

PCTEST ENGINEERING LABORATORY, INC.

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. 410.290.6652 / Fax 410.290.6654 http://www.pctestlab.com

MEASUREMENT REPORT FCC Part 22 & 27

Applicant Name:

Samsung Electronics Co., Ltd. 416 Maetan 3-Dong, Yeongtong-gu Suwon-si, Gyeonggi-do 443-742, Republic of Korea

Date of Testing: 09/04/2012-09/18/2012 **Test Site/Location:** PCTEST Lab., Columbia, MD, USA **Test Report Serial No.:** 0Y1208241208.A3L

FCC ID :	A3LSGHT889
IC CERT. NO.:	649E-SGHT889
APPLICANT:	SAMSUNG ELECTRONICS CO., LTD.
Application Type: FCC Classification: FCC Rule Part(s):	Certification PCS Licensed Transmitter Held to Ear (PCE) §2; §22; §27

EUT Type: Model(s): **Test Device Serial No.:** Portable Handset SGH-T889, SGH-T889V identical prototype [S/N: 7, RF-5]

				ERP/	'EIRP
Mode	Tx Frequency	Emission	Modulation	Max.	Max.
	(MHz)	Designator		Power	Power
				(W)	(dBm)
LTE Band 17	706.5 - 713.5	4M48G7D	QPSK	0.045	16.545
LTE Band 17	706.5 - 713.5	4M49W7D	16QAM	0.035	15.405
LTE Band 17	709 - 711	8M93G7D	QPSK	0.042	16.283
LTE Band 17	709 - 711	8M93W7D	16QAM	0.031	14.893
LTE Band 4	1712.5 - 1752.5	4M47G7D	QPSK	0.071	18.508
LTE Band 4	1712.5 - 1752.5	4M49W7D	16QAM	0.056	17.488
LTE Band 4	1715 - 1750	8M95G7D	QPSK	0.086	19.358
LTE Band 4	1715 - 1750	8M95W7D	16QAM	0.063	18.018
LTE Band 4	1717.5 - 1747.5	13M39G7D	QPSK	0.075	18.768
LTE Band 4	1717.5 - 1747.5	13M41W7D	16QAM	0.075	18.728
LTE Band 4	1720 - 1745	17M88G7D	QPSK	0.088	19.428
LTE Band 4	1720 - 1745	17M86W7D	16QAM	0.069	18.371

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in §2.947. Test results reported herein relate only to the item(s) tested. Test results reported herein relate only to the item(s) tested. I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

PCTEST certifies that no party to this application has been subject to a denial of Federal benefits that includes FCC benefits pursuant to Section 5301 of the Anti-Drug Abuse Act of 1988, 21 U.S.C. 862.

Randy Ortanez President

FCC ID: A3LSGHT889		FCC Pt. 22-27 LTE MEASUREMENT REPORT (CERTIFICATION)		Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 1 of 74
0Y1208241208.A3L	09/04/2012-09/18/2012	Portable Handset		Page 1 of 74
O DOLLO DOTEOTE				

TABLE OF CONTENTS

FCC F	PART 22	2, 27 MEASUREMENT REPORT	3
1.0	INTR	ODUCTION	4
	1.1	SCOPE	4
	1.2	TESTING FACILITY	4
2.0	PRO	DUCT INFORMATION	5
	2.1	EQUIPMENT DESCRIPTION	5
	2.2	DEVICE CAPABILITIES	5
	2.3	EMI SUPPRESSION DEVICE(S)/MODIFICATIONS	5
	2.4	LABELING REQUIREMENTS	5
3.0	DESC	CRIPTION OF TESTS	6
	3.1	MEASUREMENT PROCEDURE	6
	3.2	OCCUPIED BANDWIDTH	6
	3.3	BLOCK A FREQUENCY RANGE	6
	3.4	CELLULAR - BASE FREQUENCY BLOCKS	7
	3.5	CELLULAR - MOBILE FREQUENCY BLOCKS	7
	3.6	PCS - BASE FREQUENCY BLOCKS	7
	3.7	PCS - MOBILE FREQUENCY BLOCKS	7
	3.8	AWS - BASE FREQUENCY BLOCKS	
	3.9	AWS - MOBILE FREQUENCY BLOCKS	8
	3.10	SPURIOUS AND HARMONIC EMISSIONS AT ANTENNA TERMINAL	8
	3.11	RADIATED POWER AND RADIATED SPURIOUS EMISSIONS	9
	3.12	PEAK-AVERAGE RATIO	10
	3.13	FREQUENCY STABILITY / TEMPERATURE VARIATION	10
4.0		EQUIPMENT CALIBRATION DATA	
5.0	SAM	PLE CALCULATIONS	12
6.0	TEST	RESULTS	-
	6.1	SUMMARY	13
	6.2	EFFECTIVE RADIATED POWER OUTPUT DATA	
	6.3	EQUIVALENT ISOTROPIC RADIATED POWER OUTPUT DATA	15
	6.4	BAND 17 RADIATED MEASUREMENTS	
	6.5	BAND 4 RADIATED MEASUREMENTS	
	6.6	BAND 17 FREQUENCY STABILITY MEASUREMENTS	22
	6.7	BAND 4 FREQUENCY STABILITY MEASUREMENTS	
7.0		r(S) OF EMISSIONS – BAND 17 (5 MHZ)	
8.0		r(S) OF EMISSIONS – BAND 17 (10 MHZ)	
9.0		r(S) OF EMISSIONS – BAND 4 (5 MHZ)	
10.0		r(S) OF EMISSIONS – BAND 4 (10 MHZ)	
11.0		r(S) OF EMISSIONS – BAND 4 (15 MHZ)	
12.0		r(S) OF EMISSIONS – BAND 4 (20 MHZ)	
13.0	CON	CLUSION	74

FCC ID: A3LSGHT889		FCC Pt. 22-27 LTE MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:			
0Y1208241208.A3L	09/04/2012-09/18/2012	Portable Handset	Page 2 of 74		
© 2012 PCTEST Engineering L	2012 PCTEST Engineering Laboratory, Inc.				

MEASUREMENT REPORT FCC Part 22, 24 & 27

§2.1033 General Information

APPLICANT:	Samsung Electronics Co., L	_td.		
APPLICANT ADDRESS:	416 Maetan 3-Dong, Yeongtong-gu			
	Suwon-si, Gyeonggi-do, 44	3-742 , Republic	of Korea	
TEST SITE:	PCTEST ENGINEERING L	ABORATORY, IN	NC.	
TEST SITE ADDRESS:	7185 Oakland Mills Road, 0	Columbia, MD 21	046 USA	
FCC RULE PART(S):	§2; §22; §27			
BASE MODEL:	SGH-T889			
FCC ID:	A3LSGHT889			
FCC CLASSIFICATION:	PCS Licensed Transmitter	Held to Ear (PCE	:)	
FREQUENCY TOLERANCE:	within frequency block for B	ands 4 and 17		
Test Device Serial No.:	7, RF-5	Production	Pre-Production	Engineering
DATE(S) OF TEST:	09/04/2012-09/18/2012			
TEST REPORT S/N:	0Y1208241208.A3L			

Test Facility / Accreditations

Measurements were performed at PCTEST Engineering Lab. located in Columbia, MD 21045, U.S.A.

17	the second s	1
an	and the second s	
-		150
-16		12.0
-10	THE OWNERS OF	
16	THE LANDSLEEPING	
-84		1.0
11	ACCREDITED LABORATORY	12
46	A2LA has accessibled	
315	POTEST ENGINEERING LABORATORY, INC.	
98	Columna ND	1.00
281	for Moleccal compatience in the field of	120
	Courts of Testing	1
ж	Surgering our straight reaction and provide with	1
310	which is not separate the contrast of the second of the second se	1
dE.	and the second se	
н.		2
11	18 Station	
Æ	(Carlos) Contractory	
	and the second sec	

- PCTEST facility is an FCC registered (PCTEST Reg. No. 90864) test facility with the site description report on file and has met all the requirements specified in Section 2.948 of the FCC Rules and Industry Canada (2451A-1).
- PCTEST Lab is accredited to ISO 17025 by U.S. National Institute of Standards and Technology (NIST) under the National Voluntary Laboratory Accreditation Program (NVLAP Lab code: 100431-0) in EMC, FCC and Telecommunications.
- PCTEST Lab is accredited to ISO 17025-2005 by the American Association for Laboratory Accreditation (A2LA) in Specific Absorption Rate (SAR) testing, Hearing Aid Compatibility (HAC) testing, CTIA Test Plans, and wireless testing for FCC and Industry Canada Rules.
- PCTEST Lab is a recognized U.S. Conformity Assessment Body (CAB) in EMC and R&TTE (n.b. 0982) under the U.S.-EU Mutual Recognition Agreement (MRA).

	NVLAO®
Certific	ate of Accreditation to ISO/IEC 17025:2005
	Murudotte sena KTIST Egiening Lakeawy, Iac. Colette, 10
-	in latera teanay atarta kontaka Papar kontana ad otea ar tek d NGP analaka essare en de ayanete a 1200, 120, 80 matera ganeta ya kursa, tercerte kay Alamiten te
ILICINO .	NATION AND A CONTRACTORS

- PCTEST TCB is a Telecommunication Certification Body (TCB) accredited to ISO/IEC Guide 65 by the American National Standards Institute (ANSI) in all scopes of FCC Rules and Industry Canada Standards (RSS).
- PCTEST facility is an IC registered (2451A-1) test laboratory with the site description on file at Industry Canada.
- PCTEST is a CTIA Authorized Test Laboratory (CATL) for AMPS, CDMA, and EvDO wireless devices and for Over-the-Air (OTA) Antenna Performance testing for AMPS, CDMA, GSM, GPRS, EGPRS, UMTS (W-CDMA), CDMA 1xEVDO, and CDMA 1xRTT.

FCC ID: A3LSGHT889		FCC Pt. 22-27 LTE MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dama 0 at 74
0Y1208241208.A3L	09/04/2012-09/18/2012	Portable Handset		Page 3 of 74
© 2012 PCTEST Engineering	aboratory Inc			REV 1 7AW

1.0 INTRODUCTION

1.1 Scope

Measurement and determination of electromagnetic emissions (EME) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission.

1.2 Testing Facility

The map below shows the location of the PCTEST LABORATORY, its proximity to the FCC Laboratory, the Columbia vicinity, the Baltimore-Washington Internt'I (BWI) airport, the city of Baltimore and the Washington, DC area. (See Figure 1-1).

These measurement tests were conducted at the PCTEST Engineering Laboratory, Inc. facility located at 7185 Oakland Mills Road, Columbia, MD 21046. The site coordinates are 39° 10'23" N latitude and 76° 49'50" W longitude. The facility is 0.4 miles North of the FCC laboratory, and the ambient signal and ambient signal strength are approximately equal to those of the FCC laboratory. The detailed description of the measurement facility was found to be in compliance with the requirements of § 2.948 according to ANSI C63.4-2003/2009 on February 15, 2012.

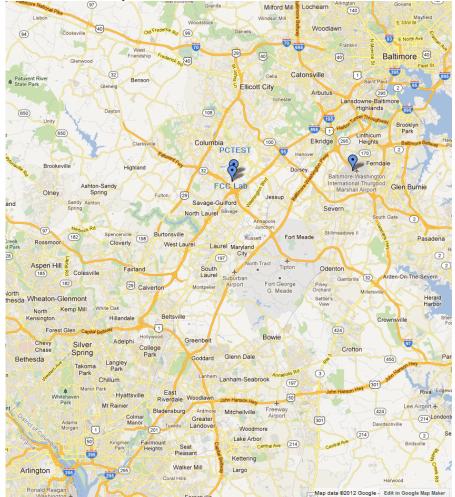


Figure 1-1. Map of the Greater Baltimore and Metropolitan Washington, D.C. area

FCC ID: A3LSGHT889		FCC Pt. 22-27 LTE MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dego 4 of 74
0Y1208241208.A3L	09/04/2012-09/18/2012	Portable Handset		Page 4 of 74
© 2012 PCTEST Engineering L	2012 PCTEST Engineering Laboratory, Inc.			

2.0 PRODUCT INFORMATION

2.1 Equipment Description

The Equipment Under Test (EUT) is the **Samsung Portable Handset FCC ID: A3LSGHT889**. The test data contained in this report pertains only to the emissions due to the EUT's LTE function. The EUT consisted of the following component(s):

Trade Name / Base Model	FCC ID	Description
Samsung / Model: SGH-T889	A3LSGHT889	Portable Handset

Table 2-1. EUT Equipment Description

2.2 Device Capabilities

This device contains the following capabilities:

850/1900 GSM/GPRS/EDGE, 850/1700/1900 WCDMA/HSPA, Band 4, 17 LTE, 802.11a/b/g/n WLAN (DTS/NII), Bluetooth (1x,EDR, LE), NFC

2.3 EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and no modifications were made during testing.

2.4 Labeling Requirements

Per 2.925

The FCC identifier shall be permanently affixed to the equipment and shall be readily visible to the purchaser at the time of purchase.

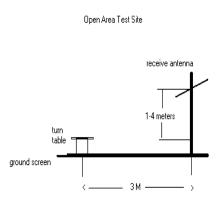
Per 15.19; Docket 95-19

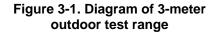
In addition to this requirement, a device subject to certification shall be labeled as follows:

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

The label shall be permanently affixed at a conspicuous location on the device; instruction manual or pamphlet supplied to the user and be readily visible to the purchaser at the time of purchase. However, when the device is so small wherein placement of the label with specified statement is not practical, only the trade name and FCC ID must be displayed on the device per Section 15.19(b)(2).

Please see attachment for FCC ID label and label location.


FCC ID: A3LSGHT889		FCC Pt. 22-27 LTE MEASUREMENT REPORT (CERTIFICATION)	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 5 of 74	
0Y1208241208.A3L	09/04/2012-09/18/2012	Portable Handset	Page 5 of 74	



DESCRIPTION OF TESTS 3.0

3.1 Measurement Procedure

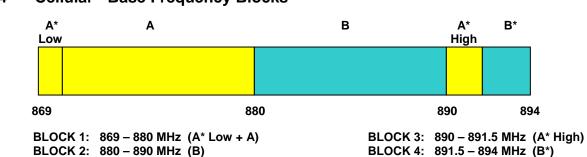
The radiated spurious measurements were made outdoors at a 3meter test range (See Figure 3-1). The equipment under test is placed on a wooden turntable 80cm above the ground plane and 3 meters from the receive antenna. The receive antenna height and turntable rotations were adjusted for the highest reading on the receive spectrum analyzer. This power level was recorded using a broadband average power meter. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. This level is recorded with the power meter. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic antenna are taken into consideration.

Deviation from Measurement Procedure......None

3.2 **Occupied Bandwidth** §2.1049, RSS-Gen (4.6.1)

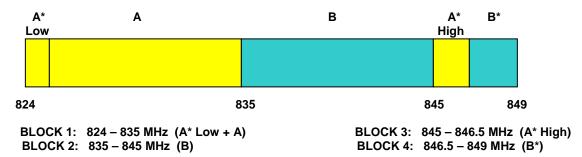
The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upperfrequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured. The span of the analyzer shall be set to capture all products of the odulation process, including the emission skirts. The resolution bandwidth shall be set to as close to 1 percent of the selected span as is possible without being below 1 percent. The video bandwidth shall be set to 3 times the resolution bandwidth. Video averaging is not permitted. Where practical, a sampling detector shall be used since a peak or, peak hold, may produce a wider bandwidth than actual. The trace data points are recovered and are directly summed in linear terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5 percent of the total is reached and that frequency recorded. The process is repeated for the highest frequency data points. This frequency is recorded. The span between the two recorded frequencies is the occupied bandwidth.

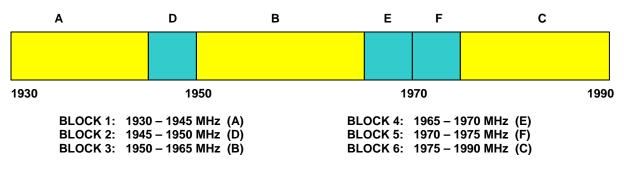
3.3 **Block A Frequency Range** §27.5(c)


698-746 MHz band. The following frequencies are available for licensing pursuant to this part in the 698-746 MHz band: (1) Three paired channel blocks of 12 megahertz each are available for assignment as follows:

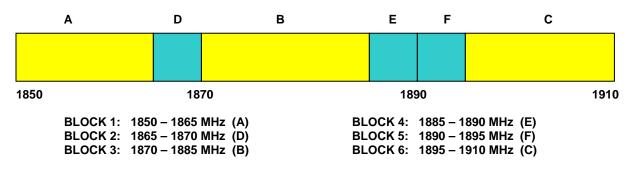
Block A: 698-704 MHz and 728-734 MHz; Block B: 704-710 MHz and 734-740 MHz; and Block C: 710-716 MHz and 740-746 MHz.

FCC ID: A3LSGHT889		FCC Pt. 22-27 LTE MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:			
0Y1208241208.A3L	09/04/2012-09/18/2012	Portable Handset		Page 6 of 74	
2012 PCTEST Engineering Laboratory Inc					


ering

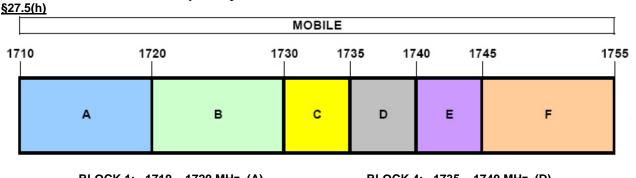


3.4 Cellular - Base Frequency Blocks


3.5 Cellular - Mobile Frequency Blocks

3.6 PCS - Base Frequency Blocks

3.7 PCS - Mobile Frequency Blocks


FCC ID: A3LSGHT889		FCC Pt. 22-27 LTE MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega Z of Z4
0Y1208241208.A3L	09/04/2012-09/18/2012	Portable Handset		Page 7 of 74
© 2012 PCTEST Engineering L	2012 PCTEST Engineering Laboratory, Inc.			

			BASE				
2110	21	20 21	30 21	35 21	40 21	45	2155
	A	В	с	D	E	F	
	BLOCK 2: 2			BLOCK	5: 2140 – 2	2140 MHz (D) 2145 MHz (E) 2155 MHz (E)	

3.8 AWS - Base Frequency Blocks

3.9 AWS - Mobile Frequency Blocks

BLOCK 1: 1710 - 1720 MHz (A) BLOCK 2: 1720 - 1730 MHz (B) BLOCK 3: 1730 - 1735 MHz (C) BLOCK 4: 1735 – 1740 MHz (D) BLOCK 5: 1740 – 1745 MHz (E) BLOCK 6: 1745 – 1755 MHz (F)

3.10 Spurious and Harmonic Emissions at Antenna Terminal §2.1051, 22.917(a), 24.238(a), §27.53(g), §27.53(h); RSS-132 (4.5.1), RSS-133 (6.5.1)

The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10th harmonic. On any frequency outside a licensee's frequency block, the power of any emission shall be attenuated below the transmitter power (P) by at least 43 + 10 log(P) dB. For Bands 5 and 12, Compliance with these rules is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz or greater. For Bands 2 and 4, compliance with these provisions is based on the use of measurement instrumentation employing a resolution bandwidth of a least one percent of the emission bandwidth of the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emission are attenuated at least 26 dB below the transmitter power.

FCC ID: A3LSGHT889		FCC Pt. 22-27 LTE MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 9 of 74
0Y1208241208.A3L	09/04/2012-09/18/2012	Portable Handset		Page 8 of 74
© 2012 PCTEST Engineering I	2012 PCTEST Engineering Laboratory, Inc.			

3.11 Radiated Power and Radiated Spurious Emissions §2.1053, §22.913(a)(2), §22.917(a), §24.232(c), §24.238(a), §27.50(d)(4), §27.53(h), §27.50(c)(10), §27.53(q); RSS-132(4.5.1.2), RSS-133 (6.5.1)

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. For measurements above 1GHz absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections. For measurements below 1GHz, the absorbers are removed. An ETS Lindgren Model 2188 raised turntable is used for radiated measurement. It is a continuously rotatable, remote-controlled, metallic turntable and 2 meters (6.56 ft.) in diameter. The turn table is flush with the raised floor of the chamber in order to maintain its function as a ground plane. A 78cm high PVC support structure is placed on top of the turntable. A 3/4" (~1.9cm) sheet of high density polyethylene is used as the table top and is placed on top of the PVC supports to bring the total height of the table to 80cm.

The equipment under test was transmitting while connected to its integral antenna and is placed on a wooden turntable 80cm above the ground plane and 3 meters from the receive antenna. The receive antenna height is adjusted between 1 and 4 meter height, the turntable is rotated through 360 degrees, and the EUT is manipulated through all orthogonal planes representative of its typical use to achieve the highest reading on the receive spectrum analyzer. Radiated power levels are also investigated with the receive antenna horizontally and vertically polarized. The maximized power level is recorded using the spectrum analyzer "Channel Power" function with the integration band set to the emissions' occupied bandwidth, a RMS detector, RBW = 100kHz, VBW = 300kHz, and a 1 second sweep time over a minimum of 10 sweeps, per the guidelines of KDB 971168.

Per the guidance of ANSI/TIA-603-C-2004, a half-wave dipole is then substituted in place of the EUT. For emissions above 1GHz, a horn antenna is substituted in place of the EUT. The substitute antenna is driven by a signal generator with the level of the signal generator being adjusted to obtain the same receive spectrum analyzer level previously recorded from the spurious emission from the EUT. The power of the emission is calculated using the following formula:

$$P_{d [dBm]} = P_{g [dBm]} - cable loss [dB] + antenna gain [dBd/dBi]$$

Where, P_d is the dipole equivalent power, P_g is the generator output into the substitution antenna, and the antenna gain is the gain of the substitute antenna used relative to either a half-wave dipole (dBd) or an isotropic source (dBi). The substitute level is equal to P_{g [dBm]} – cable loss [dB].

The calculated P_d levels are then compared to the absolute spurious emission limit of -13dBm which is equivalent to the required minimum attenuation of 43 + 10log₁₀(Power [Watts]) specified in 22.917(a), 24.238(a), 27.53(g) and 27.53(h).

FCC ID: A3LSGHT889		FCC Pt. 22-27 LTE MEASUREMENT REPORT (CERTIFICATION)		Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 0 of 74	
0Y1208241208.A3L	09/04/2012-09/18/2012	Portable Handset	Page 9 of 74		
© 2012 PCTEST Engineering L	2012 PCTEST Engineering Laboratory. Inc.				

3.12 Peak-Average Ratio §24.232(d), §27.50(d)(5), RSS-133 (6.4)

A peak to average ratio measurement is performed at the conducted port of the EUT. For LTE signals, the spectrum analyzers Complementary Cumulative Distribution Function (CCDF) measurement profile is used to determine the largest deviation between the average and the peak power of the EUT in a given bandwidth. The CCDF curve shows how much time the peak waveform spends at or above a given average power level. The percent of time the signal spends at or above the level defines the probability for that particular power level.

3.13 Frequency Stability / Temperature Variation §2.1055, §22.355, §24.235, §27.54, RSS-132 (4.3), RSS-133 (6.3)

The frequency stability of the transmitter is measured by:

- **Temperature:** The temperature is varied from -30°C to +50°C in 10°C increments using an a.) environmental chamber.
- b.) **Primary Supply Voltage:** The primary supply voltage is varied from 85% to 115% of the nominal value for non hand-carried battery and AC powered equipment. For hand-carried, battery-powered equipment, primary supply voltage is reduced to the battery operating end point which shall be specified by the manufacturer.

Specification - For Bands 4, and 17 the frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

Time Period and Procedure:

1. The carrier frequency of the transmitter is measured at room temperature (20°C to provide a reference).

2. The equipment is turned on in a "standby" condition for one minute before applying power to the transmitter. Measurement of the carrier frequency of the transmitter is made within one minute after applying power to the transmitter.

3. Frequency measurements are made at 10°C intervals ranging from -30°C to +50°C. A sufficient stabilization period at each temperature shall be used prior to each frequency requirement.

FCC ID: A3LSGHT889		FCC Pt. 22-27 LTE MEASUREMENT REPORT (CERTIFICATION)		Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dama 40 at 74	
0Y1208241208.A3L	09/04/2012-09/18/2012	Portable Handset		Page 10 of 74	
© 2012 PCTEST Engineering	2012 PCTEST Engineering Laboratory Inc.				

TEST EQUIPMENT CALIBRATION DATA 4.0

Test Equipment Calibration is traceable to the National Institute of Standards and Technology (NIST).

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
-	LTx1	Licensed Transmitter Cable Set	1/25/2012	Annual	1/25/2013	N/A
-	RE1	Radiated Emissions Cable Set (UHF/EHF)	7/10/2012	Annual	7/10/2013	N/A
-	RE2	Radiated Emissions Cable Set (VHF/UHF)	2/13/2012	Annual	2/13/2013	N/A
Agilent	8447D	Broadband Amplifier	5/8/2012	Annual	5/8/2013	1937A03348
Agilent	E8257D	(250kHz-20GHz) Signal Generator	4/5/2012	Annual	4/5/2013	MY45470194
Agilent	N9020A	MXA Signal Analyzer	10/10/2011	Annual	10/10/2012	US46470561
Agilent	N9030A	PXA Signal Analyzer	2/23/2012	Annual	2/23/2013	MY49432391
Espec	ESX-2CA	Environmental Chamber	4/4/2012	Annual	4/4/2013	17620
ETS Lindgren	3117	1-18 GHz DRG Horn (Medium)	7/22/2011	Biennial	7/22/2013	125518
ETS Lindgren	3160-09	18-26.5 GHz Standard Gain Horn	5/30/2012	Biennial	5/30/2014	135427
ETS Lindgren	3164-08	Quad Ridge Horn Antenna	10/1/2010	Biennial	10/1/2012	128337
Mini-Circuits	VHF-1200+	High Pass Filter	1/15/2012	Annual	1/15/2013	30923
Mini-Circuits	VHF-3100+	High Pass Filter	1/15/2012	Annual	1/15/2013	30841
Rohde & Schwarz	CMW500	LTE Radio Communication Tester	10/7/2011	Annual	10/7/2012	103962
Rohde & Schwarz	TS-PR18	1-18 GHz Pre-Amplifier	6/26/2012	Annual	6/26/2013	100071
Rohde & Schwarz	TS-PR26	18-26.5 GHz Pre-Amplifier	5/30/2012	Annual	5/30/2013	100040
Rohde & Schwarz	ESU26	EMI Test Receiver	12/15/2011	Annual	12/15/2012	100342
Schwarzbeck	UHA 9105	Dipole Antenna (400 - 1GHz) Rx	11/14/2011	Biennial	11/14/2013	9105-2404
Sunol	JB5	Bi-Log Antenna (30M - 5GHz)	1/26/2012	Biennial	1/26/2014	A051107

Table 4-1. Test Equipment

FCC ID: A3LSGHT889		FCC Pt. 22-27 LTE MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Dogo 11 of 74		
0Y1208241208.A3L	09/04/2012-09/18/2012	Portable Handset		Page 11 of 74		
© 2012 PCTEST Engineering I	1012 PCTEST Engineering Laboratory. Inc.					

ngi eering Laborato ory,

5.0 SAMPLE CALCULATIONS

Emission Designator

QPSK Modulation

Emission Designator = 8M62G7D

LTE BW = 8.62 MHz G = Phase Modulation 7 = Quantized/Digital Info D = Amplitude/Angle Modulated

16QAM Modulation

Emission Designator = 8M45W7D

LTE BW = 8.45 MHz W = Amplitude/Angle Modulated 7 = Quantized/Digital Info D = Combination (Audio/Data)

Spurious Radiated Emission – LTE Band

Example: Middle Channel LTE Mode 2nd Harmonic (1564 MHz)

The average receive power meter reading at 3 meters with the EUT on the turntable was -81.0 dBm. The gain of the substituted antenna is 8.1 dBi. The signal generator connected to the substituted antenna terminals is adjusted to produce a reading of -81.0 dBm on the power meter. The loss of the cable between the signal generator and the terminals of the substituted antenna is 2.0 dB at 1564 MHz. So 6.1 dB is added to the signal generator reading of -30.9 dBm yielding -24.80 dBm. The fundamental EIRP was 25.501 dBm so this harmonic was 25.501 dBm – (-24.80).

FCC ID: A3LSGHT889		FCC Pt. 22-27 LTE MEASUREMENT REPORT (CERTIFICATION)		Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 12 of 74
0Y1208241208.A3L	09/04/2012-09/18/2012	Portable Handset	P	
2012 PCTEST Engineering Laboratory. Inc.				

TEST RESULTS 6.0

Summary 6.1

Company Name:	Samsung Electronics Co., Ltd.
FCC ID:	A3LSGHT889
FCC Classification:	PCS Licensed Transmitter Held to Ear (PCE)
Mode(s):	LTE

FCC Part Section(s)	RSS Section(s)	Test Description	Test Limit	Test Condition	Test Result	Reference
TRANSMITTER MOD	<u>ÞE (TX)</u>					
2.1049	RSS-Gen (4.6.1) RSS-133 (2.3)	Occupied Bandwidth	N/A	CONDUCTED	PASS	Section 7.0, 8.0
2.1051, 27.53(g), 27.53(h)	RSS-133 (6.5.1)	Band Edge / Conducted Spurious Emissions	< 43 + 10log ₁₀ (P[Watts]) at Band Edge and for all out-of-band emissions		PASS	Section 7.0, 8.0, 9.0, 10.0, 11.0, 12.0
27.50(d)(5)	RSS-133 (6.4)	Peak-Average Ratio	< 13 dB		PASS	Section 9.0, 10.0, 11.0, 12.0
2.1046	RSS-132 (4.4) RSS-133 (4.1)	Transmitter Conducted Output Power	N/A		PASS	SAR Report
27.50(c)(10)		Effective Radiated Power (Band 17)	< 3 Watts max. ERP		PASS	Section 6.2
27.50(d)(4)		Equivalent Isotropic Radiated Power (Band 4)	< 1 Watts max. EIRP	RADIATED	PASS	Section 6.3
2.1053, 27.53(g), 27.53(h)	RSS-132 (4.5.1) RSS-133 (6.5.1)	Undesirable Emissions	< 43 + 10log ₁₀ (P[Watts]) for all out-of-band emissions		PASS	Section 6.4, 6.5
2.1055, 27.54	RSS-132 (4.3) RSS-133 (6.3)	Frequency Stability	< 2.5 ppm		PASS	Section 6.6, 6.7

Table 6-1. Summary of Test Results

FCC ID: A3LSGHT889		FCC Pt. 22-27 LTE MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 12 of 74
0Y1208241208.A3L	09/04/2012-09/18/2012	Portable Handset		Page 13 of 74
2012 PCTEST Engineering Laboratory, Inc.				

6.2 **Effective Radiated Power Output Data** §22.913(a)(2), §27.50(c)(10),

Frequency [MHz]	Channel Bandwidth [MHz]	Mod.	Battery	RB Size/Offset	Measured Level [dBm]	Substitute Level [dBm]	Antenna Gain [dBd]	Pol [H/V]	ERP [dBm]	ERP [Watts]	Margin [dB]
706.50	5	QPSK	Standard	1 / 24	-21.15	13.67	2.12	Н	15.786	0.038	-18.99
710.00	5	QPSK	Standard	1/0	-20.48	14.34	2.20	Н	16.545	0.045	-18.23
713.50	5	QPSK	Standard	1/0	-21.39	13.43	2.29	Н	15.723	0.037	-19.05
706.50	5	16-QAM	Standard	1 / 24	-22.15	12.67	2.12	Н	14.786	0.030	-19.99
710.00	5	16-QAM	Standard	1/0	-21.62	13.20	2.20	Н	15.405	0.035	-19.37
713.50	5	16-QAM	Standard	1/0	-22.44	12.38	2.29	Н	14.673	0.029	-20.10
709.00	10	QPSK	Standard	1/0	-20.93	13.89	2.12	Н	16.006	0.040	-18.77
710.00	10	QPSK	Standard	1/0	-21.09	13.73	2.20	Н	15.935	0.039	-18.84
711.00	10	QPSK	Standard	1 / 0	-20.83	13.99	2.29	Н	16.283	0.042	-18.49
709.00	10	16-QAM	Standard	1 / 0	-22.30	12.52	2.12	Н	14.636	0.029	-20.14
710.00	10	16-QAM	Standard	1 / 0	-22.17	12.65	2.20	Н	14.855	0.031	-19.92
711.00	10	16-QAM	Standard	1/0	-22.22	12.60	2.29	Н	14.893	0.031	-19.88

Table 6-2. Effective Radiated Power Output Data (Band 17)

NOTES:

Equivalent Isotropic Radiated Power Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 80cm above the ground plane and 3 meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. Final power measurements are made with a broadband average power meter. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same spectrum analyzer reading. This level is recorded using the power meter. The conducted power at the terminals of the dipole is measured. The ERP is recorded.

This device was tested under all modulations, RB sizes and offsetse, and channel bandwidth configurations and the worst case emissions are reported with [...] The worst case test configuration was found in the horizontal setup. The data reported in the table above was measured in this test setup.

FCC ID: A3LSGHT889	THEINTENE LANDAUTENT, INC.	FCC Pt. 22-27 LTE MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		
0Y1208241208.A3L	09/04/2012-09/18/2012	Portable Handset		Page 14 of 74
© 2012 PCTEST Engineering I	Laboratory, Inc.			REV 1.7AW

6.3 Equivalent Isotropic Radiated Power Output Data §24.232(c); §27.50(d)(4)

Frequency [MHz]	Channel Bandwidth [MHz]	Mod.	Battery	RB Size/Offset		Substitute Level [dBm]	Antenna Gain [dBi]	Pol [H/V]	EIRP [dBm]	EIRP [Watts]	Margin [dB]
1712.50	5	QPSK	Standard	1/0	-21.51	9.08	8.47	Н	17.55	0.057	-12.45
1732.50	5	QPSK	Standard	1 / 24	-21.16	9.43	8.54	Н	17.97	0.063	-12.03
1752.50	5	QPSK	Standard	1 / 24	-20.68	9.91	8.60	Н	18.51	0.071	-11.49
1712.50	5	16-QAM	Standard	1 / 0	-22.65	7.94	8.47	Н	16.41	0.044	-13.59
1732.50	5	16-QAM	Standard	1 / 24	-22.28	8.31	8.54	Н	16.85	0.048	-13.15
1752.50	5	16-QAM	Standard	1 / 24	-21.70	8.89	8.60	Н	17.49	0.056	-12.51
1715.00	10	QPSK	Standard	1 / 0	-22.06	8.53	8.47	Н	17.00	0.050	-13.00
1732.50	10	QPSK	Standard	1 / 0	-21.49	9.10	8.54	Н	17.64	0.058	-12.36
1750.00	10	QPSK	Standard	1 / 49	-19.83	10.76	8.60	Н	19.36	0.086	-10.64
1715.00	10	16-QAM	Standard	1/0	-22.44	8.15	8.47	Н	16.62	0.046	-13.38
1732.50	10	16-QAM	Standard	1/0	-22.80	7.79	8.54	Н	16.33	0.043	-13.67
1750.00	10	16-QAM	Standard	1 / 49	-21.17	9.42	8.60	Н	18.02	0.063	-11.98
1717.50	15	QPSK	Standard	75 / 0	-22.68	7.91	8.47	Н	16.38	0.043	-13.62
1732.50	15	QPSK	Standard	1 / 74	-21.71	8.88	8.54	Н	17.42	0.055	-12.58
1747.50	15	QPSK	Standard	1 / 74	-20.42	10.17	8.60	Н	18.77	0.075	-11.23
1717.50	15	16-QAM	Standard	75 / 0	-23.72	6.87	8.47	Н	15.34	0.034	-14.66
1732.50	15	16-QAM	Standard	1 / 74	-21.37	9.22	8.54	Н	17.76	0.060	-12.24
1747.50	15	16-QAM	Standard	1 / 74	-20.46	10.13	8.60	Н	18.73	0.075	-11.27
1720.00	20	QPSK	Standard	1 / 0	-20.09	10.50	8.47	Н	18.97	0.079	-11.03
1732.50	20	QPSK	Standard	1 / 99	-19.89	10.70	8.54	Н	19.24	0.084	-10.76
1745.00	20	QPSK	Standard	1 / 99	-19.76	10.83	8.60	Н	19.43	0.088	-10.57
1720.00	20	16-QAM	Standard	1 / 0	-21.34	9.25	8.47	Н	17.72	0.059	-12.28
1732.50	20	16-QAM	Standard	1 / 99	-20.76	9.83	8.54	Н	18.37	0.069	-11.63
1745.00	20	16-QAM	Standard	1 / 99	-20.82	9.77	8.60	Н	18.37	0.069	-11.63

Table 6-3. Equivalent Isotropic Radiated Power Output Data (Band 4)

NOTES:

Equivalent Isotropic Radiated Power Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 80cm above the ground plane and 3 meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. Final power measurements are made with a broadband average power meter. A Horn antenna was substituted in place of the EUT. This Horn antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same spectrum analyzer reading. This level is recorded using the power meter. The conducted power at the terminals of the Horn antenna is measured. The difference between the gain of the horn and an isotropic antenna is taken into consideration and the EIRP is recorded.

This device was tested under all modulations, RB sizes and offsetse, and channel bandwidth configurations and the worst case emissions are reported with [...] The worst case test configuration was found in the horizontal setup. The data reported in the table above was measured in this test setup.

FCC ID: A3LSGHT889		FCC Pt. 22-27 LTE MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dama 45 at 74
0Y1208241208.A3L	09/04/2012-09/18/2012	Portable Handset		Page 15 of 74
© 2012 PCTEST Engineering	Laboratory, Inc.	•		REV 1.7AW

Band 17 Radiated Measurements 6.4 §2.1053, §27.53(g)

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY:	706.	50	MHz
CHANNEL:	237	55	_
MEASURED OUT PUT POWER:	15.79	dBm =	0.038 W
MODULATION SIGNAL:	QPSK		
BANDWIDTH:	5 MHz		
DISTANCE:	3	meters	
LIMIT:	43 + 10 log10 (W) =	28.79	dBc

FREQUENCY (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUB STITUTE ANTENNA GAIN (dBd)	SPURIOUS EMISSION LEVEL (dBm)	POL (H/V)	(dBc)
1413.00	-58.92	3.63	-55.29	Н	71.08
21 19.50	-46.96	3.90	-43.07	H	58.85
2826.00	-53.01	5.01	-48.00	Н	63.78
3532.50	-30.21	6.25	-23.96	H	39.74
4239.00	-63.51	7.23	-56.28	H	72.06
4945.50	-57.24	7.86	-49.37	Н	65.16

Table 6-4. Radiated Spurious Data (Ch. 23755)

NOTES:

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 80cm above the ground plane and 3 meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. Final power measurements are made with a broadband average power meter. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same spectrum analyzer reading. This spurious level is recorded using the power meter. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

This device was tested under all modulations, RB sizes, offsets, channel bandwidth configurations, and the worst case emissions are reported in the table above. This unit was tested with its standard battery. The worst case test configuration was found in the horizontal setup. The data reported in the table above was measured in this test setup.

FCC ID: A3LSGHT889		FCC Pt. 22-27 LTE MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dama 40 at 74
0Y1208241208.A3L	09/04/2012-09/18/2012	Portable Handset		Page 16 of 74
© 2012 PCTEST Engineering	aboratory. Inc.	•		REV 1.7AW

Band 17 Radiated Measurements (cont'd) §2.1053, §27.53(g)

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY:	710.	00	MHz	
CHANNEL:	2379	90		
MEASURED OUT PUT POWER:	16.54	dBm =	0.045	W
MODULATION SIGNAL:	QPSK			
BANDWIDTH:	5 MHz			
DISTANCE:	3	meters		
LIMIT:	43 + 10 log10 (W) =	29.54	dBc	

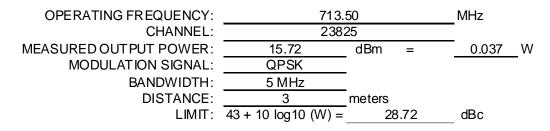
FREQUENCY (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUB STITUTE ANTENNA GAIN (dBd)	SPURIOUS EMISSION LEVEL (dBm)	POL (H/V)	(dBc)
1420.00	-62.93	3.68	-59.25	Н	75.80
2130.00	-57.14	3.92	-53.22	H	69.77
2840.00	-51.02	5.02	-45.99	Н	62.54
3550.00	-54.75	6.25	-48.50	H	65.04
4260.00	-60.77	7.25	-53.52	H	70.06
4970.00	-114.34	7.90	-106.43	Н	122.98

Table 6-5. Radiated Spurious Data (Ch. 23790)

NOTES:

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 80cm above the ground plane and 3 meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. Final power measurements are made with a broadband average power meter. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same spectrum analyzer reading. This spurious level is recorded using the power meter. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.


This device was tested under all modulations, RB sizes, offsets, channel bandwidth configurations, and the worst case emissions are reported in the table above. This unit was tested with its standard battery. The worst case test configuration was found in the horizontal setup. The data reported in the table above was measured in this test setup.

FCC ID: A3LSGHT889		FCC Pt. 22-27 LTE MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dego 17 of 74
0Y1208241208.A3L	09/04/2012-09/18/2012	Portable Handset		Page 17 of 74
© 2012 PCTEST Engineering L	aboratory, Inc.	·		REV 1.7AW

Band 17 Radiated Measurements (cont'd) §2.1053, §27.53(g)

Field Strength of SPURIOUS Radiation

FREQUENCY (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUB STITUTE ANTENNA GAIN (dBd)	SPURIOUS EMISSION LEVEL (dBm)	POL (H/V)	(dBc)
1427.00	-59.84	3.73	-56.11	Н	71.83
2140.50	-61.39	3.94	-57.45	Н	73.17
2854.00	-56.15	5.04	-51.12	Н	66.84
3567.50	-56.47	6.25	-50.22	H	65.95
4281.00	-114.84	7.25	-107.59	H	123.31
4994.50	-114.35	7.94	-106.40	Н	122.13

Table 6-6. Radiated Spurious Data (Ch. 23825)

NOTES:

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 80cm above the ground plane and 3 meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. Final power measurements are made with a broadband average power meter. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same spectrum analyzer reading. This spurious level is recorded using the power meter. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

This device was tested under all modulations, RB sizes, offsets, channel bandwidth configurations, and the worst case emissions are reported in the table above. This unit was tested with its standard battery. The worst case test configuration was found in the horizontal setup. The data reported in the table above was measured in this test setup.

FCC ID: A3LSGHT889		FCC Pt. 22-27 LTE MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 10 of 74
0Y1208241208.A3L	09/04/2012-09/18/2012	Portable Handset		Page 18 of 74
© 2012 PCTEST Engineering	aboratory Inc	•		REV 1 7AW

Band 4 Radiated Measurements 6.5 §2.1053, §27.53(h)

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY:	1712	.50	MHz
CHANNEL:	1997	75	-
MEASURED OUT PUT POWER:	17.55	dBm =	0.057 W
MODULATION SIGNAL:	QPSK		
BANDWIDTH:	5 MHz		
DISTANCE:	3	meters	
LIMIT:	43 + 10 log10 (W) =	30.547	dBc

FREQUENCY (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUB STITUTE ANTENNA GAIN (dBi)	SPURIOUS EMISSION LEVEL (dBm)	POL (H/V)	(dBc)
3425.00	-58.91	8.09	-50.82	Н	68.37
5137.50	-57.12	10.21	-46.91	H	64.46
6850.00	-67.54	11.31	-56.23	Н	73.78
8562.50	-61.79	13.02	-48.77	H	66.32
10275.00	-57.98	13.01	-44.97	Н	62.52
11987.50	-109.18	13.21	-95.97	Η	113.52

Table 6-7. Radiated Spurious Data (Ch. 19975)

NOTES:

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 80cm above the ground plane and 3 meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. Final power measurements are made with a broadband average power meter. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same spectrum analyzer reading. This spurious level is recorded using the power meter. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

This device was tested under all modulations, RB sizes, offsets, channel bandwidth configurations, and the worst case emissions are reported in the table above. This unit was tested with its standard battery. The worst case test configuration was found in the horizontal setup. The data reported in the table above was measured in this test setup.

FCC ID: A3LSGHT889		FCC Pt. 22-27 LTE MEASUREMENT REPORT (CERTIFICATION)		Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 10 of 74
0Y1208241208.A3L	09/04/2012-09/18/2012	Portable Handset		Page 19 of 74
© 2012 PCTEST Engineering	2012 PCTEST Engineering Laboratory Inc			

012 PCTEST Engineering L atory, Inc

Band 4 Radiated Measurements (cont'd) §2.1053, §27.53(h)

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY:	1732	.50	MHz
CHANNEL:	201	75	_
MEASURED OUT PUT POWER:	17.97	dBm =	0.063 W
MODULATION SIGNAL:	QPSK		
BANDWIDTH:	5 MHz		
DISTANCE:	3	meters	
LIMIT:	43 + 10 log10 (W) =	30.971	dBc

FREQUENCY (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUB STITUTE ANTENNA GAIN (dBi)	SPURIOUS EMISSION LEVEL (dBm)	POL (H/V)	(dBc)
3465.00	-55.84	8.26	-47.57	Н	65.54
5197.50	-61.15	10.26	-50.89	H	68.87
6930.00	-67.23	11.42	-55.81	Н	73.78
8662.50	-63.92	13.07	-50.85	H	68.82
10395.00	-60.64	13.12	-47.53	Н	65.50
12127.50	-108.32	13.25	-95.07	Н	113.05

NOTES:

Table 6-8. Radiated Spurious Data (Ch. 20175)

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 80cm above the ground plane and 3 meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. Final power measurements are made with a broadband average power meter. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same spectrum analyzer reading. This spurious level is recorded using the power meter. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

This device was tested under all modulations, RB sizes, offsets, channel bandwidth configurations, and the worst case emissions are reported in the table above. This unit was tested with its standard battery. The worst case test configuration was found in the horizontal setup. The data reported in the table above was measured in this test setup.

FCC ID: A3LSGHT889		FCC Pt. 22-27 LTE MEASUREMENT REPORT (CERTIFICATION)		Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 20 of 74
0Y1208241208.A3L	09/04/2012-09/18/2012	Portable Handset		Page 20 of 74
© 2012 PCTEST Engineering	2012 PCTEST Engineering Laboratory Inc			

012 PCTEST Engineering L atory, Inc

Band 4 Radiated Measurements (cont'd) §2.1053, §27.53(h)

Field Strength of SPURIOUS Radiation

1752	50	MHz	
203	75		
18.51	dBm =	0.071	W
QPSK			
5 MHz			
3	meters		
43 + 10 log10 (W) =	31.508	dBc	
	203 18.51 QPSK 5 MHz 3	QPSK 5 MHz 3 meters	$\frac{20375}{18.51} \text{ dBm} = 0.071$ $\frac{\text{QPSK}}{5 \text{ MHz}}$ $\frac{3}{20375} \text{ meters}$

FREQUENCY (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUB STITUTE ANTENNA GAIN (dBi)	SPURIOUS EMISSION LEVEL (dBm)	POL (H/V)	(dBc)
3505.00	-60.71	8.40	-52.31	Н	70.82
5257.50	-60.43	10.32	-50.11	Н	68.62
7010.00	-64.71	11.51	-53.20	Н	71.70
8762.50	-59.02	13.11	-45.91	Н	64.42
10515.00	-61.07	13.20	-47.87	Н	66.38
12267.50	-107.66	13.31	-94.35	Н	112.85

Table 6-9. Radiated Spurious Data (Ch. 20375)

NOTES:

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 80cm above the ground plane and 3 meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. Final power measurements are made with a broadband average power meter. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same spectrum analyzer reading. This spurious level is recorded using the power meter. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

This device was tested under all modulations, RB sizes, offsets, channel bandwidth configurations, and the worst case emissions are reported in the table above. This unit was tested with its standard battery. The worst case test configuration was found in the horizontal setup. The data reported in the table above was measured in this test setup.

FCC ID: A3LSGHT889		FCC Pt. 22-27 LTE MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dago 01 of 74
0Y1208241208.A3L	09/04/2012-09/18/2012	Portable Handset		Page 21 of 74
© 2012 PCTEST Engineering	2012 PCTEST Engineering Laboratory Inc			

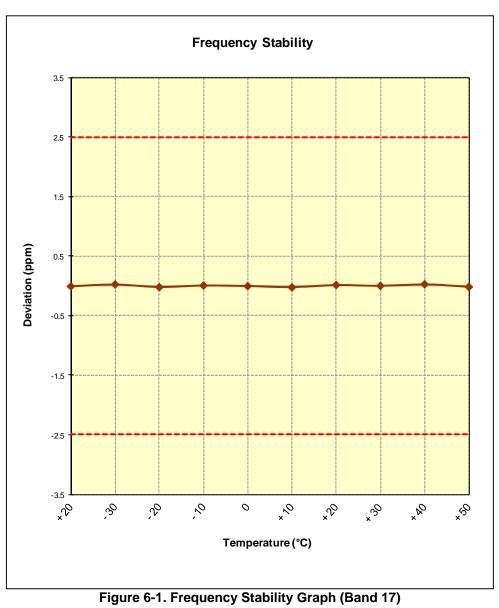
012 PCTEST Engineering L atory, In

6.6 Band 17 Frequency Stability Measurements §2.1055, §27.54, RSS-133 (6.3)

OPERATING FREQUENCY:	710,000,000	Hz
CHANNEL:	23090	
REFERENCE VOLTAGE:	3.8	VDC

VOLTAGE (%)	POWER (VDC)	TEMP (°C)	FREQUENCY (Hz)	Freq. Dev. (Hz)	Deviation (%)
100 %	3.80	+ 20 (Ref)	707,499,993	-7	-0.000001
100 %		- 30	707,500,016	16	0.000002
100 %		- 20	707,499,983	-17	-0.000002
100 %		- 10	707,500,003	3	0.000000
100 %		0	707,499,996	-4	-0.000001
100 %		+ 10	707,499,981	-19	-0.000003
100 %		+ 20	707,500,009	9	0.000001
100 %		+ 30	707,499,999	-1	0.000000
100 %		+ 40	707,500,018	18	0.000003
100 %		+ 50	707,499,986	-14	-0.000002
115 %	4.37	+ 20	707,499,998	-2	0.000000
85 %	3.23	+ 20	707,500,015	15	0.000002

Table 6-10. Frequency Stability Data (Band 17)


The frequency stability shall be sufficient to ensure that the fundamental emissions stay within the authorized bands of operation.

Note: Carrier Frequency Stability Measurements performed according to ANSI/TI/EIA-603-C-2004, Aug. 17, 2004

FCC ID: A3LSGHT889		FCC Pt. 22-27 LTE MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dege 02 of 74
0Y1208241208.A3L	09/04/2012-09/18/2012	Portable Handset		Page 22 of 74
© 2012 PCTEST Engineering	012 PCTEST Engineering Laboratory. Inc.			

Band 17 Frequency Stability Measurements (Cont'd) §2.1055, §27.54, RSS-133 (6.3)

The frequency stability shall be sufficient to ensure that the fundamental emissions stay within the authorized bands of operation.

Note: Carrier Frequency Stability Measurements performed according to ANSI/TI/EIA-603-C-2004, Aug. 17, 2004

FCC ID: A3LSGHT889		FCC Pt. 22-27 LTE MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dama 00 of 74
0Y1208241208.A3L	09/04/2012-09/18/2012	Portable Handset		Page 23 of 74
© 2012 PCTEST Engineering	2012 PCTEST Engineering Laboratory. Inc.			

Band 4 Frequency Stability Measurements 6.7 §2.1055, §27.54, RSS-133 (6.3)

OPERATING FREQUENCY: 1,732,500,000 Hz

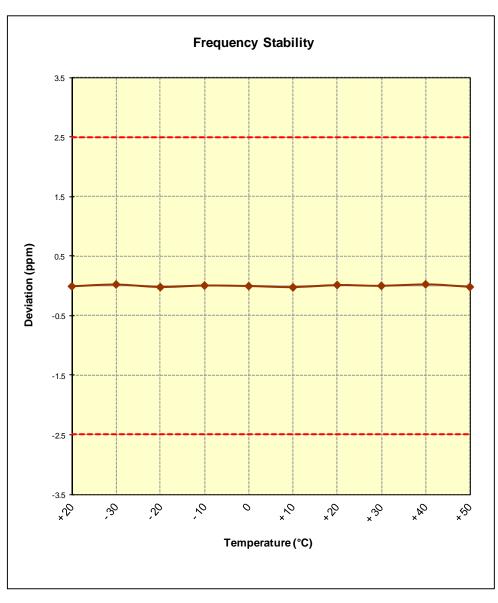
CHANNEL: 20175

REFERENCE VOLTAGE: 3.8 VDC

VOLTAGE (%)	POWER (VDC)	TEMP (°C)	FREQUENCY (Hz)	Freq. Dev. (Hz)	Deviation (%)
100 %	3.80	+ 20 (Ref)	707,499,994	-6	-0.000001
100 %		- 30	707,500,018	18	0.000003
100 %		- 20	707,500,018	18	0.000003
100 %		- 10	707,499,987	-13	-0.000002
100 %		0	707,500,014	14	0.000002
100 %		+ 10	707,499,996	-4	-0.000001
100 %		+ 20	707,499,982	-18	-0.00003
100 %		+ 30	707,499,985	-15	-0.000002
100 %		+ 40	707,499,984	-16	-0.000002
100 %		+ 50	707,499,984	-16	-0.000002
115 %	4.37	+ 20	707,499,984	-16	-0.000002
85 %	3.23	+ 20	707,499,992 (Stability Data (Ba	-8	-0.000001

 Table 6-11. Frequency Stability Data (Band 4)

The frequency stability shall be sufficient to ensure that the fundamental emissions stay within the authorized bands of operation.

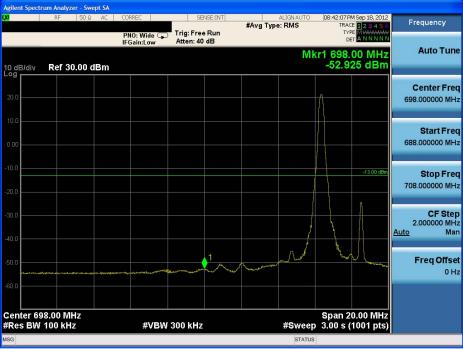

Note: Carrier Frequency Stability Measurements performed according to ANSI/TI/EIA-603-C-2004, Aug. 17, 2004

FCC ID: A3LSGHT889		FCC Pt. 22-27 LTE MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 24 of 74
0Y1208241208.A3L	09/04/2012-09/18/2012	Portable Handset		Page 24 of 74
© 2012 PCTEST Engineering L	2012 PCTEST Engineering Laboratory. Inc.			REV 1.7AW

© 2012 PCTEST Engineering Laboratory, In-

Band 4 Frequency Stability Measurements (Cont'd) §2.1055, §27.54; RSS-133 (6.3)

The frequency stability shall be sufficient to ensure that the fundamental emissions stay within the authorized bands of operation.


Note: Carrier Frequency Stability Measurements performed according to ANSI/TI/EIA-603-C-2004, Aug. 17, 2004

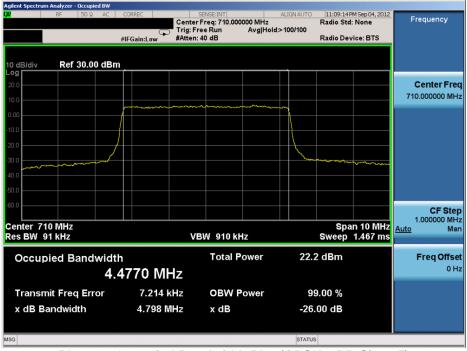
FCC ID: A3LSGHT889		FCC Pt. 22-27 LTE MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 25 of 74
0Y1208241208.A3L	09/04/2012-09/18/2012	Portable Handset		Page 25 of 74
© 2012 PCTEST Engineering I	2012 PCTEST Engineering Laboratory, Inc.			REV 1.7AW

7.0 PLOT(S) OF EMISSIONS – BAND 17 (5 MHZ)

Note: For all out-of-band spurious emissions, the RB sizes and offsets that produced the worst case emissions are indicated in the plot captions.

Plot 7-1. Lower Band Edge Plot (QPSK – RB Size 1, Offset 0)

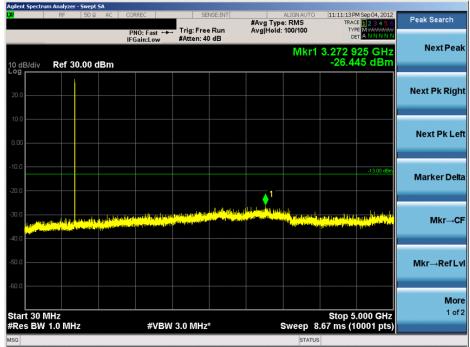
Note: The Resolution Band Width use for this plot was at least 1% of the RB Size 1 Emission Band Width

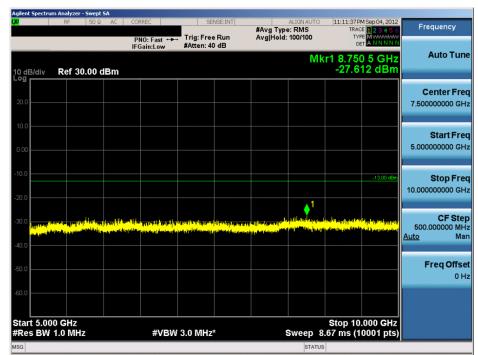


Plot 7-2. Lower Band Edge Plot Plot (QPSK – RB Size 25)

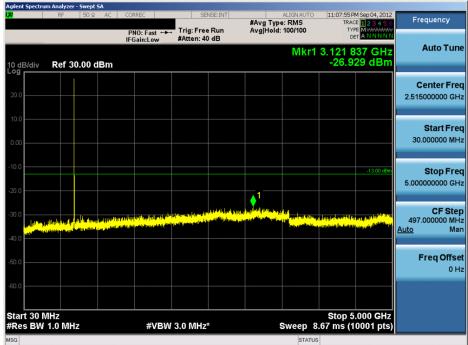
FCC ID: A3LSGHT889		FCC Pt. 22-27 LTE MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 26 of 74
0Y1208241208.A3L	09/04/2012-09/18/2012	Portable Handset		Page 26 of 74
© 2012 DCTEST Engineering	2012 PCTEST Engineering Laboratory Inc			

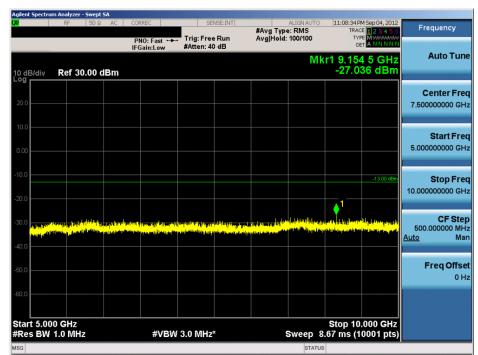
© 2012 PCTEST Engineering Laboratory, Inc.


Plot 7-3. Occupied Bandwidth Plot (QPSK - RB Size 25)

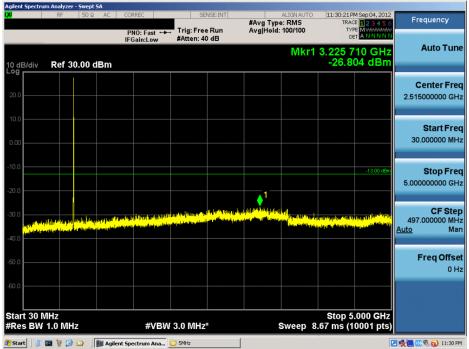

Plot 7-4. Occupied Bandwidth Plot (16-QAM - RB Size 25)

FCC ID: A3LSGHT889		FCC Pt. 22-27 LTE MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 07 of 74
0Y1208241208.A3L	09/04/2012-09/18/2012	Portable Handset		Page 27 of 74
2012 PCTEST Engineering Laboratory, Inc.				REV 1.7AW


Plot 7-5. Conducted Spurious Plot (QPSK - RB Size 1, RB Offset 0 - Low Channel)

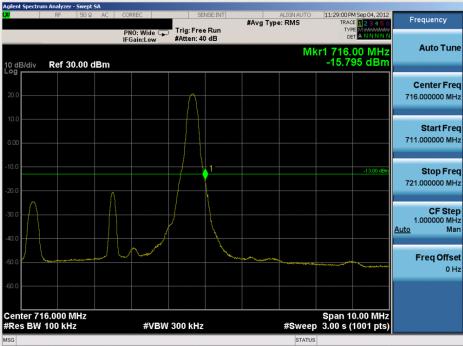

Plot 7-6. Conducted Spurious Plot (QPSK - RB Size 1, RB Offset 0 - Low Channel)

FCC ID: A3LSGHT889		FCC Pt. 22-27 LTE MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Daga 29 of 74	
0Y1208241208.A3L	09/04/2012-09/18/2012	Portable Handset		Page 28 of 74	
© 2012 PCTEST Engineering I	2012 PCTEST Engineering Laboratory, Inc.				/SC


Plot 7-7. Conducted Spurious Plot (QPSK - RB Size 1, RB Offset 0 - Mid Channel)

Plot 7-8. Conducted Spurious Plot (QPSK - RB Size 1, RB Offset 0 - Mid Channel)

FCC ID: A3LSGHT889		FCC Pt. 22-27 LTE MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 29 of 74
0Y1208241208.A3L	09/04/2012-09/18/2012	Portable Handset		Page 29 01 74
© 2012 PCTEST Engineering L	2012 PCTEST Engineering Laboratory, Inc.			REV 1.7AV


Plot 7-9. Conducted Spurious Plot (QPSK – RB Size 1, RB Offset 0 – High Channel)

Plot 7-10. Conducted Spurious Plot (QPSK - RB Size 1, RB Offset 0 - High Channel)


FCC ID: A3LSGHT889		FCC Pt. 22-27 LTE MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 30 of 74
0Y1208241208.A3L	09/04/2012-09/18/2012	Portable Handset		Page 30 01 74
© 2012 PCTEST Engineering I	012 PCTEST Engineering Laboratory, Inc.			REV 1.7AV

Plot 7-11. Upper Band Edge Plot (QPSK – RB Size 1, Offset 24)

Note: The Resolution Band Width use for this plot was at least 1% of the RB Size 1 Emission Band Width



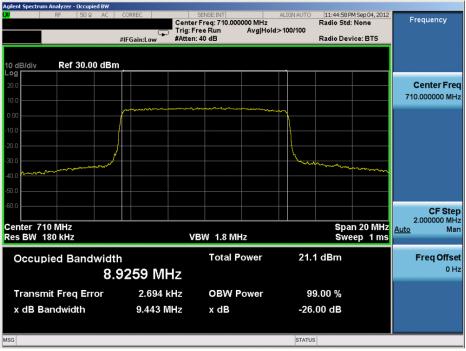
Plot 7-12. Upper Band Edge Plot (QPSK - RB Size 25)

FCC ID: A3LSGHT889		FCC Pt. 22-27 LTE MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 21 of 74
0Y1208241208.A3L	09/04/2012-09/18/2012	Portable Handset		Page 31 of 74
2012 PCTEST Engineering Laboratory, Inc.				REV 1.7AW

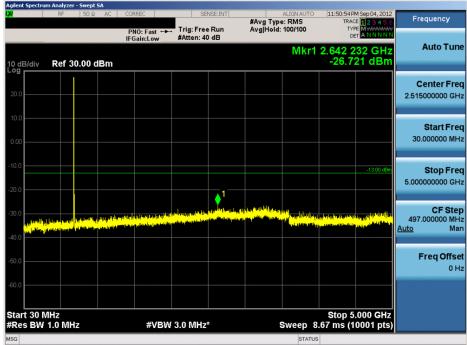
8.0 PLOT(S) OF EMISSIONS - BAND 17 (10 MHZ)

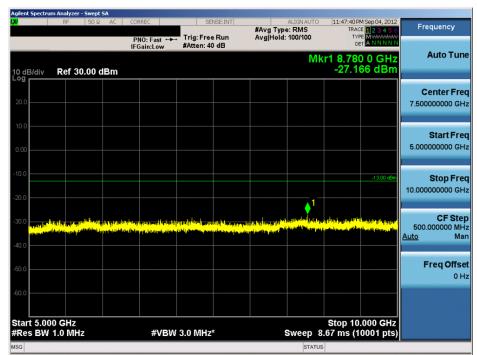
Plot 8-1. Lower Band Edge Plot (QPSK – RB Size 1, Offset 0)


Note: The Resolution Band Width use for this plot was at least 1% of the RB Size 1 Emission Band Width

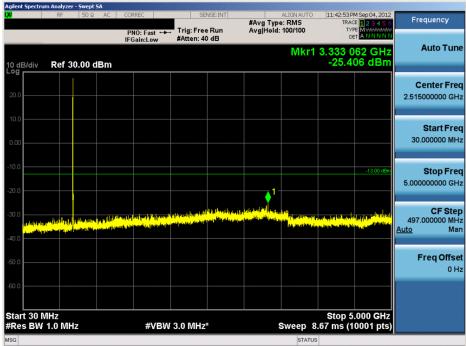

Plot 8-2. Lower Band Edge Plot (QPSK - RB Size 50)

FCC ID: A3LSGHT889		FCC Pt. 22-27 LTE MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 22 of 74
0Y1208241208.A3L	09/04/2012-09/18/2012	Portable Handset		Page 32 of 74
2012 PCTEST Engineering Laboratory, Inc.				REV 1.7AWS


Plot 8-3. Occupied Bandwidth Plot (QPSK - RB Size 50)

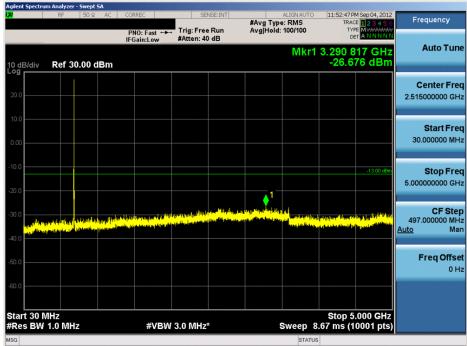

Plot 8-4. Occupied Bandwidth Plot (16-QAM - RB Size 50)

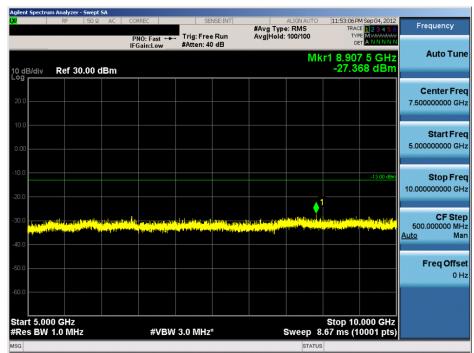
FCC ID: A3LSGHT889		FCC Pt. 22-27 LTE MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 22 of 74
0Y1208241208.A3L	09/04/2012-09/18/2012	Portable Handset		Page 33 of 74
2012 PCTEST Engineering Laboratory, Inc.				REV 1.7AWS


Plot 8-5. Conducted Spurious Plot (QPSK – RB Size 1, RB 0 – Low Channel)

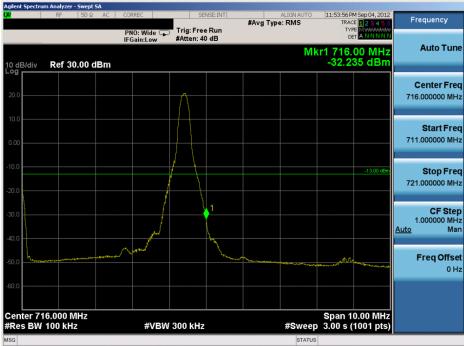
Plot 8-6. Conducted Spurious Plot (QPSK - RB Size 1, RB Offset 0 - Low Channel)

FCC ID: A3LSGHT889		FCC Pt. 22-27 LTE MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 34 of 74
0Y1208241208.A3L	09/04/2012-09/18/2012	Portable Handset		
© 2012 PCTEST Engineering Laboratory, Inc.				REV 1.7AW


Plot 8-7. Conducted Spurious Plot (QPSK - RB Size 1, RB Offset 0 - Mid Channel)


Plot 8-8. Conducted Spurious Plot (QPSK - RB Size 1, RB Offset 0 - Mid Channel)

FCC ID: A3LSGHT889		FCC Pt. 22-27 LTE MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 35 of 74
0Y1208241208.A3L	09/04/2012-09/18/2012	Portable Handset		
© 2012 PCTEST Engineering Laboratory, Inc.				REV 1.7AV

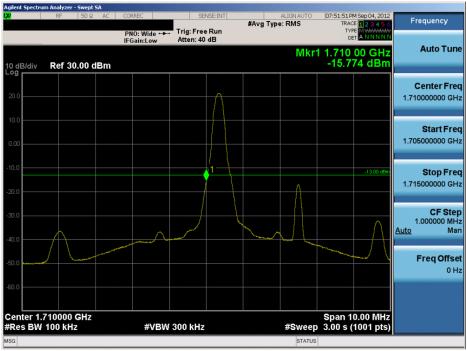

Plot 8-9. Conducted Spurious Plot (QPSK - RB Size 1, RB Offset 0 - High Channel)

Plot 8-10. Conducted Spurious Plot (QPSK - RB Size 1, RB Offset 0 - High Channel)


FCC ID: A3LSGHT889		FCC Pt. 22-27 LTE MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Page 36 of 74	1
0Y1208241208.A3L	09/04/2012-09/18/2012	Portable Handset			l
© 2012 PCTEST Engineering Laboratory, Inc.				REV 1.7AW	√SC

Plot 8-11. Upper Band Edge Plot (QPSK – RB Size 1, RB Offset 49)

Note: The Resolution Band Width use for this plot was at least 1% of the RB Size 1 Emission Band Width



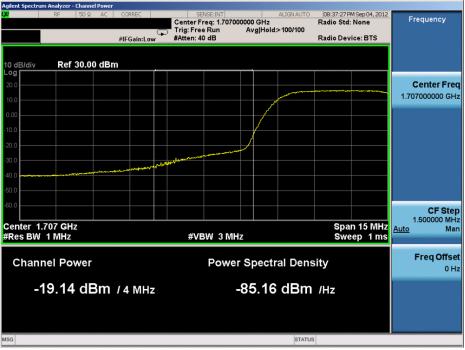
Plot 8-12. Upper Band Edge Plot (QPSK - RB Size 50)

FCC ID: A3LSGHT889		FCC Pt. 22-27 LTE MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 27 of 74
0Y1208241208.A3L	09/04/2012-09/18/2012	Portable Handset		Page 37 of 74
© 2012 PCTEST Engineering I	aboratory, Inc.			REV 1.7AW

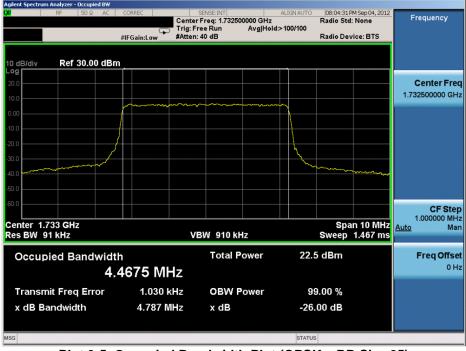
PLOT(S) OF EMISSIONS - BAND 4 (5 MHZ) 9.0

Plot 9-1. Lower Band Edge Plot (QPSK – RB Size 1, Offset 0)


Note: The Resolution Band Width use for this plot was at least 1% of the RB Size 1 Emission Band Width

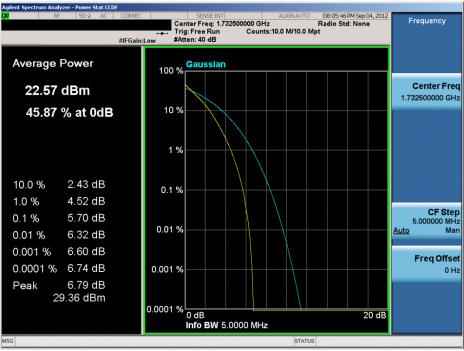

Plot 9-2. Lower Band Edge Plot (QPSK – RB Size 25)

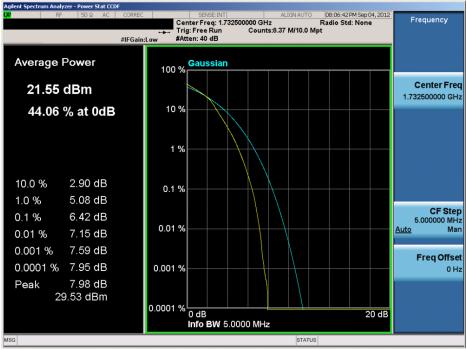
FCC ID: A3LSGHT889		FCC Pt. 22-27 LTE MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 29 of 74
0Y1208241208.A3L	09/04/2012-09/18/2012	Portable Handset		Page 38 of 74
© 2012 PCTEST Engineering I	1012 PCTEST Engineering Laboratory. Inc.			


Plot 9-3. Lower Extended Band Edge Plot (QPSK - RB Size 1, Offset 0)

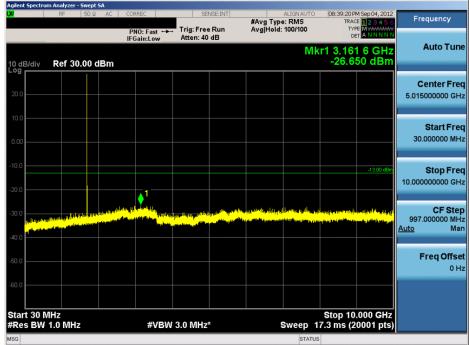
Plot 9-4. Lower Extended Band Edge Plot (QPSK - RB Size 25)

FCC ID: A3LSGHT889		FCC Pt. 22-27 LTE MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 20 of 74
0Y1208241208.A3L	09/04/2012-09/18/2012	Portable Handset		Page 39 of 74
2012 PCTEST Engineering Laboratory, Inc.			REV 1.7AW	


Plot 9-5. Occupied Bandwidth Plot (QPSK - RB Size 25)

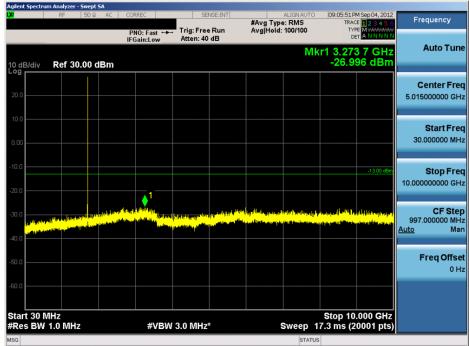

Plot 9-6. Occupied Bandwidth Plot (16-QAM - RB Size 25)

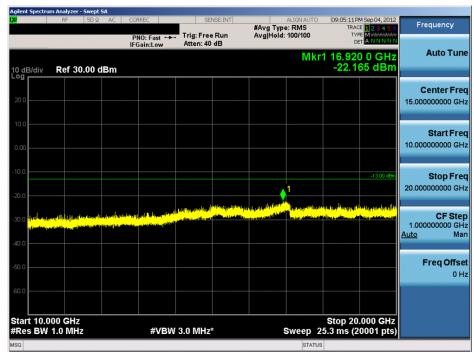
FCC ID: A3LSGHT889		FCC Pt. 22-27 LTE MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 40 of 74
0Y1208241208.A3L	09/04/2012-09/18/2012	Portable Handset		Page 40 of 74
© 2012 PCTEST Engineering Laboratory, Inc. R			REV 1.7AW	



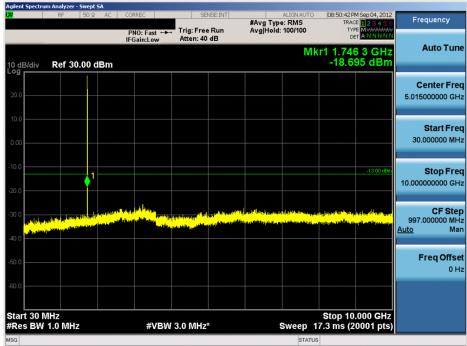

Plot 9-8. Peak to Average Ratio Plot (16QAM - RB Size 25)

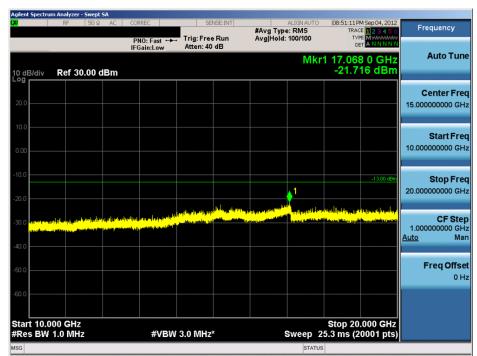
FCC ID: A3LSGHT889		FCC Pt. 22-27 LTE MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 41 of 74
0Y1208241208.A3L	09/04/2012-09/18/2012	Portable Handset		Page 41 of 74
© 2012 PCTEST Engineering I	2012 PCTEST Engineering Laboratory, Inc.			REV 1.7AWS


Plot 9-9. Conducted Spurious Plot (QPSK - RB Size 1, RB Offset 0 - Low Channel)


Plot 9-10. Conducted Spurious Plot (QPSK - RB Size 1, RB Offset 0 - Low Channel)

FCC ID: A3LSGHT889		FCC Pt. 22-27 LTE MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 42 of 74	1
0Y1208241208.A3L	09/04/2012-09/18/2012	Portable Handset		Page 42 of 74	l
© 2012 PCTEST Engineering Laboratory, Inc.					vsc


Plot 9-11. Conducted Spurious Plot (QPSK - RB Size 1, RB Offset 0 - Mid Channel)


Plot 9-12. Conducted Spurious Plot (QPSK - RB Size 1, RB Offset 0 - Mid Channel)

FCC ID: A3LSGHT889		FCC Pt. 22-27 LTE MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 42 of 74
0Y1208241208.A3L	09/04/2012-09/18/2012	Portable Handset		Page 43 of 74
© 2012 PCTEST Engineering I	aboratory, Inc.	•		REV 1.7AW

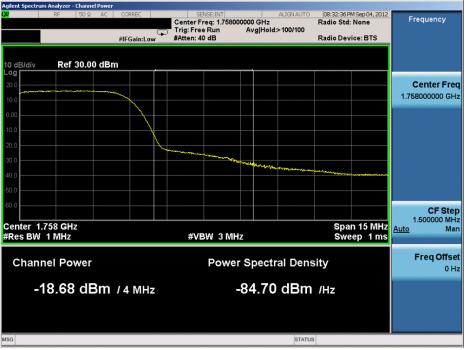
Plot 9-13. Conducted Spurious Plot (QPSK - RB Size 1, RB Offset 0 - High Channel)

Plot 9-14. Conducted Spurious Plot (QPSK - RB Size 1, RB Offset 0 - High Channel)

FCC ID: A3LSGHT889		FCC Pt. 22-27 LTE MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 44 of 74
0Y1208241208.A3L	09/04/2012-09/18/2012	Portable Handset		Page 44 of 74
© 2012 PCTEST Engineering I	2012 PCTEST Engineering Laboratory, Inc.			

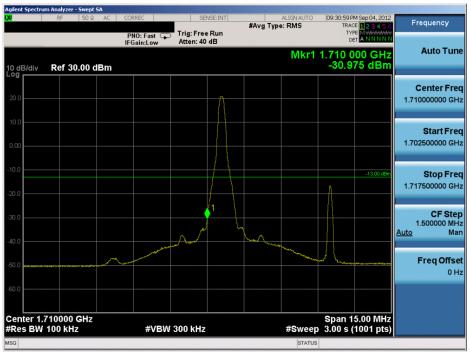
Plot 9-15. Upper Band Edge Plot (QPSK – RB Size 1, Offset 24)

Note: The Resolution Band Width use for this plot was at least 1% of the RB Size 1 Emission Band Width


Plot 9-16. Upper Band Edge Plot (QPSK – RB Size 25)

FCC ID: A3LSGHT889		FCC Pt. 22-27 LTE MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 45 of 74
0Y1208241208.A3L	09/04/2012-09/18/2012	Portable Handset		Page 45 of 74
© 2012 PCTEST Engineering I	2012 PCTEST Engineering Laboratory, Inc.			REV 1.7AWS

Plot 9-17. Upper Extended Band Edge Plot (QPSK - RB Size 1, Offset 24)



Plot 9-18. Upper Extended Band Edge Plot (QPSK – RB Size 25)

FCC ID: A3LSGHT889		FCC Pt. 22-27 LTE MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 46 of 74
0Y1208241208.A3L	09/04/2012-09/18/2012	Portable Handset		Page 46 of 74
2 2012 PCTEST Engineering Laboratory, Inc.				REV 1.7AW

PLOT(S) OF EMISSIONS - BAND 4 (10 MHZ) 10.0

Plot 10-1. Lower Band Edge Plot (QPSK – RB Size 1, Offset 0) Note: The Resolution Band Width use for this plot was at least 1% of the RB Size 1 Emission Band Width


Plot 10-2. Lower Band Edge Plot (QPSK – RB Size 50)

FCC ID: A3LSGHT889		FCC Pt. 22-27 LTE MEASUREMENT REPORT (CERTIFICATION)	SAMEUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 47 of 74
0Y1208241208.A3L	09/04/2012-09/18/2012	Portable Handset		Page 47 of 74
© 2012 PCTEST Engineering I	2012 PCTEST Engineering Laboratory. Inc.			

Plot 10-3. Lower Extended Band Edge Plot (QPSK - RB Size 1, Offset 0)

Plot 10-4. Lower Extended Band Edge Plot (QPSK - RB Size 50)

FCC ID: A3LSGHT889		FCC Pt. 22-27 LTE MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 49 of 74
0Y1208241208.A3L	09/04/2012-09/18/2012	Portable Handset		Page 48 of 74
© 2012 PCTEST Engineering	012 PCTEST Engineering Laboratory, Inc.			REV 1.7AW