

HCT Co., Ltd. 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383 KOREA Tel. +82 31 634 6300 Fax. +82 31 645 6401

SAR TEST REPORT

Applicant Name:

SAMSUNG Electronics Co., Ltd. 129, Samsung-ro, Yeongtong-gu, Suwon-Si, Gyeonggi-do, 16677 Rep. of Korea Date of Issue: Aug. 04, 2022 Test Report No.: HCT-SR-2208-FC001 Test Site: HCT CO., LTD.

A3LSMA047F

Equipment Type:	Mobile Phone
Application Type	Certification
FCC Rule Part(s):	CFR §2.1093
Model Name:	SM-A047F/DS
Additional Model Name:	SM-A047F
Date of Test:	Jul. 18, 2022 ~ Jul. 27, 2022

This device has been shown to be capable of compliance for localized specific absorption rate (SAR) for uncontrolled environment/general population exposure limits specified in FCC KDB procedures and had been tested in accordance with the measurement procedures specified in FCC KDB procedures.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

Tested By

Test Engineer SAR Team Certification Division

Reviewed By

Yun-jeang, Heo Technical Manager SAR Team Certification Division

This report only responds to the tested sample and may not be reproduced, except in full, without written approval of the HCT Co., Ltd.

REVISION HISTORY

The revision history for this test report is shown in table.

Revision No.	Date of Issue	Description
0	Aug. 04, 2022	Initial Release

This test results were applied only to the test methods required by the standard.

The above Test Report is not related to the accredited test result by (KS Q) ISO/IEC 17025 and KOLAS(Korea Laboratory Accreditation Scheme), which signed the ILAC-MRA.

Table of Contents

1. Test Regulations	4
 Information of the EUT	5
4. Device Under Test Description	7
5. Introduction	
6. Description of test equipment	17
7. SAR Measurement Procedure	
8. Description of Test Position	
9. RF Exposure Limits	
10. FCC SAR General Measurement Procedures	
11. Output Power Specifications	
12. System Verification	49
13. SAR Test Data Summary	51
14. Simultaneous SAR Analysis	63
15. Measurement Uncertainty	71
16. SAR Test Equipment	73
17. Conclusion	
18. References	75

Appendix A. DUT Ant. Information & Test SETUP PHOTO Appendix B. SAR Test Plots Appendix C. Dipole Verification Plots Appendix D. SAR Tissue Characterization Appendix E. SAR System Validation Appendix F. Probe Calibration Data Appendix G. Dipole Calibration Data Appendix H. Power reduction verification

1. Test Regulations

The tests documented in this report were performed in accordance with FCC CFR § 2.1093, IEEE 1528-2013, ANSI C63.26-2015 the following FCC Published RF exposure KDB procedures:

- FCC KDB Publication 941225 D01 3G SAR Procedures v03r01
- FCC KDB Publication 941225 D06 Hot Spot SAR v02r01
- FCC KDB Publication 941225 D05 SAR for LTE Devices v02r05
- FCC KDB Publication 941225 D05A LTE Rel.10 KDB Inquiry sheet v01r02
- FCC KDB Publication 248227 D01 802.11 Wi-Fi SAR v02r02
- FCC KDB Publication 447498 D01 General SAR Guidance v06
- FCC KDB Publication 648474 D04 Handset SAR v01r03
- FCC KDB Publication 616217 D04 v01r02 (Proximity Sensor)
- FCC KDB Publication 865664 D01 SAR measurement 100 MHz to 6 GHz v01r04
- FCC KDB Publication 865664 D02 SAR Reporting v01r02
- FCC KDB Publication 690783 D01 SAR Listings on Grants v01r03
- FCC KDB Publication 971168 D01 Power Meas License Digital Systems v03r01

In Addition to the above, the following information was used.

- October 2013 TCB Workshop Notes (GPRS testing criteria)
- October 2016 TCB Workshop Notes (Bluetooth Duty Factor)
- October 2020 TCBC Workshop Notes (Test Reductions via Data Referencing for Closely Related

Products)

- April 2022 TCBC Workshop Notes (Sum-Peak Location Separation Ratio)

2. Test Location

2.1 Test Laboratory

Company Name	HCT Co., Ltd.
Address	74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si,Gyeonggi-do, 17383 KOREA
Telephone	031-645-6300
Fax.	031-645-6401

2.2 Test Facilities

Our laboratories are accredited and approved by the following approval agencies according to ISO/IEC 17025.

V	National Radio Research Agency (Designation No. KR0032)
Korea	KOLAS (Testing No. KT197)

3. Information of the EUT

3.1 General Information of the EUT

Model Name	SM-A047F/DS
Additional Model Name	SM-A047F
Equipment Type	Mobile Phone
FCC ID	A3LSMA047F
Application Type	Certification
Applicant	SAMSUNG Electronics Co., Ltd.
	This model (A3LSMA047F) is the depopulated varient model of the fully populated reference model (A3LSMA047FN, report no: HCT-SR-2206-FC008-R2), and was tested by applying Spot Check Verification according to Oct.2020, TCBC Workshop note and FCC guidance.
	For detailed difference between the fully populated referece model (A3LSMA047FN) and the depopulated Varient model (A3LSMA047F), please refer to the technical documentation.

3.2 Attestation of test result of device under test

The Highest Reported SAR									
		Equipment	Reported SAR (W/kg)						
Band	Tx. Frequency	Class	1g Head	1g Body-Worn	1g Hotspot	10g Extremity			
GSM/GPRS/EDGE 850	824.2 MHz ~ 848.8 MHz	TNE	0.33	0.38	0.50	N/A			
UMTS Band 5	826.4 MHz~ 846.6 MHz	TNE	0.19	0.17	0.36	N/A			
LTE Band 5 (Cell)	824.7 MHz~ 848.3 MHz	TNE	0.36	0.30	0.58	N/A			
LTE TDD Band 41	2 498.5 MHz ~ 2 687.5 MHz	TNE	0.49	0.84	0.97	1.05			
802.11b	2 412 MHz ~ 2 472 MHz	DTS	0.21	0.18	0.40	N/A			
U-NII-1	5 180 MHz~ 5 240 MHz	NII	N/A	N/A	N/A	N/A			
U-NII-2A	5 260 MHz~ 5 320 MHz	NII	0.17	0.32	N/A	0.98			
U-NII-2C	5 500 MHz~ 5 720 MHz	NII	0.41	0.75	N/A	2.15			
U-NII-3	5 745 MHz~ 5 825 MHz	NII	0.39	0.78	1.03	N/A			
Bluetooth	2 402 MHz~ 2 480 MHz	DSS	0.11	<0.10	<0.10	N/A			
Simultaneous S	Simultaneous SAR per KDB 690783 D01v01r03 1.0 1.18 1.56								
Date(s) of Tests:	Jul. 18, 2022 ~ Jul. 27, 2022								

4. Device Under Test Description

4.1 DUT specification

Device Wireless specification overview						
Band & Mode	Operating Mode	Tx Frequency				
GSM850	Voice / Data	824.2 MHz~ 848.8 MHz				
UMTS Band 5	Voice / Data	826.4 MHz~ 846.6 MHz				
LTE Band 5 (Cell)	Voice / Data	824.7 MHz~ 848.3 MHz				
LTE TDD Band 41	Voice / Data	2 498.5 MHz ~ 2 687.5 MHz				
2.4 GHz WLAN	Voice / Data	2 412 MHz ~ 2 472 MHz				
U-NII-1	Voice / Data	/ Data 5 180 MHz ~ 5 240 MHz				
U-NII-2A	Voice / Data	5 260 MHz ~ 5 320 MHz				
U-NII-2C	Voice / Data	5 500 MHz ~ 5 720 MHz				
U-NII-3	Voice / Data	Data 5 745 MHz ~ 5 825 MHz				
Bluetooth/5.0	Data	2 402 MHz ~ 2 480 MHz				
NFC	Data	13.5 MHz				
Device Description						
	Mode		Serial Number			
	GSM 850, UMTS Band 5, LTE Bluetooth, WLAN 2.4GHz, WL/	VG41541M				
Device Serial Numbers		ed that the devices tested have t steristics are within operational to				

SAR Test Consideration for Data Referencing.

According to the FCC TCB Workshop note in October 2020 and FCC Guidance, Spot check verification of the variant model(A3LSMA047F) of the depopulated version was conducted with reference to the SAR test results of the fully populated reference model (A3LSMA047FN).

SAR spot check verification of A3LSMA047F was performed by referring to all test results of Main Band (2G/3G/4G) and WLAN mode except LTE B5/B41 / BT of A3LSMA047FN. Although the specification is the same, the SAR Full test was performed on LTE B5/B41 and BT due to the

Although the specification is the same, the SAR Full test was performed on LTE B5/B41 and BT due to the result and measurement deviation of the Reference model.

The final SAR report for compliance shall be based on the most conservative results, selected among the measurements on the reference model(A3LSMA047FN), and those from the spot-check testing(A3LSMA047F).

For detailed difference between referece model (A3LSMA047FN) and depopulated Varient model (A3LSMA047F), please refer to the technical documentation.

4.2 Power Reduction for SAR

This device utilizes power reduction mechanisms for some wireless modes and bands for SAR compliance under hotspot conditions and under some conditions when the device is being used in close proximity to the user's hand. All hotspot SAR evaluations for this device were performed at the maximum allowed output power when Hotspot is enabled. FCC KDB Publication 616217 D04v01r02 Sec.6 was used as a guideline for selection SAR test distances for device when being used in phablet use conditions.

The reduced powers for the power reduction mechanisms were conformed via conducted power measurements at the RF Port

4.3 Nominal and Maximum Output Power Specifications

This device operates using the following maximum output power specifications. SAR values were scaled to the maximum allowed power to determine compliance per KDB publication 447498 D01v06.

4.3.1 2G/3G/4G Nominal and Maximum Output Power

A. 2G GSM850

Mode / Band		Voice	Burst Average GMSK (dBm)			Burst Average 8-PSK (dBm)				
		1 Tx Slot	1 Tx Slot	2 Tx Slot	3 Tx Slot	4 Tx Slot	1 Tx Slot	2 Tx Slot	3 Tx Slot	4 Tx Slot
	Maximum	34.5	34.5	34.5	31.0	30.0	27.5	25.5	24.5	23.0
GSM/GPRS/EDGE 850	Nominal	33.5	33.5	33.5	30.0	29.0	26.5	24.5	23.5	22.0

B. UMTS Modes

	ModulatedAverage(dBm)					
Mode/ Band		3GPPUMTS RMC	3GPPHSDPA	3GPPHSUPA	DC-HSDPA	
Maximum		25.0	23.0	23.0	23.0	
UMTS Band 5 (850 Mz)	Nominal	24.0	22.0	22.0	22.0	

RCV Mode

	ModulatedAverage(dBm)					
Mode/ Band		3GPPUMTS RMC	3GPPHSDPA	3GPPHSUPA	DC-HSDPA	
LINTS Dond 5 (850 Mb)	Maximum	22.0	21.5	21.0	21.5	
UMTS Band 5 (850 Mtz)	Nominal	21.0	20.5	20.0	20.5	

C. LTE Modes

		Modulated Average (dBm)					
Mode / B	and	Max.	Hotspot Mode	Grip Sensor on Earjack Insert Mode			
LTE Band 5	Maximum	25.0					
(Cell)	Nominal	24.0					
LTE TDD Band	Maximum	24.0	21.0	21.0			
41	Nominal	23.0	20.0	20.0			

4.3.2 Maximum 2.4 GHz, 5 GHz WIFI output power

Mode			SISO(dBm)							
Mode	Band	а	b	g	n	ac				
2.4 GHz	2450MHz		18 Ch.12 : 10 Ch.13 : 3	16 Ch.1 : 14 Ch.11 : 13 Ch.12 : 10 CH.13 : 3	16 Ch.1 : 14 Ch.11 : 13 Ch.12 :10 Ch.13 : 3					
	5200MHz	15 Ch.36 : 14			15 Ch.36 : 14	15 Ch.36 : 14				
5 GHz (20MHz)	5300MHz	15			15	15				
5 GHZ (2010HZ)	5500MHz	15 Ch.100 : 13			15 Ch.100 : 13	15 Ch.100 : 13				
	5800MHz	15			15	15				
	5200MHz				14 Ch.38 : 8	14 Ch.38 : 8				
5 GHz (40MHz)	5300MHz				14 Ch.62 : 8	14 Ch.62 : 8				
	5500MHz				14 Ch.102 : 8	14 Ch.102 : 8				
	5800MHz				14	14				
	5210MHz					7				
	5290MHz					7				
5 GHz (80MHz)	5500MHz					12 Ch.106 : 7				
	5800MHz					12				

(Tolerance target: Upper +1.0dB)

4.3.3 RCV activated 2.4 GHz, 5 GHz WIFI output power

Maria				SISO(dBm)		
Mode	Band	а	b	g	n	ac
2.4 GHz	2450MHz		12 Ch.12 :10 Ch.13 :3	12 Ch.12 :10 Ch.13 :3	12 Ch.12 :10 Ch.13 :3	
	5200MHz	10			10	10
5 GHz (20MHz)	5300MHz	10			10	10
5 GI IZ (201011 IZ)	5500MHz	10			10	10
	5800MHz	10			10	10
	5200MHz				10 Ch.38 : 8	10 Ch.38 : 8
5 GHz (40MHz)	5300MHz				10 Ch.62 : 8	10 Ch.62 : 8
	5500MHz				10 Ch.102 : 8	10 Ch.102 : 8
	5800MHz				10	10
	5210MHz					7
	5290MHz					7
5 GHz (80MHz)	5500MHz					10 Ch.106 : 7
	5800MHz					10

(Tolerance target: Upper +1.0dB)

4.3.4 Maximum Bluetooth Power

Mode / Band		Modulated Average (dBm)			
Plusteeth (PDP)	Maximum	9.0			
Bluetooth (BDR)	Nominal	8.0			
Plusteeth (EDD)	Maximum	7.5			
Bluetooth (EDR)	Nominal	6.5			
Divetanth LE 1Mbra 105/500//bra	Maximum	9.0			
Bluetooth LE 1Mbps, 125/500Kbps	Nominal	8.0			
	Maximum	9.0			
Bluetooth LE 2Mbps	Nominal	8.0			

(Tolerance target: Upper +1.0dB)

4.4 LTE Information

lte	em.	Description
	LTE Band 5 (Cell)	824.7 MHz~ 848.3 MHz
Frequency Range	LTE TDD Band 41	2 498.5 MHz ~ 2 687.5 MHz
Channel Bandwidthe	LTE Band 5 (Cell)	1.4 MHz, 3 MHz, 5 MHz, 10 MHz
Channel Bandwidths	LTE TDD Band 41	5 MHz, 10 MHz, 15 MHz, 20 MHz

Ch. No.& Freq.(Mz)		Low		Mid		High			
	1.4 MHz	824	4.7 (20407))	836.5 (20525)		848.3 (20643)		
LTE Band 5	3 MHz	825	5.5 (20415)	836.5 (20525)		847.5 (20635)		
(Cell)	5 MHz	826	26.5 (20425)		836.5 (20525)		846.5 (20	625)	
· · · ·	10 MHz				836.5 (20525)				
	5 MHz	2506	6.0(39750)	2549.5(40	185)	2593.0(40620)	2636	6.5(41055)	2680.0(41490)
LTE TDD Band	10 MHz	2506	6.0(39750)	2549.5(40	185)	2593.0(40620)	2636	6.5(41055)	2680.0(41490)
41	15 MHz	2506	6.0(39750)	2549.5(40	185)	2593.0(40620)	2636	6.5(41055)	2680.0(41490)
	20 MHz	2506	6.0(39750)	2549.5(40	185)	2593.0(40620)	2636	6.5(41055)	2680.0(41490)
UE Category	Category LTE Rel. 10, DL: C			10, DL: Cat	egor	y 4, UL: Category	4		
Modulations Supported in UL			QPSK, 16QAM						
LTE MPR Perma implemented per 36.101 section 6	3GPP T	S	Yes						
A-MPR disabled Testing.	for SAR		Yes						

4.5 DUT Antenna Locations

The overall dimensions of this device are > 9 X 5 cm. A diagram showing device antenna can be found in SAR_setup_photos. Since the diagonal dimension of this device is > 160 mm and < 200 mm, it is considered a "Phablet".

This model allows users to exchange data or media files with other Bluetooth enabled devices using Bluetooth, which means they can connect to other Bluetooth enabled devices via Bluetooth tethering. Therefore, SAR test was performed for additional simultaneous transmissions.

Mode	Rear	Front	Left	Right	Bottom	Тор
GSM/GPRS/EDGE 850	Yes	Yes	Yes	Yes	Yes	No
UMTS Band 5	Yes	Yes	Yes	Yes	Yes	No
LTE Band 5 (Cell)	Yes	Yes	Yes	Yes	Yes	No
LTE TDD Band 41	Yes	Yes	Yes	Yes	Yes	No
2.4 GHz WLAN	Yes	Yes	Yes	No	No	Yes
Bluetooth	Yes	Yes	Yes	No	No	Yes
5 GHz WLAN	Yes	Yes	Yes	No	No	Yes

Head and Bluetooth Tethering SAR were evaluated for BT BR tethering applications.

Particular EUT edges were not required to be evaluated for Bluetooth Tethering and Hotspot SAR if the edges were > 25 mm from the transmitting antenna according to FCC KDB 941225 D06v02r01 on page 2. The distance between the transmit antennas and the edges of the device are included in the filing. - Note: All test configurations are based on front view position.

4.6 SAR Summation Scenario

According to FCC KDB 447498 D01v06, transmitters are considered to be transmitting simultaneously when there is overlapping transmission, with the exception of transmissions during network hand-offs with maximum hand-off duration less than 30 seconds. Possible transmission paths for the EUT are shown below paths and are mode in same rectangle to indicate communication modes which share the same path. Modes which share the same transmission path cannot transmit simultaneously with one another.

This device contains multiple transmitters that may operate simultaneously, and therefore requires a simultaneous transmission analysis according to FCC KDB 447498 D01v06.

Simultaneous Transmission Scenarios						
Applicable Combination	Head	Body-Worn	Hotspot	Extremity		
GSM Voice + WLAN 2.4 GHz	Yes	Yes	N/A	Yes		
GSM Voice + WLAN 5 GHz	Yes	Yes	N/A	Yes		
GSM Voice + 2.4 GHz Bluetooth	Yes^	Yes	N/A	Yes		
GSM Voice + 2.4 GHz Bluetooth + WLAN 5 GHz	Yes^	Yes	N/A	Yes		
UMTS + WLAN 2.4 GHz	Yes*	Yes	Yes	Yes		
UMTS + WLAN 5 GHz	Yes*	Yes	Yes	Yes		
UMTS + 2.4 GHz Bluetooth	Yes*^	Yes	Yes^	Yes		
UMTS + 2.4 GHz Bluetooth + WLAN 5 GHz	Yes*^	Yes	Yes^	Yes		
LTE + WLAN 2.4 GHz	Yes	Yes	Yes	Yes		
LTE + WLAN 5 GHz	Yes	Yes	Yes	Yes		
LTE + 2.4 GHz Bluetooth	Yes^	Yes	Yes^	Yes		
LTE + 2.4 GHz Bluetooth + WLAN 5 GHz	Yes^	Yes	Yes^	Yes		
GPRS/EDGE + WLAN 2.4 ଖାଅ	Yes*	Yes	Yes	Yes		
GPRS/EDGE + WLAN 5 GHz	Yes*	Yes	Yes	Yes		
GPRS/EDGE + 2.4 GHz Bluetooth	Yes^	Yes	Yes^	Yes		
GPRS/EDGE + 2.4 GHz Bluetooth + WLAN 5 GHz	Yes^	Yes	Yes^	Yes		

Note:

- 1. Bluetooth cannot transmit simultaneously with 2.4GHz WLAN.
- 2. 5GHz WLAN can transmit simultaneously with Bluetooth
- 3. UMTS +WLAN scenario also represents the UMTS Voice/DATA + WLAN hotspot scenario.
- 4. VoIP is supported in GPRS/EDGE.
- 5. The highest reported SAR for each exposure condition is used for SAR summation purpose.
- 6. Wi-Fi Hotspot is supported for 2.4 GHz/ UNII-3 of 5 GHz WLAN.
- 7. Per the manufacture, WIFI Direct is not expected to be used in conjunction with a held to ear or body-worn accessory voice call. Therefore, there are no simultaneous transmission scenarios involving WIFI direct beyond that listed in the above table
- 8. This device supports Bluetooth tethering. ^ Bluetooth Tetheringis considered.
- 9. * Pre-installed VOIP applications are considered.
- 10. This device supports VoLTE/ VoWiFi.

4.7 SAR Test Considerations

4.7.1 WiFi

Since wireless router operations are not allowed by the chipset firmware using U-NII-1, U-NII-2A & U-NII-2C WiFi, WiFi Hotspot SAR test and combinations are considered only 2.4 GHz and U-NII-3 for SAR with respected to wireless router configurations according to FCC KDB 941225 D06v02r01.

Since U-NII-1 and U-NII-2A bands have the same maximum output power and the highest reported SAR for U-NII-2A is less than 1.2 W/kg for 1g SAR and is less than 3.0 W/kg for 10g SAR, SAR is not required for U-NII-1 band according to FCC KDB 248227D01v02r02.

This device supports IEEE 802.11 ac with the following features:

- a) Up to 80 MHz Bandwidth only
- b) No aggregate channel configurations
- c) 1Tx Antenna output
- d) 256 QAM is supported
- e) TDWR and Band gap channels are supported.
- f) Straddle channels are supported.

Per FCC KDB Publication 648474 D04v01r03, this device is considered a "phablet" since the diagonal dimension is greater than 160mm and less than 200mm. Phablet SAR tests are required when wireless router mode does not apply or if wireless router 1g SAR > 1.2 W/kg. Because wireless router operations are not supported for U-NII-1, U-NII-2A & U-NII-2C WLAN, phablet SAR tests were performed. Phablet SAR was not evaluated for 2.4 GHz WIFI, 2.4 GHz Bluetooth, and U-NII-3 WLAN operations since wireless router 1g SAR was < 1.2 W/kg.

4.7.2 Licensed Transmitter(s)

GSM/GPRS/EDGE DTM is not supported for US Bands. Therefore, the GSM Voice modes in this report do not transmit simultaneously with GPRS/EDGE Data.

LTE SAR for the higher modulations and lower Bandwidths were not tested since the maximum average output power of all required channels and configurations was not more than 0.5 dB higher than the highest Bandwidth; and the reported LTE SAR for the highest Bandwidth was less than 1.45 W/kg for all configurations according to FCC KDB 941225 D05v02r05.

Per FCC KDB 648474 D04v01r03, this device is considered a "Phablet" since the diagonal dimension is greater than 160 mm and less than 200 mm. Therefore, extremity SAR tests are required when wireless router mode does not apply or if wireless router 1g SAR >1.2 W/kg. When hotspot mode applies, 10g SAR required only for the surfaces and edges with hotspot mode scaled to the maximum output power (including tolerance) is 1g SAR > 1.2 W/kg.

This device is only capable of QPSK HSUPA in the uplink. Therefore, no additional SAR tests are required beyond that described for devices with HSUPA in KDB 941225 D01v03r01.

Per FCC KDB 941225 D01v03r01, 12.2 kbps RMC is the primary mode and HSPA (HSUPA/HSDPA with RMC) is the secondary mode.

Per FCC KDB 941225 D01v03r01, The SAR test exclusion is applied to the secondary mode by the following equation.

Adjusted SAR = Highest Reported SAR $x \frac{Secondary Max tune - up (mW)}{Primary Max tune tune - up(mW)} \le 1.2$ W/kg.

Based on the highest Reported SAR, the secondary mode is not required.

5. Introduction

The FCC has adopted the guidelines for evaluating the environmental effects of radio frequency radiation in ET Docket 93-62 on Aug. 6, 1996 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices.

The safety limits used for the environmental evaluation measurements are based on the criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate (SAR) in IEEE/ANSI C95.1-1992 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz. 1992 by the Institute of Electrical and Electronics Engineers, Inc., New York 10017. The measurement procedure described in IEEE/ANSI C95.3-1992 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave is used for guidance in measuring SAR due to the RF radiation exposure from the Equipment Under Test (EUT). These criteria for SAR evaluation are similar to those recommended by the National Council on Radiation Protection and Measurements (NCRP) in Biological Effects and Exposure Criteria for Radio Frequency Electromagnetic Fields," NCRP Report No. 86 NCRP, 1986, Bethesda, MD 20814. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards.

SAR Definition

Specific Absorption Rate (SAR) is defined as the time derivative of the incremental electromagnetic energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (r). It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body.

$$SAR = \frac{d}{d t} \left(\frac{d U}{d m} \right)$$

Figure 1. SAR Mathematical Equation SAR is expressed in units of Watts per Kilogram (W/kg)

Where: = conductivity of the tissue-simulant material (S/m) = mass density of the tissue-simulant material (kg/m³) = Total RMS electric field strength (V/m)

NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relations to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane.

6. Description of test equipment

6.1 SAR MEASUREMENT SETUP

These measurements are performed using the DASY4 automated dosimetric assessment system. It is made by Schmid& Partner Engineering AG (SPEAG) in Zurich, Switzerland. It consists of high precision robotics system (Staubli), robot controller, Pentium III computer, near-field probe, probe alignment sensor, and the generic twin phantom containing the brain equivalent material. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF) (see Figure.2).

A cell controller system contains the power supply, robot controller, teach pendant (Joystick), and remote control, is used to drive the robot motors. The PC with Windows XP or Windows 7 is working with SAR Measurement system DASY4 & DASY5, A/D interface card, monitor, mouse, and keyboard. The Staubli Robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the PC plug-in card.

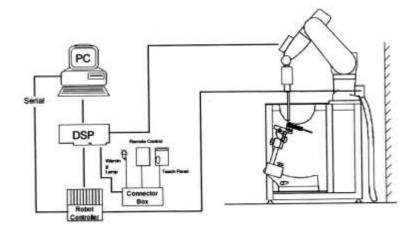


Figure 2. HCT SAR Lab. Test Measurement Set-up

The DAE consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gainswitching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the PC-card is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer. The system is described in detail in.

7. SAR Measurement Procedure

The evaluation was performed using the following procedure compliant to FCC KDB Publication 865664 D01v01r04 and IEEE 1528-2013.

- The SAR distribution at the exposed side of the head or body was measured at a distance no more than 5.0 mm from the inner surface of the shell. The area covered the entire dimension of the DUT's head and body area and the horizontal grid resolution was depending on the FCC KDB 865664 D01v01r04 table 4-1 & IEEE 1528-2013.
- 2. Based on step, the area of the maximum absorption was determined by sophisticated interpolations routines implemented in DASY software. When an Area Scan has measured all reachable point. DASY system computes the field maximal found in the scanned are, within a range of the maximum. SAR at this fixed point was measured and used as a reference value.
- 3. Around this point, a volume was assessed according to the measurement resolution and volume size requirements of FCC KDB 865664 D01v01r04 table 4-1 and IEEE 1528-2013. On the basis of this data set, the spatial peak SAR value was evaluated with the following procedure (reference from the DASY manual.)

a. The data at the surface were extrapolated, since the center of the dipoles is no more than 2.7 mm away from the tip of the probe (it is different from the probe type) and the distance between the surface and the lowest measuring point is 1.2 mm. The extrapolation was based on a least square algorithm. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip.

b. The maximum interpolated value was searched with a straight-forward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1 g or 10 g) were computed using the 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions. The volume was integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were interpolated to calculate the average.

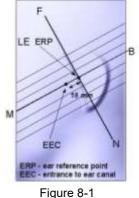
c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.

4. The SAR reference value, at the same location as step 2, was re-measured after the zoom scan. If the value changed by more than 5 %, the SAR evaluation and drift measurements were repeated.

Area scan and zoom scan resolution setting follow KDB 865664 D01v01r04 quoted below.
--

measurement plane or above, the measureme corresponding x or y d	> 3 GHz $\cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$ $20^{\circ} \pm 1^{\circ}$ $3-4 GHz: \leq 12 \text{ mm}$ $4-6 GHz: \leq 10 \text{ mm}$ sion of the test device, in the ient resolution must be \leq the imension of the test device urement point on the test
≤ 2 GHz: ≤15 mm 2-3 GHz: ≤12 mm When the x or y dimen measurement plane or above, the measureme corresponding x or y d with at least one meas	3-4 GHz: ≤12 mm 4-6 GHz: ≤10 mm sion of the test device, in the ientation, is smaller than the ent resolution must be ≤ the imension of the test device
2-3 GHz: ≤12 mm When the x or y dimen measurement plane or above, the measureme corresponding x or y d with at least one meas	4-6 GHz: \leq 10 mm sion of the test device, in the ientation, is smaller than the ent resolution must be \leq the imension of the test device
measurement plane or above, the measureme corresponding x or y d with at least one meas	ientation, is smaller than the ent resolution must be \leq the imension of the test device
≤ 2 GHz: ≤8mm 2-3 GHz: ≤5mm*	3-4 ଖz: ≤5 mm* 4-6 ଖz: ≤4 mm*
≤ 5 mm	3-4 GHz: ≤4 mm 4-5 GHz: ≤3 mm 5-6 GHz: ≤2 mm
≤ 4 mm	3-4 GHz: ≤3 mm 4-5 GHz: ≤2.5 mm 5-6 GHz: ≤2 mm
≤1.5·Δz _{zoom} (n-1)	
≥ 30 mm	3-4 GHz: ≥28 mm 4-5 GHz: ≥25 mm 5-6 GHz: ≥22 mm
	≤ 4 mm ≤1.5·/

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.


* When zoom scan is required and the reported SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is \leq 1.4 W/kg, \leq 8 mm, \leq 7 mm and \leq 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

8. Description of Test Position

8.1 EAR REFERENCE POINT

Figure 8-2 shows the front, back and side views of the SAM phantom. The center-of-mouth reference point is labeled "M", the left ear reference point (ERP) is marked "LE", and the right ERP is marked "RE." Each ERP is on the B-M (back-mouth) line located 15 mm behind the entrance-to-ear-canal (EEC) point, as shown in Figure 8-1. The Reference Plane is defined as passing through the two ear reference point and point M. The line N-F (Neck-Front), also called the Reference Pivoting Line, is not perpendicular to the reference plane (See Figure 5-1), Line B-M is perpendicular to the N-F line. Both N-F and B-M lines are marked on the external phantom shell to facilitate handset positioning.

Close-up side view of ERP

8.2 HANDSET REFERENCE POINTS

Two imaginary lines on the handset were established: the vertical centerline and the horizontal line. The device under test was placed in a normal operating position with the acoustic output located along the "vertical centerline" on the front of the device aligned to the "ear reference point" (see Figure 8-2). The acoustic output was than located at the same level as the center of the ear reference point. The device under test was positioned so that the "vertical centerline" was bisecting the front surface of the handset at its top and bottom edges, positioning the "ear reference point" on the outer surface of the both the left and right head phantoms on the ear reference point.



Figure 8-2 Front, back and side views of SAM Twin Phantom

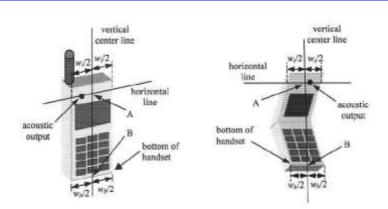


Figure 8-3. Handset vertical and horizontal reference lines

8.3 Device Holder

The device holder is made out of low-loss POM material having the following dielectric parameter; relative permittivity ϵ =3 and loss tangent σ =0.02.

8.4 Position for cheek

Figure 8.4. shows cheek or touch position. The reference points for the right ear (RE), left ear (LE), and mouth (M), which establish the Reference Plane for handset positioning, are indicated.

Figure 8.4 Cheek/ Touch position of the wireless device

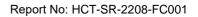
LE

8.5 Definition of the "tilted" position

Figure 6.5. shows tilted position. Place the device in the cheek position. Then while maintaining the orientation of the device, retract the device parallel to the reference plane far enough away from the phantom to enable a rotation of the device by 15°.

Figure 8.5. Tilt 15° position of the wireless device

8.6 Body-Worn Accessory Configurations


worn accessory with a headset attached to the handset.

Body-worn operating configurations are tested with the belt-dips and holsters attached to the device and positioned against a flat phantom in a normal use configuration (see Figure 6-6). Per FCC KDB Publication 648474 D04v01r03 Body-worn accessory exposure is typically related to voice mode operations when handsets are carried in Body-worn accessories. The Body-worn accessory procedures in FCC KDB Publication 447498 D01v06 should be used to test for Body-worn accessory SAR compliance, without a headset connected to it.. When the reported SAR for a body- worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency Band should be repeated for that body-

body- Figure 8-6 Sample Body-Worn Diagram

Accessories for Body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are tested with the device with each accessory. If multiple accessories share an identical metallic component (i.e. the same metallic belt-dip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

8.7 Wireless Router Configurations

Some battery-operated handsets have the capability to transmit and receive user data through simultaneous transmission of WIFI simultaneously with a separate licensed transmitter. The FCC has provided guidance in FCC KDB Publication 941225 D06v02r01 where SAR test considerations for handsets (L x W≥9cmx5 cm) are based on *a* composite test separation distance of 10 mm from the front back and edges of the device containing transmitting antennas within 2.5 cm of their edges, determined from general mixed use conditions for this type of devices. Since the hotspot SAR results may overlap with the Body-worn accessory SAR requirements, the more conservative configurations can be considered, thus excluding some Body-worn accessory SAR tests.

When the user enables the personal wireless router functions for the handset actual operations include simultaneous transmission of both the WIFI transmitter and another licensed transmitter. Both transmitters often do not transmit at the same transmitting frequency and thus cannot be evaluated for SAR under actual use conditions due to the limitations of the SAR assessment probes. Therefore, SAR must be evaluated for each frequency transmission and mode separately and spatially summed with the WIFI transmitter according to FCC KDB Publication 447498 D01v06 publication procedures. The Portable Hotspot feature on the handset was NOT activated during SAR assessments, to ensure the SAR measurements were evaluated for a single transmission frequency RF signal at a time.

8.8 Extremity Exposure Configurations

Devices that are designed or intended for use on extremities or mainly operated in extremity only exposure conditions: i.e., hands, wrists, feet and ankles, may require extremity SAR evaluation. When the device also operates in close proximity to the user's body, SAR compliance for the body is also required. The 1-g body and 10-g extremity SAR Exclusion Thresholds found in KDB Publication 447498 D01v06 should be applied to determine SAR test requirements.

For smart phones with a display diagonal dimension > 15.0 cm or an overall diagonal dimension > 16.0 cm that provide similar mobile web access and multimedia support found in mini-tablets or UMPC mini-tablets that support voice calls next to the ear. the phablets procedures outlined in KDB Publication 648474 D04 v01r03 should be applied to evaluate SAR compliance. A device marketed as phablets, regardless of form factors and operating characteristics must be tested as a phablet to determine SAR compliance. In addition to the normally required head and body-worm accessory SAR test procedures required for handsets, the UMPC mini-tablet procedures must also be applied to test the SAR of all surfaces and edges with an antenna \leq 25 mm from that surface or edge, in direct contact with the phantom, for 10-g SAR. The UMPC mini-tablet 1-g SAR at 5 mm is not required. When hotspot mode applies, 10-g SAR is required only for the surfaces and edges with hotspot mode scaled to the maximum output power (including tolerance) is 1-g SAR > 1.2 W/kg.

8.9 Additional Test Positions due to Proximity Conditions

This device uses a sensor to reduce output powers in extremity (hand-held) use conditions.

When the sensor detects a user is touching the device on or near to the antenna the device reduces the maximum allowed output power However, the proximity sensor is not active when the device is moved beyond the sensor triggering distance and the maximum output power is no longer limited. Therefore, an additional exposure condition is needed in the vicinity of the triggering distance to ensure SAR is compliant when the device is allowed to operate at a non-reduced output power level.

FCC KDB 616217 D04 v01r02 Section 6 was used as a guideline for selecting SAR test distances for this device at these additional exposure conditions. The smallest separation distance determined by the sensor triggering and sensor coverage for each applicable edge, minus 1 mm. was used as the test separation distance for SAR testing. Sensor triggering distance summary data is included in below table.

Wireless technologies	Position	§6.2 Triggering Distance (mm)	§6.3 Coverage	§6.4 Tilt Angle	Worst case distance for Phablet SAR (mm)
WWAN	Rear	16	N/A	N/A	15
	Front	3	N/A	N/A	2
(LTE B41)	Left	4	N/A	N/A	3
	Bottom	8	N/A	N/A	7

8.10 Bluetooth tethering Configurations

Per May 2017 TCBC Workshop Documents When Bluetooth tethering applies, simultaneous transmission SAR needs consideration.

This model allows users to exchange data or media files with other Bluetooth enabled devices using Bluetooth, which means they can connect to other Bluetooth enabled devices via Bluetooth tethering. Therefore, SAR test was performed for additional simultaneous transmissions. Head and Bluetooth tethering SAR were evaluated for BT BR tethering applications.

9. RF Exposure Limits

HUMAN EXPOSURE	UNCONTROLLED ENVIRONMENT General Population (W/kg) or (mW/g)	CONTROLLED ENVIRONMENT Occupational (W/kg) or (mW/g)
SPATIAL PEAK SAR * (Partial Body)	1.6	8.0
SPATIAL AVERAGE SAR ** (Whole Body)	0.08	0.4
SPATIAL PEAK SAR *** (Hands / Feet / Ankle / Wrist)	4.0	20.0

NOTES:

- * The Spatial Peak value of the SAR averaged over any 1 g of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.
- ** The Spatial Average value of the SAR averaged over the whole-body.
- *** The Spatial Peak value of the SAR averaged over any 10 g of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be mad fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e.as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

10. FCC SAR General Measurement Procedures

Power Measurements for licensed transmitters are performed using a base simulator under digital average power.

10.1 Measured and Reported SAR

Per FCC KDB Publication 447498 D01v06, when SAR is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance. For simultaneous transmission, the measured aggregate SAR must be scaled according to the sum of the differences between the maximum tune-up tolerance and actual power used to test each transmitter. When SAR is measured at or scaled to the maximum tune-up tolerance limit, the results are referred to as Reported SAR. The highest reported SAR results are identified on the grant of equipment authorization according to procedures in KDB 690783 D01v01r03.

10.2 3G SAR Test Reduction Procedure

10.2.1 GSM, GPRS AND EDGE

The following procedures may be considered for each frequency Band to determine SAR test reduction for devices operating in GSM/GPRS/EDGE modes to demonstrate RF exposure compliance. GSM voice mode transmits with 1 time-slot. GPRS and EDGE may transmit up to 4 time slots in the 8 time-slot frame according to the multi-slot class implemented in a device.

10.2.2 SAR Test Reduction

In FCC KDB 941225 D01v03r01, certain transmission modes within a frequency Band and wireless mode evaluated for SAR are defined as primary modes. The equivalent modes considered for SAR test reduction are denoted as secondary modes. When the maximum output power including tune-up tolerance specified for production units in a secondary mode is ≤ 0.25 dB higher than the primary mode or when the highest reported SAR of the primary mode, scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode, is ≤ 1.2 W/kg, SAR measurements are not required for the secondary mode. These criteria are referred to as the 3G SAR test reduction procedure. When the 3G SAR test reduction procedure is not satisfied, SAR measurements are additionally required for the secondary mode.

SAR test reduction for GPRS and EDGE modes is determined by the source-based time-averaged output power specified for production units, including tune-up tolerance. The data mode with highest specified time-averaged output power should be tested for SAR compliance in the applicable exposure conditions. For modes with the same specified maximum output power and tolerance, the higher number time-slot configuration should be tested

10.2.3 Procedures Used to Establish RF Signal for SAR

The following procedures are according to FCC KDB 941225 D01v03r01-3G SAR Measurement Procedures. The handset was placed into a simulated call using a base station simulator in a shielded chamber. Such test signals offer a consistent means for testing SAR and are recommended for evaluation SAR measurements were taken with a fully charged battery. In order to verify that the device was tested and maintained at full power, this was configured with the base station simulator. The SAR measurement Software calculates a reference point at the start and end of the test to Cheek for power drifts. If conducted Power deviations of more than 5 % occurred, the tests were repeated.

10.3 SAR Measurement Conditions for UMTS

10.3.1 Output Power Verification

Maximum output power is verified on the High, Middle and Low channels according to the general descriptions in sec. 5.2 of 3GPP TS 34.121, using the appropriate RMC with TPC (transmit power control) set to all "1s" or applying the required inner loop power control procedures to maintain maximum output power while HSUPA is active. Results for all applicable physical channel configurations (DPCCH, DPDCHn and spreading codes, HS-DPCCH etc) are tabulated in this test report. All configurations that are not supported by the DUT or cannot be measured due to technical or equipment limitations are identified.

10.3.2 Body SAR measurements

SAR for body exposure configurations is measured using the 12.2kbps RMC with the TPC bits all "1s". the 3G SAR test reduction procedure is applied to other spreading codes and multiple DPDCHn configurations supported by the handset with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured using and applicable RMC configuration with the corresponding spreading code or DPDCHn, for the highest reported SAR configuration in 12.2kbps RMC.

10.3.3 SAR Measurements with Rel. 5 HSDPA

The 3G SAR test reduction procedure is applied to HSDPA body configurations with 12.2 kbps RMC as the primary mode. Otherwise, Body SAR for HSDPA is measured using and FRC with H-SET 1 in Sub-test and a 12.2 kbps RMC without HSDPA. Handsets with both HSDPA and HSUPA are tested according to release 6 HSPA test procedures. 8.4.5 SAR Measurement with Rel.6 HSUPA The 3G SAR test Reduction Procedure is applied to HSPA (HSUPA/HSDPA with RMC) body configurations with 12.2 kbps RMC as the primary mode. Otherwise, Body SAR for HSPA is measured with E-DCH Sub-test 5, Using H-Set 1 and QPSK for FRC and a 12.2kbps RMC configured in Test Loop Mode 1 and Power Control algorithm 2, according to the highest reported body SAR configuration in 12.2 kbps RMC without HSPA. When VOIP applies to head exposure, the 3G SAR test reduction procedure is applied with 12.2 kbps RMC as the primary mode; otherwise, the same HSPA configuration used for body SAR measurements are applied to head exposure testing.

10.3.4 SAR Measurements with Rel. 6 HSUPA

The 3G SAR test reduction procedure is applied to HSPA (HSUPA/HSDPA with RMC) body configurations with 12.2 kbps RMC as the primary mode. Otherwise, Body SAR for HSPA is measured with E-DCH Sub-test 5, using H-Set1 and QPSK for FRC and a 12.2 kbps RMC configured in Test Loop Mode 1 and power control algorithm 2, according to the highest reported body SAR configuration in 12.2 kbps RMC without HSPA.

10.3.5 DC-HSDPA

SAR is required for Rel.8 DC-HSDPA when SAR is required for Rel.5 HSDPA; otherwise, the 3G SAR test reduction procedure is applied to DC-HSDPA with 12.2 kbps RMC as the primary mode. Power is measured for DC-HSDPA according to the H-Set 12, FRC configuration in table C.8.1.12 of 3GPP TS34.121-1 to determine SAR test reduction. Primary and secondary serving HS-DSCH Cell are required to perform the power measurement and for the results to be acceptable.

DC-HSDPA Configurations

- ♦ 3GPP specification TS 34.121-1 Release 8. was used for used for DC-HSDPA guidance.
- ♦ H-set 12(QPSK)was conformed to be used during DC-HSDPA measurements.

10.4 SAR Measurement Conditions for LTE

LTE modes are tested according to FCC KDB 941225 D05v02r05publication. Establishing connections with base station simulators ensure a consistent means for testing SAR and are recommended for evaluation SAR [4]. The R&S CMW500 or Anritsu MT8820C simulators are used for LTE output power measurements and SAR testing. Closed loop power control was used so the UE transmits with maximum output power during SAR testing. SAR tests were performed with the same number of RB and RB offsets transmitting on all TTI frames (maximum TTI).

10.4.1 Spectrum Plots for RB Configurations

A properly configured base station simulator was used for SAR tests and power measurements. Therefore, spectrum plots for RB configurations were not required to be included in this report.

10.4.2 MPR

MPR is permanently implemented for this device by the manufacturer. The specific manufacturer target MPR is indicated alongside the SAR results. MPR is enabled for this device, according to 3GPP TS36. 101 Section 6.2.3 - 6.2.5 under Table 6.2.3-1.

10.4.3 A-MPR

A-MPR (Additional MPR) has been disabled for all SAR tests by setting NS=01 on the base station simulator.

10.4.4 Required RB Size and RB offsets for SAR testing

According to FCC KDB 941225 D05v02r05

- a. Per sec 4.2.1, SAR is required for QPSK 1 RB Allocation for the largest Bandwidth
 - i. The required channel and offset combination with the highest maximum output power is required for SAR.
 - ii. When the reported SAR is ≤ 0.8 W/Kg, testing of the remaining RB offset configurations and required test channels is not required. Otherwise, SAR is required for the remaining required test channels using the RB offset configuration with highest output power for that channel.
 - iii. When the reported SAR for a required test channel is > 1.45 W/kg, SAR is required for all RB offset configurations for that channel.
- b. Per Sec 4.2.2, SAR is required for 50% RB allocation using the largest Bandwidth following the same procedures outlined in Sec 4.2.1.
- c. Per Sec. 4.2.3, QPSK SAR is not required for the 100% allocation when the highest maximum output power for the 100% allocation is less than the highest maximum output power of the 1 RB and 50% RB allocations and the reported SAR for the 1 RB and 50% RB allocations is < 0.8 W/kg.
- d. Per Sec. 4.2.4 and 4.3, SAR test for higher order modulations and lower Bandwidths configurations are not required when the conducted power of the required test configurations determined by Sec. 4.2.1 through 4.2.3 is less than or equal to 1/2 dB higher than the equivalent configuration using QPSK modulation and when the QPSK SAR for those configurations is < 1.45 W/Kg.

10.4.5 LTE(TDD) Considerations

According to KDB 941225 D05v02r05, for Time-Division Duplex (TDD) systems, SAR must be tested using a fixed periodic duty factor according to the highest transmission duty factor implemented for the device and supported by the defined 3GPP LTE TDD configurations.

SAR was tested with the highest transmission duty factor (63.33 %) using Uplink-downlink configuration 0 and Special subframe configuration 6. LTE TDD Band 41 supports 3GPP TS 36.211 section 4.2 for Type 2 Frame and Table 4.2-2 for uplink-downlink configurations and Table 4.2-1 for Special sub frame configurations.

Table 4.2-1: Configuration of special subframe (lengths of DwPTS/GP/UpPTS).

en mana de la		Normal cyclic prefix in downlink			Extended cyclic prefix in downlink		
Special subframe DwPTS configuration	DWPTS	UpP	A CONTRACTOR OF A CONTRACTOR O	DwPTS	UpPTS		
	Normal cyclic prefix in uplink	Extended cyclic prefix in uplink		Normal cyclic prefix in uplink	Extended cyclic prefix in uplink		
0	6592 · T _s			$7680 \cdot T_{s}$			
1	$19760 \cdot T_{s}$		2560-T _s 2	20480 · T ₆	$2192 \cdot T_{s}$	2560 7	
2	$21952 \cdot T_{s}$	2192-T _s		$23040 \cdot T_{s}$		2560-T ₁	
3	24144 · Ts			25600 · Ts			
4	26336 · T ₅			7680 · T _s			
5	$6592 \cdot T_{q}$			$20480 \cdot T_3$	4384 · T.		
6	$19760 \cdot T_{5}$			23040-T _s	4584.1	5120 · T	
7	21952 · Ts	4384-T ₄	5120-T _s	$12800 \cdot T_{b}$			
8	$24144 \cdot T_{s}$					34	
9	13168 · T ₄			÷	14	÷	

Calculated Duty Cycle – Extended cyclic prefix in uplink x (Ts) x no of S + no of U

Table 4.2-2: Uplink-downlink configurations.

Uplink-downlink	Downlink-to-	Subframe number									
configuration	Uplink Switch- point periodicity	0	1	2	3	4	5	6	7	8	9
0	5 ms	D	S	U	U	U	D	S	U	U	U
1	5 ms	D	S	U	U	D	D	S	U	U	D
2	5 ms	D	S	U	D	D	D	S	U	D	D
3	10 ms	D	S	U	U	U	D	D	D	D	D
4	10 ms	D	S	U	U	D	D	D	D	D	D
5	10 ms	D	S	U	D	D	D	D	D	D	D
6	5 ms	D	S	U	U	U	D	S	U	U	D


Example for calculated Duty Cycle for Uplink-Downlink Configuration 0: Calculated Duty Cycle = $(5120 \times (1/(15000 \times 2048)) \times 2 + 0.006)/(0.01 = 63.33 \%)$ Where

 $T_s = 1/(15000 \times 2048)$ seconds

10.4.6 The Call Box Setup for LTE(TDD)

When you Want to Test for LTE TDD, Please Change Frame Structure TDD and TDD Uplink Downlink Configuration 0 and Special Subframe Configuration 6.

2018/01/08 11:01 <fundamental measurement<="" th=""><th></th><th>Idle(Regist) Continuous</th><th>Phone-2 ₩-CDMA</th><th>Phone-1 LTE</th></fundamental>		Idle(Regist) Continuous	Phone-2 ₩-CDMA	Phone-1 LTE
Parameter Reference Signal n	Fundamental ot found	UE Report UE Power :	-21.5 dBm	Parameter
Power Measurement	Avg. Ma		: 11/ 20) ▲ Limit 20.3to 25.7dBm	T A Common G
Channel Power Modulation Analysis	ew	(Meas, Count	: 1/ 1)	T A Physical <mark>G</mark> Channel
MCS Index (-) MCS Index (5)	5 (QPSK) 5 (QPSK)	(5) (2216) (5) (1864)	A	T A Call <mark>G</mark> Processing
MCS Index (0) MCS Index (1,6) CFI	5 (QPSK) N/A () 3	(5) (2216) () ()	- 2 - 2	T TX A Measurement G Setup
TDD Uplink Downlink Config Special Subframe Confi	uration <u>0</u> :	o <mark>frame 012345</mark> 6 (5ms)DSUUUD:		T RX A Measurement <mark>G</mark> Setup
Physical Channel Paramet PSS Power	0.0 dB			<mark>T</mark> A Fundamental <mark>G</mark> Measurement
SSS Power PBCH Power PCFICH Power	0.0 dB 0.0 dB 0.0 dB			
PHICH Power	0.0 dB			1234

10.5 SAR Testing with 802.11 Transmitters

The normal network operating configurations of 802.11 transmitters are not suitable for SAR measurements. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure the results are consistent and reliable. See KDB Publication 248227 D01v02r02 for more details.

10.5.1 General Device Setup

Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters.

A periodic duty factor is required for current generation SAR system to measure SAR. When 802.11 frame gaps are accounted for in the transmission, a maximum transmission duty factor of 92-96% is typically achievable in most test mode configurations. A minimum transmission duty factor of 85% is required to avoid certain hardware and device implementation issues related to wide range SAR scaling. The reported SAR is scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit.

10.5.2 U-NII-1 and U-NII-2A

For devices that operate in both U-NII-1 and U-NII2A Bands, when the same maximum output power is specified for both Bands, SAR measurement using OFDM SAR test procedures is not required for U-NII-1 unless the highest reported SAR for U-NII-2A is > 1.2 W/kg for 1g SAR or > 3.0 W/kg for 10g SAR. When different maximum output powers are specified for the Bands, SAR measurement for the U-NII Band with the lower maximum output power is not required unless the highest reported SAR for the U-NII Band with the higher maximum output power, adjusted by the ratio of lower to higher specified maximum output power for the two Bands, is > 1.2 W/kg for 1g SAR.

10.5.3 U-NII-2C and U-NII-3

The frequency range covered by U-NII-2C and U-NII-3 is 380 MHz (5.47 GHz - 5.85 GHz), which requires a minimum of at least two SAR probe calibration frequency points to support SAR measurements. When Terminal Doppler Weather Radar (TDWR) restriction applies, the channels at 5.60 GHz - 5.65 GHz in U-NII-2C Band must be disabled with acceptable mechanisms and documented in the equipment certification.

Unless Band gap channels are permanently disabled, SAR must be considered for these channels.

10.5.4 Initial Test Position Procedure

For exposure conditions with multiple test positions, such as handset operating nest to the ear, devices with hotspot mode or UMPC mini-tablet, procedures for initial test position can be applied. Using the transmission mode determined by the DSSS procedure or initial test configuration, area scans are measured for all positions in an exposure condition. The test position with the highest extrapolated (peak) SAR is used as the initial test position. When reported SAR for the initial test position is ≤ 0.4 W/kg for 1g SAR and ≤ 1.0 W/kg for 10g SAR, no additional testing for the remaining test position is required. Otherwise, SAR is evaluated at the subsequent highest peak SAR positions until the reported SAR result is ≤ 0.8 W/kg for 1g SAR and ≤ 2.0 W/kg for 10g SAR or all test positions are measured.

10.5.5 2.4 GHz SAR test Requirements

SAR is measured for 2.4 GHz 802.11b DSSS using either the fixed test position or, when applicable, the initial test position procedure. SAR test reduction is determined according to the following:

1) When the reported SAR of the highest measured maximum output power channel for the exposure configuration is ≤ 0.8 W/kg, no further SAR testing is required for 802.11b DSSS is that exposure configuration. 2) When the reported SAR is > 0.8 W/kg, SAR is required for that position using the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel; i.e., all channels require testing.

2.4 GHz 802.11 g/n OFDM are additionally evaluated for SAR if the highest reported SAR for 802.11b, adjusted by the ratio of the OFDM to DSSS specified maximum output power, is > 1.2 W/kg. When SAR is required for OFDM modes in 2.4 GHz Band, the Initial Test Configuration Procedures should be followed.

10.5.6 OFDM Transmission Mode and SAR Test Channel Selection

For the 2.4 ^{GHz} and 5 ^{GHz} Bands, when the same maximum output power was specified for multiple OFDM transmission mode configurations in a frequency Band or aggregated Band, SAR is measured using the configuration with the largest channel Bandwidth, lowest order modulation and lowest data rate and lowest order 802.11 a/g/n/ac mode. When the maximum output power of a channel is the same for equivalent OFDM configurations; for example, 802.11a, 802.11n and 802.11 ac or 802.11g and 802.11n with the same channel Bandwidth, modulation and data rate etc., the lower order 802.11 mode i.2., 802.11a, then 802.11n and 802.11ac or 802.11g then 802.11n, is used for SAR measurement. When the maximum output power are the same for multiple test channels, either according to the default or additional power measurement requirements, SAR is measured using the channel closest to the middle of the frequency Band or aggregated Band. When there are multiple channels with the same maximum output power, SAR is measured using the higher number channel.

10.5.7 Initial Test Configuration Procedure

For OFDM, in both 2.4 GHz and 5 GHz Bands, an initial test configuration is determined for each frequency Band and aggregated Band, according to the transmission mode with the highest maximum output power specified for SAR measurements. When the same maximum output power is specified for multiple OFDM transmission mode configurations in a frequency Band or aggregated Band, SAR is measured using the configuration(s) with the largest channel Bandwidth, lowest order modulation, and lowest data rate. If the average RF output powers of the highest identical transmission modes are within 0.25 dB of each other, mid channel of the transmission mode with highest average RF output power is the initial test channel. Otherwise, the channel of the transmission mode with the highest average RF output conducted power will be the initial test configuration.

When the reported SAR is ≤ 0.8 W/kg, no additional measurements on other test channels are required. Otherwise, SAR is evaluated using the subsequent highest average RF output channel until the reported SAR result is 1.2 W/kg or all channels are measured. When there are multiple untested channels having the same subsequent highest average RF output power, the channel with higher frequency from the lowest 802.11 mode is considered for SAR measurements.

10.5.8 Subsequent Test Configuration Procedures

For OFDM configurations in each frequency Band and aggregated Band, SAR is evaluated for initial test configuration using the fixed test position or the initial test position on procedure. When the highest reported SAR (for the initial test configuration), adjusted by the ratio of the specified maximum output power of the subsequent test configuration to initial test configuration, is ≤ 1.2 W/kg for 1g SAR and ≤ 3.0 W/kg for 10g SAR, no additional SAR tests for the subsequent test configurations are required.

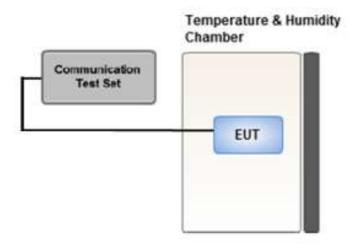
11. Output Power Specifications

This device operates using the following maximum output power specifications. SAR values were scaled to the maximum allowed power to determine compliance per KDB publication 447498 D01v06.

Licensed Bands

Test Description	Test Procedure Used
Conducted Output Power	- KDB 971168 D01 v03r01 - Section 5.2.4 - ANSI C63.26-2015 - Section 5.2.1 & 5.2.4.2

Test Overview


According to ANSI C63.26-2015 Section 5.2.1 when measuring the maximum RF output power from such devices, control over the EUT must be provided either through special test software (provided by manufacturer specifically for compliance testing, but not accessible by an end user) or through use of a base station emulator, communications test set, call box, or similar instrumentation that is capable of establishing a communications link with the EUT to enable control over variable parameters (e.g., output power, OBW, etc.).

In some cases, these instruments also include basic digital spectrum analyzer and/or power meter capabilities that can be utilized to measure the RF output power if the specified detectors and requirements can be realized and the measurement functions have been calibrated.

Test Procedure

- 1. The RF port of the EUT was connected to the Communication Tester via an RF cable.
- 2. Conducted average power was measured using a calibrated Radio Communication Tester.

Test setup

11.1 GSM

11.1.1 GSM Maximum Conducted Output Power

Mode / Band		Voice	GPRS	(GMSK) D	ata – CS1	I(dBm)	EDGE Data (dBm)			
			GPRS	GPRS	GPRS	GPRS	EDGE	EDGE	EDGE	EDGE
		GSM	1 TX	2 TX	3 TX	4 TX	1 TX	2 TX	3 TX	4 TX
			Slot	Slot	Slot	Slot	Slot	Slot	Slot	Slot
Maximu	m	34.5	34.5	34.5	31.0	30.0	27.5	25.5	24.5	23.0
Nomina		33.5	33.5	33.5	30.0	29.0	26.5	24.5	23.5	22.0
	128	33.97	33.99	33.85	30.56	29.01	26.73	24.74	23.45	21.89
GSM 850	190	34.18	34.21	33.93	30.45	28.84	26.83	24.72	23.67	21.87
	251	34.37	34.48	34.22	30.31	29.78	26.91	24.61	23.47	21.98

GSM Conducted output powers (Burst-Average)

Mode / Band		Voice	GPRS	(GMSK) D	ata – CS′	I(dBm)	EDGE Data (dBm)			
			GPRS	GPRS	GPRS	GPRS	EDGE	EDGE	EDGE	EDGE
		GSM	1 TX	2 TX	3 T X	4 TX	1 TX	2 TX	3 TX	4 TX
			Slot	Slot	Slot	Slot	Slot	Slot	Slot	Slot
Maximu	m	25.47	25.47	28.48	26.74	26.99	18.47	19.48	20.24	19.99
Nomina	al	24.47	24.47	27.48	25.74	25.99	17.47	18.48	19.24	18.99
	128	24.94	24.96	27.83	26.30	26.00	17.70	18.72	19.19	18.88
GSM 850	190	25.15	25.18	27.91	26.19	25.83	17.80	18.70	19.41	18.86
	251	25.34	25.45	28.20	26.05	26.77	17.88	18.59	19.21	18.97

GSM Conducted output powers (Frame-Average)

Note:

Time slot average factor is as follows:

1 Tx slot = 9.03 dB, Frame-Average output power = Burst-Average output power - 9.03 dB

2 Tx slot = 6.02 dB, Frame-Average output power = Burst-Average output power - 6.02 dB

3 Tx slot = 4.26 dB, Frame-Average output power = Burst-Average output power - 4.26 dB

4 Tx slot = 3.01 dB, Frame-Average output power = Burst-Average output power – 3.01 dB

Base Station Simulator		EUT	
	RF Connector	-	

11.2 UMTS

<u>HSPA+</u>

This DUT is only capable of QPSK HSPA+ in uplink. Therefore, the RF conducted power is not measured according to 941225 D01v03r01 3G SAR.

11.2.1 UMTS Maximum Conducted Output Power

3GPP		3GPP 34.121	U	MTS Band 5 [dBr	n]	3GPP
Release Version	Mode	Subtest	UL4132 DL4357	UL4183 DL4408	UL4233 DL4458	MPR
99	UMTS	12.2 kbps RMC	24.90	24.69	24.47	-
99	010113	12.2 kbps AMR	24.90	24.68	24.46	-
5		Subtest 1	22.77	22.62	22.44	0
5	HSDPA	Subtest 2	22.73	22.64	22.47	0
5	HSDPA	Subtest 3	21.92	21.69	21.53	0.5
5		Subtest 4	22.19	22.01	21.86	0.5
6		Subtest 1	22.36	22.20	22.12	0
6		Subtest 2	20.31	20.16	19.97	2
6	HSUPA	Subtest 3	21.44	21.29	21.10	1
6		Subtest 4	20.28	20.15	19.89	2
6		Subtest 5	22.32	22.18	22.03	0
8		Subtest1	22.15	22.18	21.88	0
8	DC-HSDPA	Subtest2	22.07	21.95	21.50	0
8	DC-HSDPA	Subtest3	21.29	20.83	20.66	0.5
8		Subtest4	21.41	21.41	20.82	0.5

UMTS Average Conducted output powers

DC-HSDPA Configurations

- ♦ 3GPP specification TS 34.121-1 Release 8. was used for used for DC-HSDPA guidance.
- ♦ H-set 12(QPSK)was conformed to be used during DC-HSDPA measurements.

Base Station Simulator		EUT
	RF Connector	

11.2.2 UMTS Reduced Conducted Output Power – (RCV-ON)

UMTS Band 5 RCV Back-off Power

3GPP		3GPP 34.121	U	MTS Band 5 [dBr	n]	3GPP
Release Version	Mode	Subtest	UL4132 DL4357	UL4183 DL4408	UL4233 DL4458	MPR
99	UMTS	12.2 kbps RMC	21.77	21.62	21.41	-
99	UIVITS	12.2 kbps AMR	21.76	21.61	21.40	-
5		Subtest 1	21.46	21.32	21.09	0
5	HSDPA	Subtest 2	21.47	21.33	21.10	0
5		Subtest 3	21.45	21.33	21.11	0
5		Subtest 4	21.46	21.31	21.09	0
6		Subtest 1	19.85	19.66	19.46	0
6		Subtest 2	19.86	19.66	19.47	0
6	HSUPA	Subtest 3	20.28	20.18	20.01	0
6		Subtest 4	19.81	19.61	19.41	0
6		Subtest 5	20.34	20.14	20.05	0
8		Subtest1	20.80	20.70	20.79	0
8	DC-HSDPA	Subtest2	20.81	21.03	20.82	0
8	DC-HSDPA	Subtest3	20.84	20.68	20.81	0
8		Subtest4	20.80	21.18	20.89	0

UMTS Average Conducted output powers

- ♦ 3GPP specification TS 34.121-1 Release 8. was used for used for DC-HSDPA guidance.
- H-set 12(QPSK) was conformed to be used during DC-HSDPA measurements.

Base Station Simulator

RF Connector

EUT

11.3 LTE Maximum Output Power

LTE B5/B41 does not support three non-overlapping channels at each supported max bandwidth. Per KDB 941225 D05v02r05, when a device supports overlapping channel assignment in a channel bandwidth configuration, the mid channel of the group of overlapping channels should be selected for testing.

11.3.1 LTE Maximum Conducted Power

[LTE Band 5 Conducted Power]

LTE Band 5 _ 1.4 Mtz Bandwidth

		RB	RB	Max.	Average Power	[dBm]	MPR Allowed Per	MPR
Bandwidth	Modulation	кь Size	кь Offset	20407 Ch.	20525 Ch.	20643 Ch.	3GPP	[dB]
		0120	Children	824.7 MHz	836.5 MHz	848.3 MHz	[dB]	
		1	0	24.50	24.69	24.44	0	0
		1	3	24.54	24.73	24.46	0	0
		1	5	24.53	24.65	24.43	0	0
	QPSK	3	0	24.35	24.55	24.34	0	0
		3	1	24.32	24.61	24.38	0	0
		3	3	24.35	24.51	24.31	0	0
1.4 MHz		6	0	23.36	23.52	23.31	0-1	1
1.4 MHZ		1	0	23.02	23.52	23.09	0-1	1
		1	3	23.06	23.43	23.13	0-1	1
		1	5	23.20	23.27	23.15	0-1	1
	16QAM	3	0	23.24	23.44	23.24	0-1	1
		3	1	23.25	23.44	23.22	0-1	1
		3	3	23.23	23.40	23.24	0-1	1
		6	0	22.23	22.46	22.29	0-2	2

LTE Band 5 _ 3 Mtz Bandwidth

		RB	RB	Max.	Average Power	[dBm]	MPR Allowed Per	MPR
Bandwidth	Modulation	Size	Offset	20415 Ch. 825.5 ₩z	20525 Ch. 836.5 ₩1	20635 Ch. 847.5 MHz	3GPP [dB]	[dB]
		1	0	24.47	24.62	24.44	0	0
		1	7	24.47	24.62	24.39	0	0
		1	14	24.55	24.52	24.36	0	0
	QPSK	8	0	23.39	23.55	23.34	0-1	1
		8	3	23.44	23.59	23.37	0-1	1
		8	7	23.46	23.55	23.31	0-1	1
3 MHz		15	0	23.40	23.55	23.36	0-1	1
3 MHZ		1	0	23.36	23.52	23.18	0-1	1
		1	7	23.24	23.33	23.12	0-1	1
		1	14	23.36	23.38	23.20	0-1	1
	16QAM	8	0	22.40	22.53	22.38	0-2	2
		8	3	22.41	22.56	22.44	0-2	2
		8	7	22.46	22.59	22.34	0-2	2
		15	0	22.37	22.52	22.34	0-2	2

LTE Band 5 _ 5 Mtz Bandwidth

		RB	RB	Max.	Average Power	[dBm]	MPR Allowed Per	MPR
Bandwidth	Modulation	Size	Offset	20425 Ch. 826.5 ⊮z	20525 Ch. 836.5 ₩z	20625 Ch. 846.5 MHz	3GPP [dB]	[dB]
		1	0	24.52	24.62	24.48	0	0
		1	12	24.56	24.56	24.41	0	0
		1	24	24.58	24.62	24.40	0	0
	QPSK	12	0	23.41	23.57	23.40	0-1	1
		12	6	23.52	23.56	23.39	0-1	1
		12	11	23.55	23.58	23.33	0-1	1
5 MHz		25	0	23.49	23.54	23.39	0-1	1
3 MHZ		1	0	23.29	23.23	23.23	0-1	1
		1	12	23.27	23.40	23.15	0-1	1
		1	24	23.28	23.30	23.08	0-1	1
	16QAM	12	0	22.36	22.47	22.41	0-2	2
		12	6	22.40	22.56	22.34	0-2	2
		12	11	22.42	22.49	22.27	0-2	2
		25	0	22.46	22.53	22.38	0-2	2

LTE Band 5 _ 10 MHz Bandwidth

Bandwidth	Modulation	RB Size	RB Offset	Max.	Average Power 20525 Ch. 836.5 ⊮t	[dBm]	MPR Allowed Per 3GPP [dB]	MPR [dB]
		1	0		24.68		0	0
		1	24		24.64		0	GPP MPR [dB] [dB] 0 0 0 0 0 0 0-1 1 0-1 1 0-1 1 0-1 1 0-1 1 0-1 1 0-1 1 0-1 1 0-1 1 0-1 1 0-1 1 0-2 2 0-2 2
		1	49		24.70		0	0
	QPSK	25	0		23.57		0-1	1
		25	12		23.60		0-1	1
		25	24		23.57		0-1	1
10 MHz		50	0		23.63		0-1	1
		1	0		23.47		0-1	1
		1	24		23.50		0-1	1
		1	49		23.55		0-1	1
	16QAM	25	0		22.54		0-2	2
		25	12		22.60		0-2	2
		25	24		22.51		0-2	2
		50	0		22.55		0-2	2

[LTE Band 41 Conducted Power]

LTE Band 41 _ 5 Mtz Bandwidth

Band	Band		RB		Max. A	verage Powe	er [dBm]		MPR Allowed	MPR
width	Modulation	RB	Offset	39750 Ch.	40185 Ch.	40620 Ch.	41055 Ch.	41490 Ch.	Per GPP	[dB]
width		SIZE	Onset	2506.0 MHz	2549.5 MHz	2593.0 MHz	2636.5 MHz	2680.0 MHz	[dB]	[ub]
		1	0	21.62	22.08	22.22	22.46	22.98	0	0
		1	12	21.66	22.16	22.23	22.49	23.01	0	0
		1	24	21.65	22.15	22.18	22.45	22.96	0	0
	QPSK	12	0	20.73	21.20	21.33	21.51	22.07	0-1	1
		12	6	20.72	21.21	21.31	21.52	22.06	0-1	1
		12	11	20.72	21.23	21.31	21.51	22.07	0-1	1
5 MHz		25	0	20.72	21.21	21.31	21.53	22.06	0-1	1
3 MIZ		1	0	20.70	21.05	21.29	21.54	21.97	0-1	1
		1	12	20.68	21.11	21.33	21.55	22.00	0-1	1
		1	24	20.68	21.12	21.29	21.52	21.97	0-1	1
	16QAM	12	0	19.71	20.18	20.25	20.51	21.04	0-2	2
		12	6	19.70	20.18	20.23	20.52	21.05	0-2	2
		12	11	19.70	20.19	20.23	20.52	21.06	0-2	2
		25	0	19.79	20.24	20.37	20.61	21.12	0-2	2

LTE Band 41 _ 10 Mtz Bandwidth

Dond		RB	חח		Max. A	verage Powe	r [dBm]		MPR Allowed	MPR
Band width	Modulation		RB Offset	39750 Ch.	40185 Ch.	40620 Ch.	41055 Ch.	41490 Ch.	Per 3GPP	[dB]
				2506.0 MHz	2549.5 MHz	2593.0 MHz	2636.5 MHz	2680.0 MHz	[dB]	L- 1
		1	0	21.63	22.10	22.30	22.44	22.96	0	0
		1	24	21.66	22.14	22.24	22.46	22.98	0	0
		1	49	21.66	22.18	22.17	22.51	22.96	0	0
	QPSK	25	0	20.75	21.19	21.36	21.51	22.04	0-1	1
		25	12	20.74	21.23	21.33	21.53	22.05	0-1	1
		25	24	20.73	21.25	21.30	21.55	22.04	0-1	1
10 MHz		50	0	20.73	21.24	21.33	21.56	22.08	0-1	1
10 MHz		1	0	20.57	21.18	21.37	21.48	22.01	0-1	1
		1	24	20.54	21.23	21.30	21.52	22.04	0-1	1
		1	49	20.53	21.20	21.24	21.48	21.99	0-1	1
	16QAM	25	0	19.80	20.28	20.41	20.62	21.12	0-2	2
		25	12	19.80	20.30	20.38	20.63	21.13	0-2	2
		25	24	19.79	20.32	20.36	20.64	21.15	0-2	2
		50	0	19.80	20.26	20.38	20.61	21.14	0-2	2

LTE Band 41	15 MHz	Bandwidth	
-------------	--------	-----------	--

Band		RB	RB		Max. A	verage Powe	r [dBm]		MPR Allowed	MPR
width Modulation	Modulation	Size		39750 Ch. 2506.0 ₩z	40185 Ch. 2549.5 ₩z	40620 Ch. 2593.0 ₩z	41055 Ch. 2636.5 ₩z	41490 Ch. 2680.0 MHz	Per 3GPP [dB]	[dB]
		1	0	22.17	22.59	22.88	22.97	23.52	0	0
		1	36	22.18	22.66	22.79	23.00	23.53	0	0
		1	74	22.23	22.73	22.71	23.03	23.16	0	0
	QPSK	36	0	21.23	21.66	21.84	21.98	22.54	0-1	1
		36	18	21.21	21.70	21.79	22.00	22.55	0-1	1
		36	39	21.22	21.75	21.75	22.04	22.54	0-1	1
15 MHz		75	0	21.23	21.71	21.82	22.01	22.54	0-1	1
IJ MIZ		1	0	21.01	21.44	21.79	21.89	22.50	0-1	1
		1	36	21.03	21.56	21.75	21.89	22.49	0-1	1
		1	74	21.20	21.60	21.69	21.98	22.44	0-1	1
	16QAM	36	0	20.29	20.71	20.91	21.05	21.60	0-2	2
		36	18	20.28	20.74	20.86	21.07	21.59	0-2	2
		36	39	20.29	20.79	20.82	21.10	21.60	0-2	2
		75	0	20.33	20.78	20.90	21.12	21.63	0-2	2

LTE Band 41 _ 20 Mtz Bandwidth

Dend		חח			Max. A	verage Powe	r [dBm]		MPR Allowed	
Band width	Modulation	RB	RB Offeet	39750 Ch.	40185 Ch.	40620 Ch.	41055 Ch.	41490 Ch.	Per 3GPP	
width		Size	Offset	2506.0 MHz	2549.5 MHz	2593.0 MHz	2636.5 MHz	2680.0 MHz	[dB]	[ub]
		1	0	22.25	22.57	23.21	23.08	22.79	0	0
		1	49	22.18	22.68	23.18	23.02	23.19	0	0
		1	99	22.24	22.76	22.66	23.07	23.20	0	0
	QPSK	50	0	21.24	21.68	22.25	22.08	22.21	0-1	1
		50	25	21.22	21.72	22.23	22.03	22.22	0-1	1
		50	49	21.23	21.76	22.13	22.07	22.23	Image: Baseline and the second seco	1
20 MHz		100	0	21.25	21.73	22.21	22.04	22.19	0-1	1
ZU MHZ		1	0	21.16	21.63	21.98	21.89	22.49	0-1	1
		1	49	21.10	21.72	21.87	21.94	22.50	0-1	1
		1	99	21.12	21.77	21.71	22.04	22.09	0-1	1
	16QAM	50	0	20.34	20.75	20.99	21.11	21.65	0-2	2
		50	25	20.33	20.80	20.93	21.13	21.65	0-2	2
		50	49	20.35	20.86	20.88	21.17	21.65	0-2	2
		100	0	20.32	20.80	20.91	21.14	21.66	0-2	2

Note; LTE Band 41 has 5 required test channels per FCC KDB 447498 D01v06.

The EUT enables maximum power reduction in accordance with 3GPP 36.101. The MPR settings are configured during the manufacture process and are not configurable by the network, carrier, or end user.

11.3.2 LTE Reduced Conducted Power (Hotspot activated)

[LTE Band 41 Conducted Power]

LTE Band 41 _ 5 Mtz Bandwidth

Dand	_	סס			Redu	iced Power [dBm]		MPR Allowed	MPR	
Band	Modulation	RB	RB	39750	40185	40620	41055	41490	Per 3GPP		
width		Size	Offset	Jiiset	2506 MHz	2549.5 MHz	2593 MHz	2636.5 MHz	2680 MHz	[dB]	[dB]
		1	0	19.30	19.75	19.93	20.07	20.60	0	0	
		1	12	19.32	19.79	19.91	20.09	20.62	0	0	
		1	24	19.33	19.82	19.88	20.10	20.61	0	0	
	QPSK	12	0	19.32	19.79	19.91	20.10	20.64	0-1	0	
		12	6	19.32	19.79	19.90	20.10	20.64	0-1	0	
		12	11	19.32	19.82	19.89	20.11	20.65	0-1	0	
5 MHz		25	0	19.32	19.80	19.90	20.10	20.64	0-1	0	
5 1011 12		1	0	19.25	19.81	19.82	19.95	20.66	0-1	0	
		1	12	19.19	19.86	19.75	19.97	20.65	0-1	0	
		1	24	19.22	19.87	19.76	20.01	20.68	0-1	0	
	16QAM	12	0	19.27	19.76	19.91	20.08	20.63	0-2	0	
		12	6	19.26	19.75	19.88	20.09	20.62	0-2	0	
		12	11	19.26	19.76	19.88	20.10	20.62	0-2	0	
		25	0	19.41	19.90	19.99	20.17	20.74	0-2	0	

LTE Band 41 _ 10 Mtz Bandwidth

Dand			חח		Redu	iced Power [dBm]		MPR Allowed	MPR
Band	Modulation	RB Size	RB	39750	40185	40620	41055	41490	Per 3GPP	
width		Size	Onset	2506 MHz	2549.5 MHz	2593 MHz	2636.5 MHz	2680 MHz	[dB]	[aB]
		1	0	19.34	19.74	19.95	20.07	20.63	0	0
		1	24	19.33	19.78	19.91	20.10	20.64	0	0
		1	49	19.30	19.81	19.84	20.14	20.63	0	0
	QPSK	25	0	19.32	19.76	19.94	20.10	20.65	0-1	0
		25	12	19.31	19.79	19.91	20.12	20.65	0-1	Per 3GPP [dB] [dB] [dB] 0 0 0 0 0 0 0 0 0 0 0 0 0 0
		25	24	19.32	19.80	19.86	20.11	20.65	Der 3GPP [dB] [dB] IHz [dB] 3 0 0 4 0 0 3 0 0 5 0-1 0 5 0-1 0 5 0-1 0 6 0-1 0 6 0-1 0 7 0-1 0 9 0-1 0 3 0-2 0 2 0-2 0	0
10 MHz		50	0	19.32	19.78	19.90	20.11	20.66	0-1	0
		1	0	19.18	19.63	19.85	20.12	20.66	0-1	0
		1	24	19.20	19.65	19.80	20.15	20.67	0-1	0
		1	49	19.18	19.67	19.69	20.17	20.69	0-1	0
	16QAM	25	0	19.41	19.86	20.02	20.19	20.73	0-2	0
		25	12	19.41	19.89	19.99	20.22	20.72	0-2	0
		25	24	19.42	19.90	19.98	20.21	20.71	0-2	0
		50	0	19.41	19.86	19.98	20.19	20.73	0-2	0

LTE Band 41 1	5 MHz Bandwidth
---------------	-----------------

Dand			חח		Redu	iced Power [dBm]		MPR Allowed	MPR
Band	Modulation	RB	RB	39750	40185	40620	41055	41490	Per 3GPP	
width		Size	Offset	2506 MHz	2549.5 MHz	2593 MHz	2636.5 MHz	2680 MHz	[dB]	[dB]
		1	0	19.36	19.72	20.00	20.06	20.64	0	0
		1	36	19.30	19.79	19.89	20.09	20.63	0	0
		1	74	19.35	19.86	19.85	20.15	20.62	0	0
	QPSK	36	0	19.34	19.76	19.96	20.09	20.65	0-1	0
		36	18	19.32	19.81	19.92	20.10	20.65	0-1	0
		36	39	19.33	19.84	19.88	20.14	20.64	0-1	0
15 MHz		75	0	19.34	19.81	19.91	20.13	20.65	0-1	0
13 1011 12		1	0	19.35	19.83	20.07	20.05	20.68	0-1	0
		1	36	19.39	19.89	19.99	20.06	20.66	0-1	0
		1	74	19.42	19.93	19.87	20.11	20.66	0-1	0
	16QAM	36	0	19.37	19.77	19.99	20.12	20.68	0-2	0
		36	18	19.36	19.81	19.94	20.13	20.67	0-2	0
		36	39	19.37	19.86	19.91	20.14	20.69	0-2	0
		75	0	19.40	19.87	19.97	20.20	20.70	0-2	0

LTE Band 41 _ 20 Mtz Bandwidth

Dond		חח	RB RB		Redu	iced Power [dBm]		MPR Allowed	MPR
Band	Modulation			39750	40185	40620	41055	41490	Per 3GPP	
width		Size	Offset	2506 MHz	2549.5 MHz	2593 MHz	2636.5 MHz	2680 MHz	[dB]	[dB]
		1	0	19.39	19.71	20.34	20.16	20.31	0	0
		1	49	19.34	19.82	20.24	20.11	20.32	0	0
		1	99	19.37	19.90	20.11	20.15	20.33	0	0
	QPSK	50	0	19.36	19.76	20.37	20.16	20.33	0-1	0
		50	25	19.33	19.81	20.21	20.12	20.34	0-1	0
		50	49	19.35	19.86	20.15	20.15	20.35	0-1	0
20 MHz		100	0	19.35	19.81	20.36	20.14	20.34	0-1	0
		1	0	19.45	19.58	20.28	19.92	20.35	0-1	0
		1	49	19.41	19.68	20.13	19.93	20.36	0-1	0
		1	99	19.41	19.77	19.97	20.03	20.32	0-1	0
	16QAM	50	0	19.43	19.85	20.34	20.17	20.42	0-2	0
		50	25	19.42	19.90	20.27	20.19	20.42	0-2	0
		50	49	19.41	19.93	20.23	20.23	20.41	0-2	0
		100	0	19.42	19.86	20.28	20.18	20.42	0-2	0

Note; LTE Band 41 has 5 required test channels per FCC KDB 447498 D01v06.

11.3.3 LTE Reduced Conducted Power (Grip Sensor on)

[LTE Band 41 Conducted Power]

LTE Band 41 _ 5 Mtz Bandwidth

Dand	_	סס			Redu	iced Power [dBm]		MPR Allowed	MPR
Band	Modulation	RB		39750	40185	40620	41055	41490	Per 3GPP	
width		Size	Onset	2506 MHz	2549.5 MHz	2593 MHz	2636.5 MHz	2680 MHz	[dB]	[dB]
		1	0	19.30	19.76	19.89	20.06	20.59	0	0
		1	12	19.31	19.76	19.84	20.10	20.61	0	0
		1	24	19.31	19.80	19.83	20.07	20.61	0	0
	QPSK	12	0	19.29	19.75	19.89	20.10	20.63	0-1	0
		12	6	19.29	19.77	19.88	20.10	20.62	0-1	0
		12	11	19.31	19.78	19.86	20.08	20.65	0-1	0
5 MHz		25	0	19.29	19.78	19.88	20.08	20.62	0-1	0
5 1011 12		1	0	19.28	19.57	19.79	20.06	20.54	0-1	0
		1	12	19.34	19.62	19.77	20.11	20.50	0-1	0
		1	24	19.34	19.68	19.74	20.13	20.49	0-1	0
	16QAM	12	0	19.24	19.76	19.84	20.07	20.59	0-2	0
		12	6	19.23	19.77	19.85	20.07	20.57	0-2	0
		12	11	19.25	19.79	19.85	20.07	20.59	0-2	0
		25	0	19.37	19.87	19.97	20.19	20.68	0-2	0

LTE Band 41 _ 10 Mtz Bandwidth

Dand			חח		Redu	iced Power [dBm]		MPR Allowed	MPR
Band	Modulation	RB	RB	39750	40185	40620	41055	41490	Per 3GPP	
width		Size	Onset	2506 MHz	2549.5 MHz	2593 MHz	2636.5 MHz	2680 MHz	[dB]	[dB]
		1	0	19.29	19.75	19.95	20.08	20.62	0	0
		1	24	19.30	19.82	19.90	20.12	20.65	0	0
		1	49	19.35	19.81	19.84	20.14	20.61	0	0
	QPSK	25	0	19.31	19.76	19.90	20.10	20.63	0-1	0
		25	12	19.31	19.77	19.88	20.10	20.63	0-1	0
		25	24	19.31	19.79	19.84	20.10	20.62	0-1	0
10 MHz		50	0	19.31	19.78	19.88	20.10	20.65	0-1	0
		1	0	19.24	19.62	19.80	20.10	20.64	0-1	0
		1	24	19.25	19.68	19.71	20.11	20.59	0-1	0
		1	49	19.23	19.63	19.66	20.13	20.52	0-1	0
	16QAM	25	0	19.42	19.85	20.02	20.18	20.69	0-2	0
		25	12	19.39	19.87	20.01	20.17	20.70	0-2	0
		25	24	19.40	19.88	19.96	20.20	20.71	0-2	0
		50	0	19.38	19.85	19.94	20.16	20.72	0-2	0

LTE Band 41	15 MHz	Bandwidth
-------------	--------	-----------

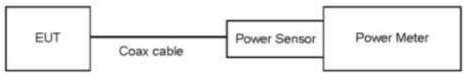
Dend		חח	חח		Redu	iced Power [dBm]		MPR Allowed	MPR
Band	Modulation	RB	RB	39750	40185	40620	41055	41490	Per 3GPP	
width		Size	Offset	2506 MHz	2549.5 MHz	2593 MHz	2636.5 MHz	2680 MHz	[dB]	[dB]
		1	0	19.32	19.66	19.94	20.05	20.59	0	0
		1	36	19.30	19.76	19.87	20.09	20.63	0	0
		1	74	19.34	19.86	19.78	20.14	20.61	0	0
	QPSK	36	0	19.32	19.74	19.94	20.08	20.65	0-1	0
		36	18	19.32	19.78	19.89	20.08	20.65	0-1	0
		36	39	19.32	19.81	19.84	20.13	20.65	0-1	0
15 MHz		75	0	19.33	19.78	19.89	20.09	20.65	.65 0-1 .65 0-1	0
		1	0	19.34	19.52	19.89	19.92	20.60	0-1	0
		1	36	19.24	19.61	19.75	20.05	20.60	0-1	0
		1	74	19.29	19.64	19.72	20.02	20.66	0-1	0
	16QAM	36	0	19.35	19.75	19.96	20.11	20.66	0-2	0
		36	18	19.35	19.80	19.92	20.14	20.66	0-2	0
		36	39	19.36	19.85	19.88	20.18	20.65	0-2	0
		75	0	19.40	19.85	19.94	20.17	20.70	0-2	0

LTE Band 41 _ 20 MHz Bandwidth

Dand		RB	RB		Redu	iced Power [dBm]		MPR Allowed	MPR
Band	Modulation			39750	40185	40620	41055	41490	Per 3GPP	
width		Size	Offset	2506 MHz	2549.5 MHz	2593 MHz	2636.5 MHz	2680 MHz	[dB]	[dB]
		1	0	19.35	19.67	20.40	20.06	20.32	0	0
		1	49	19.31	19.78	20.28	20.09	20.32	0	0
		1	99	19.36	19.84	20.15	20.18	20.32	0	0
	QPSK	50	0	19.34	19.73	20.35	20.08	20.34	0-1	0
		50	25	19.32	19.79	20.29	20.09	20.34	0-1	0
		50	49	19.33	19.84	20.24	20.13	20.34	0-1	0
20 MHz		100	0	19.33	19.80	20.30	20.11	20.36	0-1	0
		1	0	19.25	19.64	20.40	19.96	20.21	0-1	0
		1	49	19.22	19.75	20.24	19.95	20.21	0-1	0
		1	99	19.25	19.79	20.14	20.05	20.11	0-1	0
	16QAM	50	0	19.39	19.81	20.41	20.15	20.40	0-2	0
		50	25	19.36	19.85	20.35	20.16	20.40	0-2	0
		50	49	19.38	19.91	20.30	20.19	20.41	0-2	0
		100	0	19.37	19.85	20.34	20.18	20.41	0-2	0

Note; LTE Band 41 has 5 required test channels per FCC KDB 447498 D01v06.

11.4 WIFI Conducted Power measurement method


Un-Licensed Bands (DTS Band)

Test Description	Test Procedure Used
Conducted Output Power	- KDB 558074 v05 - Section 8.3.2.3 - ANSI 63.10-2013 - Section 11.9.2.3

Test Procedure

- 1. Measure the duty cycle.
- 2. Measure the average power of the transmitter. This measurement is an average over both the on and off periods of the transmitter.
- 3. Add 10 log (1/x), where x is the duty cycle, to the measured power in order to compute the average power during the actual transmission times.

Test setup

Un-Licensed Bands(NII Band)

Test Description	Test Procedure Used
Conducted Output Power	- KDB 789033 D02 v02r01 - Section E.3.a

Test Procedure

1. Measure the duty cycle.

- 2. Measure the average power of the transmitter. This measurement is an average over both the on and off periods of the transmitter.
- 3. Add 10 log (1/x), where x is the duty cycle, to the measured power in order to compute the average power during the actual transmission times.

Test setup

EUT		Spectrum Analyzer
	Coax Cable	

11.4.1 IEEE 802.11 (2.4 GHz) Maximum Conducted Power

Mode	Frequency [₩b]	Channel	IEEE 802.11 (2.4 屔) Average Conducted Power [dBm]
	2 412	1	17.11
	2 437	6	16.75
802.11b	2 462	11	17.31
	2 467	12	10.14
	2 472	13	3.16
	2 412	1	12.37
	2 437	6	13.89
802.11g	2 462	11	11.81
	2 467	12	9.13
	2 472	13	2.37
	2 412	1	12.96
000.44=	2 437	6	14.40
802.11n	2 462	11	11.71
(HT20)	2 467	12	8.90
	2 472	13	1.40

11.4.2 IEEE 802.11 (2.4 GHz) Reduced Conducted Power (Held to ear VOIP)

Mode	Frequency [Mb]	Channel	IEEE 802.11 (2.4 础) Reduced Average Conducted Power [dBm]
	2 412	1	11.94
802.11b	2 437	6	11.53
	2 462	11	12.17
	2 412	1	11.23
802.11g	2 437	6	11.01
	2 462	11	11.63
802 11 -	2 412	1	11.30
802.11n	2 437	6	10.60
(HT20)	2 462	11	11.65

11.4.3 IEEE 802.11 (5 GHz) Maximum Conducted Power

Mode	Frequency [\\\\z]	Channel	IEEE 802.11 (5 砒) Average Conducted Power [dBm]
	5 180	36	14.22
	5 200	40	15.61
	5 220	44	15.34
	5 240	48	15.50
	5 260	52	15.51
	5 280	56	15.11
802.11a	5 300	60	15.05
	5 320	64	15.29
(20 MHz BW)	5 500	100	13.07
	5 600	120	14.68
	5 620	124	15.05
	5 720	144	14.78
	5 745	149	14.93
	5 785	157	14.65
	5 825	165	14.79

11.4.4 IEEE 802.11 (5 GHz) Reduced Conducted Power (Held to ear VOIP)

Mode	Frequency [Mb]	Channel	IEEE 802.11 (5 砒) Reduced Average Conducted Power [dBm]
	5 190	38	8.01
802.11n	5 230	46	10.78
(40 MHz BW)	5 270	54	10.74
	5 310	62	7.85
	5 210	42	7.68
	5 290	58	7.24
802.11ac	5 530	106	7.39
(80 MHz BW)	5 610	122	10.20
	5 690	138	10.46
	5 775	155	10.38

Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02:

• Power measurements were performed for the transmission mode configuration with the highest maximum output power specified for production units.

• For transmission mode with the same maximum output power specification, powers were measured for the largest channel Bandwidth, lowest order modulation and lowest data rate.

• Only the conducted Power measurement results of the WLAN mode determined by FCC KDB 248227 D01v02r02 are included in the table above. No additional power measurement other than the measurement case is required.

• For each transmission mode configuration, powers were measured for the highest and lowest channels; and at the mid-Band channel(s) when there were at least 3 channels supported. For configurations with multiple mid-Band channels, due to an even number of channels, both channels were measured.

Test Configuration

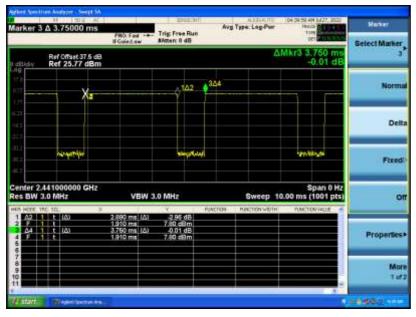
EUT

Coax Cable

Spectrum Analyzer

11.5 Bluetooth

Maximum Conducted Power


The Burst averaged-conducted power

Mode	Channel	Bluetooth Power [dBm]
	0	7.74
DH5	39	8.07
	78	7.27
	0	5.25
2-DH5	39	5.69
	78	5.71
	0	5.25
3-DH5	39	5.69
	78	5.72

Per October 2016 TCB Workshop Notes:

When call box and Bluetooth protocol are used for Bluetooth SAR measurement, time-domain plot is required to identify duty factor for supporting the test setup and result.

Bluetooth duty cycle was measured using Bluetooth tester equipment (CBT / R&S) with Bluetooth DH5 mode.

Bluetooth Duty Cycle

Duty Cycle = (BT-On time /BT-Full time) =(2.880/3.750) = 0.768 (DH5) / Duty factor= 1/Duty cycle : 1.302

12. System Verification 12.1 Tissue Verification

The Head simulating material is calibrated by HCT using the DAKS 3.5 to determine the conductivity and permittivity.

Table for Head Tissue Verification Tissue Measured Measured Target Target														
Date of Tests	Tissue Temp. (°C)	Tissue Type	Freq. (₩z)	Measured Conductivity σ (S/m)	Measured Dielectric Constant, ε	Target Conductivity σ (S/m)	Target Dielectric Constant, ε	% dev σ	% dev ε					
			820	0.899	41.571	0.899	41.577	0.00	-0.01					
07/27/2022	19.7	835H	835	0.914	41.376	0.900	41.500	1.56	-0.30					
			850	0.927	41.008	0.916	41.500	1.20	-1.19					
			820	0.915	41.584	0.899	41.577	1.78	0.02					
07/26/2022	19.6	835H	835	0.938	42.994	0.900	41.500	4.22	3.60					
			850	0.943	41.119	0.916	41.500	2.95	-0.92					
			2400	1.809	40.460	1.756	39.290	3.02	2.98					
07/19/2022	19.3	2450H	2450	1.880	40.281	1.800	39.200	4.44	2.76					
			2500	1.929	40.110	1.855	39.140	3.99	2.48					
			2400	1.826	40.422	1.756	39.290	3.99	2.88					
07/25/2022	19.4	2450H	2450	1.878	40.318	1.800	39.200	4.33	2.85					
			2500	1.927	40.116	1.855	39.140	3.88	2.49					
			2500	1.861	38.340	1.855	39.126	0.32	-2.01					
07/19/2022	20.7	2600H	2550	1.909	38.143	1.909	39.070	0.00	-2.37					
			2600	1.958	37.915	1.964	39.010	-0.31	-2.81					
			2500	1.930	38.335	1.855	39.126	4.04	-2.02					
07/21/2022	19.4	2600H	2550	1.980	38.133	1.909	39.070	3.72	-2.40					
			2600	2.031	37.906	1.964	39.010	3.41	-2.83					
			5180	4.717	37.100	4.635	36.010	1.77	3.03					
07/40/0000	10 F	5180H-	5250	4.835	36.903	4.706	35.930	2.74	2.71					
07/18/2022	19.5	5320H	5280	4.686	36.827	4.737	35.894	-1.08	2.60					
			5320	4.737	37.070	4.778	35.846	-0.86	3.41					
07/40/0000	10 5	5500H-	5500	5.056	36.973	4.963	35.640	1.87	3.74					
07/18/2022	19.5	5600H	5600	5.181	36.889	5.065	35.530	2.29	3.82					
		FZFOLZ	5750	5.327	36.818	5.219	35.360	2.07	4.12					
07/18/2022	19.5	5750H-	5800	5.108	36.875	5.270	35.300	-3.07	4.46					
		5825H	5825	5.137	36.762	5.296	35.270	-3.00	4.23					

- Extremity

	Table for Head Tissue Verification														
$\begin{array}{c c} \text{Date of} \\ \text{Tests} \end{array} \begin{array}{c} \text{Tissue} \\ \text{Temp.} \\ (^{\circ}\text{C}) \end{array} \end{array} \begin{array}{c} \text{Tissue} \\ \text{Type} \end{array} \begin{array}{c} \text{Freq.} \\ (\underline{M}\underline{r}) \end{array} \begin{array}{c} \text{Measured} \\ \text{Conductivity} \\ \sigma (S/m) \end{array} \begin{array}{c} \text{Measured} \\ \text{Dielectric} \\ \text{Constant, } \epsilon \end{array} \end{array} \begin{array}{c} \text{Target} \\ \text{Target} \\ \text{Dielectric} \\ \text{Constant, } \epsilon \end{array} \begin{array}{c} \text{Target} \\ \text{Conductivity} \\ \text{Constant, } \epsilon \end{array}$															
			2500	1.929	38.981	1.855	39.126	3.99	-0.37						
07/22/2022	19.4	2600H	2550	1.979	38.775	1.909	39.070	3.67	-0.76						
			2600	2.029	38.539	1.964	39.010	3.31	-1.21						

12.2 System Verification

	Input Power: 50 mW														
Freq. [Mtz]	Date	Probe (S/N)	Dipole (S/N)	Liquid	Amb. Temp. [°C]	Liquid Temp. [°C]	1 W Target SAR _{1g} (SPEAG) [W/kg]	50mW Measured SAR _{1g} [W/kg]	1 W Normalized SAR _{1g} [W/kg]	Deviation [%]	Limit [%]				
835	07/27/2022	7370	4d165	Head	19.7	19.7	9.68	0.493	9.86	+ 1.86	± 10				
835	07/26/2022	7370	40105	Head	19.6	19.6	9.68	0.505	10.18	+ 4.33	± 10				
2 450	07/19/2022	7370	743	Head	19.3	19.3	53.3	2.64	52.8	- 0.94	± 10				
2 450	07/25/2022	7370	743	Head	19.4	19.4	53.3	2.67	53.4	+ 0.19	± 10				
2 600	07/19/2022	7654	1106	Head	20.8	20.7	56.3	2.65	53.0	- 5.86	± 10				
2 600	07/21/2022	7679	1100	Head	19.5	19.4	56.3	3.01	60.2	+ 6.93	± 10				
5 250	07/18/2022	7370		Head	19.6	19.5	80.4	4.19	83.8	+ 4.23	± 10				
5 600	07/18/2022	7370	1253	Head	19.6	19.5	82.1	4.01	80.2	- 2.31	± 10				
5 750	07/18/2022	7370		Head	19.6	19.5	79.9	3.89	77.8	- 2.63	± 10				

- System Verification Results – Extremity SAR

Input Power: 50 mW

Freq.	Date	Probe (S/N)	Dipole (S/N)	Liquid		Liquid Temp.		50mW Measured SAR _{10g}	1 W Normalized SAR _{10g}	Deviation	Limit
[MHz]					[°C]	[°C]	[W/kg]	[W/kg]	[W/kg]	[%]	[%]
2 600	07/22/2022	7370	1106	Head	19.4	19.4	25.2	1.29	25.8	+ 2.38	± 10
5 250	07/18/2022	7370	1253	Head	19.6	19.5	22.9	1.22	24.4	+ 6.55	± 10
5 600	07/18/2022	7370	1200	Head	19.6	19.5	23.5	1.20	24.0	+ 2.13	± 10

12.3 System Verification Procedure

SAR measurement was prior to assessment, the system is verified to the \pm 10 % of the specifications at each frequency Band by using the system verification kit. (Graphic Plots Attached)

- Cabling the system, using the verification kit equipment.
- Generate about 50 mW Input level from the signal generator to the Dipole Antenna.
- Dipole antenna was placed below the flat phantom.
- The measured one-gram SAR at the surface of the phantom above the dipole feed-point should be within 10 % of the target reference value.
- The results are normalized to 1 W input power.

Note;

SAR Verification was performed according to the FCC KDB 865664 D01v01r04.

13. SAR Test Data Summary

13.1 SAR Measurement Results

						Spot Check Ver	ification F	Results : (GSM 850 I	Head SA	\R (1g)							
			Ref	erence N	lodel Me	asurement Res	ults					Variant	Model	Measure	ment Re	sults		
Freque	ency	Mode	Tune- Up Limit	Meas. Power	Power Drift	Test Position	Duty Cycle	1g Meas. SAR	Scaling Factor	1g Scaled SAR	Tune- Up Limit	Meas. Power	Power Drift	1g Meas. SAR	Scaling Factor	1g Scaled SAR	Plot No.	
MHz	Ch.		(dB)	(dB)	(dB)			(W/kg)		(W/kg)	(dB)	(dB)	(dB)	(W/kg)		(W/kg)		
836.6	190	GSM	34.5	34.16	0.02	Left Cheek 1:8.3 0.247 1.081 0.267 34.5 34.18												
836.6	190	GSM	34.5	34.16	-0.01													
836.6	190	GSM	34.5	34.16	0.14													
836.6	190	GSM	34.5	34.16	-0.09	Right Tilt	1:8.3	0.130	1.081	0.141	34.5	34.18						
836.6	190	GPRS 2Tx	34.5	33.76	0.06	Left Cheek	1:4.15	0.440	1.186	0.522	34.5	33.93	0.02	0.245	1.140	0.279	-	
836.6	190	GPRS 2Tx	34.5	33.76	-0.19	Left Tilt	1:4.15	0.233	1.186	0.276	34.5	33.93						
836.6	190	GPRS 2Tx	34.5	33.76	-0.06	Right Cheek	1:4.15	0.490	1.186	0.581	34.5	33.93	-0.06	0.293	1.140	0.334	1	
836.6	190	GPRS 2Tx	34.5	33.76	-0.15													
	ANSI/	IEEE C95.1 -	2005 – S	afety Lim	it						Head							
		Spatial	Peak								1.6 W/kg							
ι	Jncontr	olled Exposure	e/ Genera	al Populat	ion					Avera	aged over '	l gram						

					Spo	ot Check Verific	ation Res	sults : UM	TS Band	5 Head S	SAR (1g)						
			Ref	ierence l	Model Mea	asurement Res	ults					Variant	Model	Measure	ment Re	sults	
Frequ	ency	Mode	Tune- Up Limit	Meas. Power	Power Drift	Test Position	Duty Cycle	1g Meas. SAR	Scaling Factor	1g Scaled SAR	Tune- Up Limit	Meas. Power	Power Drift	1g Meas. SAR	Scaling Factor	1g Scaled SAR	Plot No.
MHz	Ch.		(dB)	(dB)	(dB)			(W/kg)		(W/kg)	(dB)	(dB)	(dB)	(W/kg)		(W/kg)	
836.6	4183	RMC	22	21.48	-0.15	Left Cheek	1:1	0.145	1.127	0.163	22.0	21.62					
836.6	4183	RMC	22	21.48	0.03	Left Tilt	1:1	0.083	1.127	0.094	22.0	21.62					
836.6	4183	RMC	22	21.48	-0.11	Right Cheek	1:1	0.165	1.127	0.186	22.0	21.62	-0.06	0.172	1.091	0.188	2
836.6	4183	RMC	22	21.48	0.08	Right Tilt	1:1	0.091	1.127	0.103	22.0	21.62					
	ANSI/	IEEE C95.1 -	2005 – S	afety Lim	nit						Head						
		Spatia	l Peak								1.6 W/kg						
l	Jncontro	olled Exposure	e/ Genera	al Popula	tion					Avera	ged over 1	gram					

					Ľ	TE Ban	d 5 Head S	AR							
Frequ	lency	Mode	Band width	Tune- Up Limit	Meas. Power	Power Drift	Test	MPR		RB	Duty	Meas. SAR	Scaling	Scaled SAR	Plot
MHz	Ch.		(MHz)	(dBm)	(dBm)	(dB)	Position	(dB)	Size	Offset	Cycle	(W/kg)	Factor	(W/kg)	No.
836.5	20525	QPSK	10	25.0	24.70	0.14	Left Cheek	0	1	49	1:1	0.279	1.072	0.299	-
836.5	20525	QPSK	10	24.0	23.60	0.13	Left Cheek	1	25	12	1:1	0.227	1.096	0.249	-
836.5	20525	QPSK	10	25.0	24.70	-0.09	Left Tilt	0	1	49	1:1	0.160	1.072	0.172	-
836.5	20525	QPSK	10	24.0	23.60	-0.06	Left Tilt	1	25	12	1:1	0.127	1.096	0.139	-
836.5	20525	QPSK	10	25.0	24.70	-0.09	Right Cheek	0	1	49	1:1	0.338	1.072	0.362	3
836.5	20525	QPSK	10	24.0	23.60	-0.17	Right Cheek	1	25	12	1:1	0.283	1.096	0.310	-
836.5	20525	QPSK	10	25.0	24.70	-0.02	Right Tilt	0	1	49	1:1	0.166	1.072	0.178	-
836.5	20525	QPSK	10	24.0	23.60	-0.11	Right Tilt	1	25	12	1:1	0.140	1.096	0.153	-
	AN	ISI/ IEEE C95						Head							
		Spa	atial Peak								1.6 W/k	g			
	Unco	ontrolled Expo	sure/ Gen	eral Popula	ation					Avera	aged over	1 gram			

(*) Full test

					LTE	Band T	DD 41 Hea	d SA	R						
Frequ	uency	Mode	Band width	Tune- Up Limit	Meas. Power	Power Drift	Test Position	MPR		RB Offset	Duty	Meas. SAR	Scaling	Scaled SAR	Plot No.
MHz	Ch.		(MHz)	(dBm)	(dBm)	(dB)	POSILION	(dB)	Size	Offset	Cycle	(W/kg)	Factor	(W/kg)	NO.
2 593	40620	QPSK	20	24.0	23.21	-0.15	Left Cheek	0	1	0	1:1.58	0.408	1.199	0.489	4
2 593	40620	QPSK	20	23.0	22.25	0.10	Left Cheek	1	50	0	1:1.58	0.323	1.189	0.384	-
2 593	40620	QPSK	20	24.0	23.21	0.14	Left Tilt	0	1	0	1:1.58	0.142	1.199	0.170	-
2 593	40620	QPSK	20	23.0	22.25	0.14	Left Tilt	1	50	0	1:1.58	0.110	1.189	0.131	-
2 593	40620	QPSK	20	24.0	23.21	-0.16	Right Cheek	0	1	0	1:1.58	0.229	1.199	0.275	-
2 593	40620	QPSK	20	23.0	22.25	-0.14	Right Cheek	1	50	0	1:1.58	0.192	1.189	0.228	-
2 593	40620	QPSK	20	24.0	23.21	-0.05	Right Tilt	0	1	0	1:1.58	0.193	1.199	0.231	-
2 593	40620	QPSK	20	23.0	22.25	0.09	Right Tilt	1	50	0	1:1.58	0.157	1.189	0.187	-
	AN	ISI/ IEEE C95	.1 - 2005	- Safety Li	mit						Head				
		Spa	atial Peak								1.6 W/k	g			
	Unco	ontrolled Expo	sure/ Ger	eral Popul	ation					Avera	aged over	1 gram			

(*) Full Test

								Spot Check	Verific	ation Re	esults :	DTS He	ad SAF	R (1g)									
					Referen	ce Mo	del M	easurement F	Results	5						Vari	ant l	Model	Measure	ement	Resul	ts	
Frequer	су	Mode	Band width			Meas. Power	Power Drift	Test Position	Duty Cycle	Area Scan Peak SAR	1g Meas. SAR	Scaling	Scaling Factor	1g Scaled SAR	Tune- Up Limit	Meas. Power	Power Drift	Area Scan Peak SAR	1g Meas. SAR	Scaling Factor	Factor	1g Scaled SAR	Plot No.
MHz	Ch.		(MHz)	(Mbps)	(dB)	(dB)	(dB)			(W/kg)	(W/kg)		(Duty)	(W/kg)	(dB)	(dB)	(dB)	(W/kg)	(W/kg)		(Duty)	(W/kg)	
2 462	11	802.11b	20	1	13.0	12.17	(dB) (W/kg) (W/kg) (Duty) (W/kg) (dB) (dB) (dB) (dB) (W/kg) (W/kg)										-						
2 462	11	802.11b	20	1	13.0	12.17	0.05	Left Tilt	98.9	0.16	0.091	1.211	1.012	0.111	13.0	12.17							-
2 462	11	802.11b	20	1	13.0	12.17	-0.16	Right Cheek	98.9	0.407	0.198	1.211	1.012	0.243	13.0	12.17	-0.07	0.283	0.170	1.211	1.012	0.208	5
2 462	11	802.11b	20	1	13.0	12.17	17 -0.16 Right Cheek 98.9 0.407 0.198 1.211 1.012 0.243 13.0 12.17 -0.07 0.283 0.170 1.211 1.012 0.208 5 17 0.15 Right Tilt 98.9 0.321 0.165 1.211 1.012 0.202 13.0 12.17 -									-							
			tial Pe	eak	,									Head 1.6 W/	kg								
Une	contr	olled Expos	sure/ G	General I	Populatio	n							Averag	ged ove	er 1 gra	am							

								Verifi	cation	Results	: NII He	ead SAR	(1g)										
					Refe	erence	Measu	rement Resul	ts							Var	iant I	Model	Measure	ement	Resul	ts	
Frequen	ю	Mode	Band width	Data Rate	Tune- Up Limit	Meas. Power	Power Drift	Test Position	Duty Cycle	Area Scan Peak SAR	1g Meas. SAR	Scaling Factor	Scaling Factor	1g Scaled SAR	Tune- Up Limit	Meas. Power	Power Drift	Area Scan Peak SAR	1g Meas. SAR	Scaling Factor	Scaling Factor	1g Scaled SAR	Plot No.
	Ch.		(MHz)	(Mbps)	(dB)	(dB)	(dB)			(W/kg)	(W/kg)			(W/kg)	(dB)	(dB)	(dB)	(W/kg)	(W/kg)		(Duty)	(W/kg)	
5 270	54	802.11n	40	MCS0	11	10.74	-0.09	Left Cheek	85.4	0.384	0.117	1.062	1.171	0.145	11.0	10.74							-
5 270	54	802.11n	40	MCS0	11	10.74	0.00	Left Tilt	85.4	0.294	0.133	1.062	1.171	0.165	11.0	10.74							-
5 270	54	802.11n	40	MCS0	11	10.74	-0.06	Right Cheek	85.4	0.444	0.138	1.062	1.171	0.172	11.0	10.74							-
5 270	54	802.11n	40	MCS0	11	10.74	0.01	Right Tilt	85.4	0.36	0.173	1.062	1.171	0. 215	11.0	10.74	-0.05	0.301	0.134	1.062	1.171	0.167	-
5 690	138	802.11ac	80	MCS0	11.0	10.46	0.03	Left Cheek	90.6	0.483	0.190	1.132	1.103	0.237	11.0	10.46							-
5 690	138	802.11ac	80	MCS0	11.0	10.46	0.08	Left Tilt	90.6	0.513	0.233	1.132	1.103	0.291	11.0	10.46	-0.01	0.830	0.327	1.132	1.103	0.408	6
5 690	138	802.11ac	80	MCS0	11.0	10.46	-0.07	Right Cheek	90.6	0.466	0.129	1.132	1.103	0.161	11.0	10.46							-
5 690	138	802.11ac	80	MCS0	11.0	10.46	0.01	Right Tilt	90.6	0.617	0.200	1.132	1.103	0.250	11.0	10.46							-
5 775	155	802.11ac	80	MCS0	11.0	10.38	0.06	Left Cheek	90.6	0.526	0.197	1.153	1.103	0.251	11.0	10.38							-
5 775	155	802.11ac	80	MCS0	11.0	10.38	0.18	Left Tilt	90.6	0.587	0.241	1.153	1.103	0.307	11.0	10.38	-0.04	0.762	0.308	1.153	1.103	0.392	-
5 775	155	802.11ac	80	MCS0	11.0	10.38	0.17	Right Cheek	90.6	0.548	0.175	1.153	1.103	0.223	11.0	10.38							-
5 775	155	802.11ac	80	MCS0	11.0	10.38	0.06	Right Tilt	90.6	0.565	0.207	1.153	1.103	0.263	11.0	10.38							-
		IEEE C95. Spa olled Expos	tial Pe	ak		n							Averag	Head 1.6 W/ł	kg	m							

					DSS	Head SAR					
Freque	ency	Mode	Tune- Up Limit	Meas. Power	Power Drift	Test Position	Meas. SAR	Scaling	Scaling Factor	Scaled SAR	Plot
MHz	Ch.		(dBm)	(dBm)	(dB)		(W/kg)	Factor	(Duty)	(W/kg)	No.
2 441	39	Bluetooth DH5	9.0	8.07	0.03	Left Cheek	0.039	1.239	1.302	0.063	-
2 441	39	Bluetooth DH5	9.0	8.07	-0.05	Left Tilt	0.032	1.239	1.302	0.052	-
2 441	39	Bluetooth DH5	9.0	8.07	-0.04	Right Cheek	0.068	1.239	1.302	0.110	7
2 441	39	Bluetooth DH5	9.0	8.07	-0.01	Right Tilt	0.049	1.239	1.302	0.079	-
	ANSI	/ IEEE C95.1 - 2005–	Safety Lim	nit				Head			
		Spatial Peak						1.6 W/kg			
	Uncont	rolled Exposure/ Gene	eral Popula	ition			Ave	eraged over 1	gram		

(*)Full Test

13.2 Body-worn SAR Measurement Results

				Spo	t Chec	k Verific	ation Res	sults :	GSM/ UM	TS Body	-Worn SAF	R (1g)						
		Re	ference	Model	Measu	rement l	Results						Varia	nt Mode	l Measure	ment Res	ults	
Frequ	iency	Mode	Tune- Up Limit	Meas. Power	Power Drift	Test Position	Duty Cycle	Distance	1g Meas. SAR	Scaling Factor	1g Scaled SAR	Tune- Up Limit	Meas. Power	Power Drift	1g Meas. SAR	Scaling Factor	1g Scaled SAR	Plot No.
MHz	Ch.		(dB)	(dB)	(dB)			(mm)	(W/kg)		(W/kg)	(dB)	(dB)	(dB)	(W/kg)		(W/kg)	
836.6	190	GSM 850 Voice	34.5	34.16	0.05	Rear	1:8.3	15	0.283	1.081	0.306	34.5	34.18	-0.08	0.304	1.076	0.327	-
836.6	190	GSM 850 Voice	34.5	34.16	0.08	Front	1:8.3	15	0.210	1.081	0.227	34.5	34.18					
836.6	190	GSM 850 GPRS 2Tx	34.5	33.76	-0.07	Rear	1:4.15	15	0.522	1.186	0.619	34.5	33.93	-0.04	0.334	1.140	0.381	8
836.6	190	GSM 850 GPRS 2Tx	34.5	33.76	-0.03	Front	1:4.15	15	0.388	1.186	0.460	34.5	33.93	0.08	0.280	1.140	0.319	-
836.6	4183	UMTS 850	25.0	24.38	-0.01	Rear	1:1	15	0.267	1.153	0.308	25.0	24.69	-0.04	0.157	1.074	0.169	9
836.6	4183	UMTS 850	25.0	24.38	-0.13	Front	1:1	15	0.231	1.153	0.266	25.0	24.69					
		/ IEEE C95.1 - 2005 – Sa Spatial Peak rolled Exposure/ Genera	,									Body 6 W/kg d over 1						
							_		di nu o									

Frequency Mode Band width Tune- built Meas. Power Power Drift (MB) Test (dB) MPR (dB) RB (dB) RB bise Duty offset Distance Meas. SAR Scaling SAR Scaling SAR <th></th>	
Miz Ch. (Mil) (dBm) (dBm) (dB) (dB) </th <th>Plo No</th>	Plo No
836.5 20525 LTE 5 10 24.0 23.60 0.16 Rear 1 25 12 1:1 15 0.210 1.096 0.230 836.5 20525 QPSK 10 25.0 24.70 0.18 Front 0 1 49 1:1 15 0.210 1.096 0.230 836.5 20525 10 25.0 24.70 0.18 Front 0 1 49 1:1 15 0.210 1.096 0.230 2593.0 40620 2 24.0 23.21 -0.04 Rear 0 1 0 1:1.58 15 0.629 1.199 0.754 2 593.0 40620 2 24.0 23.21 -0.04 Rear 0 1 0 1:1.58 15 0.629 1.199 0.754 2 593.0 40185 20 24.0 22.76 -0.10 Rear 0 1 0 1:1.58 15 <td< th=""><th>INU.</th></td<>	INU.
836.5 20525 QPSK 10 25.0 24.70 0.18 Front 0 1 49 1:1 15 0.241 1.072 0.258 836.5 20525 10 24.0 23.60 -0.06 Front 1 25 12 1:1 15 0.241 1.072 0.258 2593.0 40620 2 24.0 23.21 -0.04 Rear 0 1 0 1:1.58 15 0.629 1.199 0.754 2 506.0 39750 20 24.0 22.25 -0.14 Rear 0 1 0 1:1.58 15 0.632 1.300 0.841 2 506.0 39750 20 24.0 22.25 -0.14 Rear 0 1 0 1:1.58 15 0.632 1.330 0.841 2 636.5 41055 20 24.0 23.20 0.17 Rear 0 1 0 1:1.58 15 0.402	10
836.5 20525 10 24.0 23.60 -0.06 Front 1 25 12 1.1 15 0.211 1.096 0.231 2 593.0 40620 2 24.0 23.21 -0.04 Rear 0 1 0 1:1.58 15 0.629 1.199 0.754 2 506.0 39750 20 24.0 22.25 -0.14 Rear 0 1 0 1:1.58 15 0.632 1.330 0.841 2 506.0 39750 20 24.0 22.25 -0.10 Rear 0 1 0 1:1.58 15 0.632 1.330 0.841 2 636.5 41055 20 24.0 23.20 0.17 Rear 0 1 0 1:1.58 15 0.402 1.236 0.497 2 680.0 41490 2 24.0 23.20 0.17 Rear 0 1 99 1:158 15 0.216 1.202	-
2 593.0 40620 2 593.0 40620 2 593.0 39750 2 595.4 39750 2 595.5 40185 2 636.5 41055 LTE 41 20 24.0 23.21 -0.04 Rear 0 1 0 1:1.58 15 0.629 1.199 0.754 2 630.5 41055 20 24.0 22.25 -0.14 Rear 0 1 0 1:1.58 15 0.629 1.496 0.800 20 24.0 22.76 -0.10 Rear 0 1 99 1:1.58 15 0.632 1.330 0.841 20 24.0 23.20 -0.04 Rear 0 1 0 1:1.58 15 0.402 1.236 0.497 20 24.0 23.20 0.17 Rear 0 1 99 1:1.58 15 0.216 1.202 0.260	-
2 506.0 39750 2 506.0 39750 2 549.5 40185 2 636.5 41055 2 680.0 41490	-
2 549.5 40185 2 636.5 41055 2 680.0 41490	-
2 636.5 41055 20 24.0 23.08 -0.04 Rear 0 1 0 1:1.58 15 0.402 1.236 0.497 2 680.0 41490 LTE 41 20 24.0 23.20 0.17 Rear 0 1 99 1:158 15 0.216 1.202 0.260	-
2 680 0 41490 LTE 41 20 24 0 23 20 0 17 Rear 0 1 99 1158 15 0 216 1 202 0 260	11
2 680 0 41490 I I 20 I 24 0 I 23 20 I 0 17 I Rear I 0 I 1 I 99 I 1158 I 15 I 0 216 I 1 202 I 0 260	-
QPSK 20 2000 000 000 000 000 000 000 000 00	-
2 593.0 40620 20 23.0 22.25 -0.11 Rear 1 50 0 1:1.58 15 0.495 1.189 0.589	-
2 593.0 40620 20 23.0 22.21 -0.17 Rear 1 100 0 1:1.58 15 0.471 1.199 0.565	-
2 593.0 40620 20 24.0 23.21 0.01 Front 0 1 0 1:1.58 15 0.300 1.199 0.360	-
2 593.0 40620 20 23.0 22.25 -0.00 Front 1 50 0 1:1.58 15 0.240 1.189 0.285	-
ANSI/ IEEE C95.1 - 2005 – Safety Limit Body	
Spatial Peak 1.6 W/kg	
Uncontrolled Exposure/ General Population Averaged over 1 gram (*) Full Test	

(*) Full Test

								Spot Ch	eck Ve	rificati	on Resu	lts : DT	S Body-	Worn \$	SAR (1	g)								
					Refer	ence N	lodel	Measure	ment	Result	s						Var	ant l	Nodel	Measure	ement	Resu	lts	
Freque	ncy	Mode	Band width		Up	Meas. Power	Power Drift	Test Position	Cycle		Area Scan Peak SAR	Meas	Casling	Scaling Factor	1g Scaled SAR	Tune- Up Limit	Meas. Power	Power Drift	Area Scan Peak SAR	1g Meas. SAR	Scaling Factor	Scaling Factor	Scaled	Plot No.
MHz	Ch.		(MHz)	(Mbps)	(dB)	(dB)	(dB)				(W/kg)	(W/kg)		(Duty)	(W/kg)	(dB)	(dB)	(dB)	(W/kg)	(W/kg)		(Duty)	(W/kg)	
2 462	11	802.11b	20	1	19.0	17.31	-0.15	Rear	98.9	15	0.199	0.113	1.476	1.011	0.169	19.0	17.31	0.02	0.213	0.122	1.476	1.011	0.182	12
2 462	11	802.11b	20	1	19.0	17.31	-0.03	Front	98.9	15	0.151	0.091	1.476	1.011	0.136	19.0	17.31							
		EEE C95.1 Spati lled Exposu	al Pea	ak									ŀ		Body .6 W/kg ed over	0	n							

								v	erifica	tion Re	esults : N	II Body-	Worn S	SAR (1	g)									
						Model	Meas	urement	Result	s							Vari	iant l	Model	Measure	ement	Resu	ts	
Frequer	псу	Mode	Band width	Data Rate	Tune- Up Limit	Meas. Power	Power Drift	Test Position	Duty Cycle	Distance (mm)	Area Scan Peak SAR	1g Meas. SAR	Scaling Factor	Scaling Factor	1g Scaled SAR	Tune- Up Limit	Meas. Power	Power Drift	Area Scan Peak SAR	1g Meas. SAR	Scaling Factor	Scaling Factor	1g Scaled SAR	I Plot No.
MHz	Ch.		(MHz)	(Mbps)	(dB)	(dB)	(dB)				(W/kg)	(W/kg)		(Duty)	(W/kg)	(dB)	(dB)	(dB)	(W/kg)	(W/kg)		(Duty)	(W/kg)	
5 260	52	802.11a	20	6	16.0	15.51	-0.11	Rear	93.2	15	0.564	0.252	1.119	1.074	0.303	16.0	15.51	-0.16	0.631	0.270	1.119	1.074	0.324	4 - 1
5 260	52	802.11a	20	6	16.0	15.51	-0.19	Front 93.2 15 0.125 0.060 1.119 1.074 0.072 16.0 15.51 Image: Comparison of the second se																
5 620	124	802.11a	20	6	16.0	15.05	-0.10	Rear	93.2	15	0.648	0.293	1.245	1.074	0.392	16.0	15.05	-0.01	1.27	0.561	1.245	1.074	0.750) - (
5 620	124	802.11a	20	6	16.0	15.05	0.13	Front	93.2	15	0.123	0.057	1.245	1.074	0.076	16.0	15.05							
5 745	149	802.11a	20	6	16.0	14.93	-0.10	Rear	93.2	15	0.93	0.398	1.279	1.074	0.547	16.0	14.93	-0.03	1.31	0.565	1.279	1.074	0.776	i 13
5 745	149	802.11a	20	6	16.0	14.93	0.16	Front	93.2	15	0.189	0.083	1.279	1.074	0.114	16.0	14.93							
AN	ISI/ I	EEE C95.1	- 2005	5 – Safe	ty Limi	t									Body									
		Spati	ial Pea	ak										1	.6 W/k	9								
Unc	ontro	lled Exposu	ure/ Ge	eneral P	opulati	on							A	Average	ed over	1 gran	n							
Unc	Unito			FIEIdIF	opulati								F	werage		i ylali	1							

					DSS E	Bodyworn SA	٨R					
Freque	ency	Mode	Tune- Up Limit	Meas. Power	Power Drift	Test Position	Distance	Meas. SAR	Scaling Factor	Scaling Factor	Scaled SAR	Plot No.
MHz	Ch.		(dBm)	(dBm)	(dB)	Position	(mm)	(W/kg)	гастог	(Duty)	(W/kg)	INO.
2 441	39	Bluetooth DH5	9.0	8.07	-0.08	Rear	15	0.013	1.239	1.302	0.021	14
2 441	39	Bluetooth DH5	9.0	8.07	-0.04	Front	15	0.00848	1.239	1.302	0.014	-
	AN	ISI/ IEEE C95.1 - 20	005 – Safety	Limit				В	ody			
		Spatial P	eak					1.6	W/kg			
	Unco	ontrolled Exposure/	General Pop	ulation				Averaged	over 1 gram	า		

(*) Full Test

13.3 Hotspot SAR Measurement Results

						Spot	Check \	Verifica	tion Re	sults : G	SM 850 H	lotspot S/	AR (1g)						
				Referen	ce Mode	l Meas	uremen	t Resul	ts					Varia	nt Mod	el Measur	ement F	Results	
Freque	ncy	Mode	Tune- Up Limit	Meas. Power	Power Drift	Test Position	Duty Cycl	D	istance	1g Meas. SAR	Scaling Factor	1g Scaled SAR	d Tune- Up Limit	Meas. Power	Power Drift	1g Meas. SAR	Scaling Factor	1g Scaled SAR	Plot No.
MHz	Ch.		(dB)	(dB)	(dB)				(mm)	(W/kg)		(W/kg)	(dB)	(dB)	(dB)	(W/kg)		(W/kg)	
836.6	190	GPRS 2TX	34.5	33.76	0.02	Rear	1:4.1	15	10	0.688	1.186	0.816	34.5	33.93	0.03	0.436	1.140	0.497	15
		GPRS 2TX	34.5	33.63	0.14	Rear	1:4.1		10	0.630	1.222	0.770	34.5	33.85	-0.07	0.376	1.161	0.437	
	251	GPRS 2TX	34.5	34.04	-0.01	Rear	1:4.1		10	0.761	1.112	0.846	34.5	34.22	-0.09	0.394	1.067	0.420	
836.6		GPRS 2TX	34.5	33.76	-0.08	Front	1:4.1		10	0.363	1.186	0.430	34.5	33.93	0.05	0.269	1.140	0.307	-
836.6		GPRS 2TX	34.5	33.76	0.01	Left	1:4.1		10	0.327	1.186	0.388	34.5	33.93	0.00	0.050	4 4 4 0	0.400	
		GPRS 2TX	34.5	33.76 33.76	0.02	Right	1:4.1		10 10	0.470	1.186	0.557	34.5 34.5	33.93 33.93	-0.03	0.359	1.140	0.409	-
		GPRS 2TX EE C95.1 - 20				Bottom	1.4.	15	10	0.249	1.100		Body	33.93					
		Spatial P ed Exposure/	eak									1.	6 W/kg d over 1 g	gram					
			Spc	ot Ch	eck V	erifi	catio	n Re	sult	s : U	MTS	Band	5 Hot	spot	SAR	(1a)			
					ce Mode		uremen									el Measur	ement F	Results	
Freque	ncy	Mode	Tune- Up Limit	Meas. Power	Power Drift	Test Position	Duty Cycl	D	listance	1g Meas. SAR	Scaling Factor	1g Scaleo SAR	d Tune- Up Limit	Meas. Power	Power Drift	1g Meas. SAR	Scaling Factor	1g Scaled SAR	Plot No.
MHz	Ch.		(dB)	(dB)	(dB)				(mm)	(W/kg)		(W/kg)	(dB)	(dB)	(dB)	(W/kg)		(W/kg)	
836.6	4183	RMC	25.0	24.38	-0.01	Rear	1:1		10	0.571	1.153	0.659	25.0	24.69	0.11	0.337	1.074	0.362	16
	4183	RMC	25.0	24.38	-0.08	Front	1:1		10	0.241	1.153	0.278	25.0	24.69					
	4183	RMC	25.0	24.38	0.04	Left	1:1		10	0.176	1.153	0.203	25.0	24.69					
	4183	RMC	25.0	24.38	0.10	Right	1:1		10	0.305	1.153	0.352	25.0	24.69					
836.6		RMC	25.0		0.16	Bottom	1:1		10	0.186	1.153	0.215	25.0	24.69					
AI	N21/ 15	EE C95.1 - 20 Spatial F		safety Lin	110								Body 6 W/kg						
Unc	ontroll	ed Exposure/		al Popula	tion								d over 1 g	aram					
														,					
							L	TE B	and	5 Hot	spot \$	SAR							
_				Ba	and Tu	ne- N	leas. I	⊃ower					_		Meas	S.		Scaled	
Fr	eque	ncy	Mode	e wi		Limit P	ower	Drift	Tes			RB	Duty	Distance	SAR	< .	aling	SAR	Plot
MHz		Ch.		()			dBm)	(dB)	Positi	on (dB	3) Size	Offset	Cycle	(mm)	(W/kg	a) Fa	ctor	(W/kg)	No.
836.	5 3	20525	QPS		· · ·	,	4.70	-0.06	Rea	r O	1	49	1:1	10	0.544		072	0.583	17
836.5		20525	QPSH		-		3.60	-0.13	Rea	-	25	12	1:1	10	0.43		096	0.472	-
836.5		20525	QPSk		-		4.70	0.01	Fron		1	49	1:1	10	0.246		072	0.264	_
836.5	-	20525	QPSk		-		3.60	0.01	Fron		25	12	1:1	10	0.240	•	096	0.239	-
												49					072	0.239	-
836.		20525	QPS				4.70	0.17	Left		1		1:1	10	0.198		096	0.212	-
836.5		20525	QPS				3.60	0.08	Left		25	12	1:1	10	0.18				-
836.		20525	QPS				4.70	0.13	Righ		1	49	1:1	10	0.332		072	0.356	-
836.		20525	QPS				3.60	0.08	Righ		25	12	1:1	10	0.288	-	096	0.316	-
836.5		20525	QPS				4.70	-0.09	Botto		1	49	1:1	10	0.210	-	072	0.225	-
836.5	5 2	20525	QPS					-0.09	Botto	m 1	25	12	1:1	10	0.167	7 1.0	096	0.183	-
		ANSI/ IEE				ty Limit								Body					
			•	atial Pea										1.6 W/kg					
1		Incontrolled				م الد ما ما م			1				Averee	ad avar	1				

Uncontrolled Exposure/ General Population

(*) Full Test

Averaged over 1 gram

Frequency Mtz Ch. 2 593.0 40620 2 506.0 39750 2 549.5 40185 2 636.0 41055 2 680.0 41490	 QPSK QPSK QPSK QPSK QPSK 	Band width (Mtz) 20 20 20 20 20 20 20	Tune- Up Limit (dBm) 21.0 21.0 21.0 21.0	Meas.	Power	Test Position	MPR (dB) 0	RB Size	RB Offset	Duty Cycle	Distance (mm)	Meas. SAR	Scaling Factor	Scaled SAR	Plot
2 593.0 40620 2 506.0 39750 2 549.5 40185 2 636.0 41055	 QPSK QPSK QPSK QPSK QPSK 	20 20 20 20 20	21.0 21.0 21.0	20.34 19.39	-0.01		× ,	Size	Onset	Cycle	(mm)				NIS
2 506.0 39750 2 549.5 40185 2 636.0 41055	 QPSK QPSK QPSK QPSK QPSK 	20 20 20	21.0 21.0	19.39		Rear	0					(W/kg)	Facior	(W/kg)	No.
2 549.5 40185 2 636.0 41055	5 QPSK 5 QPSK 0 QPSK 0 QPSK	20 20	21.0		-0.00		U	1	0	1:1.58	10	0.723	1.164	0.842	-
2 636.0 41055	QPSKQPSKQPSK	20	-	10.00	0.00	Rear	0	1	0	1:1.58	10	0.627	1.449	0.909	-
) QPSK) QPSK	-	21.0	19.90	-0.14	Rear	0	1	99	1:1.58	10	0.706	1.288	0.909	-
2 680.0 41490) QPSK	20	21.0	20.16	-0.10	Rear	0	1	0	1:1.58	10	0.494	1.213	0.599	-
			21.0	20.33	-0.12	Rear	0	1	99	1:1.58	10	0.257	1.167	0.300	-
2 593.0 40620		20	21.0	20.37	-0.16	Rear	0	50	0	1:1.58	10	0.747	1.156	0.864	18
2 506.0 39750) QPSK	20	21.0	19.36	0.07	Rear	0	50	0	1:1.58	10	0.638	1.459	0.931	-
2 549.5 40185	5 QPSK	20	21.0	19.86	0.02	Rear	0	50	49	1:1.58	10	0.746	1.300	0.970	19
2 636.0 41055	5 QPSK	20	21.0	20.16	-0.02	Rear	0	50	0	1:1.58	10	0.469	1.213	0.569	-
2 680.0 41490	QPSK	20	21.0	20.35	0.16	Rear	0	50	49	1:1.58	10	0.266	1.161	0.309	-
2 593.0 40620	QPSK	20	21.0	20.36	0.11	Rear	0	100	0	1:1.58	10	0.718	1.159	0.832	
2 593.0 40620	QPSK	20	21.0	20.34	-0.01	Front	0	1	0	1:1.58	10	0.218	1.164	0.254	
2 593.0 40620	QPSK	20	21.0	20.37	0.03	Front	0	50	0	1:1.58	10	0.216	1.156	0.250	
2 593.0 40620	QPSK	20	21.0	20.34	0.06	Left	0	1	0	1:1.58	10	0.286	1.164	0.333	
2 593.0 40620	QPSK	20	21.0	20.37	0.11	Left	0	50	0	1:1.58	10	0.292	1.156	0.338	
2 593.0 40620	QPSK	20	21.0	20.34	-0.11	Right	0	1	0	1:1.58	10	0.00984	1.164	0.011	
2 593.0 40620	QPSK	20	21.0	20.37	0.17	Right	0	50	0	1:1.58	10	0.010	1.156	0.012	
2 593.0 40620) QPSK	20	21.0	20.34	0.05	Bottom	0	1	0	1:1.58	10	0.511	1.164	0.595	
2 593.0 40620) QPSK	20	21.0	20.37	0.07	Bottom	0	50	0	1:1.58	10	0.482	1.156	0.557	
ANS	SI/ IEEE C95.1	2005 -	Safety Lin	nit							Body		•		
	Spatia	al Peak								1	I.6 W/kg				
Uncor	ntrolled Exposu	e/ Gene	eral Popula	ation						Average					

(*) Full Test

							;	Spot Che	eck Ve	erificati	on Result	ts : DT	S Hots	pot SA	AR (1g)									
				F	Referen	ce Mo	del M	easurem	ent R	esults							Var	iant l	Model	Measure	ement	Resu	ts	
Frequer	су	Mode	Band width	Data Rate	Tune- Up Limit		Power Drift	Test Position	Cycle	Distance	Area Scan Peak SAR	1g Meas. SAR	Scaling Factor	Scaling Factor	1g Scaled SAR	Tune- Up Limit	Meas. Power	Power Drift	Area Scan Peak SAR	1g Meas. SAR	Scaling Factor	Scaling Factor	1g Scaled SAR	Plot No.
MHz	Ch.		(MHz)	(Mbps)	(dB)	(dB)	(dB)) (%) (mm) (W/kg) (W/kg) (Duty) (W/kg) (dB) (dB) (dB) (W/kg) (W/kg) (Duty)														(W/kg)		
2 462	11	802.11b	20	1	19.0	17.31	-0.19	Rear 98.9 10 0.440 0.232 1.476 1.012 0.346 19.0 17.31 -0.08 0.470 0.269 1.476 1.01													1.012	0.402	20	
2 462	11	802.11b	20	1	19.0	17.31	0.03	Front	98.9	10	0.275	0.160	1.476	1.012	0.239	19.0	17.31							
2 462	11	802.11b	20	1	19.0	17.31	-0.02	Left	98.9	10	0.144	0.088	1.476	1.012	0.131	19.0	17.31							
2 462	11	802.11b	20	1	19.0	17.31	0.05	Тор	98.9	10	0.209	0.130	1.476	1.012	0.194	19.0	17.31							
A	NSI/	IEEE C95.	1 - 200	05 – Safe	ty Limit										Body									
Und	contr	Spa olled Expos	tial Pe sure/ G		opulatio	n									1.6 W/I jed ove	0	ım							

Body 1.6 W/kg

Averaged over 1 gram

								Verifica	ation	Results	: 5 GH	z WLA	N Hotsp	ot SAR	(1g)									
					M	odel M	leasure	ement Re	sults	;							Var	iant M	Nodel	Measure	ement	Resul	ts	
Freque	ncy	Mode	Band width	Data Rate	Tune- Up Limit	Meas. Power	Power Drift	Test Position	Duty Cycle	Distance	Area Scan Peak SAR	1g Meas. SAR	Scaling Factor	Scaling Factor	1g Scaled SAR	Tune- Up Limit	Meas. Power	Power Drift	Area Scan Peak SAR	1g Meas. SAR	Scaling Factor	Scaling Factor	Scaled	Plot No.
MHz	Ch.		(MHz)	(Mbps)	(dB)	(dB)	(dB)		(%)	(mm)	(W/kg)	(W/kg)		V 77	(W/kg)	(dB)	(dB)	· · /	(W/kg)	(W/kg)			(W/kg)	
5 745	149	802.11a	20	6	16.0	14.93	0.11		93.2		1.46	0.612	1.279	1.074				-0.05		0.749	1.279	1.074	1.029	21
5 825		802.11a	20	6	16.0	14.79			93.2		-	0.548	1.321	1.074					1.40	0.591	1.321	1.074	0.838	-
5 745		802.11a	20	6	16.0	14.93			93.2		0.306		1.279	1.074			14.93							
5 745		802.11a	20	6	16.0	14.93			93.2		0.536		1.279	1.074										
5 745	-	802.11a	20	6	16.0	14.93			93.2			0.603	1.279											
5 825	165	802.11a	20	6	16.0	14.79	0.13	Тор	93.2	10	1.1	0.477	1.321	1.074	0.677	16.0	14.79	-0.04	1.18	0.512	1.321	1.074	0.726	-
A	NSI/	IEEE C95.			ty Limit										Body									
			tial Pe												1.6 W/ł	0								
Un	contr	olled Expos	sure/ G	Seneral P	opulatio	n								Averag	jed ove	r 1 gra	m							
										DSS	Hote	spot	SAR											
	Frec	quency		Мс	de		Tune- Ip Lim			Pow Drit			est sition		ance	Mea SA		Scalii Facto	ng	Scaling Factor		aled AR	Plot No.	
	MHz	Cł	n.				(dBm)	dE)	Sm)	(dB)	FUS	SILIOTI	(11)	nm)	(W/ł	(g)	гаси		(Duty)	(W	/kg)	INU.	
2	2441	39	9	Bluetoc	oth DH	5	9.0	8.0	07	-0.0	6	R	ear	1	0	0.0	19	1.23	9	1.302	0.	031	22	
2	2441	39	9	Bluetoc	oth DH	5	9.0	8.0	07	-0.0	9	Fr	ont	1	0	0.0	11	1.23	9	1.302	0.	018	-	
2	2441	39	9	Bluetoc	oth DH	5	9.0	8.0	07	-0.0	1	L	eft	1	0	0.0	13	1.23	9	1.302	0.0	021	-	_
2	2441	39	9	Bluetoc	oth DH	5	9.0	8.0	07	0.0	3	Т	ор	1	0	0.0	13	1.23	9	1.302	0.	021	-	
	2441 39 Bluetooth DH5 9.0 8.07 0.03 ANSI/ IEEE C95.1 - 2005 – Safety Limit																Bo	ody						

(*) Full test

Spatial Peak Uncontrolled Exposure/ General Population

13.4 Phablet SAR Measurement Considerations

Per FCC KDB 648474 D04v01r03, this device is considered a "Phablet" since the diagonal dimension is greater than 160 mm and less than 200 mm. Therefore, extremity SAR tests are required when wireless router mode does not apply or if wireless router 1g SAR >1.2 W/kg. When hotspot mode applies, 10g SAR required only for the surfaces and edges with hotspot mode scaled to the maximum output power (including tolerance) is 1g SAR > 1.2 W/kg.

13.5 Phablet SAR Measurement Results

						Sp	ot Checl	k Verif	icatio	on Res	ults : I	TE T	DD Ban	d 41 F	hable	t SAR	10g						
					Refer	ence N	lodel M	easur	emen	t Resu	ılts						V	ariant	Mode	el Measu	rement	Results	
Frequ	Jency	Mode	Band width	Tune- Up Limit	Meas. Power	Power Drift	Test Position	Sensor	MPR	RB Size	RB offset	Duty Cycle	Distance	10g Meas. SAR	Scaling Factor	10g Scaled SAR	Tune- Up Limit	Meas. Power	Power Drift	10g Meas. SAR	Scaling Factor	10g Scaled SAR	Plot No.
MHz	Ch.		(MHz)	(dB)	(dB)	(dB)			(dB)				(mm)	(W/kg)		(W/kg)	(dB)	(dB)	(dB)	(W/kg)		(W/kg)	
2 593	40620	QPSK	20			-0.10		ON	0	1	0	1:1.58	0	-	1.265		21.0	20.40		0.896	1.148	1.029	-
2 593	40620	QPSK	20			-0.14		ON	1	50	0	1:1.58	0	1.120	1.268	1.420	21.0	20.35	-0.11	0.887	1.161	1.030	-
2 593	40620	QPSK	20			0.10		ON	0	1	0	1:1.58	0	0.993			21.0	20.40		0.731	1.148	0.839	-
2 593	40620	QPSK	20		19.97		Front	ON	1	50	0	1:1.58		0.984			21.0	20.35		0.716	1.161	0.831	-
2 593			-					-	0	1	0	1:1.58	-	0.850			21.0	20.40		0.645	1.148	0.740	-
2 593	40620 QPSK 20 21.0 19.98 -0.14 Left ON 0 1 0 1:1.58 40620 QPSK 20 21.0 19.97 -0.11 Left ON 1 50 0 1:1.58														1.268		-	20.35	0.02	0.639	1.161	0.742	-
2 593	593 40620 QPSK 20 21.0 19.97 -0.11 Left ON 1 50 0 1:1.58 0 0.852 593 40620 QPSK 20 24.0 23.08 -0.18 Right N/A 0 1 0 1:1.58 0 0.0452															0.054	24.0	23.21					
2 593	40620	QPSK	20		-	-0.07	Right	N/A	1	50	0	1:1.58	0		-	0.050	23.0	22.25					
2 593	40620	QPSK	20				Bottom		0	1	0	1:1.58	0		1.265		24.0	20.40		0.917	1.148	1.053	23
2 593	40620	QPSK	20				Bottom	ON	1	50	0	1:1.58	0			1.344	23.0	20.35	0.08	0.900	1.161	1.045	-
2 593	40620	QPSK	20			-0.11		OFF	0	1	0	1:1.58	15			0.260	24.0	23.21					
2 593	40620	QPSK	20		-	-0.04		OFF	1	50	0	1:1.58	-			0.240		22.25					
2 593	40620	QPSK	20		23.08		Front	OFF	0	1	0	1:1.58	2			0.612	24.0	23.21					
2 593	40620	QPSK	20			-0.07		OFF	1	50	0	1:1.58	2			0.672	23.0	22.25					
2 593	40620	QPSK	20	-	23.08		Left	OFF	0	1	0	1:1.58	3			0.756	24.0	23.21					
2 593	40620	QPSK	20			-0.04		OFF	1	50	0	1:1.58	3			0.728	23.0	22.25					
2 593	40620	QPSK	20					OFF	0	1	0	1:1.58	7			0.550		23.21					
2 593	40620	QPSK	20	23.0	22.16	0.11	Bottom	OFF	1	50	0	1:1.58	7	0.434	1.213	0.527	23.0	22.25					
ANS	SI/ IEEE	C95.1 -	2005	– Safe	ety Lin	nit									Н	and							
		Spatia	l Peak												4.0	W/kg							
Unco	ntrolled E	Exposure	e/ Ger	neral F	Popula	ition								Aver	aged o	over 10	gram						

								Verificat	ion R	esults :	5 GHz	WLAN P	hablet S	6AR (10	Dg)									
	Model Measurement Results													Varia	ant N	lodel I	Measure	ment	Resu	ts				
Freque	ncy	Mode	Band width	Data Rate	Tune- Up Limit		Power Drift	Test Position	Duty Cycle	Distance (mm)	Area Scan Peak SAR	10g Meas. SAR	Scaling Factor	Scaling Factor	10g Scaled SAR	Tune- Up Limit	Meas. Power	Power Drift	Area Scan Peak SAR	10g Meas. SAR	Scaling Factor		10g Scaled SAR	Plo t No
MHz	Ch.		(MHz)	(Mbps)	(dB)	(dB)	(dB)				(W/kg)	(W/kg)		(Duty)	(W/kg)	(dB)	(dB)	(dB)	(W/kg)	(W/kg)		(Duty)	(W/kg)	•
5 260	52	802.11a	20	6	16.0	15.51	0.00	Rear	93.2	0	7.99	0.831	1.119	1.074	0.999	16.0	15.51							
5 260	52	802.11a	20	6	16.0	15.51	0.00	Front	93.2	0	2.06	0.225	1.119	1.074	0.271	16.0	15.51							
5 260	52	802.11a	20	6	16.0	15.51	0.16	Left	93.2	0	1.79	0.217	1.119	1.074	0.261	16.0	15.51							
5 260	52	802.11a	20	6	16.0	15.51	0.16	Тор	93.2	0	12.9	0.922	1.119	1.074	1.108	16.0	15.51	0.09	9.36	0.816	1.119	1.074	0.981	-
5 620	124	802.11a	20	6	16.0	15.05	0.00	Rear	93.2	0	8.22	0.742	1.245	1.074	0.992	16.0	15.05							
5 620	124	802.11a	20	6	16.0	15.05	0.00	Front	93.2	0	1.59	0.201	1.245	1.074	0.269	16.0	15.05							
5 620	124	802.11a	20	6	16.0	15.05	0.11	Left	93.2	0	1.29	0.179	1.245	1.074	0.239	16.0	15.05							
5 620	124	802.11a	20	6	16.0	15.05	0.10	Тор	93.2	0	15.8	1.040	1.245	1.074	1.390	16.0	15.05	0.02	18.9	1.560	1.245	1.074	2.086	24
5 720	144	802.11a	20	6	16.0	14.78		Тор	93.2	0						16.0	14.78	0.01	19.6	1.510	1.324	1.074	2.147	25
	ANSI/ IEEE C95.1 - 2005 – Safety Limit Spatial Peak Uncontrolled Exposure/ General Population											<u> </u>	4.(Hand) W/kg	,	~								
Unco	nuoli	eu Exposi	uie/ G	eneral i	opula	lion							Ave	raged	over '	10 gra	m							

13.6 SAR Test Notes

General Notes:

- 1. The test data reported are the worst-case SAR values according to test procedures specified in IEEE 1528-2013, FCC KDB Procedure.
- 2. Batteries are fully charged at the beginning of the SAR measurements. A standard battery was used for all SAR measurements.
- 3. Liquid tissue depth was at least 15.0 cm for all frequencies.
- 4. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units.
- 5. SAR results were scaled to the maximum allowed power to demonstrate compliance per FCC KDB 447498 D01v06.
- 6. Device was tested using a fixed spacing for body-worn accessory testing. A separation distance of 15 mm was considered because the manufacturer has determined that there will be body-worn accessories available in the marketplace for users to support this separation distance.
- 7. Per FCC KDB 648474 D04v01r03, SAR was evaluated without a headset connected to the device. Since the standalone reported SAR was 1.2 W/kg, no additional SAR evaluation using a headset cable were required.
- Per KDB 648474 D04v01r03, this device is considered a "Phablet" since the diagonal dimension is > 160 mm and < 200 mm. When hotspot mode applies, extremity SAR is required only for the surfaces and edges with hotspot mode scaled to the maximum output power (with tolerance) is 1 g SAR > 1.2 W/kg.
- Per FCC KDB 865664 D01v01r04, variability SAR measurement were performed when the measured SAR results for a frequency Band were greater than or equal to 0.8 W/kg for 1g SAR and >2 for 10g SAR Please see Section 15 for variability analysis.
- 10. This device utilizes power reduction for some wireless mode and technologies, as outlined in sec. 4 The maximum output power allowed for each transmitter and exposure condition was evaluated for SAR compliance based on expected use conditions and simultaneous scenarios.
- 11. During SAR testing for the Hotspot conditions per KDB 941225 D06v02r01, the actual portable hotspot operation (with actual simultaneous transmission of a transmitter with WiFi) was not activated.

GSM/GPRS Test Notes:

- 1. This EUT'S GSM and GPRS device class is B.
- 2. This device supports GPRS VOIP in the head and the body-worn configurations therefore GPRS was additionally evaluated for head and body-worn compliance.
- 3. Justification for reduced test configurations per KDB 941225 D01v03r01: The source-based timeaveraged output power was evaluated for all multi-slot operations. The multi-slot configuration with the highest frame averaged output power including tolerance was evaluated for SAR.
- 4. Per FCC KDB 447498 D01v06, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is 0.8 W/kg then testing at the other channels is not required for such test configuration(s). When the maximum output power variation across the required test channels is 1/2 dB, instead of the middle channel, the highest output power channel must be used.

UMTS Notes:

- 1. The 12.2 kbps RMC mode is the primary mode per KDB 941225 D01v03r01.
- UMTS SAR was tested under RMC 12.2 kbps with HSPA inactive per KDB publication 941225 D01v03r01. AMR and HSPA SAR was not required per the 3G Test Reduction Procedure in KDB Publication 941225 D01v03r01.
- 3. Per FCC KDB 447498 D01v06, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is 0.8 W/kg then testing at the other channels is not

required for such test configuration(s). When the maximum output power variation across the channel highest output power channel was used.

LTE Notes:

- 1. LTE Considerations: LTE test configurations are determined according to SAR Evaluation Consideration for LTE Devices in FCC KDB 941225 D05v02r05.
- According to FCC KDB 941225 D05v02r05: When the reported SAR is 0.8 W/kg, testing of the 100% RB allocation and required test channels is not required. Otherwise, SAR is required for the remaining required test channels using the 1RB, 50%RB and 100%RB allocation with highest output power for that channel. Only one channel, and as reported SAR values for 1RB allocation and 50%RB allocation were less than 1.45W/Kg only the highest power RB offset for each allocation was required.
- 3. MPR is permanently implemented for this device by the manufacturer. The specific manufacturer target MPR is indicated alongside the SAR results. MPR is enabled for this device, according to target MPR is indicated alongside the SAR results.
- 4. When Power reduction is applied, MPR is 0 for some modes.
- 5. A-MPR was disabled for all SAR tests by setting NS=01 on the base station simulator.
- 6. Per FCC KDB Publication 447498 D01v06, if the reported (scaled) LTE TDD Band 41 SAR measured at the highest output power channel for each test configuration is 0.6 W/kg then testing at the other channels is not required for such test configurations.
- 7. TDD LTE (Power Class 3) was tested using UL-DL configuration 0 with 6 UL sub frames and 2S subframes using extended cyclic prefix only and special sub frame configuration 6. SAR tests were performed at maximum output power and worst-case transmission duty factor in extended cyclic prefix. Per 3GPP 36.211 Sec. 4, the duty factor using extended cyclic prefix is 0.633(cf=1.58).
- 8. Per KDB 941225 D05Av01r02, SAR for LTE Carrier Aggregation operations was not needed because the maximum average output power in LTE CA mode was not > 0.25 dB higher than the maximum output power when downlink CA was not activated.
- 9. SAR test reduction is applied using the following criteria: Start with the largest channel Bandwidth and measure SAR for QPSK with 1 RB, and 50% RB allocation, using the RB offset and required test channel combination with the highest maximum output power among RB offsets at the upper edge, middle and lower edge of each required test channel. When the reported SAR is >0.8 W/kg, testing for other Channels is performed at the highest output power level for 1RB, and 50% RB configuration for that channel. Testing for 100% RB configuration is performed at the highest output power level for 100% RB configuration across the Low, Mid and High Channel when the highest reported SAR for 1 RB and 50% RB are >0.8 W/kg, testing for the remaining required channels is not needed because the reported SAR for 100% RB Allocation <1.45 W/kg. Testing for 16-QAM modulation is not required because the reported SAR for QPSK is <1.45 W/kg and its output power is not more than 0.5 dB higher than that a QPSK. Testing for the other channel Bandwidths is not required because the reported SAR for the highest channel Bandwidth is <1.45 W/kg and its output power is not more than 0.5 dB higher than that of the highest channel Bandwidth.</p>

WLAN Notes:

1. For held-to-ear and hotspot operations, the initial test position procedures were applied. For initial test position, the highest extrapolated peak SAR will be used. When reported SAR for the initial test position is ≤ 0.4 W/kg for 1g SAR and ≤ 1.0 W/kg for 10g SAR, no additional testing for the remaining test positions was required. Otherwise, SAR is evaluated at the subsequent highest peak SAR positions until the reported SAR results is ≤ 0.8 W/kg for 1g SAR and ≤ 2.0 W/kg for 10g SAR or all test position are measured.

2. Per KDB 2482227 D01v02r02 justification for test configurations of 2.4 GHzWiFi Single transmission chain operations, the highest measured maximum output power channel for DSSS was selected for SAR measurement. SAR for OFDM modes (2.4 GHz 802.11 g/n) was not required due to the maximum allowed powers and the highest reported DSSS SAR

3. Per KDB 2482227 D01v02r02 justification for test configurations of 5 GHzWiFi Single transmission chain operations, the initial test configuration was selected according to the transmission mode with the highest maximum allowed powers. Other transmission mode was not investigated since the highest reported SAR for initial test configuration adjusted by the ration of maximum output powers is less than 1.2 W/kg for 1g SAR and less than 3.0 W/kg for 10 g SAR.

4. When the maximum reported 1g averaged SAR is ≤ 0.8 W/kg, SAR testing on additional channels was not required. Otherwise, SAR for the next highest output power channel was required until the reported SAR result was ≤ 1.20 W/kg or all test channels were measured.

5. The device was configured to transmit continuously at the required data rated, channel Bandwidth and signal modulation, using the highest transmission duty factor supported by the test mode tools. The reported SAR was scaled to the 100% transmission duty factor to determine compliance. Procedures used to measure the duty factor are identical to that in the associated WLAN test reports.

Bluetooth Notes:

- 1. Bluetooth SAR was measured with the device connected to a call box with hopping disabled with DH5 operation and Tx Tests mode type. Per October 2016 TCBC Workshop Notes, the reported SAR was scaled to 100% transmission duty factor to determine compliance. Please see sec.11 for the time-domain plot and calculation for duty factor of the device.
- 2. Head and Body SAR for Bluetooth tethering SAR were evaluated for BT BR tethering applications.

14. Simultaneous SAR Analysis

This device is containing transmitters that may operate simultaneously. Therefore, simultaneous transmission analysis is required. Per KDB Publication 447498 D01v06 4.3.2, simultaneous transmission SAR test exclusion may be applied when the sum of 1g SAR and 10g SAR for all the simultaneous transmitting antennas in a specific a physical test configuration is ≤ 1.6 W/kg for 1g SAR and ≤ 4 W/kg for 10g SAR. The different test positions in an exposure condition may be considered collectively to determine SAR exclusion according to the sum of 1g or 10g SAR.

14.1 Head SAR Simultaneous Transmission Analysis.

	Simultaneous Transmission Summation Scenario (Head SAR)													
	WWAN SAR	2.4 GHz WLAN SAR	5 GHz WLAN SAR	Bluetooth SAR	∑ 1-g SAR	∑ 1-g SAR	∑ 1-g SAR	∑ 1-g SAR	SPLSR					
Band	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(Yes/					
	1	2	3	4	1+2	1+3	1+4	1+3+4	No)					
GSM850	0.265	0.208	0.408	0.11	0.473	0.673	0.375	0.783	No					
GPRS 850	0.334	0.208	0.408	0.11	0.542	0.742	0.444	0.852	No					
UMTS Band 5	0.188	0.208	0.408	0.11	0.396	0.596	0.298	0.706	No					
LTE Band 5	0.362	0.208	0.408	0.11	0.57	0.77	0.472	0.88	No					
LTE Band 41	0.489	0.208	0.408	0.11	0.697	0.897	0.599	1.007	No					

14.2 Body-Worn SAR Simultaneous Transmission Analysis.

		Simultane	ous Transmissio	n Summation Sco	enario (Body-	Worn SAF	R) – Distan	ce: 15 mn	າ		
Den	-	WWAN SAR	2.4 GHz WLAN SAR	5 GHz WLAN SAR	Bluetooth SAR	∑ 1-g SAR	∑ 1-g SAR	∑ 1-g SAR	∑ 1-g SAR	SPLSR	
Ban	a	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(Yes/	
		1	2	3	4	1+2	1+3	1+4	1+3+4	No) No	
GSM850	Rear	0.327	0.182	0.776	0.021	0.509	1.103	0.348	1.124	No	
0310030	Front	0.227	0.136	0.114	0.014	0.363	0.341	0.241	0.355	No	
GPRS	Rear	0.381	0.182	0.776	0.021	0.563	1.157	0.402	1.178	No	
850	Front	0.319	0.136	0.114	0.014	0.455	0.433	0.333	0.447	No	
UMTS	Rear	0.169	0.182	0.776	0.021	0.338	0.932	0.177	0.953	No	
Band 5	Front	0.266	0.136	0.114	0.014	0.402	0.380	0.280	0.394	No	
LTE	Rear	0.303	0.182	0.776	0.021	0.440	1.034	0.279	1.055	No	
Band 5	Front	0.258	0.136	0.114	0.014	0.394	0.372	0.272	0.386	No	
LTE	Rear	0.841	0.182	0.776	0.021	1.023	1.617	0.862	1.638	Yes(#1)	
Band 41	Front	0.360	0.136	0.114	0.014	0.496	0.474	0.374	0.488	No	

14.3 Hotspot SAR Simultaneous Transmission Analysis.

Simultaneous Transmission Summation Scenario (Hotspot SAR) – Distance: 10 mm 2.4 GHz 5 GHz Bluetooth Σ 1-g Σ 1-g Σ 1-g Σ 1-g Σ 1-g Σ 1-g												
Band		WWAN SAR	2.4 GHz WLAN SAR	5 GHz WLAN SAR	Bluetooth SAR	∑ 1-g SAR	SAR	∑ 1-g SAR	∑ 1-g SAR	SPLSR		
Danu		(W/kg)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(W/kg)	(Yes/		
		1	2	3	4	1+2	1+3	1+4	1+3+4	No)		
	Rear	0.497	0.402	1.029	0.031	0.899	1.526	0.528	1.557	No		
	Front	0.307	0.239	0.187	0.018	0.546	0.494	0.325	0.512	No		
GSM850	Left	0.388	0.131	0.335	0.021	0.519	0.723	0.409	0.744	No		
	Right	0.409				0.409	0.409	0.409	0.409	No		
	Тор		0.194	0.930	0.021	0.194	0.930	0.021	0.951	No		
	Bottom	0.295				0.295	0.295	0.295	0.295	No		
	Rear	0.362	0.402	1.029	0.031	0.764	1.391	0.393	1.422	No		
	Front	0.278	0.239	0.187	0.018	0.517	0.465	0.296	0.483	No		
UMTS Band 5	Left	0.203	0.131	0.335	0.021	0.334	0.538	0.224	0.559	No		
OMIS Dallu S	Right	0.352				0.352	0.352	0.352	0.352	No		
	Тор		0.194	0.930	0.021	0.194	0.930	0.021	0.951	No		
	Bottom	0.215				0.215	0.215	0.215	0.215	No		
	Rear	0.583	0.402	1.029	0.031	0.985	1.612	0.614	1.643	Yes(#2)		
	Front	0.264	0.239	0.187	0.018	0.503	0.451	0.282	0.469	No		
LTE Band 5	Left	0.212	0.131	0.335	0.021	0.343	0.547	0.233	0.568	No		
LTE Danu 5	Right	0.356				0.356	0.356	0.356	0.356	No		
	Тор		0.194	0.930	0.021	0.194	0.930	0.021	0.951	No		
	Bottom	0.225				0.225	0.225	0.225	0.225	No		
	Rear	0.970	0.402	1.029	0.031	1.372	1.999	1.001	2.030	Yes(#3)		
	Front	0.254	0.239	0.187	0.018	0.493	0.441	0.272	0.459	No		
LTE Band 41	Left	0.338	0.131	0.335	0.021	0.469	0.673	0.359	0.694	No		
LIL Dallu 41	Right	0.012				0.012	0.012	0.012	0.012	No		
	Тор		0.194	0.930	0.021	0.194	0.930	0.021	0.951	No		
	Bottom	0.595				0.595	0.595	0.595	0.595	No		

14.4 Phablet SAR Simultaneous Transmission Analysis.

	Simult	aneous Transmissio	n Summation Scenario (P	hablet SAR)	
		WWAN SAR (10g)	5 GHz WLAN SAR (10g)	∑ 10-g SAR	SPLSR
Band		(W/kg)	(W/kg)	(W/kg)	(Yes/
		1	2	1+2	No)
	Rear	1.030	0.999	2.029	No
	Front	0.839	0.271	1.110	No
	Left	0.742	0.261	1.003	No
LTE Band 41	Right	0.054		0.054	No
	Тор		2.147	2.147	No
	Bottom	1.053		1.053	No

14.5 SAR to Peak Location Separation Ratio (SPLSR)

FCC KDB 447498 D01v06 General RF Exposure Guidance introduces a new formula for calculating the SAR a Peak Location Separation Ratio(SPLSR) between pairs of simultaneously transmitting antennas: $SPLSR_i = (SAR_1 + SAR_2)^{1.5}/R_i$

Where:

 SAR_1 is the highest measured or estimated SAR for the first of a pair of simultaneous transmitting antennas, in a specific test operating mode and exposure condition

 SAR_2 is the highest measured of estimated SAR for the second of a pair of simultaneous transmitting antennas, in the same test operating mode and exposure condition as the first

 R_i is the separation distance between the pair of simultaneous transmitting antennas, When the SAR is measured, for both antennas in the pair, it is determined by the actual x, y and z coordinates in the 1-g SAR for each SAR peak location, based on the extrapolated and interpolated result in the zoom scan measurement, using the formula of $[(X_1 - X_2)^2 + (Y_1 - Y_2)^2 + (Z_1 - Z_2)^2]$

In order for a pair of simultaneous transmitting antennas with the sum 1-g of SAR> 1.6 W/kg and with the sum 10-g of SAR >4 W/kg to qualify for exemption from Simultaneous Transmission SAR measurements, it has to satisfy the condition of:

 $(SAR_1 + SAR_2)^{1.5}/R_i \le 0.04$ for 1g SAR and $(SAR_1 + SAR_2)^{1.5}/R_i \le 0.1$ for 10g SAR

SPLSR Evaluation

The actual x, y and z coordinates in the 1-g SAR for each SAR peak location.

BodyWorn

Mode/Band	x	у	z	Reported SAR [W/kg]
LTE Band 41	0.0216	-0.081	-0.00077	0.841
5G WLAN	0.019	0.0872	-0.00151	0.776
Bluetooth	0.024	0.0696	-0.00042	0.021

Body Worn Co-located Pair Antenna

Mode/Band	Co-located Pair Antenna Distance [mm]	Reported SAR [W/kg]
5GHz WLAN + BT	18.33	0.797

Hotspot

Mode/Band	x	У	z	Reported SAR [W/kg]
LTE Band 5	-0.0004	-0.0735	-0.00103	0.583
LTE Band 41	0.0238	-0.0774	-0.00073	0.970
5G WLAN	0.017	0.0872	-0.00149	1.029
Bluetooth	0.0206	0.0674	-0.00039	0.031

Hotspot Co-located Pair Antenna

Mode/Band	Co-located Pair Antenna Distance [mm]	Reported SAR [W/kg]
5GHz WLAN + BT	20.16	1.060

SPLSR Combination (Sum-Peak Locaiton Separation Ratio)

This Procedure can only be applied when simultaneous transmission SAR is > 1.6 W/kg, it does not meet SPLSR criteria, and antenna pair is co-located

Test Procedure:

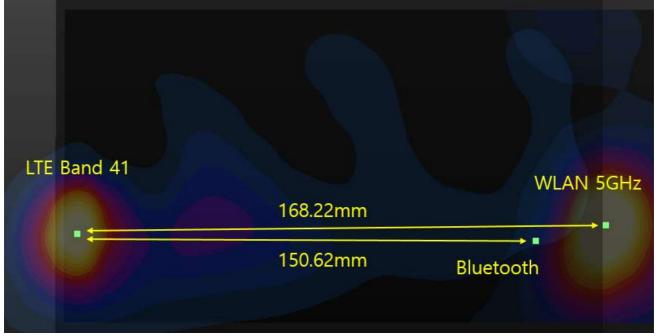
1. Instead of doing a small volume scan over a co-located antenna pair, sum the SAR value of the co-located pair and use that value in SPLSR calculation.

2. This calculation use the minimum distance between the spatially antenna and the closest antenna of the co-located antenna pair to be conservative

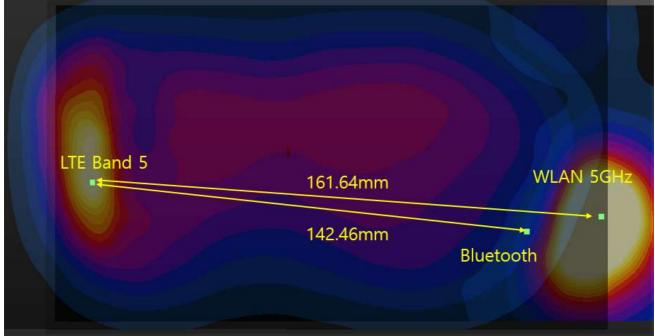
3. Sum-Peak Locaiton Separation Ratio

Body	Mode			Sum 1g SAR	Peak SAR Dista	Separation ance	SPLSR (Min	Dist
Postion				[W/kg]	(m)	m)	Distance)	Plot
	1	2	3	1+2+3	1+2	1+3	1+2+3	
Rear	LTE Band 41	5GHz WLAN	BT	1.638	168.22	150.62	0.012	#1

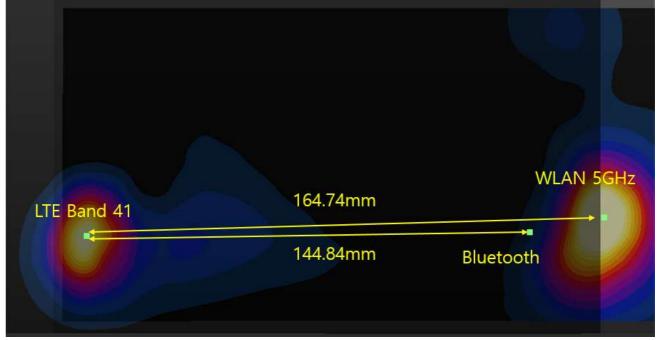
BodyWorn


Hotspot

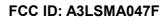
Body	Mode			Sum 1g SAR	Peak SAR Dista	Separation ance	SPLSR (Min	
Postion				[W/kg]	(m	m)	Distance)	Plot
	1	2	3	1+2+3	1+2	1+3	1+2+3	
Deer	LTE Band 5	5GHz	вт	1.643	161.64	142.46	0.015	#2
Rear	LTE Band 41	WLAN	Ы	2.030	164.74	144.84	0.020	#3



SPLSR Plot



#2 LTE Band 5 + BT + 5GHz(Hotspot)



14.6 Simultaneous Transmission Conclusion

The above numerical summed SAR Results are sufficient to determine that simultaneous transmission cases will not exceed the SAR Limit and therefore no measured volumetric simultaneous SAR summation is required per FCC KDB Publication 447498 D01v06 and IEEE1528-2013.

15. SAR Measurement Variability and Uncertainty

In accordance with KDB procedure 865664 D01v01r04 SAR measurement 100 MHz to 6 GHz, SAR additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

SAR Measurement variability was assessed using the following procedures for each frequency band:

1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg for 1g SAR or < 2.0 W/kg for 10g SAR; steps 2) through 4) do not apply.

2) When the original highest measured 1g SAR is \geq 0.80 W/kg or 10g SAR \geq 2.0W/kg, repeat that measurement once.

3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is \geq 1.45 W/kg for 1g SAR or \geq 3.625 W/kg for 10g SAR (~ 10% from the 1-g SAR limit).

4) Perform a third repeated measurement only if the original, first or second repeated measurement is \geq 1.5 W/kg for 1g SAR or \geq 3.75 W/kg for 10g SAR and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

16. Measurement Uncertainty

The measured SAR was <1.5 W/Kg for 1g SAR and <3.75 W/Kg For 10g SAR for all frequency Bands. Therefore, per KDB Publication 865664 D01v01r04, the extended measurement uncertainty analysis per IEEE1528-2013 was not required.

17. SAR Test Equipment

Manufacturer	Type / Model	S/N	Calib. Date	Calib.Interval	Calib.Due
SPEAG	SAM Phantom	-	N/A	N/A	N/A
HP	SAR System Control PC	-	N/A	N/A	N/A
Staubli	CS8Cspeag-TX90	F12/5K9GA1/C/01	N/A	N/A	N/A
Staubli	CS8Cspeag-TX90	F13/ 5SD0A1/ C/ 01	N/A	N/A	N/A
Staubli	TX90 XLspeag	F12/5K9GA1/A/01	N/A	N/A	N/A
Staubli	TX90 XLspeag	F13/5SD0A1/A/01	N/A	N/A	N/A
Staubli	Teach Pendant (Joystick)	S-1206 0513	N/A	N/A	N/A
Staubli	Teach Pendant (Joystick)	001729	N/A	N/A	N/A
TESTO	175-H1/Thermometer	40331939309	01/04/2022	Annual	01/04/2023
TESTO	608-H1/Thermometer	83348029	04/29/2022	Annual	04/29/2023
SPEAG	DAE4	652	01/24/2022	Annual	01/24/2023
SPEAG	DAE4	1686	05/31/2022	Annual	05/31/2023
SPEAG	DAE4	504	03/01/2022	Annual	03/01/2023
SPEAG	E-Field Probe EX3DV4	7370	08/26/2021	Annual	08/26/2022
SPEAG	E-Field Probe EX3DV4	7654	05/31/2022	Annual	05/31/2023
SPEAG	E-Field Probe EX3DV4	7679	09/10/2021	Annual	09/10/2022
SPEAG	Dipole D835V2	4d165	08/03/2021	Annual	08/03/2022
SPEAG	Dipole D2450V2	743	05/31/2022	Annual	05/31/2023
SPEAG	Dipole D2600V2	1106	07/30/2021	Annual	07/30/2022
SPEAG	Dipole D5GHzV2	1253	05/31/2022	Annual	05/31/2023
Agilent	Power Meter E4419B	MY41291386	10/06/2021	Annual	10/06/2022
Agilent	Power Meter N1911A	MY45101406	06/27/2022	Annual	06/27/2023
Agilent	Power Sensor 8481A	SG1091286	10/06/2021	Annual	10/06/2022
Agilent	Power Sensor 8481A	MY41090675	10/06/2021	Annual	10/06/2022
Agilent	Power Sensor N1921A	MY55220026	08/05/2021	Annual	08/05/2022
SPEAG	DAKS 3.5	1038	03/28/2022	Annual	03/28/2023
SPEAG	DAKS_VNA R140	0141013	03/25/2022	Annual	03/25/2023
R&S	Wireless Communication Test Set CMW500	115733	04/14/2022	Annual	04/14/2023
Agilent	11636B/Power Divider	58698	02/24/2022	Annual	02/24/2023
Agilent	SIGNAL GENERATOR N5182A	MY47070230	04/28/2022	Annual	04/28/2023
EMPOWER	RF Power Amplifier	1084	06/20/2022	Annual	06/20/2023
EMPOWER	RF Power Amplifier	1011	10/06/2021	Annual	10/06/2022
MICRO LAB	LP Filter / LA-15N	10453	10/06/2021	Annual	10/06/2022
MICRO LAB	LP Filter / LA-30N	-	10/06/2021	Annual	10/06/2022
MICRO LAB	LP Filter / LA-60N	32011	10/06/2021	Annual	10/06/2022
HP	Attenuator (3dB) 333340A	02427	09/06/2021	Annual	09/06/2022
HP	Attenuator (20dB) 8493C	09271	09/06/2021	Annual	09/17/2022
Aeroflex/Weinschel	Fixed Coaxial Attenuator (30dB)	CE6106	11/11/2021	Annual	11/11/2022
Agilent	Directional Bridge 86205A	3140A04581	05/262022	Annual	05/262023
Agilent	MXA Signal Analyzer N9020A	MY50510407	10/20/2021	Annual	10/20/2022
Anritsu	Radio Communication Tester MT8821C	6262044720	12/20/2021	Annual	12/20/2022
Anritsu	Radio Communication Tester MT8821C	6201664725	02/11/2022	Annual	02/11/2023
Agilent	WIRELESS COMMUNICATION E5515C	MY50260992	06/27/2022	Annual	06/27/2023
ROHDE&SCHWARZ	BLUETOOTH TESTER CBT	100272	02/28/2022	Annual	02/28/2023

* The E-field probe was calibrated by SPEAG, by the waveguide technique procedure. Dipole Verification measurement is performed by HCT Lab. before each test. The brain/body simulating material is calibrated by HCT using the DAKS 3.5 to determine the conductivity and permittivity (dielectric constant) of the brain/body-equivalent material.

19. Conclusion

The SAR measurement indicates that the EUT complies with the RF radiation exposure limits of the ANSI/ IEEE C95.1 - 2005.

These measurements were taken to simulate the RF effects exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The results and statements relate only to the item(s) tested.

Please note that the abortion and distribution of electromagnetic energy in the body are very complex phenomena the depend on the mass, shape, and size of the body, the orientation of the body with respect to the field vectors, and the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because various factors may interact with one another to vary the specific biological outcome of an exposure to electromagnetic fields, any protection guide should consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables.

20. References

[1] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radio frequency Radiation, Aug. 1996.

[2] ANSI/IEEE C95.1 - 2005, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 300 kHz to 300 GHz, New York: IEEE, Sept. 1992

[3] ANSI/IEEE C 95.1 - 2005, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3 kHz to 300 GHz, New York: IEEE, 2006

[4 ANSI/IEEE C95.3 - 2002, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave, New York: December 2002.

[5] IEEE Standards Coordinating Committee 34 – IEEE Std. 1528-2013, IEEE Recommended Practice or Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body from Wireless Communications Devices

[6] NCRP, National Council on Radiation Protection and Measurements, Biological Effects and Exposure Criteria for Radio Frequency Electromagnetic Fields, NCRP Report No. 86, 1986. Reprinted Feb. 1995.

[7] T. Schmid, O. Egger, N. Kuster, Automated E-field scanning system for dosimetric assessments, IEEE Transaction on Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113.

[8] K. Pokovic, T. Schmid, N. Kuster, Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies, ICECOM97, Oct. 1997, pp. 120-124.

[9] K. Pokovic, T. Schmid, and N. Kuster, E-field Probe with improved isotropy in brain simulating liquids, Proceedings of the ELMAR, Zadar, Croatia, June 23-25, 1996, pp. 172-175.

[10] Schmid& Partner Engineering AG, Application Note: Data Storage and Evaluation, June 1998, p2.

[11] V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, N. Kuster, The Dependence of EM Energy Absorption upon Human Head Modeling at 900 Mz, IEEE Transaction on Microwave Theory and Techniques, vol. 44 no. 10, Oct. 1996, pp. 1865-1873.

[12] N. Kuster and Q. Balzano, Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300 Mb, IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.

[13] G. Hartsgrove, A. Kraszewski, A. Surowiec, Simulated Biological Materials for Electromagnetic Radiation Absorption Studies, University of Ottawa, Bioelectro magnetics, Canada: 1987, pp. 29-36.

[14] Q. Balzano, O. Garay, T. Manning Jr., Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995.

[15] W. Gander, Computer mathematick, Birkhaeuser, Basel, 1992.

[16] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recepies in C, The Art of Scientific Computing, Second edition, Cambridge University Press, 1992.

[17] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652.

[18] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic Fields High-frequency: 10 kHz-300 GHz, Jan. 1995.

[19] Prof. Dr. Niels Kuster, ETH, EidgenØssischeTechnischeHoschschuleZòrich, Dosimetric Evaluation of the Cellular Phone.

[20] IEC 62209-1, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices – Human models, instrumentation and procedures – Part 1:Procedure to determine the

specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz), July. 2016.

[21] IEC 62209-2, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices – Human models, instrumentation, and procedures – Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz) Mar. 2010.

[22] Industry Canada RSS-102 Radio Frequency Exposure Compliance of Radio Communication Apparatus (All Frequency Band) Issue 5, March 2015.

[23] Health Canada Safety Code 6 Limits of Human Exposure to Radio Frequency Electromagnetic Fields in the Frequency Rage from 3 kHz – 300 GHz, 2009

[24] FCC SAR Test procedures for 2G-3G Devices, Mobile Hotspot and UMPC Device KDB 941225 D01.

[25] SAR Measurement Guidance for IEEE 802.11 transmitters, KDB 248227 D01v02r02

[26] SAR Evaluation of Handsets with Multiple Transmitters and Antennas KDB 648474 D03, D04.

[27] SAR Evaluation for Laptop, Notebook, Netbook and Tablet computers KDB 616217 D04.

[28] SAR Measurement and Reporting Requirements for 100 MHz - 6 GHz, KDB 865664 D01, D02.

[29] FCC General RF Exposure Guidance and SAR procedures for Dongles, KDB 447498 D01,D02.

Appendix A. DUT Ant. Information & SETUP PHOTO

Please refer to test DUT Ant. Information & setup photo file no. as follows:

Report No.

HCT-SR-2208-FC001-P

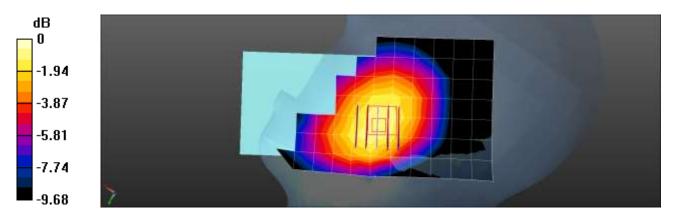
Appendix B. – SAR Test Plots

Test Laboratory:	HCT CO., LTD
EUT Type:	Mobile Phone
Liquid Temperature:	19.7 ℃
Ambient Temperature:	19.7 ℃
Test Date:	07/27/2022
Plot No.:	1

Communication System: UID 0, GSM850 GPRS 2TX (0); Frequency: 836.6 MHz;Duty Cycle: 1:4.14954 Medium parameters used (interpolated): f = 836.6 MHz; σ = 0.915 S/m; ϵ_r = 41.358; ρ = 1000 kg/m³ Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7370; ConvF(9.94, 9.94, 9.94) @ 836.6 MHz; Calibrated: 2021-08-26
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn652; Calibrated: 2022-01-24
- Phantom: SAM with CRP v5.0(Front); Type: QD000P40CD; Serial: TP:xxxx
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)


GSM850 2Tx Head Right Touch 190ch/Area Scan (8x14x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.327 W/kg

GSM850 2Tx Head Right Touch 190ch/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 6.285 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 0.421 W/kg

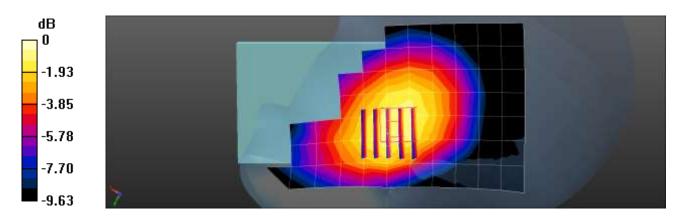
SAR(1 g) = 0.293 W/kg; SAR(10 g) = 0.219 W/kg

Maximum value of SAR (measured) = 0.382 W/kg

0 dB = 0.382 W/kg = -4.18 dBW/kg

Test Laboratory:	HCT CO., LTD
EUT Type:	Mobile Phone
Liquid Temperature:	19.7 ℃
Ambient Temperature:	19.7 ℃
Test Date:	07/27/2022
Plot No.:	2

Communication System: UID 0, UMTS BAND 5 (0); Frequency: 836.6 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 836.6 MHz; σ = 0.915 S/m; ϵ_r = 41.358; ρ = 1000 kg/m³ Phantom section: Right Section


DASY5 Configuration:

- Probe: EX3DV4 SN7370; ConvF(9.94, 9.94, 9.94) @ 836.6 MHz; Calibrated: 2021-08-26
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn652; Calibrated: 2022-01-24
- Phantom: SAM with CRP v5.0(Front); Type: QD000P40CD; Serial: TP:xxxx
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

UMTS Band 5 Head Right Touch 4183ch/Area Scan (8x14x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.196 W/kg

UMTS Band 5 Head Right Touch 4183ch/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.761 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 0.251 W/kg SAR(1 g) = 0.172 W/kg; SAR(10 g) = 0.128 W/kg Maximum value of SAR (measured) = 0.227 W/kg

0 dB = 0.227 W/kg = -6.44 dBW/kg

Test Laboratory:	HCT CO., LTD
EUT Type:	Mobile Phone
Liquid Temperature:	19.6 ℃
Ambient Temperature:	19.6 ℃
Test Date:	07/26/2022
Plot No.:	3

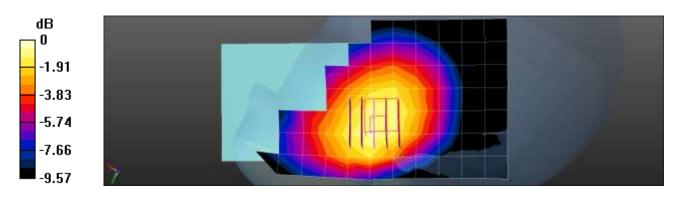
Communication System: UID 0, LTE Band 5 (0); Frequency: 836.5 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 836.5 MHz; σ = 0.935 S/m; ϵ_r = 41.339; ρ = 1000 kg/m³ Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7370; ConvF(9.94, 9.94, 9.94) @ 836.5 MHz; Calibrated: 2021-08-26
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn652; Calibrated: 2022-01-24
- Phantom: SAM with CRP v5.0(Front); Type: QD000P40CD; Serial: TP:xxxx
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

LTE Band 5 Head Right Touch QPSK 10MHz 1RB 49offset 20525ch/Area Scan (8x14x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.393 W/kg


LTE Band 5 Head Right Touch QPSK 10MHz 1RB 49offset 20525ch/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 7.063 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 0.477 W/kg

SAR(1 g) = 0.338 W/kg; SAR(10 g) = 0.249 W/kg

Maximum value of SAR (measured) = 0.436 W/kg

0 dB = 0.436 W/kg = -3.61 dBW/kg

Test Laboratory:	HCT CO., LTD
EUT Type:	Mobile Phone
Liquid Temperature:	20.7 °C
Ambient Temperature:	20.8 °C
Test Date:	07/19/2022
Plot No.:	4

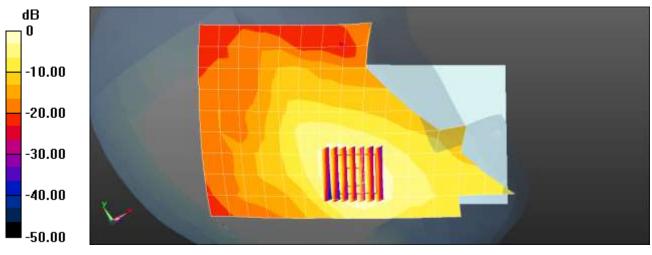
Communication System: UID 0, LTE Band 41 (FCC) (0); Frequency: 2593 MHz;Duty Cycle: 1:1.58052 Medium parameters used (interpolated): f = 2593 MHz; σ = 1.952 S/m; ϵ_r = 37.948; ρ = 1000 kg/m³ Phantom section: Left Section

DASY5 Configuration:

- Probe: EX3DV4 SN7654; ConvF(8.32, 8.32, 8.32) @ 2593 MHz; Calibrated: 2022-05-31
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1686; Calibrated: 2022-05-31
- Phantom: SAM with CRP v5.0_Front; Type: QD000P40CD; Serial: TP:xxxx
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7501)

LTE Band 41 Head Left Touch QPSK 20MHz 1RB 0offset 40620ch/Area Scan (10x17x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (measured) = 0.581 W/kg


LTE Band 41 Head Left Touch QPSK 20MHz 1RB 0offset 40620ch/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.223 V/m; Power Drift = -0.15 dB

Peak SAR (extrapolated) = 0.770 W/kg

SAR(1 g) = 0.408 W/kg; SAR(10 g) = 0.215 W/kg

Maximum value of SAR (measured) = 0.614 W/kg

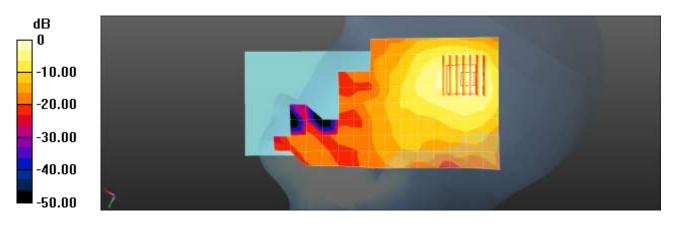
0 dB = 0.581 W/kg = -2.36 dBW/kg

Test Laboratory:	HCT CO., LTD
EUT Type:	Mobile Phone
Liquid Temperature:	19.3 ℃
Ambient Temperature:	19.3 ℃
Test Date:	07/19/2022
Plot No.:	5

Communication System: UID 0, 2450MHz FCC (0); Frequency: 2462 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 2462 MHz; σ = 1.878 S/m; ϵ_r = 40.183; ρ = 1000 kg/m³ Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7370; ConvF(7.5, 7.5, 7.5) @ 2462 MHz; Calibrated: 2021-08-26
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn652; Calibrated: 2022-01-24
- Phantom: SAM with CRP v5.0(Front); Type: QD000P40CD; Serial: TP:xxxx
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)


802.11b Head Right Touch 1Mbps 11ch/Area Scan (9x17x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 0.236 W/kg

802.11b Head Right Touch 1Mbps 11ch/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 8.166 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 0.367 W/kg

SAR(1 g) = 0.170 W/kg; SAR(10 g) = 0.082 W/kg

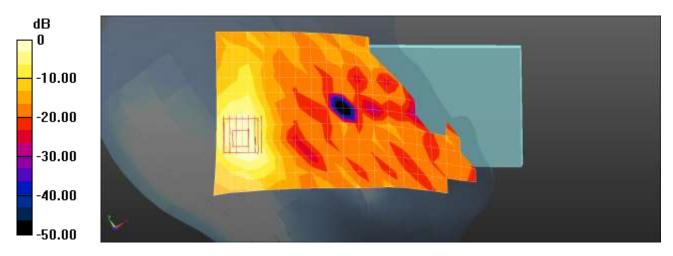
Maximum value of SAR (measured) = 0.281 W/kg

0 dB = 0.281 W/kg = -5.51 dBW/kg

Test Laboratory:	HCT CO., LTD
EUT Type:	Mobile Phone
Liquid Temperature:	19.5 ℃
Ambient Temperature:	19.6 ℃
Test Date:	07/18/2022
Plot No.:	6

Communication System: UID 0, WIFI 5GHz (0); Frequency: 5690 MHz;Duty Cycle: 1:1 Medium parameters used: f = 5690 MHz; σ = 5.299 S/m; ϵ_r = 36.505; ρ = 1000 kg/m³ Phantom section: Right Section

DASY5 Configuration:


- Probe: EX3DV4 SN7370; ConvF(4.75, 4.75, 4.75) @ 5690 MHz; Calibrated: 2021-08-26
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn652; Calibrated: 2022-01-24
- Phantom: SAM with CRP v5.0(Right)_2014_03_05; Type: QD000P40CD; Serial: TP:xxxx
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

802.11ac80 Head Left Tilt MCS0 138ch/Area Scan (11x21x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.668 W/kg

802.11ac80 Head Left Tilt MCS0 138ch/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

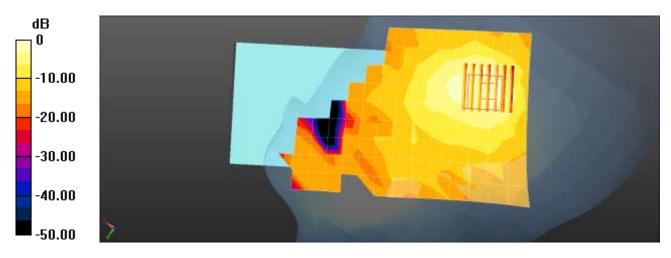
Reference Value = 3.713 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 1.15 W/kg SAR(1 g) = 0.327 W/kg; SAR(10 g) = 0.119 W/kg

Maximum value of SAR (measured) = 0.735 W/kg

0 dB = 0.735 W/kg = -1.34 dBW/kg

Test Laboratory:	HCT CO., LTD
EUT Type:	Mobile Phone
Liquid Temperature:	19.4 °C
Ambient Temperature:	19.4 °C
Test Date:	07/25/2022
Plot No.:	7

Communication System: UID 0, Bluetooth (0); Frequency: 2441 MHz; Duty Cycle: 1:1.302 Medium parameters used (interpolated): f = 2441 MHz; σ = 1.856 S/m; ϵ_r = 40.274; ρ = 1000 kg/m³ Phantom section: Right Section


DASY5 Configuration:

- Probe: EX3DV4 SN7370; ConvF(7.5, 7.5, 7.5) @ 2441 MHz; Calibrated: 2021-08-26 •
- Sensor-Surface: 1.4mm (Mechanical Surface Detection) •
- Electronics: DAE4 Sn652; Calibrated: 2022-01-24 •
- Phantom: SAM with CRP v5.0(Front); Type: QD000P40CD; Serial: TP:xxxx •
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) •

Bluetooth Head Right Touch DH5 39ch/Area Scan (10x17x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 0.121 W/kg

Bluetooth Head Right Touch DH5 39ch/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 5.413 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 0.147 W/kg

SAR(1 g) = 0.068 W/kg; SAR(10 g) = 0.033 W/kg Maximum value of SAR (measured) = 0.112 W/kg

0 dB = 0.112 W/kg = -9.51 dBW/kg

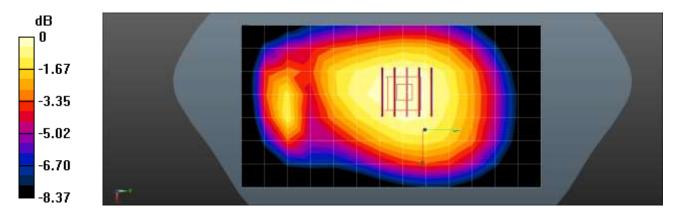
Test Laboratory: HCT CO., LTD

EUT Type:	Mobile Phone
Liquid Temperature:	19.7 °C
Ambient Temperature:	19.7 °C
Test Date:	07/27/2022
Plot No.:	8

Communication System: UID 0, GSM850 GPRS 2TX (0); Frequency: 836.6 MHz;Duty Cycle: 1:4.14954 Medium parameters used (interpolated): f = 836.6 MHz; σ = 0.915 S/m; ϵ_r = 41.358; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN7370; ConvF(9.94, 9.94, 9.94) @ 836.6 MHz; Calibrated: 2021-08-26
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn652; Calibrated: 2022-01-24
- Phantom: SAM with CRP v5.0(Front); Type: QD000P40CD; Serial: TP:xxxx
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)


GSM850 2Tx BodyWorn Rear 190ch/Area Scan (8x14x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.405 W/kg

GSM850 2Tx BodyWorn Rear 190ch/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 21.64 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 0.447 W/kg

SAR(1 g) = 0.334 W/kg; SAR(10 g) = 0.251 W/kg

Maximum value of SAR (measured) = 0.409 W/kg

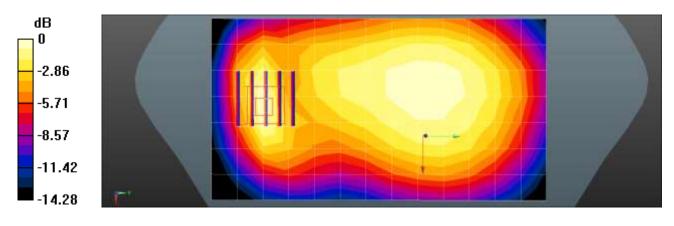
⁰ dB = 0.409 W/kg = -3.88 dBW/kg

Test Laboratory:HCT CO., LTDEUT Type:Mobile Phone

Liquid Temperature:	19.7 °C
Ambient Temperature:	19.7 °C
Test Date:	07/27/2022
Plot No.:	9

Communication System: UID 0, UMTS BAND 5 (0); Frequency: 836.6 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 836.6 MHz; σ = 0.915 S/m; ϵ_r = 41.358; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY5 Configuration:


- Probe: EX3DV4 SN7370; ConvF(9.94, 9.94, 9.94) @ 836.6 MHz; Calibrated: 2021-08-26
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn652; Calibrated: 2022-01-24
- Phantom: SAM with CRP v5.0(Front); Type: QD000P40CD; Serial: TP:xxxx
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

UMTS Band 5 BodyWorn Rear 4183ch/Area Scan (8x14x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.226 W/kg

UMTS Band 5 BodyWorn Rear 4183ch/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 14.36 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 0.268 W/kg

SAR(1 g) = 0.157 W/kg; SAR(10 g) = 0.091 W/kg

Maximum value of SAR (measured) = 0.226 W/kg

0 dB = 0.226 W/kg = -6.46 dBW/kg

Test Laboratory:	HCT CO., LTD
EUT Type:	Mobile Phone
Liquid Temperature:	19.6 ℃

Ambient Temperature:	19.6 ℃
Test Date:	07/26/2022
Plot No.:	10

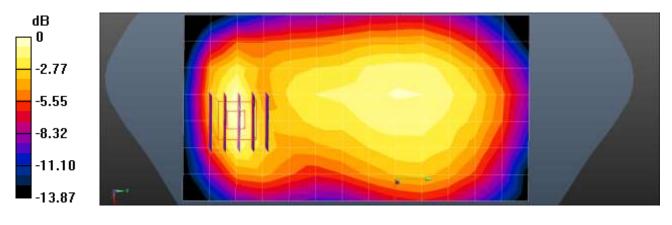
Communication System: UID 0, LTE Band 5 (0); Frequency: 836.5 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 836.5 MHz; σ = 0.935 S/m; ϵ_r = 41.339; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN7370; ConvF(9.94, 9.94, 9.94) @ 836.5 MHz; Calibrated: 2021-08-26
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn652; Calibrated: 2022-01-24
- Phantom: SAM with CRP v5.0(Front); Type: QD000P40CD; Serial: TP:xxxx
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

LTE Band 5 BodyWorn Rear QPSK 10MHz 1RB 49offset 20525ch/Area Scan (8x14x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.418 W/kg


LTE Band 5 BodyWorn Rear QPSK 10MHz 1RB 49offset 20525ch/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 18.43 V/m; Power Drift = -0.11 dB

Peak SAR (extrapolated) = 0.465 W/kg

SAR(1 g) = 0.283 W/kg; SAR(10 g) = 0.167 W/kg

Maximum value of SAR (measured) = 0.398 W/kg

0 dB = 0.398 W/kg = -4.00 dBW/kg

Test Laboratory:HCT CO., LTDEUT Type:Mobile PhoneLiquid Temperature:19.4 °C

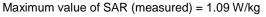
Ambient Temperature:	19.5 ℃
Test Date:	07/21/2022
Plot No.:	11

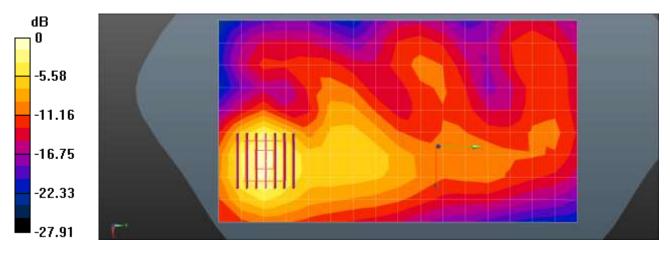
Communication System: UID 0, LTE Band 41 (0); Frequency: 2549.5 MHz;Duty Cycle: 1:1.58016 Medium parameters used: f = 2550 MHz; σ = 1.983 S/m; ϵ_r = 38.133; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN7679; ConvF(7.87, 7.87, 7.87) @ 2549.5 MHz; Calibrated: 2021-09-10
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn504; Calibrated: 2022-03-01
- Phantom: SAM with CRP v5.0(Front); Type: QD000P40CD; Serial: TP:xxxx
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

LTE Band 41 BodyWorn Rear QPSK 20MHz 1RB 99offset 40185ch/Area Scan (10x17x1): Measurement grid: dx=12mm, dy=12mm


Maximum value of SAR (measured) = 1.03 W/kg


LTE Band 41 BodyWorn Rear QPSK 20MHz 1RB 99offset 40185ch/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.571 V/m; Power Drift = -0.10 dB

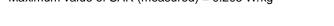
Peak SAR (extrapolated) = 1.37 W/kg

SAR(1 g) = 0.632 W/kg; SAR(10 g) = 0.289 W/kg

0 dB = 1.09 W/kg = 0.37 dBW/kg

Test Laboratory:	HCT CO., LTD
EUT Type:	Mobile Phone
Liquid Temperature:	19.3 ℃

Ambient Temperature:	19.3 °C
Test Date:	07/19/2022
Plot No.:	12


Communication System: UID 0, 2450MHz FCC (0); Frequency: 2462 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 2462 MHz; σ = 1.878 S/m; ϵ_r = 40.183; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN7370; ConvF(7.5, 7.5, 7.5) @ 2462 MHz; Calibrated: 2021-08-26
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn652; Calibrated: 2022-01-24
- Phantom: SAM with CRP v5.0(Front); Type: QD000P40CD; Serial: TP:xxxx
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

802.11b Body Rear 1Mbps 11ch/Area Scan (10x17x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 0.206 W/kg

802.11b Body Rear 1Mbps 11ch/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm
Reference Value = 4.065 V/m; Power Drift = 0.02 dB
Peak SAR (extrapolated) = 0.265 W/kg
SAR(1 g) = 0.122 W/kg; SAR(10 g) = 0.059 W/kg
Maximum value of SAR (measured) = 0.205 W/kg

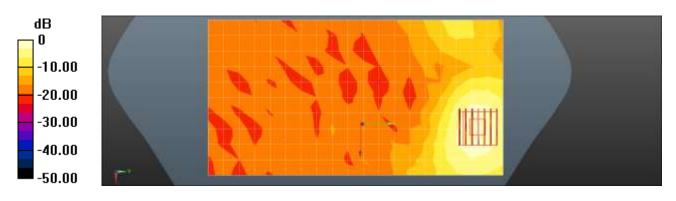
0 dB = 0.205 W/kg = -6.88 dBW/kg

Test Laboratory:	HCT CO., LTD
EUT Type:	Mobile Phone
Liquid Temperature:	19.5 ℃
Ambient Temperature:	19.6 ℃

Test Date:	07/18/2022
Plot No.:	13

Communication System: UID 0, WIFI 5GHz (0); Frequency: 5745 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 5745 MHz; σ = 5.312 S/m; ϵ_r = 36.72; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY5 Configuration:


- Probe: EX3DV4 SN7370; ConvF(4.75, 4.75, 4.75) @ 5745 MHz; Calibrated: 2021-08-26
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn652; Calibrated: 2022-01-24
- Phantom: SAM with CRP v5.0(Right)_2014_03_05; Type: QD000P40CD; Serial: TP:xxxx
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

802.11a BodyWorn Rear 6Mbps 149ch/Area Scan (11x20x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 1.25 W/kg

802.11a BodyWorn Rear 6Mbps 149ch/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 0.9080 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 2.20 W/kg SAR(1 g) = 0.565 W/kg; SAR(10 g) = 0.222 W/kg

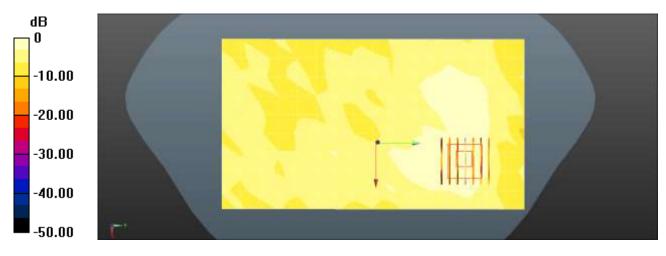
Maximum value of SAR (measured) = 1.29 W/kg

0 dB = 1.29 W/kg = 1.11 dBW/kg

HCT CO., LTD
Mobile Phone
19.4 °C
19.4 ℃

 Test Date:
 07/25/2022

 Plot No.:
 14


Communication System: UID 0, Bluetooth (0); Frequency: 2441 MHz;Duty Cycle: 1:1.302 Medium parameters used (interpolated): f = 2441 MHz; σ = 1.856 S/m; ϵ_r = 40.274; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN7370; ConvF(7.5, 7.5, 7.5) @ 2441 MHz; Calibrated: 2021-08-26
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn652; Calibrated: 2022-01-24
- Phantom: SAM with CRP v5.0(Front); Type: QD000P40CD; Serial: TP:xxxx
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Bluetooth BodyWorn Rear DH5 39ch/Area Scan (10x17x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 0.0203 W/kg

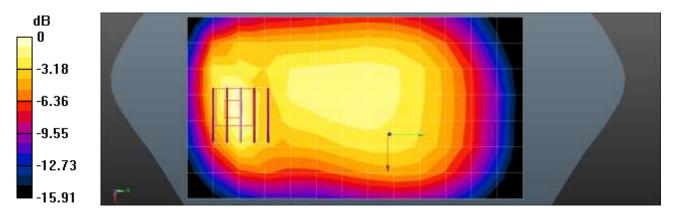
Bluetooth BodyWorn Rear DH5 39ch/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 1.506 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 0.0260 W/kg SAR(1 g) = 0.013 W/kg; SAR(10 g) = 0.00553 W/kg Maximum value of SAR (measured) = 0.0206 W/kg

0 dB = 0.0206 W/kg = -16.86 dBW/kg

Test Laboratory:	HCT CO., LTD
EUT Type:	Mobile Phone
Liquid Temperature:	19.7 ℃
Ambient Temperature:	19.7 ℃
Test Date:	07/27/2022
Plot No.:	15

Communication System: UID 0, GSM850 GPRS 2TX (0); Frequency: 836.6 MHz;Duty Cycle: 1:4.14954 Medium parameters used (interpolated): f = 836.6 MHz; σ = 0.915 S/m; ϵ_r = 41.358; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY5 Configuration:


- Probe: EX3DV4 SN7370; ConvF(9.94, 9.94, 9.94) @ 836.6 MHz; Calibrated: 2021-08-26
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn652; Calibrated: 2022-01-24
- Phantom: SAM with CRP v5.0(Front); Type: QD000P40CD; Serial: TP:xxxx
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

GSM850 2Tx Body Rear 190ch/Area Scan (8x14x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.600 W/kg

GSM850 2Tx Body Rear 190ch/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 22.78 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 0.791 W/kg

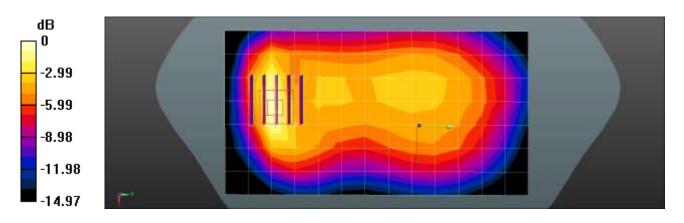
SAR(1 g) = 0.436 W/kg; SAR(10 g) = 0.241 W/kg

Maximum value of SAR (measured) = 0.625 W/kg

0 dB = 0.625 W/kg = -2.04 dBW/kg

Test Laboratory:	HCT CO., LTD
EUT Type:	Mobile Phone
Liquid Temperature:	19.7 ℃
Ambient Temperature:	19.7 ℃
Test Date:	07/27/2022
Plot No.:	16

Communication System: UID 0, UMTS BAND 5 (0); Frequency: 836.6 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 836.6 MHz; σ = 0.915 S/m; ϵ_r = 41.358; ρ = 1000 kg/m³ Phantom section: Flat Section


DASY5 Configuration:

- Probe: EX3DV4 SN7370; ConvF(9.94, 9.94, 9.94) @ 836.6 MHz; Calibrated: 2021-08-26
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn652; Calibrated: 2022-01-24
- Phantom: SAM with CRP v5.0(Front); Type: QD000P40CD; Serial: TP:xxxx
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

UMTS Band 5 Body Rear 4183ch/Area Scan (8x14x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.509 W/kg

UMTS Band 5 Body Rear 4183ch/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 15.16 V/m; Power Drift = 0.11 dB Peak SAR (extrapolated) = 0.633 W/kg SAR(1 g) = 0.337 W/kg; SAR(10 g) = 0.184 W/kg

Maximum value of SAR (measured) = 0.524 W/kg

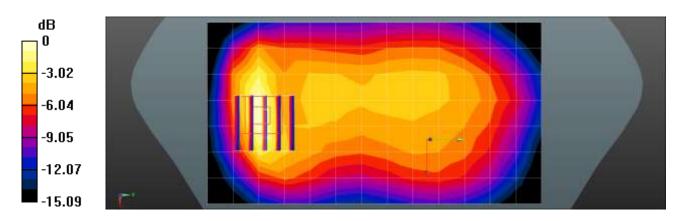
0 dB = 0.524 W/kg = -2.81 dBW/kg

Test Laboratory:	HCT CO., LTD
EUT Type:	Mobile Phone
Liquid Temperature:	19.6 ℃
Ambient Temperature:	19.6 ℃
Test Date:	07/26/2022
Plot No.:	17

Communication System: UID 0, LTE Band 5 (0); Frequency: 836.5 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 836.5 MHz; σ = 0.935 S/m; ϵ_r = 41.339; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN7370; ConvF(9.94, 9.94, 9.94) @ 836.5 MHz; Calibrated: 2021-08-26
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn652; Calibrated: 2022-01-24
- Phantom: SAM with CRP v5.0(Front); Type: QD000P40CD; Serial: TP:xxxx
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)


LTE Band 5 Body Rear QPSK 10MHz 1RB 49offset 20525ch/Area Scan (8x14x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.796 W/kg

LTE Band 5 Body Rear QPSK 10MHz 1RB 49offset 20525ch/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 19.88 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 0.993 W/kg SAR(1 g) = 0.544 W/kg; SAR(10 g) = 0.301 W/kg

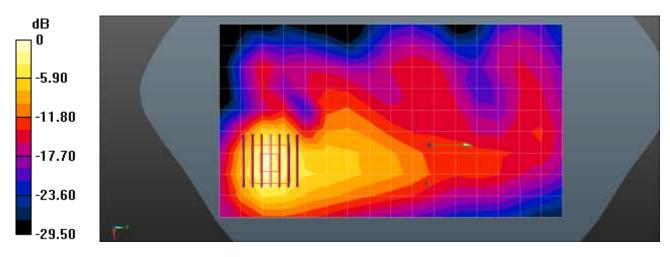
Maximum value of SAR (measured) = 0.827 W/kg

0 dB = 0.827 W/kg = -0.82 dBW/kg

Test Laboratory:	HCT CO., LTD
EUT Type:	Mobile Phone
Liquid Temperature:	19.4 ℃
Ambient Temperature:	19.5 ℃
Test Date:	07/21/2022
Plot No.:	18

Communication System: UID 0, LTE Band 41 (0); Frequency: 2593 MHz;Duty Cycle: 1:1.58016 Medium parameters used (interpolated): f = 2593 MHz; σ = 2.025 S/m; ϵ_r = 37.938; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY5 Configuration:


- Probe: EX3DV4 SN7679; ConvF(7.87, 7.87, 7.87) @ 2593 MHz; Calibrated: 2021-09-10
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn504; Calibrated: 2022-03-01
- Phantom: SAM with CRP v5.0(Front); Type: QD000P40CD; Serial: TP:xxxx
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

LTE Band 41 Body Rear QPSK 20MHz 50RB 0offset 40620ch/Area Scan (10x17x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (measured) = 1.08 W/kg

LTE Band 41 Body Rear QPSK 20MHz 50RB 0offset 40620ch/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 4.801 V/m; Power Drift = -0.16 dB Peak SAR (extrapolated) = 1.76 W/kg SAR(1 g) = 0.747 W/kg; SAR(10 g) = 0.312 W/kg

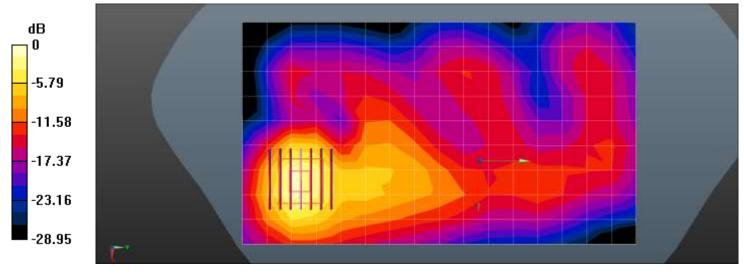
Maximum value of SAR (measured) = 1.35 W/kg

0 dB = 1.35 W/kg = 1.30 dBW/kg

Test Laboratory:	HCT CO., LTD
EUT Type:	Mobile Phone
Liquid Temperature:	19.4 ℃
Ambient Temperature:	19.5 ℃
Test Date:	07/21/2022
Plot No.:	19

Communication System: UID 0, LTE Band 41 (0); Frequency: 2549.5 MHz;Duty Cycle: 1:1.58016 Medium parameters used (interpolated): f = 2550 MHz; σ = 1.983 S/m; ϵ_r = 38.133; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY5 Configuration:


- Probe: EX3DV4 SN7679; ConvF(7.87, 7.87, 7.87) @ 2593 MHz; Calibrated: 2021-09-10
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn504; Calibrated: 2022-03-01
- Phantom: SAM with CRP v5.0(Front); Type: QD000P40CD; Serial: TP:xxxx
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

LTE Band 41 Body Rear QPSK 20MHz 50RB 49offset 40185ch/Area Scan (10x17x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (measured) = 1.08 W/kg

LTE Band 41 Body Rear QPSK 20MHz 50RB 49offset 40185ch/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 3.717 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 1.76 W/kg SAR(1 g) = 0.746 W/kg; SAR(10 g) = 0.310 W/kg

Maximum value of SAR (measured) = 1.35 W/kg

0 dB = 1.35 W/kg = 1.30 dBW/kg

Test Laboratory:	HCT CO., LTD
EUT Type:	Mobile Phone
Liquid Temperature:	19.3 ℃
Ambient Temperature:	19.3 ℃
Test Date:	07/19/2022
Plot No.:	20

Communication System: UID 0, 2450MHz FCC (0); Frequency: 2462 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 2462 MHz; σ = 1.878 S/m; ϵ_r = 40.183; ρ = 1000 kg/m³ Phantom section: Flat Section


DASY5 Configuration:

- Probe: EX3DV4 SN7370; ConvF(7.5, 7.5, 7.5) @ 2462 MHz; Calibrated: 2021-08-26
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn652; Calibrated: 2022-01-24
- Phantom: SAM with CRP v5.0(Front); Type: QD000P40CD; Serial: TP:xxxx
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

802.11b Body Rear 1Mbps 11ch/Area Scan (10x17x1): Measurement grid: dx=12mm, dy=12mm .Maximum value of SAR (measured) = 0.452 W/kg

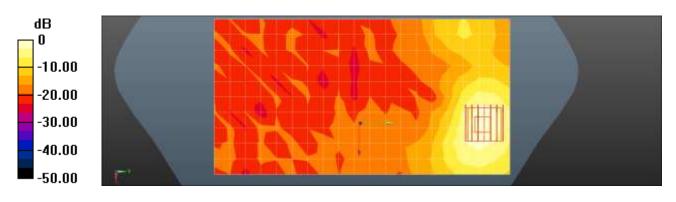
802.11b Body Rear 1Mbps 11ch/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.469 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 0.636 W/kg SAR(1 g) = 0.269 W/kg; SAR(10 g) = 0.119 W/kg Maximum value of SAR (measured) = 0.468 W/kg

0 dB = 0.468 W/kg = -3.30 dBW/kg

Test Laboratory:	HCT CO., LTD
EUT Type:	Mobile Phone
Liquid Temperature:	19.5 ℃
Ambient Temperature:	19.6 ℃
Test Date:	07/18/2022
Plot No.:	21

Communication System: UID 0, WIFI 5GHz (0); Frequency: 5745 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 5745 MHz; σ = 5.312 S/m; ϵ_r = 36.72; ρ = 1000 kg/m³ Phantom section: Flat Section


DASY5 Configuration:

- Probe: EX3DV4 SN7370; ConvF(4.75, 4.75, 4.75) @ 5745 MHz; Calibrated: 2021-08-26
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn652; Calibrated: 2022-01-24
- Phantom: SAM with CRP v5.0(Right)_2014_03_05; Type: QD000P40CD; Serial: TP:xxxx
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

802.11a Body Rear 6Mbps 149ch/Area Scan (11x20x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 1.68 W/kg

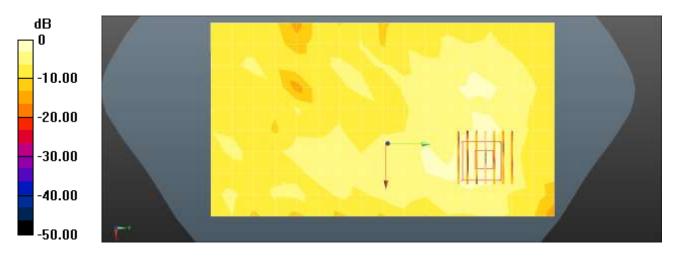
802.11a Body Rear 6Mbps 149ch/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 1.179 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 2.94 W/kg SAR(1 g) = 0.749 W/kg; SAR(10 g) = 0.276 W/kg Maximum value of SAR (measured) = 1.76 W/kg

0 dB = 1.76 W/kg = 2.46 dBW/kg

Test Laboratory:	HCT CO., LTD
EUT Type:	Mobile Phone
Liquid Temperature:	19.4 °C
Ambient Temperature:	19.4 °C
Test Date:	07/25/2022
Plot No.:	22

Communication System: UID 0, Bluetooth (0); Frequency: 2441 MHz;Duty Cycle: 1:1.302 Medium parameters used (interpolated): f = 2441 MHz; σ = 1.856 S/m; ϵ_r = 40.274; ρ = 1000 kg/m³ Phantom section: Flat Section


DASY5 Configuration:

- Probe: EX3DV4 SN7370; ConvF(7.5, 7.5, 7.5) @ 2441 MHz; Calibrated: 2021-08-26
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn652; Calibrated: 2022-01-24
- Phantom: SAM with CRP v5.0(Front); Type: QD000P40CD; Serial: TP:xxxx
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Bluetooth Body Rear DH5 39ch/Area Scan (10x17x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 0.0322 W/kg

Bluetooth Body Rear DH5 39ch/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

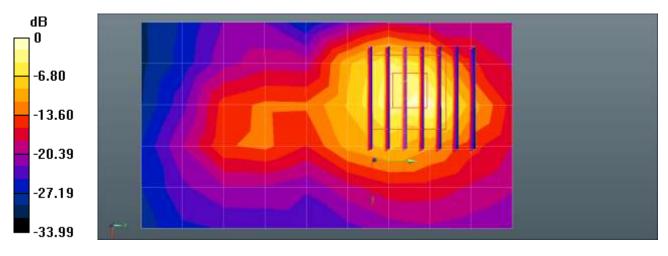
Reference Value = 1.392 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 0.0430 W/kg SAR(1 g) = 0.019 W/kg; SAR(10 g) = 0.00807 W/kg Maximum value of SAR (measured) = 0.0319 W/kg

0 dB = 0.0319 W/kg = -14.96 dBW/kg

Test Laboratory:	HCT CO., LTD
EUT Type:	Mobile Phone
Liquid Temperature:	19.4 °C
Ambient Temperature:	19.4 °C
Test Date:	07/22/2022
Plot No.:	23

Communication System: UID 0, LTE Band 41 (0); Frequency: 2593 MHz;Duty Cycle: 1:1.58016 Medium parameters used (interpolated): f = 2593 MHz; σ = 2.022 S/m; ϵ_r = 38.571; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY5 Configuration:


- Probe: EX3DV4 SN7370; ConvF(7.42, 7.42, 7.42) @ 2593 MHz; Calibrated: 2021-08-26
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn652; Calibrated: 2022-01-24
- Phantom: SAM with CRP v5.0(Front); Type: QD000P40CD; Serial: TP:xxxx
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

LTE Band 41 Phablet Bottom QPSK 20MHz 1RB 0offset 40620ch/Area Scan (6x10x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (measured) = 4.15 W/kg

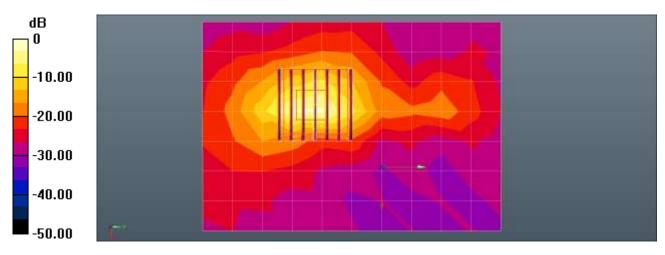
LTE Band 41 Phablet Bottom QPSK 20MHz 1RB 0offset 40620ch/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 14.70 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 9.24 W/kg SAR(1 g) = 2.74 W/kg; SAR(10 g) = 0.917 W/kg Maximum value of SAR (measured) = 5.59 W/kg

0 dB = 5.59 W/kg = 7.47 dBW/kg

Test Laboratory:	HCT CO., LTD
EUT Type:	Mobile Phone
Liquid Temperature:	19.5 ℃
Ambient Temperature:	19.6 ℃
Test Date:	07/18/2022
Plot No.:	24

Communication System: UID 0, WIFI 5GHz (0); Frequency: 5620 MHz;Duty Cycle: 1:1 Medium parameters used: f = 5620 MHz; σ = 5.242 S/m; ϵ_r = 36.707; ρ = 1000 kg/m³ Phantom section: Flat Section


DASY5 Configuration:

- Probe: EX3DV4 SN7370; ConvF(4.57, 4.57, 4.57) @ 5620 MHz; Calibrated: 2021-08-26
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn652; Calibrated: 2022-01-24
- Phantom: SAM with CRP v5.0(Right)_2014_03_05; Type: QD000P40CD; Serial: TP:xxxx
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

802.11a Phablet Top 6Mbps 124ch/Area Scan (8x11x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 14.8 W/kg

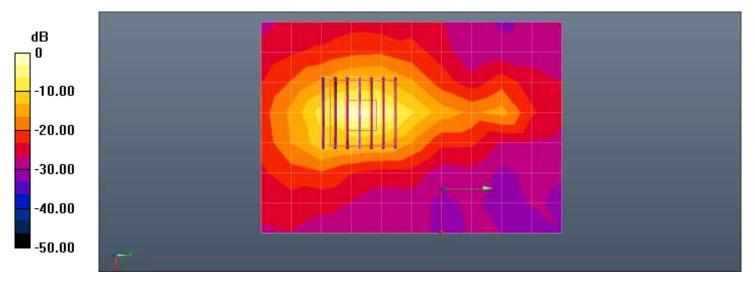
802.11a Phablet Top 6Mbps 124ch/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 16.33 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 50.9 W/kg SAR(1 g) = 7.47 W/kg; SAR(10 g) = 1.56 W/kg Maximum value of SAR (measured) = 25.2 W/kg

0 dB = 25.2 W/kg = 14.01 dBW/kg

Test Laboratory:	HCT CO., LTD
EUT Type:	Mobile Phone
Liquid Temperature:	19.5 ℃
Ambient Temperature:	19.6 ℃
Test Date:	07/18/2022
Plot No.:	25

Communication System: UID 0, WIFI 5GHz (0); Frequency: 5720 MHz;Duty Cycle: 1:1 Medium parameters used: f = 5720 MHz; σ = 5.347 S/m; ϵ_r = 36.388; ρ = 1000 kg/m³ Phantom section: Flat Section


DASY5 Configuration:

- Probe: EX3DV4 SN7370; ConvF(4.57, 4.57, 4.57) @ 5720 MHz; Calibrated: 2021-08-26
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn652; Calibrated: 2022-01-24
- Phantom: SAM with CRP v5.0(Right)_2014_03_05; Type: QD000P40CD; Serial: TP:xxxx
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

802.11a Phablet Top 6Mbps 144ch/Area Scan (8x11x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 18.6 W/kg

802.11a Phablet Top 6Mbps 144ch/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 18.51 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 43.5 W/kg SAR(1 g) = 6.82 W/kg; SAR(10 g) = 1.51 W/kg Maximum value of SAR (measured) = 21.0 W/kg

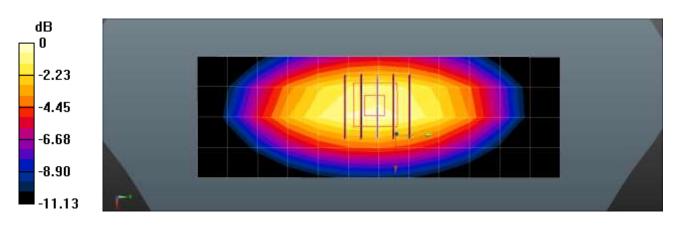
0 dB = 21.0 W/kg = 13.22 dBW/kg

Appendix C. – Dipole Verification Plots

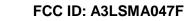
Verification Data (835 Mtz Head)

Test Laboratory:	HCT CO., LTD
Input Power	0.05 W
Liquid Temp:	19.7 ℃
Test Date:	07/27/2022

Communication System: UID 0, CW (0); Frequency: 835 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 835 MHz; σ = 0.914 S/m; ϵ_r = 41.376; ρ = 1000 kg/m³ Phantom section: Flat Section


DASY5 Configuration:

- Probe: EX3DV4 SN7370; ConvF(9.94, 9.94, 9.94) @ 835 MHz; Calibrated: 2021-08-26
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn652; Calibrated: 2022-01-24
- Phantom: SAM with CRP v5.0(Front); Type: QD000P40CD; Serial: TP:xxxx
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)


Dipole/835MHz Head Verification/Area Scan (5x13x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.608 W/kg

Dipole/835MHz Head Verification/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

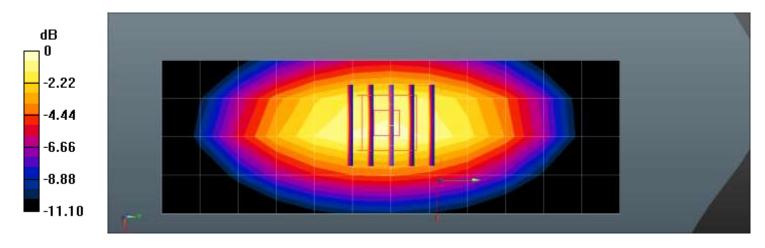
Reference Value = 26.83 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 0.756 W/kg SAR(1 g) = 0.493 W/kg; SAR(10 g) = 0.320 W/kg Maximum value of SAR (measured) = 0.667 W/kg

0 dB = 0.667 W/kg = -1.76 dBW/kg

Verification Data (835 Mtz Head)

Test Laboratory:	HCT CO., LTD
Input Power	0.05 W
Liquid Temp:	19.6 ℃
Test Date:	07/26/2022

Communication System: UID 0, CW (0); Frequency: 835 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 835 MHz; σ = 0.933 S/m; ϵ_r = 41.36; ρ = 1000 kg/m³ Phantom section: Flat Section


DASY5 Configuration:

- Probe: EX3DV4 SN7370; ConvF(9.94, 9.94, 9.94) @ 835 MHz; Calibrated: 2021-08-26
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn652; Calibrated: 2022-01-24
- Phantom: SAM with CRP v5.0(Front); Type: QD000P40CD; Serial: TP:xxxx
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

835MHz Head Verification/Area Scan (6x14x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 0.624 W/kg

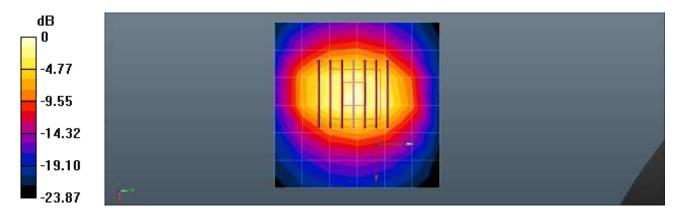
835MHz Head Verification/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 26.89 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 0.769 W/kg SAR(1 g) = 0.505 W/kg; SAR(10 g) = 0.328 W/kg

Maximum value of SAR (measured) = 0.678 W/kg

0 dB = 0.678 W/kg = -1.69dBW/kg

Verification Data (2 450 Mtz Head)

Test Laboratory:	HCT CO., LTD
Input Power	0.05 W
Liquid Temp:	19.3 ℃
Test Date:	07/19/2022


Communication System: UID 0, CW (0); Frequency: 2450 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; σ = 1.88 S/m; ϵ_r = 40.281; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN7370; ConvF(7.5, 7.5, 7.5) @ 2450 MHz; Calibrated: 2021-08-26
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn652; Calibrated: 2022-01-24
- Phantom: SAM with CRP v5.0(Front); Type: QD000P40CD; Serial: TP:xxxx
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

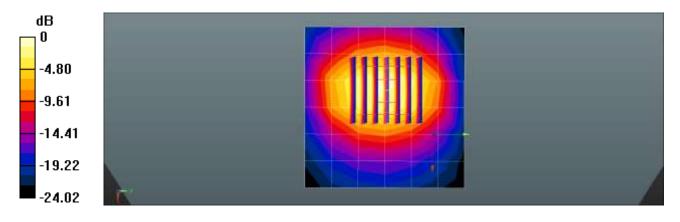
2450MHz Head Verification/Area Scan (7x7x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 3.78 W/kg

2450MHz Head Verification/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 46.22 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 5.83 W/kg SAR(1 g) = 2.64 W/kg; SAR(10 g) = 1.21 W/kg Maximum value of SAR (measured) = 4.60 W/kg

0 dB = 4.60 W/kg = 6.63 dBW/kg

Verification Data (2 450 Mtz Head)

Test Laboratory:	HCT CO., LTD
Input Power	0.05 W
Liquid Temp:	19.4 ℃
Test Date:	07/25/2022


Communication System: UID 0, CW (0); Frequency: 2450 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; σ = 1.878 S/m; ϵ_r = 40.318; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN7370; ConvF(7.5, 7.5, 7.5) @ 2450 MHz; Calibrated: 2021-08-26
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn652; Calibrated: 2022-01-24
- Phantom: SAM with CRP v5.0(Front); Type: QD000P40CD; Serial: TP:xxxx
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

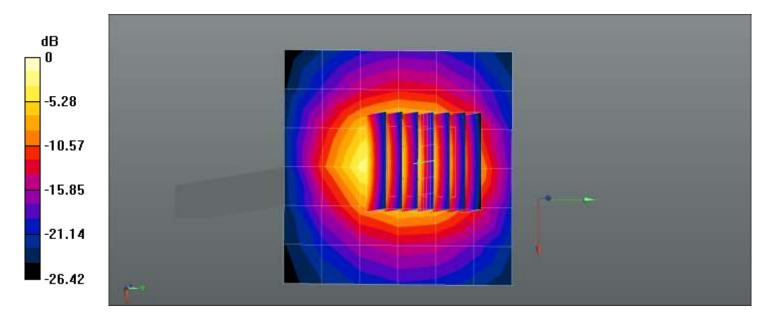
Dipole/2450MHz Head Verification/Area Scan (7x7x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 3.91 W/kg

Dipole/2450MHz Head Verification/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 41.90 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 5.98 W/kg SAR(1 g) = 2.67 W/kg; SAR(10 g) = 1.21 W/kg Maximum value of SAR (measured) = 4.70 W/kg

0 dB = 4.70 W/kg = 6.72 dBW/kg

Verification Data (2 600 Mtz Head)

Test Laboratory:	HCT CO., LTD
Input Power	0.05 W
Liquid Temp:	20.7 °C
Test Date:	07/19/2022


Communication System: UID 0, CW (0); Frequency: 2600 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2600 MHz; σ = 1.958 S/m; ϵ_r = 37.915; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN7654; ConvF(8.32, 8.32, 8.32) @ 2600 MHz; Calibrated: 2022-05-31
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1686; Calibrated: 2022-05-31
- Phantom: SAM with CRP v5.0_Front; Type: QD000P40CD; Serial: TP:xxxx
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7501)

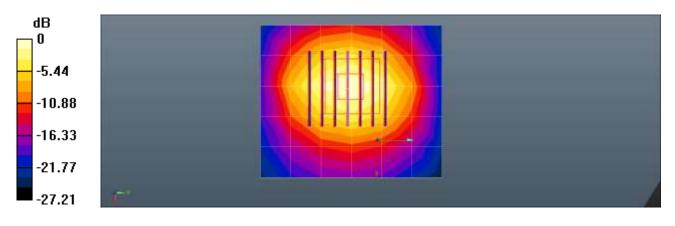
2600MHz Head Verification/Area Scan (7x7x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 4.49 W/kg

2600MHz Head Verification/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 48.90 V/m; Power Drift = 0.11 dB Peak SAR (extrapolated) = 6.13 W/kg SAR(1 g) = 2.65 W/kg; SAR(10 g) = 1.14 W/kg Maximum value of SAR (measured) = 4.70 W/kg

0dB = 4.49 W/kg = 6.52 dBW/kg

Verification Data (2 600 Mtz Head)

Test Laboratory:	HCT CO., LTD
Input Power	0.05 W
Liquid Temp:	19.4 °C
Test Date:	07/21/2022


Communication System: UID 0, CW (0); Frequency: 2600 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2600 MHz; σ = 2.031 S/m; ϵ_r = 37.906; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN7679; ConvF(7.87, 7.87, 7.87) @ 2600 MHz; Calibrated: 2021-09-10
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn504; Calibrated: 2022-03-01
- Phantom: SAM with CRP v5.0(Front); Type: QD000P40CD; Serial: TP:xxxx
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

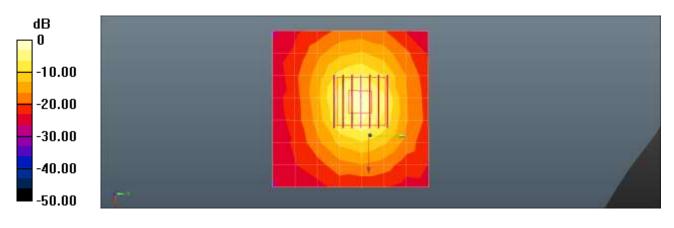
Dipole/2600MHz Head Verification/Area Scan (6x7x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 5.39 W/kg

Dipole/2600MHz Head Verification/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 47.60 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 7.01 W/kg SAR(1 g) = 3.01 W/kg; SAR(10 g) = 1.31 W/kg Maximum value of SAR (measured) = 5.37 W/kg

0 dB = 5.37 W/kg = 7.30 dBW/kg

Verification Data (5 250 Mtz Head)

Test Laboratory:	HCT CO., LTD
Input Power	0.05 W
Liquid Temp:	19.5 °C
Test Date:	07/18/2022


Communication System: UID 0, CW (0); Frequency: 5250 MHz;Duty Cycle: 1:1 Medium parameters used: f = 5250 MHz; σ = 4.835 S/m; ϵ_r = 36.903; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY5 Configuration:

- Probe: EX3DV4 SN7370; ConvF(5.15, 5.15, 5.15) @ 5250 MHz; Calibrated: 2021-08-26
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn652; Calibrated: 2022-01-24
- Phantom: SAM with CRP v5.0(Right)_2014_03_05; Type: QD000P40CD; Serial: TP:xxxx
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Dipole/5250MHz Head Verification/Area Scan (8x8x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 10.1 W/kg

Dipole/5250MHz Head Verification/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 45.07 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 17.1 W/kg SAR(1 g) = 4.19 W/kg; SAR(10 g) = 1.22 W/kg Maximum value of SAR (measured) = 10.7 W/kg

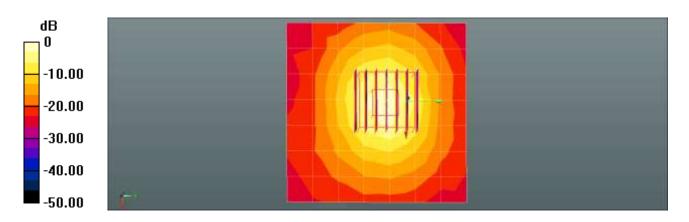
0 dB = 10.7 W/kg = 10.29 dBW/kg

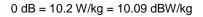
Verification Data (5 600 Mtz Head)

Test Laboratory:	HCT CO., LTD
Input Power	0.05 W
Liquid Temp:	19.5 ℃
Test Date:	07/18/2022

Communication System: UID 0, CW (0); Frequency: 5600 MHz;Duty Cycle: 1:1 Medium parameters used: f = 5600 MHz; σ = 5.181 S/m; ϵ_r = 36.889; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY5 Configuration:


- Probe: EX3DV4 SN7370; ConvF(4.57, 4.57, 4.57) @ 5600 MHz; Calibrated: 2021-08-26
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn652; Calibrated: 2022-01-24
- Phantom: SAM with CRP v5.0(Right)_2014_03_05; Type: QD000P40CD; Serial: TP:xxxx
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)


Dipole/5600MHz Head Verification/Area Scan (8x8x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 9.27 W/kg

Dipole/5600MHz Head Verification/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 45.48 V/m; Power Drift = 0.12 dB

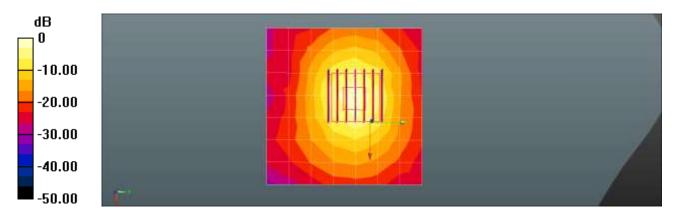
Peak SAR (extrapolated) = 17.1 W/kg SAR(1 g) = 4.01 W/kg; SAR(10 g) = 1.2 W/kg

Maximum value of SAR (measured) = 10.2 W/kg

Verification Data (5 750 Mtz Head)

Test Laboratory:	HCT CO., LTD					
Input Power	0.05 W					
Liquid Temp:	19.5 ℃					
Test Date:	07/18/2022					

Communication System: UID 0, CW (0); Frequency: 5750 MHz;Duty Cycle: 1:1 Medium parameters used: f = 5750 MHz; σ = 5.327 S/m; ϵ_r = 36.818; ρ = 1000 kg/m³ Phantom section: Flat Section


DASY5 Configuration:

- Probe: EX3DV4 SN7370; ConvF(4.75, 4.75, 4.75) @ 5750 MHz; Calibrated: 2021-08-26
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn652; Calibrated: 2022-01-24
- Phantom: SAM with CRP v5.0(Right)_2014_03_05; Type: QD000P40CD; Serial: TP:xxxx
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Dipole/5750MHz Head Verification/Area Scan (8x8x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 9.80 W/kg

Dipole/5750MHz Head Verification/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 41.14 V/m; Power Drift = 0.18 dB Peak SAR (extrapolated) = 17.4 W/kg SAR(1 g) = 3.89 W/kg; SAR(10 g) = 1.15 W/kg

Maximum value of SAR (measured) = 10.1 W/kg

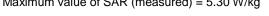
0 dB = 10.1 W/kg = 10.04 dBW/kg

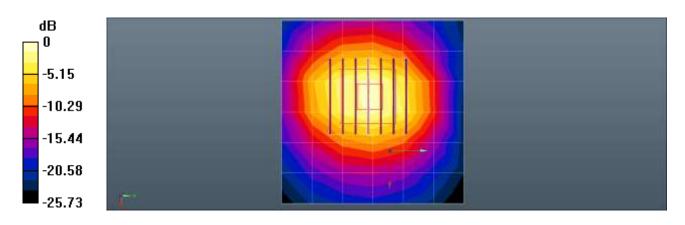
– Extremity

Verification Data (2 600 Mtz Head)

Test Laboratory:	HCT CO., LTD
Input Power	0.05 W
Liquid Temp:	19.4 ℃
Test Date:	07/22/2022

Communication System: UID 0, CW (0); Frequency: 2600 MHz;Duty Cycle: 1:1 Medium parameters used: f = 2600 MHz; σ = 2.029 S/m; ϵ_r = 38.539; ρ = 1000 kg/m³ Phantom section: Flat Section


DASY5 Configuration:


- Probe: EX3DV4 SN7370; ConvF(7.42, 7.42, 7.42) @ 2600 MHz; Calibrated: 2021-08-26
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn652; Calibrated: 2022-01-24
- Phantom: SAM with CRP v5.0(Front); Type: QD000P40CD; Serial: TP:xxxx
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Dipole/2600MHz Head Verification/Area Scan (7x7x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 3.97 W/kg

Dipole/2600MHz Head Verification/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 45.86 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 6.82 W/kg SAR(1 g) = 2.95 W/kg; SAR(10 g) = 1.29 W/kg

Maximum value of SAR (measured) = 5.30 W/kg

0 dB = 5.30 W/kg = 7.24 dBW/kg

Appendix D. – SAR Tissue Characterization

The brain and muscle mixtures consist of a viscous gel using hydrox-ethyl cellulose (HEC) gelling agent and saline solution (see Table 3.1). Preservation with a bacteriacide is added and visual inspection is made to make sure air bubbles are not trapped during the mixing process. The mixture is calibrated to obtain proper dielectric constant (permittivity) and conductivity of the desired tissue. The mixture characterizations used for the brain and muscle tissue simulating liquids are according to the data by C. Gabriel and G. Harts grove.

Ingredients	Frequency (MHz)									
(% by weight)	8	35	2 450 -	- 2 700	3500 - 5 800					
Tissue Type	Head	Body	Head	Body	Head	Body				
Water	40.45	53.06	71.88	73.2	65.52	78.66				
Salt (NaCl)	1.45	0.94	0.16	0.1	0.0	0.0				
Sugar	57.0	44.9	0.0	0.0	0.0	0.0				
HEC	1.0	1.0	0.0	0.0	0.0	0.0				
Bactericide	0.1	0.1	0.0	0.0	0.0	0.0				
Triton X-100	0.0	0.0	19.97	0.0	17.24	10.67				
DGBE	0.0	0.0	7.99	26.7	0.0	0.0				
Diethylene glycol hexyl ether	-	-	-	-	-	-				

Salt:	99 % Pure Sodium Chloride	Sugar:	98 % Pure Sucrose						
Water:	De-ionized, 16M resistivity	HEC:	Hydroxyethyl Cellulose						
DGBE:	99 % Di(ethylene glycol) butyl ether,[2-(2-butoxyethoxy) ethanol]								
Triton X-100(ultra-pure):	Polyethylene glycol mono[4-(1,1,3,3-tetramethylbutyl)phenyl] ether								

Composition of the Tissue Equivalent Matter

Appendix E. – SAR System Validation

Per FCC KCB 865664 D02v01r02, SAR system validation status should be document to confirm measurement accuracy. The SAR systems (including SAR probes, system components and software versions) used for this device were validated against its performance specifications prior to the SAR measurements. Reference dipoles were used with the required tissue- equivalent media for system validation, according to the procedures outlined in IEEE 1528-2013 and FCC KDB 865664 D01v01r04. Since SAR probe calibrations are frequency dependent, each probe calibration point was validated at a frequency within the valid frequency range of the probe calibration point, using the system that normally operates with the probe for routine SAR measurements and according to the required tissue-equivalent media.

A tabulated summary of the system validation status including the validation date(s), measurement frequencies, SAR probes and tissue dielectric parameters has been included.

SAR							Pro	obe			Dielectric F	Parameters	CV	V Validati	on	Modulat	ion Vali	dation
System No.	Probe	Probe Type	Calib	pration	Dipole		Measured Permittivity	Measured Conductivity	Sensitivity	Probe Linearity	Probe Isotropy	MOD. Type	Duty Factor	PAR				
6	7370	EX3DV4	Head	835	4d165	2021-09-10	41.5	0.89	PASS	PASS	PASS	GMSK	PASS	N/A				
6	7370	EX3DV4	Head	835	4d165	2021-09-10	41.5	0.89	PASS	PASS	PASS	N/A	N/A	N/A				
6	7370	EX3DV4	Head	2450	743	2022-06-30	39.2	1.83	PASS	PASS	PASS	OFDM	N/A	PASS				
8	7654	EX3DV4	Head	2600	1106	2022-06-24	39.1	1.94	PASS	PASS	PASS	TDD	PASS	N/A				
11	7679	EX3DV4	Head	2600	1106	2021-09-21	39.1	1.94	PASS	PASS	PASS	TDD	PASS	N/A				
6	7370	EX3DV4	Head	5250	1253	2022-06-30	35.7	4.70	PASS	PASS	PASS	OFDM	N/A	PASS				
6	7370	EX3DV4	Head	5600	1253	2022-06-30	35.3	5.05	PASS	PASS	PASS	OFDM	N/A	PASS				
6	7370	EX3DV4	Head	5750	1253	2022-06-30	35.6	5.24	PASS	PASS	PASS	OFDM	N/A	PASS				

SAR System Validation Summary 1g

SAR			Der	In a		Date	Dielectric Parameters		CV	Modulation Validation				
System No.	Probe	Probe Type	Calib	obe oration oint	Dipole		Measured Permittivity	Measured Conductivity	Sensitivity	Probe Linearity	Probe Isotropy	MOD. Type	Duty Factor	PAR
6	7370	EX3DV4	Head	2600	1106	2021-09-10	39.1	1.94	PASS	PASS	PASS	TDD	PASS	N/A
6	7370	EX3DV4	Head	5250	1253	2022-06-30	35.7	4.70	PASS	PASS	PASS	OFDM	N/A	PASS
6	7370	EX3DV4	Head	5600	1253	2022-06-30	35.3	5.05	PASS	PASS	PASS	OFDM	N/A	PASS

SAR System Validation Summary – Extremity SAR Considerations

Note;

All measurement were performed using probes calibrated for CW signal only. Modulations in the table above represent test configurations for which the measurement system has been validated per FCC KDB Publication 865664 D01v01r04. SAR system were validated for modulated signals with a periodic duty cycle, such as GMSK, or with a high peak to average ratio (>5 dB), such as OFDM according to KDB 865664 D01v01r04.