PCTEST ENGINEERING LABORATORY, INC.

6660-B Dobbin Road, Columbia, MD 21045 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctestlab.com

SAR EVALUATION REPORT

Applicant Name:

Samsung Electronics Co., Ltd. 416, Maetan 3-dong, Yeongtong-gu, Suwon-si Gyeonggi-do, 443-742 Republic of Korea Date of Testing: 08/25/12 - 09/19/12 Test Site/Location: PCTEST Lab, Columbia, MD, USA Document Serial No.: 0Y1208241227.A3L

FCC ID: A3LSGHT899M

APPLICANT: SAMSUNG ELECTRONICS CO., LTD.

DUT Type: Portable Handset

Application Type: Certification
FCC Rule Part(s): CFR §2.1093
Model(s): SGH-T899M

Band & Mode	Tx Frequency	Conducted	SAR		
Baria a Mode	TXTTEQUENCY	Power [dBm]	1 gm Head (W/kg)	1 gm Body- Worn (W/kg)	1 gm Hotspot (W/kg)
GSM/GPRS/ EDGE Rx 850	824.20 - 848.80 MHz	32.47	0.12	0.52	0.52
WCDMA/HSPA 850	826.40 - 846.60 MHz	22.33	0.12	0.26	0.26
AWS WCDMA/HSPA	1712.4 - 1752.5 MHz	23.34	0.67	0.75	0.96
GSM/GPRS/ EDGE Rx 1900	1850.20 - 1909.80 MHz	30.60	0.26	0.45	0.50
WCDMA/HSPA 1900	1852.4 - 1907.6 MHz	23.31	0.47	0.52	0.78
LTE Band 4 (AWS)	1712.5 - 1752.5 MHz	23.98	0.89	1.05	1.07
2.4 GHz WLAN	2412 - 2462 MHz	17.34	0.10	0.21	0.21
5.8 GHz WLAN	5745 - 5825 MHz	12.46	0.09	0.42	
5.2 GHz WLAN	5180 - 5240 MHz	11.82	0.06	0.19	
5.3 GHz WLAN	5260 - 5320 MHz	12.25	0.07	0.24	
5.5 GHz WLAN	5500 - 5700 MHz	12.77	0.08	0.63	
Bluetooth 2402 - 2480 MHz 9.55			N/A		
Simultaneous SAR per KDB 690783 D01:			0.98	1.38	1.26

Note: Powers in the above table represent output powers for the SAR test configurations and may not represent the highest output powers for all configurations for each mode.

This wireless portable device has been shown to be capable of compliance for localized specific absorption rate (SAR) for uncontrolled environment/general population exposure limits specified in ANSI/IEEE C95.1-1992 and has been tested in accordance with the measurement procedures specified in FCC/OET Bulletin 65 Supplement C (2001), IEEE 1528-2003 and in applicable Industry Canada Radio Standards Specifications (RSS); for North American frequency bands only.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them. Test results reported herein relate only to the item(s) tested.

PCTEST certifies that no party to this application has been subject to a denial of Federal benefits that includes FCC benefits pursuant to Section 5301 of the Anti-Drug Abuse Act of 1988, 21 U.S.C. 862.

FCC ID: A3LSGHT899M	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogo 1 of 40
0Y1208241227.A3L	08/25/12 - 09/19/12	Portable Handset	Page 1 of 49

TABLE OF CONTENTS

1	DEVICE UNDER TEST	3
2	LTE CHECKLIST PER KDB 941225 D05	7
3	INTRODUCTION	8
4	SAR MEASUREMENT SETUP	9
5	DOSIMETRIC ASSESSMENT	10
6	DEFINITION OF REFERENCE POINTS	11
7	TEST CONFIGURATION POSITIONS FOR HANDSETS	12
8	FCC AND HEALTH CANADA SAFETY CODE 6 RF EXPOSURE LIMITS	15
9	FCC MEASUREMENT PROCEDURES	16
10	RF CONDUCTED POWERS	20
11	SYSTEM VERIFICATION	27
12	SAR DATA SUMMARY	30
13	FCC MULTI-TX AND ANTENNA SAR CONSIDERATIONS	40
14	EQUIPMENT LIST	44
15	MEASUREMENT UNCERTAINTIES	45
16	CONCLUSION	47
17	REFERENCES	48

FCC ID: A3LSGHT899M	PCTEST SOURCES LADVATORY, INC.	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dago 2 of 40
0Y1208241227.A3L	08/25/12 - 09/19/12	Portable Handset	Page 2 of 49

DEVICE UNDER TEST

1.1 Device Overview

Band & Mode	Tx Frequency
GSM/GPRS/ EDGE Rx 850	824.20 - 848.80 MHz
WCDMA/HSPA 850	826.40 - 846.60 MHz
AWS WCDMA/HSPA	1712.4 - 1752.5 MHz
GSM/GPRS/ EDGE Rx 1900	1850.20 - 1909.80 MHz
WCDMA/HSPA 1900	1852.4 - 1907.6 MHz
LTE Band 4 (AWS)	1712.5 - 1752.5 MHz
2.4 GHz WLAN	2412 - 2462 MHz
5.8 GHz WLAN	5745 - 5825 MHz
5.2 GHz WLAN	5180 - 5240 MHz
5.3 GHz WLAN	5260 - 5320 MHz
5.5 GHz WLAN	5500 - 5700 MHz
Bluetooth	2402 - 2480 MHz
NFC	13.56 MHz

1.2 Near Field Communication (NFC) Antenna

This DUT has NFC operations. The NFC antenna is integrated into the standard battery and will be the only battery available from the manufacturer for this model. Therefore all SAR tests were performed with the standard battery which already integrates the NFC antenna. The device restricts the battery used to battery model: EB-L1M1NLA.

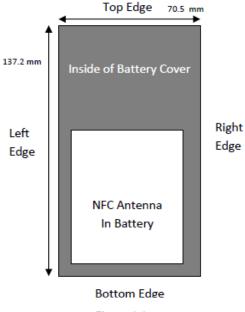


Figure 1-1 NFC Antenna Locations

FCC ID: A3LSGHT899M	SPORTEST SOUNDERS CASEADRY, INC.	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	
0Y1208241227.A3L	08/25/12 - 09/19/12	Portable Handset	Page 3 of 49

1.3 DUT Antenna Locations

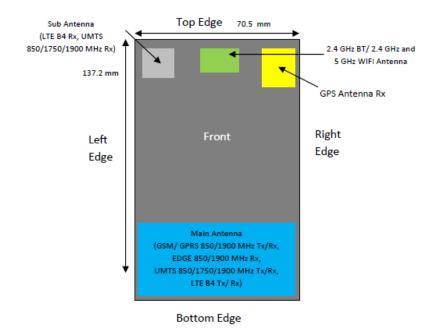


Figure 1-2 DUT Antenna Locations

Table 1-1
Mobile Hotspot Sides for SAR Testing

Mobile Hotspot Sides for SAR Testing						
Mode	Back	Front	Тор	Bottom	Right	Left
GPRS 850	Yes	Yes	No	Yes	Yes	Yes
WCDMA 850	Yes	Yes	No	Yes	Yes	Yes
AWS WCDMA	Yes	Yes	No	Yes	Yes	Yes
GPRS 1900	Yes	Yes	No	Yes	Yes	Yes
WCDMA 1900	Yes	Yes	No	Yes	Yes	Yes
LTE Band 4 (AWS)	Yes	Yes	No	Yes	Yes	Yes
2.4 GHz WLAN	Yes	Yes	Yes	No	Yes	No

Note: Particular DUT edges were not required to be evaluated for Wireless Router SAR if the edges were greater than 2.5 cm from the transmitting antenna according to FCC KDB Publication 941225 D06 guidance, page 2. The antenna document shows the distances between the transmit antennas and the edges of the device. When the wireless router mode is enabled, all 5 GHz bands are disabled. Therefore 5 GHz WIFI is not considered in this section.

FCC ID: A3LSGHT899M	PCTEST:	SAR EVALUATION REPORT	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		
0Y1208241227.A3L	08/25/12 - 09/19/12	Portable Handset	Page 4 of 49	
0.0040 DOTFOT F : : :				

1.4 Simultaneous Transmission Capabilities

According to KDB 648474, transmitters are considered to be transmitting simultaneously when there is overlapping transmission, with the exception of transmissions during network hand-offs with maximum hand-off duration less than 30 seconds. Possible transmission paths for the DUT are shown in Figure 1-3 and are color-coded to indicate communication modes which share the same path. Modes which share the same transmission path cannot transmit simultaneously with one another.

Figure 1-3
Simultaneous Transmission Paths

This device contains multiple transmitters that may operate simultaneously, and therefore requires a simultaneous transmission analysis according to KDB 447498 3) procedures.

Table 1-2
Simultaneous Transmission Scenarios Transmission Supported by DUT

No	No. Capable Transmit Configurations		Body-Worn Accessory	Hot Spot	Note	Possibilty
NO.	Capable Hallstill Configurations	IEEE 1528, Supp C	Supplement C back/top/side	FCC KDB 941225 D06 edges/sides	Note	1 033IDIILY
1	GSM 850/1900 MHz Voice + WiFi 2.4GHz	Yes	Yes	N/A		Yes
2	850/1750/1900 WCDMA Voice + WiFi 2.4GHz	Yes	Yes	N/A		Yes
3	850/1900 MHz GPRS Data + WIFI 2.4 GHz	N/A	N/A	Yes	2G Hotspot	Yes
4	850/1900 MHz WCDMA/HSPA Data + WIFI 2.4 GHz	Yes	Yes	Yes	3G Hotspot	Yes
5	1750 MHz Band4 LTE Data + WIFI 2.4 GHz	Yes	Yes	Yes	4G Hotspot	Yes
6	GSM 850/1900 MHz Voice + WiFi 5GHz	Yes	Yes	N/A	5GHz Client only	Yes
7	850/1750/1900 MHz WCDMA Voice + WIFI 5 GHz	Yes	Yes	N/A	5GHz Client only	Yes
8	850/1900 MHz GPRS Data + WiFi 5GHz	N/A	N/A	N/A	Not supported by S/W	No
9	850/1750/1900 MHz WCDMA/HSPA Data + WIFI 5 GHz	N/A	N/A	N/A	Not supported by S/W	No
10	1750 MHz Band4 LTE Data + WIFI 5 GHz	N/A	N/A	N/A	Not supported by S/W	No
11	All Voice + LTE	N/A	N/A	N/A	Not Supported by H/W	No
12	All Voice + WIFI + LTE	N/A	N/A	N/A	Not Supported by H/W	No

1.5 SAR Test Exclusions Applied

(A) WIFI/BT

Since Wireless Router operations are not allowed by the chipset firmware using 5 GHz WIFI, only 2.4 GHz WIFI Hotspot SAR tests and combinations are considered for SAR with respect to Wireless Router configurations in KDB 941225 D06.

The separation between the main antenna and the BT/WIFI antennas is 117 mm. RF Conducted Power of Bluetooth Tx is 9.016 mW (Please refer to the EMC DSS Report for a full set of Bluetooth conducted powers).

 $2.4\ \text{GHz}$ and $5\ \text{GHz}$ WIFI and Bluetooth share the same antenna path and cannot transmit simultaneously.

Per KDB Publication 648474, **Bluetooth SAR was not required** based on the maximum conducted power, the Bluetooth/WLAN to main antenna separation distance and Body-SAR of the main antenna.

FCC ID: A3LSGHT899M	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 5 of 49
0Y1208241227.A3L	08/25/12 - 09/19/12	Portable Handset	Fage 5 01 49

This device supports 40 MHz Bandwidth for IEEE 802.11n for 5 GHz only. IEEE 802.11n (20 MHz and 40 MHz) was not required to be evaluated since the average output power was not more than 0.25 dB higher than the average output power of IEEE 802.11a mode.

(B) Licensed Transmitter(s)

This model does not support Simultaneous Voice and Data for the licensed transmitter in any modes except in WCDMA that allows Multi-RAB transmissions that share voice and data operations on a single physical channel.

GSM/GPRS DTM is not supported. Therefore GSM Voice cannot transmit simultaneously with GPRS Data.

This device is only capable of QPSK HSUPA in the uplink, but is capable of HSPA+ in the downlink. Therefore, no additional SAR tests are required beyond that described for devices with HSUPA in KDB 941225 D01.

LTE SAR for the lower BWs was not tested since the maximum average output power of all channels and configurations was not more than 0.5 dB higher than the highest bandwidth; and LTE SAR for the highest BW was less than 1.45 W/kg for all configurations according to FCC KDB 941225 D05.

1.6 Power Reduction for SAR

There is no power reduction for any band/mode implemented in this device for SAR purposes.

1.7 **Guidance Applied**

- FCC OET Bulletin 65 Supplement C [June 2001]
- IEEE 1528-2003
- FCC KDB 941225 (2G/3G/4G and Hotspot)
- FCC KDB 248227 (802.11)
- FCC KDB 648474 (Simultaneous)
- FCC KDB 865664 (5 GHz)

1.8 Samples Used for SAR Testing

Serial Number	Mode/ Band
FJ-224-A	GSM 850, LTE Band 4
FJ-224-B	GSM 850/ 1900, UMTS 850/ 1750/ 1900
R31C815ETVN	IEEE 802.11a, IEEE 802.11b

The manufacturer has confirmed that the device(s) tested have the same physical, mechanical, and thermal characteristics and are within operational tolerances expected for production units.

FCC ID: A3LSGHT899M	PCTEST	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	
0Y1208241227.A3L	08/25/12 - 09/19/12	Portable Handset	Page 6 of 49

2 LTE CHECKLIST PER KDB 941225 D05

	KDB 941225 Pub L	TE Information			
KDB 941225 Section	FCC ID		A3LSGHT899M		
Section	Form Factor	Portable Handset			
1)	Frequency Range of each LTE transmission band	BAND4 : Tx (1712.5 ~ 1752.5MHz)			
2)	Channel Bandwidths	BAND4	: 5.0MHz, 10MHz, 15MHz	z, 20MHz	
3)	Channel Numbers and Frequencies (MHz)	Low	Mid	High	
3)	LTE Band 4 and BW 5MHz	1712.5MHz(19975)	1732.5MHz(20175)	1752.5MHz(20375)	
	LTE Band 4 and BW 10MHz	1715MHz(20000)	1732.5MHz(20175)	1750MHz(20350)	
	LTE Band 4 and BW 15MHz	1717.5MHz(20025)	1732.5MHz(20175)	1747.5MHz(20325)	
	LTE Band 4 and BW 20MHz	1717.5WHz(20023)	1732.5MHz(20175)	1747.5MHz(20323)	
4)(a)	UE Category	172010112(20030)	3	1745WH2(20300)	
(b)	Modulations Supported in UL		QPSK, 16QAM		
	LTE Transmitter and Antenna Implementation	LTE and GSM/ UMTS share the same antenna path.			
5)	Description of LTE Tx and Ant. Implementation	1 Main TX/RX Ant and 1 Diversity RX Ant			
6)	LTE Voice available?	No			
	Hotspot with LTE+WIFI	Yes			
	Hotspot with LTE+WIFI active with GSM/ UMTS Voice sessions?	No			
7)	LTE MPR Permanently implemented per 3GPP TS 36.101 section 6.2.3~6.2.5? (manufacturer attestation to be provided)	See Section 10.3			
	A-MPR (Additional MPR) disabled for SAR Testing?		Yes		
8)	Conducted power Table provided for 1RB (low and high offset), 50% RB (centered), 100% RB		See Section 10.3		
9-10)	Non-LTE US Wireless Operating Modes/Band	RF Output Power	RF Exposure	Configurations	
	850 MHz GSM/ GPRS 1900MHz GSM/ GPRS 850 MHz UMTS 1700 MHz UMTS 1900 MHz UMTS 2.4GHz Bluetooth 2.4GHz WI-FI 5GHz WI-FI		See Page 1		
11)	Simultaneous Tx Conditions (Voice and Data Configurations)	See Section 1.4			
12)	Power Reduction used for SAR Compliance?	No			
13)	Describe Power Reduction (LTE Modes)		N/A		
14)	SAR Test Plan		N/A		
15)	SAR Test Data		N/A		

FCC ID: A3LSGHT899M	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogo 7 of 40
0Y1208241227.A3L	08/25/12 - 09/19/12	Portable Handset	Page 7 of 49

3 INTRODUCTION

The FCC has adopted the guidelines for evaluating the environmental effects of radio frequency (RF) radiation in ET Docket 93-62 on Aug. 6, 1996 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices. [1]

The safety limits used for the environmental evaluation measurements are based on the criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate (SAR) in IEEE/ANSI C95.1-1992 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz [3] and Health Canada RF Exposure Guidelines Safety Code 6 [24]. The measurement procedure described in IEEE/ANSI C95.3-2002 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave [4] is used for guidance in measuring the Specific Absorption Rate (SAR) due to the RF radiation exposure from the Equipment Under Test (EUT). These criteria for SAR evaluation are similar to those recommended by the International Committee for Non-Ionizing Radiation Protection (ICNIRP) in Biological Effects and Exposure Criteria for Radiofrequency Electromagnetic Fields," Report No. Vol 74. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards.

3.1 **SAR Definition**

Specific Absorption Rate is defined as the time derivative (rate) of the incremental energy (dU) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ). It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body (see Equation 3-1).

Equation 3-1 **SAR Mathematical Equation**

$$SAR = \frac{d}{dt} \left(\frac{dU}{dm} \right) = \frac{d}{dt} \left(\frac{dU}{\rho dv} \right)$$

SAR is expressed in units of Watts per Kilogram (W/kg).

$$SAR = \frac{\sigma \cdot E^2}{\rho}$$

where:

 σ = conductivity of the tissue-simulating material (S/m) ρ = mass density of the tissue-simulating material (kg/m³)

E = Total RMS electric field strength (V/m)

NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relation to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane.[6]

FCC ID: A3LSGHT899M	SPORTEST SOUNDERS CASEADRY, INC.	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogo 0 of 40
0Y1208241227.A3L	08/25/12 - 09/19/12	Portable Handset	Page 8 of 49

4 SAR MEASUREMENT SETUP

4.1 Automated SAR Measurement System

Measurements are performed using the DASY automated dosimetric SAR assessment system. The DASY is made by Schmid & Partner Engineering AG (SPEAG) in Zurich, Switzerland and consists of a high precision robotics system (Staubli), robot controller, desktop computer, near-field probe, probe alignment sensor, and the SAM phantom containing the head or body equivalent material. The robot is a six-axis industrial robot, performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF). See www.speag.com for more information about the specification of the SAR assessment system.

Figure 4-1
SAR Measurement System

Figure 4-2 Near-Field Probe

Table 4-1
Composition of the Tissue Equivalent Matter

Frequency (MHz)	835	835	1750	1750	1900	1900	2450	2450	5200- 5800	5200- 5800
Tissue	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body
Ingredients (% by weight)										
Bactericide	0.1	0.1								
DGBE			47	31	44.92	29.44	7.99	26.7		
HEC	1	1								
NaCl	1.45	0.94	0.4	0.2	0.18	0.39	0.16	0.1		
Sucrose	57	44.9								
Triton X-100							19.97		17.24	
Diethylenglycol monohexylether									17.24	
Polysorbate (Tween) 80										20
Water	40.45	53.06	52.6	68.8	54.9	70.17	71.88	73.2	65.52	80

FCC ID: A3LSGHT899M	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:	Dogg 0 of 40	
0Y1208241227.A3L	08/25/12 - 09/19/12	Portable Handset	Page 9 of 49	

5.1 Measurement Procedure

The evaluation was performed using the following procedure:

- 1. The SAR distribution at the exposed side of the head or body was measured at a distance no greater than 5.0 mm from the inner surface of the shell. The area covered the entire dimension of the device-head interface and the horizontal grid resolution was 15mm and 15mm for frequencies < 3 GHz in the x and y directions respectively. When applicable, for frequencies above 3 GHz, a 10 mm by 10 mm resolution was used.
- 2. The point SAR measurement was taken at the maximum SAR region determined from Step 1 to enable the monitoring of SAR fluctuations/drifts during the 1 gram cube evaluation. SAR at this fixed point was measured and used as a reference value.

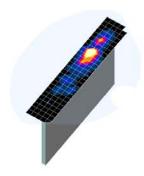


Figure 5-1 Sample SAR Area Scan

- 3. Based on the area scan data, the peak area of the maximum absorption was determined by spline interpolation. Around this point, a volume of 32mm x 32mm x 30mm (fine resolution volume scan, zoom scan) was assessed by measuring at least 5 x 5 x 7 points. On this basis of this data set, the spatial peak SAR value was evaluated with the following procedure (see references or the DASY manual online for more details):
 - a. The data was extrapolated to the surface of the outer-shell of the phantom. The combined distance extrapolated was the combined distance from the center of the dipoles 2.7mm away from the tip of the probe housing plus the 1.2 mm distance between the surface and the lowest measuring point. The extrapolation was based on a least-squares algorithm. A polynomial of the fourth order was calculated through the points in the z-axis (normal to the phantom shell).
 - b. After the maximum interpolated values were calculated between the points in the cube, the SAR was averaged over the spatial volume (1g or 10g) using a 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions). The volume was then integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were obtained through interpolation, in order to calculate the averaged SAR.
 - c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.
- 4. The SAR reference value, at the same location as step 2, was re-measured after the zoom scan was complete to calculate the SAR drift. If the drift deviated by more than 5%, the SAR test and drift measurements were repeated.
- 5. For testing 5 GHz devices, finer resolution zoom scans were performed as specified by FCC SAR Measurement Requirements for 3 6 GHz, KDB 865664 publication. The 5 GHz zoom scan requires a minimum volume of 24mm x 24mm x 20mm and 7 x 7 x 11 points.

FCC ID: A3LSGHT899M	PCTEST	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogo 10 of 10
0Y1208241227.A3L	08/25/12 - 09/19/12	Portable Handset	Page 10 of 49

6 DEFINITION OF REFERENCE POINTS

6.1 EAR REFERENCE POINT

Figure 6-2 shows the front, back and side views of the SAM Twin Phantom. The point "M" is the reference point for the center of the mouth, "LE" is the left ear reference point (ERP), and "RE" is the right ERP. The ERP is 15mm posterior to the entrance to the ear canal (EEC) along the B-M line (Back-Mouth), as shown in Figure 6-1. The plane passing through the two ear canals and M is defined as the Reference Plane. The line N-F (Neck-Front) is perpendicular to the reference plane and passing through the RE (or LE) is called the Reference Pivoting Line (see Figure 6-2). Line B-M is perpendicular to the N-F line. Both N-F and B-M lines are marked on the external phantom shell to facilitate handset positioning [5].

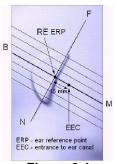


Figure 6-1 Close-Up Side view of ERP

6.2 HANDSET REFERENCE POINTS

Two imaginary lines on the handset were established: the vertical centerline and the horizontal line. The test device was placed in a normal operating position with the "test device reference point" located along the "vertical centerline" on the front of the device aligned to the "ear reference point" (See Figure 6-3). The "test device reference point" was than located at the same level as the center of the ear reference point. The test device was positioned so that the "vertical centerline" was bisecting the front surface of the handset at it's top and bottom edges, positioning the "ear reference point" on the outer surface of the both the left and right head phantoms on the ear reference point.

Figure 6-2 Front, back and side view of SAM Twin Phantom

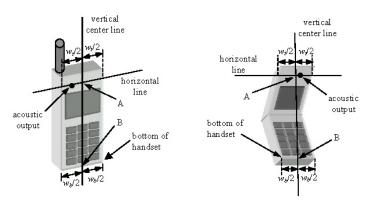


Figure 6-3
Handset Vertical Center & Horizontal Line Reference Points

FCC ID: A3LSGHT899M	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:	Dogg 11 of 10	
0Y1208241227.A3L	08/25/12 - 09/19/12	Portable Handset	Page 11 of 49	

7 TEST CONFIGURATION POSITIONS FOR HANDSETS

7.1 Device Holder

The DASY device holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity ε = 3 and loss tangent δ = 0.02.

7.2 Positioning for Cheek/Touch

1. The test device was positioned with the handset close to the surface of the phantom such that point A is on the (virtual) extension of the line passing through points RE and LE on the phantom (see Figure 7-1), such that the plane defined by the vertical center line and the horizontal line of the phone is approximately parallel to the sagittal plane of the phantom.

Figure 7-1 Front, Side and Top View of Cheek/Touch Position

- The handset was translated towards the phantom along the line passing through RE & LE until the handset touches the ear.
- 3. While maintaining the handset in this plane, the handset was rotated around the LE-RE line until the vertical centerline was in the plane normal to MB-NF including the line MB (reference plane).
- 4. The phone was then rotated around the vertical centerline until the phone (horizontal line) was symmetrical was respect to the line NF.
- 5. While maintaining the vertical centerline in the reference plane, keeping point A on the line passing through RE and LE, and maintaining the phone contact with the ear, the handset was rotated about the line NF until any point on the handset made contact with a phantom point below the ear (cheek) (See Figure 7-2).

7.3 Positioning for Ear / 15° Tilt

With the test device aligned in the "Cheek/Touch Position":

- 1. While maintaining the orientation of the phone, the phone was retracted parallel to the reference plane far enough to enable a rotation of the phone by 15degree.
- 2. The phone was then rotated around the horizontal line by 15 degree.
- 3. While maintaining the orientation of the phone, the phone was moved parallel to the reference plane until any part of the phone touches the head. (In this position, point A was located on the line RE-LE). The tilted position is obtained when the contact is on the pinna. If the contact was at any location other than the pinna, the angle of the phone would then be reduced. The tilted position was obtained when any part of the phone was in contact of the ear as well as a second part of the phone was in contact with the head (see Figure 7-2).

FCC ID: A3LSGHT899M	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogg 10 of 10
0Y1208241227.A3L	08/25/12 - 09/19/12	Portable Handset	Page 12 of 49

Figure 7-2 Front, Side and Top View of Ear/15° Tilt Position

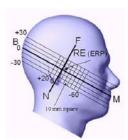


Figure 7-3
Side view w/ relevant markings

Figure 7-4 Body SAR Sample Photo (Not Actual EUT)

7.4 SAR Evaluations near the Mouth/Jaw Regions of the SAM Phantom

Antennas located near the bottom of a phone may require SAR measurements around the mouth and jaw regions of the SAM head phantom. This typically applies to clam-shell style phones that are generally longer in the unfolded normal use positions or to certain older style long rectangular phones.

Under these circumstances, the following procedures apply, adopted from the FCC guidance on SAR handsets document publication 648474. The SAR required in these regions of SAM should be measured using a flat phantom. **Rectangular shaped phones** should be positioned with its bottom edge positioned from the flat phantom with the same distance provided by the cheek touching position using SAM. The ear reference point (ERP, as defined for SAM) of the phone should be positioned ½ cm from the flat phantom shell. **Clam-shell phones** should be positioned with the hinge against a smooth edge of the flat phantom where the upper half of the phone is unfolded and extended beyond the phantom side wall. The lower half of the phone is secured in the test device holder at a fixed distance below the flat phantom determined by the minimum separation along the lower edge of the phone in the cheek touching position using SAM. Any case with substantial variation in separation distance along the lower edge of a clam shell is discussed with the FCC for best-to-use methodology.

The latest IEEE 1528 committee developments propose the usage of a tilted phantom when the antenna of the phone is mounted at the bottom or in all cases the peak absorption is in the chin region. Both SAM heads of the TwinSAM-Chin20 are rotated 20 degrees around the NF line. Each head can be removed individually from the table for emptying and cleaning.

Figure 7-5 Twin SAM Chin20

7.5 Body-Worn Accessory Configurations

Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration (see Figure 7-4). A device with a headset output is tested with a headset connected to the device.

FCC ID: A3LSGHT899M	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 13 of 49
0Y1208241227.A3L	08/25/12 - 09/19/12	Portable Handset	Fage 13 01 49

Accessories for Body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are tested with the device with each accessory. If multiple accessories share an identical metallic component (i.e. the same metallic belt-clip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

Body-worn accessories may not always be supplied or available as options for some devices intended to be authorized for body-worn use. In this case, a test configuration with a separation distance between the back of the device and the flat phantom is used. Test position spacing was documented. Transmitters that are designed to operate in front of a person's face, as in push-to-talk configurations, are tested for SAR compliance with the front of the device positioned to face the flat phantom in head fluid. For devices that are carried next to the body such as a shoulder, waist or chest-worn transmitters, SAR compliance is tested with the accessories, including headsets and microphones, attached to the device and positioned against a flat phantom in a normal use configuration.

7.6 Wireless Router Configurations

Some battery-operated handsets have the capability to transmit and receive internet connectivity through simultaneous transmission of WIFI in conjunction with a separate licensed transmitter. The FCC has provided guidance in KDB Publication 941225 D06 where SAR test considerations for handsets (L x W \geq 9 cm x 5 cm) are based on a composite test separation distance of 10 mm from the front, back and edges of the device with antennas 2.5 cm or closer to the edge of the device, determined from general mixed use conditions for this type of devices. Since the hotspot SAR results may overlap with the body-worn accessory SAR requirements, the more conservative configurations can be considered, thus excluding some body-worn accessory SAR tests.

When the user enables the personal wireless router functions for the handset, actual operations include simultaneous transmission of both the WIFI transmitter and another licensed transmitter. Both transmitters often do not transmit at the same transmitting frequency and thus cannot be evaluated for SAR under actual use conditions. Therefore, SAR must be evaluated for each frequency transmission and mode separately and summed with the WIFI transmitter according to KDB 648474 publication procedures. The "Portable Hotspot" feature on the handset was NOT activated, to ensure the SAR measurements were evaluated for a single transmission frequency RF signal.

FCC ID: A3LSGHT899M	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:	Dago 14 of 40	
0Y1208241227.A3L	08/25/12 - 09/19/12	Portable Handset	Page 14 of 49	

8.1 Uncontrolled Environment

UNCONTROLLED ENVIRONMENTS are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

8.2 Controlled Environment

CONTROLLED ENVIRONMENTS are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Table 8-1
SAR Human Exposure Specified in ANSI/IEEE C95.1-1992 and Health Canada Safety Code 6

HUMAN EXPOSURE LIMITS				
	UNCONTROLLED ENVIRONMENT General Population (W/kg) or (mW/g)	CONTROLLED ENVIRONMENT Occupational (W/kg) or (mW/g)		
SPATIAL PEAK SAR Brain	1.6	8.0		
SPATIAL AVERAGE SAR Whole Body	0.08	0.4		
SPATIAL PEAK SAR Hands, Feet, Ankles, Wrists	4.0	20		

^{1.} The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

FCC ID: A3LSGHT899M	PCTEST* SECRETISE LADVATORY, INC.	SAR EVALUATION REPORT	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:	Dogg 15 of 40	
0Y1208241227.A3L	08/25/12 - 09/19/12	Portable Handset	Page 15 of 49	

^{2.} The Spatial Average value of the SAR averaged over the whole body.

^{3.} The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

9 FCC MEASUREMENT PROCEDURES

Power measurements were performed using a base station simulator under digital average power.

9.1 Procedures Used to Establish RF Signal for SAR

The following procedures are according to FCC KDB Publication 941225 D01 "SAR Measurement Procedures for 3G Devices" v02, October 2007.

The device was placed into a simulated call using a base station simulator in a RF shielded chamber. Establishing connections in this manner ensure a consistent means for testing SAR and are recommended for evaluating SAR [4]. Devices under test were evaluated prior to testing, with a fully charged battery and were configured to operate at maximum output power. In order to verify that the device was tested throughout the SAR test at maximum output power, the SAR measurement system measures a "point SAR" at an arbitrary reference point at the start and end of the 1 gram SAR evaluation, to assess for any power drifts during the evaluation. If the power drift deviated by more than 5%, the SAR test and drift measurements were repeated.

9.2 SAR Measurement Conditions for WCDMA

9.2.1 Output Power Verification

Maximum output power is measured on the High, Middle and Low channels for each applicable transmission band according to the general descriptions in section 5.2 of 3GPP TS 34.121, using the appropriate RMC or AMR with TPC (transmit power control) set to all "1s".

9.2.2 Head SAR Measurements for Handsets

SAR for head exposure configurations is measured using the 12.2 kbps RMC with TPC bits configured to all "1s". SAR in AMR configurations is not required when the maximum average output of each RF channel for 12.2 kbps AMR is less than 0.25 dB higher than that measured in 12.2 kbps RMC. Otherwise, SAR is measured on the maximum output channel in 12.2 AMR with a 3.4 kbps SRB (signaling radio bearer) using the exposure configuration that resulted in the highest SAR for that RF channel in the 12.2 kbps RMC mode.

9.2.3 Body SAR Measurements

SAR for body exposure configurations is measured using the 12.2 kbps RMC with the TPC bits all "1s".

9.2.4 SAR Measurements for Handsets with Rel 5 HSDPA

Body SAR for HSDPA is not required for handsets with HSDPA capabilities when the maximum average output power of each RF channel with HSDPA active is less than 0.25 dB higher than that measured without HSDPA using 12.2 kbps RMC and the maximum SAR for 12.2 kbps RMC is $\leq 75\%$ of the SAR limit. Otherwise, SAR is measured for HSDPA, using an FRC with H-Set 1 in Sub-test 1 and a 12.2 kbps RMC configured in Test Loop Mode 1, using the highest body SAR configuration measured in 12.2 kbps RMC without HSDPA, on the maximum output channel with the body exposure configuration that resulted in the highest SAR in 12.2 kbps RMC mode for that RF channel.

FCC ID: A3LSGHT899M	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 16 of 49
0Y1208241227.A3L	08/25/12 - 09/19/12	Portable Handset	Fage 10 01 49

The H-set used in FRC for HSDPA should be configured according to the UE category of a test device. The number of HS-DSCH/HSPDSCHs, HARQ processes, minimum inter-TTI interval, transport block sizes and RV coding sequence are defined by the applicable H-set. To maintain a consistent test configuration and stable transmission conditions, QPSK is used in the FRC for SAR testing. HS-DPCCH should be configured with a CQI feedback cycle of 2 ms to maintain a constant rate of active CQI slots. DPCCH and DPDCH gain factors of $\beta c=9$ and $\beta d=15$, and power offset parameters of $\Delta ACK=\Delta NACK=5$ and $\Delta CQI=2$ is used. The CQI value is determined by the UE category, transport block size, number of HS-PDSCHs and modulation used in the FRC.

9.2.5 SAR Measurements for Handsets with Rel 6 HSUPA

Body SAR for HSUPA is not required when the maximum average output of each RF channel with HSUPA/HSDPA active is less than 0.25 dB higher than as measured without HSUPA/HSDPA using 12.2 kbps RMC and maximum SAR for 12.2 kbps RMC is \leq 75 % of the SAR limit. Otherwise SAR is measured on the maximum output channel for the body exposure configuration produced highest SAR in 12.2 kbps RMC for that RF channel, using the additional procedures under "Release 6 HSPA data devices"

Head SAR for VOIP operations under HSPA is not required when maximum average output of each RF channel with HSPA is less than 0.25 dB higher than as measured using 12.2 kbps RMC. Otherwise SAR is measured using same HSPA configuration as used for body SAR.

Sub- test	βε	β_d	β _d (SF)	β_c/β_d	$\beta_{hs}^{(1)}$	β _{ec}	βed	β _{ed} (SF)	β _{ed} (codes)	CM ⁽²⁾ (dB)	MPR (dB)	AG ⁽⁴⁾ Index	E- TFCI
1	11/15 ⁽³⁾	15/15 ⁽³⁾	64	11/15 ⁽³⁾	22/15	209/225	1039/225	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	94/75	4	1	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	β _{ed1} : 47/15 β _{ed2} : 47/15		2	2.0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	2/15	56/75	4	1	3.0	2.0	17	71
5	15/15 ⁽⁴⁾	15/15 ⁽⁴⁾	64	15/15 ⁽⁴⁾	30/15	24/15	134/15	4	1	1.0	0.0	21	81

Note 1: Δ_{ACK} , Δ_{NACK} and $\Delta_{CQI} = 8 \Leftrightarrow A_{hs} = \beta_{hs}/\beta_c = 30/15 \Leftrightarrow \beta_{hs} = 30/15 *\beta_c$.

Note 2: CM = 1 for $\beta_c/\beta_d = 12/15$, $\beta_{1s}/\beta_c=24/15$. For all other combinations of DPDCH, DPCCH, HS- DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference.

Note 3: For subtest 1 the β_c/β_d ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF1) to $\beta_c=10/15$ and $\beta_d=15/15$.

Note 4: For subtest 5 the β_c/β_d ratio of 15/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF1) to $\beta_c=14/15$ and $\beta_d=15/15$.

Note 5: Testing UE using E-DPDCH Physical Layer category 1 Sub-test 3 is not required according to TS 25.306 Table 5.1g.

Note 6: β_{ed} can not be set directly; it is set by Absolute Grant Value.

9.3 SAR Measurement Conditions for LTE

LTE modes were tested according to FCC KDB 941225 D05 publication. Please see notes following SAR data for required test configurations. Establishing connections with base station simulators ensure a consistent means for testing SAR and are recommended for evaluating SAR [4]. The R&S CMW500 was used for LTE output power measurements and SAR testing. Closed loop power control was used so the UE transmits with maximum output power during SAR testing.

9.3.1 MPR

MPR is permanently implemented for this device by the manufacturer. The specific manufacturer target MPR is indicated alongside the SAR results. MPR is enabled for this device, according to 3GPP TS36.101 Section 9.2.3 – 9.2.5 under Table 9.2.3-1.

FCC ID: A3LSGHT899M	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogo 17 of 40
0Y1208241227.A3L	08/25/12 - 09/19/12	Portable Handset	Page 17 of 49

9.3.2 A-MPR

A-MPR (Additional MPR) has been disabled for all SAR tests by setting NS=01 on the base station simulator.

9.3.3 Required RB Size and RB Offsets for SAR Testing

According to FCC KDB 941225 D05:

- a. Per Page 4, 3) A), QPSK with 50% RB is required for the highest bandwidth.
- b. Per Page 4, footnote 2, when the maximum output power across high, mid., and low channels is < 0.5 dB, mid channel is tested. Low and high channel SAR tests are not required for QPSK, 50% RB allocation when the SAR is < 0.8 W/kg.
- c. Per Page 4, 3) B), QPSK with 1 RB for both channel edges are required for the highest bandwidth.
- d. Per Page 4, footnote 6, QPSK 1 RB allocation SAR tests were performed on the highest output power channel for the RB allocation when the average output power of the 1 RB allocation was > 0.5 dB higher than the 50% RB allocation for QPSK. Otherwise, SAR tests are performed on the channel that produced the highest SAR for QPSK with 50% RB. 1 RB low and high offset configurations were considered together for a single channel selection.
- e. Per Page 4, 3) B), I), when the SAR for QPSK 1 RB allocation tests is <1.45 W/kg, testing on the other channels is not required.
- f. Per Page 4, 4) A), 16QAM with 50% RB is required for the highest bandwidth on the channel with the highest measured SAR for QPSK with 50% RB allocation.
- g. Per Page 4, 4) A), I), when the SAR for 16 QAM, 50 % allocation tests is <1.45 W/kg, testing on the other channels is not required.
- h. Per Page 4, 4) B) and Page 5 footnote 9, 16QAM with 1RB for both channel edges are required for the highest bandwidth on the highest output power channel for the 1 RB allocation when the average output power of the 1 RB allocation is >0.5 dB higher than the 50% allocation for 16 QAM. Otherwise, SAR tests are performed on the channel that produced the highest SAR for 16 QAM with 50% RB. 1 RB low and high offset configurations were considered together for a single channel selection.
- i. Per Page 5, 4) B), I), when the SAR for 16 QAM 1 RB allocation tests is <1.45 W/kg, testing on the other channels is not required.
- j. Per Page 4, 4), A) I) and Page 5, 4), A)I, 100% RB Allocation is not required to be tested when the SAR is not > 1.45 W/kg for the highest bandwidth.
- k. Per Page 5, 5) B) I), smaller bandwidths are not required to be tested when SAR is not > 1.45 W/kg for the highest bandwidth and the maximum average output power of the smaller bandwidths across all channels and configurations is not more than 0.5 dB higher than the higher bandwidths.

9.4 SAR Testing with 802.11 Transmitters

Normal network operating configurations are not suitable for measuring the SAR of 802.11 a/b/g/n transmitters. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure the results are consistent and reliable. See KDB Publication 248227 for more details.

9.4.1 General Device Setup

Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters. The test frequencies should correspond

FCC ID: A3LSGHT899M	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogg 10 of 10
0Y1208241227.A3L	08/25/12 - 09/19/12	Portable Handset	Page 18 of 49

to actual channel frequencies defined for domestic use. SAR for devices with switched diversity should be measured with only one antenna transmitting at a time during each SAR measurement, according to a fixed modulation and data rate. The same data pattern should be used for all measurements.

9.4.2 Frequency Channel Configurations [27]

For 2.4 GHz, the highest average RF output power channel between the low, mid and high channel at the lowest data rate was selected for SAR evaluation in 802.11b mode. 802.11g/n modes and higher data rates for 802.11b were additionally evaluated for SAR if the output power of the respective mode was 0.25 dB or higher than the powers of the SAR configurations tested in the 802.11b mode.

For 5 GHz, the highest average RF output power channel across the default test channels at the lowest data rate was selected for SAR evaluation in 802.11a. When the adjacent channels are higher in power then the default channels, these "required channels" were considered instead of the default channels for SAR testing. 802.11n modes and higher data rates for 802.11a/n were evaluated only if the respective mode was 0.25 dB or higher than the 802.11a mode.

If the maximum extrapolated peak SAR of the zoom scan for the highest output channel was less than 1.6 W/kg or if the 1g averaged SAR was less than 0.8 W/kg, SAR testing was not required for the other test channels in the band.

FCC ID: A3LSGHT899M	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogg 10 of 10
0Y1208241227.A3L	08/25/12 - 09/19/12	Portable Handset	Page 19 of 49

10.1 GSM Conducted Powers

					Maximum Burst-Averaged Output Power							
			Voic	е			GPRS E	Data (GMSK)			
Band	d Channel		GSM [dBm] CS (1 Slot)		GPRS [dBm] 1 Tx Slot		GPRS [dBm] 2 Tx Slo	[dBm]	GPRS [dBm] t 4 Tx Slot			
	128		32.8	8	32.9	5	31.23	29.90	28.12			
Cellular	190		32.4	7	32.5	9	31.43	29.99	28.18			
	251	251		6	32.8	7	31.67	30.14	28.30			
	512		30.6	0	30.6	3	28.84	27.23	25.95			
PCS	661		29.75		29.71		28.19	26.83	25.52			
	810	29.8		8	8 29.8		28.16	26.55	25.25			
				Calculated Maximum Frame-Averaged Output Power								
			Voice GPRS Data (GMSK)									
Band			GSM [dBm] CS [d (1 Slot)		PRS m] 1 c Slot	[dE	GPRS 3m] 2 [x Slot	GPRS [dBm] 3 Tx Slot	GPRS [dBm] 4 Tx Slot			
	128		23.85	2	23.92		25.21	25.64	25.11			
Cellular	190		23.44	2	23.56		25.41	25.73	25.17			
	251		23.73	2	23.84		25.65	25.88	25.29			
	512		21.57	2	21.60		22.82	22.97	22.94			
PCS	661		20.72	2	20.68		22.17	22.57	22.51			
	810		20.85	2	20.86		22.14	22.29	22.24			

Note:

- 1. Both burst-averaged and calculated frame-averaged powers are included. Frame-averaged power was calculated from the measured burst-averaged power by converting the slot powers into linear units and calculating the energy over 8 timeslots.
- 2. The bolded GPRS modes were selected according to the highest frame-averaged output power table according to KDB 941225 D03.
- 3. CS1 coding scheme was used in GPRS output power measurement and SAR Testing, as a condition where GMSK modulation was ensured. It was investigated that CS1 CS4 settings do not have any impact on the output levels in the GPRS modes.

GSM Class: B
GPRS Multislot class: 12 (max 4 Tx Uplink slots)
EDGE Multislot class: Rx Only
DTM Multislot Class: N/A

Figure 10-1
Power Measurement Setup

FCC ID: A3LSGHT899M	PCTEST** *** VINCELLED LABORATORY, INC.	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dags 20 of 40
0Y1208241227.A3L	08/25/12 - 09/19/12	Portable Handset	Page 20 of 49

10.2 UMTS Conducted Powers

3GPP 34.121 Subtest	Cellular Band [dBm]			AW	AWS Band [dBm]			PCS Band [dBm]			
Sublest	4132	4183	4233	1312	1412	1862	9262	9400	9538	[dB]	
12.2 kbps RMC	22.06	22.33	22.16	22.90	23.34	23.29	23.31	22.85	22.64	-	
12.2 kbps AMR	22.25	22.35	22.17	22.85	23.28	23.15	23.25	22.88	22.65	-	
Subtest 1	20.57	20.75	20.59	21.46	22.15	21.94	21.86	21.47	21.25	0	
Subtest 2	20.58	20.96	20.65	21.21	22.15	22.19	21.89	21.58	21.78	0	
Subtest 3	20.29	20.44	20.30	21.13	21.49	21.58	21.33	20.75	20.65	0.5	
Subtest 4	19.90	20.19	20.05	21.05	21.35	21.45	21.11	20.73	20.51	0.5	
Subtest 1	20.64	20.50	20.88	21.01	21.71	21.82	20.80	20.89	20.79	0	
Subtest 2	20.36	20.27	20.23	20.97	21.11	21.28	20.88	20.99	20.54	2	
Subtest 3	19.98	19.78	19.95	20.75	21.17	20.87	20.52	20.51	20.17	1	
Subtest 4	19.89	19.68	19.90	20.79	20.95	20.86	20.98	20.97	20.65	2	
Subtest 5	20.65	19.78	19.66	20.53	20.65	20.74	20.65	20.69	20.54	0	

UMTS SAR was tested under RMC 12.2 kbps with HSPA Inactive per KDB Publication 941225 D01. HSPA SAR was not required since the average output power of the HSPA subtests was not more than 0.25 dB higher than the RMC level and SAR was less than 1.2 W/kg.

It is expected by the manufacturer that MPR for some HSUPA subtests may be up to 2 dB more than specified by 3GPP, but also as low as 0 dB according to the chipset implementation in this model. Detailed information is included in the operational description explaining how the MPR is applied for this model.

Figure 10-2 **Power Measurement Setup**

FCC ID: A3LSGHT899M	SOUTH ST. SECRETARY INC.	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dags 21 of 40
0Y1208241227.A3L	08/25/12 - 09/19/12 Portable Handset		Page 21 of 49
@ 0040 DOTEOT Facilities and all all and			DEV/44.0 M

10.3 LTE Conducted Powers

10.3.1 LTE Band 4 (AWS)

Table 10-1 LTE Band 4 (AWS) Conducted Powers - 5 MHz Bandwidth

	Frequency [MHz]	Channel	Bandwidth [MHz]	Modulation	RB Size	RB Offset	Conducted Power [dBm]	Target MPR [dB]	MPR Allowed per 3GPP [dB]
	1712.5	19975	5	QPSK	1	0	23.55	0	0
	1712.5	19975	5	QPSK	1	24	23.25	0	0
	1712.5	19975	5	QPSK	12	6	22.03	1	0-1
Low	1712.5	19975	5	QPSK	25	0	22.09	1	0-1
의	1712.5	19975	5	16-QAM	1	0	22.28	1	0-1
	1712.5	19975	5	16-QAM	1	24	22.26	1	0-1
	1712.5	19975	5	16-QAM	12	6	21.02	2	0-2
	1712.5	19975	5	16-QAM	25	0	21.07	2	0-2
	1732.5	20175	5	QPSK	1	0	23.45	0	0
	1732.5	20175	5	QPSK	1	24	23.46	0	0
	1732.5	20175	5	QPSK	12	6	22.08	1	0-1
Mid	1732.5	20175	5	QPSK	25	0	22.04	1	0-1
Σ	1732.5	20175	5	16-QAM	1	0	22.45	1	0-1
	1732.5	20175	5	16-QAM	1	24	22.10	1	0-1
	1732.5	20175	5	16-QAM	12	6	21.28	2	0-2
	1732.5	20175	5	16-QAM	25	0	21.03	2	0-2
	1752.5	20375	5	QPSK	1	0	23.67	0	0
	1752.5	20375	5	QPSK	1	24	23.81	0	0
	1752.5	20375	5	QPSK	12	6	22.77	1	0-1
High	1752.5	20375	5	QPSK	25	0	22.66	1	0-1
Ξ̈́	1752.5	20375	5	16-QAM	1	0	22.55	1	0-1
	1752.5	20375	5	16-QAM	1	24	22.95	1	0-1
	1752.5	20375	5	16-QAM	12	6	21.69	2	0-2
	1752.5	20375	5	16-QAM	25	0	21.64	2	0-2

Table 10-2 LTE Band 4 (AWS) Conducted Powers - 10 MHz Bandwidth

		- Dana +	(AVV3) Conducted Fowers - 10 Miliz Bandwidth							
	Frequency [MHz]	Channel	Bandwidth [MHz]	Modulation	RB Size	RB Offset	Conducted Power [dBm]	Target MPR [dB]	MPR Allowed per 3GPP [dB]	
	1715	20000	10	QPSK	1	0	23.25	0	0	
	1715	20000	10	QPSK	1	49	23.05	0	0	
	1715	20000	10	QPSK	25	12	22.04	1	0-1	
Low	1715	20000	10	QPSK	50	0	22.10	1	0-1	
의	1715	20000	10	16QAM	1	0	22.24	1	0-1	
	1715	20000	10	16QAM	1	49	22.02	1	0-1	
	1715	20000	10	16QAM	25	12	21.14	2	0-2	
	1715	20000	10	16QAM	50	0	21.08	2	0-2	
	1732.5	20175	10	QPSK	1	0	23.47	0	0	
	1732.5	20175	10	QPSK	1	49	23.41	0	0	
	1732.5	20175	10	QPSK	25	12	22.40	1	0-1	
Mid	1732.5	20175	10	QPSK	50	0	22.01	1	0-1	
Σ	1732.5	20175	10	16QAM	1	0	22.09	1	0-1	
	1732.5	20175	10	16QAM	1	49	22.08	1	0-1	
	1732.5	20175	10	16QAM	25	12	21.14	2	0-2	
	1732.5	20175	10	16QAM	50	0	21.15	2	0-2	
	1750	20350	10	QPSK	1	0	23.55	0	0	
	1750	20350	10	QPSK	1	49	23.78	0	0	
	1750	20350	10	QPSK	25	12	22.65	1	0-1	
High	1750	20350	10	QPSK	50	0	22.42	1	0-1	
Ξ̈́	1750	20350	10	16QAM	1	0	22.48	1	0-1	
	1750	20350	10	16QAM	1	49	22.61	1	0-1	
	1750	20350	10	16QAM	25	12	21.49	2	0-2	
	1750	20350	10	16QAM	50	0	21.51	2	0-2	

FCC ID: A3LSGHT899M	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogg 22 of 40
0Y1208241227.A3L	08/25/12 - 09/19/12	Portable Handset	Page 22 of 49

Table 10-3
LTE Band 4 (AWS) Conducted Powers - 15 MHz Bandwidth

	Frequency [MHz]	Channel	Bandwidth [MHz]	Modulation	RB Size	RB Offset	Conducted Power [dBm]	Target MPR [dB]	MPR Allowed per 3GPP [dB]
	1717.5	20025	15	QPSK	1	0	23.66	0	0
	1717.5	20025	15	QPSK	1	74	23.17	0	0
	1717.5	20025	15	QPSK	36	18	22.02	1	0-1
Low	1717.5	20025	15	QPSK	75	0	22.05	1	0-1
일	1717.5	20025	15	16QAM	1	0	22.28	1	0-1
	1717.5	20025	15	16QAM	1	74	22.36	1	0-1
	1717.5	20025	15	16QAM	36	18	21.08	2	0-2
	1717.5	20025	15	16QAM	75	0	21.07	2	0-2
	1732.5	20175	15	QPSK	1	0	23.39	0	0
	1732.5	20175	15	QPSK	1	74	23.46	0	0
	1732.5	20175	15	QPSK	36	18	22.13	1	0-1
Mid	1732.5	20175	15	QPSK	75	0	22.03	1	0-1
Σ	1732.5	20175	15	16QAM	1	0	22.58	1	0-1
	1732.5	20175	15	16QAM	1	74	22.17	1	0-1
	1732.5	20175	15	16QAM	36	18	21.10	2	0-2
	1732.5	20175	15	16QAM	75	0	21.04	2	0-2
	1747.5	20325	15	QPSK	1	0	23.44	0	0
	1747.5	20325	15	QPSK	1	74	23.96	0	0
	1747.5	20325	15	QPSK	36	18	22.62	1	0-1
High-	1747.5	20325	15	QPSK	75	0	22.47	1	0-1
Ξ̈́	1747.5	20325	15	16QAM	1	0	22.89	1	0-1
	1747.5	20325	15	16QAM	1	74	23.00	1	0-1
	1747.5	20325	15	16QAM	36	18	21.80	2	0-2
	1747.5	20325	15	16QAM	75	0	21.62	2	0-2

Table 10-4
LTE Band 4 (AWS) Conducted Powers - 20 MHz Bandwidth

	L	I E Dallu	4 (AVVS) (Jonaucie	<u>a Powers</u>	- 20 IVIT	12 Dalluv	wiatii	
	Frequency [MHz]	Channel	Bandwidth [MHz]	Modulation	RB Size	RB Offset	Conducted Power [dBm]	Target MPR [dB]	MPR Allowed per 3GPP [dB]
	1720	20050	20	QPSK	1	0	23.36	0	0
	1720	20050	20	QPSK	1	99	23.09	0	0
	1720	20050	20	QPSK	50	25	22.12	1	0-1
NO	1720	20050	20	QPSK	100	0	22.15	1	0-1
19	1720	20050	20	16QAM	1	0	22.36	1	0-1
	1720	20050	20	16QAM	1	99	22.08	1	0-1
	1720	20050	20	16QAM	50	25	21.12	2	0-2
	1720	20050	20	16QAM	100	0	21.02	2	0-2
	1732.5	20175	20	QPSK	1	0	23.25	0	0
	1732.5	20175	20	QPSK	1	99	23.46	0	0
	1732.5	20175	20	QPSK	50	25	22.28	1	0-1
Σ	1732.5	20175	20	QPSK	100	0	22.13	1	0-1
≥	1732.5	20175	20	16QAM	1	0	22.12	1	0-1
	1732.5	20175	20	16QAM	1	99	22.46	1	0-1
	1732.5	20175	20	16QAM	50	25	21.26	2	0-2
	1732.5	20175	20	16QAM	100	0	21.35	2	0-2
	1745	20300	20	QPSK	1	0	23.48	0	0
	1745	20300	20	QPSK	1	99	23.98	0	0
	1745	20300	20	QPSK	50	25	22.44	1	0-1
⊩gH	1745	20300	20	QPSK	100	0	22.56	1	0-1
Ĩ	1745	20300	20	16QAM	1	0	22.53	1	0-1
	1745	20300	20	16QAM	1	99	22.85	1	0-1
	1745	20300	20	16QAM	50	25	21.45	2	0-2
	1745	20300	20	16QAM	100	0	21.26	2	0-2

Notes:

- 1) Please reference Section 9.3.3 for LTE testing requirements per KDB 941225 D05.
- 2) The bolded powers in above sections were tested for SAR.

Figure 10-3
Power Measurement Setup

FCC ID: A3LSGHT899M	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogg 22 of 40
0Y1208241227.A3L	08/25/12 - 09/19/12	Portable Handset	Page 23 of 49

10.4 WLAN Conducted Powers

Table 10-5 IEEE 802.11b Average RF Power

Mode	Freq	Channel	Conducted Power [dBm] Data Rate [Mbps]						
Wiode	Tieq	Charine							
	[MHz]		1	2	5.5	11			
802.11b	2412	1	16.99	17.35	17.53	17.58			
802.11b	2437	6	17.08	16.98	17.13	17.02			
802.11b	2462	11	17.34	17.16	17.53	17.41			

Table 10-6 IEEE 802.11g Average RF Power

Mode	Frea	Channel			C	onducted F	Power [dB	m]		
Wiode	l led	Charine		Data Rate [Mbps]						
	[MHz]		6	6 9 12 18 24 36 48 54						
802.11g	2412	1	14.22	14.30	14.46	13.97	14.16	13.93	13.93	14.02
802.11g	2437	6	14.03	14.18	14.15	14.18	14.06	14.42	13.98	13.99
802.11g	2462	11	14.30	14.28	14.29	14.14	14.03	14.07	14.28	14.02

Table 10-7
IEEE 802.11n Average RF Power

Mode	Frea	Channel		Conducted Power [dBm] Data Rate [Mbps]								
Mode	rieq	Charmer										
	[MHz]		6.5	6.5 13 20 26 39 52 58 65								
802.11n	2412	1	13.25	13.33	13.30	13.22	13.54	12.96	13.05	12.64		
802.11n	2437	6	13.13	13.11	13.20	13.00	13.11	12.96	12.93	12.58		
802.11n	2462	11	13.25	13.25								

Table 10-8 IEEE 802.11a Average RF Power

	_				C	onducted I	Power [dB	ml				
Mode	Freq	Channel		Data Rate [Mbps]								
	[MHz]		6	9	12	18	24	36	48	54		
802.11a	5180	36*	11.01	11.17	11.13	11.13	11.00	11.07	11.15	11.07		
802.11a	5200	40	11.24	11.19	11.22	11.20	11.11	11.22	11.13	11.16		
802.11a	5220	44	11.66	11.80	11.75	11.90	11.72	11.72	11.74	11.71		
802.11a	5240	48*	11.82	12.05	11.91	11.92	11.90	11.95	12.06	11.92		
802.11a	5260	52*	12.08	12.16	12.14	12.14	11.86	12.11	11.90	12.05		
802.11a	5280	56	12.16	12.23	12.10	12.27	12.03	12.12	12.21	12.18		
802.11a	5300	60	12.25	12.23	12.24	12.07	12.14	12.16	12.04	12.09		
802.11a	5320	64*	12.12	12.05	12.11	12.11	12.17	12.18	12.10	12.08		
802.11a	5500	100	11.90	12.08	11.95	11.88	11.82	11.78	11.73	11.95		
802.11a	5520	104*	12.06	12.13	12.07	12.11	12.09	11.93	12.03	11.84		
802.11a	5540	108	12.77	12.65	12.63	12.65	12.63	12.64	12.65	12.86		
802.11a	5560	112	12.46	12.23	12.39	12.30	12.25	12.21	12.27	12.22		
802.11a	5580	116*	12.40	12.12	12.39	12.34	12.33	12.42	12.25	12.33		
802.11a	5600	120	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A		
802.11a	5620	124	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A		
802.11a	5640	128	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A		
802.11a	5660	132	12.39	12.52	12.36	12.33	12.51	12.47	12.42	12.33		
802.11a	5680	136*	12.11	12.01	12.01	12.10	12.00	11.93	11.93	11.97		
802.11a	5700	140	12.09	11.98	11.95	11.91	11.80	11.96	11.86	11.78		
802.11a	5745	149*	12.36	12.34	12.42	12.31	12.31	12.07	12.18	12.32		
802.11a	5765	153	12.46	12.28	12.34	12.37	12.10	12.01	12.17	12.06		
802.11a	5785	157*	11.23	11.44	11.38	11.40	11.24	10.75	11.28	11.34		
802.11a	5805	161*	11.31	11.37	11.41	11.33	11.25	11.19	11.21	11.30		
802.11a	5825	165	11.08	11.24	11.30	11.14	11.14	11.21	11.07	11.19		

Per FCC KDB Publication 443999 and RSS-210 A9.2(3), transmission on channels which overlap the 5600-5650 MHz is prohibited as a client. This device does not transmit any beacons or initiate any transmissions in 5.3 and 5.5 GHz Band. (*) – indicates default channels per KDB Publication 248227. When the adjacent channels are higher in power then the default channels, these "required channels" are considered instead of the default channels for SAR testing.

FCC ID: A3LSGHT899M	PCTEST**** ***VINDIGHTER LADGATRY, INC.	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 24 of 49
0Y1208241227.A3L	08/25/12 - 09/19/12	Portable Handset	Fage 24 01 49

Table 10-9 IEEE 802.11n (20 MHz Bandwidth) Average RF Power

Mode	From	Channal			C	onducted I	Power [dB	m]			
Mode	Freq	Channel		Data Rate [Mbps]							
	[MHz]		6.5	13	20	26	39	52	58	65	
802.11n	5180	36*	9.53	9.46	9.47	9.44	9.44	9.35	9.25	9.36	
802.11n	5200	40	9.46	9.51	9.43	9.55	9.36	9.24	9.49	9.23	
802.11n	5220	44	10.07	9.97	9.97	9.94	10.05	10.00	9.97	9.94	
802.11n	5240	48*	10.25	10.26	10.16	10.14	10.19	10.14	10.00	10.12	
802.11n	5260	52*	10.28	10.15	10.09	10.05	10.15	10.03	10.17	10.17	
802.11n	5280	56	10.31	10.31	10.27	10.33	10.33	10.26	10.25	10.31	
802.11n	5300	60	10.38	10.22	10.23	10.18	10.13	10.16	10.21	10.03	
802.11n	5320	64*	10.35	10.40	10.36	10.27	10.17	10.18	10.17	10.15	
802.11n	5500	100	10.00	10.10	9.97	10.01	10.01	10.05	10.15	9.99	
802.11n	5520	104*	10.25	10.09	10.42	10.08	10.14	10.01	9.94	10.03	
802.11n	5540	108	10.83	10.80	10.81	10.68	10.63	10.53	10.55	10.89	
802.11n	5560	112	10.12	10.19	10.18	10.17	10.15	10.25	10.18	10.11	
802.11n	5580	116*	10.25	10.15	10.22	10.33	10.02	10.14	10.13	10.21	
802.11n	5600	120	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
802.11n	5620	124	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
802.11n	5640	128	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
802.11n	5660	132	10.36	10.23	10.21	10.26	10.39	10.31	10.39	10.40	
802.11n	5680	136*	9.83	9.94	10.00	9.64	9.59	9.78	9.90	9.79	
802.11n	5700	140	10.09	9.97	9.69	9.86	9.61	9.72	9.78	9.84	
802.11n	5745	149*	10.32	10.32	10.33	10.07	10.25	10.23	10.23	10.27	
802.11n	5765	153	10.20	10.22	10.21	10.03	10.04	10.12	10.05	10.09	
802.11n	5785	157*	9.59	9.57	9.39	9.48	9.38	9.32	9.24	9.36	
802.11n	5805	161*	9.32	9.37	9.29	9.42	9.36	9.38	9.31	9.32	
802.11n	5825	165	9.27	9.15	9.21	9.12	9.02	9.16	9.21	9.35	

Per FCC KDB Publication 443999 and RSS-210 A9.2(3), transmission on channels which overlap the 5600-5650 MHz is prohibited as a client. This device does not transmit any beacons or initiate any transmissions in 5.3 and 5.5 GHz Bands. (*) – indicates default channels per KDB Publication 248227. When the adjacent channels are higher in power then the default channels, these "required channels" are considered instead of the default channels for SAR testing.

Table 10-10 IEEE 802.11n (40 MHz Bandwidth) Average RF Power

Mode	Eroa	Channel		802.	11n (40MH	z Bandwidt	802.11n (40MHz Bandwidth) Conducted Power [dBm]						
Mode	Freq	Channel		Data Rate [Mbps]									
	[MHz]		13.5/15	27/30	40.5/45	54/60	81/90	108/120	121.5/135	135/150			
802.11n	5190	38	9.09	9.03	9.47	9.50	9.46	9.51	9.35	9.36			
802.11n	5230	46	9.64	9.48	9.62	9.85	9.89	9.52	10.09	8.97			
802.11n	5270	54	9.17	9.97	9.95	9.09	10.20	10.21	9.40	9.28			
802.11n	5310	62	9.97	9.29	10.46	10.19	10.15	9.34	10.09	9.17			
802.11n	5510	102	9.72	10.00	10.37	9.95	9.81	10.01	10.21	9.71			
802.11n	5550	110	9.95	9.89	10.23	9.94	10.28	10.32	10.17	9.81			
802.11n	5590	118	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A			
802.11n	5630	126	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A			
802.11n	5670	134	10.27	10.37	10.58	10.91	10.57	10.33	10.33	10.10			
802.11n	5755	151	10.14	10.20	10.34	10.39	10.30	9.82	9.71	9.97			
802.11n	5795	159	10.36	9.78	10.27	9.75	9.51	10.05	10.71	9.64			

Per FCC KDB Publication 443999 and RSS-210 A9.2(3), transmission on channels which overlap the 5600-5650 MHz is prohibited as a client. This device does not transmit any beacons or initiate any transmissions in 5.3 and 5.5 GHz Bands.

FCC ID: A3LSGHT899M	PCTEST SUBMINISTRATION, INC.	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dags 25 of 40
0Y1208241227.A3L	08/25/12 - 09/19/12	Portable Handset	Page 25 of 49
@ 0040 DOTEOT Facility and a base	atam. In a		DEVAMON

Justification for reduced test configurations for WIFI channels per KDB Publication 248227 and April 2010 FCC/TCB Meeting Notes:

- For 2.4 GHz, highest average RF output power channel for the lowest data rate for IEEE 802.11b were selected for SAR evaluation. Other IEEE 802.11 modes (including 20 MHz, 40 MHz, 802.11g/n) were not investigated since the average output powers over all channels and data rates were not more than 0.25 dB higher than the tested channel in the lowest data rate of IEEE 802.11b mode.
- For 5 GHz, highest average RF output power channel for the lowest data rate for IEEE 802.11a were selected for SAR evaluation. Other IEEE 802.11 modes (including 20 MHz, 40 MHz, and 802.11n) were not investigated since the average output powers over all channels and data rates were not more than 0.25 dB higher than the tested channel in the lowest data rate of IEEE 802.11a mode.
- When the maximum extrapolated peak SAR of the zoom scan for the maximum output channel is <1.6 W/kg and the 1g averaged SAR is <0.8 W/kg, SAR testing on other channels is not required. Otherwise, the other default (or corresponding required) test channels were additionally tested using the lowest data rate.
- The bolded data rate and channel above were tested for SAR.

Figure 10-4
Power Measurement Setup

FCC ID: A3LSGHT899M	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogg 26 of 40
0Y1208241227.A3L	08/25/12 - 09/19/12	Portable Handset	Page 26 of 49

11 SYSTEM VERIFICATION

11.1 Tissue Verification

Table 11-1
Measured Tissue Properties

			····ouou··o	u Hoode i	000.00						
Calibrated for		Tissue Temp	Measured	Measured	Measured	TARGET	TARGET				
Tests	Tissue Type	During Calibration	Frequency	Conductivity,	Dielectric	Conductivity,	Dielectric	% dev σ	% dev ε		
Performed on:		(C°)	(MHz)	σ (S/m)	Constant, ε	σ (S/m)	Constant, ε				
			820	0.889	42.38	0.898	41.571	-1.00%	1.95%		
8/25/2012	835H	23.3	835	0.910	42.20	0.900	41.500	1.11%	1.69%		
			850	0.918	41.96	0.916	41.500	0.22%	1.11%		
			820	0.899	42.01	0.898	41.571	0.11%	1.06%		
8/29/2012	835H	23.1	835	0.911	42.02	0.900	41.500	1.22%	1.25%		
			850	0.914	41.90	0.916	41.500	-0.22%	0.96%		
			1710	1.314	40.33	1.348	40.136	-2.52%	0.48%		
8/28/2012	1750H	22.6	1750	1.344	40.01	1.370	40.100	-1.90%	-0.22%		
			1790	1.386	40.00	1.394	40.020	-0.57%	-0.05%		
			1850	1.356	38.24	1.400	40.000	-3.14%	-4.40%		
8/30/2012	1900H	22.9	1880	1.390	38.15	1.400	40.000	-0.71%	-4.63%		
			1910	1.423	38.08	1.400	40.000	1.64%	-4.80%		
			2401	1.845	38.96	1.758	39.298	4.95%	-0.86%		
9/19/2012	2450H	23.1	2450	1.883	38.77	1.800	39.200	4.61%	-1.10%		
			2499	1.940	38.55	1.852	39.135	4.75%	-1.49%		
			5200	4.593	36.44	4.660	36.000	-1.44%	1.22%		
			5240	4.665	36.41	4.700	35.960	-0.74%	1.25%		
			5300	4.688	36.37	4.760	35.900	-1.51%	1.31%		
09/14/2012	5200H-5800H	22.3	5500	4.936	36.02	4.965	35.650	-0.58%	1.04%		
			5540	4.951	36.04	5.007	35.590	-1.12%	1.26%		
			5765	5.215	35.68	5.235	35.335	-0.38%	0.98%		
			5800	5.229	35.71	5.270	35.300	-0.78%	1.16%		
			820	0.942	54.08	0.969	55.284	-2.79%	-2.18%		
8/30/2012	835B	23.7	835	0.956	53.99	0.970	55.200	-1.44%	-2.19%		
			850	0.971	53.88	0.988	55.154	-1.72%	-2.31%		
	2 835B	835B		820	0.941	53.29	0.969	55.284	-2.89%	-3.61%	
9/10/2012			835B	835B	835B	22.2	835	0.952	53.12	0.970	55.200
	0002		850	0.967	53.09	0.988	55.154	-2.13%	-3.74%		
					1710	1.404	52.70	1.460	53.540	-3.84%	-1.57%
8/27/2012	1750B	22.8	1750	1.468	52.41	1.490	53.430	-1.48%	-1.91%		
0/2//2012		22.0	1790	1.496	52.18	1.510	53.330	-0.93%	-2.16%		
			1850	1.451	55.01	1.520	53.300	-4.54%	3.21%		
8/25/2012	1900B	22.6	1880	1.485	54.80	1.520	53.300	-2.30%	2.81%		
0/23/2012	19000	22.0	1910	1.532	54.73	1.520	53.300	0.79%	2.68%		
			1850	1.478	53.99	1.520	53.300	-2.76%	1.29%		
8/31/2012	1900B	21.9	1880	1.518	53.79	1.520	53.300	-2.76%	0.92%		
0/31/2012	19000	21.9	1910	1.516	53.79	1.520	53.300	2.43%	0.92%		
			2401	1.975	50.43	1.903	52.765	3.78%	-4.43%		
9/18/2012	2450B	21.3	2450	2.036	50.43	1.950	52.700	4.41%	-4.43% -4.61%		
3/10/2012	2-1002	21.0	2499	2.108	50.22	2.019	52.638	4.41%	-4.59%		
			5200	5.182	47.72	5.299	49.014	-2.21%	-2.64%		
	1		5280	5.393	47.60	5.393	48.879	0.00%	-2.62%		
	1		5300	5.384	47.59	5.416	48.851	-0.59%	-2.58%		
	1		5500	5.667	46.83	5.650	48.580	0.30%	-3.60%		
9/10/2012	5200B-5800E	22.4	5540	5.762	46.95	5.696	48.526	1.16%	-3.25%		
9/10/2012	P∠UUB-36UUE	22.4	5560 5660	5.763 5.948	46.98 46.62	5.720 5.837	48.499 48.363	0.75% 1.90%	-3.13% -3.60%		
	1		5765	6.093	46.25	5.837	48.220	2.25%	-4.09%		
	1		5785	6.143	46.27	5.982	48.242	2.69%	-4.09%		
	1		5800	6.157	46.29	6.000	48.200	2.62%	-3.96%		
	1		5805	6.167	46.31	6.005	48.166	2.70%	-3.85%		

Note: KDB Publication 450824 was ensured to be applied for probe calibration frequencies greater than or equal to 50 MHz of the DUT frequencies.

The above measured tissue parameters were used in the DASY software to perform interpolation via the DASY software to determine actual dielectric parameters at the test frequencies (per IEEE 1528 6.6.1.2).

Probe calibration used within ±100 MHz of the test frequency in either 5.725 - 5.85 or 5.47-5.725 GHz is acceptable per KDB Publication 865664 since the design of the SAR probe supports the extended frequency, provided the DASY software version recommended is used for the tests, and the expanded calibration uncertainty (k=2) is less than or equal to 15% (See SAR probe calibration certificate for this information). The dielectric and conductivities measured are within 10% and 5% respectively of the target parameters specified in Supplement C 01-01.

FCC ID: A3LSGHT899M	PCTEST SUBMINISTER STATES AND ADDRESS OF THE	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogo 27 of 40
0Y1208241227.A3L	08/25/12 - 09/19/12	Portable Handset	Page 27 of 49

Measurement Procedure for Tissue Verification

- 1) The network analyzer and probe system was configured and calibrated.
- 2) The probe was immersed in the sample which was placed in a nonmetallic container. Trapped air bubbles beneath the flange were minimized by placing the probe at a slight angle.
- 3) The complex admittance with respect to the probe aperture was measured
- 4) The complex relative permittivity ε can be calculated from the below equation (Pournaropoulos and Misra):

$$Y = \frac{j2\omega\varepsilon_{r}\varepsilon_{0}}{\left[\ln(b/a)\right]^{2}} \int_{a}^{b} \int_{a}^{b} \int_{0}^{\pi} \cos\phi' \frac{\exp\left[-j\omega r(\mu_{0}\varepsilon_{r}\varepsilon_{0})^{1/2}\right]}{r} d\phi' d\rho' d\rho'$$

where Y is the admittance of the probe in contact with the sample, the primed and unprimed coordinates refer to source and observation points, respectively, $r^2=\rho^2+\rho'^2-2\rho\rho'\cos\phi'$, ω is the angular frequency, and $j=\sqrt{-1}$.

FCC ID: A3LSGHT899M	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogg 20 of 40
0Y1208241227.A3L	08/25/12 - 09/19/12	Portable Handset	Page 28 of 49

11.2 Test System Verification

Prior to assessment, the system is verified to $\pm 10\%$ of the manufacturer SAR measurement on the reference dipole at the time of calibration.

Table 11-2
System Verification Results

System Verification Results											
Tissue Frequency (MHz)	Tissue Type	Date:	Amb. Temp (°C)	Liquid Temp (°C)	Input Power (W)	Dipole SN	Probe SN	Measured SAR _{1g} (W/kg)	1 W Target SAR _{1g} (W/kg)	1 W Normalized SAR _{1g}	Deviation (%)
835	Head	08/25/2012	22.1	23.2	0.100	4d132	3213	0.97	9.450	9.700	2.65%
835	Head	08/29/2012	24.4	23.5	0.100	4d132	3213	0.96	9.450	9.590	1.48%
1750	Head	08/28/2012	23.9	23.8	0.100	1051	3287	3.60	36.600	36.000	-1.64%
1900	Head	08/30/2012	24.8	23.4	0.100	502	3209	3.85	39.200	38.500	-1.79%
2450	Head	09/19/2012	22.6	23.1	0.100	882	3213	5.59	53.500	55.900	4.49%
5200	Head	09/14/2012	23.8	22.7	0.100	1057	3589	7.96	79.100	79.600	0.63%
5500	Head	09/14/2012	23.8	22.8	0.100	1057	3589	8.39	84.900	83.900	-1.18%
5800	Head	09/14/2012	23.9	22.8	0.100	1057	3589	7.93	79.500	79.300	-0.25%
835	Body	09/10/2012	22.3	22.0	0.100	4d119	3022	0.97	9.560	9.720	1.67%
835	Body	08/30/2012	24.6	22.8	0.100	4d119	3258	0.98	9.560	9.770	2.20%
1750	Body	08/27/2012	24.1	23.2	0.100	1051	3213	3.70	37.600	37.000	-1.60%
1900	Body	08/25/2012	24.4	22.9	0.100	5d149	3288	3.84	39.300	38.400	-2.29%
1900	Body	08/31/2012	23.6	21.7	0.100	5d149	3288	3.85	39.300	38.500	-2.04%
2450	Body	09/18/2012	24.4	22.5	0.100	882	3213	5.36	50.300	53.600	6.56%
5200	Body	09/10/2012	24.8	23.8	0.100	1057	3589	7.82	73.400	78.200	6.54%
5500	Body	09/10/2012	24.4	23.8	0.100	1057	3589	8.46	78.900	84.600	7.22%
5800	Body	09/10/2012	24.6	23.6	0.100	1057	3589	7.65	74.300	76.500	2.96%

Note: Per KDB Publication 865664, when a reference dipole is not defined within ± 100 MHz of the test frequency, the system verification may be conducted within ± 200 MHz of the center frequency of the measurement frequencies if the SAR probe calibration is valid and the same tissue-equivalent matter is used for verification and test measurements.

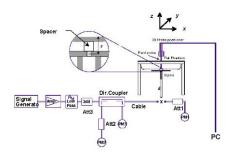


Figure 11-1
System Verification Setup Diagram

Figure 11-2
System Verification Setup Photo

FCC ID: A3LSGHT899M	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogg 20 of 40
0Y1208241227.A3L	08/25/12 - 09/19/12	Portable Handset	Page 29 of 49

12.1 Standalone Head SAR Data

Table 12-1 GSM 850 Head SAR Results

	MEASUREMENT RESULTS										
FREQUI	ENCY	Mode/Band	Conducted Power	Power Drift [dB]	Side	Test Position	Device Serial Number	SAR (1g)			
MHz	Ch.	Mode/Band	[dBm]					(W/kg)			
836.60	190	GSM 850	32.47	0.04	Right	Cheek	FJ-224-A	0.120			
836.60	190	GSM 850	32.47	0.05	Right	Tilt	FJ-224-A	0.069			
836.60	190	GSM 850	32.47	0.05	Left	Cheek	FJ-224-A	0.104			
836.60	190	GSM 850	32.47	0.06	Left	Tilt	FJ-224-A	0.062			
ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak					Head 1.6 W/kg (mW/g)						
Uncontr	olled E	xposure/Ge	eneral Pop	ulation	a	veraged ov	er 1 gram	ו			

Table 12-2 UMTS 850 Head SAR Results

	MEASUREMENT RESULTS										
FREQU	ENCY	Mode/Band	Conducted Power Side Test Po		Test Position	Device Serial	SAR (1g)				
MHz	Ch.	wode/Band	[dBm]	Drift [dB]	Side	rest Position	Number	(W/kg)			
836.60	4183	WCDMA 850	22.33	0.00	Right	Cheek	FJ-224-B	0.115			
836.60	4183	WCDMA 850	22.33	0.04	Right	Tilt	FJ-224-B	0.074			
836.60	4183	WCDMA 850	22.33	0.09	Left	Cheek	FJ-224-B	0.098			
836.60	4183	WCDMA 850	22.33	0.06	Left	Tilt	FJ-224-B	0.068			
ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population						Hea 1.6 W/kg (averaged ov	(mW/g)				

Table 12-3
AWS UMTS Head SAR Results

	MEASUREMENT RESULTS										
FREQUE	ENCY	Mode/Band	Conducted	Power	Side	Test	Device Serial	SAR (1g)			
MHz	Ch.	Mode/Band	Power [dBm]	Drift [dB]	Olde	Position	Number	(W/kg)			
1730.40	1412	AWS WCDMA	23.34	0.21	Right	Cheek	FJ-224-B	0.529			
1730.40	1412	AWS WCDMA	23.34	-0.03	Right	Tilt	FJ-224-B	0.489			
1730.40	1412	AWS WCDMA	23.34	0.03	Left	Cheek	FJ-224-B	0.666			
1730.40	1412	AWS WCDMA	23.34	0.08	Left	Tilt	FJ-224-B	0.433			
AN	ISI / IEE	E C95.1 1992 -	SAFETY LIM	IIT	Head						
Spatial Peak					1.6 W/kg (mW/g)						
Unco	ontrolle	d Exposure/Gei	neral Popula	tion	ä	averaged o	over 1 gram				

FCC ID: A3LSGHT899M	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 30 of 49
0Y1208241227.A3L	08/25/12 - 09/19/12	Portable Handset	Fage 30 01 49

Table 12-4 GSM 1900 Head SAR Results

	MEASUREMENT RESULTS									
FREQUE	ENCY	Mode	Conducted Power [dBm]	Power	Side	Test	Device Serial Number	SAR (1g)		
MHz	Ch.	Wode		Drift [dB]	Giao	Position		(W/kg)		
1850.20	512	GSM 1900	30.60	-0.08	Right	Cheek	FJ-224-B	0.226		
1850.20	512	GSM 1900	30.60	-0.08	Right	Tilt	FJ-224-B	0.155		
1850.20	512	GSM 1900	30.60	0.17	Left	Cheek	FJ-224-B	0.262		
1850.20	512	GSM 1900	30.60	0.02	Left	Tilt	FJ-224-B	0.133		
ANS	I / IEEE	C95.1 1992 -	SAFETY L	TIMI	Head					
Spatial Peak					1.6 W/kg (mW/g)					
Uncon	trolled	Exposure/Ge	neral Popu	lation	ä	averaged c	ver 1 gram			

Note: Per October 2010 TCB Workshop, when the output power deviation across the channels is >0.5 dB, the maximum output power channel must be tested; therefore GSM 1900 was tested with low channel.

Table 12-5 UMTS 1900 Head SAR Results

	MEASUREMENT RESULTS									
FREQUI	ENCY	Mode	Conducted Power [dBm]	Power	Side	Test	Device Serial Number	SAR (1g)		
MHz	Ch.	Wode		Drift [dB]	Giuo	Position		(W/kg)		
1852.40	9262	WCDMA 1900	23.31	0.03	Right	Cheek	FJ-224-B	0.389		
1852.40	9262	WCDMA 1900	23.31	-0.13	Right	Tilt	FJ-224-B	0.253		
1852.40	9262	WCDMA 1900	23.31	0.20	Left	Cheek	FJ-224-B	0.466		
1852.40	9262	WCDMA 1900	23.31	0.09	Left	Tilt	FJ-224-B	0.291		
ANSI	ANSI / IEEE C95.1 1992 - SAFETY LIMIT					Head				
Spatial Peak					1.6 W/kg (mW/g)					
Uncon	trolled l	Exposure/Ge	neral Popu	ulation	á	averaged o	ver 1 gram			

Note: Per October 2010 TCB Workshop, when the output power deviation across the channels is >0.5 dB, the maximum output power channel must be tested; therefore UMTS 1900 was tested with low channel.

FCC ID: A3LSGHT899M	PCTEST SUBMINISTER STATES AND ADDRESS OF THE	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dago 21 of 40
0Y1208241227.A3L	08/25/12 - 09/19/12	Portable Handset	Page 31 of 49

Table 12-6 LTE Band 4 (AWS) Head SAR Results

					ME	MENT R								
FR	EQUENCY	′	Mode	Bandwidth	Conducted	Power	MPR [dB]	Side	Test	Modulation	# of RB	RB Offset	Device Serial	SAR (1g)
MHz	CI	h.	Mode	[MHz]	[dBm]	Drift [dB]	MIFIC [UD]	Side	Position	Wioddiation	# OI KB	KB Oliset	Number	(W/kg)
1732.50	20175	Mid	LTE Band 4 (AWS)	20	22.28	0.18	1	Right	Cheek	QPSK	50	25	FJ-224-A	0.441
1745.00	20300	High	LTE Band 4 (AWS)	20	23.48	-0.21	0	Right	Cheek	QPSK	1	0	FJ-224-A	0.598
1745.00	20300	High	LTE Band 4 (AWS)	20	23.98	-0.06	0	Right	Cheek	QPSK	1	99	FJ-224-A	0.713
1732.50	20175	Mid	LTE Band 4 (AWS)	20	21.26	0.15	2	Right	Cheek	16 QAM	50	25	FJ-224-A	0.348
1745.00	20300	High	LTE Band 4 (AWS)	20	22.53	0.17	1	Right	Cheek	16 QAM	1	0	FJ-224-A	0.502
1745.00	20300	High	LTE Band 4 (AWS)	20	22.85	0.06	1	Right	Cheek	16 QAM	1	99	FJ-224-A	0.581
1732.50	20175	Mid	LTE Band 4 (AWS)	20	22.28	0.01	1	Right	Tilt	QPSK	50	25	FJ-224-A	0.375
1745.00	20300	High	LTE Band 4 (AWS)	20	23.48	0.01	0	Right	Tilt	QPSK	1	0	FJ-224-A	0.453
1745.00	20300	High	LTE Band 4 (AWS)	20	23.98	-0.14	0	Right	Tilt	QPSK	1	99	FJ-224-A	0.545
1732.50	20175	Mid	LTE Band 4 (AWS)	20	21.26	-0.21	2	Right	Tilt	16 QAM	50	25	FJ-224-A	0.323
1745.00	20300	High	LTE Band 4 (AWS)	20	22.53	-0.21	1	Right	Tilt	16 QAM	1	0	FJ-224-A	0.379
1745.00	20300	High	LTE Band 4 (AWS)	20	22.85	-0.14	1	Right	Tilt	16 QAM	1	99	FJ-224-A	0.393
1732.50	20175	Mid	LTE Band 4 (AWS)	20	22.28	0.00	1	Left	Cheek	QPSK	50	25	FJ-224-A	0.539
1745.00	20300	High	LTE Band 4 (AWS)	20	23.48	0.10	0	Left	Cheek	QPSK	1	0	FJ-224-A	0.730
1745.00	20300	High	LTE Band 4 (AWS)	20	23.98	-0.02	0	Left	Cheek	QPSK	1	99	FJ-224-A	0.892
1732.50	20175	Mid	LTE Band 4 (AWS)	20	21.26	0.19	2	Left	Cheek	16 QAM	50	25	FJ-224-A	0.427
1745.00	20300	High	LTE Band 4 (AWS)	20	22.53	-0.17	1	Left	Cheek	16 QAM	1	0	FJ-224-A	0.579
1745.00	20300	High	LTE Band 4 (AWS)	20	22.85	-0.18	1	Left	Cheek	16 QAM	1	99	FJ-224-A	0.683
1732.50	20175	Mid	LTE Band 4 (AWS)	20	22.28	-0.02	1	Left	Tilt	QPSK	50	25	FJ-224-A	0.315
1745.00	20300	High	LTE Band 4 (AWS)	20	23.48	0.09	0	Left	Tilt	QPSK	1	0	FJ-224-A	0.408
1745.00	20300	High	LTE Band 4 (AWS)	20	23.98	-0.11	0	Left	Tilt	QPSK	1	99	FJ-224-A	0.557
1732.50	20175	Mid	LTE Band 4 (AWS)	20	21.26	0.13	2	Left	Tilt	16 QAM	50	25	FJ-224-A	0.246
1745.00	20300	High	LTE Band 4 (AWS)	20	22.53	0.14	1	Left	Tilt	16 QAM	1	0	FJ-224-A	0.299
1745.00	20300	High	LTE Band 4 (AWS)	20	22.85	-0.10	1	Left	Tilt	16 QAM	1	99	FJ-224-A	0.467
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population							Head 1.6 W/kg (mW/g) averaged over 1 gram						

Note: Per KDB 941225 D05, when the maximum average output power of 1 RB allocation is more than 0.5 dB higher than the 50% allocation, the highest output power for the 1 RB allocations is tested. Therefore, high channel was tested for QPSK and 16 QAM 1 RB allocation configurations.

Table 12-7
2.4 GHz WLAN Head SAR Results

				JUZ AALAI									
			N	IEASUREI	MENT R	RESULT	S						
FREQUI	ENCY	Mode	Service	Conducted	Power	Side Test	Test	Device Serial	Data Rate	SAR (1g)			
MHz	Ch.	Wode	Service	Power [dBm]	Drift [dB]	Side	Position	Number	(Mbps)	(W/kg)			
2462	11	IEEE 802.11b	DSSS	17.34	0.17	Right	Cheek	R31C815ETVN	1	0.060			
2462 11 IEEE 802.11b DSSS 17.34 0.18						Right	Tilt	R31C815ETVN	1	0.076			
2462	11	IEEE 802.11b	DSSS	17.34	0.04	Left	Cheek	1	0.087				
2462	2462 11 IEEE 802.11b DSSS 17.34 0.10							R31C815ETVN	1	0.102			
	ANSI	/ IEEE C95.1 1	992 - SAFE	TY LIMIT	Head								
	Spatial Peak							1.6 W/kg (mW/g)					
	Uncon	trolled Exposu	re/General I	Population		ave	eraged over 1 gra	am					

FCC ID: A3LSGHT899M	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogg 22 of 40
0Y1208241227.A3L	08/25/12 - 09/19/12	Portable Handset	Page 32 of 49

Table 12-8 5.8 GHz WLAN Head SAR Results

				IL								
	MEASUREMENT RESULTS											
FREQU	ENCY	Mode	Service	rvice Side Side	Device Serial	Data Rate	SAR (1g)					
MHz	Ch.	Wode	Service	Power [dBm]	Drift [dB]	Side	Position	Number	(Mbps)	(W/kg)		
5765	153	IEEE 802.11a	OFDM	12.46	0.12	Right	Cheek	R31C815ETVN	6	0.033		
5765	153	IEEE 802.11a	OFDM	12.46	-0.10	Right Tilt R31C815ETVN 6						
5765	153	IEEE 802.11a	OFDM	12.46	0.09	Left	Cheek	R31C815ETVN	6	0.091		
5765 153 IEEE 802.11a OFDM 12.46 0.08						Left	Tilt	R31C815ETVN	6	0.085		
ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population								Head .6 W/kg (mW/g) eraged over 1 gra				

Table 12-9 5.2 GHz WLAN Head SAR Results

FREQUENCY Mode Service Conducted Power [dBm] Drift [dB] Side Test Position Device Serial Number Mumber Mumber	
MHz Ch. Mode Service Conducted Power [dBm] Drift [dB] Side Position Desired Number Data Rate (Mbps) 5240 48 IEEE 802.11a OFDM 11.82 0.02 Right Cheek R31C815ETVN 6 5240 48 IEEE 802.11a OFDM 11.82 0.11 Right Tilt R31C815ETVN 6	
MHz Ch. Power [dBm] Drift [dB] Position Number (Mbps) 5240 48 IEEE 802.11a OFDM 11.82 0.02 Right Cheek R31C815ETVN 6 5240 48 IEEE 802.11a OFDM 11.82 0.11 Right Tilt R31C815ETVN 6	SAR (1g)
5240 48 IEEE 802.11a OFDM 11.82 0.11 Right Tilt R31C815ETVN 6	(W/kg)
	0.023
5240 48 IEEE 802.11a OFDM 11.82 0.06 Left Cheek R31C815ETVN 6	0.054
	0.057
5240 48 IEEE 802.11a OFDM 11.82 0.14 Left Tilt R31C815ETVN 6	0.045
ANSI / IEEE C95.1 1992 - SAFETY LIMIT Head	
Spatial Peak 1.6 W/kg (mW/g)	
Uncontrolled Exposure/General Population averaged over 1 gram	

Table 12-10 5.3 GHz WLAN Head SAR Results

	MEASUREMENT RESULTS											
FREQUE	FREQUENCY		Service Conduc		Power	Side	Test	Device Serial	Data Rate	SAR (1g)		
MHz	Ch.	Wode	Service	Power [dBm]	Drift [dB]	Side	Position	Number	(Mbps)	(W/kg)		
5300	60	IEEE 802.11a	OFDM	12.25	-0.06	Right	Cheek	R31C815ETVN	6	0.025		
5300	60	IEEE 802.11a	OFDM	12.25	0.08 Right Tilt R31C815ETVN					0.072		
5300	60	IEEE 802.11a	OFDM	12.25	0.05	Left	Cheek	R31C815ETVN	6	0.062		
5300	5300 60 IEEE 802.11a OFDM 12.25 0.07							R31C815ETVN	6	0.055		
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population							Head 1.6 W/kg (mW/g) averaged over 1 gram				

FCC ID: A3LSGHT899M	PCTEST NOWHING DADAGHT, INC.	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 33 of 49
0Y1208241227.A3L	08/25/12 - 09/19/12	Portable Handset	raye 33 01 49
© 0040 DOTEOT Facilities Labor			DEV/44.0 M

Table 12-11 5.5 - 5.7 GHz WLAN Head SAR Results

			M	EASURE	IENT R	ESULT	S			
FREQUI	ENCY	Mode	Sarvica Sida	Device Serial	Data Rate	SAR (1g)				
MHz	Ch.	Wode	Service	Power [dBm]	Drift [dB]	Side	Position	Number	(Mbps)	(W/kg)
5540	108	IEEE 802.11a	OFDM	12.77	-0.11	Right	Cheek	R31C815ETVN	6	0.062
5540	108	IEEE 802.11a	OFDM	12.77	-0.02	Right	6	0.065		
5540	108	IEEE 802.11a	OFDM	12.77	0.05	Left	Cheek	6	0.080	
5540	5540 108 IEEE 802.11a OFDM 12.77 0.05							R31C815ETVN	6	0.081
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population							Head .6 W/kg (mW/g raged over 1 gr	•	

12.2 Standalone Body-Worn SAR Data

Table 12-12 GSM/ UMTS Body-Worn SAR Results

	MEASUREMENT RESULTS											
FREQUE	NCY	Mode	Service	Conducted Power	Power	Spacing	Device Serial	# of Time	Side	SAR (1g)		
MHz	Ch.			[dBm]	Drift [dB]	3	Number	Slots		(W/kg)		
836.60	190	GSM 850	GSM	32.47	0.03	1.0 cm	FJ-224-B	1	back	0.236		
836.60	190	GSM 850	GPRS	29.99	0.11	1.0 cm	FJ-224-B	3	back	0.519		
836.60	836.60 4183 WCDMA 850 RMC 22.33 0.00 1.0 cm FJ-224-B N/A back								back	0.256		
1730.40	1412	AWS WCDMA	RMC	C 23.34 0.07 1.0 cm FJ-224-B N/A back						0.747		
1850.20	512	GSM 1900	GSM	30.60	-0.01	1.0 cm	FJ-224-B	1	back	0.247		
1850.20	512	GSM 1900	GPRS	27.23	-0.01	1.0 cm	FJ-224-B	3	back	0.454		
1852.40	9262	WCDMA 1900	RMC	23.31	-0.13	1.0 cm	FJ-224-B	N/A	back	0.519		
	Al	NSI / IEEE C95.1		Body								
		Spati		1.6 W/kg (mW/g)								
	Unc	ontrolled Exposu	ire/General Pop	ulation			average	d over 1	gram			

Note:

- 1. For GPRS and UMTS modes, when the measured SAR is < 1.2 W/kg, separate body-worn accessory data measured with a headset cable is not required, per FCC guidance. Therefore, the hotspot back side was used to support body-worn accessory SAR compliance. GSM voice modes were evaluated for SAR using headset cable.
- 2. Per October 2010 TCB Workshop, when the output power deviation across the channels is >0.5 dB, the maximum output power channel must be tested; therefore GSM 1900 and UMTS 1900 were tested with low channel.

FCC ID: A3LSGHT899M		SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dags 24 of 40
0Y1208241227.A3L	08/25/12 - 09/19/12	Portable Handset	Page 34 of 49

Table 12-13 LTE Body-Worn SAR Results

	MEASUREMENT RESULTS													
FRE	QUENCY		Mode	Bandwidth	Conducted Power	Power	MPR [dB]	Device Serial	Modulation	# of RB	RB	Spacing	Side	SAR (1g)
MHz	CI	Ch. [MHz] [dBm] Drift [dB] Win Kaus Gerhal Number Wouldation From Offset Gracing State								(W/kg)				
1732.50	20175	Mid	LTE Band 4 (AWS)	20	22.28	-0.04	1	FJ-224-A	QPSK	50	25	1.0 cm	back	0.721
1745.00	20300	High	LTE Band 4 (AWS)	20	23.48	-0.01	0	FJ-224-A	QPSK	1	0	1.0 cm	back	0.952
1745.00	20300	High	LTE Band 4 (AWS)	20	23.98	-0.15	0) FJ-224-A QPSK 1 99 1.0 cm bar					back	1.050
1732.50	20175	Mid	LTE Band 4 (AWS)	20	21.26	-0.10	2	FJ-224-A	-224-A 16 QAM 50 25 1.0 cm ba				back	0.569
1745.00	20300	High	LTE Band 4 (AWS)	20	22.53	-0.14	1	FJ-224-A	16 QAM	1	0	1.0 cm	back	0.761
1745.00	1745.00 20300 High LTE Band 4 (AWS) 20 22.85 -0.12 1								16 QAM	1	99	1.0 cm	back	1.010
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population							Body 1.6 W/kg (mW/g) averaged over 1 gram						

Note:

- For LTE Mode, when the measured SAR is < 1.2 W/kg, separate body-worn accessory data measured with a headset cable is not required, per FCC guidance. Therefore, LTE hotspot back side was used for supporting body-worn accessory SAR compliance.
- 2. Note: Per KDB 941225 D05, when the maximum average output power of 1 RB allocation is more than 0.5 dB higher than the 50% allocation, the highest output power for the 1 RB allocations is tested. Therefore, high channel was tested for QPSK and 16 QAM 1 RB allocation configurations.

Table 12-14
WLAN Body-Worn SAR Results

	WEAN BOUY-WOTH SAK RESURS											
	MEASUREMENT RESULTS											
FREQU	ENCY	Mode	Service	Conducted Power	Power	Spacing	Device Serial	Data Rate	Side	SAR (1g)		
MHz	Ch.			[dBm]	Drift [dB]		Number	(Mbps)		(W/kg)		
2462	11	IEEE 802.11b	DSSS	17.34	-0.02	1.0 cm	R31C815ETVN	1	back	0.212		
5765	153	IEEE 802.11a	OFDM	12.46	-0.09	1.0 cm	R31C815ETVN	6	back	0.422		
5785	157	IEEE 802.11a	OFDM	11.23	-0.10	1.0 cm	R31C815ETVN	6	back	0.311		
5805	161	IEEE 802.11a	OFDM	11.31	-0.18	1.0 cm	R31C815ETVN	6	back	0.225		
5240	48	IEEE 802.11a	OFDM	11.82	-0.06	1.0 cm	R31C815ETVN	6	back	0.192		
5300	60	IEEE 802.11a	OFDM	12.25	-0.05	1.0 cm	R31C815ETVN	6	back	0.243		
5540	108	IEEE 802.11a	OFDM	12.77	-0.06	1.0 cm	R31C815ETVN	6	back	0.503		
5560	112	IEEE 802.11a	OFDM	12.46	-0.06	1.0 cm	R31C815ETVN	6	back	0.469		
5660	132	IEEE 802.11a	OFDM	12.39	-0.16	1.0 cm	R31C815ETVN	6	back	0.633		
	ANSI	/ IEEE C95.1 19	992 - SAF	ETY LIMIT			В	ody	•			
		Spatia	l Peak			1.6 W/kg (mW/g)						
	Uncont	rolled Exposur		l Populatio	n	averaged over 1 gram						
	JJOI110	TOTION EXPOORI	5, 5 51101 a	opalatio			arciagea	0,0, , g ,	ω			

Note: For IEEE 802.11b mode, when the measured SAR is < 1.2 W/kg, separate body-worn accessory data measured with a headset cable is not required, per FCC guidance. Therefore, 802.11b hotspot back side was used to support body-worn accessory SAR compliance. IEEE 802.11a modes were evaluated for SAR using headset cable.

FCC ID: A3LSGHT899M	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:	Page 35 of 49	
0Y1208241227.A3L	08/25/12 - 09/19/12	Portable Handset		

12.3 Standalone Wireless Router SAR Data

Table 12-15 GSM/ UMTS Hotspot SAR Data

	MEASUREMENT RESULTS									
FREQUENCY		Mode	Service	Conducted Power	Power Drift [dB]	Spacing	Device Serial	# of GPRS	Side	SAR (1g)
MHz	Ch.			[dBm]	Dilit [dB]		Number	Slots		(W/kg)
836.60	190	GSM 850	GPRS	29.99	0.11	1.0 cm	FJ-224-B	3	back	0.519
836.60	190	GSM 850	GPRS	29.99	-0.02	1.0 cm	FJ-224-B	3	front	0.314
836.60	190	GSM 850	GPRS	29.99	0.06	1.0 cm	FJ-224-B	3	bottom	0.033
836.60	190	GSM 850	GPRS	29.99	0.09	1.0 cm	FJ-224-B	3	right	0.378
836.60	190	GSM 850	GPRS	29.99	0.07	1.0 cm	FJ-224-B	3	left	0.297
836.60	4183	WCDMA 850	RMC	22.33	0.00	1.0 cm	FJ-224-B	N/A	back	0.256
836.60	4183	WCDMA 850	RMC	22.33	-0.01	1.0 cm	FJ-224-B	N/A	front	0.156
836.60	4183	WCDMA 850	RMC	22.33	-0.07	1.0 cm	FJ-224-B	N/A	bottom	0.018
836.60	4183	WCDMA 850	RMC	22.33	-0.03	1.0 cm	FJ-224-B	N/A	right	0.183
836.60	4183	WCDMA 850	RMC	22.33	-0.07	1.0 cm	FJ-224-B	N/A	left	0.148
1730.40	1412	AWS WCDMA	RMC	23.34	0.07	1.0 cm	FJ-224-B	N/A	back	0.747
1712.40	1312	AWS WCDMA	RMC	22.90	0.21	1.0 cm	FJ-224-B	N/A	front	0.795
1730.40	1412	AWS WCDMA	RMC	23.34	0.18	1.0 cm	FJ-224-B	N/A	front	0.936
1752.50	1862	AWS WCDMA	RMC	23.29	-0.12	1.0 cm	FJ-224-B	N/A	front	0.956
1730.40	1412	AWS WCDMA	RMC	23.34	0.10	1.0 cm	FJ-224-B	N/A	bottom	0.557
1730.40	1412	AWS WCDMA	RMC	23.34	-0.06	1.0 cm	FJ-224-B	N/A	right	0.183
1730.40	1412	AWS WCDMA	RMC	23.34	-0.01	1.0 cm	FJ-224-B	N/A	left	0.655
1850.20	512	GSM 1900	GPRS	27.23	-0.01	1.0 cm	FJ-224-B	3	back	0.454
1850.20	512	GSM 1900	GPRS	27.23	-0.03	1.0 cm	FJ-224-B	3	front	0.497
1850.20	512	GSM 1900	GPRS	27.23	-0.06	1.0 cm	FJ-224-B	3	bottom	0.323
1850.20	512	GSM 1900	GPRS	27.23	-0.08	1.0 cm	FJ-224-B	3	right	0.126
1850.20	512	GSM 1900	GPRS	27.23	-0.17	1.0 cm	FJ-224-B	3	left	0.408
1852.40	9262	WCDMA 1900	RMC	23.31	-0.13	1.0 cm	FJ-224-B	N/A	back	0.519
1852.40	9262	WCDMA 1900	RMC	23.31	-0.05	1.0 cm	FJ-224-B	N/A	front	0.778
1852.40	9262	WCDMA 1900	RMC	23.31	-0.14	1.0 cm	FJ-224-B	N/A	bottom	0.441
1852.40	9262	WCDMA 1900	RMC	23.31	-0.03	1.0 cm	FJ-224-B	N/A	right	0.182
1852.40	9262	WCDMA 1900	RMC	23.31	0.06	1.0 cm	FJ-224-B	N/A	left	0.636
ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population				Body 1.6 W/kg (mW/g) averaged over 1 gram						

Note: Per October 2010 TCB Workshop, when the output power deviation across the channels is >0.5 dB, the maximum output power channel must be tested; therefore GSM 1900 and UMTS 1900 were tested with low channel.

FCC ID: A3LSGHT899M	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:	Page 36 of 49	
0Y1208241227.A3L	08/25/12 - 09/19/12	Portable Handset		

Table 12-16 LTE Band 4 (AWS) Hotspot SAR Data

					<u> </u>		NT RES	ULTS	Julu					
FRE	QUENCY	,	Mode	Bandwidth	Conducted Power	Power	MPR [dB]	Device Serial	Modulation	# of RB	RB	Spacing	Side	SAR (1g)
MHz	С	h.	Mode	[MHz]	[dBm]	Drift [dB]	iiii it [GD]	Number	Modulation	# OF IND	Offset	opacing	Olde	(W/kg)
1732.50	20175	Mid	LTE Band 4 (AWS)	20	22.28	-0.04	1	FJ-224-A	QPSK	50	25	1.0 cm	back	0.721
1745.00	20300	High	LTE Band 4 (AWS)	20	23.48	-0.01	0	FJ-224-A	QPSK	1	0	1.0 cm	back	0.952
1745.00	20300	High	LTE Band 4 (AWS)	20	23.98	-0.15	0	FJ-224-A	QPSK	1	99	1.0 cm	back	1.050
1732.50	20175	Mid	LTE Band 4 (AWS)	20	21.26	-0.10	2	FJ-224-A	16 QAM	50	25	1.0 cm	back	0.569
1745.00	20300	High	LTE Band 4 (AWS)	20	22.53	-0.14	1	FJ-224-A	16 QAM	1	0	1.0 cm	back	0.761
1745.00	20300	High	LTE Band 4 (AWS)	20	22.85	-0.12	1	FJ-224-A	16 QAM	1	99	1.0 cm	back	1.010
1732.50	20175	Mid	LTE Band 4 (AWS)	20	22.28	-0.15	1	FJ-224-A	QPSK	50	25	1.0 cm	front	0.747
1745.00	20300	High	LTE Band 4 (AWS)	20	23.48	-0.12	0	FJ-224-A	QPSK	1	0	1.0 cm	front	1.000
1745.00	20300	High	LTE Band 4 (AWS)	20	23.98	0.02	0	FJ-224-A	QPSK	1	99	1.0 cm	front	1.070
1732.50	20175	Mid	LTE Band 4 (AWS)	20	21.26	-0.18	2	FJ-224-A	16 QAM	50	25	1.0 cm	front	0.597
1745.00	20300	High	LTE Band 4 (AWS)	20	22.53	-0.13	1	FJ-224-A	16 QAM	1	0	1.0 cm	front	0.796
1745.00	20300	High	LTE Band 4 (AWS)	20	22.85	-0.15	1	FJ-224-A	16 QAM	1	99	1.0 cm	front	0.898
1732.50	20175	Mid	LTE Band 4 (AWS)	20	22.28	0.09	1	FJ-224-A	QPSK	50	25	1.0 cm	bottom	0.434
1745.00	20300	High	LTE Band 4 (AWS)	20	23.48	0.04	0	FJ-224-A	QPSK	1	0	1.0 cm	bottom	0.568
1745.00	20300	High	LTE Band 4 (AWS)	20	23.98	-0.07	0	FJ-224-A	QPSK	1	99	1.0 cm	bottom	0.663
1732.50	20175	Mid	LTE Band 4 (AWS)	20	21.26	0.02	2	FJ-224-A	16 QAM	50	25	1.0 cm	bottom	0.339
1745.00	20300	High	LTE Band 4 (AWS)	20	22.53	0.21	1	FJ-224-A	16 QAM	1	0	1.0 cm	bottom	0.455
1745.00	20300	High	LTE Band 4 (AWS)	20	22.85	0.01	1	FJ-224-A	16 QAM	1	99	1.0 cm	bottom	0.521
1732.50	20175	Mid	LTE Band 4 (AWS)	20	22.28	-0.08	1	FJ-224-A	QPSK	50	25	1.0 cm	right	0.167
1745.00	20300	High	LTE Band 4 (AWS)	20	23.48	0.00	0	FJ-224-A	QPSK	1	0	1.0 cm	right	0.202
1745.00	20300	High	LTE Band 4 (AWS)	20	23.98	-0.01	0	FJ-224-A	QPSK	1	99	1.0 cm	right	0.296
1732.50	20175	Mid	LTE Band 4 (AWS)	20	21.26	-0.04	2	FJ-224-A	16 QAM	50	25	1.0 cm	right	0.126
1745.00	20300	High	LTE Band 4 (AWS)	20	22.53	0.16	1	FJ-224-A	16 QAM	1	0	1.0 cm	right	0.177
1745.00	20300	High	LTE Band 4 (AWS)	20	22.85	-0.15	1	FJ-224-A	16 QAM	1	99	1.0 cm	right	0.214
1732.50	20175	Mid	LTE Band 4 (AWS)	20	22.28	-0.07	1	FJ-224-A	QPSK	50	25	1.0 cm	left	0.604
1745.00	20300	High	LTE Band 4 (AWS)	20	23.48	-0.01	0	FJ-224-A	QPSK	1	0	1.0 cm	left	0.731
1745.00	20300	High	LTE Band 4 (AWS)	20	23.98	-0.12	0	FJ-224-A	QPSK	1	99	1.0 cm	left	0.937
1732.50	20175	Mid	LTE Band 4 (AWS)	20	21.26	-0.08	2	FJ-224-A	16 QAM	50	25	1.0 cm	left	0.507
1745.00	20300	High	LTE Band 4 (AWS)	20	22.53	0.00	1	FJ-224-A	16 QAM	1	0	1.0 cm	left	0.621
1745.00	20300	High	LTE Band 4 (AWS)	20	22.85	0.01	1	FJ-224-A	16 QAM	1	99	1.0 cm	left	0.723
		Al	NSI / IEEE C95.1 19		Y LIMIT			Body						
Spatial Peak									1.6 W/l averaged	kg (mW/				
	Uncontrolled Exposure/General Population								•	arciuged		j. um		

Note: Per KDB 941225 D05, when the maximum average output power of 1 RB allocation is more than 0.5 dB higher than the 50% allocation, the highest output power for the 1 RB allocations is tested. Therefore, high channel was tested for QPSK and 16 QAM 1 RB allocation configurations.

Table 12-17 WLAN Hotspot SAR Data

	WLAN Hotspot SAR Data											
			М	EASURE	MENT F	RESULT	s					
FREQUENCY		Mode	Service	Conducted Power	Power	Spacing	Device Serial	Data Rate	Side	SAR (1g)		
MHz	Ch.	mode	COLVICE	[dBm]	Drift [dB]	Opaomg	Number	(Mbps)	Oldo	(W/kg)		
2462	11	IEEE 802.11b	DSSS	17.34	-0.02	1.0 cm	R31C815ETVN	1	back	0.212		
2462	11	IEEE 802.11b	DSSS	17.34	-0.15	1.0 cm	R31C815ETVN	1	front	0.026		
2462	11	IEEE 802.11b	DSSS	17.34	-0.03	1.0 cm	R31C815ETVN	1	top	0.076		
2462	11	IEEE 802.11b	DSSS	17.34	0.12	1.0 cm	R31C815ETVN	1	right	0.023		
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT						Body					
	Spatial Peak						1.6 W/kg (mW/g)					
1	Uncont	rolled Exposul	e/Genera	averaged over 1 gram								

FCC ID: A3LSGHT899M	PCTEST**** ***VINDIGHTER LADGETRY, INC.	SAR EVALUATION REPORT	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:	Page 37 of 49	
0Y1208241227.A3L	08/25/12 - 09/19/12	Portable Handset	Fage 37 01 49	

12.4 SAR Test Notes

General Notes:

- 1. The test data reported are the worst-case SAR value with the position set in a typical configuration. Test procedures used were according to FCC/OET Bulletin 65, Supplement C [June 2001].
- 2. Batteries are fully charged for all readings. The standard battery was used.
- 3. Tissue parameters and temperatures are listed on the SAR plots.
- 4. Liquid tissue depth was at least 15.0 cm. To confirm the proper SAR liquid depth, the z-axis plots from the system verifications were included since the system verifications were performed using the same liquid, probe and DAE as the SAR tests in the same time period.
- 5. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical, and thermal characteristics and are within operational tolerances expected for production units.
- 6. Per October 2010 TCB Workshop, the mid. channel may be used as a default test channel when the output power deviation across the channels is <0.5 dB, otherwise the maximum output power must be used. If the SAR measured at for each test configuration for the default channel is at least 3.0 dB lower than the SAR limit, testing at the other channels is optional for such test configuration(s).
- 7. Device was tested using a fixed spacing for body-worn accessory testing. A separation distance of 10 mm was considered because the manufacturer has determined that there will be body-worn accessories available in the marketplace for users to support this separation distance.

GSM Test Notes:

- 1. Body-Worn accessory testing is typically associated with voice operations. Therefore, GSM voice was evaluated for body-worn SAR using headphones.
- Per FCC guidance, GPRS Data Mode is additionally required for body-worn configuration. Per FCC Guidance, when the measured Hotspot SAR is less than <1.2 W/kg for the same device orientation and device transmission configurations, separate body-worn accessory data taken with a headset cable is not required. Therefore, hotspot back side SAR data was considered to determine bodyworn SAR compliance.
- Justification for reduced test configurations per KDB Publication 941225 D03: The source-based timeaveraged output power was evaluated for all multi-slot operations. The worst-case configurations were evaluated for SAR.

WCDMA Notes:

- 1. UMTS mode in Body SAR was tested under RMC 12.2 kbps with HSPA Inactive per KDB Publication 941225 D01. HSPA SAR was not required since the average output power of the HSPA subtests was not more than 0.25 dB higher than the RMC level and SAR was less than 1.2 W/kg.
- Per FCC Guidance, when the measured Hotspot SAR is less than <1.2 W/kg for the same device
 orientation and device transmission configurations, separate body-worn accessory data taken with
 a headset cable is not required. Therefore, hotspot back side SAR data was considered to
 determine body-worn SAR compliance.
- AWS UMTS SAR was measured with a probe calibrated at 1750 MHz and is valid for measuring SAR from ± 50 MHz. The 1750MHz specific liquid was verified with specific probe calibration factors as required per FCC KDB Publication 450824 D01.

LTE Notes

- LTE Considerations: LTE test configurations are determined according to SAR Test Considerations for LTE handsets and Data Modems KDB 941225 D05 Publication and were evaluated independently of position. General test procedures can be found in Section 9.3.3.
- 2. MPR is permanently implemented for this device by the manufacturer. The specific manufacturer target MPR is indicated alongside the SAR results. MPR is enabled for this device, according to 3GPP TS36.101 Section 6.2.3 6.2.5 under Table 6.2.3-1.
- 3. A-MPR was disabled for all SAR tests by setting NS=01 on the base station simulator.
- 4. Per FCC Guidance, when the measured Hotspot SAR is less than <1.2 W/kg for the same device orientation and device transmission configurations, separate body-worn accessory data taken with a headset cable is not required. Therefore, hotspot back side SAR data was considered to determine body-worn SAR compliance.</p>
- LTE Band 4 (AWS) SAR was measured with a probe calibrated at 1750 MHz and is valid for measuring SAR from ± 50 MHz. The 1750MHz specific liquid was verified with specific probe calibration factors as required per FCC KDB Publication 450824 D01.

FCC ID: A3LSGHT899M	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:	Page 38 of 49	
0Y1208241227.A3L	08/25/12 - 09/19/12	Portable Handset	Fage 36 01 49	

WLAN Notes:

- Justification for reduced test configurations for WIFI channels per KDB Publication 248227 and April 2010 FCC/TCB Meeting Notes for 2.4 GHz WIFI: Highest average RF output power channel for the lowest data rate was selected for SAR evaluation in 802.11b. Other IEEE 802.11 modes (including 802.11g/n) were not investigated since the average output powers over all channels and data rates were not more than 0.25 dB higher than the tested channel in the lowest data rate of IEEE 802.11b mode.
- Justification for reduced test configurations for WIFI channels per KDB Publication 248227 and April 2010 FCC/TCB Meeting Notes for 5 GHz WIFI: Highest average RF output power channel for the lowest data rate was selected for SAR evaluation in 802.11a. Other IEEE 802.11 modes (including 20 MHz, 40 MHz, and 802.11n) were not investigated since the average output powers over all channels and data rates were not more than 0.25 dB higher than the tested channel in the lowest data rate of IEEE 802.11a mode.
- 3. When Hotspot is enabled, all 5 GHz bands are disabled.
- 4. WLAN transmission was verified using an uncalibrated spectrum analyzer.
- 5. When the maximum extrapolated peak SAR of the zoom scan for the maximum output channel is <1.6 W/kg and the 1g averaged SAR is <0.8 W/kg, SAR testing on other channels is not required. Otherwise, the other default (or corresponding required) test channels were additionally tested using the lowest data rate.</p>
- Per FCC Guidance, when the measured Hotspot SAR is less than <1.2 W/kg for the same device
 orientation and device transmission configurations, separate body-worn accessory data taken with
 a headset cable is not required. Therefore, 802.11b hotspot back side SAR data was considered to
 determine body-worn SAR compliance.

Hotspot Notes:

- 1. Top Edge for the licensed transmitter was not tested since the antenna distance from the edge was greater than 2.5 cm per FCC KDB Publication 941225 D06 guidance (see Section 1.3).
- 2. Bottom and Left Edges for the WLAN transmitter was not tested since the antenna distance from the edge was greater than 2.5 cm per FCC KDB Publication 941225 D06 (see Section 1.3).
- During SAR Testing for the Wireless Router conditions per KDB 941225 D06, the actual Portable Hotspot operation (with actual simultaneous transmission of a transmitter with WIFI) was not activated (See Section 7.6.)

FCC ID: A3LSGHT899M	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:	Dogg 20 of 40	
08/25/12 - 09/19/12		Portable Handset	Page 39 of 49	

13.1 Introduction

The following procedures adopted from "FCC SAR Considerations for Cell Phones with Multiple Transmitters" FCC KDB Publication 648474 are applicable to handsets with built-in unlicensed transmitters such as 802.11a/b/g/n and Bluetooth devices which may simultaneously transmit with the licensed transmitter.

13.2 FCC Power Tables & Conditions

	2.45	5.15 - 5.35	5.47 - 5.85	GHz			
P_{Ref}	12	6	5	mW			
Device output power should be rounded to the nearest mW to compare with values specified in this table.							

Figure 13-1
Output Power Thresholds for Unlicensed Transmitters

	In dividual Tr ansmitter	Simultaneous Transmission
Licensed Transmitters	Routine evaluation required	SAR not required: Unlicensed only
Unlicensed Transmitters	$ \begin{array}{c} \mbox{When there is no simultaneous transmission} - \\ \mbox{\circ output} \le 60/f: SAR not required} \\ \mbox{\circ output} \ge 60/f: stand-alone SAR required} \\ \mbox{When there is simultaneous transmission} - \\ \mbox{$Stand-alone SAR not required when} \\ \mbox{\circ output} \le 2 \cdot P_{Ref} \mbox{ and antenna is } \ge 5.0 \mbox{ cm} \\ \mbox{\circ output} \le P_{Ref} \mbox{ and antenna is } \ge 2.5 \mbox{ cm} \mbox{ from other antennas} \\ \mbox{\circ output} \le P_{Ref} \mbox{ and antenna is } \le 2.5 \mbox{ cm} \mbox{ from other antennas, each with either output power} \le P_{Ref} \mbox{ or } 1\text{-g SAR} < 1.2 \mbox{ W/kg} \\ \mbox{Otherwise stand-alone SAR is required} \\ \mbox{\circ when stand-alone SAR is required} \\ \mbox{\circ test SAR on highest output channel for each wireless mode and exposure condition} \\ \mbox{\circ if SAR for highest output channel is } > 50\% \\ \mbox{\circ of SAR limit, evaluate all channels according to normal procedures} \\ \end{substitute}$	o when stand-alone 1-g SAR is not required and antenna is ≥ 5 cm from other antennas Licensed & Unlicensed o when the sum of the 1-g SAR is < 1.6 W/kg for all simultaneous transmitting antennas when SAR to peak location separation ratio of simultaneous transmitting antenna pair is < 0.3 SAR required: Licensed & Unlicensed antenna pairs with SAR to peak location separation ratio ≥ 0.3; test is only required for the configuration that results in the highest SAR in stand-alone configuration for each wireless mode and exposure condition Note: simultaneous transmission exposure conditions for head and body can be different for different test requirements may apply

Figure 13-2 SAR Evaluation Requirements for Multiple Transmitter Handsets

According to Figure 13-1 and Figure 13-2, simultaneous transmission analysis of SAR may be required for this device for the licensed and unlicensed transmitters. Possible simultaneous transmissions for this device are shown in the following tables.

FCC ID: A3LSGHT899M	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:	Dogg 40 of 40	
08/25/12 - 09/19/12		Portable Handset	Page 40 of 49	

13.3 Head SAR Simultaneous Transmission Analysis

Table 13-1 Simultaneous Transmission Scenario (Held to Ear)

Simult Tx	Configuration	GSM 850 SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	Simult Tx	Configuration	WCDMA 850 SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
	Right Cheek	0.120	0.060	0.180		Right Cheek	0.115	0.060	0.175
Head	Right Tilt	0.069	0.076	0.145	Head	Right Tilt	0.074	0.076	0.150
SAR	Left Cheek	0.104	0.087	0.191	SAR	Left Cheek	0.098	0.087	0.184
	Left Tilt	0.062	0.102	0.164		Left Tilt	0.068	0.102	0.170

Simult Tx	Configuration	AWS WCDMA SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	Simult Tx	Configuration	GSM 1900 SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
	Right Cheek	0.529	0.060	0.589		Right Cheek	0.226	0.060	0.286
Head	Right Tilt	0.489	0.076	0.565	Head	Right Tilt	0.155	0.076	0.231
SAR	Left Cheek	0.666	0.087	0.753	SAR	Left Cheek	0.262	0.087	0.349
	Left Tilt	0.433	0.102	0.535		Left Tilt	0.133	0.102	0.235

Simult Tx	Configuration	WCDMA 1900 SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	Simult Tx		LTE Band 4 (AWS) SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
	Right Cheek	0.389	0.060	0.449		Right Cheek	0.713	0.060	0.773
Head	Right Tilt	0.253	0.076	0.329	Head	Right Tilt	0.545	0.076	0.621
SAR	Left Cheek	0.466	0.087	0.553	SAR	Left Cheek	0.892	0.087	0.979
	Left Tilt	0.291	0.102	0.393		Left Tilt	0.557	0.102	0.659

FCC ID: A3LSGHT899M	PCTEST** INDICATION INC.	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dags 41 of 40
0Y1208241227.A3L	08/25/12 - 09/19/12	Portable Handset	Page 41 of 49

Table 13-2 Simultaneous Transmission Scenario (Held to Ear)

Simult Tx	Configuration	GSM 850 SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	Simult Tx	Configuration	WCDMA 850 SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
	Right Cheek	0.120	0.062	0.182		Right Cheek	0.115	0.062	0.177
Head	Right Tilt	0.069	0.072	0.141	Head	Right Tilt	0.074	0.072	0.146
SAR	Left Cheek	0.104	0.091	0.195	SAR	Left Cheek	0.098	0.091	0.189
	Left Tilt	0.062	0.085	0.147		Left Tilt	0.068	0.085	0.153
Simult Tx	Configuration	AWS WCDMA SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	Simult Tx	Configuration	GSM 1900 SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
	Right Cheek	0.529	0.062	0.591		Right Cheek	0.226	0.062	0.288
Head	Right Tilt	0.489	0.072	0.561	Head	Right Tilt	0.155	0.072	0.227
SAR	Left Cheek	0.666	0.091 0.757 SAR		Left Cheek	0.262	0.091	0.353	
	Left Tilt 0.433 0.085 0.518		Left Tilt	0.133	0.085	0.218			

Simult Tx	Configuration	WCDMA 1900 SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
	Right Cheek	0.389	0.062	0.451
Head	Right Tilt	0.253	0.002	0.325
SAR	Left Cheek	0.466	0.091	0.557
	Left Tilt	0.291	0.085	0.376

13.4 Body-Worn Simultaneous Transmission Analysis

Table 13-3 Simultaneous Transmission Scenario (Body-Worn at 1.0 cm)

Configuration	Mode	2G/3G/4G SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
Back Side	GSM 850	0.236	0.212	0.448
Back Side	WCDMA 850	0.256	0.212	0.468
Back Side	AWS WCDMA	0.747	0.212	0.959
Back Side	GSM 1900	0.247	0.212	0.459
Back Side	WCDMA 1900	0.519	0.212	0.731
Back Side	LTE Band 4	1.050	0.212	1.262

Table 13-4 Simultaneous Transmission Scenario (Body-Worn at 1.0 cm)

Configuration	Mode	2G/3G SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
Back Side	GSM 850	0.236	0.633	0.869
Back Side	WCDMA 850	0.256	0.633	0.889
Back Side	AWS WCDMA	0.747	0.633	1.380
Back Side	GSM 1900	0.247	0.633	0.880
Back Side	WCDMA 1900	0.519	0.633	1.152

FCC ID: A3LSGHT899M	PCTEST INVITABLE AND ADDRAGATIVE. INC.	SAR EVALUATION REPORT	MSUNG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogg 40 of 40
0Y1208241227.A3L	08/25/12 - 09/19/12	Portable Handset		Page 42 of 49
@ 2012 DOTECT Engineering Labor	oton. Inc			DEV/44.2 M

13.5 Hotspot SAR Simultaneous Transmission Analysis

Table 13-5
Simultaneous Transmission Scenario (Hotspot at 1.0 cm)

Simult Tx	Configuration	GPRS 850 SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	Simult Tx	Configuration	WCDMA 850 SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
	Back	0.519	0.212	0.731		Back	0.256	0.212	0.468
	Front	0.314	0.026	0.340		Front	0.156	0.026	0.182
Body SAR	Тор	-	0.076	0.076	Body SAR	Тор	-	0.076	0.076
Body of at	Bottom	0.033	-	0.033	Body Orac	Bottom	0.018	-	0.018
	Right	0.378	0.023	0.401		Right	0.183	0.023	0.206
	Left	0.297	-	0.297		Left	0.148	-	0.148
Simult Tx	Configuration	AWS WCDMA SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	Simult Tx	Configuration	GPRS 1900 SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
	Back	0.747	0.212	0.959		Back	0.454	0.212	0.666
	Front	0.956	0.026	0.982		Front	0.497	0.026	0.523
Body SAR	Тор	-	0.076	0.076	Body SAR	Тор	-	0.076	0.076
Body SAIN	Bottom	0.557	-	0.557	Body of at	Bottom	0.323	-	0.323
	Right	0.183	0.023	0.206		Right	0.126	0.023	0.149
	Left	0.655	-	0.655		Left	0.408	-	0.408
Simult Tx	Configuration	WCDMA 1900 SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	Simult Tx	Configuration	LTE Band 4 (AWS) SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
	Back	0.519	0.212	0.731		Back	1.050	0.212	1.262
	Front	0.778	0.026	0.804		Front	1.070	0.026	1.096
Body SAR	Тор	-	0.076	0.076	Body SAR	Тор	-	0.076	0.076
Bouy SAR	Bottom	0.441	-	0.441	Bouy SAR	Bottom	0.663	-	0.663
	Right	0.182	0.023	0.205		Right	0.296	0.023	0.319
	Left	0.636	-	0.636		Left	0.937	-	0.937

Note: Per FCC KDB Publication 941225 D06, the edges with antennas more than 2.5 cm are not required to be evaluated for SAR ("-"). The above tables represent a portable hotspot condition.

13.6 Simultaneous Transmission Conclusion

The above numerical summed SAR was below the SAR limit. Therefore, the above analysis is sufficient to determine that simultaneous transmission cases will not exceed the SAR limit. No volumetric SAR summation is required per FCC KDB Publication 648474.

FCC ID: A3LSGHT899M	PCTEST SHOREHAD LAPRATURY, INC.	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogo 42 of 40
0Y1208241227.A3L	08/25/12 - 09/19/12	Portable Handset	Page 43 of 49

14 EQUIPMENT LIST

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Gigatronics	80701A	(0.05-18GHz) Power Sensor	10/12/2011	Annual	10/12/2012	1833460
Agilent	E8257D	(250kHz-20GHz) Signal Generator	4/5/2012	Annual	4/5/2013	MY45470194
Agilent	8753E	(30kHz-6GHz) Network Analyzer	4/4/2012	Annual	4/4/2013	JP38020182
Agilent	8594A	(9kHz-2.9GHz) Spectrum Analyzer	CBT	N/A	CBT	3051A00187
Agilent	8648D	(9kHz-4GHz) Signal Generator	10/10/2011	Annual	10/10/2012	3613A00315
SPEAG	D1750V2	1750 MHz SAR Dipole	4/24/2012	Annual	4/24/2013	1051
SPEAG	D1900V2	1900 MHz SAR Dipole	2/22/2012	Annual	2/22/2013	502
SPEAG	D1900V2	1900 MHz SAR Dipole	2/22/2012	Annual	2/22/2013	5d149
SPEAG	D2450V2	2450 MHz SAR Dipole	2/7/2012	Annual	2/7/2013	882
Narda	4014C-6	4 - 8 GHz SMA 6 dB Directional Coupler	CBT	N/A	CBT	N/A
SPEAG	D5GHzV2	5 GHz SAR Dipole	1/19/2012	Annual	1/19/2013	1057
MCL	BW-N6W5+	6dB Attenuator	CBT	N/A	CBT	1139
SPEAG	D835V2	835 MHz SAR Dipole	2/3/2012	Annual	2/3/2013	4d132
SPEAG	D835V2	835 MHz SAR Dipole	4/20/2012	Annual	4/20/2013	4d119
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Rohde & Schwarz	CMU200	Base Station Simulator	5/22/2012	Annual	5/22/2013	109892
SPEAG	DAE4	Dasy Data Acquisition Electronics	1/18/2012	Annual	1/18/2013	1272
SPEAG	DAE4	Dasy Data Acquisition Electronics	2/20/2012	Annual	2/20/2013	649
SPEAG	DAE4	Dasy Data Acquisition Electronics	4/12/2012	Annual	4/12/2013	1333
SPEAG	DAE4	Dasy Data Acquisition Electronics	4/19/2012	Annual	4/19/2013	665
SPEAG	DAE4	Dasy Data Acquisition Electronics	5/7/2012	Annual	5/7/2013	1334
SPEAG	DAE4	Dasy Data Acquisition Electronics	8/24/2012	Annual	8/24/2013	1322
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	-
SPEAG	DAK-3.5	Dielectic Assessment Kit	6/19/2012	Annual	6/19/2013	1070
Agilent	85070E	Dielectric Probe Kit	3/8/2012	Annual	3/8/2013	MY44300633
Rohde & Schwarz	NRVD	Dual Channel Power Meter	4/8/2011	Biennial	4/8/2013	101695
Intelligent Weigh	PD-3000	Electronic Balance	3/27/2012	Annual	3/27/2013	11081534
Control Company	61220-416	Long-Stem Thermometer	10/12/2011	Biennial	10/12/2013	111860844
Mini-Circuits	NLP-1200+	Low Pass Filter DC to 1000 MHz	CBT	N/A	CBT	-
Mini-Circuits	NLP-2950+	Low Pass Filter DC to 2700 MHz	CBT	N/A	CBT	-
Rohde & Schwarz	CMW500	LTE Radio Communication Tester	10/7/2011	Biennial	10/7/2013	103962
VWR	62344-925	Mini-Thermometer	10/24/2011	Biennial	10/24/2013	111886441
Anritsu	ML2438A	Power Meter	2/14/2012	Annual	2/14/2013	1190013
Anritsu	ML2438A	Power Meter	2/14/2012	Annual	2/14/2013	98150041
Anritsu	MA2481A	Power Sensor	4/5/2012	Annual	4/5/2013	5605
Anritsu	MA2411B	Pulse Sensor	10/13/2011	Annual	10/13/2012	1027293
Anritsu	MT8820C	Radio Communication Tester	11/11/2011	Annual	11/11/2012	6200901190
Tektronix	RSA-6114A	Real Time Spectrum Analyzer	4/5/2012	Annual	4/5/2013	B010177
SPEAG	EX3DV4	SAR Probe	1/27/2012	Annual	1/27/2013	3589
SPEAG	ES3DV3	SAR Probe	2/7/2012	Annual	2/7/2013	3288
SPEAG	ES3DV3	SAR Probe	2/7/2012	Annual	2/7/2013	3287
SPEAG	ES3DV3	SAR Probe	2/21/2012	Annual	2/21/2013	3258
SPEAG	ES3DV3	SAR Probe	3/16/2012	Annual	3/16/2013	3209
SPEAG	ES3DV3	SAR Probe	4/24/2012	Annual	4/24/2013	3213
SPEAG	ES3DV2	SAR Probe	8/28/2012	Annual	8/28/2013	3022
Rohde & Schwarz	SMIQ03B	Signal Generator	4/5/2012	Annual	4/5/2013	DE27259
COMTech	AR85729-5	Solid State Amplifier	CBT	N/A	CBT	M1S5A00-009
Agilent	85047A	S-Parameter Test Set	CBT	N/A	CBT	2904A00579
Seekonk	NC-100	Torque Wrench (8" lb)	3/5/2012	Triennial	3/5/2015	-
Gigatronics	8651A	Universal Power Meter	10/12/2011	Annual	10/12/2012	8650319
VWR	36934-158	Wall-Mounted Thermometer	1/21/2011	Biennial	1/21/2013	111286445
Agilent	E5515C	Wireless Communications Test Set	10/10/2011	Annual	10/10/2012	GB46110872

Note: CBT (Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, amplifiers, attenuator, coupler or filter were connected to a calibrated source (i.e. a signal generator) to determine the losses of the measurement path. The power meter offset was then adjusted to compensate for the measurement system losses. This level offset is stored within the power meter before measurements are made. This calibration verification procedure applies to the system verification and output power measurements. The calibrated reading is then taken directly from the power meter after compensation of the losses for all final power measurements.

FCC ID: A3LSGHT899M	PCTEST**** ***VINDIGHTER LADGETRY, INC.	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 44 of 49
0Y1208241227.A3L	08/25/12 - 09/19/12	Portable Handset	Fage 44 01 49

15 MEASUREMENT UNCERTAINTIES

Applicable for frequencies less than 3000 MHz.

а	b	С	d	e=	f	g	h =	i=	k
			_	f(d,k)		3	c x f/e	c x g/e	
	IEEE	Tal	Drah	i(u,k)					
Uncertainty	1528	Tol.	Prob.		Ci	Ci	1gm	10gms	
Component	Sec.	(± %)	Dist.	Div.	1gm	10 gms	u _i	u _i	Vi
Measurement System							(± %)	(± %)	
Probe Calibration	E.2.1	6.0	N	1	1.0	1.0	6.0	6.0	00
Axial Isotropy	E.2.2	0.25	N	1	0.7	0.7	0.2	0.2	00
Hemishperical Isotropy	E.2.2	1.3	N	1	1.0	1.0	1.3	1.3	00
Boundary Effect	E.2.3	0.4	N	1	1.0	1.0	0.4	0.4	00
Linearity	E.2.4	0.3	N	1	1.0	1.0	0.3	0.3	∞
System Detection Limits	E.2.5	5.1	N	1	1.0	1.0	5.1	5.1	∞
Readout Electronics	E.2.6	1.0	N	1	1.0	1.0	1.0	1.0	∞
Response Time	E.2.7	0.8	R	1.73	1.0	1.0	0.5	0.5	∞
Integration Time	E.2.8	2.6	R	1.73	1.0	1.0	1.5	1.5	∞
RF Ambient Conditions	E.6.1	3.0	R	1.73	1.0	1.0	1.7	1.7	∞
Probe Positioner Mechanical Tolerance	E.6.2	0.4	R	1.73	1.0	1.0	0.2	0.2	∞
Probe Positioning w/ respect to Phantom	E.6.3	2.9	R	1.73	1.0	1.0	1.7	1.7	∞
Extrapolation, Interpolation & Integration algorithms for Max. SAR Evaluation	E.5	1.0	R	1.73	1.0	1.0	0.6	0.6	∞
Test Sample Related									
Test Sample Positioning	E.4.2	6.0	N	1	1.0	1.0	6.0	6.0	287
Device Holder Uncertainty	E.4.1	3.32	R	1.73	1.0	1.0	1.9	1.9	∞
Output Power Variation - SAR drift measurement	6.6.2	5.0	R	1.73	1.0	1.0	2.9	2.9	∞
Phantom & Tissue Parameters									
Phantom Uncertainty (Shape & Thickness tolerances)	E.3.1	4.0	R	1.73	1.0	1.0	2.3	2.3	∞
Liquid Conductivity - deviation from target values	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	∞
Liquid Conductivity - measurement uncertainty	E.3.3	3.8	N	1	0.64	0.43	2.4	1.6	6
Liquid Permittivity - deviation from target values	E.3.2	5.0	R	1.73	0.60	0.49	1.7	1.4	∞
Liquid Permittivity - measurement uncertainty	E.3.3	4.5	N	1	0.60	0.49	2.7	2.2	6
Combined Standard Uncertainty (k=1)			RSS				12.1	11.7	299
Expanded Uncertainty			k=2				24.2	23.5	
(95% CONFIDENCE LEVEL)									

The above measurement uncertainties are according to IEEE Std. 1528-2003

FCC ID: A3LSGHT899M	POTEST VACABLES LASACITY, INC.	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dogg 45 of 40
0Y1208241227.A3L	08/25/12 - 09/19/12	Portable Handset	Page 45 of 49

Applicable for frequencies up to 6 GHz.

а	b	С	d	e=	f	g	h =	j =	k
				f(d,k)			c x f/e	c x g/e	
Uncertainty	IEEE	Tol.	Prob.		Ci	Ci	1gm	10gms	
Component	1528 Sec.	(± %)	Dist.	Div.	1gm	10 gms	u _i	u _i	v _i
·	000.						(± %)	(± %)	
Measurement System									
Probe Calibration	E.2.1	6.55	N	1	1.0	1.0	6.6	6.6	∞
Axial Isotropy	E.2.2	0.25	N	1	0.7	0.7	0.2	0.2	∞
Hemishperical Isotropy	E.2.2	1.3	N	1	1.0	1.0	1.3	1.3	∞
Boundary Effect	E.2.3	0.4	N	1	1.0	1.0	0.4	0.4	∞
Linearity	E.2.4	0.3	N	1	1.0	1.0	0.3	0.3	∞
System Detection Limits	E.2.5	5.1	N	1	1.0	1.0	5.1	5.1	∞
Readout Electronics	E.2.6	1.0	N	1	1.0	1.0	1.0	1.0	œ
Response Time	E.2.7	0.8	R	1.73	1.0	1.0	0.5	0.5	∞
Integration Time	E.2.8	2.6	R	1.73	1.0	1.0	1.5	1.5	∞
RF Ambient Conditions	E.6.1	3.0	R	1.73	1.0	1.0	1.7	1.7	∞
Probe Positioner Mechanical Tolerance	E.6.2	0.4	R	1.73	1.0	1.0	0.2	0.2	∞
Probe Positioning w/ respect to Phantom	E.6.3	2.9	R	1.73	1.0	1.0	1.7	1.7	∞
Extrapolation, Interpolation & Integration algorithms for Max. SAR Evaluation	E.5	1.0	R	1.73	1.0	1.0	0.6	0.6	∞
Test Sample Related									
Test Sample Positioning	E.4.2	6.0	N	1	1.0	1.0	6.0	6.0	287
Device Holder Uncertainty	E.4.1	3.32	R	1.73	1.0	1.0	1.9	1.9	∞
Output Power Variation - SAR drift measurement	6.6.2	5.0	R	1.73	1.0	1.0	2.9	2.9	∞
Phantom & Tissue Parameters									
Phantom Uncertainty (Shape & Thickness tolerances)	E.3.1	4.0	R	1.73	1.0	1.0	2.3	2.3	œ
Liquid Conductivity - deviation from target values	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	∞
Liquid Conductivity - measurement uncertainty	E.3.3	3.8	N	1	0.64	0.43	2.4	1.6	6
Liquid Permittivity - deviation from target values	E.3.2	5.0	R	1.73	0.60	0.49	1.7	1.4	oc
Liquid Permittivity - measurement uncertainty	E.3.3	4.5	N	1	0.60	0.49	2.7	2.2	6
Combined Standard Uncertainty (k=1)		•	RSS				12.4	12.0	299
Expanded Uncertainty			k=2				24.7	24.0	
(95% CONFIDENCE LEVEL)									

The above measurement uncertainties are according to IEEE Std. 1528-2003

FCC ID: A3LSGHT899M	SHOULDING CASPATRY, INC.	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 46 of 49
0Y1208241227.A3L	08/25/12 - 09/19/12	Portable Handset	

16 CONCLUSION

16.1 Measurement Conclusion

The SAR evaluation indicates that the EUT complies with the RF radiation exposure limits of the FCC and Industry Canada, with respect to all parameters subject to this test. These measurements were taken to simulate the RF effects of RF exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The results and statements relate only to the item(s) tested.

Please note that the absorption and distribution of electromagnetic energy in the body are very complex phenomena that depend on the mass, shape, and size of the body, the orientation of the body with respect to the field vectors, and the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because various factors may interact with one another to vary the specific biological outcome of an exposure to electromagnetic fields, any protection guide should consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables. [3]

FCC ID: A3LSGHT899M	PCTEST	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 47 of 49
0Y1208241227.A3L	08/25/12 - 09/19/12	Portable Handset	

17 REFERENCES

- Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radiofrequency Radiation, Aug. 1996.
- [2] ANSI/IEEE C95.1-2005, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, 2006.
- [3] ANSI/IEEE C95.1-1992, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, Sept. 1992.
- [4] ANSI/IEEE C95.3-2002, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields RF and Microwave, New York: IEEE, December 2002.
- [5] Federal Communications Commission, OET Bulletin 65 (Edition 97-01), Supplement C (Edition 01-01), Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields, June 2001.
- [6] IEEE Standards Coordinating Committee 34 IEEE Std. 1528-2003, Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices.
- [7] NCRP, National Council on Radiation Protection and Measurements, Biological Effects and Exposure Criteria for RadioFrequency Electromagnetic Fields, NCRP Report No. 86, 1986. Reprinted Feb. 1995.
- [8] T. Schmid, O. Egger, N. Kuster, Automated E-field scanning system for dosimetric assessments, IEEE Transaction on Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113.
- [9] K. Pokovic, T. Schmid, N. Kuster, Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies, ICECOM97, Oct. 1997, pp. 120-124.
- [10] K. Pokovic, T. Schmid, and N. Kuster, E-field Probe with improved isotropy in brain simulating liquids, Proceedings of the ELMAR, Zadar, Croatia, June 23-25, 1996, pp. 172-175.
- [11] Schmid & Partner Engineering AG, Application Note: Data Storage and Evaluation, June 1998, p2.
- [12] V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, N. Kuster, The Dependence of EM Energy Absorption upon Human Head Modeling at 900 MHz, IEEE Transaction on Microwave Theory and Techniques, vol. 44 no. 10, Oct. 1996, pp. 1865-1873.
- [13] N. Kuster and Q. Balzano, Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300MHz, IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.
- [14] G. Hartsgrove, A. Kraszewski, A. Surowiec, Simulated Biological Materials for Electromagnetic Radiation Absorption Studies, University of Ottawa, Bioelectromagnetics, Canada: 1987, pp. 29-36.
- [15] Q. Balzano, O. Garay, T. Manning Jr., Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995.
- [16] W. Gander, Computermathematick, Birkhaeuser, Basel, 1992.
- [17] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in C, The Art of Scientific Computing, Second edition, Cambridge University Press, 1992.

FCC ID: A3LSGHT899M	PCTEST*	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 48 of 49
0Y1208241227.A3L	08/25/12 - 09/19/12	Portable Handset	

- [18] Federal Communications Commission, OET Bulletin 65, Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields. Supplement C, Dec. 1997.
- [19] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652.
- [20] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic Fields High-frequency: 10kHz-300GHz, Jan. 1995.
- [21] Prof. Dr. Niels Kuster, ETH, Eidgenössische Technische Hoschschule Zürich, Dosimetric Evaluation of the Cellular Phone.
- [22] IEC 62209-1, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices Human models, instrumentation, and procedures Part 1: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz), Feb. 2005.
- [23] Industry Canada RSS-102 Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands) Issue 4, March 2010.
- [24] Health Canada Safety Code 6 Limits of Human Exposure to Radio Frequency Electromagnetic Fields in the Frequency Range from 3 kHz 300 GHz, 2009
- [25] FCC Public Notice DA-02-1438. Office of Engineering and Technology Announces a Transition Period for the Phantom Requirements of Supplement C to OET Bulletin 65, June 19, 2002
- [26] FCC SAR Measurement Procedures for 3G Devices KDB Publication 941225
- [27] SAR Measurement procedures for IEEE 802.11a/b/g KDB Publication 248227
- [28] FCC SAR Considerations for Handsets with Multiple Transmitters and Antennas, KDB Publication 648474
- [29] FCC Application Note for SAR Probe Calibration and System Verification Consideration for Measurements at 150 MHz 3 GHz, KDB Publication 450824
- [30] FCC SAR Evaluation Considerations for Laptop Computers with Antennas Built-in on Display Screens, KDB Publication 616217
- [31] FCC SAR Measurement Requirements for 3 6 GHz, KDB Publication 865664
- [32] FCC Mobile Portable RF Exposure Procedure, KDB Publication 447498
- [33] FCC SAR Procedures for Dongle Transmitters, KDB Publication 447498
- [34] Anexo à Resolução No. 533, de 10 de Septembro de 2009.
- [35] FCC SAR Test Considerations for LTE Handsets and Data Modems, KDB Publication 941225.
- [36] IEC 62209-2, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Human models, instrumentation, and procedures - Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz), Mar. 2010.
- [37] FCC Hot Spot SAR v01, KDB Publication 941225 D06.

FCC ID: A3LSGHT899M	POTEST VACABLES LASACITY, INC.	SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Page 49 of 49
0Y1208241227.A3L	08/25/12 - 09/19/12	Portable Handset	

APPENDIX A: SAR TEST DATA

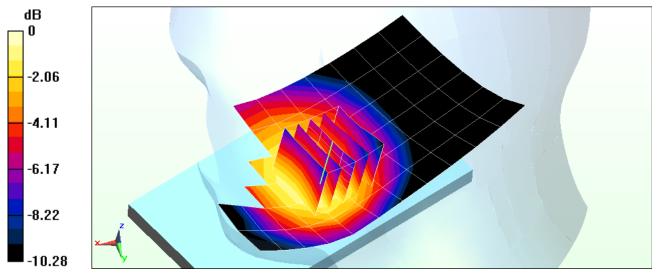
DUT: A3LSGHT899M; Type: Portable Handset; Serial: FJ-224-A

Communication System: GSM; Frequency: 836.6 MHz;Duty Cycle: 1:8.3 Medium: 835 Head Medium parameters used (interpolated): $f = 836.6 \text{ MHz}; \ \sigma = 0.911 \text{ mho/m}; \ \epsilon_r = 42.174; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

Test Date: 08-25-2012; Ambient Temp: 22.1°C; Tissue Temp: 23.2°C

Probe: ES3DV3 - SN3213; ConvF(6.07, 6.07, 6.07); Calibrated: 4/24/2012; Sensor-Surface: 4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1334; Calibrated: 5/7/2012
Phantom: SAM Front; Type: SAM; Serial: 1715
Measurement SW: DASY52, Version 52.8 (1);SEMCAD X Version 14.6.5 (6469)

GSM 850, Right Head, Cheek, Mid.ch


Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 8.971 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 0.151 mW/g

SAR(1 g) = 0.120 mW/g; SAR(10 g) = 0.092 mW/g

0 dB = 0.126 mW/g = -17.99 dB mW/g

DUT: A3LSGHT899M; Type: Portable Handset; Serial: FJ-224-A

Communication System: GSM; Frequency: 836.6 MHz; Duty Cycle: 1:8.3 Medium: 835 Head Medium parameters used (interpolated): $f = 836.6 \text{ MHz}; \ \sigma = 0.911 \text{ mho/m}; \ \epsilon_r = 42.174; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

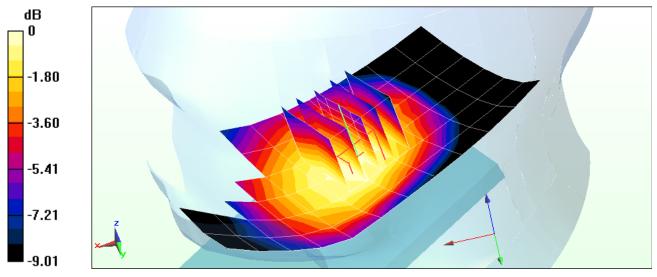
Test Date: 08-25-2012; Ambient Temp: 22.1°C; Tissue Temp: 23.2°C

Probe: ES3DV3 - SN3213; ConvF(6.07, 6.07, 6.07); Calibrated: 4/24/2012; Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1334; Calibrated: 5/7/2012

Phantom: SAM Front; Type: SAM; Serial: 1715

Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)

GSM 850, Right Head, Tilt, Mid.ch


Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 8.349 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 0.084 mW/g

SAR(1 g) = 0.069 mW/g; SAR(10 g) = 0.054 mW/g

0 dB = 0.0722 mW/g = -22.83 dB mW/g

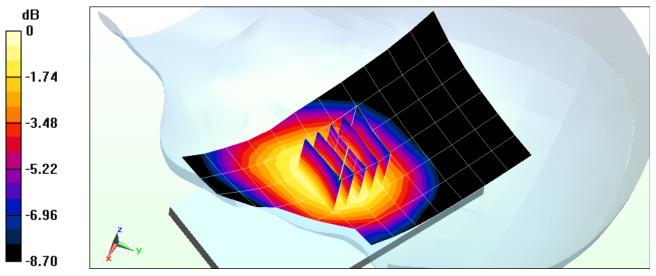
DUT: A3LSGHT899M; Type: Portable Handset; Serial: FJ-224-A

Communication System: GSM; Frequency: 836.6 MHz;Duty Cycle: 1:8.3 Medium: 835 Head Medium parameters used (interpolated): $f = 836.6 \text{ MHz}; \ \sigma = 0.911 \text{ mho/m}; \ \epsilon_r = 42.174; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

Test Date: 08-25-2012; Ambient Temp: 22.1°C; Tissue Temp: 23.2°C

Probe: ES3DV3 - SN3213; ConvF(6.07, 6.07, 6.07); Calibrated: 4/24/2012; Sensor-Surface: 4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1334; Calibrated: 5/7/2012
Phantom: SAM Front; Type: SAM; Serial: 1715
Measurement SW: DASY52, Version 52.8 (1);SEMCAD X Version 14.6.5 (6469)

GSM 850, Left Head, Cheek, Mid.ch


Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6,854 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 0.127 mW/g

SAR(1 g) = 0.104 mW/g; SAR(10 g) = 0.080 mW/g

0 dB = 0.109 mW/g = -19.25 dB mW/g

DUT: A3LSGHT899M; Type: Portable Handset; Serial: FJ-224-A

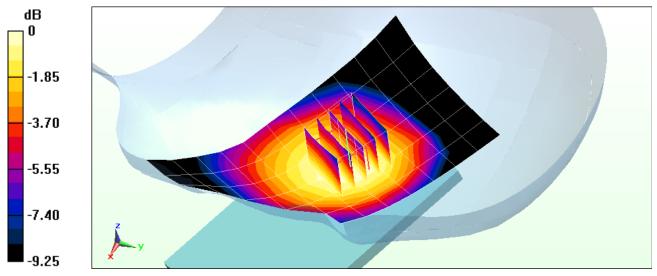
Communication System: GSM; Frequency: 836.6 MHz;Duty Cycle: 1:8.3 Medium: 835 Head Medium parameters used (interpolated): $f = 836.6 \text{ MHz}; \ \sigma = 0.911 \text{ mho/m}; \ \epsilon_r = 42.174; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

Test Date: 08-25-2012; Ambient Temp: 22.1°C; Tissue Temp: 23.2°C

Probe: ES3DV3 - SN3213; ConvF(6.07, 6.07, 6.07); Calibrated: 4/24/2012; Sensor-Surface: 4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1334; Calibrated: 5/7/2012
Phantom: SAM Front; Type: SAM; Serial: 1715

Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)

GSM 850, Left Head, Tilt, Mid.ch


Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.108 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 0.076 mW/g

SAR(1 g) = 0.062 mW/g; SAR(10 g) = 0.048 mW/g

0 dB = 0.0647 mW/g = -23.78 dB mW/g

DUT: A3LSGHT899M; Type: Portable Handset; Serial: FJ-224-B

Communication System: WCDMA; Frequency: 836.6 MHz;Duty Cycle: 1:1 Medium: 835 Head Medium parameters used (interpolated): $f = 836.6 \text{ MHz}; \ \sigma = 0.911 \text{ mho/m}; \ \epsilon_r = 42.007; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

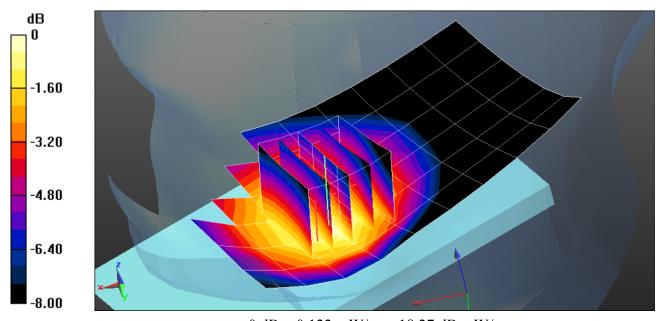
Test Date: 08-29-2012; Ambient Temp: 24.4°C; Tissue Temp: 23.5°C

Probe: ES3DV3 - SN3213; ConvF(6.07, 6.07, 6.07); Calibrated: 4/24/2012;

Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1334; Calibrated: 5/7/2012 Phantom: SAM Front; Type: SAM; Serial: 1715

Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)

WCDMA 850, Right Head, Cheek, Mid.ch


Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 8.861 V/m; Power Drift = -0.00 dB

Peak SAR (extrapolated) = 0.143 mW/g

SAR(1 g) = 0.115 mW/g; SAR(10 g) = 0.088 mW/g

0 dB = 0.122 mW/g = -18.27 dB mW/g

DUT: A3LSGHT899M; Type: Portable Handset; Serial: FJ-224-B

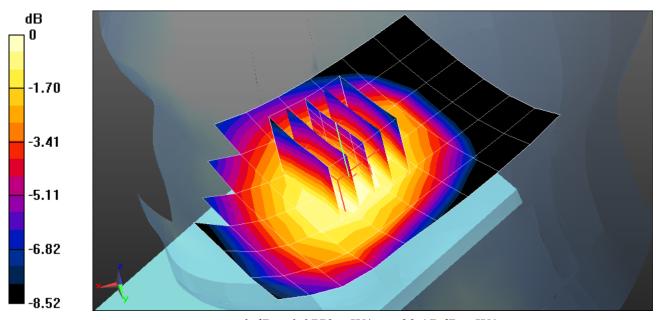
Communication System: WCDMA; Frequency: 836.6 MHz;Duty Cycle: 1:1 Medium: 835 Head Medium parameters used (interpolated): $f = 836.6 \text{ MHz}; \ \sigma = 0.911 \text{ mho/m}; \ \epsilon_r = 42.007; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

Test Date: 08-29-2012; Ambient Temp: 24.4°C; Tissue Temp: 23.5°C

Probe: ES3DV3 - SN3213; ConvF(6.07, 6.07, 6.07); Calibrated: 4/24/2012; Sensor-Surface: 4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1334; Calibrated: 5/7/2012
Phantom: SAM Front; Type: SAM; Serial: 1715

Measurement SW: DASY52, Version 52.8 (1);SEMCAD X Version 14.6.5 (6469)

WCDMA 850, Right Head, Tilt, Mid.ch


Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 8.578 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 0.089 mW/g

SAR(1 g) = 0.074 mW/g; SAR(10 g) = 0.058 mW/g

DUT: A3LSGHT899M; Type: Portable Handset; Serial: FJ-224-B

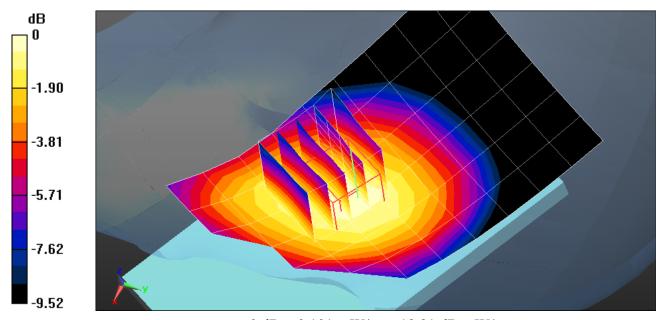
Communication System: WCDMA; Frequency: 836.6 MHz;Duty Cycle: 1:1 Medium: 835 Head Medium parameters used (interpolated): $f = 836.6 \text{ MHz}; \ \sigma = 0.911 \text{ mho/m}; \ \epsilon_r = 42.007; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

Test Date: 08-29-2012; Ambient Temp: 24.4°C; Tissue Temp: 23.5°C

Probe: ES3DV3 - SN3213; ConvF(6.07, 6.07, 6.07); Calibrated: 4/24/2012; Sensor-Surface: 4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1334; Calibrated: 5/7/2012
Phantom: SAM Front; Type: SAM; Serial: 1715

Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)

WCDMA 850, Left Head, Cheek, Mid.ch


Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.478 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 0.122 mW/g

SAR(1 g) = 0.098 mW/g; SAR(10 g) = 0.074 mW/g

0 dB = 0.101 mW/g = -19.91 dB mW/g

DUT: A3LSGHT899M; Type: Portable Handset; Serial: FJ-224-B

Communication System: WCDMA; Frequency: 836.6 MHz;Duty Cycle: 1:1 Medium: 835 Head Medium parameters used (interpolated): $f = 836.6 \text{ MHz}; \ \sigma = 0.911 \text{ mho/m}; \ \epsilon_r = 42.007; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

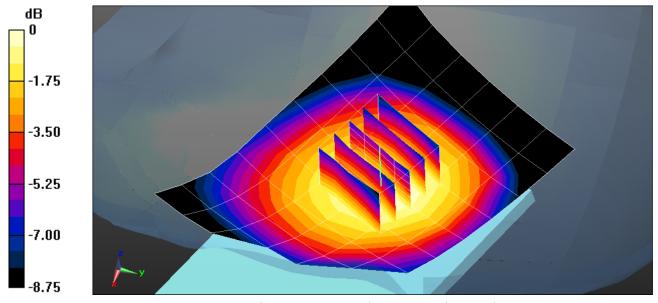
Test Date: 08-29-2012; Ambient Temp: 24.4°C; Tissue Temp: 23.5°C

Probe: ES3DV3 - SN3213; ConvF(6.07, 6.07, 6.07); Calibrated: 4/24/2012; Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1334; Calibrated: 5/7/2012

Phantom: SAM Front; Type: SAM; Serial: 1715

Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)

WCDMA 850, Left Head, Tilt, Mid.ch


Area Scan (7x10x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 7.116 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 0.082 mW/g

SAR(1 g) = 0.068 mW/g; SAR(10 g) = 0.052 mW/g

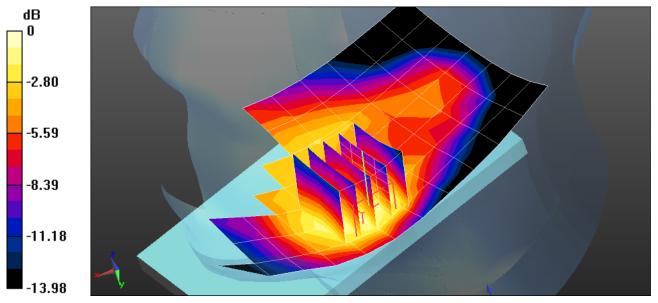
DUT: A3LSGHT899M; Type: Portable Handset; Serial: FJ-224-B

Communication System: WCDMA; Frequency: 1730.4 MHz;Duty Cycle: 1:1 Medium: 1750 Head Medium parameters used (interpolated): $f = 1730.4 \text{ MHz}; \ \sigma = 1.329 \text{ mho/m}; \ \epsilon_r = 40.167; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

Test Date: 08-28-2012; Ambient Temp: 23.9°C; Tissue Temp: 23.8°C

Probe: ES3DV3 - SN3287; ConvF(5.42, 5.42, 5.42); Calibrated: 7/9/2012; Sensor-Surface: 4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn649; Calibrated: 2/20/2012
Phantom: SAM v5.0 Left; Type: QD000P40CD; Serial: TP: 1687
Measurement SW: DASY52, Version 52.8 (1);SEMCAD X Version 14.6.5 (6469)

AWS WCDMA, Right Head, Cheek, Mid.ch


Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 19.996 V/m; Power Drift = 0.21 dB

Peak SAR (extrapolated) = 0.809 mW/g

SAR(1 g) = 0.529 mW/g; SAR(10 g) = 0.340 mW/g

0 dB = 0.543 mW/g = -5.30 dB mW/g

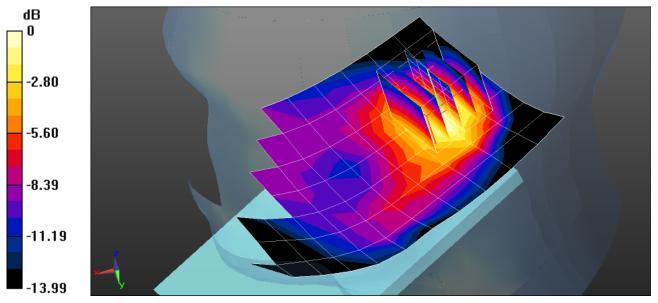
DUT: A3LSGHT899M; Type: Portable Handset; Serial: FJ-224-B

Communication System: WCDMA; Frequency: 1730.4 MHz; Duty Cycle: 1:1 Medium: 1750 Head Medium parameters used (interpolated): $f = 1730.4 \text{ MHz}; \ \sigma = 1.329 \ \text{mho/m}; \ \epsilon_r = 40.167; \ \rho = 1000 \ \text{kg/m}^3$ Phantom section: Right Section

Test Date: 08-28-2012; Ambient Temp: 23.9°C; Tissue Temp: 23.8°C

Probe: ES3DV3 - SN3287; ConvF(5.42, 5.42, 5.42); Calibrated: 7/9/2012; Sensor-Surface: 4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn649; Calibrated: 2/20/2012
Phantom: SAM v5.0 Left; Type: QD000P40CD; Serial: TP: 1687
Measurement SW: DASY52, Version 52.8 (1);SEMCAD X Version 14.6.5 (6469)

AWS WCDMA, Right Head, Tilt, Mid.ch


Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 19.373 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 0.810 mW/g

SAR(1 g) = 0.489 mW/g; SAR(10 g) = 0.287 mW/g

0 dB = 0.542 mW/g = -5.32 dB mW/g

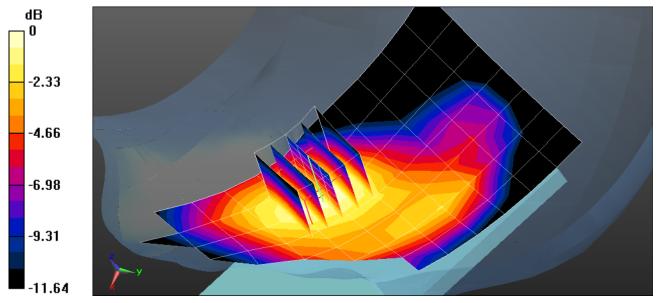
DUT: A3LSGHT899M; Type: Portable Handset; Serial: FJ-224-B

Communication System: WCDMA; Frequency: 1730.4 MHz;Duty Cycle: 1:1 Medium: 1750 Head Medium parameters used (interpolated): $f = 1730.4 \text{ MHz}; \ \sigma = 1.329 \ \text{mho/m}; \ \epsilon_r = 40.167; \ \rho = 1000 \ \text{kg/m}^3$ Phantom section: Left Section

Test Date: 08-28-2012; Ambient Temp: 23.9°C; Tissue Temp: 23.8°C

Probe: ES3DV3 - SN3287; ConvF(5.42, 5.42, 5.42); Calibrated: 7/9/2012; Sensor-Surface: 4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn649; Calibrated: 2/20/2012
Phantom: SAM v5.0 Left; Type: QD000P40CD; Serial: TP: 1687
Measurement SW: DASY52, Version 52.8 (1);SEMCAD X Version 14.6.5 (6469)

AWS WCDMA, Left Head, Cheek, Mid.ch


Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 22.870 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 1.054 mW/g

SAR(1 g) = 0.666 mW/g; SAR(10 g) = 0.425 mW/g

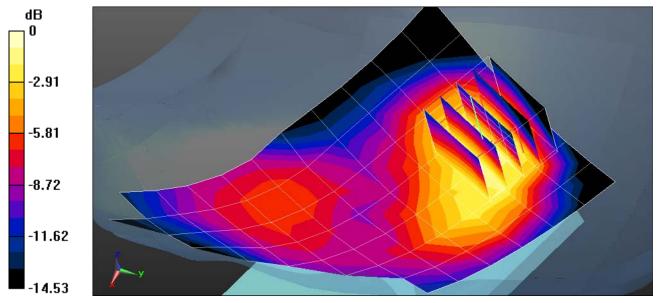
DUT: A3LSGHT899M; Type: Portable Handset; Serial: FJ-224-B

Communication System: WCDMA; Frequency: 1730.4 MHz;Duty Cycle: 1:1 Medium: 1750 Head Medium parameters used (interpolated): $f = 1730.4 \text{ MHz}; \ \sigma = 1.329 \ \text{mho/m}; \ \epsilon_r = 40.167; \ \rho = 1000 \ \text{kg/m}^3$ Phantom section: Left Section

Test Date: 08-28-2012; Ambient Temp: 23.9°C; Tissue Temp: 23.8°C

Probe: ES3DV3 - SN3287; ConvF(5.42, 5.42, 5.42); Calibrated: 7/9/2012; Sensor-Surface: 4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn649; Calibrated: 2/20/2012
Phantom: SAM v5.0 Left; Type: QD000P40CD; Serial: TP: 1687
Measurement SW: DASY52, Version 52.8 (1);SEMCAD X Version 14.6.5 (6469)

AWS WCDMA, Left Head, Tilt, Mid.ch


Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 17.337 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 0.711 mW/g

SAR(1 g) = 0.433 mW/g; SAR(10 g) = 0.262 mW/g

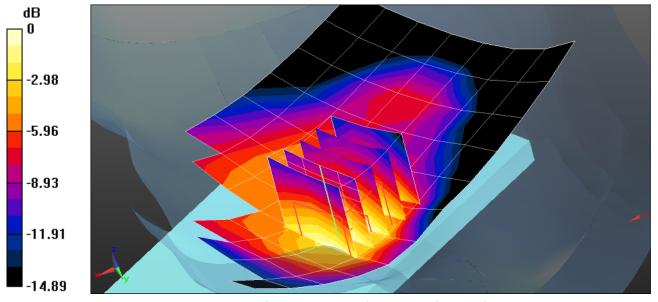
DUT: A3LSGHT899M; Type: Portable Handset; Serial: FJ-224-A

Communication System: LTE Band 4 (AWS); Frequency: 1745 MHz; Duty Cycle: 1:1 Medium: 1750 Head Medium parameters used (interpolated): $f = 1745 \text{ MHz}; \ \sigma = 1.34 \text{ mho/m}; \ \epsilon_r = 40.05; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

Test Date: 08-28-2012; Ambient Temp: 23.9°C; Tissue Temp: 23.8°C

Probe: ES3DV3 - SN3287; ConvF(5.42, 5.42, 5.42); Calibrated: 7/9/2012; Sensor-Surface: 4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn649; Calibrated: 2/20/2012
Phantom: SAM v5.0 Left; Type: QD000P40CD; Serial: TP: 1687
Measurement SW: DASY52, Version 52.8 (1);SEMCAD X Version 14.6.5 (6469)

LTE Band 4 (AWS), Right Head, Cheek, High.ch, 20 MHz Bandwidth, QPSK, 1 RB, 99 RB Offset


Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 24.688 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 1.075 mW/g

SAR(1 g) = 0.713 mW/g; SAR(10 g) = 0.458 mW/g

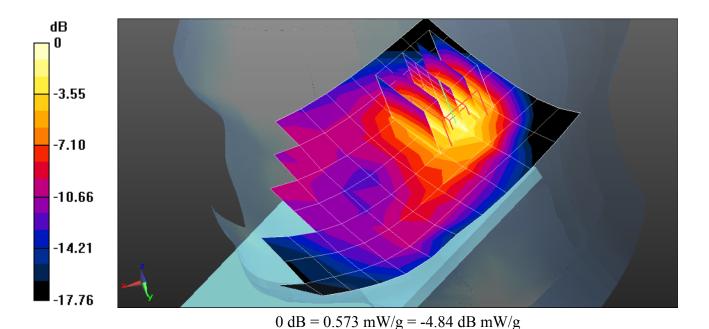
DUT: A3LSGHT899M; Type: Portable Handset; Serial: FJ-224-A

Communication System: LTE Band 4 (AWS); Frequency: 1745 MHz; Duty Cycle: 1:1 Medium: 1750 Head Medium parameters used (interpolated): $f = 1745 \text{ MHz}; \ \sigma = 1.34 \text{ mho/m}; \ \epsilon r = 40.05; \ \rho = 1000 \text{ kg/m3}$ Phantom section: Right Section

Test Date: 08-28-2012; Ambient Temp: 23.9°C; Tissue Temp: 23.8°C

Probe: ES3DV3 - SN3287; ConvF(5.42, 5.42, 5.42); Calibrated: 7/9/2012; Sensor-Surface: 4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn649; Calibrated: 2/20/2012
Phantom: SAM v5.0 Left; Type: QD000P40CD; Serial: TP: 1687
Measurement SW: DASY52, Version 52.8 (1);SEMCAD X Version 14.6.5 (6469)

LTE Band 4 (AWS), Right Head, Tilt, High.ch, 20 MHz Bandwidth, QPSK, 1 RB, 99 RB Offset


Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 22.378 V/m; Power Drift = -0.14 dB

Peak SAR (extrapolated) = 0.924 mW/g

SAR(1 g) = 0.545 mW/g; SAR(10 g) = 0.315 mW/g

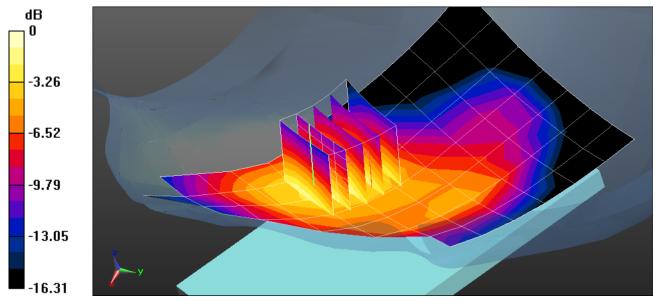
DUT: A3LSGHT899M; Type: Portable Handset; Serial: FJ-224-A

Communication System: LTE Band 4 (AWS); Frequency: 1745 MHz; Duty Cycle: 1:1 Medium: 1750 Head Medium parameters used (interpolated): $f = 1745 \text{ MHz}; \ \sigma = 1.34 \text{ mho/m}; \ \epsilon_r = 40.05; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

Test Date: 08-28-2012; Ambient Temp: 23.9°C; Tissue Temp: 23.8°C

Probe: ES3DV3 - SN3287; ConvF(5.42, 5.42, 5.42); Calibrated: 7/9/2012; Sensor-Surface: 4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn649; Calibrated: 2/20/2012
Phantom: SAM v5.0 Left; Type: QD000P40CD; Serial: TP: 1687
Measurement SW: DASY52, Version 52.8 (1);SEMCAD X Version 14.6.5 (6469)

LTE Band 4 (AWS), Left Head, Cheek, High.ch, QPSK, 20 MHz Bandwidth, 1 RB, 99 RB Offset


Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 27.168 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 1.496 mW/g

SAR(1 g) = 0.892 mW/g; SAR(10 g) = 0.555 mW/g

0 dB = 0.945 mW/g = -0.49 dB mW/g

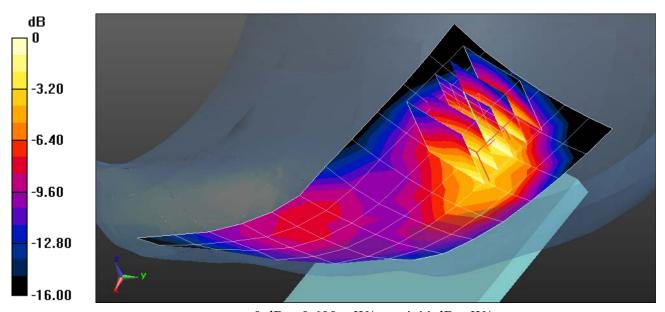
DUT: A3LSGHT899M; Type: Portable Handset; Serial: FJ-224-A

Communication System: LTE Band 4 (AWS); Frequency: 1745 MHz; Duty Cycle: 1:1 Medium: 1750 Head Medium parameters used (interpolated): $f = 1745 \text{ MHz}; \ \sigma = 1.34 \text{ mho/m}; \ \epsilon_r = 40.05; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

Test Date: 08-28-2012; Ambient Temp: 23.9°C; Tissue Temp: 23.8°C

Probe: ES3DV3 - SN3287; ConvF(5.42, 5.42, 5.42); Calibrated: 7/9/2012; Sensor-Surface: 4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn649; Calibrated: 2/20/2012
Phantom: SAM v5.0 Left; Type: QD000P40CD; Serial: TP: 1687
Measurement SW: DASY52, Version 52.8 (1);SEMCAD X Version 14.6.5 (6469)

LTE Band 4 (AWS), Left Head, Tilt, High.ch, QPSK, 20 MHz Bandwidth, 1 RB, 99 RB Offset


Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 22.558 V/m; Power Drift = -0.11 dB

Peak SAR (extrapolated) = 0.908 mW/g

SAR(1 g) = 0.557 mW/g; SAR(10 g) = 0.341 mW/g

DUT: A3LSGHT899M; Type: Portable Handset; Serial: FJ-224-B

Communication System: GSM1900; Frequency: 1850.2 MHz;Duty Cycle: 1:8.3 Medium: 1900 Head Medium parameters used:

 $f = 1850.2 \text{ MHz}; \ \sigma = 1.356 \text{ mho/m}; \ \epsilon_r = 38.239; \ \rho = 1000 \text{ kg/m}^3$

Phantom section: Right Section

Test Date: 08-30-2012; Ambient Temp: 24.8°C; Tissue Temp: 23.4°C

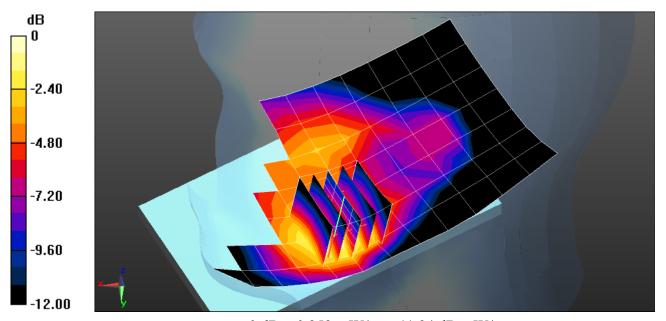
Probe: ES3DV3 - SN3209; ConvF(5.15, 5.15, 5.15); Calibrated: 3/16/2012;

Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn665; Calibrated: 4/19/2012

Phantom: SAM with CRP; Type: SAM; Serial: TP1375

Measurement SW: DASY4, Version 4.7 (80); SEMCAD X Version 14.6.5 (6469)

GSM 1900, Right Head, Cheek, Low.ch


Area Scan (8x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 13.419 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 0.353 mW/g

SAR(1 g) = 0.226 mW/g; SAR(10 g) = 0.135 mW/g

0 dB = 0.253 mW/g = -11.94 dB mW/g

DUT: A3LSGHT899M; Type: Portable Handset; Serial: FJ-224-B

Communication System: GSM1900; Frequency: 1850.2 MHz;Duty Cycle: 1:8.3 Medium: 1900 Head Medium parameters used:

 $f = 1850.2 \text{ MHz}; \ \sigma = 1.356 \text{ mho/m}; \ \epsilon_r = 38.239; \ \rho = 1000 \text{ kg/m}^3$

Phantom section: Right Section

Test Date: 08-30-2012; Ambient Temp: 24.8°C; Tissue Temp: 23.4°C

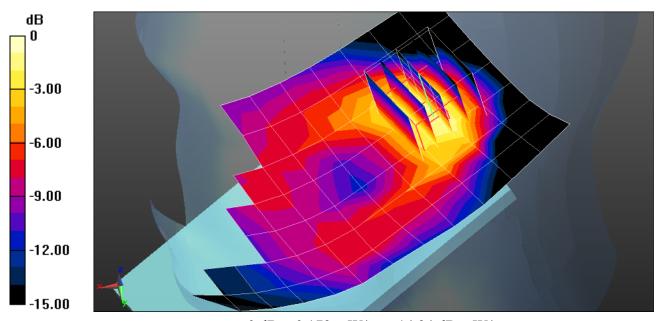
Probe: ES3DV3 - SN3209; ConvF(5.15, 5.15, 5.15); Calibrated: 3/16/2012;

Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn665; Calibrated: 4/19/2012

Phantom: SAM with CRP; Type: SAM; Serial: TP1375

Measurement SW: DASY4, Version 4.7 (80); SEMCAD X Version 14.6.5 (6469)

GSM 1900, Right Head, Tilt, Low.ch


Area Scan (8x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 10.785 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 0.259 mW/g

SAR(1 g) = 0.155 mW/g; SAR(10 g) = 0.088 mW/g

0 dB = 0.179 mW/g = -14.94 dB mW/g

DUT: A3LSGHT899M; Type: Portable Handset; Serial: FJ-224-B

Communication System: GSM1900; Frequency: 1850.2 MHz;Duty Cycle: 1:8.3 Medium: 1900 Head Medium parameters used:

f = 1850.2 MHz; σ = 1.356 mho/m; ε_r = 38.239; ρ = 1000 kg/m³

Phantom section: Left Section

Test Date: 08-30-2012; Ambient Temp: 24.8°C; Tissue Temp: 23.4°C

Probe: ES3DV3 - SN3209; ConvF(5.15, 5.15, 5.15); Calibrated: 3/16/2012;

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn665; Calibrated: 4/19/2012

Phantom: SAM with CRP; Type: SAM; Serial: TP1375

Measurement SW: DASY4, Version 4.7 (80); SEMCAD X Version 14.6.5 (6469)

Mode: GSM 1900, Left Head, Cheek, Low.ch


Area Scan (8x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 13.945 V/m; Power Drift = 0.17 dB

Peak SAR (extrapolated) = 0.417 mW/g

SAR(1 g) = 0.262 mW/g; SAR(10 g) = 0.161 mW/g

0 dB = 0.295 mW/g = -10.60 dB mW/g

DUT: A3LSGHT899M; Type: Portable Handset; Serial: FJ-224-B

Communication System: GSM1900; Frequency: 1850.2 MHz;Duty Cycle: 1:8.3 Medium: 1900 Head Medium parameters used:

 $f = 1850.2 \text{ MHz}; \ \sigma = 1.356 \text{ mho/m}; \ \epsilon_r = 38.239; \ \rho = 1000 \text{ kg/m}^3$

Phantom section: Left Section

Test Date: 08-30-2012; Ambient Temp: 24.8°C; Tissue Temp: 23.4°C

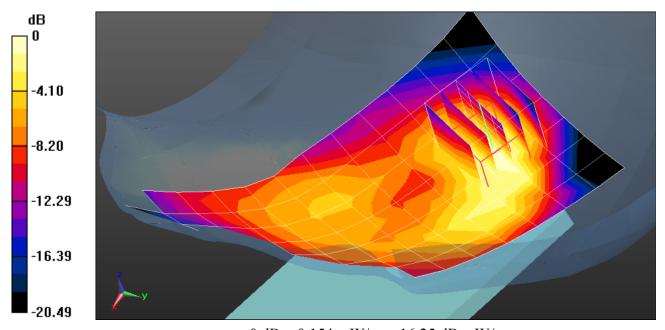
Probe: ES3DV3 - SN3209; ConvF(5.15, 5.15, 5.15); Calibrated: 3/16/2012;

Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn665; Calibrated: 4/19/2012

Phantom: SAM with CRP; Type: SAM; Serial: TP1375

Measurement SW: DASY4, Version 4.7 (80); SEMCAD X Version 14.6.5 (6469)

Mode: GSM 1900, Left Head, Tilt, Low ch


Area Scan (8x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 10.500 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 0.223 mW/g

SAR(1 g) = 0.133 mW/g; SAR(10 g) = 0.077 mW/g

0 dB = 0.154 mW/g = -16.25 dB mW/g

DUT: A3LSGHT899M; Type: Portable Handset; Serial: FJ-224-B

Communication System: WCDMA1900; Frequency: 1852.4 MHz;Duty Cycle: 1:1 Medium: 1900 Head Medium parameters used:

 $f = 1852.4 \text{ MHz}; \ \sigma = 1.359 \text{ mho/m}; \ \epsilon_r = 38.233; \ \rho = 1000 \text{ kg/m}^3$

Phantom section: Right Section

Test Date: 08-30-2012; Ambient Temp: 24.8°C; Tissue Temp: 23.4°C

Probe: ES3DV3 - SN3209; ConvF(5.15, 5.15, 5.15); Calibrated: 3/16/2012;

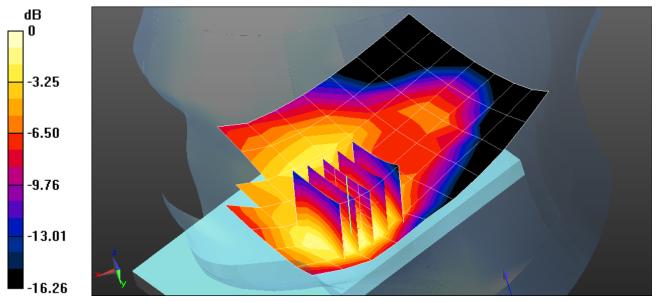
Sensor-Surface: 4mm (Mechanical Surface Detection) Electronics: DAE4 Sn665; Calibrated: 4/19/2012

Phontom: CAM with CDD: Type: CAM: Carial: TD1275

Phantom: SAM with CRP; Type: SAM; Serial: TP1375

Measurement SW: DASY4, Version 4.7 (80); SEMCAD X Version 14.6.5 (6469)

WCDMA 1900, Right Head, Cheek, Low.ch


Area Scan (8x10x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 17.496 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 0.595 mW/g

SAR(1 g) = 0.389 mW/g; SAR(10 g) = 0.247 mW/g

0 dB = 0.438 mW/g = -7.17 dB mW/g

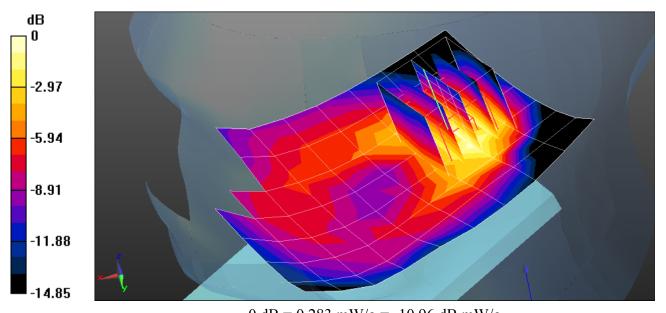
DUT: A3LSGHT899M; Type: Portable Handset; Serial: FJ-224-B

Communication System: WCDMA1900; Frequency: 1852.4 MHz; Duty Cycle: 1:1 Medium: 1900 Head Medium parameters used: $f = 1852.4 \text{ MHz}; \ \sigma = 1.359 \text{ mho/m}; \ \epsilon r = 38.233; \ \rho = 1000 \text{ kg/m3}$ Phantom section: Right Section

Test Date: 08-30-2012; Ambient Temp: 24.8°C; Tissue Temp: 23.4°C

Probe: ES3DV3 - SN3209; ConvF(5.15, 5.15, 5.15); Calibrated: 3/16/2012; Sensor-Surface: 4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn665; Calibrated: 4/19/2012
Phantom: SAM with CRP; Type: SAM; Serial: TP1375
Measurement SW: DASY4, Version 4.7 (80); SEMCAD X Version 14.6.5 (6469)

WCDMA 1900, Right Head, Tilt, Low ch


Area Scan (8x10x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 13.803 V/m; Power Drift = -0.13 dB

Peak SAR (extrapolated) = 0.408 mW/g

SAR(1 g) = 0.253 mW/g; SAR(10 g) = 0.148 mW/g

0 dB = 0.283 mW/g = -10.96 dB mW/g

DUT: A3LSGHT899M; Type: Portable Handset; Serial: FJ-224-B

Communication System: WCDMA1900; Frequency: 1852.4 MHz; Duty Cycle: 1:1 Medium: 1900 Head Medium parameters used: $f = 1852.4 \text{ MHz}; \ \sigma = 1.359 \ \text{mho/m}; \ \epsilon r = 38.233; \ \rho = 1000 \ \text{kg/m3}$ Phantom section: Left Section

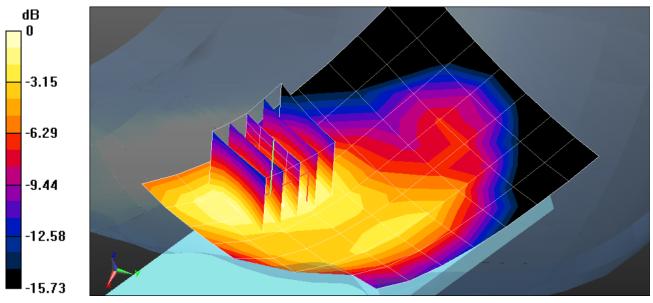
Test Date: 08-30-2012; Ambient Temp: 24.8°C; Tissue Temp: 23.4°C

Probe: ES3DV3 - SN3209; ConvF(5.15, 5.15, 5.15); Calibrated: 3/16/2012; Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn665; Calibrated: 4/19/2012 Phantom: SAM with CRP; Type: SAM; Serial: TP1375

Measurement SW: DASY4, Version 4.7 (80); SEMCAD X Version 14.6.5 (6469)

WCDMA 1900, Left Head, Cheek, Low ch


Area Scan (8x10x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 18.226 V/m; Power Drift = 0.20 dB

Peak SAR (extrapolated) = 0.693 mW/g

SAR(1 g) = 0.466 mW/g; SAR(10 g) = 0.284 mW/g

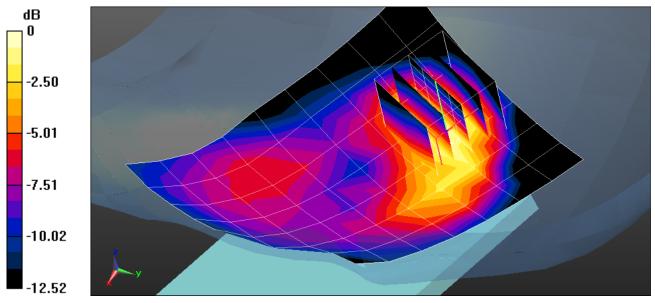
DUT: A3LSGHT899M; Type: Portable Handset; Serial: FJ-224-B

Communication System: WCDMA1900; Frequency: 1852.4 MHz; Duty Cycle: 1:1 Medium: 1900 Head Medium parameters used: $f = 1852.4 \text{ MHz}; \ \sigma = 1.359 \ \text{mho/m}; \ \epsilon r = 38.233; \ \rho = 1000 \ \text{kg/m3}$ Phantom section: Left Section

Test Date: 08-30-2012; Ambient Temp: 24.8°C; Tissue Temp: 23.4°C

Probe: ES3DV3 - SN3209; ConvF(5.15, 5.15, 5.15); Calibrated: 3/16/2012; Sensor-Surface: 4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn665; Calibrated: 4/19/2012
Phantom: SAM with CRP; Type: SAM; Serial: TP1375
Measurement SW: DASY4, Version 4.7 (80); SEMCAD X Version 14.6.5 (6469)

WCDMA 1900, Left Head, Tilt, Low ch


Area Scan (8x10x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 14.487 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 0.477 mW/g

SAR(1 g) = 0.291 mW/g; SAR(10 g) = 0.168 mW/g

0 dB = 0.334 mW/g = -9.53 dB mW/g

DUT: A3LSGHT899M; Type: Portable Handset; Serial: R31C815ETVN

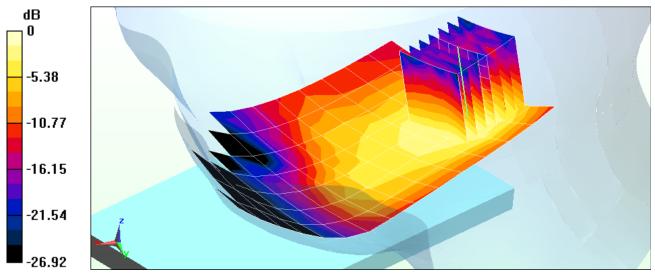
Communication System: IEEE 802.11b; Frequency: 2462 MHz;Duty Cycle: 1:1 Medium: 2450 Head Medium parameters used (interpolated): $f = 2462 \text{ MHz}; \ \sigma = 1.897 \text{ mho/m}; \ \epsilon_r = 38.716; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

Test Date: 09-19-2012; Ambient Temp: 24.0°C; Tissue Temp: 22.6°C

Probe: ES3DV3 - SN3213; ConvF(4.43, 4.43, 4.43); Calibrated: 4/24/2012; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1334; Calibrated: 5/7/2012
Phantom: SAM Front; Type: SAM; Serial: 1715

Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)

IEEE 802.11b, Right Head, Cheek, Ch 11, 1 Mbps


Area Scan (8x17x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.409 V/m; Power Drift = 0.17 dB

Peak SAR (extrapolated) = 0.124 mW/g

SAR(1 g) = 0.060 mW/g; SAR(10 g) = 0.028 mW/g

DUT: A3LSGHT899M; Type: Portable Handset; Serial: R31C815ETVN

Communication System: IEEE 802.11b; Frequency: 2462 MHz;Duty Cycle: 1:1 Medium: 2450 Head Medium parameters used (interpolated): $f = 2462 \text{ MHz}; \ \sigma = 1.897 \text{ mho/m}; \ \epsilon_r = 38.716; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

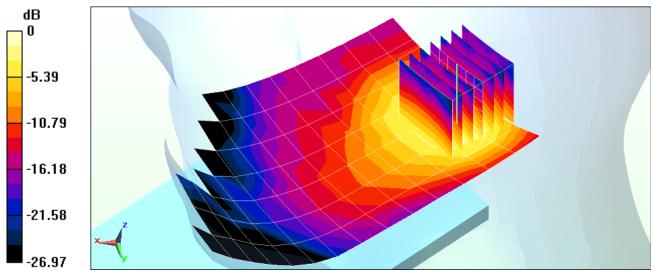
Test Date: 09-19-2012; Ambient Temp: 24.0°C; Tissue Temp: 22.6°C

Probe: ES3DV3 - SN3213; ConvF(4.43, 4.43, 4.43); Calibrated: 4/24/2012; Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn1334; Calibrated: 5/7/2012

Phantom: SAM Front; Type: SAM; Serial: 1715

Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)

IEEE 802.11b, Right Head, Tilt, Ch 11, 1 Mbps


Area Scan (8x17x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.475 V/m; Power Drift = 0.18 dB

Peak SAR (extrapolated) = 0.157 mW/g

SAR(1 g) = 0.076 mW/g; SAR(10 g) = 0.037 mW/g

0 dB = 0.0983 mW/g = -20.15 dB mW/g

DUT: A3LSGHT899M; Type: Portable Handset; Serial: R31C815ETVN

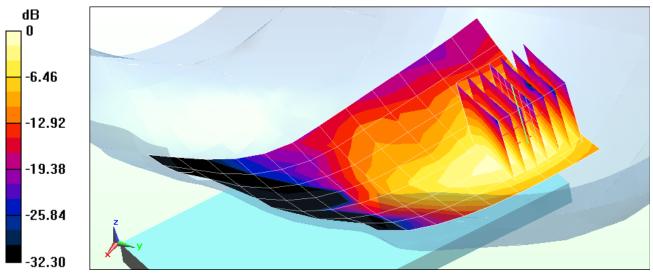
Communication System: IEEE 802.11b; Frequency: 2462 MHz;Duty Cycle: 1:1 Medium: 2450 Head Medium parameters used (interpolated): $f = 2462 \text{ MHz}; \ \sigma = 1.897 \text{ mho/m}; \ \epsilon_r = 38.716; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

Test Date: 09-19-2012; Ambient Temp: 24.0°C; Tissue Temp: 22.6°C

Probe: ES3DV3 - SN3213; ConvF(4.43, 4.43, 4.43); Calibrated: 4/24/2012; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1334; Calibrated: 5/7/2012
Phantom: SAM Front; Type: SAM; Serial: 1715

Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)

IEEE 802.11b, Left Head, Cheek, Ch 11, 1 Mbps


Area Scan (8x13x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.386 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 0.192 mW/g

SAR(1 g) = 0.087 mW/g; SAR(10 g) = 0.042 mW/g

0 dB = 0.115 mW/g = -18.79 dB mW/g

DUT: A3LSGHT899M; Type: Portable Handset; Serial: R31C815ETVN

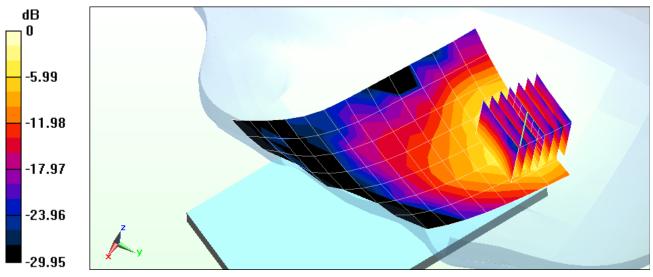
Communication System: IEEE 802.11b; Frequency: 2462 MHz;Duty Cycle: 1:1 Medium: 2450 Head Medium parameters used (interpolated): $f = 2462 \text{ MHz}; \ \sigma = 1.897 \text{ mho/m}; \ \epsilon_r = 38.716; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

Test Date: 09-19-2012; Ambient Temp: 24.0°C; Tissue Temp: 22.6°C

Probe: ES3DV3 - SN3213; ConvF(4.43, 4.43, 4.43); Calibrated: 4/24/2012; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1334; Calibrated: 5/7/2012
Phantom: SAM Front; Type: SAM; Serial: 1715

Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)

IEEE 802.11b, Left Head, Tilt, Ch 11, 1 Mbps


Area Scan (8x13x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.702 V/m; Power Drift = 0.10 dB

Peak SAR (extrapolated) = 0.236 mW/g

SAR(1 g) = 0.102 mW/g; SAR(10 g) = 0.047 mW/g

0 dB = 0.136 mW/g = -17.33 dB mW/g

DUT: A3LSGHT899M; Type: Portable Handset; Serial: R31C815ETVN

Communication System: IEEE 802.11a 5.2-5.8 GHz Band; Frequency: 5540 MHz;Duty Cycle: 1:1 Medium: 5GHz Head Medium parameters used:

f = 5540 MHz; σ = 4.951 mho/m; ε_r = 36.04; ρ = 1000 kg/m³

Phantom section: Right Section

Test Date: 09-14-2012; Ambient Temp: 23.8°C; Tissue Temp: 22.8°C

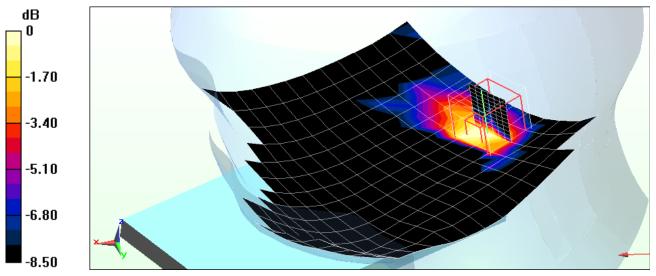
Probe: EX3DV4 - SN3589; ConvF(4.33, 4.33, 4.33); Calibrated: 1/27/2012;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1272; Calibrated: 1/18/2012

Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1114

Measurement SW: DASY4, Version 4.7 (80); SEMCAD X Version 14.6.5 (6469)

IEEE 802.11a 5.5 GHz, Right Head, Cheek, Ch 108, 6 Mbps


Area Scan (14x20x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 3.565 V/m; Power Drift = -0.11 dB

Peak SAR (extrapolated) = 0.220 mW/g

SAR(1 g) = 0.062 mW/g; SAR(10 g) = 0.023 mW/g

0 dB = 0.115 mW/g = -18.79 dB mW/g

DUT: A3LSGHT899M; Type: Portable Handset; Serial: R31C815ETVN

Communication System: IEEE 802.11a 5.2-5.8 GHz Band; Frequency: 5300 MHz;Duty Cycle: 1:1 Medium: 5GHz Head Medium parameters used:

f = 5300 MHz; σ = 4.688 mho/m; $ε_r = 36.37$; ρ = 1000 kg/m³

Phantom section: Right Section

Test Date: 09-14-2012; Ambient Temp: 23.8°C; Tissue Temp: 22.7°C

Probe: EX3DV4 - SN3589; ConvF(4.36, 4.36, 4.36); Calibrated: 1/27/2012;

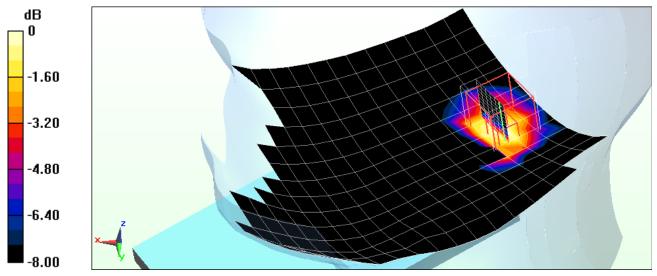
Sensor-Surface: 2mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1272; Calibrated: 1/18/2012

Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1114

Measurement SW: DASY4, Version 4.7 (80); SEMCAD X Version 14.6.5 (6469)

IEEE 802.11a 5.3 GHz, Right Head, Tilt, Ch 60, 6 Mbps


Area Scan (14x20x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 3.543 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 0.274 mW/g

SAR(1 g) = 0.072 mW/g; SAR(10 g) = 0.035 mW/g

0 dB = 0.127 mW/g = -17.92 dB mW/g

DUT: A3LSGHT899M; Type: Portable Handset; Serial: R31C815ETVN

Communication System: IEEE 802.11a 5.2-5.8 GHz Band; Frequency: 5765 MHz;Duty Cycle: 1:1 Medium: 5 GHz Head Medium parameters used:

f = 5765 MHz; σ = 5.215 mho/m; $\epsilon_{_T}$ = 35.68; ρ = 1000 kg/m 3

Phantom section: Left Section

Test Date: 09-14-2012; Ambient Temp: 23.9°C; Tissue Temp: 22.8°C

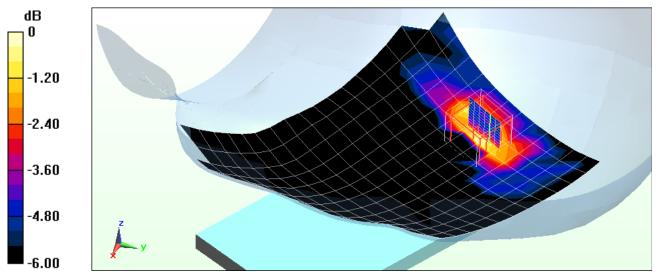
Probe: EX3DV4 - SN3589; ConvF(4.05, 4.05, 4.05); Calibrated: 1/27/2012;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1272; Calibrated: 1/18/2012

Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1114

Measurement SW: DASY4, Version 4.7 (80); SEMCAD X Version 14.6.5 (6469)

IEEE 802.11a, 5.8 GHz Left Head, Cheek, Ch 153, 6 Mbps


Area Scan (14x20x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 3.902 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 0.217 mW/g

SAR(1 g) = 0.091 mW/g; SAR(10 g) = 0.057 mW/g

0 dB = 0.141 mW/g = -17.02 dB mW/g

DUT: A3LSGHT899M; Type: Portable Handset; Serial: R31C815ETVN

Communication System: IEEE 802.11a 5.2-5.8 GHz Band; Frequency: 5765 MHz;Duty Cycle: 1:1 Medium: 5 GHz Head Medium parameters used:

f = 5765 MHz; σ = 5.215 mho/m; $\epsilon_r^{}$ = 35.68; ρ = 1000 kg/m 3

Phantom section: Left Section

Test Date: 09-14-2012; Ambient Temp: 23.9°C; Tissue Temp: 22.8°C

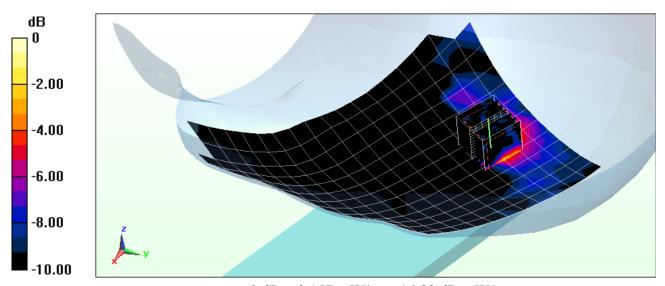
Probe: EX3DV4 - SN3589; ConvF(4.05, 4.05, 4.05); Calibrated: 1/27/2012;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1272; Calibrated: 1/18/2012

Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1114

Measurement SW: DASY4, Version 4.7 (80); SEMCAD X Version 14.6.5 (6469)

IEEE 802.11a, 5.8 GHz Left Head, Tilt, Ch 153, 6 Mbps, 6 Mbps


Area Scan (14x20x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 4.159 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 0.375 mW/g

SAR(1 g) = 0.085 mW/g; SAR(10 g) = 0.027 mW/g

0 dB = 0.157 mW/g = -16.08 dB mW/g

DUT: A3LSGHT899M; Type: Portable Handset; Serial: FJ-224-B

Communication System: GSM850 GPRS; 3 Tx slots; Frequency: 836.6 MHz;Duty Cycle: 1:2.76 Medium: 835 Body Medium parameters used (interpolated):

 $f = 836.6 \text{ MHz}; \ \sigma = 0.954 \text{ mho/m}; \ \varepsilon_r = 53.117; \ \rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section: Space: 1.0 cm

Test Date: 09-10-2012; Ambient Temp: 22.3°C; Tissue Temp: 22.0°C

Probe: ES3DV2 - SN3022; ConvF(6.02, 6.02, 6.02); Calibrated: 8/28/2012;

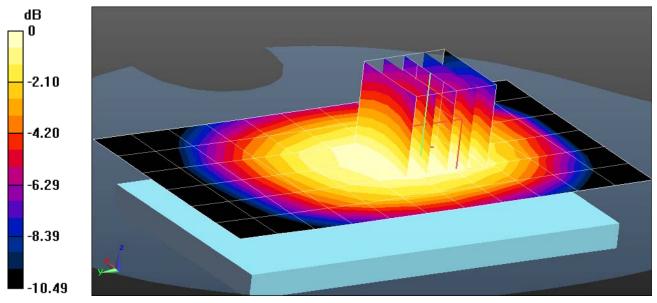
Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1322; Calibrated: 8/24/2012

Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1406

Measurement SW: DASY4, Version 4.7 (80); SEMCAD X Version 14.6.5 (6469)

GPRS 850, Body SAR, Back side, Mid.ch, 3 Tx Slots


Area Scan (7x12x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 24.204 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 0.641 mW/g

SAR(1 g) = 0.519 mW/g; SAR(10 g) = 0.402 mW/g

0 dB = 0.541 mW/g = -5.34 dB mW/g

DUT: A3LSGHT899M; Type: Portable Handset; Serial: FJ-224-B

Communication System: GSM850 GPRS; 3 Tx slots; Frequency: 836.6 MHz;Duty Cycle: 1:2.76 Medium: 835 Body Medium parameters used (interpolated):

f = 836.6 MHz; σ = 0.954 mho/m; ε_r = 53.117; ρ = 1000 kg/m³

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 09-10-2012; Ambient Temp: 22.3°C; Tissue Temp: 22.0°C

Probe: ES3DV2 - SN3022; ConvF(6.02, 6.02, 6.02); Calibrated: 8/28/2012;

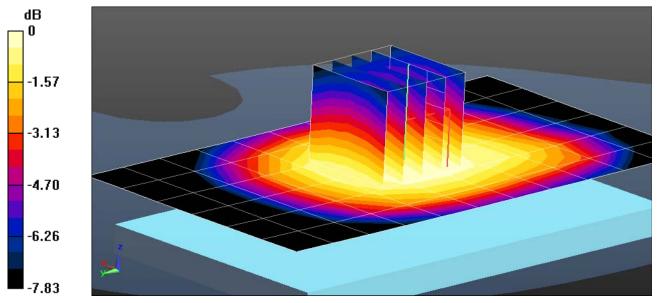
Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1322; Calibrated: 8/24/2012

Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1406

Measurement SW: DASY4, Version 4.7 (80); SEMCAD X Version 14.6.5 (6469)

GPRS 850, Body SAR, Front side, Mid.ch, 3 Tx Slots


Area Scan (7x12x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 18.846 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 0.381 mW/g

SAR(1 g) = 0.314 mW/g; SAR(10 g) = 0.245 mW/g

0 dB = 0.327 mW/g = -9.71 dB mW/g

DUT: A3LSGHT899M; Type: Portable Handset; Serial: FJ-224-B

Communication System: GSM850 GPRS; 3 Tx slots; Frequency: 836.6 MHz; Duty Cycle: 1:2.76

Medium: 835 Body Medium parameters used (interpolated):

f = 836.6 MHz; σ = 0.954 mho/m; $ε_r$ = 53.117; ρ = 1000 kg/m³

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 09-10-2012; Ambient Temp: 22.3°C; Tissue Temp: 22.0°C

Probe: ES3DV2 - SN3022; ConvF(6.02, 6.02, 6.02); Calibrated: 8/28/2012;

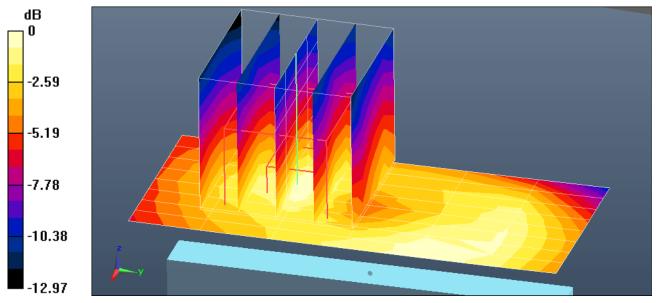
Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1322; Calibrated: 8/24/2012

Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1406

Measurement SW: DASY4, Version 4.7 (80); SEMCAD X Version 14.6.5 (6469)

GPRS 850, Body SAR, Bottom Edge, Mid.ch, 3 Tx Slots


Area Scan (9x7x1): Measurement grid: dx=5mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.374 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 0.062 mW/g

SAR(1 g) = 0.033 mW/g; SAR(10 g) = 0.018 mW/g

0 dB = 0.0377 mW/g = -28.47 dB mW/g

DUT: A3LSGHT899M; Type: Portable Handset; Serial: FJ-224-B

Communication System: GSM850 GPRS; 3 Tx slots; Frequency: 836.6 MHz; Duty Cycle: 1:2.76

Medium: 835 Body Medium parameters used (interpolated):

f = 836.6 MHz; σ = 0.954 mho/m; $ε_r$ = 53.117; ρ = 1000 kg/m³

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 09-10-2012; Ambient Temp: 22.3°C; Tissue Temp: 22.0°C

Probe: ES3DV2 - SN3022; ConvF(6.02, 6.02, 6.02); Calibrated: 8/28/2012;

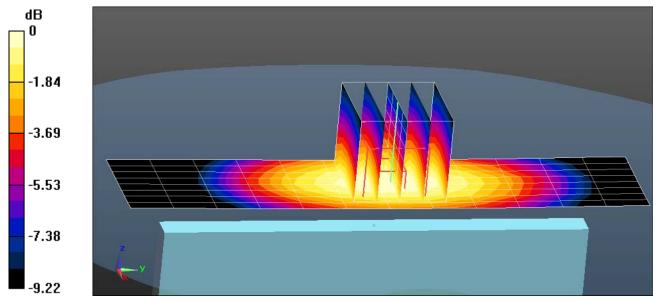
Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1322; Calibrated: 8/24/2012

Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1406

Measurement SW: DASY4, Version 4.7 (80); SEMCAD X Version 14.6.5 (6469)

GPRS 850, Body SAR, Right Edge, Mid.ch, 3 Tx Slots


Area Scan (9x13x1): Measurement grid: dx=5mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 20.758 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 0.525 mW/g

SAR(1 g) = 0.378 mW/g; SAR(10 g) = 0.262 mW/g

0 dB = 0.404 mW/g = -7.87 dB mW/g

DUT: A3LSGHT899M; Type: Portable Handset; Serial: FJ-224-B

Communication System: GSM850 GPRS; 3 Tx slots; Frequency: 836.6 MHz; Duty Cycle: 1:2.76

Medium: 835 Body Medium parameters used (interpolated):

f = 836.6 MHz; σ = 0.954 mho/m; ε_r = 53.117; ρ = 1000 kg/m³

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 09-10-2012; Ambient Temp: 22.3°C; Tissue Temp: 22.0°C

Probe: ES3DV2 - SN3022; ConvF(6.02, 6.02, 6.02); Calibrated: 8/28/2012;

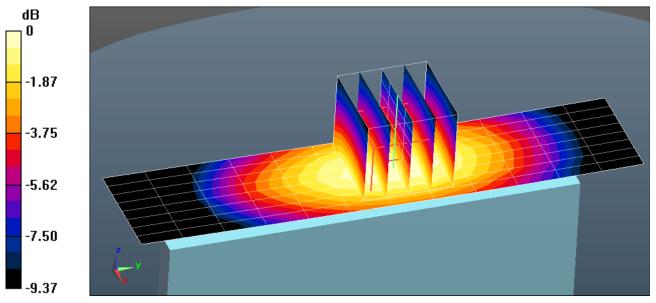
Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1322; Calibrated: 8/24/2012

Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1406

Measurement SW: DASY4, Version 4.7 (80); SEMCAD X Version 14.6.5 (6469)

GPRS 850, Body SAR, Left Edge, Mid.ch, 3 Tx Slots


Area Scan (9x13x1): Measurement grid: dx=5mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 18.340 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 0.409 mW/g

SAR(1 g) = 0.297 mW/g; SAR(10 g) = 0.206 mW/g

0 dB = 0.318 mW/g = -9.95 dB mW/g

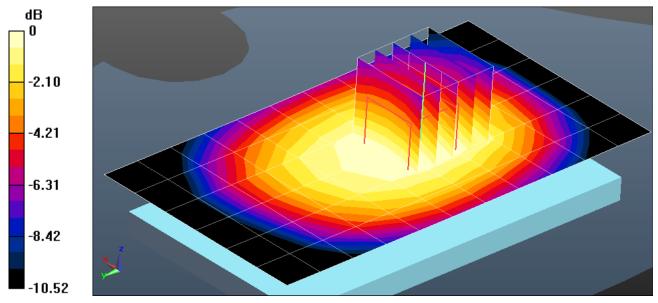
DUT: A3LSGHT899M; Type: Portable Handset; Serial: FJ-224-B

Communication System: WCDMA850; Frequency: 836.6 MHz;Duty Cycle: 1:1 Medium: 835 Body Medium parameters used (interpolated): $f = 836.6 \text{ MHz}; \ \sigma = 0.958 \text{ mho/m}; \ \epsilon_r = 53.978; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08-30-2012; Ambient Temp: 24.6°C; Tissue Temp: 22.8°C

Probe: ES3DV3 - SN3258; ConvF(6.06, 6.06, 6.06); Calibrated: 2/21/2012; Sensor-Surface: 4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1272; Calibrated: 1/18/2012
Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1406
Measurement SW: DASY4, Version 4.7 (80); SEMCAD X Version 14.6.5 (6469)

WCDMA 850, Body SAR, Back side, Mid.ch


Area Scan (7x12x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 16.861 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 0.315 mW/g

SAR(1 g) = 0.256 mW/g; SAR(10 g) = 0.198 mW/g

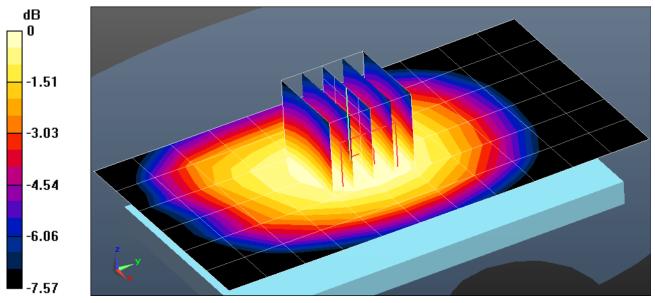
DUT: A3LSGHT899M; Type: Portable Handset; Serial: FJ-224-B

Communication System: WCDMA850; Frequency: 836.6 MHz;Duty Cycle: 1:1 Medium: 835 Body Medium parameters used (interpolated): $f = 836.6 \text{ MHz}; \ \sigma = 0.958 \text{ mho/m}; \ \epsilon_r = 53.978; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08-30-2012; Ambient Temp: 24.6°C; Tissue Temp: 22.8°C

Probe: ES3DV3 - SN3258; ConvF(6.06, 6.06, 6.06); Calibrated: 2/21/2012; Sensor-Surface: 4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1272; Calibrated: 1/18/2012
Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1406
Measurement SW: DASY4, Version 4.7 (80); SEMCAD X Version 14.6.5 (6469)

WCDMA 850, Body SAR, Front side, Mid.ch


Area Scan (7x12x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 13.241 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 0.188 mW/g

SAR(1 g) = 0.156 mW/g; SAR(10 g) = 0.122 mW/g

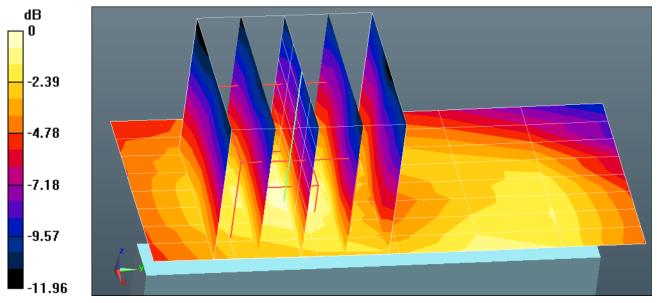
DUT: A3LSGHT899M; Type: Portable Handset; Serial: FJ-224-B

Communication System: WCDMA850; Frequency: 836.6 MHz;Duty Cycle: 1:1 Medium: 835 Body Medium parameters used (interpolated): $f = 836.6 \text{ MHz}; \ \sigma = 0.958 \text{ mho/m}; \ \epsilon_r = 53.978; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08-30-2012; Ambient Temp: 24.6°C; Tissue Temp: 22.8°C

Probe: ES3DV3 - SN3258; ConvF(6.06, 6.06, 6.06); Calibrated: 2/21/2012; Sensor-Surface: 4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1272; Calibrated: 1/18/2012
Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1406
Measurement SW: DASY4, Version 4.7 (80); SEMCAD X Version 14.6.5 (6469)

WCDMA 850, Body SAR, Bottom Edge, Mid.ch


Area Scan (9x7x1): Measurement grid: dx=5mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 4.659 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 0.035 mW/g

SAR(1 g) = 0.018 mW/g; SAR(10 g) = 0.010 mW/g

0 dB = 0.0205 mW/g = -33.76 dB mW/g

DUT: A3LSGHT899M; Type: Portable Handset; Serial: FJ-224-B

Communication System: WCDMA850; Frequency: 836.6 MHz;Duty Cycle: 1:1 Medium: 835 Body Medium parameters used (interpolated): $f = 836.6 \text{ MHz}; \ \sigma = 0.958 \text{ mho/m}; \ \epsilon_r = 53.978; \ \rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section: Space: 1.0 cm

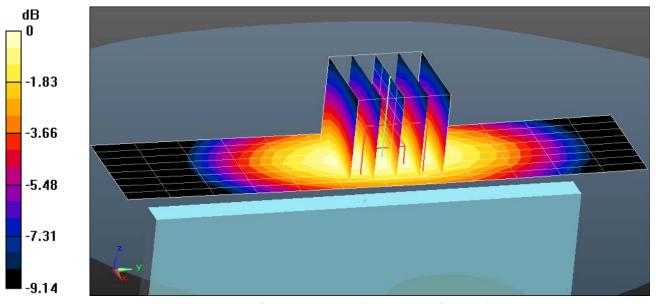
Test Date: 08-30-2012; Ambient Temp: 24.6°C; Tissue Temp: 22.8°C

Probe: ES3DV3 - SN3258; ConvF(6.06, 6.06, 6.06); Calibrated: 2/21/2012; Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1272; Calibrated: 1/18/2012 Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1406

Measurement SW: DASY4, Version 4.7 (80); SEMCAD X Version 14.6.5 (6469)

WCDMA 850, Body SAR, Right Edge, Mid.ch


Area Scan (9x13x1): Measurement grid: dx=5mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 14.555 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 0.252 mW/g

SAR(1 g) = 0.183 mW/g; SAR(10 g) = 0.128 mW/g

0 dB = 0.195 mW/g = -14.20 dB mW/g

DUT: A3LSGHT899M; Type: Portable Handset; Serial: FJ-224-B

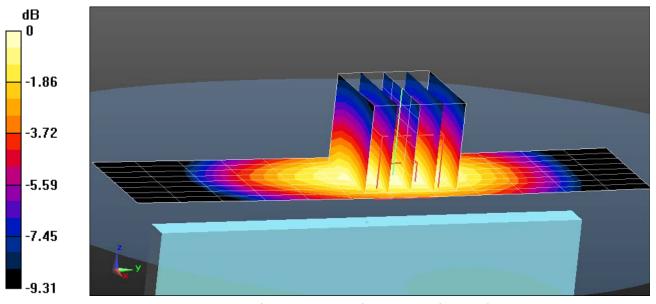
Communication System: WCDMA850; Frequency: 836.6 MHz;Duty Cycle: 1:1 Medium: 835 Body Medium parameters used (interpolated): $f = 836.6 \text{ MHz}; \ \sigma = 0.958 \text{ mho/m}; \ \epsilon_r = 53.978; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section: Space: 1.0 cm

Probe: ES3DV3 - SN3258; ConvF(6.06, 6.06, 6.06); Calibrated: 2/21/2012; Sensor-Surface: 4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1272; Calibrated: 1/18/2012
Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1406

Test Date: 08-30-2012; Ambient Temp: 24.6°C; Tissue Temp: 22.8°C

Measurement SW: DASY4, Version 4.7 (80); SEMCAD X Version 14.6.5 (6469)

WCDMA 850, Body SAR, Left Edge, Mid.ch


Area Scan (9x13x1): Measurement grid: dx=5mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 12.987 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 0.203 mW/g

SAR(1 g) = 0.148 mW/g; SAR(10 g) = 0.103 mW/g

0 dB = 0.158 mW/g = -16.03 dB mW/g

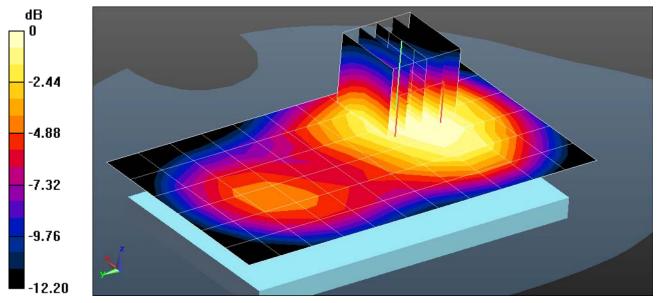
DUT: A3LSGHT899M; Type: Portable Handset; Serial: FJ-224-B

Communication System: WCDMA; Frequency: 1730.4 MHz;Duty Cycle: 1:1 Medium: 1750 Body Medium parameters used (interpolated): $f = 1730.4 \text{ MHz}; \ \sigma = 1.437 \text{ mho/m}; \ \epsilon_r = 52.552; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08-27-2012; Ambient Temp: 24.1°C; Tissue Temp: 23.2°C

Probe: ES3DV3 - SN3213; ConvF(4.68, 4.68, 4.68); Calibrated: 4/24/2012; Sensor-Surface: 4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1334; Calibrated: 5/7/2012
Phantom: SAM Right; Type: QD000P40CD; Serial: 1686
Measurement SW: DASY52, Version 52.8 (1);SEMCAD X Version 14.6.5 (6469)

AWS WCDMA, Body SAR, Back side, Mid.ch


Area Scan (7x12x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 23.571 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 1.181 mW/g

SAR(1 g) = 0.747 mW/g; SAR(10 g) = 0.486 mW/g

0 dB = 0.808 mW/g = -1.85 dB mW/g

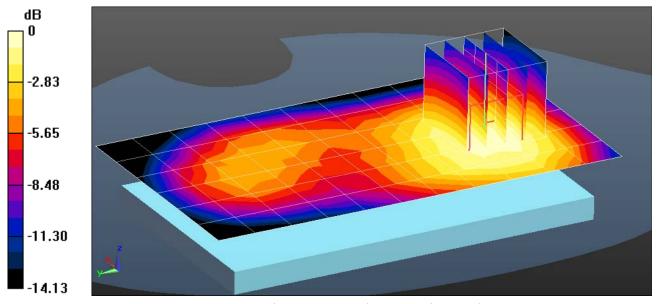
DUT: A3LSGHT899M; Type: Portable Handset; Serial: FJ-224-B

Communication System: WCDMA; Frequency: 1752.5 MHz;Duty Cycle: 1:1 Medium: 1750 Body Medium parameters used (interpolated): $f = 1752.5 \text{ MHz}; \ \sigma = 1.47 \text{ mho/m}; \ \epsilon_r = 52.396; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08-27-2012; Ambient Temp: 24.1°C; Tissue Temp: 23.2°C

Probe: ES3DV3 - SN3213; ConvF(4.68, 4.68, 4.68); Calibrated: 4/24/2012; Sensor-Surface: 4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1334; Calibrated: 5/7/2012
Phantom: SAM Right; Type: QD000P40CD; Serial: 1686
Measurement SW: DASY52, Version 52.8 (1);SEMCAD X Version 14.6.5 (6469)

AWS WCDMA, Body SAR, Front side, High.ch


Area Scan (7x12x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 26.582 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 1.398 mW/g

SAR(1 g) = 0.956 mW/g; SAR(10 g) = 0.629 mW/g

0 dB = 1.02 mW/g = 0.17 dB mW/g

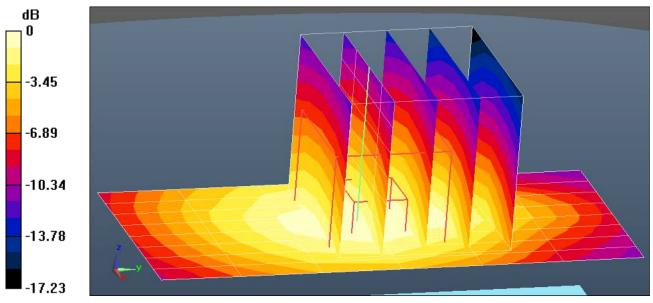
DUT: A3LSGHT899M; Type: Portable Handset; Serial: FJ-224-B

Communication System: WCDMA; Frequency: 1730.4 MHz;Duty Cycle: 1:1 Medium: 1750 Body Medium parameters used (interpolated): $f = 1730.4 \text{ MHz}; \ \sigma = 1.437 \text{ mho/m}; \ \epsilon_r = 52.552; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08-27-2012; Ambient Temp: 24.1°C; Tissue Temp: 23.2°C

Probe: ES3DV3 - SN3213; ConvF(4.68, 4.68, 4.68); Calibrated: 4/24/2012; Sensor-Surface: 4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1334; Calibrated: 5/7/2012
Phantom: SAM Right; Type: QD000P40CD; Serial: 1686
Measurement SW: DASY52, Version 52.8 (1);SEMCAD X Version 14.6.5 (6469)

AWS WCDMA, Body SAR, Bottom Edge, Mid.ch


Area Scan (9x7x1): Measurement grid: dx=5mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 12.746 V/m; Power Drift = 0.10 dB

Peak SAR (extrapolated) = 0.865 mW/g

SAR(1 g) = 0.557 mW/g; SAR(10 g) = 0.346 mW/g

0 dB = 0.597 mW/g = -4.48 dB mW/g

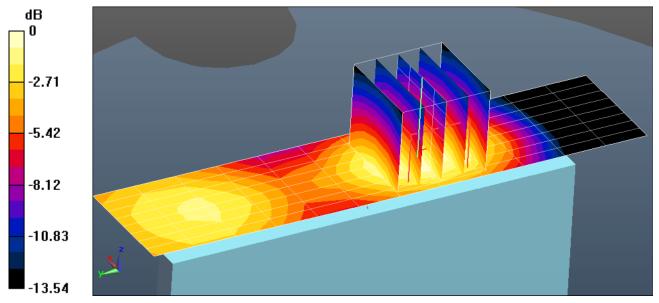
DUT: A3LSGHT899M; Type: Portable Handset; Serial: FJ-224-B

Communication System: WCDMA; Frequency: 1730.4 MHz;Duty Cycle: 1:1 Medium: 1750 Body Medium parameters used (interpolated): $f = 1730.4 \text{ MHz}; \ \sigma = 1.437 \text{ mho/m}; \ \epsilon_r = 52.552; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08-27-2012; Ambient Temp: 24.1°C; Tissue Temp: 23.2°C

Probe: ES3DV3 - SN3213; ConvF(4.68, 4.68, 4.68); Calibrated: 4/24/2012; Sensor-Surface: 4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1334; Calibrated: 5/7/2012
Phantom: SAM Right; Type: QD000P40CD; Serial: 1686
Measurement SW: DASY52, Version 52.8 (1);SEMCAD X Version 14.6.5 (6469)

AWS WCDMA, Body SAR, Right Edge, Mid.ch


Area Scan (9x13x1): Measurement grid: dx=5mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 12.039 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 0.282 mW/g

SAR(1 g) = 0.183 mW/g; SAR(10 g) = 0.113 mW/g

0 dB = 0.200 mW/g = -13.98 dB mW/g

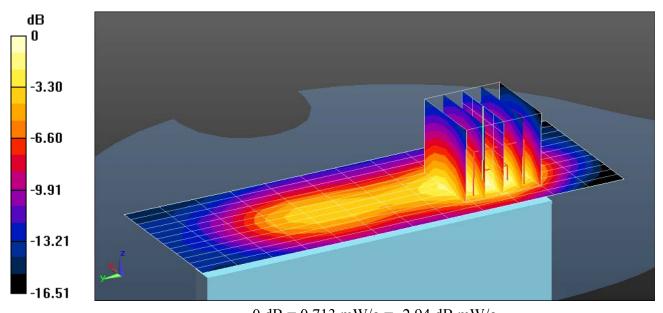
DUT: A3LSGHT899M; Type: Portable Handset; Serial: FJ-224-B

Communication System: WCDMA; Frequency: 1730.4 MHz;Duty Cycle: 1:1 Medium: 1750 Body Medium parameters used (interpolated): $f = 1730.4 \text{ MHz}; \ \sigma = 1.437 \text{ mho/m}; \ \epsilon_r = 52.552; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section: Space: 1.0 cm

Test Date: 08-27-2012; Ambient Temp: 24.1°C; Tissue Temp: 23.2°C

Probe: ES3DV3 - SN3213; ConvF(4.68, 4.68, 4.68); Calibrated: 4/24/2012; Sensor-Surface: 4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1334; Calibrated: 5/7/2012
Phantom: SAM Right; Type: QD000P40CD; Serial: 1686
Measurement SW: DASY52, Version 52.8 (1);SEMCAD X Version 14.6.5 (6469)

AWS WCDMA, Body SAR, Left Edge, Mid.ch


Area Scan (13x13x1): Measurement grid: dx=5mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 22.873 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 1.119 mW/g

SAR(1 g) = 0.655 mW/g; SAR(10 g) = 0.365 mW/g

0 dB = 0.713 mW/g = -2.94 dB mW/g

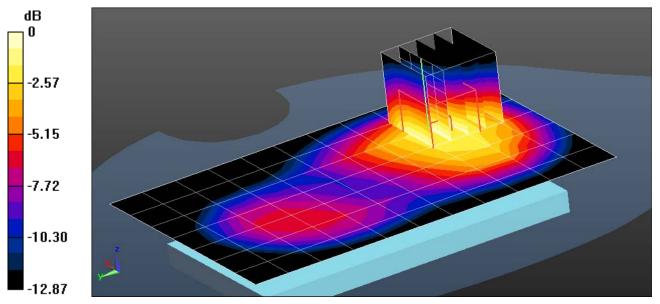
DUT: A3LSGHT899M; Type: Portable Handset; Serial: FJ-224-A

Communication System: LTE Band 4 (AWS); Frequency: 1745 MHz; Duty Cycle: 1:1 Medium: 1750 Body Medium parameters used (interpolated): $f = 1745 \text{ MHz}; \ \sigma = 1.46 \text{ mho/m}; \ \epsilon_r = 52.446; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08-27-2012; Ambient Temp: 24.1°C; Tissue Temp: 23.2°C

Probe: ES3DV3 - SN3213; ConvF(4.68, 4.68, 4.68); Calibrated: 4/24/2012; Sensor-Surface: 4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1334; Calibrated: 5/7/2012
Phantom: SAM Right; Type: QD000P40CD; Serial: 1686
Measurement SW: DASY52, Version 52.8 (1);SEMCAD X Version 14.6.5 (6469)

LTE Band 4 (AWS), Body SAR, Back side, High.ch, 20 MHz Bandwidth, QPSK, 1 RB, 99 RB Offset


Area Scan (8x12x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 27.641 V/m; Power Drift = -0.15 dB

Peak SAR (extrapolated) = 1.820 mW/g

SAR(1 g) = 1.05 mW/g; SAR(10 g) = 0.652 mW/g

0 dB = 1.13 mW/g = 1.06 dB mW/g

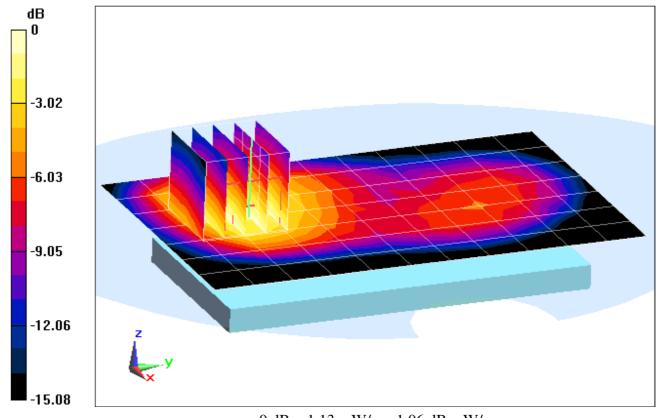
DUT: A3LSGHT899M; Type: Portable Handset; Serial: FJ-224-A

Communication System: LTE Band 4 (AWS); Frequency: 1745 MHz; Duty Cycle: 1:1 Medium: 1750 Body Medium parameters used (interpolated): $f = 1745 \text{ MHz}; \ \sigma = 1.46 \text{ mho/m}; \ \epsilon_r = 52.446; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08-27-2012; Ambient Temp: 24.1°C; Tissue Temp: 23.2°C

Probe: ES3DV3 - SN3213; ConvF(4.68, 4.68, 4.68); Calibrated: 4/24/2012; Sensor-Surface: 4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1334; Calibrated: 5/7/2012
Phantom: SAM Right; Type: QD000P40CD; Serial: 1686
Measurement SW: DASY52, Version 52.8 (1);SEMCAD X Version 14.6.5 (6469)

LTE Band 4 (AWS), Body SAR, Front side, High.ch, 20 MHz Bandwidth, QPSK, 1 RB, 99 RB Offset


Area Scan (8x12x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 28.642 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 1.538 mW/g

SAR(1 g) = 1.07 mW/g; SAR(10 g) = 0.714 mW/g

0 dB = 1.13 mW/g = 1.06 dB mW/g

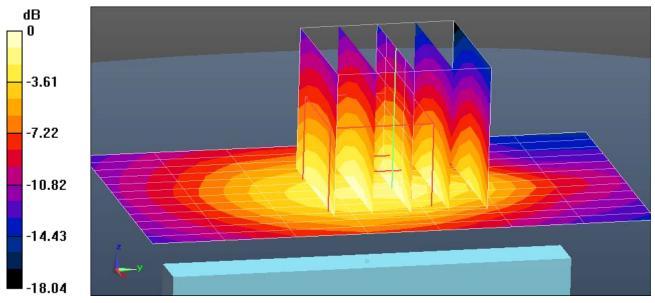
DUT: A3LSGHT899M; Type: Portable Handset; Serial: FJ-224-A

Communication System: LTE Band 4 (AWS); Frequency: 1745 MHz; Duty Cycle: 1:1 Medium: 1750 Body Medium parameters used (interpolated): $f = 1745 \text{ MHz}; \ \sigma = 1.46 \text{ mho/m}; \ \epsilon_r = 52.446; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08-27-2012; Ambient Temp: 24.1°C; Tissue Temp: 23.2°C

Probe: ES3DV3 - SN3213; ConvF(4.68, 4.68, 4.68); Calibrated: 4/24/2012; Sensor-Surface: 4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1334; Calibrated: 5/7/2012
Phantom: SAM Right; Type: QD000P40CD; Serial: 1686
Measurement SW: DASY52, Version 52.8 (1);SEMCAD X Version 14.6.5 (6469)

LTE Band 4 (AWS), Body SAR, Bottom Edge, High.ch, 20 MHz Bandwidth, QPSK, 1 RB, 99 RB Offset


Area Scan (13x8x1): Measurement grid: dx=5mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 22.180 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 1.015 mW/g

SAR(1 g) = 0.663 mW/g; SAR(10 g) = 0.412 mW/g

0 dB = 0.714 mW/g = -2.93 dB mW/g

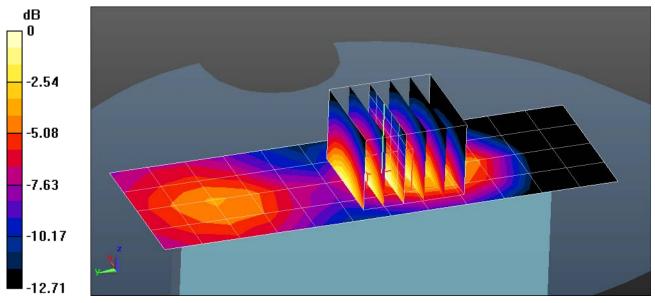
DUT: A3LSGHT899M; Type: Portable Handset; Serial: FJ-224-A

Communication System: LTE Band 4 (AWS); Frequency: 1745 MHz; Duty Cycle: 1:1 Medium: 1750 Body Medium parameters used (interpolated): $f = 1745 \text{ MHz}; \ \sigma = 1.46 \text{ mho/m}; \ \epsilon_r = 52.446; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08-27-2012; Ambient Temp: 24.1°C; Tissue Temp: 23.2°C

Probe: ES3DV3 - SN3213; ConvF(4.68, 4.68, 4.68); Calibrated: 4/24/2012; Sensor-Surface: 4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1334; Calibrated: 5/7/2012
Phantom: SAM Right; Type: QD000P40CD; Serial: 1686
Measurement SW: DASY52, Version 52.8 (1);SEMCAD X Version 14.6.5 (6469)

LTE Band 4 (AWS), Body SAR, Right Edge, High.ch, 20 MHz Bandwidth, QPSK, 1 RB, 99 RB Offset


Area Scan (5x13x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (6x6x7): Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 9.667 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 0.462 mW/g

SAR(1 g) = 0.296 mW/g; SAR(10 g) = 0.181 mW/g

0 dB = 0.306 mW/g = -10.29 dB mW/g

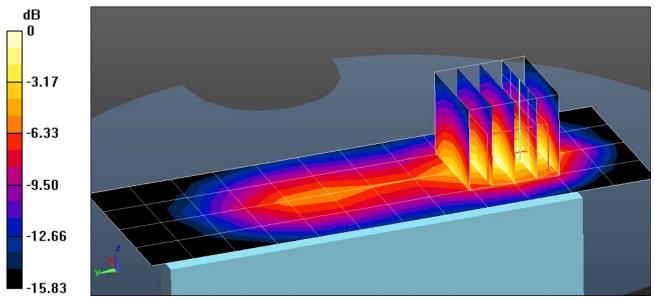
DUT: A3LSGHT899M; Type: Portable Handset; Serial: FJ-224-A

Communication System: LTE Band 4 (AWS); Frequency: 1745 MHz; Duty Cycle: 1:1 Medium: 1750 Body Medium parameters used (interpolated): $f = 1745 \text{ MHz}; \ \sigma = 1.46 \text{ mho/m}; \ \epsilon_r = 52.446; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08-27-2012; Ambient Temp: 24.1°C; Tissue Temp: 23.2°C

Probe: ES3DV3 - SN3213; ConvF(4.68, 4.68, 4.68); Calibrated: 4/24/2012; Sensor-Surface: 4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1334; Calibrated: 5/7/2012
Phantom: SAM Right; Type: QD000P40CD; Serial: 1686
Measurement SW: DASY52, Version 52.8 (1);SEMCAD X Version 14.6.5 (6469)

LTE Band 4 (AWS), Body SAR, Left Edge, High.ch, 20 MHz Bandwidth, QPSK, 1 RB, 99 RB Offset


Area Scan (5x13x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 26.910 V/m; Power Drift = -0.12 dB

Peak SAR (extrapolated) = 1.590 mW/g

SAR(1 g) = 0.937 mW/g; SAR(10 g) = 0.521 mW/g

0 dB = 1.03 mW/g = 0.26 dB mW/g

DUT: A3LSGHT899M; Type: Portable Handset; Serial: FJ-224-B

Communication System: GSM GPRS; 3 Tx slots; Frequency: 1850.2 MHz;Duty Cycle: 1:2.76

Medium: 1900 Body Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.451 \text{ mho/m}$; $\epsilon_r = 55.009$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08-25-2012; Ambient Temp: 24.4°C; Tissue Temp: 22.9°C

Probe: ES3DV3 - SN3288; ConvF(5.02, 5.02, 5.02); Calibrated: 2/7/2012;

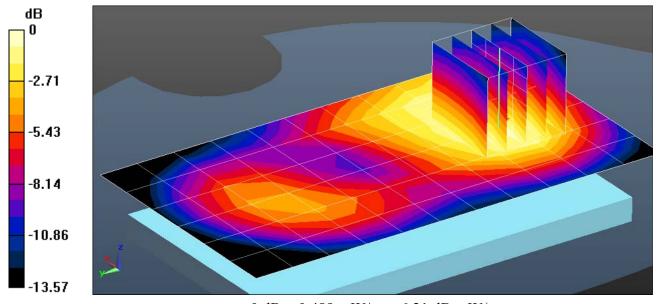
Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1333; Calibrated: 4/12/2012

Phantom: SAM 5.0 front; Type: QD000P40CD; Serial: TP:-1648

Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)

GPRS 1900, Body SAR, Back side, Low ch, 3 Tx Slots


Area Scan (7x12x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 18.253 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 0.659 mW/g

SAR(1 g) = 0.454 mW/g; SAR(10 g) = 0.299 mW/g

0 dB = 0.489 mW/g = -6.21 dB mW/g

DUT: A3LSGHT899M; Type: Portable Handset; Serial: FJ-224-B

Communication System: GSM GPRS; 3 Tx slots; Frequency: 1850.2 MHz; Duty Cycle: 1:2.76 Medium: 1900 Body Medium parameters used (interpolated):

f = 1850.2 MHz; σ = 1.451 mho/m; $\epsilon_{\rm r}$ = 55.009; ρ = 1000 kg/m³

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08-25-2012; Ambient Temp: 24.4°C; Tissue Temp: 22.9°C

Probe: ES3DV3 - SN3288; ConvF(5.02, 5.02, 5.02); Calibrated: 2/7/2012;

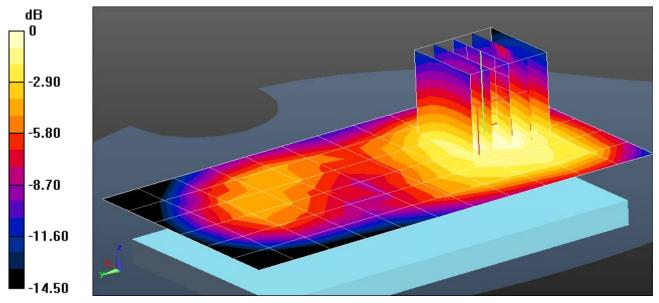
Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1333; Calibrated: 4/12/2012

Phantom: SAM 5.0 front; Type: QD000P40CD; Serial: TP:-1648

Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)

GPRS 1900, Body SAR, Front side, Low ch, 3 Tx Slots


Area Scan (7x12x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 19.222 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 0.746 mW/g

SAR(1 g) = 0.497 mW/g; SAR(10 g) = 0.324 mW/g

0 dB = 0.533 mW/g = -5.47 dB mW/g

DUT: A3LSGHT899M; Type: Portable Handset; Serial: FJ-224-B

Communication System: GSM GPRS; 3 Tx slots; Frequency: 1850.2 MHz;Duty Cycle: 1:2.76

Medium: 1900 Body Medium parameters used (interpolated): f = 1850.2 MHz; σ = 1.451 mho/m; ϵ_r = 55.009; ρ = 1000 kg/m³

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08-25-2012; Ambient Temp: 24.4°C; Tissue Temp: 22.9°C

Probe: ES3DV3 - SN3288; ConvF(5.02, 5.02, 5.02); Calibrated: 2/7/2012;

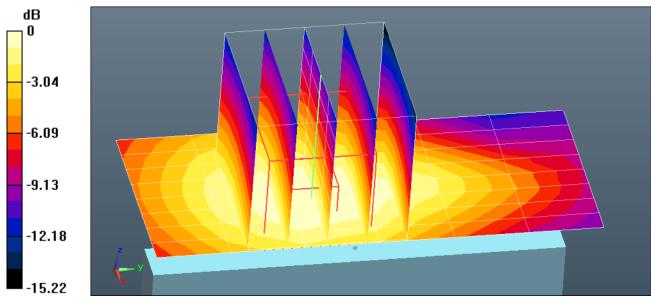
Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1333; Calibrated: 4/12/2012

Phantom: SAM 5.0 front; Type: QD000P40CD; Serial: TP:-1648

Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)

GPRS 1900, Body SAR, Bottom Edge, Low ch, 3 Tx Slots


Area Scan (9x7x1): Measurement grid: dx=5mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 15.780 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 0.478 mW/g

SAR(1 g) = 0.323 mW/g; SAR(10 g) = 0.206 mW/g

0 dB = 0.348 mW/g = -9.17 dB mW/g

DUT: A3LSGHT899M; Type: Portable Handset; Serial: FJ-224-B

Communication System: GSM GPRS; 3 Tx slots; Frequency: 1850.2 MHz; Duty Cycle: 1:2.76

Medium: 1900 Body Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.451 \text{ mho/m}$; $\epsilon_r = 55.009$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08-25-2012; Ambient Temp: 24.4°C; Tissue Temp: 22.9°C

Probe: ES3DV3 - SN3288; ConvF(5.02, 5.02, 5.02); Calibrated: 2/7/2012;

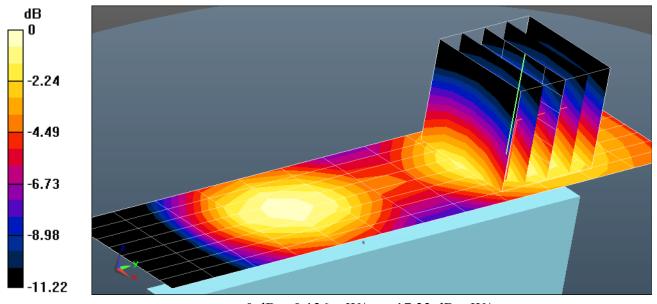
Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1333; Calibrated: 4/12/2012

Phantom: SAM 5.0 front; Type: QD000P40CD; Serial: TP:-1648

Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)

GPRS 1900, Body SAR, Right Edge, Low ch, 3 Tx Slots


Area Scan (9x13x1): Measurement grid: dx=5mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 9.939 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 0.189 mW/g

SAR(1 g) = 0.126 mW/g; SAR(10 g) = 0.079 mW/g

0 dB = 0.136 mW/g = -17.33 dB mW/g

DUT: A3LSGHT899M; Type: Portable Handset; Serial: FJ-224-B

Communication System: GSM GPRS; 3 Tx slots; Frequency: 1850.2 MHz;Duty Cycle: 1:2.76

Medium: 1900 Body Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.451 \text{ mho/m}$; $\epsilon_r = 55.009$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08-25-2012; Ambient Temp: 24.4°C; Tissue Temp: 22.9°C

Probe: ES3DV3 - SN3288; ConvF(5.02, 5.02, 5.02); Calibrated: 2/7/2012;

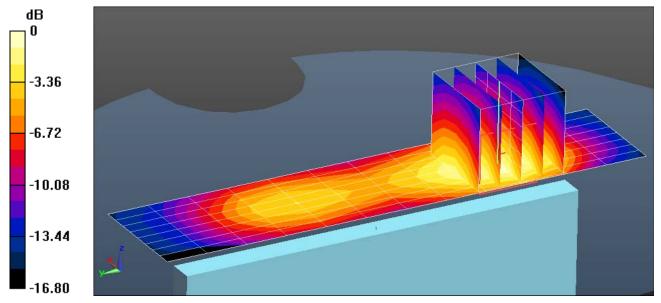
Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1333; Calibrated: 4/12/2012

Phantom: SAM 5.0 front; Type: QD000P40CD; Serial: TP:-1648

Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)

GPRS 1900, Body SAR, Left Edge, Low ch, 3 Tx Slots


Area Scan (9x13x1): Measurement grid: dx=5mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 18.233 V/m; Power Drift = -0.17 dB

Peak SAR (extrapolated) = 0.663 mW/g

SAR(1 g) = 0.408 mW/g; SAR(10 g) = 0.236 mW/g

0 dB = 0.451 mW/g = -6.92 dB mW/g

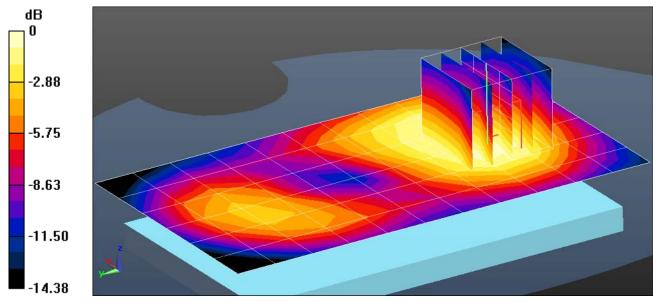
DUT: A3LSGHT899M; Type: Portable Handset; Serial: FJ-224-B

Communication System: WCDMA; Frequency: 1852.4 MHz;Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used (interpolated): $f = 1852.4 \text{ MHz}; \ \sigma = 1.481 \text{ mho/m}; \ \epsilon_r = 53.974; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08-31-2012; Ambient Temp: 23.6°C; Tissue Temp: 21.7°C

Probe: ES3DV3 - SN3288; ConvF(5.02, 5.02, 5.02); Calibrated: 2/7/2012; Sensor-Surface: 4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1333; Calibrated: 4/12/2012
Phantom: SAM 5.0 front; Type: QD000P40CD; Serial: TP:-1648
Measurement SW: DASY52, Version 52.8 (1);SEMCAD X Version 14.6.5 (6469)

WCDMA 1900, Body SAR, Back side, Low.ch


Area Scan (7x12x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 19.440 V/m; Power Drift = -0.13 dB

Peak SAR (extrapolated) = 0.774 mW/g

SAR(1 g) = 0.519 mW/g; SAR(10 g) = 0.339 mW/g

0 dB = 0.553 mW/g = -5.15 dB mW/g

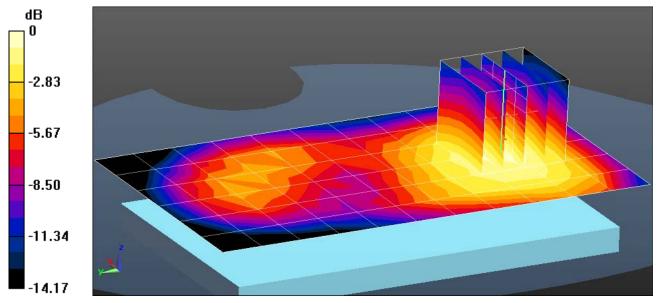
DUT: A3LSGHT899M; Type: Portable Handset; Serial: FJ-224-B

Communication System: WCDMA; Frequency: 1852.4 MHz; Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used (interpolated): $f = 1852.4 \text{ MHz}; \ \sigma = 1.481 \text{ mho/m}; \ \epsilon_r = 53.974; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08-31-2012; Ambient Temp: 23.6°C; Tissue Temp: 21.7°C

Probe: ES3DV3 - SN3288; ConvF(5.02, 5.02, 5.02); Calibrated: 2/7/2012; Sensor-Surface: 4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1333; Calibrated: 4/12/2012
Phantom: SAM 5.0 front; Type: QD000P40CD; Serial: TP:-1648
Measurement SW: DASY52, Version 52.8 (1);SEMCAD X Version 14.6.5 (6469)

WCDMA 1900, Body SAR, Front side, Low ch


Area Scan (7x12x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 24.306 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 1.159 mW/g

SAR(1 g) = 0.778 mW/g; SAR(10 g) = 0.498 mW/g

0 dB = 0.840 mW/g = -1.51 dB mW/g

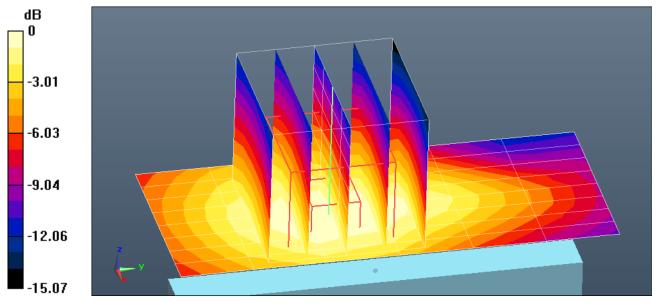
DUT: A3LSGHT899M; Type: Portable Handset; Serial: FJ-224-B

Communication System: WCDMA; Frequency: 1852.4 MHz;Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used (interpolated): $f = 1852.4 \text{ MHz}; \ \sigma = 1.481 \text{ mho/m}; \ \epsilon_r = 53.974; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08-31-2012; Ambient Temp: 23.6°C; Tissue Temp: 21.7°C

Probe: ES3DV3 - SN3288; ConvF(5.02, 5.02, 5.02); Calibrated: 2/7/2012; Sensor-Surface: 4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1333; Calibrated: 4/12/2012
Phantom: SAM 5.0 front; Type: QD000P40CD; Serial: TP:-1648
Measurement SW: DASY52, Version 52.8 (1);SEMCAD X Version 14.6.5 (6469)

WCDMA 1900, Body SAR, Bottom Edge, Low ch


Area Scan (9x7x1): Measurement grid: dx=5mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 18.654 V/m; Power Drift = -0.14 dB

Peak SAR (extrapolated) = 0.665 mW/g

SAR(1 g) = 0.441 mW/g; SAR(10 g) = 0.279 mW/g

0 dB = 0.478 mW/g = -6.41 dB mW/g

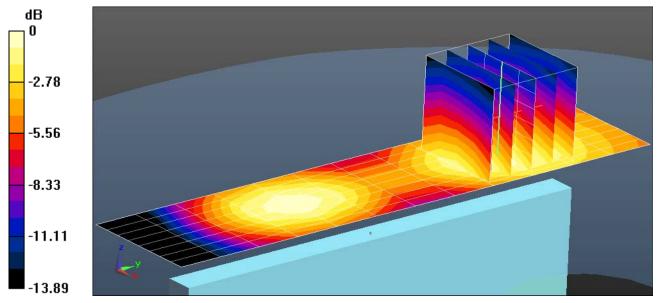
DUT: A3LSGHT899M; Type: Portable Handset; Serial: FJ-224-B

Communication System: WCDMA; Frequency: 1852.4 MHz;Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used (interpolated): $f = 1852.4 \text{ MHz}; \ \sigma = 1.481 \text{ mho/m}; \ \epsilon_r = 53.974; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08-31-2012; Ambient Temp: 23.6°C; Tissue Temp: 21.7°C

Probe: ES3DV3 - SN3288; ConvF(5.02, 5.02, 5.02); Calibrated: 2/7/2012; Sensor-Surface: 4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1333; Calibrated: 4/12/2012
Phantom: SAM 5.0 front; Type: QD000P40CD; Serial: TP:-1648
Measurement SW: DASY52, Version 52.8 (1);SEMCAD X Version 14.6.5 (6469)

WCDMA 1900, Body SAR, Right Edge, Low ch


Area Scan (9x13x1): Measurement grid: dx=5mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 11.823 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 0.278 mW/g

SAR(1 g) = 0.182 mW/g; SAR(10 g) = 0.114 mW/g

0 dB = 0.198 mW/g = -14.07 dB mW/g

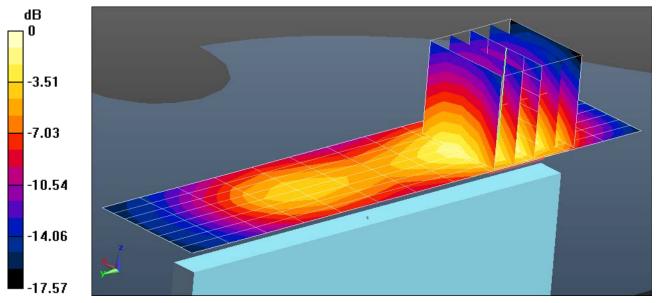
DUT: A3LSGHT899M; Type: Portable Handset; Serial: FJ-224-B

Communication System: WCDMA; Frequency: 1852.4 MHz;Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used (interpolated): $f = 1852.4 \text{ MHz}; \ \sigma = 1.481 \text{ mho/m}; \ \epsilon_r = 53.974; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08-31-2012; Ambient Temp: 23.6°C; Tissue Temp: 21.7°C

Probe: ES3DV3 - SN3288; ConvF(5.02, 5.02, 5.02); Calibrated: 2/7/2012; Sensor-Surface: 4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1333; Calibrated: 4/12/2012
Phantom: SAM 5.0 front; Type: QD000P40CD; Serial: TP:-1648
Measurement SW: DASY52, Version 52.8 (1);SEMCAD X Version 14.6.5 (6469)

WCDMA 1900, Body SAR, Left Edge, Low ch


Area Scan (9x13x1): Measurement grid: dx=5mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 21.495 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 1.076 mW/g

SAR(1 g) = 0.636 mW/g; SAR(10 g) = 0.356 mW/g

0 dB = 0.709 mW/g = -2.99 dB mW/g

DUT: A3LSGHT899M; Type: Portable Handset; Serial: R31C815ETVN

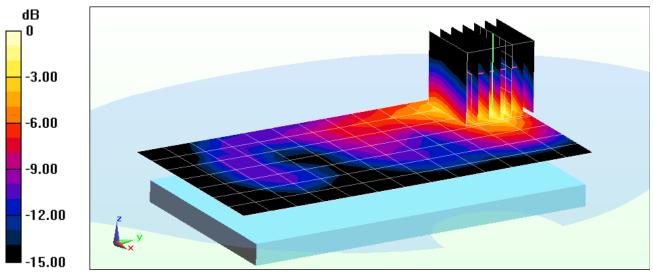
Communication System: IEEE 802.11b; Frequency: 2462 MHz; Duty Cycle: 1:1 Medium: 2450 Body Medium parameters used (interpolated): $f = 2462 \text{ MHz}; \ \sigma = 2.054 \text{ mho/m}; \ \epsilon_r = 50.258; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 09-18-2012; Ambient Temp: 24.4°C; Tissue Temp: 22.5°C

Probe: ES3DV3 - SN3213; ConvF(4.11, 4.11, 4.11); Calibrated: 4/24/2012; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1334; Calibrated: 5/7/2012
Phantom: SAM Front; Type: SAM; Serial: 1715

Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)

IEEE 802.11b, Body SAR, Ch 11, 1 Mbps, Back Side


Area Scan (8x14x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.045 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 0.464 mW/g

SAR(1 g) = 0.212 mW/g; SAR(10 g) = 0.098 mW/g

0 dB = 0.271 mW/g = -11.34 dB mW/g

DUT: A3LSGHT899M; Type: Portable Handset; Serial: R31C815ETVN

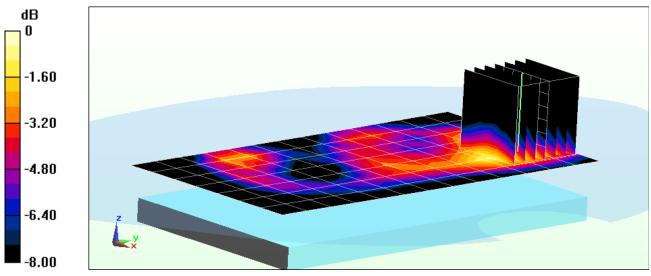
Communication System: IEEE 802.11b; Frequency: 2462 MHz; Duty Cycle: 1:1 Medium: 2450 Body Medium parameters used (interpolated): $f = 2462 \text{ MHz}; \ \sigma = 2.054 \text{ mho/m}; \ \epsilon_r = 50.258; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 09-18-2012; Ambient Temp: 24.4°C; Tissue Temp: 22.5°C

Probe: ES3DV3 - SN3213; ConvF(4.11, 4.11, 4.11); Calibrated: 4/24/2012; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1334; Calibrated: 5/7/2012
Phantom: SAM Front; Type: SAM; Serial: 1715

Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)

IEEE 802.11b, Body SAR, Ch 11, 1 Mbps, Front Side


Area Scan (8x14x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.622 V/m; Power Drift = -0.15 dB

Peak SAR (extrapolated) = 0.051 mW/g

SAR(1 g) = 0.026 mW/g; SAR(10 g) = 0.014 mW/g

0 dB = 0.0320 mW/g = -29.90 dB mW/g

DUT: A3LSGHT899M; Type: Portable Handset; Serial: R31C815ETVN

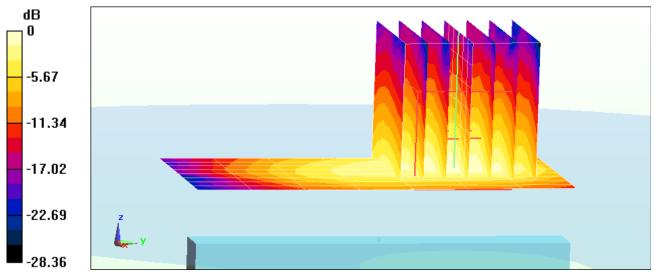
Communication System: IEEE 802.11b; Frequency: 2462 MHz;Duty Cycle: 1:1 Medium: 2450 Body Medium parameters used (interpolated): $f = 2462 \text{ MHz}; \ \sigma = 2.054 \text{ mho/m}; \ \epsilon_r = 50.258; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0cm

Test Date: 09-18-2012; Ambient Temp: 24.4°C; Tissue Temp: 22.5°C

Probe: ES3DV3 - SN3213; ConvF(4.11, 4.11, 4.11); Calibrated: 4/24/2012; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1334; Calibrated: 5/7/2012
Phantom: SAM Front; Type: SAM; Serial: 1715

Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)

IEEE 802.11b, Body SAR, Ch 11, 1 Mbps, Top Edge


Area Scan (9x8x1): Measurement grid: dx=5mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.601 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 0.158 mW/g

SAR(1 g) = 0.076 mW/g; SAR(10 g) = 0.036 mW/g

0 dB = 0.0983 mW/g = -20.15 dB mW/g

DUT: A3LSGHT899M; Type: Portable Handset; Serial: R31C815ETVN

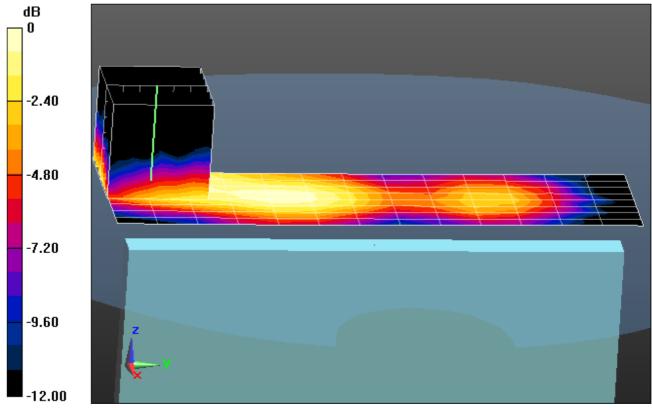
Communication System: IEEE 802.11b; Frequency: 2462 MHz; Duty Cycle: 1:1 Medium: 2450 Body Medium parameters used (interpolated): $f = 2462 \text{ MHz}; \ \sigma = 2.054 \text{ mho/m}; \ \epsilon_r = 50.258; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 09-18-2012; Ambient Temp: 24.4°C; Tissue Temp: 22.5°C

Probe: ES3DV3 - SN3213; ConvF(4.11, 4.11, 4.11); Calibrated: 4/24/2012; Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1334; Calibrated: 5/7/2012
Phantom: SAM Front; Type: SAM; Serial: 1715

Measurement SW: DASY4, Version 4.7 (80); SEMCAD X Version 14.6.5 (6469)

IEEE 802.11b, Body SAR, Ch 11, 1 Mbps, Right Edge


Area Scan (9x14x1): Measurement grid: dx=5mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.441 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 0.049 mW/g

SAR(1 g) = 0.023 mW/g; SAR(10 g) = 0.013 mW/g

0 dB = 0.0295 mW/g = -30.60 dB mW/g

DUT: A3LSGHT899M; Type: Portable Handset; Serial: R31C815ETVN

Communication System: IEEE 802.11a 5.2-5.8 GHz Band; Frequency: 5660 MHz; Duty Cycle: 1:1

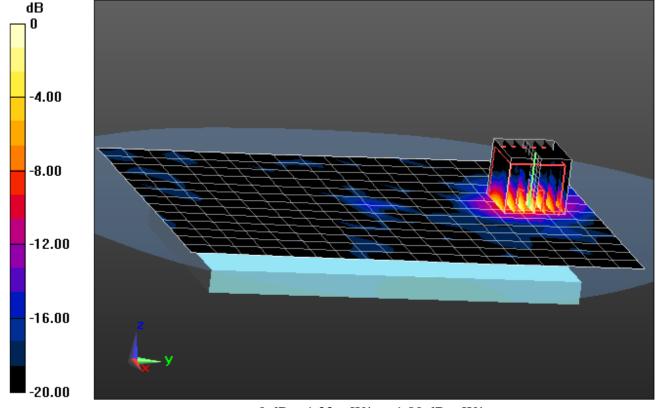
Medium: 5GHz Body Medium parameters used: f = 5660 MHz; $\sigma = 5.948$ mho/m; $\varepsilon_r = 46.62$; $\rho = 1000$ kg/m³

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 09-10-12; Ambient Temp: 24.6°C; Tissue Temp: 23.6°C

Probe: EX3DV4 - SN3589; ConvF(3.25, 3.25, 3.25); Calibrated: 1/27/2012;

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn1272; Calibrated: 1/18/2012 Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1114


Measurement SW: DASY4, Version 4.7 (80); SEMCAD X Version 14.6.5 (6469)

IEEE 802.11a, 5.5 GHz, Body SAR, Ch 132, 6 Mbps, Back Side

Area Scan (14x19x1): Measurement grid: dx=10mm, dy=10mm **Zoom Scan (7x7x12)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 10.873 V/m; Power Drift = -0.16 dB Peak SAR (extrapolated) = 2.553 mW/g

SAR(1 g) = 0.633 mW/g; SAR(10 g) = 0.205 mW/g

0 dB = 1.23 mW/g = 1.80 dB mW/g