

FCC SAR Test Report

Report No.	:	OT-197-RWD-013
AGR. No.	:	A194A-028
Applicant	:	Samsung Electronics Co., Ltd
Address	:	19 Chapin Road, Building D, Pine Brook, New Jersey, United States
DUT Type	:	ARTIK-0710
FCC ID	:	A3LSIP007AFS00
Model No.	:	SIP007AFS00
FCC Rule Part(s)	:	CFR §2.1093
Sample Received Date	:	2019-04-26
Date of Testing	:	2019-07-08
Issue Date	:	2019-07-10

This report details the results of the testing carried out on one sample, the results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. This report may only be reproduced and distribute in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of ONETECH Corp. or testing done by ONETECH Corp. In connection with distribution or use of the product described in this report must be approved by ONETECH Corp. in writing.

Tested By :

No Gyun Im / Manager

Approved By :

Jung Wook Kim / Technical Manager

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification.

Revision history

Report No.	Reason for Change	Date Issued
OT-197-RWD-013	Initial release	2019-07-10

TABLE OF CONTENTS

1.	Summary of Maximum SAR Value	4
2.	Device Under Test	4
3.	INTRODUCTION	9
4.	DOSIMETRIC ASSESSMENT	11
5.	TEST CONFIGURATION POSITIONS	12
6.	RF EXPOSURE LIMITS	13
7.	FCC MEASUREMENT PROCEDURES	14
8.	RF CONDUCTED POWERS	
9.	SYSTEM VERIFICATION	20
10.	SAR TEST DATA SUMMARY	21
11.	FCC MULTI-TX AND ANTENNA SAR CONSIDERATIONS	23
12.	EQUIPMENT LIST	24
13.	MEASUREMENT UNCERTAINTIES	
14.	CONCLUSION	26
15.	REFERENCES	27

APPENDIX A: SYSTEM VERIFICATION	29
APPENDIX B: SAR TEST DATA	31
APPENDIX C: PROBE & DIPOLE ANTENNA CALIBRATION	33
APPENDIX D: SAR TISSUE SPECIFICATIONS	62
APPENDIX E: SAR SYSTEM VALIDATION	78
APPENDIX F: DUT ANTENNA DIAGRAM & SAR TEST SETUP PHOTOGRAPHS	79

1. Summary of Maximum SAR Value

Equipment Class	Band & Mode	Tx Frequency	SAR 1 g Body (W/kg)		
DTS	2.4 GHz WLAN	2412 ~ 2462 MHz	0.036		
DSS/DTS Bluetooth		2402 ~ 2480 MHz	N/A		
Sir	multaneous SAR per KDB 6	N/A			

This wireless portable device has been shown to be capable of compliance for localized specific absorption rate (SAR) for uncontrolled environment/general population exposure limits specified in ANSI/IEEE C95.1-1992 and has been tested in accordance with the measurement procedures specified in Section 8 of this report;

2. Device Under Test

2.1. DUT Information

DUT Type	ARTIK-0710				
FCC ID	A3LSIP007AFS00				
Model Name	SIP007AFS00				
Host Model Name / Type Ref.	ExoAtlet®-II / EA2010				
Additional Model Name(s)	-				
Antenna Type	Chip Antenna (Ceramic Antenna)				
Antenna Peak Gain	1.0 dBi				
DUT Stage	Identical Prototype				

2.2. Device Overview

Band & Mode	Operating Modes	Tx Frequency
2.4 GHz WLAN	Data	2412 ~ 2462 MHz
Bluetooth	Data	2402 ~ 2480 MHz

2.3. Power Reduction for SAR

There is no power reduction used for any band/mode implemented in the device for SAR purposes.

2.4. Nominal and Maximum Output Power Specifications

This device operates using the following maximum and nominal output power specifications. SAR values were scaled to the maximum allowed power to determine compliance per KDB Publication 447498 D01 v06.

Maximum WLAN Output Power

Mode / Band		Modulated Average (dBm)			
Channels		1	2~10	11	
	Maximum	17.0			
IEEE 802.11b (2.4 GHz)	Nominal	16.0			
	Maximum		12.0		
IEEE 802.11g (2.4 GHz)	Nominal				
	Maximum	13.5			
IEEE 802.11n HT20 (2.4 GHz)	Nominal	12.5			

Maximum Bluetooth Output Power

Mode / Band		Modulated Average (dBm)		
Divete of th DDD	Maximum	8.5		
Bluetooth BDR	Nominal	7.5		
	Maximum	4.5		
Bluetooth EDR	Nominal	3.5		

Mode / Band		Modulated Average (dBm)		
	Maximum	2.0		
Bluetooth LE	Nominal	1.0		

2.5. DUT Antenna Locations

This device is also operating at hand-held use near body. So, FCC KDB Publication 941225 D07 is apply to this condition. 1g SAR test is evaluated to some position (distance from to the edge/side is within 2.5 cm) at 0 mm. so 10g SAR is not required.

Table 2-1 Device Edges/Sides for SAR Testing

Mode	Тор	Bottom	Front	Rear	Right	Left
2.4 GHz WLAN	Yes	No	Yes	Yes	No	Yes

Note: Particular DUT edges were not required to be evaluated for wireless router SAR or phablet SAR if the edges were greater than 2.5 cm from the transmitting antenna according to FCC KDB Publication 941225 D07 and October 2016 TCBC Workshop Note. The distances between the transmit antenna and the edges of the device are included in the filing.

2.6. Simultaneous Transmission Capabilities

According to FCC KDB Publication 447498 D01v06, transmitters are considered to be transmitting simultaneously when there is overlapping transmission, with the exception of transmissions during network hand-offs with maximum hand-off duration less than 30 seconds. Possible transmission paths for the DUT are shown in Figure 2-1 and are color-coded to indicate communication modes which share the same path. Modes which share the same transmission path cannot transmit simultaneously with one another.

Figure 2-1 Simultaneous Transmission Paths

Note:

1. 2.4 GHz WLAN and 2.4 GHz Bluetooth share the same antenna path and cannot transmit simultaneously.

2.7. Miscellaneous SAR Test Considerations

(A) WIFI/Bluetooth

2.4 GHz 802.11g/n OFDM are additionally evaluated for SAR if the highest reported SAR for 802.11b, adjusted by the ratio of the OFDM to DSSS. Specified maximum output power, is > 1.2 W/kg.

Freque	ency	Band/Mode	Service	Maximum Allowed Power	Reported SAR (1g)	Frequency	Band/Mode	Service	Maximum Allowed Power	Ratio (OFDM to DSSS)	Adjusted SAR (1g)
MHz	Ch.			[dBm]	[W/kg]	[MHz]			[dBm]		[W/kg]
2412	1	802.11b	DSSS	17.0	0.036	2412	802.11g	OFDM	12.0	0.398	0.014
2412	1	802.11b	DSSS	17.0	0.036	2412	802.11n HT20	OFDM	13.5	0.447	0.016

OFDM SAR is not required for the following 2.4 GHz OFDM conditions. When the highest reported SAR for DSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is \leq 1.2 W/kg.

Per FCC KDB 447498 D01v06, the 1g SAR exclusion threshold for distances < 50 mm is defined by the following equation:

$$\frac{Max Power of Channel (mW)}{Test Separation Dist (mm)} * \sqrt{Frequency(GHz)} \le 3.0$$

Based on the maximum conducted power of Bluetooth (rounded to the nearest mW) and the antenna to user separation distance, body Bluetooth SAR was not required; [(7/5) X SQRT(2.441)] = $2.2 \leq 3.0$. Per KDB Publication 447498 D01v06, the maximum power of the channel was rounded to the nearest mW before calculation.

Based on the maximum conducted power of Bluetooth (rounded to the nearest mW) and the antenna to user separation distance, body Bluetooth LE SAR was not required; [(2/5) X SQRT(2.441)] = $0.6 \le 3.0$. Per KDB Publication 447498 D01v06, the maximum power of the channel was rounded to the nearest mW before calculation.

2.8. Guidance Applied

- IEEE 1528-2013
- FCC KDB Publication 941225 D07v01r02 (UMPC Mini Tablet)
- FCC KDB Publication 447498 D01v06 (General SAR Guidance)
- FCC KDB Publication 248227 D01v02r02 (SAR Considerations for 802.11 Devices)
- FCC KDB Publication 865664 D01v01r04, D02v01r02 (SAR Measurements up to 6 GHz)
- FCC KDB Publication 690783 D01v01r03 (SAR Listings on Grants)
- October 2016 TCBC Workshop Notes (SAR Testing for Non-Standard Form Factor Devices SAR for Generic Device)

2.9. Device Serial Numbers

Several samples with identical hardware were used to support SAR testing. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units. The serial numbers used for each test are indicated alongside the results in Section 11.

3. INTRODUCTION

The FCC and Innovation, Science, and Economic Development Canada have adopted the guidelines for evaluating the environmental effects of radio frequency (RF) radiation in ET Docket 93-62 on Aug. 6, 1996 and Health Canada Safety Code 6 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices.

The safety limits used for the environmental evaluation measurements are based on the criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate (SAR) in IEEE/ANSI C95.1-1992 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz and Health Canada RF Exposure Guidelines Safety Code 6. The measurement procedure described in IEEE/ANSI C95.3-2002 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave is used for guidance in measuring the Specific Absorption Rate (SAR) due to the RF radiation exposure from the Equipment Under Test (EUT). These criteria for SAR evaluation are similar to those recommended by the International Committee for Non-Ionizing Radiation Protection (ICNIRP) in Biological Effects and Exposure Criteria for Radiofrequency Electromagnetic Fields," Report No. Vol 74. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards.

3.1. SAR Definition

Specific Absorption Rate is defined as the time derivative (rate) of the incremental energy (dU) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (). It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body (see Equation 3-1).

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dV} \right)$$

Equation 3-1 SAR Mathematical Equation

SAR is expressed in units of watts per kilogram (W/kg).

$$SAR = \frac{\sigma |E|^2}{\rho}$$

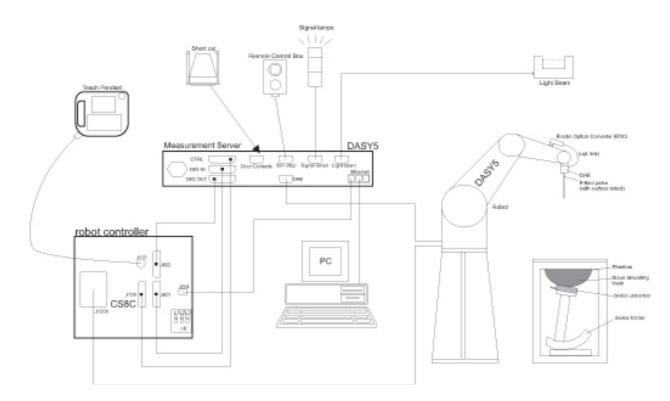
where:

ρ

 σ = conductivity of the tissue (S/m)

= mass density of the tissue (kg/m³)

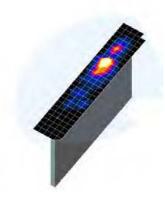
E = rms electric field strength (V/m)


NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relation to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane.

3.2. SAR Measurement Setup

A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE). An isotropic Field probe optimized and calibrated for the targeted measurement. Data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.

The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server. The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts. The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning. A computer running WinXP, Win7 or Win10 and the DASY5 software. Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc. The phantom, the device holder and other accessories according to the targeted measurement.



4. DOSIMETRIC ASSESSMENT

The evaluation was performed using the following procedure compliant to FCC KDB Publication 865664 D01v01r04 and IEEE 1528-2013:

- The SAR distribution at the exposed side of the head or body was measured at a distance no greater than 5.0 mm from the inner surface of the shell. The area covered the entire dimension of the device-head and body interface and the horizontal grid resolution was determined per FCC KDB Publication 865664 D01v01r04 (See Table 5-1) and IEEE 1528-2013.
- The point SAR measurement was taken at the maximum SAR region determined from Step 1 to enable the monitoring of SAR fluctuations/drifts during the 1g/10g cube evaluation. SAR at this fixed was measured and used as a reference value.

- 3. Based on the area scan data, the peak of the region with maximum SAR point was determined by spline interpolation. Around this point, a volume was assessed according to the measurement resolution and volume size requirements of FCC KDB Publication 865664 D01v01r04 (See Table 4-1) and IEEE 1528-2013. On the basis of this data set, the spatial peak SAR value was evaluated with the following procedure (see references or the DASY manual online for more details):
 - a) SAR values at the inner surface of the phantom are extrapolated from the measured values along the line away from the surface with spacing no greater than that in Table 4-1. The extrapolation was based on a least-squares algorithm. A polynomial of the fourth order was calculated through the points in the z-axis (normal to the phantom shell).
 - b) After the maximum interpolated values were calculated between the points in the cube, the SAR was averaged over the spatial volume (1g or 10g) using a 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions). The volume was then integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were obtained through interpolation, in order to calculate the averaged SAR.
 - c) All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.
- 4. The SAR reference value, at the same location as step 2, was re-measured after the zoom scan was complete to calculate the SAR drift. If the drift deviated by more than 5%, the SAR test and drift measurements were repeated.

_	Maximum Area Scan	Maximum Zoom Scan		imum Zoom So Resolution (Minimum Zoom Scan
Frequency	Resolution (mm) (Δx _{area} , Δy _{area})	Resolution (mm) (Δx _{200m} , Δy _{200m})	Uniform Grid	G	raded Grid	Volume (mm) (x,y,z)
			∆z _{zoom} (n)	$\Delta z_{zoom}(1)^*$	∆z _{zoom} (n>1)*	
≤ 2 GHz	≤15	≤8	≤5	≤ 4	≤1.5*Δz _{zoom} (n-1)	≥ 30
2-3 GHz	≤12	≤5	≤5	≤4	≤1.5*∆z _{zoom} (n-1)	≥ 30
3-4 GHz	≤ 12	≤5	≤4	≤3	≤ 1.5*∆z _{zoom} (n-1)	≥ 28
4-5 GHz	≤ 10	≤4	≤3	≤2.5	≤1.5*∆z _{zoom} (n-1)	≥ 25
5-6 GHz	≤ 10	≤4	≤2	≤2	≤1.5*∆z _{zoom} (n-1)	≥ 22

Table 4-1 Area and Zoom Scan Resolutions per FCC KDB Publication 865664 D01v01r04*

*Also compliant to IEEE 1528-2013 Table 6

5. TEST CONFIGURATION POSITIONS

5.1. Device Holder

The device holder is made out of low-loss POM material having the following dielectric parameters: relative permittivity ε = 3 and loss tangent δ = 0.02.

5.2. Positioning for Testing

Based on FCC guidance and expected exposure conditions, the device was positioned with the outside of the device touching the flat phantom and such that the location of maximum SAR was captured during SAR testing. The SAR test setup photograph is included in Appendix F.

6. RF EXPOSURE LIMITS

In order for users to be aware of the body-worn operating requirements for meeting RF exposure compliance, operating instructions and cautions statements are included in the user's manual.

6.1. Uncontrolled Environment

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

6.2. Controlled Environment

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

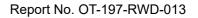

	UNCONTROLLED ENVIRONMENT General Population (W/kg) or (mW/g)	CONTROLLED ENVIROMENT Professional Population (W/kg) or (mW/g)
SPATIAL PEAK SAR ¹ Brain	1.60	8.00
SPATIAL AVERAGE SAR ² Whole Body	0.08	0.40
SPATIAL PEAK SAR ³ Hands, Feet, Ankles, Wrists	4.00	20.00

Table 8-1 SAR Human Exposure Specified in ANSI/IEEE C95.1-1992 and Health Canada Safety Code 6

¹ The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

² The Spatial Average value of the SAR averaged over the whole body.

³ The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

7. FCC MEASUREMENT PROCEDURES

Power measurements for licensed transmitters are performed using a base station simulator under digital average power.

7.1. Measured and Reported SAR

Per FCC KDB Publication 447498 D01v06, when SAR is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance. For simultaneous transmission, the measured aggregate SAR must be scaled according to the sum of the differences between the maximum tune-up tolerance and actual power used to test each transmitter. When SAR is measured at or scaled to the maximum tune-up tolerance limit, the results are referred to as *reported* SAR. The highest *reported* SAR results are identified on the grant of equipment authorization according to procedures in KDB 690783 D01v01r03.

7.2. Procedures Used to Establish RF Signal for SAR

Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters. The reported SAR is scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit. Establishing connections in this manner ensure a consistent means for testing SAR and are recommended for evaluating SAR. Devices under test are evaluated prior to testing, with a fully charged battery and were configured to operate at maximum output power. In order to verify that the device is tested throughout the SAR test at maximum output power, the SAR measurement system measures a "point SAR" at an arbitrary reference point at the start and end of the 1 gram SAR evaluation, to assess for any power drifts during the evaluation. If the power drift deviates by more than 5%, the SAR test and drift measurements are repeated.

7.3. SAR Testing with 802.11 Transmitters

The normal network operating configurations of 802.11 transmitters are not suitable for SAR measurements. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure the results are consistent and reliable. See KDB Publication 248227 D01v02r02 for more details.

7.3.1. General Device Setup

Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters.

A periodic duty factor is required for current generation SAR systems to measure SAR. When 802.11 frame gaps are accounted for in the transmission, a maximum transmission duty factor of 92 - 96% is typically achievable in most test mode configurations. A minimum transmission duty factor of 85% is required to avoid certain hardware and device implementation issues related to wide range SAR scaling. The reported SAR is scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit.

7.3.2. Initial Test Position Procedure

For exposure conditions with multiple test positions, such as handset operating next to the ear, devices with hotspot mode or UMPC mini-tablet, procedures for initial test position can be applied. Using the transmission mode determined by the DSSS procedure or initial test configuration, area scans are measured for all positions in an exposure condition. The test position with the highest extrapolated (peak) SAR is used as the initial test position. When reported SAR for the initial test position is ≤ 0.4 W/kg, no additional testing for the remaining test positions is required. Otherwise, SAR is evaluated at the subsequent highest peak SAR positions until the reported SAR result is ≤ 0.8 W/kg or all test positions are measured. When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

7.3.3. 2.4 GHz SAR Test Requirements

SAR is measured for 2.4 GHz 802.11b DSSS using either the fixed test position or, when applicable, the initial test position procedure. SAR test reduction is determined according to the following:

- When the reported SAR of the highest measured maximum output power channel for the exposure configuration is ≤ 0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration.
- 2) When the reported SAR is > 0.8 W/kg, SAR is required for that position using the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel; i.e., all channels require testing.

2.4 GHz 802.11 g/n/ax OFDM are additionally evaluated for SAR if the highest reported SAR for 802.11b, adjusted by the ratio of the OFDM to DSSS specified maximum output power, is > 1.2 W/kg. When SAR is required for OFDM modes in 2.4 GHz band, the Initial Test Configuration Procedures should be followed. When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

7.3.4. OFDM Transmission Mode and SAR Test Channel Selection

When the same maximum output power was specified for multiple OFDM transmission mode configurations in a frequency band or aggregated band, SAR is measured using the configuration with the largest channel bandwidth, lowest order modulation and lowest data rate. When the maximum output power of a channel is the same for equivalent OFDM configurations; for example, 802.11a, 802.11n and 802.11ac or 802.11g and 802.11n with the same channel bandwidth, modulation and data rate etc., the lower order 802.11 mode i.e., 802.11a, then 802.11n and 802.11ac or 802.11g then 802.11n, is used for SAR measurement. Per FCC Guidance, 802.11ax was considered a higher order 802.11 mode when compared to a/b/g/n/ac to apply KDB Publication 248227 Guidance. When the maximum output power are the same for multiple test channels, either according to the default or additional power measurement requirements, SAR is measured using the channel closest to the middle of the frequency band or aggregated band. When there are multiple channels with the same maximum output power, SAR is measured using the higher number channel.

7.3.5. Initial Test Configuration Procedure

For OFDM, an initial test configuration is determined for each frequency band and aggregated band, according to the transmission mode with the highest maximum output power specified for SAR measurements. When the same maximum output power is specified for multiple OFDM transmission mode configurations in a frequency band or aggregated band, SAR is measured using the configuration(s) with the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order IEEE 802.11 mode. The channel of the transmission mode with the highest average RF output conducted power will be the initial test configuration.

When the reported SAR is ≤ 0.8 W/kg, no additional measurements on other test channels are required. Otherwise, SAR is evaluated using the subsequent highest average RF output channel until the reported SAR result is ≤ 1.2 W/kg or all channels are measured. When there are multiple untested channels having the same subsequent highest average RF output power, the channel with higher frequency from the lowest 802.11 mode is considered for SAR measurements (See Section 8.7.4). When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

7.3.6. Subsequent Test Configuration Procedures

For OFDM configurations in each frequency band and aggregated band, SAR is evaluated for initial test configuration using the fixed test position or the initial test position procedure. When the highest reported SAR (for the initial test configuration), adjusted by the ratio of the specified maximum output power of the subsequent test configuration to initial test configuration, is ≤ 1.2 W/kg, no additional SAR tests for the subsequent test configurations are required. When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

8. RF CONDUCTED POWERS

8.1. WLAN Conducted Powers

	Tuble e			,
		2.4 G	Hz Conducted Power [dBm]
Frequency	Ohermel	I	EEE Transmission Mod	e
[MHz]	Channel	802.11b	802.11g	802.11n HT20
		Average	Average	Average
2412	1	16.85	11.61	13.15
2437	6	16.73	11.53	12.89
2462	11	16.56	11.49	12.96

Table 8-1 2.4 GHz WLAN Maximum Averaged RF Power

Note: The Bolded channel above were tested for SAR.

Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02:

- Power measurements were performed for the transmission mode configuration with the highest maximum output power specified for production units.
- For transmission modes with the same maximum output power specification, powers were measured for the largest channel bandwidth, lowest order modulation and lowest data rate.
- For transmission modes with identical maximum specified output power, channel bandwidth, modulation and data rates, power measurements were required for all identical configurations.
- For each transmission mode configuration, powers were measured for the highest and lowest channels; and at the mid-band channel(s) when there were at least 3 channels supported. For configurations with multiple mid-band channels, due to an even number of channels, both channels were measured.

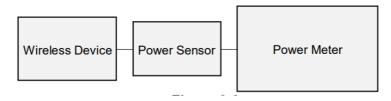
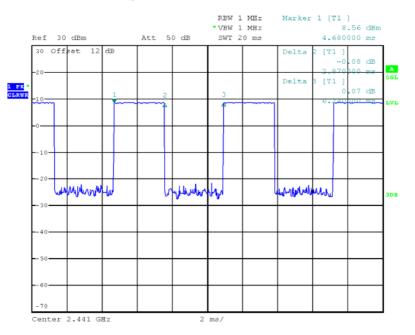


Figure 8-1 Power Measurement Setup



8.2. Bluetooth Conducted Powers

		etooth Average R		
Frequency	Data Rate	Channel No.	Average Con	ducted Power
[MHz]	[Mbps]	Channel No.	[dBm]	[mW]
2402	1.0	0	8.29	6.75
2441	1.0	39	8.33	6.81
2480	1.0	78	7.32	5.40
2402	2.0	0	4.03	2.53
2441	2.0	39	4.46	2.79
2480	2.0	78	2.92	1.96
2402	3.0	0	4.05	2.54
2441	3.0	39	4.48	2.81
2480	3.0	78	2.95	1.97
2402	LE	0	1.74	1.49
2440	LE	19	1.85	1.53
2480	LE	39	1.84	1.53

Table 8-2 Bluetooth Average RF Powers

Figure 8-2 Bluetooth Transmission Plot

- DUTY cycle of this device is 46.0 %.
- DUTY Cycle [%] = (Pulse / Period) X 100 = (2.87 / 6.24) X 100 = 46.0 %

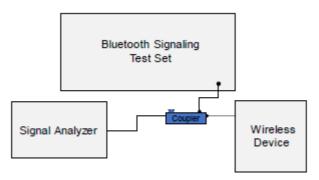


Figure 8-3 Power Measurement Setup

9. SYSTEM VERIFICATION

9.1. Tissue Verification

Tissue Type	Frequency (MHz)	Liquid Temp. (℃)	Measured Conductivity (σ)	Measured Permittivity (ε _r)	Target Conductivity (σ)	Target Permittivity (ε _r)	Conductivity Deviation (%)	Permittivity Deviation (%)	Test Date
	2450		2.026	50.712	1.95	52.7	3.90	-3.77	
MSI 2450	2412	01.7	1.974	50.808	1.90	52.7	3.89	-3.59	2010 07 09
MSL2450	2437	21.7	2.008	50.742	1.93	52.7	4.04	-3.72	2019.07.08
	2462		2.040	50.690	1.96	52.7	4.08	-3.81	

Table 9-1 Measured Body Tissue Properties

The above measured tissue parameters were used in the DASY software. The DASY software was used to perform interpolation to determine the dielectric parameters at the SAR test device frequencies (per KDB Publication 865664 D01v01r04 and IEEE 1528-2013 6.6.1.2). The tissue parameters listed in the SAR test plots may slightly differ from the table above due to significant digit rounding in the software.

9.2. Test System Verification

Prior to SAR assessment, the system is verified to $\pm 10\%$ of the SAR measurement on the reference dipole at the time of calibration by the calibration facility. Full system validation status and result summary can be found in Appendix E.

Table 9-2	System	Verification	Results – 1 g
-----------	--------	--------------	---------------

SAR System #	Amb. Temp (°C)	Liquid Temp. (°C)	Test Date	Tissue Type	Frequency (MHz)	Input Power (mW)	1W Target SAR-1 g (W/kg)	Measured SAR-1 g (W/kg)	Normalized to 1W SAR-1 g (W/kg)	Deviation (%)	Dipole S/N	Probe S/N
4	22.0	21.7	2019.07.08	Body	2450	100	52.10	5.29	52.90	1.54	920	3832

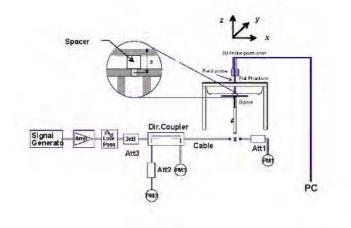


Figure 9-1 System Verification Setup Diagram and Photo

10. SAR TEST DATA SUMMARY

10.1. Standalone Body SAR Data

	Davias	Freque	ency						Maximum	Measured		Dutu	Deels CAD of	Scaling	0	Damas	Maaaaaaaad	Demonto d
Plot No.	Device Serial Number	MHz	Ch.	Bandwidth [MHz]	Mode	Service	Test Position	Spacing (cm)	Allowed Power (dBm)	Conducted Power (dBm)	Data Rate	Duty Cycle (%)	Peak SAR of Area Scan (W/kg)	Factor (Duty Cycle)	Scaling Factor (Power)	Drift	Measured SAR 1 g (W/kg)	SAR 1 g (W/kg)
	SAR#1	2412	1	22	802.11b	DSSS	Тор	0	17.0	16.85	1	99.5	0.0262	1.005	1.035	0.000	0.016	0.017
	SAR#1	2412	1	22	802.11b	DSSS	Front	0	17.0	16.85	1	99.5	0.0264	1.005	1.035	0.000	0.015	0.016
	SAR#1	2412	1	22	802.11b	DSSS	Rear	0	17.0	16.85	1	99.5	0.00593	1.005	1.035	0.000	0.000598	0.000622
4	SAR#1	2412	1	22	802.11b	DSSS	Left	0	17.0	16.85	1	99.5	0.0483	1.005	1.035	-0.190	0.035	0.036
				EE C95.1 19 Spatial ed Exposure	Peak		on						Bod <u>y</u> 1.6 W/kg (Averaged ove	mW/g)				

Table 10-1 WLAN Body SAR

10.2. SAR Test Notes

General Notes:

- 1. The test data reported are the worst-case SAR values according to test procedures specified in IEEE 1528-2013, and FCC KDB Publication 447498 D01v06.
- 2. Batteries are fully charged at the beginning of the SAR measurements.
- 3. Liquid tissue depth was at least 15.0 cm for all frequencies.
- 4. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units.
- 5. SAR results were scaled to the maximum allowed power to demonstrate compliance per FCC KDB Publication 447498 D01v06.
- 6. Device was tested using a fixed spacing for body testing. A separation distance of 0 mm was considered because the manufacturer has determined that there will be body available in the marketplace for users to support this separation distance.
- 7. Per FCC KDB 865664 D01v01r04, variability SAR tests may be performed when the measured SAR results for a frequency band were greater than or equal to 0.8 W/kg. Since Measured SAR results of this device ≤ 0.8 W/kg, repeated SAR was not required.

WLAN Notes:

- For body operations, the initial test position procedures were applied. The test position with the highest extrapolated peak SAR will be used as the initial test position. When reported SAR for the initial test position is ≤ 0.4 W/kg for 1g evaluations, no additional testing for the remaining test positions was required. Otherwise, SAR is evaluated at the subsequent highest peak SAR positions until the reported SAR results is ≤ 0.8 W/kg or all test positions are measured.
- Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02 for 2.4 GHz WIFI single transmission chain operations, the highest measured maximum output power channel for DSSS was selected for SAR measurement. SAR for OFDM modes (2.4 GHz 802.11g/n) was not required due to the maximum allowed powers and the highest reported DSSS SAR. See Section 7.3.3 for more information.

- 3. When the maximum reported 1g averaged SAR is ≤0.8 W/kg, SAR testing on additional channels was not required. Otherwise, SAR for the next highest output power channel was required until the reported SAR result was ≤ 1.20 W/kg for 1g evaluations or all test channels were measured.
- 4. The device was configured to transmit continuously at the required data rate, channel bandwidth and signal modulation, using the highest transmission duty factor supported by the test mode tools. The reported SAR was scaled to the 100% transmission duty factor to determine compliance. Procedures used to measure the duty factor are identical to that in the associated EMC test reports.
- 5. When 10-g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

11. FCC MULTI-TX AND ANTENNA SAR CONSIDERATIONS

11.1. Introduction

The following procedures adopted from FCC KDB Publication 447498 D01v06 are applicable to devices with builtin unlicensed transmitters such as 802.11 and Bluetooth devices which may simultaneously transmit with the licensed transmitter.

This device is support only 2.4 GHz WLAN and Bluetooth. And Simultaneous transmission was not required since 2.4 GHz WLAN and Bluetooth share the same antenna path and cannot transmit simultaneously.

12. EQUIPMENT LIST

Manufacturer	Model	Description	Cal. Date	Cal. Interval	CaL.Due	Serial No.
SY Corp.	SAR ROOM #4	SAR Shield Room	N/A	N/A	N/A	N/A
STAUBLI	TX90XL	DASY6 Robot	N/A	N/A	N/A	F17/59RBA1/A/01
STAUBLI	CS8C Speag TX90	DASY6 Controller	N/A	N/A	N/A	F17/59RBA1/C/01
Speag	SE UMS 028 BB	DASY6 Measurement Server	N/A	N/A	N/A	1544
STAUBLI	SP1	Robot Remote Control	N/A	N/A	N/A	D 211 426 06B
Speag	SE UKS 030 AA	LightBeam SAR #4	N/A	N/A	N/A	1040
Speag	QD OVA 004 AA	ELI4 Phantom V8.0	N/A	N/A	N/A	TP-2056
Speag	MD4HHTV5	Mounting Device	N/A	N/A	N/A	N/A
Speag	EX3DV4	SAR Probe	2019-02-27	Annual	2020-02-27	3832
Speag	DAE4	Data Acquisition Electronics	2019-02-28	Annual	2020-02-28	557
Speag	D2450V2	Dipole Antenna	2018-08-24	Biennial	2020-08-24	920
HP	8665B	RF Signal Generator	2018-08-28	Annual	2019-08-28	3744A01349
EMPOWER	BBS3Q7ECK-2001	RF Power Amplifier	2018-08-28	Annual	2019-08-28	1045D/C0536
Agilent	E4419B	Power Meter	2018-08-27	Annual	2019-08-27	MY45100284
Agilent	E4419B	Power Meter	2018-08-27	Annual	2019-08-27	MY45100286
HP	8481H	Power Sensor	2018-08-27	Annual	2019-08-27	3318A17600
HP	8481A	Power Sensor	2018-08-27	Annual	2019-08-27	US37290447
HP	8481A	Power Sensor	2018-08-27	Annual	2019-08-27	3318A89373
Anritsu	ML2495A	Power Meter	2018-07-19	Annual	2019-07-19	1337003
Anritsu	MA2411B	Power Sensor	2018-07-19	Annual	2019-07-19	1306054
HP	11692D	Dual Directional Coupler	2018-08-27	Annual	2019-08-27	1212A05057
Bird	50-6A-MFN-30	Attenuator	2018-08-27	Annual	2019-08-27	N/A
HP	8491A	Attenuator	2018-08-28	Annual	2019-08-28	63272
WAINWRIGHT	WLJS3000-6EF	Low Pass Filter	2018-08-28	Annual	2019-08-28	1
Speag	DAK-3.5	Dielectric Assessment Kit	2018-11-20	Annual	2019-11-20	1140
Agilent	E8357A	Network Analyzer	2018-08-27	Annual	2019-08-27	US41070399
ROHDE & SCHWARZ	FSP	Spectrum Analyzer	2018-08-23	Annual	2019-08-23	100017
ROHDE & SCHWARZ	FSV30	SIGNAL ANALYZER	2018-08-23	Annual	2019-08-23	101372
LKM Electronic GmbH	DTM3000-Spezial	Hand-Held Thermometers	2018-08-28	Annual	2019-08-28	3247
CAS	TE-201	Temperature hygrometer	2018-08-28	Annual	2019-08-28	14011777-1
KIKUSHI	PAS40-9	DC POWER SUPPLY	2019-04-06	Annual	2020-04-06	QK000851

Notes:

- 1. CBT (Calibration Before Testing). Prior to testing, the measurement paths containing a cable, amplifier, attenuator, coupler or filter were connected to a calibrated source (i.e. a signal generator) to determine the losses of the measurement path. The power meter offset was then adjusted to compensate for the measurement system losses. This level offset is stored within the power meter before measurements are made. This calibration verification procedure applies to the system verification and output power measurements. The calibrated reading is then taken directly from the power meter after compensation of the losses for all final power measurements.
- 2. All equipment was used solely within its calibration period.

13. MEASUREMENT UNCERTAINTIES

			Uncertainty	Uncertainty	Probe	Div.	Ci	Ci	U _i (y)	$U_i(y)$	Vi
No.		Error Description	Value (1 g)	Value (10 g)	Dist.		(1 g)	(10 g)	(1 g)	(10 g)	or V_{eff}
			(%)	(%)							
1	$U(PR_C)$	Probe Calibration	6.30	6.30	N	1.00	1.00	1.00	6.30	6.30	œ
2	U(PR1)	Isotropy	1.87	1.87	R	$\sqrt{3}$	1.00	1.00	1.08	1.08	00
3	U(L)	Linearity	0.60	0.60	R	√3	1.00	1.00	0.35	0.35	00
4	U(PR _{MR})	Probe modulation response	2.40	2.40	R	-√3	1.00	1.00	1.39	1.39	00
6	U(DL)	Detection Limits	1.00	1.00	R	√3	1.00	1.00	0.58	0.58	00
5	U(BE)	Boundary effect	1.00	1.00	R	$\sqrt{3}$	1.00	1.00	0.58	0.58	00
7	U(RE)	Readout Electronics	0.30	0.30	N	1.00	1.00	1.00	0.30	0.30	00
8	$U(T_{RT})$	Response Time	0.80	0.80	R	$\sqrt{3}$	1.00	1.00	0.46	0.46	00
9	$U(T_H)$	Integration Time	2.60	2.60	R	$\sqrt{3}$	1.00	1.00	1.50	1.50	00
10	$U(4_{ND})$	RF ambient conditions-noise	3.00	3.00	R	√3	1.00	1.00	1.73	1.73	00
11	U(A _{RF})	RF ambient conditions-reflections	3.00	3.00	R	√3	1.00	1.00	1.73	1.73	œ
12	U(PR _{PT})	Probe positioner mech. Restrictions	0.40	0.40	R	√3	1.00	1.00	0.23	0.23	00
13	U(PR _{PP})	Probe positioning with respect to phantom shell	2.90	2.90	R	$\sqrt{3}$	1.00	1.00	1.67	1.67	00
14	U(PP _{MSE})	Post-processing(for max. SAR evaluation)	2.00	2.00	R	$\sqrt{3}$	1.00	1.00	1.15	1.15	00
15	U(DU)	Device Holder Uncertainty	3.60	3.60	N	1.00	1.00	1.00	3.60	3.60	5.00
16	U(PO _{EUT})	Test sample positioning	0.92	0.94	N	1.00	1.00	1.00	0.92	0.94	9.00
17	U(PS)	Power scaling	0.00	0.00	R	√3	1.00	1.00	0.00	0.00	80
18	U(PD)	Drift of output power(measured SAR drift)	5.00	5.00	R	$\sqrt{3}$	1.00	1.00	2.89	2.89	00
19	U(PU)	Phantom Uncertainty	6.10	6.10	R	$\sqrt{3}$	1.00	1.00	3.52	3.52	00
20	U(CS _{DPO}	Algorithm for correcting SAR for deviations in permittivity and conductivity	1.90	1.90	N	1.00	1.00	0.84	1.90	1.60	00
21	U(LC M)	Liquid Conductivity (meas.)	1.39	1.26	N	1.00	0.78	0.71	1.08	0.89	5.00
22	U(LP _M)	Liquid Permittivity (meas.)	0.34	0.38	N	1.00	0.23	0.26	0.08	0.10	5.00
23	U(LC _{TU})	Liquid conductivity(temperature uncertainty)	1.87	1.71	R	√5	0.78	0.71	0.84	0.70	00
24	$U(LP_{TU})$	Liquid permittivity(temperature uncertainty)	0.11	0.13	R	√5	0.23	0.26	0.01	0.02	
/		Uc(sar) Combined standard uncertainty (%))						9.82	9.73	275
/		Extended uncertainty U(%)							19.63	19.47	

Table 15-1 Uncertainty of SAR equipment for measurement Body 0.3 GHz to 3 GHz

EMC-003 (Rev.2)

ONETECH Corp.: 43-14, Jinsaegol-gil, Chowol-eup, Gwangju-si, Gyeonggi-do, 12735, Korea (TEL: 82-31-799-9500, FAX: 82-31-799-9599)

14. CONCLUSION

14.1. Measurement Conclusion

The SAR evaluation indicates that the EUT complies with the RF radiation exposure limits of the FCC and Innovation, Science, and Economic Development Canada, with respect to all parameters subject to this test. These measurements were taken to simulate the RF effects of RF exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The results and statements relate only to the item(s) tested.

Please note that the absorption and distribution of electromagnetic energy in the body are very complex phenomena that depend on the mass, shape, and size of the body, the orientation of the body with respect to the field vectors, and the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because various factors may interact with one another to vary the specific biological outcome of an exposure to electromagnetic fields, any protection guide should consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables.

14.2. Information on the Testing Laboratories

We, Onetech Corp. Laboratory were founded in 1989 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Address: 43-14, Jinsaegol-gil, Chowol-eup, Gwangju-si, Gyeonggi-do, Korea Republic of, 12735 E-Mail: <u>info@onetech.co.kr</u> Tel: +82-31-799-9500 Fax: +82-31-799-9599

15. REFERENCES

[1] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radiofrequency Radiation, Aug. 1996.

[2] ANSI/IEEE C95.1-2005, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, 2006.

[3] ANSI/IEEE C95.1-1992, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, Sept. 1992.

[4] ANSI/IEEE C95.3-2002, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave, New York: IEEE, December 2002.

[5] IEEE Standards Coordinating Committee 39 –Standards Coordinating Committee 34 – IEEE Std. 1528-2013, IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.

[6] NCRP, National Council on Radiation Protection and Measurements, Biological Effects and Exposure Criteria for RadioFrequency Electromagnetic Fields, NCRP Report No. 86, 1986. Reprinted Feb. 1995.

[7] T. Schmid, O. Egger, N. Kuster, Automated E-field scanning system for dosimetric assessments, IEEE Transaction on Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113.

[8] K. Pokovic, T. Schmid, N. Kuster, Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies, ICECOM97, Oct. 1997, pp. 1 -124.

[9] K. Pokovic, T. Schmid, and N. Kuster, E-field Probe with improved isotropy in brain simulating liquids, Proceedings of the ELMAR, Zadar, Croatia, June 23-25, 1996, pp. 172-175.

[10] Schmid & Partner Engineering AG, Application Note: Data Storage and Evaluation, June 1998, p2.

[11] V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, N. Kuster, The Dependence of EM Energy Absorption upon Human Modeling at 900 MHz, IEEE Transaction on Microwave Theory and Techniques, vol. 44 no. 10, Oct. 1996, pp. 1865-1873.

[12] N. Kuster and Q. Balzano, Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300MHz, IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.

[13] G. Hartsgrove, A. Kraszewski, A. Surowiec, Simulated Biological Materials for Electromagnetic Radiation Absorption Studies, University of Ottawa, Bioelectromagnetics, Canada: 1987, pp. 29-36.

[14] Q. Balzano, O. Garay, T. Manning Jr., Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995.

[15] W. Gander, Computermathematick, Birkhaeuser, Basel, 1992.

[16] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in C, The Art of Scientific Computing, Second edition, Cambridge University Press, 1992.

[17] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652.

[18] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic Fields Highfrequency: 10kHz-300GHz, Jan. 1995.

[19] Prof. Dr. Niels Kuster, ETH, Eidgenössische Technische Hoschschule Zürich, Dosimetric Evaluation of the Cellular Phone.

[20] IEC 62209-1, Measurement procedure for the assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Part 1: Devices used next to the ear (Frequency range of 300 MHz to 6 GHz), July 2016.

[21] Innovation, Science, Economic Development Canada RSS-102 Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands) Issue 5, March 2015.

[22] Health Canada Safety Code 6 Limits of Human Exposure to Radio Frequency Electromagnetic Fields in the Frequency Range from 3 kHz – 300 GHz, 2015

[23] FCC SAR Test Procedures for 2G-3G Devices, Mobile Hotspot and UMPC Devices KDB Publications 941225, D01-D07

[24] SAR Measurement Guidance for IEEE 802.11 Transmitters, KDB Publication 248227 D01

[25] FCC SAR Considerations for Handsets with Multiple Transmitters and Antennas, KDB Publications 648474 D03-D04

[26] FCC SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers, FCC KDB Publication 616217 D04

[27] FCC SAR Measurement and Reporting Requirements for 100MHz – 6 GHz, KDB Publications 865664 D01-D02

[28] FCC General RF Exposure Guidance and SAR Procedures for Dongles, KDB Publication 447498, D01-D02

[29] Anexo à Resolução No. 533, de 10 de Septembro de 2009.

[30] IEC 62209-2, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Human models, instrumentation, and procedures - Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz), Mar. 2010.

APPENDIX A: SYSTEM VERIFICATION

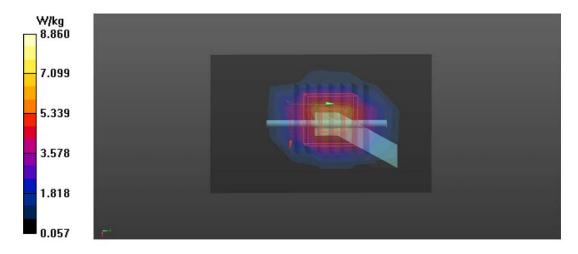
Test Laboratory: ONETECH CO., LTD. Lab

Date: 7/8/2019

EMC-003 (Rev.2)

System Verification for 2450 MHz

DUT: D2450V2 - SN:920


Communication System: CW; Frequency: 2450 MHz;Duty Cycle: 1:1 Medium: MSL2450 Medium parameters used: f = 2450 MHz; $\sigma = 2.026$ S/m; $\epsilon_r = 50.712$; $\rho = 1000$ kg/m³ Ambient Temperature : 22.0 °C; Liquid Temperature : 21.7 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3832; ConvF(7.19, 7.19, 7.19) @ 2450 MHz; Calibrated: 2/27/2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn557; Calibrated: 2/28/2019
- Phantom: ELI V8.0_20170913; Type: QD OVA 004 AA; Serial: 2056
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)

Pin=100mW/Area Scan (6x9x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 6.53 W/kg

Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 68.10 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 10.9 W/kg SAR(1 g) = 5.29 W/kg; SAR(10 g) = 2.46 W/kg Maximum value of SAR (measured) = 8.86 W/kg

APPENDIX B: SAR TEST DATA

Test Laboratory: ONETECH CO., LTD. Lab

Date: 7/8/2019

P04_2.4 GHz WLAN_802.11b_Left_0cm_Ch.1

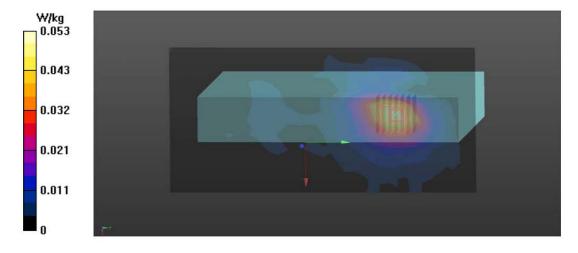
DUT: SIP007AFS00

Communication System: 802.11 b/g/n; Frequency: 2412 MHz;Duty Cycle: 1:1 Medium: MSL2450 Medium parameters used: f = 2412 MHz; $\sigma = 1.974$ S/m; $\epsilon_r = 50.808$; $\rho = 1000$ kg/m³ Ambient Temperature : 22.0 °C; Liquid Temperature : 21.7 °C

DASY5 Configuration:

- Probe: EX3DV4 - SN3832; ConvF(7.19, 7.19, 7.19) @ 2412 MHz; Calibrated: 2/27/2019

- Sensor-Surface: 1.4mm (Mechanical Surface Detection)


- Electronics: DAE4 Sn557; Calibrated: 2/28/2019

- Phantom: ELI V8.0_20170913; Type: QD OVA 004 AA; Serial: 2056

- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)

- Area Scan (11x22x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 0.0483 W/kg

- Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 1.181 V/m; Power Drift = -0.19 dB Peak SAR (extrapolated) = 0.0650 W/kg SAR(1 g) = 0.035 W/kg; SAR(10 g) = 0.019 W/kg Maximum value of SAR (measured) = 0.0533 W/kg

APPENDIX C: PROBE & DIPOLE ANTENNA CALIBRATION

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Onetech (Dymstec)

Client

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage С Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: EX3-3832_Feb19

S

Object	EX3DV4 - SN:383	2	
Calibration procedure(s)	QA CAL-25.v7	A CAL-12.v9, QA CAL-14.v5, QA ure for dosimetric E-field probes	CAL-23.v5,
Calibration date:	February 27, 2019		
The measurements and the und	certainties with confidence pro lucted in the closed laboratory	al standards, which realize the physical units bability are given on the following pages and facility; environment temperature $(22 \pm 3)^{\circ}C$ a	are part of the certificate.
Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
	ID SN: 104778	Cal Date (Certificate No.) 04-Apr-18 (No. 217-02672/02673)	Scheduled Calibration Apr-19
Power meter NRP			Apr-19
Power meter NRP Power sensor NRP-Z91	SN: 104778	04-Apr-18 (No. 217-02672/02673)	
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91	SN: 104778 SN: 103244	04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672)	Apr-19 Apr-19
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator	SN: 104778 SN: 103244 SN: 103245	04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673)	Apr-19 Apr-19 Apr-19
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator DAE4	SN: 104778 SN: 103244 SN: 103245 SN: S5277 (20x)	04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682)	Apr-19 Apr-19 Apr-19 Apr-19 Apr-19
Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator DAE4 Reference Probe ES3DV2	SN: 104778 SN: 103244 SN: 103245 SN: S5277 (20x) SN: 660	04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 19-Dec-18 (No. DAE4-660_Dec18)	Apr-19 Apr-19 Apr-19 Apr-19 Dec-19
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator DAE4 Reference Probe ES3DV2 Secondary Standards	SN: 104778 SN: 103244 SN: 103245 SN: S5277 (20x) SN: 660 SN: 3013	04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 19-Dec-18 (No. DAE4-660_Dec18) 31-Dec-18 (No. ES3-3013_Dec18)	Apr-19 Apr-19 Apr-19 Apr-19 Dec-19 Dec-19
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator DAE4 Reference Probe ES3DV2 Secondary Standards Power meter E4419B	SN: 104778 SN: 103244 SN: 103245 SN: S5277 (20x) SN: 660 SN: 3013	04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 19-Dec-18 (No. DAE4-660_Dec18) 31-Dec-18 (No. ES3-3013_Dec18) Check Date (in house)	Apr-19 Apr-19 Apr-19 Apr-19 Dec-19 Dec-19 Scheduled Check
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator DAE4 Reference Probe ES3DV2 Secondary Standards Power meter E4419B Power sensor E4412A	SN: 104778 SN: 103244 SN: 103245 SN: S5277 (20x) SN: 660 SN: 3013 ID SN: GB41293874	04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 19-Dec-18 (No. DAE4-660_Dec18) 31-Dec-18 (No. ES3-3013_Dec18) Check Date (in house) 06-Apr-16 (in house check Jun-18)	Apr-19 Apr-19 Apr-19 Apr-19 Dec-19 Dec-19 Scheduled Check In house check: Jun-20
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator DAE4 Reference Probe ES3DV2 Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A	SN: 104778 SN: 103244 SN: 103245 SN: S5277 (20x) SN: 660 SN: 3013 ID SN: GB41293874 SN: MY41498087	04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 19-Dec-18 (No. 217-02682) 19-Dec-18 (No. 247-02682) 31-Dec-18 (No. ES3-3013_Dec18) Check Date (in house) 06-Apr-16 (in house check Jun-18) 06-Apr-16 (in house check Jun-18)	Apr-19 Apr-19 Apr-19 Apr-19 Dec-19 Dec-19 Scheduled Check In house check: Jun-20 In house check: Jun-20
Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator DAE4 Reference Probe ES3DV2 Secondary Standards Power meter E4419B Power sensor E4412A RF generator HP 8648C Network Analyzer E8358A	SN: 104778 SN: 103244 SN: 103245 SN: S5277 (20x) SN: 660 SN: 3013 ID SN: GB41293874 SN: MY41498087 SN: 000110210	04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 19-Dec-18 (No. 217-02682) 19-Dec-18 (No. ES3-3013_Dec18) 31-Dec-18 (No. ES3-3013_Dec18) Check Date (in house) 06-Apr-16 (in house check Jun-18) 06-Apr-16 (in house check Jun-18)	Apr-19 Apr-19 Apr-19 Apr-19 Dec-19 Dec-19 Scheduled Check In house check: Jun-20 In house check: Jun-20 In house check: Jun-20
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator DAE4 Reference Probe ES3DV2 Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A RF generator HP 8648C	SN: 104778 SN: 103244 SN: 103245 SN: S5277 (20x) SN: 660 SN: 3013 ID SN: GB41293874 SN: 000110210 SN: US3642U01700	04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02682) 19-Dec-18 (No. 217-02682) 19-Dec-18 (No. ES3-3013_Dec18) 19-Dec-18 (No. ES3-3013_Dec18) 06-Apr-16 (in house) 06-Apr-16 (in house check Jun-18) 06-Apr-16 (in house check Jun-18) 04-Aug-99 (in house check Jun-18)	Apr-19 Apr-19 Apr-19 Dec-19 Dec-19 Scheduled Check In house check: Jun-20 In house check: Jun-20 In house check: Jun-20 In house check: Jun-20

Certificate No: EX3-3832_Feb19

Page 1 of 20

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S

- Service suisse d'étalonnage C
- Servizio svizzero di taratura S
- Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates Glossary

Globbally.	
TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization ϕ	φ rotation around probe axis
Polarization 9	9 rotation around an axis that is in the plane normal to probe axis (at measurement center),
	i.e., $\vartheta = 0$ is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: EX3-3832_Feb19

Page 2 of 20

EX3DV4 - SN:3832

February 27, 2019

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3832

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)		
Norm $(\mu V/(V/m)^2)^A$	0.44	0.44	0.57	± 10.1 %		
DCP (mV) ^B	102.1	100.2	103.5			

Calibration Results for Modulation Response

UID	Communication System Name		A dB	B dBõV	с	D dB	VR mV	Max dev.	Max Unc ^E (k=2)
0 C1	CW	X	0.00	0.00	1.00	0.00	169.1	± 3.0 %	±4.7 %
		Y	0.00	0.00	1.00	1	173.6	1	
		Z	0.00	0.00	1.00	1	179.5	1	
10352- I AAA	Pulse Waveform (200Hz, 10%)	X	15.00	89.07	21.38	10.00	60.0	± 3.1 %	±9.6 %
		Y	15.00	87.73	20.50		60.0	1	
		Z	15.00	89.44	21.20	1	60.0	1	
10353- Pu AAA	Pulse Waveform (200Hz, 20%)	X	15.00	89.92	20.56	6.99	80.0	± 1.4 %	± 9.6 %
		Y	15.00	88.37	19.36		80.0		
		Z	15.00	90.51	20.71	1	80.0	1	
10354- Pul AAA	Pulse Waveform (200Hz, 40%)	X	15.00	94.87	21.54	3.98	95.0	± 1.2 %	± 9.6 %
		Y	15.00	88.99	17.91		95.0		
		Z	15.00	93.51	20.83	1	95.0	1	
10355- AAA	Pulse Waveform (200Hz, 60%)	X	15.00	102.17	23.57	2.22	120.0	± 1.2 %	± 9.6 %
		Y	15.00	86.53	15.16	1	120.0	1	
		Z	15.00	98.09	21.67	1	120.0	1	
10387- Q AAA	QPSK Waveform, 1 MHz	X	0.99	65.97	12.03	0.00	150.0	± 2.9 %	± 9.6 %
		Y	0.55	60.00	7.27		150.0	1	
		Z	0.80	63.14	10.24	1	150.0	1	
10388- QF AAA	QPSK Waveform, 10 MHz	X	2.55	70.66	17.17	0.00	150.0	± 1.3 %	± 9.6 %
		Y	2.03	66.91	14.93	1	150.0]	
		Z	2.35	69.06	16.18		150.0	l	
10396- 64 AAA	64-QAM Waveform, 100 kHz	X	3.63	73.67	20.23	3.01	150.0	± 0.7 %	± 9.6 %
		Y	2.94	69.39	18.20]	150.0]	
		Z	3.58	73.48	19.93		150.0		
10399-	64-QAM Waveform, 40 MHz	X	3.66	68.13	16.41	0.00	150.0	± 2.3 %	± 9.6 %
AAA		Y	3.40	66.69	15.46		150.0		
		Z	3.44	67.02	15.69		150.0		
10414- AAA	WLAN CCDF, 64-QAM, 40MHz	Х	4.96	66.11	15.86	0.00	150.0	± 4.4 %	± 9.6 %
		Y	4.79	65.46	15.43		150.0		
		Z	4.77	65.41	15.36		150.0		

Note: For details on UID parameters see Appendix

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

 ^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).
 ^B Numerical linearization parameter: uncertainty not required.
 ^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the set of the s field value.

Certificate No: EX3-3832_Feb19

Page 3 of 20

February 27, 2019

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3832

Sensor Model Parameters

	C1 fF	C2 fF	α V ⁻¹	T1 ms.V ⁻²	T2 ms.V ⁻¹	T3 ms	T4 V ⁻²	T5 V ⁻¹	Т6
Х	49.2	363.41	35.01	18.01	0.76	5.08	1.15	0.40	1.01
Y	44.4	340.08	37.15	13.78	0.85	5.08	0.00	0.61	1.01
Z	47.5	346.99	34.23	20.04	0.38	5.10	1.43	0.31	1.01

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	55.8
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Certificate No: EX3-3832_Feb19

Page 4 of 20

Page 38 of 82

EX3DV4- SN:3832

February 27, 2019

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3832

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
150	52.3	0.76	11.50	11.50	11.50	0.00	1.00	± 13.3 %
300	45.3	0.87	10.87	10.87	10.87	0.07	1.30	± 13.3 %
450	43.5	0.87	10.21	10.21	10.21	0.15	1.30	± 13.3 %
750	41.9	0.89	9.97	9.97	9.97	0.52	0.80	± 12.0 %
835	41.5	0.90	9.19	9.19	9.19	0.54	0.85	± 12.0 %
900	41.5	0.97	9.05	9.05	9.05	0.40	0.95	± 12.0 %
1750	40.1	1.37	8.10	8.10	8.10	0.36	0.85	± 12.0 %
1950	40.0	1.40	7.78	7.78	7.78	0.30	0.85	± 12.0 %
2300	39.5	1.67	7.37	7.37	7.37	0.37	0.85	± 12.0 %
2450	39.2	1.80	7.11	7.11	7.11	0.34	0.88	± 12.0 %
2600	39.0	1.96	7.00	7.00	7.00	0.41	0.85	± 12.0 %
3500	37.9	2.91	6.80	6.80	6.80	0.23	1.20	± 13.1 %
3700	37.7	3.12	6.60	6.60	6.60	0.23	1.20	± 13.1 %
5200	36.0	4.66	5.18	5.18	5.18	0.40	1.80	± 13.1 %
5300	35.9	4.76	5.05	5.05	5.05	0.40	1.80	± 13.1 %
5500	35.6	4.96	4.71	4.71	4.71	0.40	1.80	± 13.1 %
5600	35.5	5.07	4.59	4.59	4.59	0.40	1.80	± 13.1 %
5800	35.3	5.27	4.67	4.67	4.67	0.40	1.80	± 13.1 %

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 8 MHz is 4-19 MHz, above 5 GHz frequency validity compensation formula is applied to ± 10% if liquid compensation formula is applied to 50 MHz.

The requeristes below 3 GHz, the validity of itssue parameters (ϵ and σ) can be relaxed to \pm 10% in induit compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No: EX3-3832_Feb19

Page 5 of 20

Page 39 of 82

EX3DV4-SN:3832

February 27, 2019

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3832

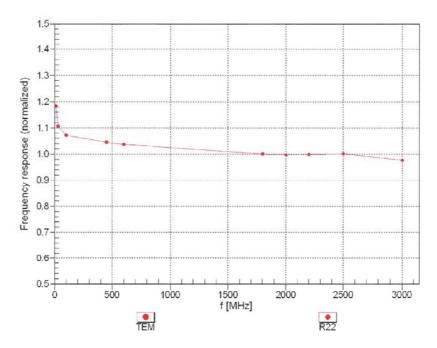
f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
150	61.9	0.80	11.05	11.05	11.05	0.00	1.00	± 13.3 %
300	58.2	0.92	10.61	10.61	10.61	0.04	1.30	± 13.3 %
450	56.7	0.94	10.46	10.46	10.46	0.09	1.30	± 13.3 %
750	55.5	0.96	9.36	9.36	9.36	0.54	0.80	± 12.0 %
835	55.2	0.97	9.13	9.13	9.13	0.48	0.81	± 12.0 %
900	55.0	1.05	8.93	8.93	8.93	0.44	0.88	± 12.0 %
1750	53.4	1.49	7.62	7.62	7.62	0.42	0.85	± 12.0 %
1950	53.3	1.52	7.57	7.57	7.57	0.32	0.99	± 12.0 %
2300	52.9	1.81	7.23	7.23	7.23	0.43	0.86	± 12.0 %
2450	52.7	1.95	7.19	7.19	7.19	0.42	0.89	± 12.0 %
2600	52.5	2.16	7.14	7.14	7.14	0.31	0.90	± 12.0 %
3500	51.3	3.31	6.56	6.56	6.56	0.25	1.25	± 13.1 %
3700	51.0	3.55	6.29	6.29	6.29	0.25	1.25	± 13.1 %
5200	49.0	5.30	4.69	4.69	4.69	0.50	1.90	± 13.1 %
5300	48.9	5.42	4.54	4.54	4.54	0.50	1.90	± 13.1 %
5500	48.6	5.65	4.14	4.14	4.14	0.50	1.90	± 13.1 %
5600	48.5	5.77	4.04	4.04	4.04	0.50	1.90	± 13.1 %
5800	48.2	6.00	4.12	4.12	4.12	0.50	1.90	± 13.1 %

^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 8 MHz is 4-9 MHz, and ConvF assessed at 18 MHz is 4-9 MHz, and the uncertainty or liquid to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters.

measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (c and d) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No: EX3-3832_Feb19

Page 6 of 20



Page 40 of 82

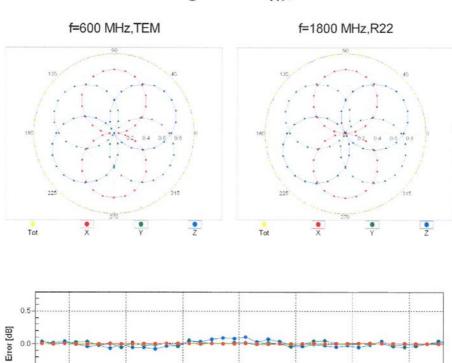
EX3DV4-SN:3832

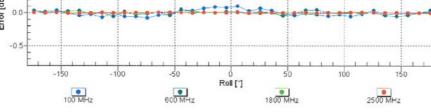
February 27, 2019

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Certificate No: EX3-3832_Feb19


Page 7 of 20


Page 41 of 82

EX3DV4-SN:3832

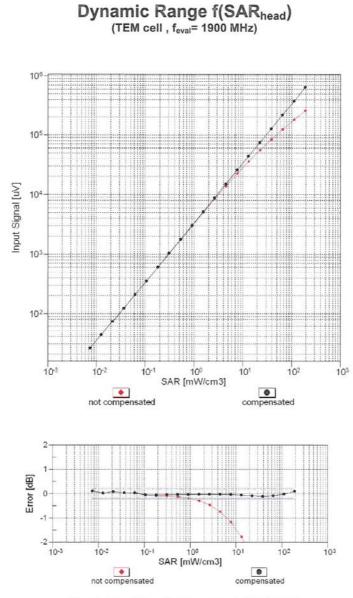
February 27, 2019

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Certificate No: EX3-3832_Feb19

Page 8 of 20



Report No. OT-197-RWD-013

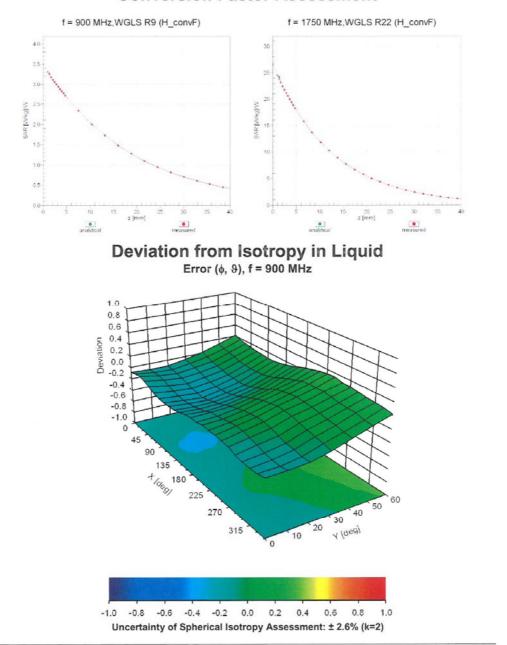
Page 42 of 82

EX3DV4-SN:3832

February 27, 2019

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: EX3-3832_Feb19


Page 9 of 20

EMC-003 (Rev.2)

ONETECH Corp.: 43-14, Jinsaegol-gil, Chowol-eup, Gwangju-si, Gyeonggi-do, 12735, Korea (TEL: 82-31-799-9500, FAX: 82-31-799-9599)

February 27, 2019

Conversion Factor Assessment

Certificate No: EX3-3832_Feb19

Page 10 of 20

EMC-003 (Rev.2)

ONETECH Corp.: 43-14, Jinsaegol-gil, Chowol-eup, Gwangju-si, Gyeonggi-do, 12735, Korea (TEL: 82-31-799-9500, FAX: 82-31-799-9599)

February 27, 2019

Appendix: Modulation Calibration Parameters

UID	Rev	Communication System Name	Group	PAR (dB)	Unc ^E (k=2)
0		CW	CW	0.00	± 4.7 9
10010	CAA	SAR Validation (Square, 100ms, 10ms)	Test	10.00	± 9.6 %
10011	CAB	UMTS-FDD (WCDMA)	WCDMA	2.91	± 9.6 %
10012	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps)	WLAN	1.87	± 9.6 %
10013	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps)	WLAN	9.46	± 9.6 %
10021	DAC	GSM-FDD (TDMA, GMSK)	GSM	9.39	± 9.6 %
10023	DAC	GPRS-FDD (TDMA, GMSK, TN 0)	GSM	9.57	± 9.6 %
10024	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1)	GSM	6.56	± 9.6 %
10025	DAC	EDGE-FDD (TDMA, 8PSK, TN 0)	GSM	12.62	± 9.6 %
10026	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1)	GSM	9.55	± 9.6 %
10027	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2)	GSM	4.80	± 9.6 %
10028	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)	GSM	3.55	± 9.6 %
10029	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2)	GSM	7.78	± 9.6 %
10030	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH1)	Bluetooth	5.30	± 9.6 %
10031	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH3)	Bluetooth	1.87	± 9.6 %
10032	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH5)	Bluetooth	1.16	± 9.6 9
10033	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH1)	Bluetooth	7.74	± 9.6 %
10034	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH3)	Bluetooth	4.53	± 9.6 %
10035	CAA	IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH5)	Bluetooth	3.83	± 9.6 %
10036	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH1)	Bluetooth	8.01	± 9.6 9
0037	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH3)	Bluetooth	4.77	± 9.6 9
0038	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH5)	Bluetooth	4.10	± 9.6 %
0039	CAB	CDMA2000 (1xRTT, RC1)	CDMA2000	4.10	
0042	CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Halfrate)			± 9.6 %
0042	CAA	IS-91/EIA/TIA-553 FDD (FDMA, FDM, FI/4-DQFSK, Hailfale)	AMPS	7.78	± 9.6 %
0044	CAA		AMPS	0.00	± 9.6 %
0048	CAA	DECT (TDD, TDMA/FDM, GFSK, Full Slot, 24)	DECT	13.80	± 9.6 %
		DECT (TDD, TDMA/FDM, GFSK, Double Slot, 12)	DECT	10.79	± 9.6 %
0056	CAA	UMTS-TDD (TD-SCDMA, 1.28 Mcps)	TD-SCDMA	11.01	± 9.6 %
0058	DAC CAB	EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3)	GSM	6.52	± 9.6 %
10059		IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps)	WLAN	2.12	± 9.6 %
	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps)	WLAN	2.83	± 9.6 %
10061	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps)	WLAN	3.60	± 9.6 %
10062	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps)	WLAN	8.68	± 9.6 %
10063	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps)	WLAN	8.63	± 9.6 %
10064	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps)	WLAN	9.09	± 9.6 %
10065	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps)	WLAN	9.00	± 9.6 %
10066	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps)	WLAN	9.38	± 9.6 %
0067	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps)	WLAN	10.12	± 9.6 %
0068	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps)	WLAN	10.24	± 9.6 %
0069	CAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps)	WLAN	10.56	± 9.6 %
0071	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 9 Mbps)	WLAN	9.83	± 9.6 %
0072	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 12 Mbps)	WLAN	9.62	± 9.6 %
0073	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 18 Mbps)	WLAN	9.94	± 9.6 %
0074	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 24 Mbps)	WLAN	10.30	± 9.6 %
0075	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 36 Mbps)	WLAN	10.77	± 9.6 %
0076	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 48 Mbps)	WLAN	10.94	±9.6 %
0077	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 54 Mbps)	WLAN	11.00	±9.6 %
0081	CAB	CDMA2000 (1xRTT, RC3)	CDMA2000	3.97	± 9.6 %
0082	CAB	IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Fullrate)	AMPS	4.77	± 9.6 %
0090	DAC	GPRS-FDD (TDMA, GMSK, TN 0-4)	GSM	6.56	± 9.6 %
0097	CAB	UMTS-FDD (HSDPA)	WCDMA	3.98	± 9.6 %
0098	CAB	UMTS-FDD (HSUPA, Subtest 2)	WCDMA	3.98	± 9.6 %
0099	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-4)	GSM	9.55	± 9.6 %
0100	CAE	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	LTE-FDD	5.67	± 9.6 %
0101	CAE	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	LTE-FDD	6.42	± 9.6 %
0102	CAE	LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	LTE-FDD	6.60	± 9.6 %
0103	CAG	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK)	LTE-TDD	9.29	± 9.6 %
0104	CAG	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM)	LTE-TDD	9.97	± 9.6 %
0105	CAG	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM)	LTE-TDD	10.01	± 9.6 %
0108	CAG	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	LTE-FDD	5.80	± 9.6 %

Certificate No: EX3-3832_Feb19

Page 11 of 20

February 27, 2019

EX3DV4-	SIN.3032			rebiua	iry 27, 2019
10109	CAG	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	LTE-FDD	6.43	± 9.6 %
10110	CAG	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	LTE-FDD	5.75	± 9.6 %
10111	CAG	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	LTE-FDD	6.44	± 9.6 %
10112	CAG	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	LTE-FDD	6.59	± 9.6 %
10113	CAG	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	LTE-FDD	6.62	± 9.6 %
10114	CAC	IEEE 802.11n (HT Greenfield, 13.5 Mbps, BPSK)	WLAN	8.10	± 9.6 %
10115	CAC	IEEE 802.11n (HT Greenfield, 81 Mbps, 16-QAM)	WLAN	8.46	± 9.6 %
10116	CAC	IEEE 802.11n (HT Greenfield, 135 Mbps, 64-QAM)	WLAN	8.15	± 9.6 %
10117	CAC	IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK)	WLAN	8.07	±9.6 %
10118	CAC	IEEE 802.11n (HT Mixed, 81 Mbps, 16-QAM)	WLAN	8.59	± 9.6 %
10119	CAC	IEEE 802.11n (HT Mixed, 135 Mbps, 64-QAM)	WLAN	8.13	± 9.6 %
10140	CAE	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	LTE-FDD	6.49	± 9.6 %
10141	CAE	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	LTE-FDD	6.53	± 9.6 %
10142	CAE	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	LTE-FDD	5.73	± 9.6 %
10143	CAE	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	LTE-FDD	6.35	± 9.6 %
10144	CAE	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	LTE-FDD	6.65	± 9.6 %
10145	CAF	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	LTE-FDD	5.76	± 9.6 %
10146	CAF	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	LTE-FDD	6.41	± 9.6 %
10147	CAF	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	LTE-FDD	6.72	± 9.6 %
10149	CAE	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	LTE-FDD	6.42	± 9.6 %
10150	CAE	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	LTE-FDD	6.60	± 9.6 %
10151	CAG	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	LTE-TDD	9.28	± 9.6 %
10152	CAG	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	LTE-TDD	9.92	± 9.6 %
10153	CAG	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	LTE-TDD	10.05	± 9.6 %
10154	CAG	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	LTE-FDD	5.75	± 9.6 %
10155	CAG	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	LTE-FDD	6.43	± 9.6 %
10156	CAG	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	LTE-FDD	5.79	± 9.6 %
10157	CAG	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	LTE-FDD	6.49	± 9.6 %
10158	CAG	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	LTE-FDD	6.62	± 9.6 %
10159	CAG	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	LTE-FDD	6.56	± 9.6 %
10160	CAE	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	LTE-FDD	5.82	± 9.6 %
10161	CAE	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	LTE-FDD	6.43	± 9.6 %
10162	CAE	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)	LTE-FDD	6.58	±9.6 %
10166	CAF	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	LTE-FDD	5.46	± 9.6 %
10167	CAF	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	LTE-FDD	6.21	± 9.6 %
10168	CAF	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	LTE-FDD	6.79	± 9.6 %
10169	CAE	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	LTE-FDD	5.73	± 9.6 %
10170	CAE	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	LTE-FDD	6.52	± 9.6 %
10171	AAE	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	LTE-FDD	6.49	± 9.6 %
10172	CAG	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	LTE-TDD	9.21	± 9.6 %
10173	CAG	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	LTE-TDD	9.48	± 9.6 %
10174	CAG	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	LTE-TDD	10.25	± 9.6 %
10175	CAG	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	LTE-FDD	5.72	± 9.6 %
10176	CAG	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	LTE-FDD	6.52	± 9.6 %
10177	CAI	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	LTE-FDD	5.73	± 9.6 %
10178	CAG	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM)	LTE-FDD	6.52	± 9.6 %
10179	CAG	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	LTE-FDD	6.50	± 9.6 %
10180	CAG	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM)	LTE-FDD	6.50	± 9.6 %
10181	CAE	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	LTE-FDD	5.72	± 9.6 %
10182	CAE	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	LTE-FDD	6.52	± 9.6 %
10183	AAD	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)	LTE-FDD	6.50	± 9.6 %
10184	CAE	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	LTE-FDD	5.73	± 9.6 %
10185	CAE	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM)	LTE-FDD	6.51	± 9.6 %
10186	AAE	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM)	LTE-FDD	6.50	± 9.6 %
10187	CAF	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	LTE-FDD	5.73	± 9.6 %
10188	CAF	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	LTE-FDD	6.52	± 9.6 %
10189	AAF	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	LTE-FDD	6.50	± 9.6 %
10193	CAC	IEEE 802.11n (HT Greenfield, 6.5 Mbps, BPSK)	WLAN	8.09	± 9.6 %
10194	CAC	IEEE 802.11n (HT Greenfield, 39 Mbps, 16-QAM)	WLAN	8.12	± 9.6 %
10195	CAC	IEEE 802.11n (HT Greenfield, 65 Mbps, 64-QAM)	WLAN	8.21	± 9.6 %
10196	CAC	IEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK)	WLAN	8.10	± 9.6 %
10197	CAC	IEEE 802.11n (HT Mixed, 39 Mbps, 16-QAM)	WLAN	8.13	± 9.6 %
10198	CAC CAC	IEEE 802.11n (HT Mixed, 65 Mbps, 64-QAM)	WLAN WLAN	8.27 8.03	± 9.6 % ± 9.6 %
		IEEE 802.11n (HT Mixed, 7.2 Mbps, BPSK)	I WLAN	0.03	1 1 9.0 %

Certificate No: EX3-3832_Feb19

Page 12 of 20

February 27, 2019

10220	CAC	IEEE 802.11n (HT Mixed, 43.3 Mbps, 16-QAM)	WLAN	8.13	± 9.6 %
10221	CAC	IEEE 802.11n (HT Mixed, 72.2 Mbps, 64-QAM)	WLAN		
10222	CAC	IEEE 802.11n (HT Mixed, 12 Mbps, 84-0(AM))		8.27	± 9.6 %
10223	CAC	IEEE 802.11n (HT Mixed, 90 Mbps, 16-QAM)	WLAN WLAN	8.06	± 9.6 %
10224	CAC	IEEE 802.11n (HT Mixed, 150 Mbps, 64-QAM)	WLAN	8.48	± 9.6 %
10225	CAB	UMTS-FDD (HSPA+)	WCDMA	8.08	± 9.6 %
10226	CAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)		5.97	± 9.6 %
10227	CAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	LTE-TDD	9.49	± 9.6 %
10228	CAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	LTE-TDD	10.26	± 9.6 %
10229	CAC	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM)	LTE-TDD	9.22	± 9.6 %
10220	CAC	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 10-QAM)	LTE-TDD	9.48	± 9.6 %
10231	CAC	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 04-QAM)	LTE-TDD	10.25	± 9.6 %
10232	CAF	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM)	LTE-TDD	9.19	± 9.6 %
10233	CAF	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM)	LTE-TDD	9.48	± 9.6 %
10234	CAF	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK)		10.25	± 9.6 %
10235	CAF	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	LTE-TDD	9.21	± 9.6 %
10236	CAF	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	LTE-TDD	9.48	± 9.6 %
10237	CAF	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 04-04M)	LTE-TDD	10.25	± 9.6 %
10238	CAF	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 0PSK)	LTE-TDD	9.21	± 9.6 %
10239	CAF		LTE-TDD	9.48	± 9.6 %
10239	CAF	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM) LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	LTE-TDD	10.25	± 9.6 %
10240	CAA	LTE-TDD (SC-FDMA, TRB, 15 MHz, QPSK) LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	LTE-TDD	9.21	± 9.6 %
10241	CAA		LTE-TDD	9.82	± 9.6 %
10242	CAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	LTE-TDD	9.86	± 9.6 %
		LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	LTE-TDD	9.46	± 9.6 %
10244	CAC	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)	LTE-TDD	10.06	± 9.6 %
10245		LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)	LTE-TDD	10.06	± 9.6 %
10246	CAC	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK)	LTE-TDD	9.30	± 9.6 %
10247	CAF	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	LTE-TDD	9.91	± 9.6 %
10248	CAF	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	LTE-TDD	10.09	± 9.6 %
10249	CAF	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	LTE-TDD	9.29	± 9.6 %
10250	CAF	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	LTE-TDD	9.81	± 9.6 %
10251	CAF	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	LTE-TDD	10.17	± 9.6 %
10252	CAF	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	LTE-TDD	9.24	± 9.6 %
10253	CAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	LTE-TDD	9.90	±9.6 %
10254	CAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)	LTE-TDD	10.14	± 9.6 %
10255	CAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	LTE-TDD	9.20	± 9.6 %
10256	CAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	LTE-TDD	9.96	± 9.6 %
10257	CAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	LTE-TDD	10.08	± 9.6 %
10258	CAA	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	LTE-TDD	9.34	± 9.6 %
10259	CAC	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	LTE-TDD	9.98	± 9.6 %
10260	CAC	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	LTE-TDD	9.97	± 9.6 %
10261	CAC	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	LTE-TDD	9.24	± 9.6 %
10262	CAF	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	LTE-TDD	9.83	± 9.6 %
10263	CAF	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	LTE-TDD	10.16	± 9.6 %
10264	CAF	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	LTE-TDD	9.23	± 9.6 %
10265	CAF	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM)	LTE-TDD	9.92	± 9.6 %
10266	CAF	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	LTE-TDD	10.07	± 9.6 %
10267	CAF	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK)	LTE-TDD	9.30	± 9.6 %
10268	CAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM)	LTE-TDD	10.06	± 9.6 %
10269	CAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	LTE-TDD	10.13	± 9.6 %
10270	CAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	LTE-TDD	9.58	± 9.6 %
10274	CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.10)	WCDMA	4.87	± 9.6 %
10275	CAB	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.4)	WCDMA	3.96	± 9.6 %
10277	CAA	PHS (QPSK)	PHS	11.81	± 9.6 %
10278	CAA	PHS (QPSK, BW 884MHz, Rolloff 0.5)	PHS	11.81	± 9.6 %
10279	CAA	PHS (QPSK, BW 884MHz, Rolloff 0.38)	PHS	12.18	± 9.6 %
10290	AAB	CDMA2000, RC1, SO55, Full Rate	CDMA2000	3.91	± 9.6 %
10291	AAB	CDMA2000, RC3, SO55, Full Rate	CDMA2000	3.46	±9.6 %
10292	AAB	CDMA2000, RC3, SO32, Full Rate	CDMA2000	3.39	± 9.6 %
10293	AAB	CDMA2000, RC3, SO3, Full Rate	CDMA2000	3.50	± 9.6 %
10295	AAB	CDMA2000, RC1, SO3, 1/8th Rate 25 fr.	CDMA2000	12.49	±9.6 %
10297	AAD	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	LTE-FDD	5.81	± 9.6 %
10298	AAD	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, QPSK)	LTE-FDD	5.72	± 9.6 %
10299	AAD	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM)	LTE-FDD	6.39	± 9.6 %

Certificate No: EX3-3832_Feb19

Page 13 of 20

February 27, 2019

EX3DV4-	SN:3832			Februa	ry 27, 2019
10300	AAD	LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM)	LTE-FDD	6.60	± 9.6 %
10301	AAA	IEEE 802.16e WiMAX (29:18, 5ms, 10MHz, QPSK, PUSC)	WiMAX	12.03	± 9.6 %
10302	AAA	IEEE 802.16e WIMAX (29:18, 5ms, 10MHz, QPSK, PUSC, 3 CTRL symbols)	WIMAX	12.57	±9.6 %
10303	AAA	IEEE 802.16e WiMAX (31:15, 5ms, 10MHz, 64QAM, PUSC)	WiMAX	12.52	± 9.6 %
10304	AAA	IEEE 802.16e WiMAX (29:18, 5ms, 10MHz, 64QAM, PUSC)	WiMAX	11.86	± 9.6 %
10305	AAA	IEEE 802.16e WiMAX (31:15, 10ms, 10MHz, 64QAM, PUSC, 15 symbols)	WIMAX	15.24	± 9.6 %
10306	AAA	Symbols) IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 64QAM, PUSC, 18 symbols)	WiMAX	14.67	± 9.6 %
10307	AAA	IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, QPSK, PUSC, 18 symbols)	WIMAX	14.49	± 9.6 %
10308	AAA	IEEE 802.16e WIMAX (29:18, 10ms, 10MHz, 16QAM, PUSC)	WiMAX	14.46	± 9.6 %
10309	AAA	IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 16QAM, AMC 2x3, 18	WiMAX	14.58	± 9.6 %
10310	AAA	symbols) IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, QPSK, AMC 2x3, 18 symbols)	WiMAX	14.57	±9.6 %
10311	AAD	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	LTE-FDD	6.06	± 9.6 %
10313	AAA	iDEN 1:3	IDEN	10.51	± 9.6 %
10314	AAA	IDEN 1:6	IDEN	13.48	± 9.6 %
10315	AAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 96pc duty cycle)	WLAN	1.71	± 9.6 %
10316	AAB	IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 96pc duty cycle)	WLAN	8.36	± 9.6 %
10317	AAC	IEEE 802.11a WiFi 5 GHz (OFDM, 6 Mbps, 96pc duty cycle)	WLAN	8.36	± 9.6 %
10352	AAA	Pulse Waveform (200Hz, 10%)	Generic	10.00	± 9.6 %
10353	AAA	Pulse Waveform (200Hz, 20%)	Generic	6.99	± 9.6 %
10354	AAA	Pulse Waveform (200Hz, 40%)	Generic	3.98	± 9.6 %
10355	AAA	Pulse Waveform (200Hz, 60%)	Generic	2.22	± 9.6 %
10356	AAA	Pulse Waveform (200Hz, 80%)	Generic	0.97	± 9.6 %
10387	AAA	QPSK Waveform, 1 MHz	Generic	5.10	± 9.6 %
10388	AAA	QPSK Waveform, 10 MHz	Generic	5.22	± 9.6 %
10396	AAA	64-QAM Waveform, 100 kHz	Generic	6.27	± 9.6 %
10399	AAA	64-QAM Waveform, 40 MHz	Generic	6.27	± 9.6 %
10400	AAD	IEEE 802.11ac WiFi (20MHz, 64-QAM, 99pc duty cycle)	WLAN	8.37	± 9.6 %
10401	AAD	IEEE 802.11ac WiFi (40MHz, 64-QAM, 99pc duty cycle)	WLAN	8.60	± 9.6 %
10402	AAD	IEEE 802.11ac WiFi (80MHz, 64-QAM, 99pc duty cycle)	WLAN	8.53	± 9.6 %
10403	AAB	CDMA2000 (1xEV-DO, Rev. 0)	CDMA2000	3.76	± 9.6 %
10404	AAB	CDMA2000 (1xEV-DO, Rev. A)	CDMA2000	3.77	± 9.6 %
10406	AAB	CDMA2000, RC3, SO32, SCH0, Full Rate	CDMA2000	5.22	± 9.6 %
10410	AAF	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9, Subframe Conf=4)	LTE-TDD	7.82	± 9.6 %
10414	AAA	WLAN CCDF, 64-QAM, 40MHz	Generic	8.54	± 9.6 %
10415	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 99pc duty cycle)	WLAN	1.54	± 9.6 %
10416	AAA	IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 99pc duty cycle)	WLAN	8.23	± 9.6 %
10417	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 99pc duty cycle)	WLAN	8.23	± 9.6 %
10418	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc duty cycle, Long preambule)	WLAN	8.14	± 9.6 %
10419	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc duty cycle, Short preambule)	WLAN	8.19	± 9.6 %
10422	AAB	IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK)	WLAN	8.32	± 9.6 %
10422	AAB	IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM)	WLAN	8.47	± 9.6 %
10423	AAB	IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM)	WLAN	8.40	± 9.6 %
10424	AAB	IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK)	WLAN	8.41	± 9.6 %
10425	AAB	IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM)	WLAN	8.45	± 9.6 %
10426	AAB	IEEE 802.11n (HT Greenfield, 30 Mbps, 64-QAM)	WLAN	8.41	± 9.6 %
10427	AAD	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1)	LTE-FDD	8.28	± 9.6 %
10430	AAD	LTE-FDD (OFDMA, 10 MHz, E-TM 3.1)	LTE-FDD	8.38	± 9.6 %
10431	AAC	LTE-FDD (OFDMA, 15 MHz, E-TM 3.1)	LTE-FDD	8.34	± 9.6 %
10432	AAC	LTE-FDD (OFDMA, 20 MHz, E-TM 3.1)	LTE-FDD	8.34	± 9.6 %
10434	AAA	W-CDMA (BS Test Model 1, 64 DPCH)	WCDMA	8.60	± 9.6 %
10435	AAF	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL	LTE-TDD	7.82	± 9.6 %
		Subframe=2,3,4,7,8,9)		7.56	+06%
	AAD	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%)	LTE-FDD	7.56	± 9.6 %
10447					
10448	AAD	LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, Clippin 44%)	LTE-FDD	7.53	± 9.6 %
		LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, Clippin 44%) LTE-FDD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%) LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%)	LTE-FDD LTE-FDD LTE-FDD	7.51	± 9.6 % ± 9.6 %

Certificate No: EX3-3832_Feb19

Page 14 of 20

February 27, 2019

10451	AAA	W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%)	WCDMA	7.59	± 9.6 %
10456	AAB	IEEE 802.11ac WiFi (160MHz, 64-QAM, 99pc duty cycle)	WLAN	8.63	± 9.6 %
10457	AAA	UMTS-FDD (DC-HSDPA)	WCDMA	6.62	± 9.6 %
10458	AAA	CDMA2000 (1xEV-DO, Rev. B, 2 carriers)	CDMA2000	6.55	± 9.6 %
10459	AAA	CDMA2000 (1xEV-DO, Rev. B, 3 carriers)	CDMA2000	8.25	± 9.6 %
10460	AAA	UMTS-FDD (WCDMA, AMR)	WCDMA	2.39	± 9.6 %
10461	AAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK, UL	LTE-TDD	7.82	± 9.6 %
		Subframe=2,3,4,7,8,9)	212 100	1.02	2 0.0 /
10462	AAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM, UL	LTE-TDD	8.30	± 9.6 %
		Subframe=2,3,4,7,8,9)		0.00	20.0 /
10463	AAA	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM, UL	LTE-TDD	8.56	± 9.6 %
		Subframe=2,3,4,7,8,9)		0.00	20.0 /
10464	AAB	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK, UL	LTE-TDD	7.82	± 9.6 %
		Subframe=2,3,4,7,8,9)			
10465	AAB	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM, UL	LTE-TDD	8.32	± 9.6 %
		Subframe=2,3,4,7,8,9)			
10466	AAB	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM, UL	LTE-TDD	8.57	± 9.6 %
		Subframe=2,3,4,7,8,9)			
10467	AAE	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL	LTE-TDD	7.82	± 9.6 %
		Subframe=2,3,4,7,8,9)			
10468	AAE	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM, UL	LTE-TDD	8.32	± 9.6 %
		Subframe=2,3,4,7,8,9)			
10469	AAE	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM, UL	LTE-TDD	8.56	± 9.6 %
		Subframe=2,3,4,7,8,9)			
10470	AAE	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL	LTE-TDD	7.82	± 9.6 %
		Subframe=2,3,4,7,8,9)			
10471	AAE	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM, UL	LTE-TDD	8.32	± 9.6 %
		Subframe=2,3,4,7,8,9)			
10472	AAE	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM, UL	LTE-TDD	8.57	± 9.6 %
		Subframe=2,3,4,7,8,9)			
10473	AAE	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK, UL	LTE-TDD	7.82	± 9.6 %
		Subframe=2,3,4,7,8,9)			
10474	AAE	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM, UL	LTE-TDD	8.32	± 9.6 %
		Subframe=2,3,4,7,8,9)			
10475	AAE	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM, UL	LTE-TDD	8.57	± 9.6 %
		Subframe=2,3,4,7,8,9)			
10477	AAF	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM, UL	LTE-TDD	8.32	± 9.6 %
10170		Subframe=2,3,4,7,8,9)			
10478	AAF	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM, UL	LTE-TDD	8.57	± 9.6 %
10170		Subframe=2,3,4,7,8,9)			
10479	AAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK, UL	LTE-TDD	7.74	± 9.6 %
10400	0.0.0	Subframe=2,3,4,7,8,9)			
10480	AAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM, UL	LTE-TDD	8.18	± 9.6 %
10404	0.0.0	Subframe=2,3,4,7,8,9)	175 700	- 15	
10481	AAA	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM, UL	LTE-TDD	8.45	± 9.6 %
10400	AAD	Subframe=2,3,4,7,8,9)	175 700		
10482	AAB	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK, UL	LTE-TDD	7.71	± 9.6 %
10492	AAD	Subframe=2,3,4,7,8,9)		0.00	
10483	AAB	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.39	± 9.6 %
10484	AAD		175 700	A 17	
10484	AAB	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM, UL	LTE-TDD	8.47	± 9.6 %
10485	AAE	Subframe=2,3,4,7,8,9) LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK, UL	175 700		
10465	AAE	Subframe=2,3,4,7,8,9)	LTE-TDD	7.59	± 9.6 %
10486	AAE	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM, UL	1 75 700	0.00	
10460	AAE	Subframe=2,3,4,7,8,9)	LTE-TDD	8.38	± 9.6 %
10487	AAE			0.00	
10407	AAE	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM, UL	LTE-TDD	8.60	± 9.6 %
10488	AAE	Subframe=2,3,4,7,8,9)		7 70	100%
10400	AAE	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK, UL	LTE-TDD	7.70	± 9.6 %
10490	AAE	Subframe=2,3,4,7,8,9)		0.04	
10489	AAE	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM, UL	LTE-TDD	8.31	± 9.6 %
10400		Subframe=2,3,4,7,8,9)		0.51	
10490	AAE	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.54	± 9.6 %
		OUDIGITE 2.3.4.7.0.91			
10491	AAE	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK, UL	LTE-TDD	7.74	± 9.6 %

Certificate No: EX3-3832_Feb19

Page 15 of 20

February 27, 2019

X3DV4-	SN:3832	2		Februa	ry 27, 2019
10492	AAE	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM, UL	LTE-TDD	8.41	± 9.6 %
10493	AAE	Subframe=2,3,4,7,8,9) LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM, UL	LTE-TDD	8.55	± 9.6 %
		Subframe=2,3,4,7,8,9)	LTE-TDD	7.74	± 9.6 %
10494	AAF	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)			
10495	AAF	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.37	± 9.6 %
10496	AAF	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM, UL	LTE-TDD	8.54	± 9.6 %
10497	AAA	Subframe=2,3,4,7,8,9) LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK, UL	LTE-TDD	7.67	± 9.6 %
10498	AAA	Subframe=2,3,4,7,8,9) LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM, UL	LTE-TDD	8.40	± 9.6 %
10499	AAA	Subframe=2,3,4,7,8,9) LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM, UL	LTE-TDD	8.68	± 9.6 %
10500	AAB	Subframe=2,3,4,7,8,9) LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK, UL	LTE-TDD	7.67	± 9.6 %
		Subframe=2,3,4,7,8,9)	LTE-TDD	8.44	± 9.6 %
10501	AAB	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)			
10502	AAB	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.52	± 9.6 %
10503	AAE	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.72	± 9.6 %
10504	AAE	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM, UL	LTE-TDD	8.31	± 9.6 %
10505	AAE	Subframe=2,3,4,7,8,9) LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM, UL	LTE-TDD	8.54	± 9.6 %
10506	AAE	Subframe=2,3,4,7,8,9) LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK, UL	LTE-TDD	7.74	± 9.6 %
10507	AAE	Subframe=2,3,4,7,8,9) LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM, UL	LTE-TDD	8.36	± 9.6 %
10508	AAE	Subframe=2,3,4,7,8,9) LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM, UL	LTE-TDD	8.55	± 9.6 %
		Subframe=2,3,4,7,8,9)			
10509	AAE	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.99	± 9.6 %
10510	AAE	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.49	± 9.6 %
10511	AAE	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.51	± 9.6 %
10512	AAF	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK, UL	LTE-TDD	7.74	± 9.6 %
10513	AAF	Subframe=2,3,4,7,8,9) LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM, UL	LTE-TDD	8.42	± 9.6 %
10514	AAF	Subframe=2,3,4,7,8,9) LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM, UL	LTE-TDD	8.45	± 9.6 %
10515	AAA	Subframe=2,3,4,7,8,9) IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 99pc duty cycle)	WLAN	1.58	± 9.6 %
10515	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 99pc duty cycle)	WLAN	1.57	± 9.6 %
10517	AAA	IEEE 802.11b WiF 2.4 GHz (DSSS, 11 Mbps, 99pc duty cycle)	WLAN	1.58	± 9.6 %
10518	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 99pc duty cycle)	WLAN	8.23	± 9.6 %
10519	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 99pc duty cycle)	WLAN	8.39	± 9.6 %
10520	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 99pc duty cycle)	WLAN	8.12	± 9.6 %
10520	AAB	IEEE 802.11a/h Will 5 GHz (OFDM, 10 Mbps, 90pc duty cycle)	WLAN	7.97	± 9.6 %
10522	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 99pc duty cycle)	WLAN	8.45	± 9.6 %
10522	AAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 99pc duty cycle)	WLAN	8.08	± 9.6 %
		IEEE 802.11a/h WiFi 5 GHz (OFDM, 46 Mbps, 99pc duty cycle)	WLAN	8.27	± 9.6 %
10524	AAB	IEEE 802.11a/1 WIFI 5 GH2 (OFDIM, 54 MDps, 99pc duty cycle)	WLAN	8.36	± 9.6 %
10525	AAB		WLAN	8.42	± 9.6 %
10526	AAB	IEEE 802.11ac WiFi (20MHz, MCS1, 99pc duty cycle)		8.21	
10527	AAB	IEEE 802.11ac WiFi (20MHz, MCS2, 99pc duty cycle)	WLAN		± 9.6 %
10528	AAB	IEEE 802.11ac WiFi (20MHz, MCS3, 99pc duty cycle)	WLAN	8.36	± 9.6 %
10529	AAB	IEEE 802.11ac WiFi (20MHz, MCS4, 99pc duty cycle)	WLAN	8.36	± 9.6 %
10531	AAB	IEEE 802.11ac WiFi (20MHz, MCS6, 99pc duty cycle)	WLAN	8.43	± 9.6 %
10532	AAB	IEEE 802.11ac WiFi (20MHz, MCS7, 99pc duty cycle)	WLAN	8.29	± 9.6 %
10533	AAB	IEEE 802.11ac WiFi (20MHz, MCS8, 99pc duty cycle)	WLAN	8.38	± 9.6 %
10534	AAB	IEEE 802.11ac WiFi (40MHz, MCS0, 99pc duty cycle)	WLAN	8.45	± 9.6 %

Certificate No: EX3-3832_Feb19

Page 16 of 20