

SAMSUNG ELECTRONICS Co., Ltd., Regulatory Compliance Group IT R&D Center

416, Maetan-3dong, Yeongtong-gu, Suwon-si, Gyeonggi-do, Korea 443-742

TEST REPORT ON HAC

Model Tested:

FCC ID (Requested):

Job No:

Report No:

Date issued:

A3LSGHT379 AI-043

SGH-T379

AI-043-T1

June 29, 2011

Result Summary:

T3 – 2007 (Signal To Noise Category)

- Abstract -

This document reports on HAC Tests carried out in accordance with ANSI C63.19(2007) §6.3, §7.3, FCC Rule Part(s) FCC 47 CFR §20.19

Prepared By

SH ONG – Test Engineer

Authorized By

JD JANG – Technical Manager

Report Number: AI-043-T1

Contents

1. GENERAL INFORMATION	3
2. DESCRIPTION OF DEVICE	3
3. Performance	4
3.1 RF EMISSIONS	4
3.2 ARTICULATION WEIGHTING FACTOR (AWF)	4
3.3 MAGNETIC COUPLING	5
4. DESCRIPTION OF TEST EQUIPMENT	7
4.1 HAC Measurement Setup	7
4.2 Scanning Mechanism	8
4.3 ITU-T P.50 Artificial Voice	8
4.4 Equipment Calibration	9
5. HAC MEASUREMENT PROCEDURE	
5.1 Ambient Noise Check per C63.19 §6.2.1	11
5.2 Measurement System Validation (See Figure 4-1)	11
5.3 Measurement Test Setup	14
6. MEASUREMENT UNCERTAINTY	
7. Test Results	20
7.1 Test Summary	
7.2 Raw Data for T-coil Measurement	22
7.3 Frequency Response Graph	24
7.4 1KHz Vocoder Application Check	
7.5 Undesirable Audio Magnetic Band Plot (ABM2)	25
7.6 T-coil Validation Test Results	26
8. Conclusion	
9. Reference	

1. GENERAL INFORMATION

Test Sample :	850/1900 GSM/GPRS EDGE and AWS PCS WCDMA/HSDPA Phone with Bluetooth		
Model Number : Serial Number : Manufacturer :	SGH-T379 Identical prototype (S/N :# FI-116-H) SAMSUNG ELECTRONICS Co., Ltd. 416 Maatan3 Dong, Yaongtong du, Suwon City		
Address :	Gyeonggi-Do, Korea 443-742		
Test Standard :	ANSI C 63.19 (2007), FCC 47 CFR § 20.19, §6.3, §7.3		
FCC Classification	Licensed Portable Transmitter Held to Ear (PCE)		
Test Dates :	Jun. 17, 2011		
Tested for :	FCC/TCB Certification		
2. DESCRIPTION OF DEVICE			
Tx Freq. Range :	824.2 ~ 848.8 MHz(GSM850) 1712.4 ~ 1752.5 MHz(AWS WCDMA) 1850.2 ~ 1909.8 MHz(GSM1900) 1850.2 ~ 1909.8 MHz(PCS WCDMA)		

Rx Freq. Range : 869.2 ~ 893.8 MHz(GSM850) 2112.4 ~ 2152.5 MHz(AWS WCDMA) 1930.20 ~ 1989.80 MHz(GSM1900) 1932.4 ~ 1987.6 MHz(PCS WCDMA)

Antenna Configuration : PIFA

Antenna Manufacturer : Gwang-Jin

Antenna Dmimensions :

46.01X18.99X5.12(mm) Indicating Operating modes for Air Interfaces/Bands

Air Interface	Band(MHz)	Туре	C63.19-2007 Tested	Simultaneous Transmissions Note:Not to be tested	Reduced Power 20.19 (c)(1)	Voice Over Digital Transport (Data)
GSM	835	Voice	Yes	Yes: BT	No	N/A
GSM	1900	Voice	Yes	Yes: BT	No	N/A
WCDMA	1700	Voice	Yes	Yes: BT	No	N/A
WCDMA	1900	Voice	Yes	Yes: BT	No	N/A
GSM	All band (835,1900)	Data	N/A	N/A	N/A	Nc
WCDMA	All band (1700,1900)	Data	N/A	N/A	N/A	Yes
ВТ	2450	Data	N/A	N/A	N/A	N/A

* HAC Rating was not based on concurrent voice and data mode.

Standalone mode was found to represent worst case rating for both M and T rating

3. Performance 3.1 RF EMISSIONS

The ANSI Standard presents performance requirements for acceptable interoperability of hearing aids with wireless communications devices. When these parameters are met, a hearing aid operates acceptably in close proximity to a wireless communications device.

Category	Telephone RF Parameters				
Near field Category	E-field emissions CW dB(V/m) H-field emissions CW CW dB(A/m)				
	f < 960 MHz				
M1	56 to 61 + 0.5 x AWF	5.6 to 10.6 +0.5 x AWF			
M2	51 to 56 + 0.5 x AWF	0.6 to 5.6 +0.5 x AWF			
M3	46 to 51 + 0.5 x AWF	-4.4 to 0.6 +0.5 x AWF			
M4	< 46 + 0.5 x AWF < -4.4 + 0.5 x AWF				
	f > 960 MHz				
M1	46 to 51 + 0.5 x AWF	-4.4 to 0.6 +0.5 x AWF			
M2	41 to 46 + 0.5 x AWF	–9.4 to –4.4 +0.5 x AWF			
М3	36 to 41 + 0.5 x AWF	-14.4 to -9.4 +0.5 x AWF			
M4	< 36 + 0.5 x AWF	< -14.4 + 0.5 x AWF			
Table 4-1Hearing aid and WD near-field categoriesas defined in ANSI C63.19-2007 [2]					

3.2 ARTICULATION WEIGHTING FACTOR (AWF)

Standard	Technology	Articulation Weighing Factor (AWF)		
T1/T1P1/3GPP	UMTS (WCDMA)	0		
TIA/EIA/IS-2000	CDMA	0		
iDEN'™	TDMA (22 and 11 Hz)	0		
J-STD-007 GSM (217 Hz)		-5		
Table 4-2 Articulation Weighting Factors				

3.3 MAGNETIC COUPLING

Axial and Radial Field Intensity

All orientations of the magnetic field, in the axial, horizontal and vertical position along the measurement plane shall be \geq -18 dB(A/m) at 1 kHz in a 1/3 octave band filter per 7.3.1.

Frequency Response

The frequency response of the axial component of the magnetic field shall follow the response curve specified in EIA RS-504-1983, over the frequency range 300 Hz - 3000 Hz per 7.3.2.

Magnetic Field frequency response for wireless devices with an axial field that exceeds –15 dB(A/m) at 1 kHz

Signal Quality

The table below provides the signal quality requirement for the intended audio magnetic signal from a wireless device. Only the RF immunity of the hearing aid is measured in T-coil mode. It is assumed that a hearing aid can have no immunity to an interference signal in the audio band, which is the intended reception band for this mode. The only criterion that can be measured is the RF immunity in T-coil mode. This is measured using the same procedure as the audio coupling mode at the same levels.

The signal quality of the axial and radial components of the magnetic field was used to determine the T-coil mode category.

Category	Telephone RF Parameters			
	Wireless Device Signal Quality (Signal + Noise-to-noise ratio in dB)			
T1	0 to 10 dB			
T2	10 to 20 dB			
Т3	20 to 30 dB			
T4	> 30 dB			
Table 4-3 Magnetic Coupling Parameters				

4. DESCRIPTION OF TEST EQUIPMENT

4.1 HAC Measurement Setup

The equipment was connected as shown in an acoustic/RF hemi-anechoic chamber:

Figure 4-1 Validation Setup with Helmholtz Coil

Figure 4-2 T-Coil Test Setup

4.2 Scanning Mechanism

Manufacturer:	TEM
Accuracy:	± 0.83 cm/meter
Minimum Step Size:	0.1 mm
Maximum speed	6.1 cm/sec
Line Voltage:	115 VAC
Line Frequency:	60 Hz
Material Composite:	Delrin (Acetal)
Data Control:	Parallel Port
Dynamic Range (X-Y-Z):	45 x 31.75 x 47 cm
Dimensions:	36" x 25" x 38"
Operating Area:	36" x 49" x 55"
Reflections:	< -20 dB (in anechoic chamber)

Figure 4-3 RF Near-Field Scanner

4.3 ITU-T P.50 Artificial Voice

noise

Manufacturer:		ITU-T	
Active Range:	Frequency	100 Hz – 8 kHz	
Stimulus Type:		Male and Female, no spaces	
Single Sample Duration:		20.96 seconds	
Activity Level:		100%	

Figure 4-4 Spectral Characteristic of full P.50

100Hz-10kHz

Power Sum

ighting curve

ABM2 ->

Figure 4-6 Magnetic Measurement Processing Steps

Integrator curve

pre-gain factor

4.4 Equipment Calibration Table 3.2 Test Equipment Calibration

Model	odel Description Cal. Due Date		Serial No.
CMU200	Base Station Simulator	Oct/25/2011	109162
4474	Data Acquisition Card	N/A	N/A
Positioner	HAC Positioner	N/A	N/A
HAC System	HAC System controller with S/W	N/A	N/A
Axial T-coil Probe	Axial T-coil Probe	Jan/14/2012	TEM-1115
Radial T-coil Probe	Radial T-coil Probe	Jan/14/2012	TEM-1119
E4440A	PSA Spectrum analyzer	Feb/24/2012	MY45304704
E4419B	EPM Power Meter	Feb /25/2012	MY45103291
E9300B	Power Sensor	Mar/4/2012	MY41496209
Fluke87	RMS Multimeter	Dec/20/2011	65030199
E3640A	Power supply	Dec/20/2011	MY40009112
AMCC	H/H coil(Speag)	N/A	N/A

5. HAC MEASUREMENT PROCEDURE

The flow diagram below was followed (From C63.19):

Figure 5-1 Test Procedure for T-coil Measurement

5.1 Ambient Noise Check per C63.19 §6.2.1

- a. Ambient interference was monitored using a Real-Time Analyzer between 100-10,000 Hz with 1/3 octave filtering.
- b. "A-weighting" and Half-Band Integration was applied to the measurements.
- c. Since this measurement was measured in the same method as ABM2 measurements, this level was verified to be less than 10 dB below the lowest measurement signal (which is the highest ABM2 measurement for a T4 WD). Therefore the maximum noise level for a T4 WD with an ABM1 = -18 dBA/m is:

5.2 Measurement System Validation (See Figure 4-1)

- a. The measurement system including the probe, pre-amplifier and acquisition system were validated as an entire system to ensure the reliability of test measurements.
- b. ABM1 Validation

The magnetic field at the center of the Helmholtz coil is given by the equation (per C63.19 Annex D.9.1):

$$H_{c} = \frac{NI}{r\sqrt{1.25^{3}}} = \frac{N(\frac{V}{R})}{r\sqrt{1.25^{3}}}$$

Where H_c = magnetic field strength in amperes per meter N = number of turns per coil

For a Helmholtz Coil, N=20; r=0.143m; R=10.2Ω and using V=102mV:

$$H_c = \frac{20 \cdot (\frac{0.102}{10.2})}{0.143 \cdot \sqrt{1.25^3}} = 1.0007 A / m$$

Therefore a pure tone of 1kHz was applied into the coils such that 102 mV was observed across the 10.2 Ω resistor. The voltmeter used for measurement was verified to be capable of measurements in the audio band range. This theoretically generates an expected field of 1 A/m in the center of the Helmholtz coil which was used to validate the probe measurement at 1 A/m. This was verified to be within ± 0.5 dB of the 1 A/m value.

c. Frequency Response Validation

The frequency response through the Helmholtz Coil was verified to be within 0.5 dB relative to 1 kHz, between 300 – 3000 Hz using the ITU-P.50 artificial speech signal as shown below:

Figure 5-2 Frequency Response Validation

d. ABM2 Measurement Validation

WD noise measurements are filtered with A-weighting and Half-Band Integration over a frequency range of 100Hz – 10kHz to process ABM2 measurements. Below is the verification of the system processing A-weighting and Half-Band integration between system input to output within 0.5 dB of the theoretical result:

	HBL A	HBL A -	
f (Hz)	Measured	Theoretical	dB Var
1 (112)	(dB re 1kHz)	(dB re 1kHz)	
100	-16.180	-16.170	-0.010
125	-13.257	-13.250	-0.007
160	-10.347	-10.340	-0.007
200	-8.017	-8.010	-0.007
250	-5.925	-5.920	-0.005
315	-4.045	-4.040	-0.005
400	-2.405	-2.400	-0.005
500	-1.212	-1.210	-0.002
630	-0.349	-0.350	0.001
800	0.071	0.070	0.001
1000	0.000	0.000	0.000
1250	-0.503	-0.500	-0.003
1600	-1.513	-1.510	-0.003
2000	-2.778	-2.780	0.002
2500	-4.316	-4.320	0.004
3150	-6.166	-6.170	0.004
4000	-8.322	-8.330	0.008
5000	-10.573	-10.590	0.017
6300	-13.178	-13.200	0.022
8000	-16.241	-16.270	0.029
10000	-19.495	-19.520	0.025

Table 5-1 ABM2 Frequency Response Validation

ABM2 Frequency Response Validation (LISTEN)

Figure 5-3 ABM2 Frequency Response Validation

The ABM2 result is a power sum from 100 Hz to 10 kHz with half-band integration and A-weighting. To verify the power sum measurement, a power sum over the full band was measured and verified to track with the source level (See Figure 5-9). Therefore the setup in this step was used to verify the power sum post-processing for ABM2 measurements. See below block diagram:

Figure 5-4 ABM2 Validation Block Diagram

The power summed output results for a known input were compared to the multimeter results to verify any deviation in the post-processing implemented with the power-sum.

Table 5-2 ABM2 Power Sum Validation WN Input Power Sum Multimeter-Full Dev (dB) (dBV) (dBV) (dBV) -60 -60.36 -60.2 0.16 -50 -50.19 -50.13 0.06 -40 -40.14 -40.03 0.11 -30 -30.13 -30.01 0.12 -20 -20.12 -20 0.12 -10 -10.14 -10 0.14

Figure 5-5 ABM2 Power Sum Validation

5.3 Measurement Test Setup

5.3.1 Fine scan above the WD (TEM)

a. A multi-tone signal was applied to the handset such that the phone acoustic output was stable within 1dB over the probe settling time and with the acoustic output level at the C63.19 specified levels (below). The measurement step size was in 2 mm increments at a distance of 10 mm between the surface of the wireless device as shown below.

- b. After scanning, the planar field maximum point was determined. The position of the probe was moved to this location to setup the test using the sound check system.
- c. These steps were repeated for the other T-coil orientations (of axial, radial transverse, or radial longitudinal) per Figure 5-16 after a T-coil orientation was fully measured with the sound check system.

5.3.2 Speech Signal Setup to Base Station Simulator

a. C63.19 Table 6-1 states audio reference input levels for various technologies:

Standard	Technology	Input Level (dBm0)
TIA/EIA/IS-2000	CDMA	-18
J-STD-007	GSM (217)	-16
T1/T1P1/3GPP	UMTS (WCDMA)	-16
iDEN [™]	TDMA (22 and 11 Hz)	-18

The CMU200 audio levels were determined using base station simulator manufacturer calibration procedures resulting in the below corresponding voltages relative to handset test point level (in dBm0):

CMU200 Voltage Input Levels for Audio					
	GSM				
	Decoder Cal.		Encoc	ler Cal.	Sensitivity
	Peak 1(mV)	Peak 1(dBV)	Peak 1(mV)	Peak 1(dBV)	(DUT R)
3.16dBm0	1074.36	0.62	1074.53	0.62	1.077
-16dBm0			118.64	-18.52	
	WCDMA				
	Decoo	Decoder Cal. Encoder Cal. Se		Encoder Cal.	
	Peak 1(mV)	Peak 1(dBV)	Peak 1(mV)	Peak 1(dBV)	(DUT R)
3.16dBm0	1074.36	0.62	1074.53	0.62	1.077
-16dBm0			118.64	-18.52	

 Table 5-3

 CMU200 Voltage Input Levels for Audio

* Encoder cal. value adjusts to Decoder cal. value.

- b. Real-Time Analyzer (RTA)
 - i. The Real-Time Analyzer was configured to analyze measurements using 1/3 Octave band weighted filtering.
- c. WD Radio Configuration Selection
 - i. The worst case ABM2 for GSM was Enhanced Full Rate.
 - ii. The device was chosen to be tested in the worst-case ABM2 condition under AMR rates for WCDMA(see below) :.

Figure 5-7 Vocoder Analysis for ABM Noise (WCDMA)

Table 5-4The ABM2 levels of various AMR rates

	ABM2 Pre-Test (dBA/m)									
12.2Kbps	10.2Kbps	7.4Kbps	5.15Kbps	4.75Kbps	Orientation	Channel				
-40.47	-42	-45.34	-46.74	-47.95	Radial Transversal	1412				
			ABM1 Pre-	Test (dBA/m)					
12.2Kbps	10.2Kbps	7.4Kbps	5.15Kbps	4.75Kbps	Orientation	Channel				
11.74	11.34	11.13	11.16	11.06	Radial Transversal	1412				

5.3.3 Signal Quality Data Analysis

- a. Narrow-band Magnetic Intensity
 - i. The standard specifies a 1 kHz 1/3 octave band minimum field intensity for a sine tone. The ABM1 measurements were evaluated at 1kHz with 1/3 octave band filtering over an averaged period of 10 seconds.
- b. Frequency Response
 - i. The appropriate frequency response curve was measured to curves in Figure 4-1 or Figure 4-2 between 300 3000 Hz using digital linear averaging (limit lines chosen according to measurement found in step 4a.) A linear average over 3x the length of the artificial voice signal (3x sampling) was performed. A 10 second delay was configured in the measurement process of the stimulus to ensure handset vocoder latency effects and echo cancellation devices (if any) were appropriately stabilized during measurements.
 - ii. The appropriate post-processing was applied according to the system processing chain illustrated in Figure 5-13. All R10 frequencies were plotted with respect to 0dB at 1 kHz value and aligned with respect to the EIA-504 mask.

Figure 5-8 Frequency Response Block Diagram

- iii. The margin is represented by the closest measured data point on the curve to the EIA-504 limit lines, in dB.
- c. Signal Quality Index
 - Ensuring the WD was at maximum RF power, maximum volume, backlight on, display on, maximum contrast setting, keypad lights on (when possible) with no audio signal through the vocoder, the WD was measured over at least 100 Hz 10,000 Hz, maximized over 5 seconds with a 50ms sample time for the ABM2 measurement (5 second time period is used in noise measurements under standards such as IEEE 269, etc.)
 - ii. After applying half-band integration and A-weighting to the result, a power sum was applied over each 1/3 octave bandwidth frequency for an ABM2 value
 - iii. This result was subtracted from the ABM1 result in step a, to obtain the Signal Quality.

5.3.4 Wireless Device Channels and Frequencies

The frequencies listed in the table below are those that lie in the center of the bands used for cellular telephony. Low, middle and high channels were tested in each band for FCC compliance evaluation to ensure the maximum emission is captured across the entire band.

To facilitate setting of a base station simulator for ABM measurements, specific band plan channel numbers are listed that may be used in lieu of the band center frequencies.

Table 5-5 Center Channels and Freq	uencies					
Test frequencies & associated channels						
Channel	Frequency (MHz)					
Cellular 850						
384 (CDMA)	836.52					
UARFCN 4183(UMTS)	836.60					
190 (GSM)	836.60					
AWS 1730						
450 (CDMA)	1732.5					
UARFCN 1412 (UMTS)	1732.4					
PCS 1900						
661 (GSM)	1880					
600 (CDMA)	1880					
UARFCN 9400 (UMTS)	1880					

5.3.5 RF Emission Effect on T-coil Measurements

Figure 5-9 High Power RF Emissions Effect with HAC Dipole on the T-coil Probe System 10mm between dipole maximum and magnetic probe

Source of Uncertainty	Value %	Probability distribution	Divisor	c _i	u _i (y)	$(u_i(\mathbf{y}))^2$	\mathbf{v}_i or v_{eff}	ui(y) ⁴ /v _{eff}
Measurement sys	tem							
ABM Noise	0.16	normal	1.000	1	0.16	0.024	4	0.0001469
RF Reflection	4.70	rectangular	1.732	1	2.71	7.363	00	0
Reference Signal Level	12.20	rectangular	1.732	1	7.04	49.613	œ	0
Probe Coil Sensitivity	12.20	rectangular	1.732	1	7.04	49.613	8	0
Probe Linearity	2.40	rectangular	1.732	1	1.39	1.920	00	0
Cable Loss	2.80	rectangular	1.732	1	1.62	2.613	œ	0
Frequency Analyzer	5.00	rectangular	1.732	1	2.89	8.333	8	0
System Repeatibility	2.04	normal	1.000	1	2.04	4.176	4	4.360
Positioner Accuracy	1.00	rectangular	1.732	1	0.58	0.333	8	0
Test sample relate	ed			-	-			
WD Repeatibility	10.40	normal	1.000	1	10.40	108.137	4	2923.396
Phantom and set-up								
Positioning Accuracy	9.75	normal	1.000	1	9.75	95.045	4	2258.375
Combined Standard Uncertainty		normal			18.09	327.172	21	5186.131
Expanded Uncertainty		normal k=	2		35.45		21	

6. MEASUREMENT UNCERTAINTY

Notes:

1. Test equipments are calibrated according to techniques outlined in NIS81, NIS3003 and NIST Tech Note 1297.

2. All equipments have traceability according to NIST. Measurement Uncertainties are defined in further detail in

NIS 81 and NIST Tech Note 1297 and UKAS M3003.

Measurement uncertainty reflects the quality and accuracy of a measured result as compared to the true value. Such statements are generally required when stating results of measurements so that it is clear to the intended audience that the results may differ when reproduced by different facilities. Measurement results vary due to the measurement uncertainty of the instrumentation, measurement technique, and test engineer. Most uncertainties are calculated using the tolerances of the instrumentation used in the measurement, the measurement setup variability, and the technique used in performing the test. While not generally included, the variability of the equipment uncertainty is based on the variability of repeated measurements (so-called Type A uncertainty). This may mean that the Hearing Aid compatibility tests may have to be repeated by taking down the test setup and resetting it up so that there are a statistically significant number of repeat measurements to identify the measurement uncertainty. By combining the repeat measurement results with that of the instrumentation chain using the technique contained in NIS 81 and NIS 3003, the overall measurement uncertainty was estimated.

7. Test Results 7.1 Test Summary

Mode	Band	Orientation	Measurement Item	Limit	Measured	Verdict	Result	
		Axial	Intensity Frequency	-18	18.04	PASS		
		Axiai	Response	0	0.94	PASS		
			SININK	-18	20.91	PASS		
	GSM850	Radial Transverse	Frequency Response	0	0.88	PASS	Т3	
			SNNR	20	39.25	PASS		
			Intensity	-18	10.59	PASS		
	Radial Longitudinal	Frequency Response	0	1.47	PASS			
GSM			SNNR	20	25.09	PASS		
GSIN		Axial	Intensity	-18	18.24	PASS		
			Frequency Response	0	0.9	PASS		
			SNNR	20	33.48	PASS		
			Intensity	-18	4.67	PASS		
	GSM1900	Radial Transverse	Frequency Response	0	0.89	PASS	T4	
			SNNR	20	42.08	PASS		
			Intensity	-18	10.64	PASS		
		Radial Longitudinal	Frequency Response	0	1.38	PASS		
		_	SNNR	20	31.23	PASS		

Table 7-1 Table of Results for GSM and WCDMA

Mode	Band	Orientation	Measurement Item	Limit	Measured	Verdict	Result
			Intensity	-18	17.96	PASS	
	Axial	Frequency Response	0	0.87	PASS		
			SNNR	20	58.87	PASS	
			Intensity	-18	8.09	PASS	
	AWS WCDMA	Radial Transverse	Frequency Response	0	0.86	PASS	Т4
			SNNR	20	47.58	PASS	
		Intensity	-18	8.49	PASS		
	Radial Longitudinal	Frequency Response	0	1.33	PASS		
			SNNR	20	50.02	PASS	
VUCDIVIA			Intensity	-18	18	PASS	
		Axial	Frequency Response	0	0.87	PASS	
			SNNR	20	62.92	PASS	
			Intensity	-18	8.12	PASS	
PCS WCDMA	Radial Transverse	Frequency Response	0	0.87	PASS	Т4	
		SNNR	20	49.48	PASS		
			Intensity	-18	7.99	PASS	
		Radial Longitudinal	Frequency Response	0	0.87	PASS	
			SNNR	20	51.18	PASS	

*Note : The above results are tested in the worst case of ABM2 configuration. (According to table 5-4, the worst case is Enhanced Full Rate configuration for GSM and AMR 12.2 Kbps configuration for WCDMA)

The measured T-coil category is T3 for GSM mode and T4 for WCDMA. All raw data is in Section 7.2.

7.2 Raw Data for T-coil Measurement

		GSM850								
		Axial		Radi	Radial Transverse			Radial Longitudinal		
	Ch.128	Ch.190	Ch.251	Ch.128	Ch.190	Ch.251	Ch.128	Ch.190	Ch.251	
ABM1 (dBA/m)	18.23	18.04	18.07	8.24	8.21	8.21	10.59	10.76	10.61	
ABM2(dBA/m)	-8.85	-8.87	-10.88	-31.11	-31.04	-32.41	-14.5	-14.45	-16.53	
Frequency Response(dB)	0.99	1.01	0.94	0.9	0.88	0.91	1.52	1.55	1.47	
SNNR(dB)	27.08	26.91	28.95	39.34	39.25	40.62	25.09	25.21	27.13	
Ambient Noise(dBA/m)		-59.74			-59.95			-59.34		
Minimum of SNNR		26.91			39.25			25.09		

Table 7-2 Raw Data for GSM

		GSM1900								
		Axial			Radial Transverse			Radial Longitudinal		
	Ch.512	Ch.661	Ch.810	Ch.512	Ch.661	Ch.810	Ch.512	Ch.661	Ch.810	
ABM1 (dBA/m)	18.27	18.25	18.24	4.67	8.2	8.17	10.66	10.64	10.79	
ABM2(dBA/m)	-15.21	-15.91	-17.03	-37.41	-38.15	-39.26	-20.57	-21.66	-23.15	
Frequency Response(dB)	0.94	0.9	0.91	0.9	0.9	0.89	1.42	1.38	1.43	
SNNR(dB)	33.48	34.16	35.28	42.08	46.36	47.44	31.23	32.3	33.94	
Ambient Noise(dBA/m)		-59.74			-59.95			-59.34		
Minimum of SNNR		33.48			42.08			31.23		

WD Configuration : 1. Power configuration : Power Level is 33dBm for GSM850 and 30dBm for GSM1900 2. Phone condition : Mute On, Backlight On, Max Volume, Max Contrast, HAC mode On 3. Configuration : Enhanced Full Rate 4. X,Y Coordinate of T-coil measurement

	Axial	Radial Transverse	Radial Longitudinal	
[X,Y] from Bottom left	2.4, 2.6	2.0, 2.6	2.4, 3.0	

Raw Data for WCDMA

		AWS WCDMA								
		Axial			Radial Transverse			Radial Longitudinal		
	Ch.1312	Ch.1412	Ch.1862	Ch.1312	Ch.1412	Ch.1862	Ch.1312	Ch.1412	Ch.1862	
ABM1 (dBA/m)	18	18.12	17.96	8.09	8.14	8.26	8.49	8.59	8.56	
ABM2(dBA/m)	-43.51	-47.24	-40.91	-39.48	-47.04	-50.26	-41.53	-42.91	-45.13	
Frequency Response(dB)	0.87	0.89	0.87	0.86	0.89	0.88	1.33	1.38	1.37	
SNNR(dB)	61.51	65.35	58.87	47.58	55.18	58.54	50.02	51.49	53.69	
Ambient Noise(dBA/m)		-59.74			-59.95			-59.34		
Minimum of SNNR		58.87			47.58			50.02		

	PCS WCDMA										
		Axial			Radial Transverse			Radial Longitudinal			
	Ch.9262	Ch.9400	Ch.9538	Ch.9262	Ch.9400	Ch.9538	Ch.9262	Ch.9400	Ch.9538		
ABM1 (dBA/m)	18.11	18	18	8.13	8.12	8.14	8.04	7.99	8.2		
ABM2(dBA/m)	-47	-47.51	-44.92	-50.67	-45	41.34	-44.48	-46	-42.98		
Frequency Response(dB)	0.91	0.87	0.88	0.87	0.9	0.88	0.87	0.88	0.9		
SNNR(dB)	65.11	65.51	62.92	58.8	53.13	49.48	52.52	53.99	51.18		
Ambient Noise(dBA/m)		-59.74			-59.95			-59.34			
Minimum of SNNR		62.92			49.48			51.18			

WD Configuration :

1. Power configuration : Power Control Bits = "All Up"

2. Phone condition : Mute On, Backlight On, Max Volume, Max Contrast, HAC mode On

AMR Configuration : 12.2 Kbps (EVRC)
 X,Y Coordinate of T-coil measurement

	Axial	Radial Transverse	Radial Longitudinal	
[X,Y] from Bottom left	2.4, 2.6	2.2, 2.4	2.4, 3.0	

7.3 Frequency Response Graph

Frequency Response Margin Upper Limit T-Coil Frequency Response Aligned Frequency Response Margin Lower Limit

\sim
~

Note : This frequency response represents the worst-case ABM2 test configuration according to Table 7-2 for GSM

Note : This frequency response represents the worst-case ABM2 test configuration according to Table 7-2 for WCDMA

7.4 1KHz Vocoder Application Check

This model was verified to be within the linear region for ABM1 measurements. Two type of modes were tested in the axial configuration above the ABM1 maximum location/configuration derived from Table 7-1 & Table 7-2.

Note : This plot represents the data from the location/configuration resulting in the highest ABM2 result regarding Table 7-2 for GSM and WCDMA

7.6 T-coil Validation Test Results

Frequency Response Margin Upper Limit T-Coil Frequency Response Aligned Frequency Response Margin Lower Limit

Figure 7-1 Helmholtz coil Validation for Frequency Response

Table 7-3Table of Results for Helmholtz coil and Noise Validation

Orientation Item		Target	Measured dB	Verdict		
Helmholtz coil validation						
Axial	Frequency Response	0 ±0.5dB	0.23	PASS		
Axiai	Magnetic Intensity, 0 dBA/m	0 ±0.5dB	0.04	PASS		
Padial	Frequency Response	0 ±0.5dB	0.22	PASS		
Taulai	Magnetic Intensity, 0 dBA/m	0 ±0.5dB	0.01	PASS		
Noise Validation						
Axial		< -58dBA/m	-59.74	PASS		
Radial Transverse		< -58dBA/m	-59.95	PASS		
Radial Longitudinal		< -58dBA/m	-59.34	PASS		

8. Conclusion

The measurements indicate that the wireless communications device complies with the HAC limits specified in accordance with the ANSI C63.19 standard and FCC WT Docket No. 01-309 RM-8658. Precise laboratory measures were taken to assure repeatability of the tests. The tested device complies with the requirements in respect to all parameters specific to the test. The test results and statements relate only to the item tested.

The measurement system and techniques presented in this evaluation are proposed in the ANSI standard as a means of best approximating wireless device compatibility with a hearing-aid. The literature is under continual re-construction.

9. Reference

[1] ANSI C63.19-2007, American National Standard for Methods of Measurement of Compatibility between Wireless communication devices and Hearing Aids.", New York, NY, IEEE, June. 2008.

[2] FCC Public Notice DA 06-1215, Wireless Telecommunications Bureau and Office of Engineering and Technology Clarify Use of Revised Wireless Phone Hearing Aid Compatibility Standard, June 6,2006

[3] FCC 3G Review Guidance, Laboratory Division OET FCC, Oct 2007

[4] Berger, H. S., "Compatibility Between Hearing Aids and Wireless Devices," Electronic Industries Forum, Boston, MA, May, 1997

[5] Berger, H. S., "Hearing Aid and Cellular Phone Compatibility: Working Toward Solutions," Wireless Telephones and Hearing Aids: New Challenges for Audiology, Gallaudet University, Washington, D.C., May, 1997 (To be reprinted in the American Journal of Audiology).

[6] Berger, H. S., "Hearing Aid Compatibility with Wireless Communications Devices," IEEE International Symposium on Electromagnetic Compatibility, Austin, TX, August, 1997.

[7] Bronaugh, E. L, "Simplifying EMI Immunity (Susceptibility) Tests in TEM Cells," in the 1990 IEEE International Symposium on Electromagnetic Compatibility Symposium Record, Washington, D.C., August 1990, pp. 488-491

[8] Byrne, D. and Dillon, H., The National Acoustics Laboratory (NAL) New Procedure for Selecting the Gain and Frequency Response of a Hearing Aid, Ear and Hearing 7:257-265, 1986.

[9] Crawford, M. L, "Measurement of Electromagnetic Radiation from Electronic Equipment using TEM Transmission Cells," U.S. Department of Commerce, National Bureau of Standards, NBSIR 73-306, Feb. 1973.

[10] Crawford, M. L, and Workman, J. L, "Using a TEM Cell for EMC Measurements of Electronic Equipment," U.S. Department of Commerce, National Bureau of Standards. Technical Note 1013, July 1981.

[11] EHIMA GSM Project, Development phase, Project Report (1st part) Revision A. Technical-Audiological Laboratory and Telecom Denmark, October 1993.

[12] EHIMA GSM Project, Development phase, Part II Project Report. Technical-Audiological Laboratory and Telecom Denmark, June 1994.

[13] EHIMA GSM Project Final Report, Hearing Aids and GSM Mobile Telephones: Interference Problems, Methods of Measurement and Levels of Immunity. Technical-Audiological Laboratory and Telecom Denmark, 1995.

[14] HAMPIS Report, Comparison of Mobile phone electromagnetic near field with an upscaled electromagnetic far field, using hearing aid as reference, 21 October 1999.

[15] Hearing Aids/GSM, Report from OTWIDAM, Technical-Audiological Laboratory and Telecom Denmark, April 1993.

[16] EEE 100, The Authoritative Dictionary of IEEE Standards Terms, Seventh Edition.

[17] Joyner, K. H, et. al., Interference to Hearing Aids by the New Digital Mobile Telephone System, Global System for Mobile (GSM) Communication Standard, National Acoustic Laboratory, Australian Hearing Series, Sydney 1993.

[18] Joyner, K. H., et. al., Interference to Hearing Aids by the Digital Mobile Telephone System, Global System for Mobile Communications (GSM), NAL Report #131, National Acoustic Laboratory Australian Hearing Series, Sydney, 1995.

[19] Keeker, W. T., Crawford, M. L., and Wilson, W. A., "Contruction of a Transverse Electromagnetic Cell", U.S. Department of Commerce, National Bureau of Standards, Technical Note 1011, Nov. 1978.

[20] Konigstein, D., and Hansen, D., "A New Family of TEM Cells with enlarged bandwidth and Optimized working Volume," in the Proceedings of the 7th International Symposium on EMC, Zurich, Switzerland, March 1987; 50:9, pp. 127-132.

[21] Kuk, F., and Hjorstgaard, N. K., "Factors affecting interference from digital cellular telephones, " Hearing Journal, 1997; 50:9, pp 32-34.

[22] Ma, M. A., and Kanda, M., "Electromagnetic Compatibility and Interference Metrology," U.S. Department of Commerce, National Bureau of Standards, Technical Note 1099, July 1986, pp.17-43.

[23] Ma, M. A., Sreenivashiah, I., and Chang, D. C, "A Method of Determining the Emission and Susceptibility Levels of Electrically Small Objects Using a TEM Cell," U.S. Department of Commerce, National Bureau of Standards, Technial Note 1040, July 1981.

[24] McCandless, G. A., and Lyregaard, P. E., Prescription of Gain/Output (POGO) for Hearing Aids, Hearing Instruments 1:16-21, 1983

[25] Skopec, M., "Hearing Aid Electromagnetic Interference from Digital Wireless Telephones, "IEEE Transactions on Rehabilitation Engineering, vol. 6, no. 2, pp. 235-239, June 1998.

[26] Technical Report, GSM 05.90, GSM EMC Considerations, European Telecommunications Standards Institute, January 1993.

[27] Victorian, T. A., "Digital Cellular Telephone Interference and Hearing Aid Compatibility—an Update," Hearing Journal 1998; 51:10, pp. 53-60

[28] Wong, G. S. K., and Embleton, T. F. W., eds., AIP Handbook of Condenser Microphones: Theory, Calibration and Measurements, AIP Press.

Wes	st Caldwell Calib	oration La	aboratories I	nc.
Cer	tificate o	of Ca	librati	on
Ď				
	AXIAL T Manufactured by: Model No: Serial No: Calibration Recal	COIL PROBE TEM AXIA TEM	I CONSULTING AL T COIL PROBE I-1115 5	
	Su	bmitted By:		
2	Customer:	STEVE LIU		
	Company: Address:	PCTEST ENG 6660-B DOBBI COLUMBIA	INEERING LAB N ROAD MD 21	045
The subject instr National Institute This document co submitter.	ument was calibrated to the in e of Standards and Technolog ertifies that the instrument me	ndicated specific y or to accepted at the following s	ation using standards t values of natural physi specification upon its re	raceable to the cal constants. turn to the
West Caldwell C	alibration Laboratories Proce	edure No. A	XIAL T C TEM	
Upon receipt for	Calibration, the instrument w	vas found to be:		
) W	/ithin (X) see attack	hed Report of Ca	alibration.	
the tolerance of t	he indicated specification.			
West Caldwell C requirements, IS	alibration Laboratorie's calib O 10012-1 MIL STD 45662A,	ration control s ANSI/NCSL Z5	ystem meets the followi 540-1, IEC Guide 25, IS	ng O 9001:2008
and ISO 17025				
Note: With this Certi	ficate, Report of Calibration is inclu	uded.	Approved by:	
Calibration Date	: 14-Jan-11		FC	
Certificate No:	20385 - 2		Felix Christopher	
QA Doc. #1051 Rev. 2.0 1	0/1/01 Certifica	ate Page 1 of 1	Quality Manager	
	West Caldwell		ISO 9001:2008 Registered Company	ISO/IEC 1702
uncompromised cellib		Inc.	Calibration Traceable to N.I.S.T.	ACCREDITED Certificate #1533.01
1575 State Pouto 06	Victor NY 14564 USA		Phone: (585) 586-3900	Eax: (585) 586-43

Report Number: AI-043-T1

HCATEMC_TEM-1115_Jan-14-2011

West Caldwell Calibration uncompromised calibration Laboratories, Inc.

1575 State Route 96, Victor NY 14564

REPORT OF CALIBRATION for

TEM Consulting LP Axial T Coil Probe Model No.: Axial T Coil Probe Serial No.: TEM-1115 Company : PC Test Inc. I. D. No: XXXX Calibration results: Before data: After data: Probe Sensitivity measured with Helmholtz Coil Helmholtz Coil: Before & after data same:X...... the number of turns on each coil; 10 No. the radius of each coil, in meters; 0.204 Laboratory Environment: m the current in the coils, in amperes.; 0.08 А Ambient Temperature: 24.4 °C Helmholtz Coil Constant; 6.98 27.6 A/m/V Ambient Humidity: % RH Helmholtz Coil magnetic field; 5.93 A/m Ambient Pressure: 100.3 kPa Calibration Date: 14-Jan-11 3:26 PM Probe Sensitivity at 1000 Hz. Re-calibration Due: 14-Jan-12 dBV/A/m -2 -60.20 20385 was Report Number: 0.978 mV/A/m Control Number: 20385 Probe resistance 888 Ohms The above listed instrument meets or exceeds the tested manufacturer's specifications. This Calibration is traceable through NIST test numbers: ,205342 The expanded uncertainty of calibration: 0.30dB at 95% confidence level with a coverage factor of k=2. Graph represents Probes Frequency Response. Axial Probe Response Measured Probe 20 15 10 5 Magnitude (dB) 0 -5 -10 -15 -20 100 Freq. (Hz) 1000 10000 The above listed instrument was checked using calibration procedure documented in West Caldwell Calibration Laboratories Inc. procedure : Rev. 5.0 Sept. 10, 2010 Doc. # 1038 HCATEMC Calibration was performed by West Caldwell Calibration Laboratories Inc. under Operating Procedures intended to implement the requirements of ISO10012-1, IEC Guide 25, ANSI/NCSL Z540-1, (MIL-STD-45662A) and ISO 9001:2008, ISO 17025 Cal. Date: 14-Jan-2011 3:26 PM 1 Measurements performed by: Calibrated on WCCL system type 9700 Felix Christopher Rev. 5.0 Sept. 10, 2010 Doc. # 1038 HCATEMC

This document shall not be reproduced, except in full, without the written approval from West Caldwell Cal. Labs. Inc.

Page 1 of 2

HCATEMC_TEM-1115_Jan-14-2011

West Caldwell Calibration Laboratories Inc.

1575 State Route 96, Victor NY 14564 Tel. (585) 586-3900 FAX (585) 586-4327

Calibration Data Record

TEM Consulting LP Axial T Coil Probe

for Model No.: Axial T Coil Probe

Serial No.: TEM-1115

Company : PC Test Inc.

Test Function		Tolerance		Measured values		
				Before	Out	Remarks
1.0	Probe Sensitivity at	1000 Hz.	dBV/A/m	-60.20		
2.0	Probe Level Linearity	Ref. (0 dB)	dB 6 -6 -12	6.02 0.00 -6.02 -12.03		
3.0	Probe Frequency Response	Ref. (0 dB)	Hz 100 126 158 200 251 316 398 501 631 794 1000 1259 1585 1995 2512 3162 3981 5012 6310 7943 10000	-19.8 -17.9 -15.9 -13.9 -9.9 -8.0 -6.0 -4.0 -2.0 0.0 2.0 4.0 6.0 7.9 9.9 11.9 13.9 15.9 18.0 20.1		

Instruments used for calibrat	ion:		Date of Cal.	Traceablity No.	Due Date
HP	34401A	S/N US360641	8-Nov-2010	,205342	8-Nov-2011
HP	34401A	S/N US361024	8-Nov-2010	,205342	8-Nov-2011
HP	33120A	S/N S3604371	8-Nov-2010	,205342	8-Nov-2011
B&K	2133	S/N 1492410	1-Oct-2010	822/278767-10	1-Oct-2011

Cal. Date: 14-Jan-2011 3:26 PM

Tested by: Felix Christopher

Calibrated on WCCL system type 9700

This document shall not be reproduced, except in full, without the written approval from West Caldwell Cal. Labs. Inc.

Rev. 5.0 Sept. 10, 2010 Doc. # 1038 HCATEMC

Page 2 of 2

West	Caldwell Calibrati	on Laboratories Inc.	
Cert	ificate of	Calibration	
	RADIAL T COIL Manufactured by: Model No: Serial No: Calibration Recall No:	L PROBE TEM CONSULTING RADIAL T COIL PROBE TEM-1119 20385	
	Submitted	d Bv	
	Customer: STEV	ELIU	
	Company: PCTE Address: 6660-1 COLU	ST ENGINEERING LAB B DOBBIN ROAD JMBIA MD 21045	
The subject instrum National Institute of This document certi submitter.	tent was calibrated to the indicated f Standards and Technology or to ffies that the instrument met the fo	d specification using standards traceable to t accepted values of natural physical constants ollowing specification upon its return to the	he s.
West Caldwell Cali	bration Laboratories Procedure N	IO. RADIAL T TEM	
Upon receipt for Ca	libration, the instrument was four	nd to be:	
With	nin (X) see attached Rep	port of Calibration.	
the tolerance of the	indicated specification.		
West Caldwell Cali	bration Laboratorie's calibration	control system meets the following NCSL Z540-1, IEC Guide 25, ISO 9001:2008	
and ISO 17025	10012-1 MIL 5 10 45002A, AKOS		
Note: With this Certifica	ate, Report of Calibration is included.	Approved by:	
Calibration Date:	14-Jan-11	Fc	
Certificate No:	20385 - 1	Felix Christopher	
QA Doc. #1051 Rev. 2.0 10/1/	01 Certificate Page	Quality Manager)//FC 17025
	West Caldwell	ISO 9001:2008 ISC Registered Company	
uncompromised calibrati	on Laboratories, Inc.	Calibration Traceable Calibration Traceable Calibration Traceable Calibration	CREDITED
1575 State Route 96, Vie	ctor, NY 14564, U.S.A.	Phone: (585) 586-3900 Fax: (585) 5	36-4327

HCRTEMC_TEM-1119_Jan-14-2011

West Caldwell Calibration uncompromised calibration Laboratories, Inc.

1575 State Route 96, Victor NY 14564

Page 1 of 2

HCRTEMC_TEM-1119_Jan-14-2011

West Caldwell Calibration Laboratories Inc.

1575 State Route 96, Victor NY 14564 Tel. (585) 586-3900 FAX (585) 586-4327

Calibration Data Record for

TEM Consulting LP Radial T Coil Probe

ź

 ${\boldsymbol{r}}$

 \mathcal{F}

Model No.: Radial T Coil Probe

Serial No.: TEM-1119

Company : PC Test Inc.

Test	Function	Tolerance		Measured values			
				Before	Out	Remarks	
1.0	Probe Sensitivity at	1000 Hz.	dBV/A/m	-60.18			
			dB				
2.0	Probe Level Linearity		6	6.03			
		Ref. (0 dB)	0	0.00			
			-6	-6.02			
			-12	-12.03			
			Hz				
3.0	Probe Frequency Response		100	-19.8			
			126	-17.9			
			158	-15.9			
			200	-13.9			
			251	-11.9			
			316	-9.9			
			398	-8.0			
			501	-6.0		1	
			631	-4.0			
			794	-2.0			
		Ref. (0 dB)	1000	0.0			
			1259	2.0			
			1585	4.0			
			1995	6.0			
			2512	7.9			
			3162	9.9			
			3981	11.9			
			5012	13.9			
			6310	15.9			
			7943	18.0			
			10000	20.1			

Instruments used for c	alibration:		Date of Cal.	Traceability No.	Due Date
HP	34401A	S/N US360641	8-Nov-2010	,205342	8-Nov-2011
HP	34401A	S/N US361024	8-Nov-2010	,205342	8-Nov-2011
HP	33120A	S/N S3604371	8-Nov-2010	,205342	8-Nov-2011
B&K	2133	S/N 1492410	1-Oct-2010	822/278767-10	1-Oct-2011

Cal. Date: 14-Jan-2011 5:27 PM

Tested by: Felix Christopher

Calibrated on WCCL system type 9700

This document shall not be reproduced, except in full, without the written approval from West Caldwell Cal. Labs. Inc.

Rev. 5.0 Sept. 10, 2010 Doc. # 1038 HCRTEMC

Page 2 of 2