

PCTEST

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. 410.290.6652 / Fax 410.290.6654 http://www.pctestlab.com

MEASUREMENT REPORT FCC PART 15.247 / IC RSS-210 Bluetooth (Low Energy)

Applicant Name:

Samsung Electronics Co., Ltd. 416 Maetan 3-Dong, Yeongtong-gu Suwon-si, Gyeonggi-do 443-742, Republic of Korea Date of Testing: 08/30/2012-08/31/2012 Test Site/Location: PCTEST Lab, Columbia, MD, USA Test Report Serial No.: 0Y1208241212.A3L

FCC ID:	A3LSGHT889
IC CERTIFICATION NO.:	649E-SGHT889
APPLICANT:	Samsung Electronics Co., Ltd.
Application Type:	Certification
Model:	SGH-T889, SGH-T889V
EUT Type:	Portable Handset
Max. RF Output Power:	4.036 mW (6.06 dBm) Peak Conducted
Frequency Range:	2402 - 2480 MHz
FCC Classification:	Digital Transmission System (DTS)
FCC Rule Part(s):	Part 15.247
IC Specification(s):	RSS-210 Issue 8
Test Procedure(s):	ANSI C63.4-2003/2009, ANSI C63.10-2009

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in ANSI C63.4-2003/2009, ANSI C63.10-2009. Test results reported herein relate only to the item(s) tested.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

PCTEST certifies that no party to this application has been subject to a denial of Federal benefits that includes FCC benefits pursuant to Section 5301 of the Anti-Drug Abuse Act of 1988, 21 U.S.C. 862.

Randy Ortanez President

FCC ID: A3LSGHT889	CALEST	FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 1 of 20
0Y1208241212.A3L	08/30/2012-08/31/2012	Portable Handset		Page 1 of 30
© 2012 PCTEST Engineering Laboratory, Inc.			REV 1.1BTLE	

TABLE OF CONTENTS

FCC	PART 1	5.247 MEASUREMENT REPORT	3
1.0	INTR	ODUCTION	4
	1.1	SCOPE	4
	1.2	PCTEST TEST LOCATION	4
2.0	PRO	DUCT INFORMATION	5
	2.1	EQUIPMENT DESCRIPTION	5
	2.2	DEVICE CAPABILITIES	5
	2.3	TEST CONFIGURATION	5
	2.4	EMI SUPPRESSION DEVICE(S)/MODIFICATIONS	5
	2.5	LABELING REQUIREMENTS	5
3.0	DES	CRIPTION OF TEST	6
	3.1	EVALUATION PROCEDURE	6
	3.2	CONDUCTED EMISSIONS	6
	3.3	RADIATED EMISSIONS	7
4.0	ANT	ENNA REQUIREMENTS	8
5.0	TES	T EQUIPMENT CALIBRATION DATA	9
6.0	TES	T RESULTS	10
	6.1	SUMMARY	10
	6.2	6DB BANDWIDTH MEASUREMENT – BLUETOOTH (LE)	11
	6.3	OUTPUT POWER MEASUREMENT – BLUETOOTH (LE)	13
	6.4	POWER SPECTRAL DENSITY – BLUETOOTH (LE)	14
	6.5	CONDUCTED EMISSIONS AT THE BAND EDGE	16
	6.6	CONDUCTED SPURIOUS EMISSIONS	
	6.7	RADIATED SPURIOUS EMISSION MEASUREMENTS	22
	6.8	RADIATED RESTRICTED BAND EDGE MEASUREMENTS	26
	6.9	LINE-CONDUCTED TEST DATA	28
7.0	CON	CLUSION	

FCC ID: A3LSGHT889	PCTEST	FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 2 of 30
0Y1208241212.A3L	08/30/2012-08/31/2012	Portable Handset		Page 2 01 30
© 2012 PCTEST Engineering	© 2012 PCTEST Engineering Laboratory, Inc.			

§ 2.1033 General Information

APPLICANT:	Samsung Electronics Co., Ltd.			
APPLICANT ADDRESS:	416 Maetan 3-Dong, Yeongtong-gu			
	Suwon-si, Gyeonggi-do, 443-742 , Re	epublic of Korea		
TEST SITE:	PCTEST ENGINEERING LABORATO	DRY, INC.		
TEST SITE ADDRESS:	7185 Oakland MIIIs Road, Columbia,	MD 21046 USA		
FCC RULE PART(S):	Part 15.247			
IC SPECIFICATION(S):	RSS-210 Issue 8			
FCC ID:	A3LSGHT889			
Test Device Serial No.:	7, 9	duction 🛛 Pre-Production	Engineering	
FCC CLASSIFICATION:	Digital Transmission System (DTS)			
DATE(S) OF TEST:	08/30/2012-08/31/2012			
TEST REPORT S/N:	0Y1208241212.A3L			

Test Facility / Accreditations

Measurements were performed at PCTEST Engineering Lab located in Columbia, MD 21045, U.S.A.

- PCTEST facility is an FCC registered (PCTEST Reg. No. 159966) test facility with the • site description report on file and has met all the requirements specified in Section 2.948 of the FCC Rules and Industry Canada (2451B-1).
- PCTEST Lab is accredited to ISO 17025 by U.S. National Institute of Standards and Technology (NIST) under the National Voluntary Laboratory Accreditation Program (NVLAP Lab code: 100431-0) in EMC, FCC and Telecommunications.
- PCTEST Lab is accredited to ISO 17025-2005 by the American Association for Laboratory Accreditation (A2LA) in Specific Absorption Rate (SAR) testing, Hearing Aid Compatibility (HAC) testing, CTIA Test Plans, and wireless testing for FCC and Industry Canada Rules.
- PCTEST Lab is a recognized U.S. Conformity Assessment Body (CAB) in EMC and R&TTE (n.b. 0982) under the U.S.-EU Mutual Recognition Agreement (MRA).
- PCTEST TCB is a Telecommunication Certification Body (TCB) accredited to ISO/IEC • Guide 65 by the American National Standards Institute (ANSI) in all scopes of FCC Rules and Industry Canada Standards (RSS).
- PCTEST facility is an IC registered (2451B-1) test laboratory with the site description on file at Industry Canada.
- PCTEST is a CTIA Authorized Test Laboratory (CATL) for AMPS, CDMA, and EvDO wireless devices and for Over-the-Air (OTA) Antenna Performance testing for AMPS, CDMA, GSM, GPRS, EGPRS, UMTS (W-CDMA), CDMA 1xEVDO, and CDMA 1xRTT.

FCC ID: A3LSGHT889	CAPCTEST	FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 2 of 20
0Y1208241212.A3L	08/30/2012-08/31/2012	Portable Handset		Page 3 of 30
© 2012 PCTEST Engineering Laboratory, Inc.			REV 1.1BTLE	

to ISOIEC 17025:200 and Am

INTRODUCTION 1.0

1.1 Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Industry Canada Certification and Engineering Bureau.

1.2 PCTEST Test Location

The map below shows the location of the PCTEST LABORATORY, its proximity to the FCC Laboratory, the Columbia vicinity are, the Baltimore-Washington Internt'I (BWI) airport, the city of Baltimore and the Washington, DC area. (See Figure 1-1).

These measurement tests were conducted at the PCTEST Engineering Laboratory, Inc. facility located at 7185 Oakland Mills Road, Columbia, MD 21046. The site coordinates are 39° 10'23" N latitude and 76° 49'50" W longitude. The facility is 0.4 miles North of the FCC laboratory, and the ambient signal and ambient signal strength are approximately equal to those of the FCC laboratory. The detailed description of the measurement facility was found to be in compliance with the requirements of § 2.948 according to ANSI C63.4-2003/2009 on February 15, 2012.

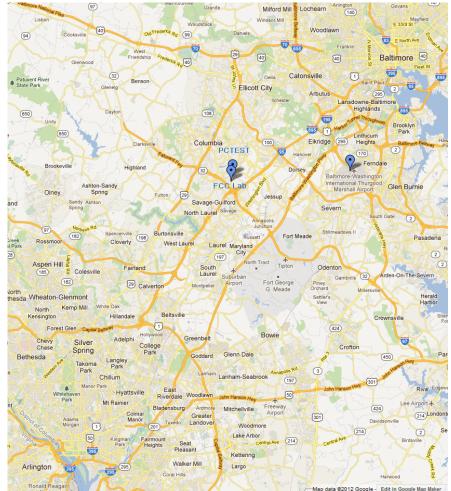


Figure 1-1. Map of the Greater Baltimore and Metropolitan Washington, D.C. area

FCC ID: A3LSGHT889	A PCTEST	FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 4 of 20
0Y1208241212.A3L	08/30/2012-08/31/2012	Portable Handset		Page 4 of 30
© 2012 PCTEST Engineering Laboratory. Inc.				REV 1.1BTLE

2.0 PRODUCT INFORMATION

2.1 Equipment Description

The Equipment Under Test (EUT) is the **Samsung Portable Handset FCC ID: A3LSGHT889**. The data found in this test report was taken with the EUT operating in Bluetooth low energy mode. While in low energy mode, the Bluetooth transmitter hops pseudo-randomly between 40 channels, three of which are "advertising channels". When the transmitter is hopping only between the three advertising channels, the EUT does not fall under the category of a "hopper" as defined in 15.247(a)(iii) which states that a "frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels." As operation on only the advertising channels does not qualify the EUT as a hopper, the EUT is certified as a DTS device in this mode. The data found in this report is representative of the device when it transmits on its advertising channels. Typical Bluetooth operation is covered under the DSS report found with this application.

2.2 Device Capabilities

This device contains the following capabilities:

850/1900 GSM/GPRS/EDGE, 850/1700/1900 WCDMA/HSPA, Band 4 (5, 10, 15, 20 MHz), 17 LTE (5, 10 MHz), 802.11a/b/g/n WLAN (DTS/NII), Bluetooth (1x,EDR, LE), NFC

2.3 Test Configuration

The Samsung Portable Handset FCC ID: A3LSGHT889 was tested per the guidance of ANSI C63.10-2009. See Sections 3.2, 3.3, and 6.1 of this test report for a description of the AC line conducted emissions, radiated emissions, and antenna port conducted emissions test setups, respectively.

2.4 EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and/or no modifications were made during testing.

2.5 Labeling Requirements

Per 15.19; Docket 95-19

The label shall be permanently affixed at a conspicuous location on the device; instruction manual or pamphlet supplied to the user and be readily visible to the purchaser at the time of purchase. However, when the device is so small wherein placement of the label with specified statement is not practical, only the trade name and FCC ID must be displayed on the device per Section 15.19(b)(2).

Please see attachment for FCC ID label and label location.

FCC ID: A3LSGHT889	A PCTEST	FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 5 of 30
0Y1208241212.A3L	08/30/2012-08/31/2012	Portable Handset		Page 5 01 30
© 2012 PCTEST Engineering Laboratory, Inc.			REV 1.1BTLE	

DESCRIPTION OF TEST 3.0

3.1 **Evaluation Procedure**

The measurement procedures described in the American National Standard for Methods of Measurement of Radio-Noise Emission from Low-Voltage Electrical and Electronic Equipment in the Range of 9kHz to 40GHz (ANSI C63.4-2003/2009), the American National Standard for Testing Unlicensed Wireless Devices (ANSI C63.10-2009), and the guidance provided in the "DTS Presentation" from April 2012 TCB Workshop were used in the measurement of the Samsung Portable Handset FCC ID: A3LSGHT889.

Deviation from measurement procedure.....None

3.2 **Conducted Emissions**

The line-conducted facility is located inside a 10'x16'x9' shielded enclosure. The shielded enclosure is manufactured by ETS Lindgren RF Enclosures. The shielding effectiveness of the shielded room is in accordance with MIL-Std-285 or NSA 65-5. A 1m x 1.5m wooden table 80cm high is placed 40cm away from the vertical wall and 80cm away from the sidewall of the shielded room. Two 10kHz-30MHz, 50Ω/50uH Line-Impedance Stabilization Networks (LISNs) are bonded to the shielded room floor. Power to the LISNs is filtered by external high-current high-insertion loss power line filters. The external power line filter is an ETS Lindgren Model LPRX-4X30 (100dB Attenuation, 14kHz-18GHz) and the two EMI/RFI filters are ETS Lindgren Model LRW-2030-S1 (100dB Minimum Insertion Loss, 14kHz – 10GHz). These filters attenuate ambient signal noise from entering the measurement lines. These filters are also bonded to the shielded enclosure.

The EUT is powered from one LISN and the support equipment is powered from the second LISN. If the EUT is a DC-powered device, power will be derived from the source power supply it normally will be powered from and this supply line(s) will be connected to the second LISN. All interconnecting cables more than 1 meter were shortened to a 1 meter length by non-inductive bundling (serpentine fashion) and draped over the back edge of the test table. All cables were at least 40cm above the horizontal reference groundplane. Power cables for support equipment were routed down to the second LISN while ensuring that that cables were not draped over the second LISN.

Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the spectrum analyzer and exploratory measurements were made to determine the frequencies producing the maximum emission from the EUT. The spectrum was scanned from 150kHz to 30MHz with a spectrum analyzer. The detector function was set to peak mode for exploratory measurements while the bandwidth of the analyzer was set to 10kHz. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Each emission was also maximized by varying: power lines, the mode of operation or resolution, clock or data exchange speed, scrolling H pattern to the EUT and/or support equipment whichever determined the worst-case emission. Once the worst case emissions have been identified, the one EUT cable configuration/arrangement and mode of operation that produced these emissions is used for final measurements on the same test site. The analyzer is set to CISPR quasi-peak and average detectors with a 9kHz resolution bandwidth for final measurements.

Line conducted emissions test results are shown in Section 6.9. Automated test software was used to perform the AC line conducted emissions testing. Automated measurement software utilized is Rohde & Schwarz EMC32, Version 8.51.0.

FCC ID: A3LSGHT889	PCTEST	FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		
0Y1208241212.A3L	08/30/2012-08/31/2012	Portable Handset		Page 6 of 30
© 2012 PCTEST Engineering Laboratory, Inc.				REV 1.1BTLE

3.3 Radiated Emissions

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. For measurements above 1GHz absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections. For measurements below 1GHz, the absorbers are removed. An ETS Lindgren Model 2188 raised turntable is used for radiated measurement. It is a continuously rotatable, remote-controlled, metallic turntable and 2 meters (6.56 ft.) in diameter. The turn table is flush with the raised floor of the chamber in order to maintain its function as a ground plane. A 78cm high PVC support structure is placed on top of the turntable. A ³/₄" (~1.9cm) sheet of high density polyethylene is used as the table top and is placed on top of the PVC supports to bring the total height of the table to 80cm.

For all measurements, the spectrum was scanned through all EUT azimuths and from 1 to 4 meter receive antenna height using a broadband antenna from 30MHz up to the upper frequency shown in 15.33(b)(1) depending on the highest frequency generated or used in the device or on which the device operates or tunes. For frequencies above 1GHz, linearly polarized double ridge horn antennas were used. For frequencies below 30MHz, a calibrated loop antenna was used. When exploratory measurements were necessary, they were performed at 1 meter test distance inside the semi-anechoic chamber using broadband antennas, broadband amplifiers, and spectrum analyzers to determine the frequencies and modes producing the maximum emissions. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The test set-up was placed on top of the 0.8 meter high, 1 x 1.5 meter table. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Appropriate precaution was taken to ensure that all emissions from the EUT were maximized and investigated. The system configuration, clock speed, mode of operation or video resolution, if applicable, turntable azimuth, and receive antenna height was noted for each frequency found.

Final measurements were made in the semi-anechoic chamber using calibrated, linearly polarized broadband and horn antennas. The test setup was configured to the setup that produced the worst case emissions. The spectrum analyzer was set to investigate all frequencies required for testing to compare the highest radiated disturbances with respect to the specified limits. The turntable containing the EUT was rotated through 360 degrees and the height of the receive antenna was varied 1 to 4 meters and stopped at the azimuth and height producing the maximum emission. Each emission was maximized by varying: the mode of operation or resolution, clock or data rate, scrolling H pattern to the EUT and/or support equipment, and changing the polarity of the receive antenna, whichever produced the worst-case emissions. To record the final measurements, the analyzer detector function was set to CISPR quasi-peak mode and the bandwidth of the spectrum analyzer was set to 120kHz for frequencies below 1GHz or 1MHz for frequencies above 1GHz. For average measurements above 1GHz, the analyzer was set to peak detector with a reduced VBW setting (RBW = 1/HHz, VBW = 1/THz, where T = pulse width).

FCC ID: A3LSGHT889	<u>«NPCTEST</u>	FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 7 of 20
0Y1208241212.A3L	08/30/2012-08/31/2012	Portable Handset		Page 7 of 30
© 2012 PCTEST Engineering	© 2012 PCTEST Engineering Laboratory, Inc.			REV 1.1BTLE

4.0 ANTENNA REQUIREMENTS

Excerpt from §15.203 of the FCC Rules/Regulations:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

- The antenna(s) of the Portable Handset are **permanently attached**.
- There are no provisions for connection to an external antenna.

Conclusion:

The Samsung Portable Handset FCC ID: A3LSGHT889 unit complies with the requirement of §15.203.

Ch.	Frequency (MHz)		
0	2402		
:			
19	2440		
:	:		
39	2480		

Table 4-1. Frequency / Channel Operations

FCC ID: A3LSGHT889	A PCTEST	FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 8 of 30
0Y1208241212.A3L	08/30/2012-08/31/2012	Portable Handset		Fage o 01 30
© 2012 PCTEST Engineering	© 2012 PCTEST Engineering Laboratory, Inc.			

5.0 TEST EQUIPMENT CALIBRATION DATA

Test Equipment Calibration is traceable to the National Institute of Standards and Technology (NIST).

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
-	RE1	Radiated Emissions Cable Set (UHF/EHF)	7/10/2012	Annual	7/10/2013	N/A
-	RE2	Radiated Emissions Cable Set (VHF/UHF)	2/13/2012	Annual	2/13/2013	N/A
-	BT2	Bluetooth Cable Set	2/17/2012	Annual	2/17/2013	N/A
Agilent	8447D	Broadband Amplifier	5/8/2012	Annual	5/8/2013	2443A01900
Agilent	N9020A	MXA Signal Analyzer	10/10/2011	Annual	10/10/2012	US46470561
ETS Lindgren	3117	1-18 GHz DRG Horn (Medium)	7/22/2011	Biennial	7/22/2013	125518
ETS Lindgren	3160-09	18-26.5 GHz Standard Gain Horn	5/30/2012	Biennial	5/30/2014	135427
Mini-Circuits	VHF-3100+	High Pass Filter	1/15/2012	Annual	1/15/2013	30841
Rohde & Schwarz	TS-PR18	1-18 GHz Pre-Amplifier	6/26/2012	Annual	6/26/2013	100071
Rohde & Schwarz	TS-PR26	18-26.5 GHz Pre-Amplifier	5/30/2012	Annual	5/30/2013	100040
Rohde & Schwarz	ESU26	EMI Test Receiver	12/15/2011	Annual	12/15/2012	100342
Solar Electronics	8012-50-R-24-BNC	LISN	6/23/2011	Biennial	6/23/2013	310233
Sunol	JB5	Bi-Log Antenna (30M - 5GHz)	1/26/2012	Biennial	1/26/2014	A051107

 Table 5-1. Annual Test Equipment Calibration Schedule

Note:

Equipment used for signaling with a calibration date of "N/A" shown in this list was only used for maintaining a link between the piece of equipment and the EUT. This equipment was not used to make direct calibrated measurements.

FCC ID: A3LSGHT889	<u>«NPCTEST</u>	FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 9 of 30
0Y1208241212.A3L	08/30/2012-08/31/2012	Portable Handset		Page 9 01 30
© 2012 PCTEST Engineering	Laboratory, Inc.			REV 1.1BTLE

TEST RESULTS 6.0

6.1 Summary

Company Name:	Samsung Electronics Co., Ltd.
FCC ID:	A3LSGHT889
FCC Classification:	Digital Transmission System (DTS)
Number of Channels:	<u>40</u>

FCC Part Section(s)	RSS Section(s)	Test Description	Test Limit	Test Condition	Test Result	Reference
TRANSMITTE	R MODE (TX)					
15.247(a)(2)	RSS-210 [A8.2]	6dB Bandwidth	> 500kHz		PASS	Section 6.2
15.247(b)(3)	RSS-210 [A8.4]	Transmitter Output Power	< 1 Watt		PASS	Sections 6.3
15.247(e)	RSS-210 [A8.2]	D [A8.2] Transmitter Power Spectral Density < 8dBm / 3kHz Band CONDUCTED		PASS	Section 6.4	
15.247(d)	RSS-210 [A8.5]	Band Edge / Out-of-Band Emissions	< 20dBc		PASS	Sections 6.5, 6.6
15.205 15.209	RSS-210 [A8.5]	General Field Strength Limits (Restricted Bands and Radiated Emission Limits)	Emissions in restricted bands must meet the radiated limits detailed in 15.209 (RSS-210 table 3 limits)	RADIATED	PASS	Sections 6.7, 6.8
15.207	RSS-Gen [7.2.2]	AC Conducted Emissions 150kHz – 30MHz	< FCC 15.207 limits or < RSS-Gen table 2 limits	LINE CONDUCTED	PASS	Section 6.9
RECEIVER M	ODE (RX) / DIGIT/	AL EMISSIONS		1		
15.107	RSS-Gen [7.2.2]	AC Conducted Emissions 150kHz – 30MHz	< FCC 15.107 limits or < RSS-Gen table 2 limits	LINE CONDUCTED	PASS	Part 15B Test Report
15.109	RSS-Gen [7.2.3.2]	General Field Strength Limits (Restricted Bands and Radiated Emissions Limits)	< FCC 15.109 limits or < RSS-210 table 3 limits	RADIATED (30MHz-1GHz) (1-25 GHz)	PASS	Part 15B Test Report

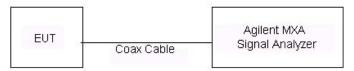
Table 6-1. Summary	of Test Results
--------------------	-----------------

Notes:

- All modes of operation were investigated. The test results shown in the following sections represent the 1) worst case emissions.
- 2) The analyzer plots shown in this section were all taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables and attenuators used as part of the system to connect the EUT to the analyzer at all frequencies of interest.
- All antenna port conducted emissions testing was performed on a test bench with the antenna port of 3) the EUT connected to the spectrum analyzer through calibrated cables and attenuators.

FCC ID: A3LSGHT889	<u>«NPCTEST</u>	FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 10 of 20
0Y1208241212.A3L	08/30/2012-08/31/2012	Portable Handset		Page 10 of 30
© 2012 PCTEST Engineering	Laboratory, Inc.			REV 1.1BTLE

ng i ory



6.2 6dB Bandwidth Measurement – Bluetooth (LE) §15.247(a)(2); RSS-210 [A8.2]

The bandwidth at 6dB down from the highest in-band spectral density is measured with a spectrum analyzer connected to the receive antenna while the EUT is operating in transmission mode at the appropriate frequencies. The minimum permissible 6dB bandwidth is 500 kHz.

Frequency [MHz]	Chan nel No.	Bluetooth Mode	Measured Bandwidth [MHz]	Minimum Bandwidth [MHz]	Pass / Fail
2402	0	LE	0.674	0.500	Pass
2440	19	LE	0.674	0.500	Pass
2480	39	LE	0.674	0.500	Pass

Table 6-2. Conducted Bandwidth Measurements

Figure 6-1. Test Instrument & Measurement Setup

Plot 6-1. 6dB Bandwidth Plot (Bluetooth (LE) - Ch. 0)

FCC ID: A3LSGHT889	CAPCTEST	FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 11 of 20
0Y1208241212.A3L	08/30/2012-08/31/2012	Portable Handset		Page 11 of 30
© 2012 PCTEST Engineering Laboratory, Inc.				

Plot 6-2. 6dB Bandwidth Plot (Bluetooth (LE) - Ch. 19)

Plot 6-3. 6dB Bandwidth Plot (Bluetooth (LE) - Ch. 39)

FCC ID: A3LSGHT889		FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 12 of 20
0Y1208241212.A3L	08/30/2012-08/31/2012	Portable Handset		Page 12 of 30
© 2012 PCTEST Engineering	© 2012 PCTEST Engineering Laboratory, Inc.			

6.3 Output Power Measurement – Bluetooth (LE) §15.247(b)(3); RSS-210 [A8.4]

A transmitter antenna terminal of EUT is connected to the input of a Spectrum Analyzer. Measurement is made using a spectrum analyzer with the RBW = 3MHz, VBW = 50MHz, and the detector set to "peak" under "max hold" condition while the EUT is operating in transmission mode at the appropriate frequencies. *The maximum permissible conducted output power is 1 Watt.*

Frequency	Channel	Bluetooth	Peak Conducte Power	
[MHz]	No.	Mode	[dBm]	[mW]
2402	0	LE	5.85	3.846
2440	19	LE	6.06	4.036
2480	39	LE	5.51	3.556

Table 6-3. Conducted Output Power Measurements (Bluetooth (LE))

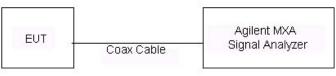


Figure 6-2. Test Instrument & Measurement Setup

FCC ID: A3LSGHT889	A PCTEST	FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 13 of 30
0Y1208241212.A3L	08/30/2012-08/31/2012	Portable Handset		Page 13 01 30
© 2012 PCTEST Engineering	Laboratory, Inc.	•		REV 1.1BTLE

6.4 Power Spectral Density – Bluetooth (LE) §15.247(e); RSS-210 [A8.2]

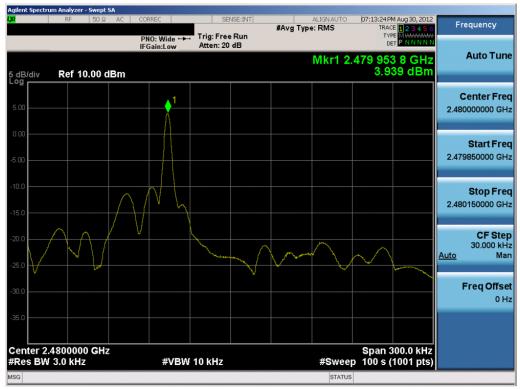
The peak power density is measured with a spectrum analyzer connected to the antenna terminal while the EUT is operating in transmission mode at the appropriate frequencies. *The maximum permissible power spectral density is 8 dBm in any 3 kHz band.*

Frequency [MHz]	Channel No.	Bluetooth Mode	Measured Power Spectral Density [dBm]	Maximum Permissible Power Density [dBm / 3kHz]	Margin [dB]
2402	0	LE	4.337	8.0	-3.66
2440	19	LE	4.515	8.0	-3.49
2480	39	LE	3.939	8.0	-4.06

 Table 6-4. Conducted Power Density Measurements

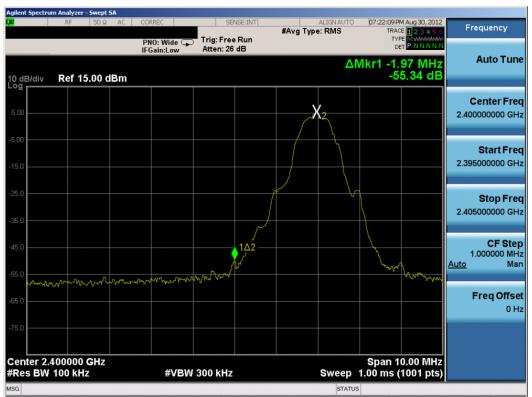
Figure 6-3. Test Instrument & Measurement Setup

Plot 6-4. Power Spectral Density Plot (Bluetooth (LE) - Ch. 0)


FCC ID: A3LSGHT889	<u>«NPCTEST</u>	FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Page 14 of 30	
0Y1208241212.A3L	08/30/2012-08/31/2012	Portable Handset	et		
© 2012 PCTEST Engineering Laboratory. Inc.					

12 PCTEST Engineering Laboratory, Inc.

Plot 6-5. Power Spectral Density Plot (Bluetooth (LE) – Ch. 19)



FCC ID: A3LSGHT889	CAPCTEST	FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)		Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 15 of 20	
0Y1208241212.A3L	08/30/2012-08/31/2012	Portable Handset		Page 15 of 30	
© 2012 PCTEST Engineering Laboratory, Inc.				REV 1.1BTLE	

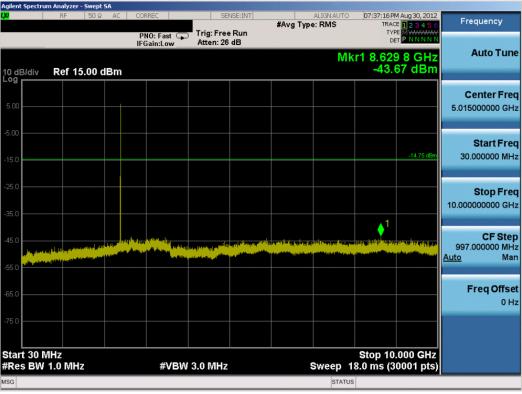
6.5 Conducted Emissions at the Band Edge <u>§15.247(d)</u>; RSS-210 [A8.5]

For the following out of band conducted spurious emissions plots at the band edge, the EUT was set to transmit at maximum power with the largest packet size available. These settings produced the worst-case emissions.

Plot 6-7. Band Edge Plot (Bluetooth (LE) – Ch. 0)

FCC ID: A3LSGHT889	CAPCTEST	FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 16 of 20
0Y1208241212.A3L	08/30/2012-08/31/2012	Portable Handset		Page 16 of 30
© 2012 PCTEST Engineering Laboratory, Inc.				REV 1.1BTLE

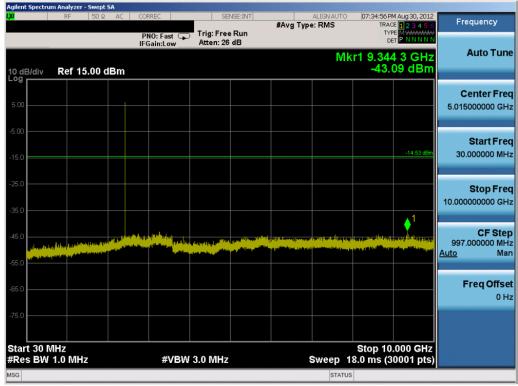
Plot 6-8. Band Edge Plot (Bluetooth (LE) - Ch. 39)


FCC ID: A3LSGHT889		FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)		Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 17 of 30
0Y1208241212.A3L	08/30/2012-08/31/2012	Portable Handset		Page 17 01 30
© 2012 PCTEST Engineering Laboratory, Inc.				REV 1.1BTLE

6.6 Conducted Spurious Emissions §15.247(d); RSS-210 [A8.5]

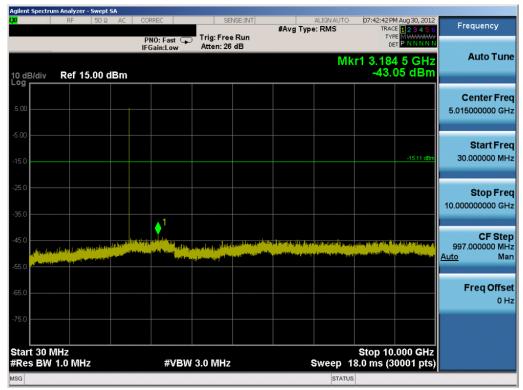
For the following out of band conducted spurious emissions plots, the EUT was set to transmit at maximum power with the largest packet size available. The worst case spurious emissions were found in this configuration.

The display line shown in the following plots denotes the limit at 20dB below the fundamental emission level measured in a 100kHz bandwidth, as determined in Section 6.5 of this report. However, since the traces in the following plots are measured with a 1MHz RBW, the display line may not necessarily appear to be 20dB below the level of the fundamental in a 1MHz bandwidth.


Plot 6-9. Conducted Spurious Plot (Bluetooth (LE) - Ch. 0)

FCC ID: A3LSGHT889	A PCTEST	FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 19 of 20
0Y1208241212.A3L	08/30/2012-08/31/2012	Portable Handset		Page 18 of 30
© 2012 PCTEST Engineering Laboratory, Inc.				REV 1.1BTLE




Plot 6-11. Conducted Spurious Plot (Bluetooth (LE) – Ch. 19)

FCC ID: A3LSGHT889	CAPCTEST	FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)		Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 10 of 20	
0Y1208241212.A3L	08/30/2012-08/31/2012	table Handset		Page 19 of 30	
© 2012 PCTEST Engineering Laboratory, Inc.				REV 1.1BTLE	

Agilent Spectrum An	alyzer - Swept SA					
	RF 50Ω AC	CORREC	SENSE:INT	ALIGN AUTO #Avg Type: RMS	07:35:42 PM Aug 30, 2012 TRACE 1 2 3 4 5 6	Frequency
		PNO: Fast 😱	Trig: Free Run	#Avg Type. RMS		
		IFGain:Low	Atten: 26 dB		DET P N N N N N	
				Mkr	24.733 0 GHz	Auto Tune
10 dB/div R	ef 15.00 dBm				-34.63 dBm	
						Center Freq
5.00						17.50000000 GHz
-5.00						
						Start Freq
-15.0					-14.53 dBm	10.00000000 GHz
-25.0						Stop Freq
					1	25.000000000 GHz
-35.0						20.000000000000
			and the state of the second state of the secon	the state through the state balls for the		
-45.0	and the state of the	And the second se				CF Step 1.50000000 GHz
a fall have a blifter and the						Auto Man
-55.0						<u>Auto</u> man
-65.0						Freq Offset
						0 Hz
-75.0						
Start 10.000					Stop 25.000 GHz	
#Res BW 1.0	WIHZ	#VBW	3.0 MHz	Sweep 38	3.0 ms (30001 pts)	
MSG				STATUS		

Plot 6-13. Conducted Spurious Plot (Bluetooth (LE) – Ch. 39)

FCC ID: A3LSGHT889	A PCTEST	FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)		Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 20 of 20	
0Y1208241212.A3L	08/30/2012-08/31/2012	Portable Handset		Page 20 of 30	
© 2012 PCTEST Engineering Laboratory, Inc.				REV 1.1BTLE	

	m Analyzer - Swept									
L <mark>XI</mark>	RF 50 Ω	AC CO	RREC	SEN	ISE:INT	#Avg Typ	ALIGN AUTO	TRAC	4 Aug 30, 2012 E 1 2 3 4 5 6	Frequency
		PI IF(NO: Fast 😱 Gain:Low	Trig: Free Atten: 26				TYP		
10 dB/div Log	Ref 15.00 (dBm					Mk	r1 24.839 -34.0	0 GHz 02 dBm	Auto Tune
5.00										Center Freq 17.50000000 GHz
-5.00									-15.11 dBm	Start Freq 10.000000000 GHz
-25.0							al bas live	a the second		Stop Freq 25.00000000 GHz
-45.0					railing atom					CF Step 1.50000000 GHz <u>Auto</u> Man
-65.0										Freq Offset 0 Hz
-75.0 Start 10.0			#\/B\M	3.0 MHz			Purcon	Stop 25	.000 GHz	
#Res BW			#VBW	3.0 MHZ			Sweep	38.0 ms (3	0001 pts)	

Plot 6-14. Conducted Spurious Plot (Bluetooth (LE) – Ch. 39)

FCC ID: A3LSGHT889	A PCTEST	FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)		Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 21 of 30
0Y1208241212.A3L	08/30/2012-08/31/2012	Portable Handset		Page 21 01 30
© 2012 PCTEST Engineering Laboratory, Inc.				REV 1.1BTLE

6.7 Radiated Spurious Emission Measurements §15.205, §15.209, §15.247(d); RSS-210 [A8.5]

The EUT was tested from 9kHz and up to the 10th harmonic of the fundamental frequency of the transmitter using CISPR quasi peak detector below 1GHz. Above 1 GHz, average and peak measurements were taken using linearly polarized horn antennas. All out of band emissions appearing in a restricted band as specified in Section 15.205 of the Title 47 CFR must not exceed the limits shown in Table 6-5 per Section 15.209.

All measurements shown in this section were obtained using traditional radiated test methods as defined in C63.10-2009.

Frequency	Field Strength [µV/m]	Measured Distance [Meters]
0.009 – 0.490 MHz	2400/F (kHz)	300
0.490 – 1.705 MHz	24000/F (kHz)	30
1.705 – 30.00 MHz	30	30
30.00 – 88.00 MHz	100	3
88.00 – 216.0 MHz	150	3
216.0 – 960.0 MHz	200	3
Above 960.0 MHz	500	3

Table 6-5. Radiated Limits

Sample Calculation

- ο Field Strength Level [dBµV/m] = Analyzer Level [dBm] + 107 + AFCL [dB/m]
- AFCL [dB/m] = Antenna Factor [dB/m] + Cable Loss [dB]
- Margin [dB] = Field Strength Level $[dB\mu V/m]$ Limit $[dB\mu V/m]$

FCC ID: A3LSGHT889	A PCTEST	FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 22 of 20
0Y1208241212.A3L	08/30/2012-08/31/2012	Portable Handset		Page 22 of 30
© 2012 PCTEST Engineering Laboratory, Inc.				REV 1.1BTLE

Radiated Spurious Emission Measurements (Cont'd) §15.205, §15.209, §15.247(d); RSS-210 [A8.5]

Bluetooth Mode:	LE
Distance of Measurements:	3 Meters
Operating Frequency:	2402MHz
Channel:	0

Frequency [MHz]	Analyzer Level [d Bm]	Detector	Pol [H/V]	AFCL [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
4804.00	-101.72	Avg	Н	39.45	44.72	53.98	-9.25
4804.00	-89.22	Peak	Н	39.45	57.22	73.98	-16.75
12010.00	-135.00	Avg	Н	49.63	21.63	53.98	-32.35
12010.00	-125.00	Peak	Н	49.63	31.63	73.98	-42.35

Table 6-6. Radiated Measurements @ 3 meters

NOTES:

1. All emissions shown lie in the restricted bands specified in §15.205 and RSS-210 section 2.7, Table 1 and are below the limit shown in Table 6-5.

2. For frequencies > 1GHz, average and peak measurements are recorded. Average measurements were recorded using RBW = 1MHz and VBW \geq 1/T = 3kHz to ensure that the spurious emissions were not over-averaged. Peak measurements are recorded using RBW = 1MHz and VBW = 3MHz.

3. The antenna is manipulated through typical positions, polarity and length during the tests. The EUT is manipulated through three orthogonal planes.

4. The EUT is supplied with nominal AC voltage and/or a new/fully-recharged battery.

5. The spectrum is measured from 9kHz to the 10th harmonic and the worst-case emissions are reported. No significant emissions were found beyond the second harmonic for this device.

6. Levels at - 135 dBm represent the analyzer noise floor and signify that no emission was detected.

FCC ID: A3LSGHT889	CAPCTEST	FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 22 of 20
0Y1208241212.A3L	08/30/2012-08/31/2012	Portable Handset		Page 23 of 30
© 2012 PCTEST Engineering	Laboratory, Inc.			REV 1.1BTLE

Radiated Spurious Emission Measurements (Cont'd) §15.205, §15.209, §15.247(d); RSS-210 [A8.5]

Bluetooth Mode:LEDistance of Measurements:3 MetersOperating Frequency:2440MHz

19

Channel:

Frequency [MHz]	Analyzer Level [d Bm]	Detector	Pol [H/V]	AFCL [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
4880.00	-101.72	Avg	Н	39.48	44.76	53.98	-9.22
4880.00	-89.05	Peak	Н	39.48	57.43	73.98	- 16.55
7320.00	-135.00	Avg	Н	42.39	14.39	53.98	-39.59
7320.00	-125.00	Peak	Н	42.39	24.39	73.98	-49.59
12200.00	-135.00	Avg	Н	50.35	22.35	53.98	-31.63
12200.00	-125.00	Peak	Н	50.35	32.35	73.98	-41.63

Table 6-7. Radiated Measurements @ 3 meters

NOTES:

1. All emissions shown lie in the restricted bands specified in §15.205 and RSS-210 section 2.7, Table 1 and are below the limit shown in Table 6-5.

2. For frequencies > 1GHz, average and peak measurements are recorded. Average measurements were recorded using RBW = 1MHz and VBW \geq 1/T = 3kHz to ensure that the spurious emissions were not over-averaged. Peak measurements are recorded using RBW = 1MHz and VBW = 3MHz.

3. The antenna is manipulated through typical positions, polarity and length during the tests. The EUT is manipulated through three orthogonal planes.

4. The EUT is supplied with nominal AC voltage and/or a new/fully-recharged battery.

5. The spectrum is measured from 9kHz to the 10th harmonic and the worst-case emissions are reported. No significant emissions were found beyond the second harmonic for this device.

6. Levels at - 135 dBm represent the analyzer noise floor and signify that no emission was detected.

FCC ID: A3LSGHT889		FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 24 of 20
0Y1208241212.A3L	08/30/2012-08/31/2012	Portable Handset		Page 24 of 30
© 2012 PCTEST Engineering	Laboratory, Inc.	•		REV 1.1BTLE

Radiated Spurious Emission Measurements (Cont'd) §15.205, §15.209, §15.247(d); RSS-210 [A8.5]

Bluetooth Mode:LEDistance of Measurements:3 MetersOperating Frequency:2480MHz

39

Channel:

Frequency [MHz]	Analyzer Level [d Bm]	Detector	Pol [H/V]	AFCL [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
4960.00	-101.66	Avg	Н	39.51	44.85	53.98	-9.13
4960.00	-88.64	Peak	Н	39.51	57.87	73.98	-16.11
7440.00	-135.00	Avg	Н	42.56	14.56	53.98	-39.42
7440.00	-125.00	Peak	Н	42.56	24.56	73.98	-49.42
12400.00	-135.00	Avg	Н	51.07	23.07	53.98	-30.91
12400.00	-125.00	Peak	Н	51.07	33.07	73.98	-40.91

Table 6-8. Radiated Measurements @ 3 meters

NOTES:

1. All emissions shown lie in the restricted bands specified in §15.205 and RSS-210 section 2.7, Table 1 and are below the limit shown in Table 6-5.

2. For frequencies > 1GHz, average and peak measurements are recorded. Average measurements were recorded using RBW = 1MHz and VBW \geq 1/T = 3kHz to ensure that the spurious emissions were not over-averaged. Peak measurements are recorded using RBW = 1MHz and VBW = 3MHz.

3. The antenna is manipulated through typical positions, polarity and length during the tests. The EUT is manipulated through three orthogonal planes.

4. The EUT is supplied with nominal AC voltage and/or a new/fully-recharged battery.

5. The spectrum is measured from 9kHz to the 10th harmonic and the worst-case emissions are reported. No significant emissions were found beyond the second harmonic for this device.

6. Levels at - 135 dBm represent the analyzer noise floor and signify that no emission was detected.

FCC ID: A3LSGHT889	<u>«NPCTEST</u>	FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 25 of 20
0Y1208241212.A3L	08/30/2012-08/31/2012	Portable Handset		Page 25 of 30
© 2012 PCTEST Engineering	Laboratory, Inc.			REV 1.1BTLE

6.8 Radiated Restricted Band Edge Measurements §15.205, §15.209, §15.247(d); RSS-210 [A8.5]

Bluetooth Mode: LE

Distance of Measurements: <u>3 Meters</u>

0

Operating Frequency: 2402MHz

Channel:

Frequency [MHz]	Analyzer Level [d Bm]	Detector	Pol [H/V]	AFCL [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
2374.10	-102.98	Avg	Н	35.85	39.87	53.98	-14.11
2374.10	-89.71	Peak	Н	35.85	53.14	73.98	-20.84
2384.49	-102.77	Avg	Н	35.96	40.19	53.98	-13.79
2384.49	-89.61	Peak	Н	35.96	53.35	73.98	-20.63
2390.00	-102.62	Avg	Н	36.02	40.40	53.98	- 13.58
2390.00	-91.72	Peak	Н	36.02	51.30	73.98	-22.68

Table 6-9. Radiated Restricted Band Edge Measurements (2310 – 2390MHz)

NOTES:

1. All emissions shown lie in the restricted bands specified in §15.205 and RSS-210 section 2.7, Table 1 and are below the limit shown in Table 6-5.

2. For frequencies > 1GHz, average measurements are recorded using RBW = 1MHz and VBW \geq 1/T = 3kHz. Peak measurements are recorded using RBW = 1MHz and VBW = 3MHz.

3. The antenna is manipulated through typical positions, polarity and length during the tests. The EUT is manipulated through three orthogonal planes.

4. The EUT is supplied with nominal AC voltage and/or a new/fully-recharged battery.

5. Levels at - 135 dBm represent the analyzer noise floor and signify that no emission was detected.

FCC ID: A3LSGHT889	A PCTEST	FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 26 of 20
0Y1208241212.A3L	08/30/2012-08/31/2012	Portable Handset		Page 26 of 30
© 2012 PCTEST Engineering	Laboratory, Inc.	·		REV 1.1BTLE

Radiated Restricted Band Edge Measurements (Cont'd) §15.205, §15.209, §15.247(d); RSS-210 [A8.5]

Bluetooth Mode:LEDistance of Measurements:3 MetersOperating Frequency:2480MHz

39

Channel:

Frequency [MHz]	Analyzer Level [dBm]	Detector	Pol [H/V]	AFCL [dB]	Field Strength [dB _µ V/m]	Limit [dB _µ V/m]	Margin [dB]
2483.50	-90.39	Avg	Н	36.97	53.58	53.98	-0.40
2483.50	-83.49	Peak	Н	36.97	60.48	73.98	-13.50
2483.87	-93.96	Avg	Н	36.98	50.02	53.98	-3.96
2483.87	-86.15	Peak	Н	36.98	57.83	73.98	-16.15
2484.11	-96.25	Avg	Н	36.98	47.73	53.98	-6.25
2484.11	-87.69	Peak	Н	36.98	56.29	73.98	-17.69

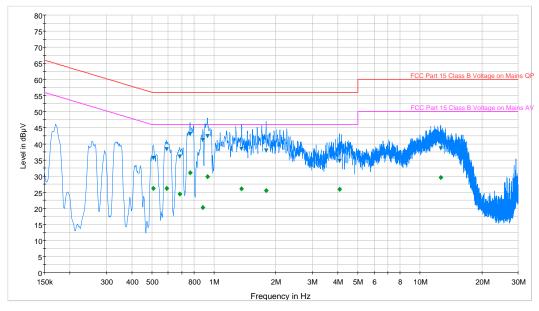
Table 6-10. Radiated Restricted Band Edge Measurements (2483.5 – 2500MHz)

NOTES:

1. All emissions shown lie in the restricted bands specified in §15.205 and RSS-210 section 2.7, Table 1 and are below the limit shown in Table 6-5.

2. For frequencies > 1GHz, average measurements are recorded using RBW = 1MHz and VBW \geq 1/T = 3kHz. Peak measurements are recorded using RBW = 1MHz and VBW = 3MHz.

3. The antenna is manipulated through typical positions, polarity and length during the tests. The EUT is manipulated through three orthogonal planes.


4. The EUT is supplied with nominal AC voltage and/or a new/fully-recharged battery.

5. Levels at - 135 dBm represent the analyzer noise floor and signify that no emission was detected.

FCC ID: A3LSGHT889	A PCTEST	FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 27 of 20
0Y1208241212.A3L	08/30/2012-08/31/2012	Portable Handset		Page 27 of 30
© 2012 PCTEST Engineering	Laboratory, Inc.	·		REV 1.1BTLE

6.9 Line-Conducted Test Data §15.207; RSS-Gen [7.2.2]

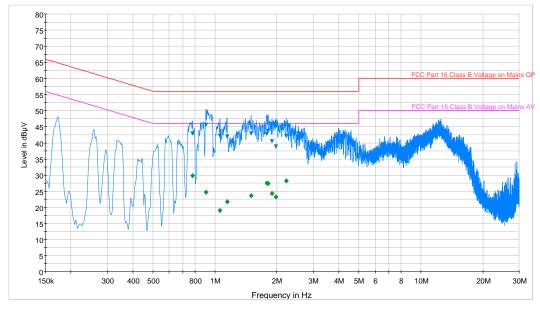
FCC Part 15 Class B Voltage on Mains QP.LimitLine FCC Part 15 Class B Voltage on Mains AV.LimitLine Preview Result 1-PK+

Frequency	Line	Corr.	QuasiPeak	Limit	Margin	Average	Limit	Margin
MHz		dB	dBµV	dBµV	dB	dBµV	dBµV	dB
0.508	L1	0.1	35.60	56.00	20.40	26.10	46.00	19.90
0.589	L1	0.1	38.30	56.00	17.70	26.20	46.00	19.80
0.683	L1	0.1	36.00	56.00	20.00	24.40	46.00	21.60
0.767	L1	0.1	43.10	56.00	12.90	31.10	46.00	14.90
0.884	L1	0.1	41.10	56.00	14.90	20.20	46.00	25.80
0.931	L1	0.1	42.40	56.00	13.60	29.80	46.00	16.20
1.363	L1	0.2	38.50	56.00	17.50	26.00	46.00	20.00
1.795	L1	0.2	38.00	56.00	18.00	25.40	46.00	20.60
4.074	L1	0.2	34.70	56.00	21.30	25.90	46.00	20.10
12.662	L1	0.5	38.60	60.00	21.40	29.50	50.00	20.50

Plot 6-15. Line Conducted Plot with Bluetooth LE (L1)

Table 6-11. Line Conducted Data with Bluetooth LE (L1)

Notes:


1. All modes of operation were investigated and the worst-case emissions are reported.

- 2. The limit for Class B device(s) from 150kHz to 30MHz are specified in Section 15.207 of the Title 47 CFR.
- 3. Corr. (dB) = Cable loss (dB) + LISN insertion factor (dB)
- 4. QP/AV Level (dB μ V) = QP/AV Analyzer/Receiver Level (dB μ V) + Corr. (dB)
- 5. Margin (dB) = QP/AV Limit (dB μ V) QP/AV Level (dB μ V)
- 6. Traces shown in plot are made using a peak detector.
- 7. Deviations to the Specifications: None.

FCC ID: A3LSGHT889	CAPCTEST	FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 28 of 20
0Y1208241212.A3L	08/30/2012-08/31/2012	Portable Handset		Page 28 of 30
© 2012 PCTEST Engineering Laboratory, Inc.				REV 1.1BTLE

Line-Conducted Test Data (Cont'd) §15.207; RSS-Gen [7.2.2]

FCC Part 15 Class B Voltage on Mains QP.LimitLine FCC Part 15 Class B Voltage on Mains AV.LimitLine Preview Result 1-PK+ Final Result 1-QPK Final Result 2-AVG

Frequency	Line	Corr.	QuasiPeak	Limit	Margin	Average	Limit	Margin
MHz		dB	dBµV	dBµV	dB	dBµV	dBµV	dB
0.778	Ν	0.1	42.90	56.00	13.10	29.80	46.00	16.20
0.906	Ν	0.1	45.60	56.00	10.40	24.70	46.00	21.30
1.057	Ν	0.2	42.20	56.00	13.80	19.00	46.00	27.00
1.147	Ν	0.2	42.00	56.00	14.00	21.70	46.00	24.30
1.498	Ν	0.2	42.90	56.00	13.10	23.70	46.00	22.30
1.781	Ν	0.2	42.80	56.00	13.20	27.50	46.00	18.50
1.815	Ν	0.2	43.80	56.00	12.20	27.40	46.00	18.60
1.892	Ν	0.2	40.50	56.00	15.50	24.30	46.00	21.70
1.979	Ν	0.2	38.90	56.00	17.10	23.20	46.00	22.80
2.220	Ν	0.2	42.10	56.00	13.90	28.20	46.00	17.80

Plot 6-16. Line Conducted Plot with Bluetooth LE (N)

Table 6-12. Line Conducted Data with Bluetooth LE (N)

Notes:

1. All Modes of operation were investigated and the worst-case emissions are reported.

- 2. The limit for Class B device(s) from 150kHz to 30MHz are specified in Section 15.207 of the Title 47 CFR.
- 3. Corr. (dB) = Cable loss (dB) + LISN insertion factor (dB)
- 4. $QP/AV \text{ Level } (dB\mu V) = QP/AV \text{ Analyzer/Receiver Level } (dB\mu V) + Corr. (dB)$
- 5. Margin (dB) = QP/AV Limit (dB μ V) QP/AV Level (dB μ V)
- 6. Traces shown in plot are made using a peak detector.
- 7. Deviations to the Specifications: None.

FCC ID: A3LSGHT889	<u>«NPCTEST</u>	FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dama 00 cf 00
0Y1208241212.A3L	08/30/2012-08/31/2012	Portable Handset		Page 29 of 30
© 2012 PCTEST Engineering Laboratory. Inc.				

7.0 CONCLUSION

The data collected relate only the item(s) tested and show that the **Samsung Portable Handset FCC ID: A3LSGHT889** is in compliance with Part 15C of the FCC Rules and RSS-210 of the Industry Canada Rules.

FCC ID: A3LSGHT889	A PCTEST	FCC Pt. 15.247 BLUETOOTH (LE) TEST REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 30 of 30
0Y1208241212.A3L	08/30/2012-08/31/2012	Portable Handset		Page 30 01 30
© 2012 PCTEST Engineering Laboratory, Inc.				