9973	23.36	50.00	26.64	9.000	N	OFF	10.4
19.0198	24.36	50.00	25.64	9.000	N	OFF	10.4
19.0400	24.68	50.00	25.32	9.000	N	OFF	10.4
19.0603	24.04	50.00	25.96	9.000	N	OFF	10.4
19.2785	22.82	50.00	27.18	9.000	N	OFF	10.4

10. LIST OF TEST EQUIPMENT

Conducted Test

Equipment	Model	Manufacturer	Serial No.	Due to Calibration	Calibration Interval
LISN	ENV216	Rohde & Schwarz	102245	08/23/2022	Annual
EMI Test Receiver	ESR	Rohde & Schwarz	101910	06/07/2023	Annual
Temperature Chamber	SU-642	ESPEC	0093008124	03/04/2023	Annual
Signal Analyzer	N9030A	Agilent	MY49431210	01/11/2023	Annual
Power Measurement Set	OSP 120	Rohde & Schwarz	101231	06/14/2023	Annual
Power Meter	N1911A	Agilent	MY45100523	03/24/2023	Annual
Power Sensor	N1921A	Keysight	MY57820067	03/24/2023	Annual
Directional Coupler	87300B	Agilent	3116A03621	11/02/2022	Annual
Power Splitter	11667B	Hewlett Packard	05001	05/18/2023	Annual
DC Power Supply	E3646A	Agilent	MY40002937	12/14/2022	Annual
Attenuator(10 dB)	8493C	Hewlett Packard	07560	06/14/2023	Annual
Software	EMC32	Rohde & Schwarz	N/A	N/A	N/A
FCC WLAN&BT&BLE Conducted Test Software v3.0	N/A	HCT CO., LTD.	N/A	N/A	N/A

Note:

1. Equipment listed above that calibrated during the testing period was set for test after the calibration.

2. Equipment listed above that has a calibration due date during the testing period, the testing is completed before equipment expiration date.

FCC ID: A3LSMA047M

Radiated Test

Equipment	Model	Manufacturer	Serial No.	Due to Calibration	Calibration Interval
Controller(Antenna mast)	CO3000	Innco system	CO3000-4p	N/A	N/A
Antenna Position Tower	MA4640/800-XP-EP	Innco system	N/A	N/A	N/A
Controller	EM1000	Audix	060520	N/A	N/A
Turn Table	N/A	Audix	N/A	N/A	N/A
Loop Antenna	FMZB 1513	Rohde & Schwarz	1513-333	03/17/2024	Biennial
Hybrid Antenna	VULB 9168	Schwarzbeck	760	02/22/2023	Biennial
Horn Antenna	BBHA 9120D	Schwarzbeck	02299	03/24/2024	Biennial
Horn Antenna (15 GHz ~ 40 GHz)	BBHA9170	Schwarzbeck	BBHA9170541	11/16/2023	Biennial
Spectrum Analyzer	FSV40-N	Rohde & Schwarz	102168	07/04/2023	Annual
Signal Analyzer	N9030A	Agilent	MY49431210	01/11/2023	Annual
Band Reject Filter	WRCJV12-4900-5100-5900- 6100-50SS	Wainwright Instruments	5	06/13/2023	Annual
Band Reject Filter	WRCJV12-4900-5100-5900- 6100-50SS	Wainwright Instruments	6	06/13/2023	Annual
Band Reject Filter	WRCJV2400/2483.5- 2370/2520-60/12SS	Wainwright Instruments	2	01/06/2023	Annual
Band Reject Filter	WRCJV5100/5850-40/50- 8EEK	Wainwright Instruments	1	02/072023	Annual
High Pass Filter	WHK3.0/18G-10EF	Wainwright Instruments	8	01/21/2023	Annual
High Pass Filter	WHKX8-6090-7000-18000- 40SS	Wainwright Instruments	25	01/21/2023	Annual
Attenuator (3 dB)	18B-03	Api tech.	1	01/21/2023	Annual
Attenuator(10 dB)	8493C-10	Agilent	08285	01/21/2023	Annual
Power Amplifier	CBLU1183540	CERNEX	22964	01/21/2023	Annual
Power Amplifier	CBL06185030	CERNEX	22965	01/21/2023	Annual
Power Amplifier	CBL18265035	CERNEX	22966	12/02/2022	Annual
Power Amplifier	CBL26405040	CERNEX	25956	03/11/2023	Annual

Note:

1. Equipment listed above that calibrated during the testing period was set for test after the calibration.

2. Equipment listed above that has a calibration due date during the testing period, the testing is completed before equipment expiration date.

3. Especially, all antenna for measurement is calibrated in accordance with the requirements of C63.5(Version : 2017).

11. ANNEX A_ TEST SETUP PHOTO

Please refer to test setup photo file no. as follows;

No.	Description
1	HCT-RF-2207-FC012-P