

PCTEST ENGINEERING LABORATORY, INC.

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctestlab.com

SAR EVALUATION REPORT

Applicant Name:

Samsung Electronics, Co. Ltd. 129, Samsung-ro, Maetan dong, Yeongtong-gu, Suwon-si Gyeonggi-do 443-742, Korea Date of Testing: 07/29/13 - 08/05/13 Test Site/Location: PCTEST Lab, Columbia, MD, USA Document Serial No.: 0Y1307261450.A3L

FCC ID:

A3LSGHI337

APPLICANT:

SAMSUNG ELECTRONICS, CO. LTD.

DUT Type: Application Type: FCC Rule Part(s): Model(s): Serial Number(s): Permissive Change(s): Date of Original Certification: Portable Handset Class II Permissive Change CFR §2.1093 SGH-I337 FK-193-A [Pre-production] WIFI 5GHz FEM Vendor Change April 1, 2013

Equipment	Band & Mode	Tx Frequency	Measured Conducted	SAR			
Class		TXT requeries	Power [dBm]	1 gm Head (W/kg)	1 gm Body- Worn (W/kg)	1 gm Wireless Router (W/kg)	
DTS	5.8 GHz WLAN	5745 - 5825 MHz	12.51	0.24	0.12	0.23	
NII	5.2 GHz WLAN	5180 - 5240 MHz	12.78	0.41	0.82		
NII	5.3 GHz WLAN	5260 - 5320 MHz	13.08	0.40	0.73		
NII	5.5 GHz WLAN	5500 - 5700 MHz	13.18	0.16	0.32		
Simultaneous SAR per KDB 690783 D01v01r02:				1.01	1.58	1.01	

Note: Powers in the above table represent output powers for the SAR test configurations and may not represent the highest output powers for all configurations for each mode.

The table above shows WIFI 5GHz SAR Test Data evaluated for current test report. Please refer to RF Exposure Technical Report S/N 0Y1303140498-R1.A3L for original compliance evaluation.

This wireless portable device has been shown to be capable of compliance for localized specific absorption rate (SAR) for uncontrolled environment/general population exposure limits specified in ANSI/IEEE C95.1-1992 and has been tested in accordance with the measurement procedures specified in Section 1.9 of this report; for North American frequency bands only.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them. Test results reported herein relate only to the item(s) tested.

Randy Ortanez President

FCC ID: A3LSGHI337		SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	D
0Y1307261450.A3L	07/29/13 - 08/05/13	Portable Handset	Page 1 of 33

TABLE OF CONTENTS

1	DEVICE	UNDER TEST	3
2	INTRODU	JCTION	8
3	DOSIME	TRIC ASSESSMENT	9
4	DEFINITI	ON OF REFERENCE POINTS 1	0
5	TEST CC	NFIGURATION POSITIONS FOR HANDSETS 1	1
6	RF EXPC	SURE LIMITS 1	5
7	FCC MEA	ASUREMENT PROCEDURES 1	6
8	RF CONE	DUCTED POWERS 1	7
9	SYSTEM	VERIFICATION 2	0
10	SAR DAT	A SUMMARY 2	2
11	FCC MUL	TI-TX AND ANTENNA SAR CONSIDERATIONS 2	5
12	SAR MEA	ASUREMENT VARIABILITY 2	8
13	EQUIPM	ENT LIST 2	9
14	MEASUR	EMENT UNCERTAINTIES 3	0
15	CONCLU	SION	1
16	REFERE	NCES 3	2
APPEN	IDIX A:	SAR TEST PLOTS	
APPEN	IDIX B:	SAR DIPOLE VERIFICATION PLOTS	
APPEN	IDIX C:	PROBE AND DIPOLE CALIBRATION CERTIFICATES	
APPEN	IDIX D:	SAR TISSUE SPECIFICATIONS	
APPEN	IDIX E:	SAR SYSTEM VALIDATION	

APPENDIX F: SAR TEST SETUP PHOTOGRAPHS

FCC ID: A3LSGHI337		SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		
0Y1307261450.A3L	07/29/13 - 08/05/13	Portable Handset		Page 2 of 33

1 DEVICE UNDER TEST

1.1 Device Overview

Band & Mode	Operating Modes	Tx Frequency
GSM/GPRS/EDGE 850	Voice/Data	824.20 - 848.80 MHz
UMTS 850	Voice/Data	826.40 - 846.60 MHz
GSM/GPRS/EDGE 1900	Voice/Data	1850.20 - 1909.80 MHz
UMTS 1900	Voice/Data	1852.4 - 1907.6 MHz
LTE Band 17	Data	706.5 - 713.5 MHz
LTE Band 5 (Cell)	Data	826.5 - 846.5 MHz
LTE Band 4 (AWS)	Data	1712.5 - 1752.5 MHz
LTE Band 2 (PCS)	Data	1852.5 - 1907.5 MHz
2.4 GHz WLAN	Data	2412 - 2462 MHz
5.8 GHz WLAN	Data	5745 - 5825 MHz
5.2 GHz WLAN	Data	5180 - 5240 MHz
5.3 GHz WLAN	Data	5260 - 5320 MHz
5.5 GHz WLAN	Data	5500 - 5700 MHz
Bluetooth	Data	2402 - 2480 MHz
NFC	Data	13.56 MHz

1.2 Nominal and Maximum Output Power Specifications

This device operates using the following maximum and nominal output power specifications. SAR values were scaled to the maximum allowed power to determine compliance per KDB Publication 447498 D01v05.

Mode / Band	Modulated Average (dBm)	
	Maximum	17.0
IEEE 802.11D (2.4 GHZ)	Nominal	16.5
	Maximum	15.0
IEEE 802.11g (2.4 GHZ)	Nominal	14.5
	Maximum	14.0
IEEE 802.1111 (2.4 GHZ)	Nominal	13.5
IEEE 802 112 (5 GHz)	Maximum	13.5
	Nominal	13.0
	Maximum	13.5
	Nominal	13.0
	Maximum	13.0
	Nominal	12.5
Plustooth	Maximum	10.0
Bluetooth	Nominal	9.5

FCC ID: A3LSGHI337		SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D
0Y1307261450.A3L	07/29/13 - 08/05/13	Portable Handset		Page 3 of 33

1.3 DUT Antenna Locations

Note: Exact antenna dimensions and separation distances are shown in the Technical Descriptions in the FCC Filing.

Figure 1-1 DUT Antenna Locations

Table 1-1 Wireless Router Sides for SAR Testing

Mode	Back	Front	Тор	Bottom	Right	Left
5.8 GHz WLAN	Yes	Yes	Yes	No	Yes	No

Note: Particular DUT edges were not required to be evaluated for Wireless Router SAR if the edges were greater than 2.5 cm from the transmitting antenna according to FCC KDB Publication 941225 D06v01 guidance, page 2. This device supports 5 GHz Hotspot in the 5.8 GHz band only.

FCC ID: A3LSGHI337		SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	
0Y1307261450.A3L	07/29/13 - 08/05/13	Portable Handset	Page 4 of 33

1.4 Near Field Communications (NFC) Antenna

This DUT has NFC operations. The NFC antenna is integrated into the specialized battery. The SAR tests were performed with the specialized battery (model: **B600BU**).

FCC ID: A3LSGHI337		SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D
0Y1307261450.A3L	07/29/13 - 08/05/13	Portable Handset		Page 5 of 33

1.5 **Simultaneous Transmission Capabilities**

According to FCC KDB Publication 447498 D05v01, transmitters are considered to be transmitting simultaneously when there is overlapping transmission, with the exception of transmissions during network hand-offs with maximum hand-off duration less than 30 seconds.

This device contains multiple transmitters that may operate simultaneously, and therefore requires a simultaneous transmission analysis according to FCC KDB Publication 447498 D01v05 3) procedures.

Simultaneous Transmission Paths

Simultaneous Transmission Scenarios						
		Head	Body-Worn Accessory	Hotspot		
No.	Capable Transmit Configurations	IEEE 1528, Supplement C	Supplement C	FCC KDB 941225 D06 Edges/Sides	Note	
1	GSM 850/1900 MHz Voice + Wifi 2.4 GHz	Yes	Yes	N/A		
2	850/1900 MHz UMTS Voice + Wifi 2.4 GHz	Yes	Yes	N/A		
3	850/1900 MHz GPRS/EDGE Data + Wifi 2.4 GHz	N/A	N/A	Yes	2G Hotspot	
4	850/1900 MHz UMTS Data + Wifi 2.4 Ghz	Yes*	Yes*	Yes	3G Hotspot	
5	LTE Band 17/5/4/2 Data + Wifi 2.4 GHz	Yes*	Yes*	Yes	4G Hotspot	
6	GSM 850/1900 MHz Voice + Wifi 5 GHz	Yes	Yes	N/A		
7	850/1900 MHz UMTS Voice + Wifi 5 GHz	Yes	Yes	N/A		
8	GSM Voice + 2.4 GHz Bluetooth	N/A	Yes	N/A		
9	UMTS Voice + 2.4 GHz Bluetooth	N/A	Yes	N/A		
10	LTE + 2.4 GHz Bluetooth	N/A	Yes*	N/A		
11	850/1900 MHz GPRS/EDGE Data + Wifi 5 GHz	N/A	N/A	Yes	WIFI Direct	
12	850/1900 MHz UMTS Data + Wifi 5 Ghz	Yes*	Yes*	Yes	WIFI Direct	
13	LTE Band 17/5/4/2 Data + Wifi 5 GHz	Yes*	Yes*	Yes	WIFI Direct	
14	All Voice + LTE	N/A	N/A	N/A	Not supported by H/W	
15	All Voice + Wifi + LTE	N/A	N/A	N/A	Not supported by H/W	

Table 1-2

(*) = for VOIP 3rd party applications possibly installed and used by the end-user

When the user utilizes multiple services in UMTS 3G mode it uses multi-Radio Access Bearer or multi-RAB. The power control is based on a physical control channel (Dedicated Physical Control Channel [DPCCH]) and power control will be adjusted to meet the needs of both services. Therefore, the UMTS+WLAN scenario also represents the UMTS Voice/DATA + WLAN Hotspot scenario.

Per the manufacturer, WIFI Direct is not expected to be used in conjunction with a held-to-ear or bodyworn accessory voice call. Therefore, there are no new simultaneous transmission scenarios involving WIFI direct.

FCC ID: A3LSGHI337		SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	
0Y1307261450.A3L	07/29/13 - 08/05/13	Portable Handset	Page 6 of 33

1.6 Wireless Charging Cover

This DUT may be used with a standard battery cover or with an optional wireless charging battery cover. Per FCC KDB Publication 648474 D04v01r01, SAR was measured using the standard battery cover and then repeated with the wireless charging battery cover for the highest reported SAR for each wireless technology, frequency band, operating mode, and exposure condition. No other additional test with wireless charging cover was required since all reported SAR were less than 1.2 W/kg.

1.7 SAR Test Exclusions Applied

Per the FCC change document for this device, the licensed transmitter and 2.4GHz WIFI/Bluetooth modes remain the same as the original certified device. Therefore, no additional SAR evaluations were required for these technologies.

This device supports 20 MHz and 40 MHz Bandwidths for IEEE 802.11n for 5 GHz WIFI only. IEEE 802.11n was not evaluated for SAR since the average output power of 20 MHz and 40 MHz bandwidths was not more than 0.25 dB higher than the average output power of IEEE 802.11a.

This device supports IEEE 802.11ac with the following features:

- a) Up to 80 MHz Bandwidth only
- b) No aggregate channel configurations
- c) 1 Tx antenna output
- d) 256 QAM is supported
- e) No new 5 GHz channels

Full SAR tests for all IEEE 802.11ac configurations were not required because the average output power was not more than 0.25 dB higher than IEEE 802.11a mode. IEEE 802.11ac was evaluated for the highest IEEE 802.11a configuration in each 5 GHz band and exposure condition.

This device supports 5 GHz Hotspot in the 5.8 GHz band only. Therefore, no other 5 GHz bands were evaluated for hotspot configurations.

1.8 Power Reduction for SAR

There is no power reduction used for any band/mode implemented in this device for SAR purposes.

1.9 Guidance Applied

- FCC OET Bulletin 65 Supplement C [June 2001]
- IEEE 1528-2003
- FCC KDB Publication 941225 D06 (Hotspot)
- FCC KDB Publication 248227 D01v01r02 (SAR Considerations for 802.11 Devices)
- FCC KDB Publication 447498 D01v05 (General SAR Guidance)
- FCC KDB Publication 865664 D01-D02 (SAR Measurements up to 6 GHz)
- FCC KDB Publication 648474 D03-D04 (Wireless Charging Cover)
- April 2013 TCB Workshop Notes (IEEE 802.11ac)

FCC ID: A3LSGHI337		SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dama 7 at 00
0Y1307261450.A3L	07/29/13 - 08/05/13	Portable Handset	Page 7 of 33

2 INTRODUCTION

The FCC and Industry Canada have adopted the guidelines for evaluating the environmental effects of radio frequency (RF) radiation in ET Docket 93-62 on Aug. 6, 1996 and Health Canada Safety Code 6 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices. [1]

The safety limits used for the environmental evaluation measurements are based on the criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate (SAR) in IEEE/ANSI C95.1-1992 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz [3] and Health Canada RF Exposure Guidelines Safety Code 6 [24]. The measurement procedure described in IEEE/ANSI C95.3-2002 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave [4] is used for guidance in measuring the Specific Absorption Rate (SAR) due to the RF radiation exposure from the Equipment Under Test (EUT). These criteria for SAR evaluation are similar to those recommended by the International Committee for Non-Ionizing Radiation Protection (ICNIRP) in Biological Effects and Exposure Criteria for Radiofrequency Electromagnetic Fields," Report No. Vol 74. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards.

2.1 SAR Definition

Specific Absorption Rate is defined as the time derivative (rate) of the incremental energy (dU) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ). It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body (see Equation 2-1).

Equation 2-1 SAR Mathematical Equation

$$SAR = \frac{d}{dt} \left(\frac{dU}{dm} \right) = \frac{d}{dt} \left(\frac{dU}{\rho dv} \right)$$

SAR is expressed in units of Watts per Kilogram (W/kg).

$$SAR = \frac{\sigma \cdot E^2}{\rho}$$

where:

 σ = conductivity of the tissue-simulating material (S/m)

 ρ = mass density of the tissue-simulating material (kg/m³)

E = Total RMS electric field strength (V/m)

NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relation to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane.[6]

FCC ID: A3LSGHI337		SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	
0Y1307261450.A3L	07/29/13 - 08/05/13	Portable Handset	Page 8 of 33

3 DOSIMETRIC ASSESSMENT

3.1 Measurement Procedure

The evaluation was performed using the following procedure:

- 1. The SAR distribution at the exposed side of the head or body was measured at a distance no greater than 5.0 mm from the inner surface of the shell. The area covered the entire dimension of the device-head and body interface and the horizontal grid resolution was determined per FCC KDB Publication 865664 D01v01 (See Table 3-1).
- 2. The point SAR measurement was taken at the maximum SAR

region determined from Step 1 to enable the monitoring of SAR fluctuations/drifts during the 1g/10g cube evaluation. SAR at this fixed point was measured and used as a reference value.

Figure 3-1 Sample SAR Area Scan

3. Based on the area scan data, the peak of the region with maximum SAR was determined by spline interpolation. Around this point, a volume was assessed according to the measurement resolution and volume size requirements of FCC KDB Publication 865664 D01v01 (See Table 3-1). On the basis of this data set, the spatial peak SAR value was evaluated with the following procedure (see references or the DASY manual online for more details):

a. The data was extrapolated to the surface of the outer-shell of the phantom. The combined distance extrapolated was the combined distance from the center of the dipoles 2.7mm away from the tip of the probe housing plus the 1.2 mm distance between the surface and the lowest measuring point. The extrapolation was based on a least-squares algorithm. A polynomial of the fourth order was calculated through the points in the z-axis (normal to the phantom shell).

b. After the maximum interpolated values were calculated between the points in the cube, the SAR was averaged over the spatial volume (1g or 10g) using a 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions). The volume was then integrated with the trapezoidal algorithm. One thousand points ($10 \times 10 \times 10$) were obtained through interpolation, in order to calculate the averaged SAR.

c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.

4. The SAR reference value, at the same location as step 2, was re-measured after the zoom scan was complete to calculate the SAR drift. If the drift deviated by more than 5%, the SAR test and drift measurements were repeated.

Maximum Area Scan I		Aaximum Area Scan Maximum Zoom Scan		Maximum Zoom Scan Spatial Resolution (mm)		
riequency	(Δx _{area} , Δy _{area})	$(\Delta x_{zoom}, \Delta y_{zoom})$	Uniform Grid	G	raded Grid	(x,y,z)
			∆z _{zoom} (n)	$\Delta z_{zoom}(1)^*$	$\Delta z_{zoom}(n>1)^*$	
≤ 2 GHz	≤ 15	≤8	≤5	≤4	$\leq 1.5^*\Delta z_{zoom}(n-1)$	≥ 30
2-3 GHz	≤ 12	≤ 5	≤5	≤4	$\leq 1.5^*\Delta z_{zoom}(n-1)$	≥ 30
3-4 GHz	≤ 12	≤ 5	≤4	≤3	$\leq 1.5^*\Delta z_{zoom}(n-1)$	≥ 28
4-5 GHz	≤ 10	≤ 4	≤3	≤ 2.5	≤ 1.5*∆z _{zoom} (n-1)	≥ 25
5-6 GHz	≤ 10	≤ 4	≤2	≤2	≤ 1.5*∆z _{zoom} (n-1)	≥ 22

Table 3-1 Area and Zoom Scan Resolutions per FCC KDB Publication 865664 D01v01

FCC ID: A3LSGHI337		SAR EVALUATION REPORT	MSUNG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		
0Y1307261450.A3L	07/29/13 - 08/05/13	Portable Handset		Page 9 of 33

4 DEFINITION OF REFERENCE POINTS

4.1 EAR REFERENCE POINT

Figure 4-2 shows the front, back and side views of the SAM Twin Phantom. The point "M" is the reference point for the center of the mouth, "LE" is the left ear reference point (ERP), and "RE" is the right ERP. The ERP is 15mm posterior to the entrance to the ear canal (EEC) along the B-M line (Back-Mouth), as shown in Figure 4-1. The plane passing through the two ear canals and M is defined as the Reference Plane. The line N-F (Neck-Front) is perpendicular to the reference plane and passing through the RE (or LE) is called the Reference Pivoting Line (see Figure 4-1). Line B-M is perpendicular to the N-F line. Both N-F and B-M lines are marked on the external phantom shell to facilitate handset positioning [5].

Figure 4-1 Close-Up Side view of ERP

4.2 HANDSET REFERENCE POINTS

Two imaginary lines on the handset were established: the vertical centerline and the horizontal line. The test device was placed in a normal operating position with the "test device reference point" located along the "vertical centerline" on the front of the device aligned to the "ear reference point" (See Figure 4-3). The "test device reference point" was than located at the same level as the center of the ear reference point. The test device was positioned so that the "vertical centerline" was bisecting the front surface of the handset at its top and bottom edges, positioning the "ear reference point" on the outer surface of the both the left and right head phantoms on the ear reference point.

Figure 4-2 Front, back and side view of SAM Twin Phantom

Figure 4-3 Handset Vertical Center & Horizontal Line Reference Points

FCC ID: A3LSGHI337		SAR EVALUATION REPORT	SAMSUNE	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D
0Y1307261450.A3L	07/29/13 - 08/05/13	Portable Handset		Page 10 of 33

5 TEST CONFIGURATION POSITIONS FOR HANDSETS

5.1 Device Holder

The device holder is made out of low-loss POM material having the following dielectric parameters: relative permittivity $\varepsilon = 3$ and loss tangent $\delta = 0.02$.

5.2 **Positioning for Cheek**

1. The test device was positioned with the device close to the surface of the phantom such that point A is on the (virtual) extension of the line passing through points RE and LE on the phantom (see Figure 5-1), such that the plane defined by the vertical center line and the horizontal line of the phone is approximately parallel to the sagittal plane of the phantom.

Figure 5-1 Front, Side and Top View of Cheek Position

- 2. The handset was translated towards the phantom along the line passing through RE & LE until the handset touches the ear.
- 3. While maintaining the handset in this plane, the handset was rotated around the LE-RE line until the vertical centerline was in the plane normal to MB-NF including the line MB (reference plane).
- 4. The phone was then rotated around the vertical centerline until the phone (horizontal line) was symmetrical was respect to the line NF.
- 5. While maintaining the vertical centerline in the reference plane, keeping point A on the line passing through RE and LE, and maintaining the device contact with the ear, the device was rotated about the NF line until any point on the handset made contact with a phantom point below the ear (cheek) (See Figure 5-2).

5.3 Positioning for Ear / 15° Tilt

With the test device aligned in the "Cheek Position":

- 1. While maintaining the orientation of the phone, the phone was retracted parallel to the reference plane far enough to enable a rotation of the phone by 15degrees.
- 2. The phone was then rotated around the horizontal line by 15 degrees.
- 3. While maintaining the orientation of the phone, the phone was moved parallel to the reference plane until any part of the handset touched the head. (In this position, point A was located on the line RE-LE). The tilted position is obtained when the contact is on the pinna. If the contact was at any location other than the pinna, the angle of the phone would then be reduced. The tilted position was obtained when any part of the phone was in contact of the ear as well as a second part of the phone was in contact with the head (see Figure 5-2).

FCC ID: A3LSGHI337		SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dama 44 af 22
0Y1307261450.A3L	07/29/13 - 08/05/13	Portable Handset	Page 11 of 33

Figure 5-3 Side view w/ relevant markings

Figure 5-2 Front, Side and Top View of Ear/15^o Tilt Position

5.4 SAR Evaluations near the Mouth/Jaw Regions of the SAM Phantom

Antennas located near the bottom of a phone may require SAR measurements around the mouth and jaw regions of the SAM head phantom. This typically applies to clam-shell style phones that are generally longer in the unfolded normal use positions or to certain older style long rectangular phones.

Under these circumstances, the following procedures apply, adopted from the FCC guidance on SAR handsets document FCC KDB Publication 648474 D04_v01. The SAR required in these regions of SAM should be measured using a flat phantom. The phone should be positioned with a separation distance of 4 mm between the ear reference point (ERP) and the outer surface of the flat phantom shell. While maintaining this distance at the ERP location, the low (bottom) edge of the phone should be lowered from the phantom to establish the same separation distance between the peak SAR location identified by the truncated partial SAR distribution measured with the SAM phantom. The distance from the peak SAR location to the phone is determined by the straight line passing perpendicularly through the phantom surface. When it is not feasible to maintain 4 mm separation at the ERP while also establishing the required separation at the peak SAR location, the top edge of the phone will be allowed to touch the phantom with a separation < 4 mm at the ERP. The phone should not be tilted to the left or right while placed in this inclined position to the flat phantom.

The latest IEEE 1528 committee developments propose the usage of a tilted phantom when the antenna of the phone is mounted at the bottom or in all cases the peak absorption is in the chin region. Both SAM heads of the TwinSAM-Chin20 are rotated 20 degrees around the NF line. Each head can be removed individually from the table for emptying and cleaning.

Figure 5-4 Twin SAM Chin20

FCC ID: A3LSGHI337		SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dage 40 st 00
0Y1307261450.A3L	07/29/13 - 08/05/13	Portable Handset	Page 12 of 33

5.5 Body-Worn Accessory Configurations

Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration (see Figure 5-5). Per FCC KDB Publication 648474 D04v01, Body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in FCC KDB Publication 447498 D01v05 should be used to test for body-worn accessory SAR compliance, without a headset connected to it. This enables the test results for such configuration to be compatible with that required for hotspot mode when the body-worn accessory test separation distance is greater

Sample Body-Worn Diagram

than or equal to that required for hotspot mode, when applicable. When the reported SAR for a bodyworn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that bodyworn accessory with a headset attached to the handset.

Accessories for Body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are tested with the device with each accessory. If multiple accessories share an identical metallic component (i.e. the same metallic belt-clip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

Body-worn accessories may not always be supplied or available as options for some devices intended to be authorized for body-worn use. In this case, a test configuration with a separation distance between the back of the device and the flat phantom is used. Test position spacing was documented. Transmitters that are designed to operate in front of a person's face, as in push-to-talk configurations, are tested for SAR compliance with the front of the device positioned to face the flat phantom in head fluid. For devices that are carried next to the body such as a shoulder, waist or chest-worn transmitters, SAR compliance is tested with the accessories, including headsets and microphones, attached to the device and positioned against a flat phantom in a normal use configuration.

5.6 Extremity Exposure Configurations

Devices that are designed or intended for use on extremities or mainly operated in extremity only exposure conditions; i.e., hands, wrists, feet and ankles, may require extremity SAR evaluation. When the device also operates in close proximity to the user's body, SAR compliance for the body is also required. The 1-g body and 10-g extremity SAR Exclusion Thresholds found in KDB Publication 44798 D01v05 should be applied to determine SAR test requirements.

Per KDB Publication 44798 D01v05, Cell phones (handsets) are not normally designed to be used on extremities or operated in extremity only exposure conditions. The maximum output power levels of handsets generally do not require extremity SAR testing to show compliance. Therefore, extremity SAR was not evaluated for this device.

FCC ID: A3LSGHI337		SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dama 40 of 00
0Y1307261450.A3L	07/29/13 - 08/05/13	Portable Handset	Page 13 of 33

5.7 Wireless Router Configurations

Some battery-operated handsets have the capability to transmit and receive user data through simultaneous transmission of WIFI simultaneously with a separate licensed transmitter. The FCC has provided guidance in FCC KDB Publication 941225 D06 v01 where SAR test considerations for handsets (L x W \ge 9 cm x 5 cm) are based on a composite test separation distance of 10 mm from the front, back and edges of the device containing transmitting antennas within 2.5 cm of their edges, determined from general mixed use conditions for this type of devices. Since the hotspot SAR results may overlap with the body-worn accessory SAR requirements, the more conservative configurations can be considered, thus excluding some body-worn accessory SAR tests.

When the user enables the personal wireless router functions for the handset, actual operations include simultaneous transmission of both the WIFI transmitter and another licensed transmitter. Both transmitters often do not transmit at the same transmitting frequency and thus cannot be evaluated for SAR under actual use conditions due to the limitations of the SAR assessment probes. Therefore, SAR must be evaluated for each frequency transmission and mode separately and spatially summed with the WIFI transmitter according to FCC KDB Publication 447498 D01v05 publication procedures. The "Portable Hotspot" feature on the handset was NOT activated during SAR assessments, to ensure the SAR measurements were evaluated for a single transmission frequency RF signal at a time.

FCC ID: A3LSGHI337		SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dama 44 af 22
0Y1307261450.A3L	07/29/13 - 08/05/13	Portable Handset		Page 14 01 33

6 RF EXPOSURE LIMITS

6.1 Uncontrolled Environment

UNCONTROLLED ENVIRONMENTS are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

6.2 Controlled Environment

CONTROLLED ENVIRONMENTS are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

HUN	IAN EXPOSURE LIMITS	
	UNCONTROLLED ENVIRONMENT General Population (WV/kg) or (mW/g)	CONTROLLED ENVIRONMENT Occupational (W/kg) or (mW/g)
Peak Spatial Average SAR _{Head}	1.6	8.0
Whole Body SAR	0.08	0.4
Peak Spatial Average SAR Hands, Feet, Ankle, Wrists, etc.	4.0	20

 Table 6-1

 SAR Human Exposure Specified in ANSI/IEEE C95.1-1992 and Health Canada Safety Code 6

1. The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

2. The Spatial Average value of the SAR averaged over the whole body.

3. The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

FCC ID: A3LSGHI337		SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dama 45 at 22
0Y1307261450.A3L	07/29/13 - 08/05/13	Portable Handset	Page 15 of 33

7 FCC MEASUREMENT PROCEDURES

7.1 Measured and Reported SAR

Per FCC KDB Publication 447498 D01v05, When SAR is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance. For simultaneous transmission, the measured aggregate SAR must be scaled according to the sum of the differences between the maximum tune-up tolerance and actual power used to test each transmitter. When SAR is measured at or scaled to the maximum tune-up tolerance limit, the results are referred to as *reported* SAR. The highest *reported* SAR results are identified on the grant of equipment authorization according to procedures in KDB 690783 D01v01r02.

7.2 SAR Testing with 802.11 Transmitters

Normal network operating configurations are not suitable for measuring the SAR of 802.11 a/b/g/n /ac transmitters. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure the results are consistent and reliable. See KDB Publication 248227 D01v01r02 for more details.

7.2.1 General Device Setup

Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters. The test frequencies should correspond to actual channel frequencies defined for domestic use. SAR for devices with switched diversity should be measured with only one antenna transmitting at a time during each SAR measurement, according to a fixed modulation and data rate. The same data pattern should be used for all measurements.

7.2.2 Frequency Channel Configurations [27]

For 5 GHz, the highest average RF output power channel across the default test channels at the lowest data rate was selected for SAR evaluation in 802.11a. When the adjacent channels are higher in power then the default channels, these "required channels" were considered instead of the default channels for SAR testing. 802.11n modes and higher data rates for 802.11a/n were evaluated only if the respective mode was 0.25 dB or higher than the 802.11a mode. 802.11ac SAR was evaluated for highest 802.11a configuration in each 5 GHz band and each exposure condition. 802.11ac modes were additionally evaluated for SAR if the output power for the respective mode was more than 0.25 dB higher than powers of 802.11a modes.

If the maximum extrapolated peak SAR of the zoom scan for the highest output channel was less than 1.6 W/kg and if the 1g averaged SAR was less than 0.8 W/kg, SAR testing was not required for the other test channels in the band.

FCC ID: A3LSGHI337		SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dana 40 at 00
0Y1307261450.A3L	07/29/13 - 08/05/13	Portable Handset	Page 16 of 33

8 RF CONDUCTED POWERS

8.1 WLAN Conducted Powers

	Freq				802.11a (50	GHz) Conduct	ed Power [dBm]		
Mode	печ	Channel				Data Rate [M	bps]		48 12.58 12.51 12.42 12.19 13.29 13.08 13.02 13.02 13.02 13.02 13.02 13.02 13.02 13.02 13.02 13.02 13.02 13.04 13.04 N/A 12.69 12.69 12.53 12.55 12.55 12.43	
	[MHz]		6	9	12	18	24	36	48	54
802.11a	5180	36*	12.57	12.47	12.51	12.47	12.45	12.46	12.58	12.34
802.11a	5200	40	12.40	12.36	12.40	12.32	12.39	12.38	12.51	12.34
802.11a	5220	44	12.33	12.26	12.29	12.29	12.22	12.26	12.42	12.21
802.11a	5240	48*	12.20	12.18	12.22	12.19	12.08	12.12	12.19	12.03
802.11a	5260	52*	13.08	13.15	13.18	13.20	13.18	13.10	13.29	13.06
802.11a	5280	56	13.06	13.09	13.14	13.11	13.08	13.07	13.08	12.87
802.11a	5300	60	12.93	12.99	13.05	13.00	12.98	13.03	13.02	12.79
802.11a	5320	64*	12.90	12.92	13.00	13.04	12.81	12.88	12.96	12.74
802.11a	5500	100	13.18	13.21	13.16	13.16	13.15	13.18	13.22	13.03
802.11a	5520	104*	13.08	13.14	13.13	13.06	13.09	13.04	13.14	12.88
802.11a	5540	108	13.08	13.01	13.06	13.05	13.08	13.11	13.07	12.88
802.11a	5560	112	12.94	13.07	13.00	13.15	12.92	12.98	13.00	12.84
802.11a	5580	116*	12.87	13.09	12.95	13.09	12.85	13.15	13.04	12.71
802.11a	5600	120	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
802.11a	5620	124	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
802.11a	5640	128	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
802.11a	5660	132	12.70	12.81	12.67	12.71	12.72	12.81	12.69	12.44
802.11a	5680	136*	12.56	12.49	12.58	12.55	12.57	12.71	12.66	12.42
802.11a	5700	140	12.50	12.55	12.47	12.51	12.59	12.61	12.53	12.25
802.11a	5745	149*	12.51	12.53	12.40	12.59	12.50	12.51	12.59	12.44
802.11a	5765	153	12.46	12.54	12.50	12.55	12.52	12.47	12.55	12.38
802.11a	5785	157*	12.32	12.40	12.46	12.37	12.38	12.31	12.55	12.30
802.11a	5805	161*	12.32	12.34	12.38	12.37	12.36	12.39	12.43	12.15
802.11a	5825	165	12.26	12.18	12.26	12.22	12.26	12.16	12.37	12.08

Table 8-1 IEEE 802.11a Average RF Power

Per FCC KDB Publication 443999 and RSS-210 A9.2(3), transmission on channels which overlap the 5600-5650 MHz is prohibited as a client. This device does not transmit any beacons or initiate any transmissions in 5.3 and 5.5 GHz Band.

(*) – indicates default channels per KDB Publication 248227 D01v01r02. When the adjacent channels are higher in power then the default channels, these "required channels" are considered for SAR testing instead of the default channels.

FCC ID: A3LSGHI337		SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dama 47 - 6 00
0Y1307261450.A3L	07/29/13 - 08/05/13	Portable Handset	Page 17 of 33

	Ene e			20M	Hz BW 802.1	1n (5GHz) Co	onducted P	ower [dBm		
Mode	Freq	Channel				Data Rate [M	bps]			
	[MHz]		6.5	13	20	26	39	52	58	65
802.11n	5180	36	12.19	12.22	12.27	12.17	12.16	12.43	12.30	12.40
802.11n	5200	40	12.27	12.21	12.37	12.21	12.33	12.27	12.26	12.13
802.11n	5220	44	12.24	12.28	12.29	12.29	12.35	12.31	12.34	12.33
802.11n	5240	48	12.36	12.25	12.29	12.17	12.26	12.35	12.40	12.32
802.11n	5260	52	12.31	12.48	12.42	12.58	12.40	12.48	12.33	12.32
802.11n	5280	56	12.27	12.31	12.32	12.31	12.33	12.35	12.34	12.27
802.11n	5300	60	12.30	12.34	12.23	12.32	12.41	12.37	12.31	12.22
802.11n	5320	64	12.18	12.18	12.16	12.30	12.27	12.22	12.45	12.42
802.11n	5500	100	12.23	12.43	12.30	12.55	12.44	12.34	12.57	12.51
802.11n	5520	104	12.38	12.32	12.35	12.33	12.42	12.30	12.42	12.27
802.11n	5540	108	12.28	12.27	12.22	12.24	12.30	12.29	12.33	12.28
802.11n	5560	112	12.36	12.35	12.26	12.30	12.34	12.36	12.35	12.31
802.11n	5580	116	12.38	12.42	12.33	12.43	12.39	12.38	12.42	12.55
802.11n	5600	120	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
802.11n	5620	124	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
802.11n	5640	128	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
802.11n	5660	132	12.13	12.15	12.21	12.19	12.15	12.24	12.23	12.08
802.11n	5680	136	12.04	12.11	12.07	12.20	12.22	12.19	12.11	12.19
802.11n	5700	140	12.20	12.15	12.02	12.04	12.12	12.08	12.13	12.09
802.11n	5745	149	12.31	12.40	12.32	12.35	12.44	12.33	12.43	12.37
802.11n	5765	153	12.24	12.20	12.14	12.21	12.28	12.30	12.36	12.37
802.11n	5785	157	12.16	12.22	12.24	12.25	12.21	12.26	12.31	12.31
802.11n	5805	161	12.13	12.25	12.34	12.28	12.27	12.15	12.25	12.22
802.11n	5825	165	11.89	11.96	11.72	12.06	11.59	12.01	11.80	11.85

Table 8-2IEEE 802.11n Average RF Power – 20 MHz Bandwidth

Table 8-3IEEE 802.11n Average RF Power – 40 MHz Bandwidth

	Frog			40M	Hz BW 802.1	1n (5GHz) Co	onducted P	ower [dBm]		
Mode	Tieq	Channel				Data Rate [M	bps]			
	[MHz]		13.5	27	40.5	54	81	108	121.5	135
802.11n	5190	38	12.64	12.55	12.57	12.59	12.55	12.46	12.57	12.63
802.11n	5230	46	12.57	12.63	12.54	12.61	12.48	12.55	12.55	12.49
802.11n	5270	54	13.03	12.90	12.96	12.95	12.94	13.01	13.04	12.97
802.11n	5310	62	12.83	12.95	12.92	12.87	12.84	12.91	12.92	12.88
802.11n	5510	102	12.67	12.60	12.43	12.42	12.46	12.55	12.50	12.48
802.11n	5550	110	12.66	12.61	12.57	12.65	12.40	12.56	12.39	12.62
802.11n	5590	118	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
802.11n	5630	126	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
802.11n	5670	134	12.24	12.25	12.23	12.30	12.27	12.15	12.29	12.14
802.11n	5755	151	12.18	12.16	12.04	11.90	11.80	11.67	11.62	11.44
802.11n	5795	159	12.24	12.07	12.02	12.12	12.22	12.20	12.28	12.48

FCC ID: A3LSGHI337		SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dama 40 -4 00
0Y1307261450.A3L	07/29/13 - 08/05/13	Portable Handset	Page 18 of 33

Mode	Freq	Channel		80MHz BW 802.11ac (5GHz) Conducted Power [dBm]								
				Data Rate [Mbps]								
	[MHz]		29.3	58.5	87.8	117	175.5	234	263.3	292.2	351	390
802.11ac	5210	42	12.78	12.81	12.73	12.63	12.72	12.59	12.72	12.70	12.57	12.59
802.11ac	5290	58	12.12	12.22	12.22	12.28	12.33	12.29	12.26	12.29	12.27	12.33
802.11ac	5530	106	12.22	12.31	12.36	12.21	12.14	12.28	12.27	12.19	12.14	12.17
802.11ac	5775	155	12.33	12.37	12.48	12.55	12.43	12.30	12.29	12.31	12.33	12.23

Table 8-4 IEEE 802.11ac Average RF Power – 80 MHz Bandwidth

Justification for reduced test configurations for WIFI channels per KDB Publication 248227 D01v01r02 and October 2012/April 2013 FCC/TCB Meeting Notes:

- For 5 GHz, highest average RF output power channel for the lowest data rate for IEEE 802.11a were selected for SAR evaluation. Other IEEE 802.11 modes (including 802.11n 20 MHz and 40 MHz) were not investigated since the average output powers over all channels and data rates were not more than 0.25 dB higher than the tested channel in the lowest data rate of IEEE 802.11a mode.
- Full SAR tests for all IEEE 802.11ac configurations were not required because the average output power was not more than 0.25 dB higher than IEEE 802.11a mode. IEEE 802.11ac was evaluated for the highest IEEE 802.11a position in each 5 GHz band and exposure condition.
- When the maximum extrapolated peak SAR of the zoom scan for the maximum output channel is <1.6 W/kg and the reported 1g averaged SAR is <0.8 W/kg, SAR testing on other channels is not required. Otherwise, the other default (or corresponding required) test channels were additionally tested using the lowest data rate.
- Per the manufacturer FCC permissive change description for this device, the 5 GHz WLAN chipset remains the same as the original certified device. Therefore, conducted powers IEEE 802.11 a/b/g/n/ac remain the same as the original certification.
- The bolded data rate and channel above were tested for SAR.

Power measurement for signal < 50 MHz

Power measurement for signal > 50 MHz

FCC ID: A3LSGHI337		SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D
0Y1307261450.A3L	07/29/13 - 08/05/13	Portable Handset		Page 19 of 33

9 SYSTEM VERIFICATION

9.1 **Tissue Verification**

			Measure	d Tissue Pr	operties				
Calibrated for Tests Performed on:	Tissue Type	Tissue Temp During Calibration (C°)	Measured Frequency (MHz)	Measured Conductivity, σ (S/m)	Measured Dielectric Constant, ε	TARGET Conductivity, σ (S/m)	TARGET Dielectric Constant, ε	% dev σ	% dev ε
			5180	4.672	34.951	4.639	36.020	0.71%	-2.97%
Calibrated for Tests Ti Performed on: Ti 07/29/2013 52 07/29/2013 52 07/29/2013 52 08/05/2013 52			5200	4.688	34.839	4.660	36.000	0.60%	-3.23%
			5220 4.704 34.872 4.680 35		35.980	0.51%	-3.08%		
			5260	4.764	34.797	4.720	35.940	0.93%	-3.18%
			5280	4.811	34.742	4.740	35.920	ARGET electric stant, ε % dev σ % dev ε 86.020 0.71% -2.97% 96.000 0.60% -3.23% 96.000 0.60% -3.23% 95.980 0.51% -3.08% 95.940 0.93% -3.18% 95.920 1.50% -3.28% 95.920 1.39% -3.50% 95.920 1.39% -3.80% 95.920 2.32% -3.78% 95.920 2.31% -3.80% 95.920 2.31% -3.80% 95.920 2.31% -3.80% 95.920 2.31% -3.80% 95.950 2.30% -3.85% 95.355 1.98% -4.45% 95.335 1.89% -4.45% 95.300 1.90% -2.78% 99.014 3.96% -2.78% 98.987 3.55% -2.83% 88.906 3.18% -3.31% 98.851 3.45% -3.28% 88.580 <td< td=""></td<>	
			5300	4.826	34.642	4.760	35.900		
07/29/2013	5200H - 5800H	22.6	5500	5.080	34.302	4.965	35.650		
			5520	5.101	34.266	4.986	35.620		-3.80%
			5540	5.122	34.219	5.007	35.590	2.30%	-3.85%
			5745	5.318	33.825	5.215	35.355	1.98%	-4.33%
			5765	5.334	33.761	5.235	35.335	1.89%	-4.45%
			5785	5.349	33.702	5.255	35.315	1.79%	-4.57%
			5800	5.370	33.638	5.270	35.300	1.90%	-4.71%
			5180	5.490	47.448	5.276	49.041	4.06%	-3.25%
			5200	5.509	47.650	5.299	49.014	3.96%	-2.78%
			5220	5.512	47.603	5.323	48.987	3.55%	-2.83%
			5260	5.540	47.289	5.369	48.906	3.18%	-3.31%
			5280	5.565	47.119	5.393	48.879	3.19%	-3.60%
			5300	5.603	47.250	5.416	48.851	3.45%	-3.28%
07/29/2013	5200B - 5800B	22.5	5500	5.785	47.011	5.650	48.580	2.39%	-3.23%
			5520	5.808	46.934	5.673	48.553	2.38%	-3.33%
			5540	5.871	46.936	5.696	48.526	3.07%	-3.28%
			5745	6.092	46.454	5.936	48.248	2.63%	-3.72%
			5765	6.127	46.386	5.959	48.220	2.82%	-3.80%
			5785	6.187	46.361	5.982	48.242	3.43%	-3.90%
			5800	6.205	46.385	6.000	48.200	3.42%	-3.77%
08/05/2012	5200B	23.4	5200	5.512	46.801	5.299	49.014	4.02%	-4.52%
00/03/2013	52005	20.4	5220	5.486	47.059	5.323	48.987	3.06%	-3.94%

Table 9-1

The above measured tissue parameters were used in the DASY software. The DASY software was used to perform interpolation to determine the dielectric parameters at the SAR test device frequencies (per IEEE 1528 6.6.1.2). The tissue parameters listed in the SAR test plots may slightly differ from the table above due to significant digit rounding in the software.

FCC ID: A3LSGHI337		SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	
0Y1307261450.A3L	07/29/13 - 08/05/13	Portable Handset	Page 20 of 33

9.2 Test System Verification

Prior to SAR assessment, the system is verified to $\pm 10\%$ of the SAR measurement on the reference dipole at the time of calibration by the calibration facility. Full system validation status and result summary can be found in Appendix E.

				3	ystem	vennu	alion	resu	15			
					S TAI	ystem Ve RGET & M	rificatior IEASURI	n ED				
SAR System Tissue (MHz) Tissue Type Tissue Type Amb. Date: Liquid Temp (°C) Input Temp (°C) Dipole (W) Probe SN Measured SN 1 W Target SAR (W/kg) 1 W Normalized 1 W Normalized												Deviation _{1g} (%)
А	5200	HEAD	07/29/2013	24.3	22.7	0.100	1057	3589	7.710	75.900	77.100	1.58%
А	5300	HEAD	07/29/2013	24.3	22.7	0.100	1057	3589	8.280	76.900	82.800	7.67%
А	5500	HEAD	07/29/2013	24.4	22.8	0.100	1057	3589	7.650	80.100	76.500	-4.49%
А	5800	HEAD	07/29/2013	24.4	22.9	0.100	1057	3589	8.020	76.100	80.200	5.39%
А	5200	BODY	07/29/2013	23.7	22.6	0.100	1057	3589	7.560	75.500	75.600	0.13%
А	5300	BODY	07/29/2013	23.7	22.6	0.100	1057	3589	7.830	75.300	78.300	3.98%
А	5500	BODY	07/29/2013	23.7	22.6	0.100	1057	3589	8.230	80.800	82.300	1.86%
А	5800	BODY	07/29/2013	23.8	22.7	0.100	1057	3589	7.370	75.100	73.700	-1.86%
A	5200	BODY	08/05/2013	23.8	22.7	0.100	1057	3589	7.670	75.500	76.700	1.59%

Table 9-2 System Verification Results

Figure 9-1 System Verification Setup Diagram

Figure 9-2 System Verification Setup Photo

FCC ID: A3LSGHI337		SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		D
0Y1307261450.A3L	07/29/13 - 08/05/13	Portable Handset		Page 21 of 33

10 SAR DATA SUMMARY

10.1 Standalone Head SAR Data

Table 10-1 **DTS Head SAR**

					ME	ASURE	MENT R	ESULTS	\$						
FREQU	ENCY	Mode	Service	Maximum Allowed	Conducted	Power	Side	Test	Back Cover	Device Serial	Data Rate	SAR (1g)	Scaling	Scaled SAR (1g)	Plot #
MHz	Ch.			Power [dBm]] Power [dBm] Drift [dB]		Position	Туре	Number	(Mbps)	(W/kg)	Factor	(W/kg)		
5745	149	IEEE 802.11a	OFDM	13.5	12.51	0.03	Right	Cheek	Standard	FK-193-A	6	0.026	1.256	0.033	
5745	149	IEEE 802.11a	OFDM	13.5	12.51	0.00	Right	Tilt	Standard	FK-193-A	6	0.008	1.256	0.010	
5745	149	IEEE 802.11a	OFDM	13.5	12.51	0.09	Left	Cheek	Standard	FK-193-A	6	0.192	1.256	0.241	A1
5775	155	IEEE 802.11ac	OFDM	13.0	12.33	0.03	Left	Cheek	Standard	FK-193-A	29.3	0.036	1.167	0.042	
5745 149 IEEE 802.11a OFDM 13.5 12.51 0.03							Left	Tilt	Standard	FK-193-A	6	0.018	1.256	0.023	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population					Head 1.6 W/kg (mW/g) averaged over 1 gram									

Table 10-2 **NII Head SAR**

	MEASUREMENT RESULTS														
FREQU	ENCY	Mode	Service	Maximum Allowed	Conducted Power	Power Drift	Side	Test	Back Cover Type	Device Serial	Data Rate	SAR (1g)	Scaling	Scaled SAR (1g)	Plot #
MHz	Ch.			Power [dBm]	[dBm]	[dB]		Position		Number	(Mbps)	(W/kg)	Factor	(W/kg)	
5180	36	IEEE 802.11a	OFDM	13.5	12.57	0.15	Right	Cheek	Standard	FK-193-A	6	0.058	1.239	0.072	
5180	36	IEEE 802.11a	OFDM	13.5	12.57	-0.11	Right	Tilt	Standard	FK-193-A	6	0.024	1.239	0.030	
5180	36	IEEE 802.11a	OFDM	13.5	12.57	0.10	Left	Cheek	Standard	FK-193-A	6	0.327	1.239	0.405	
5210	42	IEEE 802.11ac	OFDM	13.0	12.78	-0.05	Left	Cheek	Standard	FK-193-A	29.3	0.142	1.052	0.149	
5180	36	IEEE 802.11a	OFDM	13.5	12.57	0.03	Left	Tilt	Standard	FK-193-A	6	0.059	1.239	0.073	
5260	52	IEEE 802.11a	OFDM	13.5	13.08	0.06	Right	Cheek	Standard	FK-193-A	6	0.059	1.102	0.065	
5260	52	IEEE 802.11a	OFDM	13.5	13.08	0.02	Right	Tilt	Standard	FK-193-A	6	0.026	1.102	0.029	
5260	52	IEEE 802.11a	OFDM	13.5	13.08	0.15	Left	Cheek	Standard	FK-193-A	6	0.364	1.102	0.401	A2
5290	58	IEEE 802.11ac	OFDM	13.0	12.12	-0.04	Left	Cheek	Standard	FK-193-A	29.3	0.140	1.225	0.172	
5260	52	IEEE 802.11a	OFDM	13.5	13.08	-0.01	Left	Cheek	Wireless Charging Cover	FK-193-A	6	0.196	1.102	0.216	
5260	52	IEEE 802.11a	OFDM	13.5	13.08	0.18	Left	Tilt	Standard	FK-193-A	6	0.058	1.102	0.064	
5500	100	IEEE 802.11a	OFDM	13.5	13.18	0.11	Right	Cheek	Standard	FK-193-A	6	0.031	1.076	0.033	
5500	100	IEEE 802.11a	OFDM	13.5	13.18	0.02	Right	Tilt	Standard	FK-193-A	6	0.023	1.076	0.025	
5500	100	IEEE 802.11a	OFDM	13.5	13.18	0.08	Left	Cheek	Standard	FK-193-A	6	0.146	1.076	0.157	
5530	106	IEEE 802.11ac	OFDM	13.0	12.22	0.07	Left	Cheek	Standard	FK-193-A	29.3	0.071	1.197	0.085	
5500	100	IEEE 802.11a	OFDM	13.5	13.18	0.04	Left	Tilt	Standard	FK-193-A	6	0.018	1.076	0.019	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population Head averaged over 1 gram														
FCC	ID: A	3LSGHI337				5	SAR EV	ALUATI	ON REPORT	< SI	MSUNS		Reviev Quality	wed by: / Manage	r
Docu 0Y130	ment 072614	S/N: 450.A3L	Te : 07/	st Dates: 29/13 - 08	/05/13	DUT Port	f Type: able Har	ndset					Page 2	22 of 33	
© 2013 P	CTEST	Engineering Lat	poratory, Ind	c.										RE	V 12.5 N

10.2 Standalone Body-Worn SAR Data

Table 10-3 DTS Body-Worn SAR

	MEASUREMENT RESULTS														
FREQU	ENCY	Mode	Service	Maximum Allowed Power	Conducted Power	Power Drift	Spacing	Back Cover	Device Serial	Data Rate	Side	SAR (1g)	Scaling	Scaled SAR (1g)	Plot #
MHz	Ch.			[dBm]	[dBm] [dB]			туре	Number	(Mbps)		(W/kg)	Factor	(W/kg)	
5745	149	IEEE 802.11a	OFDM	13.5	12.51	0.03	10 mm	Standard	FK-193-A	6	back	0.095	1.256	0.119	A3
5775	155	IEEE 802.11ac	OFDM	13.0	12.33	-0.20	10 mm	Standard	FK-193-A	29.3	back	0.097	1.167	0.113	
		ANSI / IEEE O	C95.1 199	2 - SAFETY L		Body									
	Spatial Peak							1.6 W/kg (mW/g)							
		Uncontrolled E	xposure/	General Popu	lation				a	veraged	over 1 g	ram			

Table 10-4 NII Body-Worn SAR

	MEASUREMENT RESULTS														
FREQU	ENCY	Mode	Service	Maximum Allowed	Conducted Power	Power Drift	Spacing	Battery Type	Device Serial	Data Rate	Side	SAR (1g)	Scaling	Scaled SAR (1g)	Plot #
MHz	Ch.	mode	0011100	Power [dBm]	[dBm]	[dB]	opaonig	Ballory Type	Number	(Mbps)	0.00	(W/kg)	Factor	(W/kg)	1.01.
5180	36	IEEE 802.11a	OFDM	13.5	12.57	-0.05	10 mm	Standard	FK-193-A	6	back	0.602	1.239	0.746	
5220	44	IEEE 802.11a	OFDM	13.5	12.33	0.05	10 mm	Standard	FK-193-A	6	back	0.626	1.309	0.819	A5
5210	42	IEEE 802.11ac	OFDM	13.0	12.78	0.01	10 mm	Standard	FK-193-A	29.3	back	0.601	1.052	0.632	
5220	44	IEEE 802.11a	OFDM	13.5	12.33	-0.03	10 mm	Wireless Charging Cover	FK-193-A	6	back	0.268	1.309	0.351	
5260	52	IEEE 802.11a	OFDM	13.5	13.08	0.03	10 mm	Standard	FK-193-A	6	back	0.607	1.102	0.669	
5300	60	IEEE 802.11a	OFDM	13.5	12.93	-0.01	10 mm	Standard	FK-193-A	6	back	0.525	1.140	0.599	
5290	58	IEEE 802.11ac	OFDM	13.0	12.12	0.06	10 mm	Standard	FK-193-A	29.3	back	0.598	1.225	0.733	
5500 100 IEEE 802.11a OFDM 13.5 13.18 0.08							10 mm	Standard	FK-193-A	6	back	0.301	1.076	0.324	
5530	5530 106 IEEE 802.11ac OFDM 13.0 12.22 -0.0							Standard	FK-193-A	29.3	back	0.264	1.197	0.316	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT							Body							
	Spatial Peak								1	1.6 W/kg	(mW/g)				
	Uncontrolled Exposure/General Population						averaged over 1 gram								

10.3 Standalone Wireless Router SAR Data

Table 10-5 WLAN Hotspot SAR

	WEAN HOLSPOL DAN														
	MEASUREMENT RESULTS														
FREQU	ENCY	Mode	Service	Maximum Allowed Power	Conducted Power	Power Drift	Spacing	Back Cover Type	Device Serial	Data Rate	Side	SAR (1g)	Scaling	Scaled SAR (1g)	Plot #
MHz	Ch.			[dBm]	[dBm]	[gB]			Number	(Mbps)		(W/kg)	Factor	(W/kg)	
5745	149	IEEE 802.11a	OFDM	13.5	12.51	0.03	10 mm	Standard	FK-193-A	6	back	0.095	1.256	0.119	
5775	155	IEEE 802.11ac	OFDM	13.0	12.33	-0.20	10 mm	Standard	FK-193-A	29.3	back	0.097	1.167	0.113	
5745	149	IEEE 802.11a	OFDM	13.5	12.51	0.03	10 mm	Wireless Charging Cover	FK-193-A	6	back	0.180	1.256	0.226	A4
5745	149	IEEE 802.11a	OFDM	13.5	12.51	0.00	10 mm	Standard	FK-193-A	6	front	0.000	1.256	0.000	
5745	149	IEEE 802.11a	OFDM	13.5	12.51	-0.02	10 mm	Standard	FK-193-A	6	top	0.008	1.256	0.010	
5745	149	IEEE 802.11a	OFDM	13.5	12.51	-0.01	10 mm	Standard	FK-193-A	6	right	0.060	1.256	0.075	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population						а	Bo 1.6 W/kg veraged o	dy (mW/g) ver 1 grar	n					
FCC ID: A3LSGHI337					5							Reviev Quality	ved by: / Manager		
Document S/N: Test Dates: DUT 0Y1307261450.A3L 07/29/13 - 08/05/13 Port.				T Type: able Ha	ndset					Page 2	23 of 33				

10.4 SAR Test Notes

- The test data reported are the worst-case SAR values according to test procedures specified in IEEE 1528-2003, FCC/OET Bulletin 65, Supplement C [June 2001] and FCC KDB Publication 447498 D01v05.
- 2. Batteries are fully charged at the beginning of the SAR measurements. A standard battery with NFC Antenna was used for all SAR measurements.
- 3. Liquid tissue depth was at least 15.0 cm for all frequencies.
- 4. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units.
- 5. SAR results were scaled to the maximum allowed power to demonstrate compliance per FCC KDB Publication 447498 D01v05.
- 6. Device was tested using a fixed spacing for body-worn accessory testing. A separation distance of 10 mm was considered because the manufacturer has determined that there will be body-worn accessories available in the marketplace for users to support this separation distance.
- 7. Per FCC KDB Publication 648474 D04v01, SAR was evaluated without a headset connected to the device. Since the standalone reported SAR was ≤ 1.2 W/kg, no additional SAR evaluations using a headset cable were required.
- 8. Per FCC KDB 865664 D01v01r01, since the measured SAR results for all band/modes were not greater than 0.8 W/kg. Repeated SAR measurements are not required. Please see Section 12.
- 9. During SAR Testing for the Wireless Router conditions per FCC KDB Publication 941225 D06v01, the actual Portable Hotspot operation (with actual simultaneous transmission of a transmitter with WIFI) was not activated (See Section 5.7 for more details).
- 10. Justification for reduced test configurations for WIFI channels per KDB Publication 248227 D01v01r02 and October 2012 FCC/TCB Meeting Notes for 5 GHz WIFI: Highest average RF output power channel for the lowest data rate was selected for SAR evaluation in 802.11a. Other IEEE 802.11 modes (including 802.11n 20 MHz and 40 MHz bandwidths) were not investigated since the average output powers over all channels and data rates were not more than 0.25 dB higher than the tested channel in the lowest data rate of IEEE 802.11a mode.
- Per April 2013 TCB Workshop notes, full SAR tests for all IEEE 802.11ac configurations were not required because the average output power was not more than 0.25 dB higher than IEEE 802.11a mode. IEEE 802.11ac was evaluated for the highest IEEE 802.11a position in each 5 GHz band and exposure condition.
- 12. WIFI transmission was verified using an uncalibrated spectrum analyzer.
- 13. When the maximum extrapolated peak SAR of the zoom scan for the maximum output channel is <1.6 W/kg and the reported 1g averaged SAR is <0.8 W/kg, SAR testing on other default channels was not required. Otherwise, the other default (or corresponding required) test channels were additionally tested using the lowest data rate.
- 14. Per the FCC change document for this device, the 5 GHz WLAN chipset remains the same as the original certified device. Therefore, conducted powers IEEE 802.11 a/b/g/n/ac remain the same as the original certification.

FCC ID: A3LSGHI337		SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dama 04 cf 00
0Y1307261450.A3L	07/29/13 - 08/05/13	Portable Handset	Page 24 of 33

11 FCC MULTI-TX AND ANTENNA SAR CONSIDERATIONS

11.1 Introduction

The following procedures adopted from FCC KDB Publication 447498 D01v05 are applicable to handsets with built-in unlicensed transmitters such as 802.11a/b/g/n/ac and Bluetooth devices which may simultaneously transmit with the licensed transmitter.

11.2 Simultaneous Transmission Procedures

This device contains transmitters that may operate simultaneously. Therefore simultaneous transmission analysis is required. Per FCC KDB 447498 D01v05 IV.C.1.iii, simultaneous transmission SAR test exclusion may be applied when the sum of the 1-g SAR for all the simultaneous transmitting antennas in a specific a physical test configuration is \leq 1.6 W/kg.

11.3 Head SAR Simultaneous Transmission Analysis

Jiniuitaneous			110113111133						
Simult Tx	Configuration	GSM 850 SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	Simult Tx	Configuration	UMTS 850 SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
	Right Cheek	0.282	0.072	0.354		Right Cheek	0.319	0.072	0.391
	Right Tilt	0.191	0.030	0.221		Right Tilt	0.254	0.030	0.284
Heau SAR	Left Cheek	0.304	0.405	0.709	Heau SAR	Left Cheek	0.375	0.405	0.780
	Left Tilt	0.176	0.073	0.249		Left Tilt	0.242	0.073	0.315
Simult Tx	Configuration	GSM 1900 SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	Simult Tx	Configuration	UMTS 1900 SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
	Right Cheek	0.141	0.072	0.213		Right Cheek	0.253	0.072	0.325
	Right Tilt	0.119	0.030	0.149		Right Tilt	0.193	0.030	0.223
Heau SAR	Left Cheek	0.295	0.405	0.700	HEAU SAK	Left Cheek	0.469	0.405	0.874
	Left Tilt	0.101	0.073	0.174		Left Tilt	0.155	0.073	0.228
Simult Tx	Configuration	LTE Band 17 SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	Simult Tx	Configuration	LTE Band 5 (Cell) SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
	Right Cheek	0.118	0.072	0.190		Right Cheek	0.241	0.072	0.313
Hood SAP	Right Tilt	0.077	0.030	0.107		Right Tilt	0.149	0.030	0.179
Tieau SAIN	Left Cheek	0.130	0.405	0.535	Heau SAIN	Left Cheek	0.344	0.405	0.749
	Left Tilt	0.074	0.073	0.147		Left Tilt	0.150	0.073	0.223
Simult Tx	Configuration	LTE Band 4 (AWS) SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	Simult Tx	Configuration	LTE Band 2 (PCS) SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
	Right Cheek	0.315	0.072	0.387		Right Cheek	0.274	0.072	0.346
Hood SAP	Right Tilt	0.323	0.030	0.353		Right Tilt	0.230	0.030	0.260
neau SAR	Left Cheek	0.605	0.405	1.010	Heau SAR	Left Cheek	0.585	0.405	0.990
	Left Tilt	0.244	0.073	0.317		Left Tilt	0.202	0.073	0.275

 Table 11-1

 Simultaneous Transmission Scenario with 5 GHz WLAN (Held to Ear)

Note: The worst case 5 GHz WLAN reported SAR for each head configuration was used for SAR summation, regardless of whether the WLAN channel has WIFI Direct capability. Therefore, the summations above represent the absolute worst cases for simultaneous transmission with 5 GHz WLAN.

FCC ID: A3LSGHI337		SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		
0Y1307261450.A3L	07/29/13 - 08/05/13	Portable Handset		Page 25 of 33

11.4 Body-Worn Simultaneous Transmission Analysis

Simultaneous	s Transmission Scenar	io with 5 GHz W	LAN (Body-Wori	n at 10 mm)
Configuration	Mode	2G/3G/4G SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
Back Side	GSM 850	0.656	0.819	1.475
Back Side	UMTS 850	0.555	0.819	1.374
Back Side	GSM 1900	0.433	0.819	1.252
Back Side	UMTS 1900	0.523	0.819	1.342
Back Side	LTE Band 17	0.301	0.819	1.120
Back Side	LTE Band 5 (Cell)	0.629	0.819	1.448
Back Side	LTE Band 4 (AWS)	0.765	0.819	1.584
Back Side	LTE Band 2 (PCS)	0.755	0.819	1.574

Table 11-2

Note: The worst case 5 GHz WLAN reported SAR for each head configuration was used for SAR summation, regardless of whether the WLAN channel has WIFI Direct capability. Therefore, the summations above represent the absolute worst cases for simultaneous transmission with 5 GHz WLAN.

11.5 Wireless Router SAR Simultaneous Transmission Analysis

Per FCC KDB Publication 941225 D06v01, the devices edges with antennas more than 2.5 cm from edge are not required to be evaluated for SAR ("-").

	Simultaneous Transmission Scenario (5.8 GHz Wireless Router at 1.0 cm)											
Simult Tx	Configuration	GPRS 850 SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	Simult Tx	Configuration	UMTS 850 SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)			
	Back	0.782	0.226	1.008		Back	0.555	0.226	0.781			
	Front	0.513	0.000	0.513		Front	0.473	0.000	0.473			
Body SAR	Тор	-	0.010	0.010	Body SAP	Тор	-	0.010	0.010			
BOUY SAIN	Bottom	0.106	-	0.106	DOUY SAIN	Bottom	0.069	-	0.069			
	Right	0.513	0.075	0.588		Right	0.416	0.075	0.491			
	Left	0.665	-	0.665		Left	0.468	-	0.468			

Table 11-3
Simultaneous Transmission Scenario (5.8 GHz Wireless Router at 1.0 cm)

FCC ID: A3LSGHI337		SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dama 00 at 00
0Y1307261450.A3L	07/29/13 - 08/05/13	Portable Handset		Page 26 0f 33

Simult Tx	Configuration	GPRS 1900 SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	Simult Tx	Configuration	UMTS 1900 SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
	Back	0.528	0.226	0.754		Back	0.523	0.226	0.749
	Front	0.482	0.000	0.482		Front	0.680	0.000	0.680
Pody SAP	Тор	-	0.010	0.010	Pody SAP	Тор	-	0.010	0.010
BOUY SAN	Bottom	0.396	-	0.396	BOUY SAR	Bottom	0.416	-	0.416
	Right	0.045	0.075	0.120		Right	0.046	0.075	0.121
	Left	0.284	-	0.284		Left	0.310	-	0.310
Simult Tx	Configuration	LTE Band 17 SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	Simult Tx	Configuration	LTE Band 5 (Cell) SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
	Back	0.301	0.226	0.527		Back	0.629	0.226	0.855
	Front	0.233	0.000	0.233		Front	0.530	0.000	0.530
Body SAP	Тор	-	0.010	0.010	Body SAP	Тор	-	0.010	0.010
Douy SAIN	Bottom	0.051	-	0.051	Douy SAIN	Bottom	0.090	-	0.090
	Right	0.128	0.075	0.203		Right	0.506	0.075	0.581
	Left	0.140	-	0.140		Left	0.487	-	0.487
Simult Tx	Configuration	LTE Band 4 (AWS) SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)	Simult Tx	Configuration	LTE Band 2 (PCS) SAR (W/kg)	5 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
	Back	0.765	0.226	0.991		Back	0.755	0.226	0.981
	Front	0.792	0.000	0.792		Front	0.675	0.000	0.675
Body SAP	Тор	-	0.010	0.010	Body SAP	Тор	-	0.010	0.010
BOUY SAR	Bottom	0.493	-	0.493	BOUY SAR	Bottom	0.552	-	0.552
	Right	0.053	0.075	0.128		Right	0.079	0.075	0.154
	Left	0.354	-	0.354		Left	0.394	-	0.394

11.6 Simultaneous Transmission Conclusion

The above numerical summed SAR results for all the worst-case simultaneous transmission conditions were below the SAR limit. Therefore, the above analysis is sufficient to determine that simultaneous transmission cases will not exceed the SAR limit and therefore no measured volumetric simultaneous SAR summation is required per FCC KDB Publication 447498 D01v05.

FCC ID: A3LSGHI337		SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dana 07 at 00
0Y1307261450.A3L	07/29/13 - 08/05/13	Portable Handset	Page 27 of 33

12 SAR MEASUREMENT VARIABILITY

12.1 Measurement Variability

Per FCC KDB Publication 865664 D01v01r01, SAR measurement variability is assessed when measured 1g SAR is > 0.80 W/kg. Since all measured 1g SAR values were < 0.8 W/kg for this device, SAR measurement variability was not assessed.

12.2 Measurement Uncertainty

The measured SAR was <1.5 W/kg for all frequency bands. Therefore, per KDB Publication 865664 D01v01, the extended measurement uncertainty analysis per IEEE 1528-2003 was not required.

FCC ID: A3LSGHI337		SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Document S/N:	Test Dates: DUT Type:			
0Y1307261450.A3L	07/29/13 - 08/05/13	Portable Handset		Page 28 of 33

13 EQUIPMENT LIST

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	E8257D	(250kHz-20GHz) Signal Generator	4/16/2013	Annual	4/16/2014	MY45470194
Agilent	8753E	(30kHz-6GHz) Network Analyzer	4/16/2013	Annual	4/16/2014	JP38020182
Agilent	8594A	(9kHz-2.9GHz) Spectrum Analyzer	N/A	N/A	N/A	3051A00187
Agilent	8648D	(9kHz-4GHz) Signal Generator	4/17/2013	Annual	4/17/2014	3629U00687
Agilent	85070C	Dielectric Probe Kit	2/14/2013	Annual	2/14/2014	MY44300633
Agilent	N9020N	MXA Signal Analyzer	10/9/2012	Annual	10/9/2013	US46470561
Agilent	85047A	S-Parameter Test Set	N/A	N/A	N/A	2904A00579
Amplifier Research	5S1G4	5W, 800MHz-4.2GHz	CBT	N/A	CBT	21910
Anritsu	ML2495A	Power Meter	10/11/2012	Annual	10/11/2013	1039008
Anritsu	ML2496A	Power Meter	11/28/2012	Annual	11/28/2013	1138001
Anritsu	MA2481A	Power Sensor	2/14/2013	Annual	2/14/2014	5821
Anritsu	MA2411B	Pulse Sensor	9/19/2012	Annual	9/19/2013	1027293
Anritsu	MA2481D	Universal Sensor	12/17/2012	Annual	12/17/2013	1204419
Anritsu	MA2481D	Universal Sensor	12/17/2012	Annual	12/17/2013	1204343
COMTECH	AR85729-5/5759B	Solid State Amplifier	CBT	N/A	CBT	M3W1A00-1002
COMTech	AR85729-5	Solid State Amplifier	CBT	N/A	CBT	M1S5A00-009
Control Company	4353	Long Stem Thermometer	9/25/2012	Biennial	9/25/2014	122541143
Control Company	36934-158	Wall-Mounted Thermometer	1/4/2012	Biennial	1/4/2014	122014488
Gigatronics	80701A	(0.05-18GHz) Power Sensor	10/10/2012	Annual	10/10/2013	1833460
Gigatronics	8651A	Universal Power Meter	10/10/2012	Annual	10/10/2013	8650319
MCL	BW-N6W5+	6dB Attenuator	CBT	N/A	CBT	1139
MiniCircuits	VLF-6000+	Low Pass Filter	CBT	N/A	CBT	N/A
MiniCircuits	VLF-6000+	Low Pass Filter	CBT	N/A	CBT	N/A
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
Mini-Circuits	BW-N20W5	Power Attenuator	CBT	N/A	CBT	1226
Narda	4014C-6	4 - 8 GHz SMA 6 dB Directional Coupler	CBT	N/A	CBT	N/A
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Narda	BW-S3W2	Attenuator (3dB)	CBT	N/A	CBT	120
Pasternack	PE2208-6	Bidirectional Coupler	CBT	N/A	CBT	N/A
Pasternack	PE2209-10	Bidirectional Coupler	CBT	N/A	CBT	N/A
Rohde & Schwarz	NRV-Z32	Peak Power Sensor	10/12/2012	Biennial	10/12/2014	836019/013
Rohde & Schwarz	SME06	Signal Generator	10/11/2012	Annual	10/11/2013	832026
Rohde & Schwarz	SMIQ03B	Signal Generator	4/17/2013	Annual	4/17/2014	DE27259
Seekonk	NC-100	Torque Wrench (8" lb)	11/29/2011	Triennial	11/29/2014	21053
SPEAG	D5GHzV2	5 GHz SAR Dipole	1/11/2013	Annual	1/11/2014	1057
SPEAG	DAE4	Dasy Data Acquisition Electronics	1/17/2013	Annual	1/17/2014	1272
SPEAG	EX3DV4	SAR Probe	1/17/2013	Annual	1/17/2014	3589
Tektronix	RSA6114A	Real Time Spectrum Analyzer	4/17/2013	Annual	4/17/2014	B010177

Note: CBT (Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, amplifier, attenuator, coupler or filter were connected to a calibrated source (i.e. a signal generator) to determine the losses of the measurement path. The power meter offset was then adjusted to compensate for the measurement system losses. This level offset is stored within the power meter before measurements are made. This calibrated reading is then taken directly from the power meter after compensation of the losses for all final power measurements.

FCC ID: A3LSGHI337		SAR EVALUATION REPORT	SUNG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type: Portable Handset		Dage 20 of 22
0Y1307261450.A3L	07/29/13 - 08/05/13			Page 29 of 33

14 MEASUREMENT UNCERTAINTIES

а	b	С	d	e=	f	g	h =	i =	k
				f(d,k)			c x f/e	c x g/e	
Uncertainty	IEEE	Tol.	Prob.		Ci	C _i	1gm	10gms	
Component	1528 Sec.	(± %)	Dist.	Div.	1gm	10 gms	u _i	u,	v,
		. ,			•	Ū	(± %)	(± %)	
Measurement System									
Probe Calibration	E.2.1	6.55	Ν	1	1.0	1.0	6.6	6.6	∞
Axial Isotropy	E.2.2	0.25	Ν	1	0.7	0.7	0.2	0.2	∞
Hemishperical Isotropy	E.2.2	1.3	Ν	1	1.0	1.0	1.3	1.3	∞
Boundary Effect	E.2.3	0.4	Ν	1	1.0	1.0	0.4	0.4	∞
Linearity	E.2.4	0.3	Ν	1	1.0	1.0	0.3	0.3	∞
System Detection Limits	E.2.5	5.1	Ν	1	1.0	1.0	5.1	5.1	∞
Readout Electronics	E.2.6	1.0	Ν	1	1.0	1.0	1.0	1.0	∞
Response Time	E.2.7	0.8	R	1.73	1.0	1.0	0.5	0.5	∞
Integration Time	E.2.8	2.6	R	1.73	1.0	1.0	1.5	1.5	∞
RF Ambient Conditions	E.6.1	3.0	R	1.73	1.0	1.0	1.7	1.7	∞
Probe Positioner Mechanical Tolerance	E.6.2	0.4	R	1.73	1.0	1.0	0.2	0.2	∞
Probe Positioning w/ respect to Phantom	E.6.3	2.9	R	1.73	1.0	1.0	1.7	1.7	∞
Extrapolation, Interpolation & Integration algorithms for Max. SAR Evaluation	E.5	1.0	R	1.73	1.0	1.0	0.6	0.6	8
Test Sample Related									
Test Sample Positioning	E.4.2	6.0	Ν	1	1.0	1.0	6.0	6.0	287
Device Holder Uncertainty	E.4.1	3.32	R	1.73	1.0	1.0	1.9	1.9	∞
Output Power Variation - SAR drift measurement	6.6.2	5.0	R	1.73	1.0	1.0	2.9	2.9	∞
Phantom & Tissue Parameters									
Phantom Uncertainty (Shape & Thickness tolerances)	E.3.1	4.0	R	1.73	1.0	1.0	2.3	2.3	∞
Liquid Conductivity - deviation from target values	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	∞
Liquid Conductivity - measurement uncertainty	E.3.3	3.8	Ν	1	0.64	0.43	2.4	1.6	6
Liquid Permittivity - deviation from target values	E.3.2	5.0	R	1.73	0.60	0.49	1.7	1.4	∞
Liquid Permittivity - measurement uncertainty		4.5	Ν	1	0.60	0.49	2.7	2.2	6
Combined Standard Uncertainty (k=1)		-	RSS				12.4	12.0	299
Expanded Uncertainty			k=2				24.7	24.0	
(95% CONFIDENCE LEVEL)									

The above measurement uncertainties are according to IEEE Std. 1528-2003

FCC ID: A3LSGHI337		SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dama 00 of 00
0Y1307261450.A3L	07/29/13 - 08/05/13	Portable Handset	Page 30 of 33

15 CONCLUSION

15.1 Measurement Conclusion

The SAR evaluation indicates that the EUT complies with the RF radiation exposure limits of the FCC and Industry Canada, with respect to all parameters subject to this test. These measurements were taken to simulate the RF effects of RF exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The results and statements relate only to the item(s) tested.

Please note that the absorption and distribution of electromagnetic energy in the body are very complex phenomena that depend on the mass, shape, and size of the body, the orientation of the body with respect to the field vectors, and the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because various factors may interact with one another to vary the specific biological outcome of an exposure to electromagnetic fields, any protection guide should consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables. [3]

FCC ID: A3LSGHI337		SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dama 04 af 00
0Y1307261450.A3L	07/29/13 - 08/05/13	Portable Handset		Page 31 of 33

16 REFERENCES

- [1] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radiofrequency Radiation, Aug. 1996.
- [2] ANSI/IEEE C95.1-2005, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, 2006.
- [3] ANSI/IEEE C95.1-1992, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 3kHz to 300GHz, New York: IEEE, Sept. 1992.
- [4] ANSI/IEEE C95.3-2002, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave, New York: IEEE, December 2002.
- [5] Federal Communications Commission, OET Bulletin 65 (Edition 97-01), Supplement C (Edition 01-01), Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields, June 2001.
- [6] IEEE Standards Coordinating Committee 34 IEEE Std. 1528-2003, Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices.
- [7] NCRP, National Council on Radiation Protection and Measurements, Biological Effects and Exposure Criteria for RadioFrequency Electromagnetic Fields, NCRP Report No. 86, 1986. Reprinted Feb. 1995.
- [8] T. Schmid, O. Egger, N. Kuster, Automated E-field scanning system for dosimetric assessments, IEEE Transaction on Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113.
- [9] K. Pokovic, T. Schmid, N. Kuster, Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies, ICECOM97, Oct. 1997, pp. -124.
- [10] K. Pokovic, T. Schmid, and N. Kuster, E-field Probe with improved isotropy in brain simulating liquids, Proceedings of the ELMAR, Zadar, Croatia, June 23-25, 1996, pp. 172-175.
- [11] Schmid & Partner Engineering AG, Application Note: Data Storage and Evaluation, June 1998, p2.
- [12] V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, N. Kuster, The Dependence of EM Energy Absorption upon Human Modeling at 900 MHz, IEEE Transaction on Microwave Theory and Techniques, vol. 44 no. 10, Oct. 1996, pp. 1865-1873.
- [13] N. Kuster and Q. Balzano, Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300MHz, IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.
- [14] G. Hartsgrove, A. Kraszewski, A. Surowiec, Simulated Biological Materials for Electromagnetic Radiation Absorption Studies, University of Ottawa, Bioelectromagnetics, Canada: 1987, pp. 29-36.
- [15] Q. Balzano, O. Garay, T. Manning Jr., Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995.
- [16] W. Gander, Computermathematick, Birkhaeuser, Basel, 1992.
- [17] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in C, The Art of Scientific Computing, Second edition, Cambridge University Press, 1992.

FCC ID: A3LSGHI337		SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dama 00 af 00
0Y1307261450.A3L	07/29/13 - 08/05/13	Portable Handset	Page 32 0f 33

- [18] Federal Communications Commission, OET Bulletin 65, Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields. Supplement C, Dec. 1997.
- [19] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652.
- [20] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic Fields High-frequency: 10kHz-300GHz, Jan. 1995.
- [21] Prof. Dr. Niels Kuster, ETH, Eidgenössische Technische Hoschschule Zürich, Dosimetric Evaluation of the Cellular Phone.
- [22] IEC 62209-1, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Human models, instrumentation, and procedures - Part 1: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz), Feb. 2005.
- [23] Industry Canada RSS-102 Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands) Issue 4, March 2010.
- [24] Health Canada Safety Code 6 Limits of Human Exposure to Radio Frequency Electromagnetic Fields in the Frequency Range from 3 kHz 300 GHz, 2009
- [25] FCC Public Notice DA-02-1438. Office of Engineering and Technology Announces a Transition Period for the Phantom Requirements of Supplement C to OET Bulletin 65, June 19, 2002
- [26] FCC SAR Test Procedures for 2G-3G Devices, Mobile Hotspot and UMPC Devices KDB Publications 941225, D01-D07
- [27] SAR Measurement procedures for IEEE 802.11a/b/g KDB Publication 248227 D01v01r02
- [28] FCC SAR Considerations for Handsets with Multiple Transmitters and Antennas, KDB Publications 648474 D02-D04
- [29] FCC SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers, FCC KDB Publication 616217 D04
- [30] FCC SAR Measurement and Reporting Requirements for 100MHz 6 GHz, KDB Publications 865664 D01-D02
- [31] FCC General RF Exposure Guidance and SAR Procedures for Dongles, KDB Publication 447498, D01-D02
- [32] Anexo à Resolução No. 533, de 10 de Septembro de 2009.
- [33] IEC 62209-2, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Human models, instrumentation, and procedures - Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz), Mar. 2010.

FCC ID: A3LSGHI337		SAR EVALUATION REPORT	Reviewed by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	
0Y1307261450.A3L	07/29/13 - 08/05/13	Portable Handset	Page 33 01 33

APPENDIX A: SAR TEST DATA

PCTEST ENGINEERING LABORATORY, INC.

DUT: A3LSGHI337; Type: Portable Handset; Serial: FK-193-A

Communication System: IEEE 802.11a 5.2-5.8 GHz Band; Frequency: 5745 MHz; Duty Cycle: 1:1 Medium: 5 GHz Head; Medium parameters used:

f = 5745 MHz; σ = 5.318 S/m; ε_r = 33.825; ρ = 1000 kg/m³

Phantom section: Left Section

Test Date: 07-29-2013; Ambient Temp: 24.4°C; Tissue Temp: 22.9°C

Probe: EX3DV4 - SN3589; ConvF(3.85, 3.85, 3.85); Calibrated: 1/17/2013; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1272; Calibrated: 1/17/2013 Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1114 Measurement SW: DASY4, Version 4.7 (80);SEMCAD X Version 14.6.10 (7164)

Mode: IEEE 802.11a, 5.8 GHz Left Head, Cheek, Ch 149, 6 Mbps, Standard Cover

Area Scan (12x18x1): Measurement grid: dx=10mm, dy=10mm Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4 Reference Value = 6.174 V/m; Power Drift = 0.09 dB Peak SAR (extrapolated) = 0.964 W/kg SAR(1 g) = 0.192 W/kg

PCTEST ENGINEERING LABORATORY, INC.

DUT: A3LSGHI337; Type: Portable Handset; Serial: FK-193-A

Communication System: IEEE 802.11a 5.2-5.8 GHz Band; Frequency: 5260 MHz;Duty Cycle: 1:1 Medium: 5 GHz Head; Medium parameters used:

f = 5260 MHz; σ = 4.764 S/m; ϵ_r = 34.797; ρ = 1000 kg/m³

Phantom section: Left Section

Test Date: 07-29-2013; Ambient Temp: 24.3°C; Tissue Temp: 22.7°C

Probe: EX3DV4 - SN3589; ConvF(4.27, 4.27, 4.27); Calibrated: 1/17/2013; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1272; Calibrated: 1/17/2013 Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1114 Measurement SW: DASY4, Version 4.7 (80);SEMCAD X Version 14.6.10 (7164)

Mode: IEEE 802.11a, 5.3 GHz Left Head, Cheek, Ch 52, 6 Mbps, Standard Cover

Area Scan (12x17x1): Measurement grid: dx=10mm, dy=10mm Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4 Reference Value = 9.710 V/m; Power Drift = 0.15 dB Peak SAR (extrapolated) = 1.58 W/kg SAR(1 g) = 0.364 W/kg

DUT: A3LSGHI337; Type: Portable Handset; Serial: FK-193-A

Communication System: IEEE 802.11a 5.2-5.8 GHz Band; Frequency: 5745 MHz; Duty Cycle: 1:1 Medium: 5 GHz Body; Medium parameters used:

f = 5745 MHz; σ = 6.092 S/m; ϵ_r = 46.454; ρ = 1000 kg/m³

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 07-29-2013; Ambient Temp: 23.8°C; Tissue Temp: 22.7°C

Probe: EX3DV4 - SN3589; ConvF(3.66, 3.66, 3.66); Calibrated: 1/17/2013; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1272; Calibrated: 1/17/2013 Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1357 Measurement SW: DASY4, Version 4.7 (80);SEMCAD X Version 14.6.10 (7164)

Mode: IEEE 802.11a, 5.8 GHz, Body SAR, Ch 149, 6 Mbps, Back Side, Standard Cover

Area Scan (12x18x1): Measurement grid: dx=10mm, dy=10mm Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4 Reference Value = 4.141 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 0.605 W/kg SAR(1 g) = 0.095 W/kg

DUT: A3LSGHI337; Type: Portable Handset; Serial: FK-193-A

Communication System: IEEE 802.11a 5.2-5.8 GHz Band; Frequency: 5745 MHz; Duty Cycle: 1:1 Medium: 5 GHz Body; Medium parameters used:

f = 5745 MHz; σ = 6.092 S/m; ϵ_r = 46.454; ρ = 1000 kg/m³

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 07-29-2013; Ambient Temp: 23.8°C; Tissue Temp: 22.7°C

Probe: EX3DV4 - SN3589; ConvF(3.66, 3.66, 3.66); Calibrated: 1/17/2013; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1272; Calibrated: 1/17/2013 Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1357 Measurement SW: DASY4, Version 4.7 (80);SEMCAD X Version 14.6.10 (7164)

Mode: IEEE 802.11a, 5.8 GHz, Body SAR, Ch 149, 6 Mbps, Back Side, Wireless Charging Cover

Area Scan (12x18x1): Measurement grid: dx=10mm, dy=10mm Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4 Reference Value = 5.616 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 0.723 W/kg SAR(1 g) = 0.180 W/kg

DUT: A3LSGHI337; Type: Portable Handset; Serial: FK-193-A

Communication System: IEEE 802.11a 5.2-5.8 GHz Band; Frequency: 5220 MHz; Duty Cycle: 1:1 Medium: 5 GHz Body; Medium parameters used:

f = 5220 MHz; σ = 5.486 S/m; ϵ_r = 47.059; ρ = 1000 kg/m³

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08-05-2013; Ambient Temp: 23.8°C; Tissue Temp: 22.7°C

Probe: EX3DV4 - SN3589; ConvF(3.99, 3.99, 3.99); Calibrated: 1/17/2013; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1272; Calibrated: 1/17/2013 Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1357 Measurement SW: DASY4, Version 4.7 (80);SEMCAD X Version 14.6.10 (7164)

Mode: IEEE 802.11a, 5.2 GHz, Body SAR, Ch 44, 6 Mbps, Back Side, Standard Cover

Area Scan (12x18x1): Measurement grid: dx=10mm, dy=10mm Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4 Reference Value = 11.167 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 2.92 W/kg SAR(1 g) = 0.626 W/kg

0 dB = 1.51 W/kg = 1.79 dBW/kg

APPENDIX B: SYSTEM VERIFICATION

DUT: Dipole 5200 MHz; Type: D5GHzV2; Serial: 1057

Communication System: CW; Frequency: 5200 MHz; Duty Cycle: 1:1 Medium: 5 GHz Head; Medium parameters used:

f = 5200 MHz; σ = 4.688 S/m; ϵ_r = 34.839; ρ = 1000 kg/m³

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 07-29-2013; Ambient Temp: 24.3°C; Tissue Temp: 22.7°C

Probe: EX3DV4 - SN3589; ConvF(4.48, 4.48, 4.48); Calibrated: 1/17/2013; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1272; Calibrated: 1/17/2013 Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1114 Measurement SW: DASY4, Version 4.7 (80);SEMCAD X Version 14.6.10 (7164)

5200MHz System Verification

Area Scan (7x9x1): Measurement grid: dx=10mm, dy=10mm Zoom Scan (9x9x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4 Input Power = 20.0 dBm (100 mW) Peak SAR (extrapolated) = 29.9 W/kg SAR(1 g) = 7.71 W/kg Deviation = 1.58%

0 dB = 19.4 W/kg = 12.88 dBW/kg

DUT: Dipole 5300 MHz; Type: D5GHzV2; Serial: 1057

Communication System: CW; Frequency: 5300 MHz; Duty Cycle: 1:1 Medium: 5 GHz Head; Medium parameters used:

f = 5300 MHz; σ = 4.826 S/m; ϵ_r = 34.642; ρ = 1000 kg/m³

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 07-29-2013; Ambient Temp: 24.3°C; Tissue Temp: 22.7°C

Probe: EX3DV4 - SN3589; ConvF(4.27, 4.27, 4.27); Calibrated: 1/17/2013; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1272; Calibrated: 1/17/2013 Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1114 Measurement SW: DASY4, Version 4.7 (80);SEMCAD X Version 14.6.10 (7164)

5300MHz System Verification

Area Scan (7x9x1): Measurement grid: dx=10mm, dy=10mmZoom Scan (9x9x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4 Input Power = 20.0 dBm (100 mW) Peak SAR (extrapolated) = 33.8 W/kg SAR(1 g) = 8.28 W/kg

Deviation = 7.67%

0 dB = 20.7 W/kg = 13.16 dBW/kg

DUT: Dipole 5500 MHz; Type: D5GHzV2; Serial: 1057

Communication System: CW; Frequency: 5500 MHz; Duty Cycle: 1:1 Medium: 5 GHz Head; Medium parameters used:

f = 5500 MHz; σ = 5.08 S/m; ϵ_r = 34.302; ρ = 1000 kg/m³

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 07-29-2013; Ambient Temp: 24.4°C; Tissue Temp: 22.8°C

Probe: EX3DV4 - SN3589; ConvF(4.14, 4.14, 4.14); Calibrated: 1/17/2013; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1272; Calibrated: 1/17/2013 Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1114 Measurement SW: DASY4, Version 4.7 (80);SEMCAD X Version 14.6.10 (7164)

5500MHz System Verification

Area Scan (7x9x1): Measurement grid: dx=10mm, dy=10mmZoom Scan (9x9x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4 Input Power = 20.0 dBm (100 mW) Peak SAR (extrapolated) = 35.4 W/kg SAR(1 g) = 7.65 W/kg

0 dB = 19.9 W/kg = 12.99 dBW/kg

DUT: Dipole 5800 MHz; Type: D5GHzV2; Serial: 1057

Communication System: CW; Frequency: 5800 MHz; Duty Cycle: 1:1 Medium: 5 GHz Head; Medium parameters used: f = 5800 MHz; $\sigma = 5.37$ S/m; $\epsilon_r = 33.638$; $\rho = 1000$ kg/m³

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 07-29-2013; Ambient Temp: 24.4°C; Tissue Temp: 22.9°C

Probe: EX3DV4 - SN3589; ConvF(3.85, 3.85, 3.85); Calibrated: 1/17/2013; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1272; Calibrated: 1/17/2013 Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1114 Measurement SW: DASY4, Version 4.7 (80);SEMCAD X Version 14.6.10 (7164)

5800MHz System Verification

Area Scan (7x9x1): Measurement grid: dx=10mm, dy=10mmZoom Scan (9x9x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4 Input Power = 20.0 dBm (100 mW) Peak SAR (extrapolated) = 37.4 W/kg SAR(1 g) = 8.02 W/kg

Deviation = 5.39%

0 dB = 20.7 W/kg = 13.16 dBW/kg

DUT: Dipole 5200 MHz; Type: D5GHzV2; Serial: 1057

Communication System: CW; Frequency: 5200 MHz; Duty Cycle: 1:1 Medium: 5 GHz Body; Medium parameters used:

f = 5200 MHz; σ = 5.512 S/m; ϵ_r = 46.801; ρ = 1000 kg/m³

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08-05-2013; Ambient Temp: 23.8°C; Tissue Temp: 22.7°C

Probe: EX3DV4 - SN3589; ConvF(3.99, 3.99, 3.99); Calibrated: 1/17/2013; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1272; Calibrated: 1/17/2013 Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1357 Measurement SW: DASY4, Version 4.7 (80);SEMCAD X Version 14.6.10 (7164)

5200MHz System Verification

Area Scan (7x9x1): Measurement grid: dx=10mm, dy=10mm Zoom Scan (9x9x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4 Input Power = 20.0 dBm (100 mW) Peak SAR (extrapolated) = 30.1 W/kg SAR(1 g) = 7.67 W/kg Deviation = 1.59%

DUT: Dipole 5300 MHz; Type: D5GHzV2; Serial: 1057

Communication System: CW; Frequency: 5300 MHz; Duty Cycle: 1:1 Medium: 5 GHz Body; Medium parameters used:

f = 5300 MHz; σ = 5.603 S/m; ϵ_r = 47.25; ρ = 1000 kg/m³

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 07-29-2013; Ambient Temp: 23.7°C; Tissue Temp: 22.6°C

Probe: EX3DV4 - SN3589; ConvF(3.81, 3.81, 3.81); Calibrated: 1/17/2013; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1272; Calibrated: 1/17/2013 Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1357 Measurement SW: DASY4, Version 4.7 (80);SEMCAD X Version 14.6.10 (7164)

5300MHz System Verification

Area Scan (7x9x1): Measurement grid: dx=10mm, dy=10mm Zoom Scan (9x9x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4 Input Power = 20.0 dBm (100 mW) Peak SAR (extrapolated) = 29.1 W/kg SAR(1 g) = 7.83 W/kg Deviation = 3.98%

DUT: Dipole 5500 MHz; Type: D5GHzV2; Serial: 1057

Communication System: CW; Frequency: 5500 MHz; Duty Cycle: 1:1 Medium: 5 GHz Body; Medium parameters used:

f = 5500 MHz; σ = 5.785 S/m; ϵ_r = 47.011; ρ = 1000 kg/m³

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 07-29-2013; Ambient Temp: 23.7°C; Tissue Temp: 22.6°C

Probe: EX3DV4 - SN3589; ConvF(3.52, 3.52, 3.52); Calibrated: 1/17/2013; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1272; Calibrated: 1/17/2013 Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1357 Measurement SW: DASY4, Version 4.7 (80);SEMCAD X Version 14.6.10 (7164)

5500MHz System Verification

Area Scan (7x9x1): Measurement grid: dx=10mm, dy=10mmZoom Scan (9x9x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4 Input Power = 20.0 dBm (100 mW) Peak SAR (extrapolated) = 40.0 W/kg SAR(1 g) = 8.23 W/kg

Deviation = 1.86%

DUT: Dipole 5800 MHz; Type: D5GHzV2; Serial: 1057

Communication System: CW; Frequency: 5800 MHz; Duty Cycle: 1:1 Medium: 5 GHz Body; Medium parameters used:

f = 5800 MHz; σ = 6.205 S/m; ϵ_r = 46.385; ρ = 1000 kg/m³

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 07-29-2013; Ambient Temp: 23.8°C; Tissue Temp: 22.7°C

Probe: EX3DV4 - SN3589; ConvF(3.66, 3.66, 3.66); Calibrated: 1/17/2013; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1272; Calibrated: 1/17/2013 Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1357 Measurement SW: DASY4, Version 4.7 (80);SEMCAD X Version 14.6.10 (7164)

5800MHz System Verification

Area Scan (7x9x1): Measurement grid: dx=10mm, dy=10mmZoom Scan (9x9x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4 Input Power = 20.0 dBm (100 mW) Peak SAR (extrapolated) = 31.5 W/kg SAR(1 g) = 7.37 W/kg

0 dB = 18.6 W/kg = 12.70 dBW/kg

APPENDIX C: PROBE CALIBRATION

Calibration Laboratory of Schmid & Partner

PC Test

Client

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: D5GHzV2-1057_Jan13

Accreditation No.: SCS 108

Object	D5GHzV2 - SN: 1	1057	
Calibration procedure(s)	QA CAL-22.v2 Calibration proce	dure for dipole validation kits bet	ween 3-6 GHz
Calibration date:	January 11, 2013		telenergenergenergenergen for Kongelenergenergenergen for
This calibration certificate docume The measurements and the uncer	ents the traceability to nati tainties with confidence p	onal standards, which realize the physical un robability are given on the following pages ar	nits of measurements (SI). Ind are part of the certificate.
All calibrations have been conduct	ted in the closed laborator	y facility: environment temperature (22 \pm 3)°(C and humidity < 70%.
Calibration Equipment used (M&T	E critical for calibration)		
Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	01-Nov-12 (No. 217-01640)	Oct-13
Power sensor HP 8481A	US37292783	01-Nov-12 (No. 217-01640)	Oct-13
Reference 20 dB Attenuator	SN: 5058 (20k)	27-Mar-12 (No. 217-01530)	Apr-13
Type-N mismatch combination	SN: 5047.3 / 06327	27-Mar-12 (No. 217-01533)	Apr-13
Reference Probe EX3DV4	SN: 3503	28-Dec-12 (No. EX3-3503_Dec12)	Dec-13
DAE4	SN: 601	27-Jun-12 (No. DAE4-601_Jun12)	Jun-13
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-11)	In house check: Oct-13
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-11)	In house check: Oct-13
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-12)	In house check: Oct-13
	Name	Function	Signature
Calibrated by:	Israe El-Naouq	Laboratory Technician	Jonan Anaouer
Approved by:	Katja Pokovic	Technical Manager	2014
			Issued: January 11, 2013

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

Schweizerischer Kalibrierdienst

- Service suisse d'étalonnage
- С Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossarv:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC 62209-2, "Evaluation of Human Exposure to Radio Frequency Fields from Handheld and Body-Mounted Wireless Communication Devices in the Frequency Range of 30 MHz to 6 GHz: Human models, Instrumentation, and Procedures"; Part 2: "Procedure to determine the Specific Absorption Rate (SAR) for including accessories and multiple transmitters", March 2010
- b) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

c) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole • positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. • No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power. •
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna • connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.5
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5200 MHz ± 1 MHz 5300 MHz ± 1 MHz 5500 MHz ± 1 MHz 5600 MHz ± 1 MHz 5800 MHz ± 1 MHz	

Head TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	36.0	4.66 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.6 ± 6 %	4.50 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5200 MHz

SAR averaged over 1 cm^3 (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.66 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	75.9 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.17 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	21.4 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5300 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.76 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.5 ± 6 %	4.60 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5300 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.76 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	76.9 W / kg ± 19.9 % (k=2)
an		
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.22 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	21.9 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5500 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.6	4.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.2 ± 6 %	4.79 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5500 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.09 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	80.1 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.28 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.5 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.1 ± 6 %	4.88 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.12 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	80.4 W/kg ± 19.9 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.30 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.7 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5800 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.3	5.27 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	33.8 ± 6 %	5.09 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.69 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	76.1 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm^3 (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.17 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	21.4 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	49.0	5.30 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.0 ± 6 %	5.42 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.61 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	75.5 W/kg ± 19.9 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.13 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.1 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5300 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.9	5.42 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.8 ± 6 %	5.55 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5300 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.59 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	75.3 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.13 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	21.1 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5500 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.6	5.65 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.5 ± 6 %	5.81 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5500 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	8.14 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	80.8 W/kg ± 19.9 % (k=2)
SAR averaged over 10 cm [*] (10 g) of Body TSL	condition	
SAR averaged over 10 cm ⁻ (10 g) of Body TSL SAR measured	condition 100 mW input power	2.26 W/kg

Body TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.5	5.77 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.3 ± 6 %	5.94 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	8.10 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	80.3 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.25 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	22.3 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5800 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.2	6.00 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.0 ± 6 %	6.21 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5800 MHz

SAR averaged over 1 cm^3 (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.57 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	75.1 W/kg ± 19.9 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	

3 (3) 7		
SAR measured	100 mW input power	2.09 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.7 W/kg ± 19.5 % (k=2)

Appendix

Antenna Parameters with Head TSL at 5200 MHz

Impedance, transformed to feed point	50.5 Ω - 9.8 jΩ
Return Loss	- 20.3 dB

Antenna Parameters with Head TSL at 5300 MHz

Impedance, transformed to feed point	48.5 Ω - 4.5 jΩ
Return Loss	- 26.4 dB

Antenna Parameters with Head TSL at 5500 MHz

Impedance, transformed to feed point	50.6 Ω - 5.8 jΩ
Return Loss	- 24.8 dB

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	53.9 Ω - 3.8 jΩ
Return Loss	- 25.6 dB

Antenna Parameters with Head TSL at 5800 MHz

Impedance, transformed to feed point	52.5 Ω - 4.4 jΩ
Return Loss	- 26.1 dB

Antenna Parameters with Body TSL at 5200 MHz

Impedance, transformed to feed point	49.3 Ω - 7.9 jΩ
Return Loss	- 22.0 dB

Antenna Parameters with Body TSL at 5300 MHz

Impedance, transformed to feed point	48.7 Ω - 3.2 jΩ
Return Loss	- 29.2 dB

Antenna Parameters with Body TSL at 5500 MHz

Impedance, transformed to feed point	51.2 Ω - 4.8 jΩ
Return Loss	- 26.2 dB

Antenna Parameters with Body TSL at 5600 MHz

Impedance, transformed to feed point	53.6 Ω - 2.1 jΩ
Return Loss	- 27.9 dB

Antenna Parameters with Body TSL at 5800 MHz

Impedance, transformed to feed point	53.3 Ω - 2.9 jΩ
Return Loss	- 27.4 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1 202 pp
Electrical Delay (one direction)	1.202 115

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	November 27, 2006

DASY5 Validation Report for Head TSL

Date: 11.01.2013

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1057

Communication System: CW; Frequency: 5200 MHz, Frequency: 5300 MHz, Frequency: 5500 MHz, Frequency: 5600 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; σ = 4.5 S/m; ε_r = 34.6; ρ = 1000 kg/m³, Medium parameters used: f = 5300 MHz; σ = 4.6 S/m; ε_r = 34.5; ρ = 1000 kg/m³, Medium parameters used: f = 5500 MHz; σ = 4.79 S/m; ε_r = 34.2; ρ = 1000 kg/m³, Medium parameters used: f = 5600 MHz; σ = 4.88 S/m; ε_r = 34.1; ρ = 1000 kg/m³, Medium parameters used: f = 5800 MHz; σ = 5.09 S/m; ε_r = 33.8; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.41, 5.41, 5.41); Calibrated: 28.12.2012, ConvF(5.1, 5.1, 5.1); Calibrated: 28.12.2012, ConvF(4.91, 4.91, 4.91); Calibrated: 28.12.2012, ConvF(4.76, 4.76, 4.76); Calibrated: 28.12.2012, ConvF(4.81, 4.81, 4.81); Calibrated: 28.12.2012;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.06.2012
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.8.5(1059); SEMCAD X 14.6.8(7028)

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 63.671 V/m; Power Drift = 0.09 dB Peak SAR (extrapolated) = 29.4 W/kg SAR(1 g) = 7.66 W/kg; SAR(10 g) = 2.17 W/kg Maximum value of SAR (measured) = 18.5 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 63.473 V/m; Power Drift = 0.09 dB Peak SAR (extrapolated) = 30.3 W/kg SAR(1 g) = 7.76 W/kg; SAR(10 g) = 2.22 W/kg Maximum value of SAR (measured) = 18.8 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 63.735 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 33.2 W/kg SAR(1 g) = 8.09 W/kg; SAR(10 g) = 2.28 W/kg Maximum value of SAR (measured) = 20.1 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 63.848 V/m; Power Drift = 0.09 dB Peak SAR (extrapolated) = 33.5 W/kg SAR(1 g) = 8.12 W/kg; SAR(10 g) = 2.3 W/kg Maximum value of SAR (measured) = 20.2 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 60.467 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 33.3 W/kg

SAR(1 g) = 7.69 W/kg; SAR(10 g) = 2.17 W/kg Maximum value of SAR (measured) = 19.4 W/kg

0 dB = 19.4 W/kg = 12.88 dBW/kg

DASY5 Validation Report for Body TSL

Date: 10.01.2013

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1057

Communication System: CW; Frequency: 5200 MHz, Frequency: 5300 MHz, Frequency: 5500 MHz, Frequency: 5600 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; $\sigma = 5.42$ S/m; $\varepsilon_r = 47$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5300 MHz; $\sigma = 5.55$ S/m; $\varepsilon_r = 46.8$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5500 MHz; $\sigma = 5.81$ S/m; $\varepsilon_r = 46.5$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5600 MHz; $\sigma = 5.94$ S/m; $\varepsilon_r = 46.3$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5800 MHz; $\sigma = 6.21$ S/m; $\varepsilon_r = 46$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(4.91, 4.91, 4.91); Calibrated: 28.12.2012, ConvF(4.67, 4.67, 4.67); Calibrated: 28.12.2012, ConvF(4.43, 4.43, 4.43); Calibrated: 28.12.2012, ConvF(4.22, 4.22, 4.22); Calibrated: 28.12.2012, ConvF(4.38, 4.38, 4.38); Calibrated: 28.12.2012;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 27.06.2012
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.5(1059); SEMCAD X 14.6.8(7028)

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 59.074 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 30.4 W/kg SAR(1 g) = 7.61 W/kg; SAR(10 g) = 2.13 W/kg Maximum value of SAR (measured) = 18.0 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 58.924 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 30.9 W/kg SAR(1 g) = 7.59 W/kg; SAR(10 g) = 2.13 W/kg Maximum value of SAR (measured) = 17.9 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 59.561 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 35.3 W/kg SAR(1 g) = 8.14 W/kg; SAR(10 g) = 2.26 W/kg Maximum value of SAR (measured) = 19.7 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 58.884 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 36.3 W/kg SAR(1 g) = 8.1 W/kg; SAR(10 g) = 2.25 W/kg Maximum value of SAR (measured) = 20.0 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 55.753 V/m; Power Drift = -0.00 dB

Peak SAR (extrapolated) = 35.6 W/kg

SAR(1 g) = 7.57 W/kg; SAR(10 g) = 2.09 W/kg

Maximum value of SAR (measured) = 18.9 W/kg

0 dB = 18.9 W/kg = 12.76 dBW/kg

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland lac-mrA

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client PC Test

Certificate No: EX3-3589_Jan13

Accreditation No.: SCS 108

S

С

S

CALIBRATION CERTIFICATE

Object	EX3DV4 - SN:3589								
Calibration procedure(s)	OA CAL-01.v8, OA CAL-14.v3, CA CAL-23.v4, CA CAL-25.v4 Celloration procedure for dosimetric E-field probes								
Calibration date:	January 17, 2013								
This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.									

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	29-Mar-12 (No. 217-01508)	Apr-13
Power sensor E4412A	MY41498087	29-Mar-12 (No. 217-01508)	Apr-13
Reference 3 dB Attenuator	SN: S5054 (3c)	27-Mar-12 (No. 217-01531)	Apr-13
Reference 20 dB Attenuator	SN: S5086 (20b)	27-Mar-12 (No. 217-01529)	Apr-13
Reference 30 dB Attenuator	SN: S5129 (30b)	27-Mar-12 (No. 217-01532)	Apr-13
Reference Probe ES3DV2	SN: 3013	28-Dec-12 (No. ES3-3013_Dec12)	Dec-13
DAE4	SN: 660	20-Jun-12 (No. DAE4-660_Jun12)	Jun-13
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-11)	In house check: Apr-13
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-12)	In house check: Oct-13

Calibrated by: Jeton Kastrati Laboratory Technician Approved by: Katja Pokovic Technical Manager	
Approved by: Katja Pokovic Technical Manager	
Approved by: Katja Pokovic Technical Manager	
	2
Issued: January 17, 2013)13

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
 - Servizio svizzero di taratura
 - Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary: TSL tissue simulating liquid NORMx,y,z sensitivity in free space sensitivity in TSL / NORMx,y,z ConvF diode compression point DCP crest factor (1/duty_cycle) of the RF signal CF modulation dependent linearization parameters A, B, C, D φ rotation around probe axis Polarization ϕ Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx, y, z are only intermediate values, i.e., the uncertainties of NORMx, y, z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- *DCPx,y,z*: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- *PAR*: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- *Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D* are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. *VR* is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Accreditation No.: SCS 108

Probe EX3DV4

SN:3589

Calibrated:

Manufactured: March 30, 2006 January 17, 2013

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3589

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (μV/(V/m) ²) ^A	0.46	0.40	0.40	± 10.1 %
DCP (mV) ^B	100.5	103.8	99.6	

Modulation Calibration Parameters

UID	Communication System Name		A dB	Β dB√μV	С	D dB	VR mV	Unc [±] (k=2)
0	CW	X	0.0	0.0	1.0	0.00	165.8	±3.3 %
		Y	0.0	0.0	1.0		134.3	
		Z	0.0	0.0	1.0		140.5	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

^B Numerical linearization parameter: uncertainty not required.

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3589

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
750	41.9	0.89	8.70	8.70	8.70	0.39	0.96	± 12.0 %
835	41.5	0.90	8.40	8.40	8.40	0.52	0.74	± 12.0 %
1750	40.1	1.37	7.34	7.34	7.34	0.45	0.93	± 12.0 %
1900	40.0	1.40	7.09	7.09	7.09	0.80	0.65	± 12.0 %
2450	39.2	1.80	6.37	6.37	6.37	0.39	0.97	± 12.0 %
2600	39.0	1.96	6.19	6.19	6.19	0.30	1.12	± 12.0 %
5200	36.0	4.66	4.48	4.48	4,48	0.45	1.80	± 13.1 %
5300	35.9	4.76	4.27	4.27	4.27	0.45	1.80	± 13.1 %
5500	35.6	4.96	4.14	4.14	4.14	0.50	1.80	± 13.1 %
5600	35.5	5.07	3.81	3.81	3.81	0.55	1.80	± 13.1 %
5800	35.3	5.27	3.85	3.85	3.85	0.55	1.80	± 13.1 %

Calibration Parameter Determined in Head Tissue Simulating Media

^c Frequency validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. ^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to

^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3589

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
750	55.5	0.96	8.59	8.59	8.59	0.49	0.86	± 12.0 %
835	55.2	0.97	8.43	8.43	8.43	0.38	1.05	± 12.0 %
1750	53.4	1.49	7.87	7.87	7.87	0.44	0.89	± 12.0 %
1900	53.3	1.52	7.46	746	7.46	0.58	0.75	+ 12.0 %
2450	52.7	1.95	7.07	7.07	7.07	0.80	0.50	+ 12 0 %
2600	52.5	2 16	6.68	6.68	6.68	0.80	0.50	+ 12 0 %
5200	19.0	5 30	3.99	3.99	3.99	0.50	1 90	+ 13 1 %
5200	49.0	5.00	3.81	3.81	3.81	0.50	1 90	+ 13 1 %
5500	40.5	5.65	2.50	3.01	2.52	0.50	1.00	± 12,1 %
5500	48.0	0.00	3.52	3.52	0.02	0.00	1.90	
5600	48.5	5.77	3.32	3.32	3.32	0.60	1.90	± 13.1 %
5800	48.2	6.00	3.66	3.66	3.66	0.60	1.90	± 13.1 %

Calibration Parameter Determined in Body Tissue Simulating Media

^C Frequency validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. ^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to

^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Dynamic Range f(SAR_{head}) (TEM cell , f = 900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3589

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	-26.4
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	2 mm

APPENDIX D: SAR TISSUE SPECIFICATIONS

Measurement Procedure for Tissue verification:

- 1) The network analyzer and probe system was configured and calibrated.
- The probe was immersed in the tissue. The tissue was placed in a nonmetallic container. Trapped air bubbles beneath the flange were minimized by placing the probe at a slight angle.
- 3) The complex admittance with respect to the probe aperture was measured
- 4) The complex relative permittivity ε can be calculated from the below equation (Pournaropoulos and Misra):

$$Y = \frac{j2\omega\varepsilon_r\varepsilon_0}{\left[\ln(b/a)\right]^2} \int_a^b \int_a^b \int_0^\pi \cos\phi' \frac{\exp\left[-j\omega r(\mu_0\varepsilon_r\varepsilon_0)^{1/2}\right]}{r} d\phi' d\rho' d\rho$$

where Y is the admittance of the probe in contact with the sample, the primed and unprimed coordinates refer to source and observation points, respectively, $r^2 = \rho^2 + {\rho'}^2 - 2\rho\rho'\cos\phi'$, ω is the angular frequency, and $j = \sqrt{-1}$.

Table D-I							
Composition of the Tissue Equivalent Matter							

Frequency (MHz)	5200-5800	5200-5800	
Tissue	Head	Body	
Ingredients (% by weight)			
Polysorbate (Tween) 80	Cas New Dags	20	
Water	See Next Page	80	

FCC ID: A3LSGHI337		SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Test Dates:	DUT Type:			APPENDIX D:
07/29/13 - 08/05/13	Portable Handset			Page 1 of 2
© 2013 PCTEST Engineering Labora	atory, Inc.			REV 12.5 M

2 Composition / Information on ingredients

The Item is composed of the following ingredients: Water

	Figure D-1
Sodium salt	0 – 1.5%
Emulsifiers	8 – 25%
Mineral oil	10 – 30%
Water	50 — 65%
Water	50 - 65%

Composition of 5 GHz Head Tissue Equivalent Matter

Note: 5GHz head liquid recipes are proprietary SPEAG. Since the composition is approximate to the actual liquids utilized, the manufacturer tissue-equivalent liquid data sheets are provided below.

Measurement Certificate / Material Test

Itom N	lamo		Head	Tion	in Cin	a datio	and Invested (IDDI	2500	F000	100							
Produc	at No		CLA	11330		Charge	9 100400		3000-	0000	v5)							
-rouue	GUND.		SL AAH 502 AB (Charge: 120402-2)															
vianus	acture	I	SPEA	4G														
Measu	ireme	nt Me	thoa				111											
ISL 0	electri	ic para	meter	s mea	sured	using o	calibrated (DCP p	robe ((type	DAK).						
Target	t Para	meter	c															
Target	t narar	neters	as de	fined i	n the I	EEE 1	528 and IE	C 622	09.00	mnlia	nca	etanda	arde					
, an go	, para		40.00					φ ψε.ε.	.00 00	mpila	106	stariua	uus.					
Test C	Condit	ion																
Ambie	nt Cor	ndition	22°C	; 30%	humio	dity												
TSL T	emper	rature	22°C															
Test D)ate		4-Apr	-12														
Additi	ional I	nform	ation															
TSL D	ensity		0.985	g/cm	3													
TSL D TSL H	ensity leat-ca	pacity	0.985	i g/cm 3 kJ/(k	з g*K)													
TSL D TSL H	ensity leat-ca	pacity	0.985	i g/cm i kJ/(k	₃ g*K)													
TSL D TSL H	ensity leat-ca	pacity	0.985	i g/cm 8 kJ/(k	₃ g*K)													
TSL D TSL H Result	ensity leat-ca	pacity	0.985	i g/cm i kJ/(k	3 g*K)	Diffus	Tornal (W)											
TSL D TSL H Result	ts	upacity	0.985	g/cm kJ/(k	3 g*K)	Diff.to	Target [%]		10.0						P-000 V-04-00			
TSL D TSL H Result	ts	ured	0.985 3.383	g/cm kJ/(k Targe	₃ g*K) t sigma	Diff.to	Target [%] ∆-sigma	*	10.0		7.8					约 在		-
TSL D TSL H Result f[MHz] 3400	ts Mease HP-e ¹ 38.7	ured	0.985 3.383 sigma 2.83	g/cm kJ/(k Targe eps 38.0	3 g*K) t sigma 2.81	Diff.to A-eps	Target [%] Δ-sigma 0.7	ity %	10.0			2//4						
TSL D TSL H Result 1 [MHz] 3400 3500	ts Mease HP-e ¹ 38.6	ured HP-e ⁻ 14.96	0.985 3.383 sigma 2.83 2.90	g/cm kJ/(k Targe eps 38.0 37.9	3 g*K) t sigma 2.81 2.91	Diff.to <u>A-eps</u> 1.8 1.7	Target [%] ∆-sigma 0.7 -0.3	littivity %	10.0 7.5 5.0									
TSL D TSL H Result 3400 3500 3600	ts Measu HP-e' 38.7 38.6 38.5	ured HP-e* 14.96 14.91	0.985 3.383 sigma 2.83 2.90 2.99	g/cm kJ/(k Targe eps 38.0 37.9 37.8	3 g*K) sigma 2.81 2.91 3.02	Diff.to <u>A-eps</u> 1.8 1.7 1.7	Target [%] ∆-sigma 0.7 -0.3 -0.9	ermittivity %	10.0 7.5 5.0 2.5									
TSL D TSL H Result 3400 3500 3600 3700	ts Measi HP-e ¹ 38.7 38.6 38.5 38.3	ured HP-e ¹ 14.96 14.91 14.92	0.985 3.383 sigma 2.83 2.90 2.99 3.07	g/cm kJ/(k Targe eps 38.0 37.9 37.8 37.7	9 g*K) sigma 2.81 2.91 3.02 3.12	Diff.to A-eps 1.8 1.7 1.7 1.7 1.7	Target [%] <u>∆-sigma</u> 0.7 -0.3 -0.9 -1.5	. Permittivity %	10.0 7.5 5.0 2.5 0.0									
TSL D TSL H Result 3400 3500 3600 3700 3800	ts Measi HP-e' 38.7 38.6 38.5 38.2 38.2	ured HP-e ¹ 14.96 14.91 14.92 14.92 14.92	0.985 3.383 sigma 2.83 2.99 3.07 3.16 2.94	g/cm kJ/(k Targe eps 38.0 57.9 37.8 37.8 37.8	9 g*K) sigma 2.81 2.91 3.02 3.12 3.12	Diff,to <u>∆-eps</u> 1.8 1.7 1.7 1.7 1.7 1.7	Target [%] <u>A-sigma</u> 0.7 0.3 -0.9 -1.5 -1.9	Dev. Permittivity %	10.0 7.5 5.0 2.5 0.0 -2.5									
TSL D TSL H Result 3400 3500 3600 3800 3800 3800 3900	ts Measi HP-e' 38.7 38.6 38.5 38.2 38.2 38.2 38.2	ured HP-e ¹ 14.96 14.91 14.92 14.92 14.94 14.95 15.00	0.985 3.383 2.83 2.90 2.99 3.07 3.16 3.24 2.91	g/cm kJ/(k Targe eps 38.0 37.9 37.8 37.7 37.6 37.5 27.4	3 g*K) sigma 2.81 2.91 3.02 3.12 3.22 3.22 3.22	Diff,to <u>∆-eps</u> 1.8 1.7 1.7 1.7 1.7 1.7 1.7 1.7	Target [%] <u>∆-sigma</u> 0.7 -0.3 -0.9 -1.6 -1.9 -2.4 -2.4	Dev. Permittivity %	10.0 7.5 5.0 2.5 0.0 -2.5 -5.0									
TSL D TSL H Result 3400 3500 3600 3800 3900 4000	ts Mease HP-e ² 38.7 38.6 38.5 38.3 38.2 38.1 38.0 22.0	ured HP-e ¹ 14.96 14.91 14.92 14.92 14.94 14.95 15.01	0.985 3.383 2.83 2.90 3.07 3.16 3.24 3.34 2.42	g/cm kJ/(k Targe eps 38.0 37.9 37.8 37.8 37.6 37.6 37.5 37.4 27.0	3 g*K) sigma 2.81 2.91 3.02 3.12 3.22 3.32 3.43 2.50	Diff,to ∆-eps 1.8 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.8	Target [%] <u>A-sigma</u> 0.7 0.3 -0.9 -1.6 -1.9 -2.4 -2.5 0.0	Dev. Permittivity %	10.0 7.5 5.0 2.5 0.0 -2.5 -5.0 -7.5									
TSL D TSL H Result (MH2) 34500 3500 3500 3800 3900 4000 4100 4100	ts Mease HP-e' 38.7 38.6 38.5 38.3 38.2 38.3 38.2 38.1 38.0 37.9 37.9	ured HP-e ¹ 14.96 14.91 14.92 14.92 14.94 14.95 15.00 15.04	0.985 3.383 3.383 2.83 2.99 3.07 3.16 3.24 3.34 3.34 3.43	g/cm kJ/(k Targe eps 38.0 37.9 37.8 37.8 37.8 37.6 37.6 37.5 37.4 37.2	3 g*K) sigma 2.81 2.91 3.02 3.12 3.22 3.32 3.43 3.53 3.53	Diff,to ∆-eps 1.8 1.7 1.7 1.7 1.7 1.7 1.7 1.8 1.8 1.8 1.8 1.7 1.7 1.7 1.7 1.8 1.8 1.9 1.8 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9	Target [%] A-sigma 0.7 0.3 -0.9 -1.5 -1.5 -2.4 -2.5 -2.8	Dev. Permittivity %	10.0 7.5 5.0 2.5 0.0 -2.5 -5.0 -7.5 -10.0									
TSL D TSL H Result (MH2) 34500 3500 3800 3900 4000 4100 4200	ts Mease HP-e' 38.7 38.6 38.5 38.3 38.2 38.3 38.2 38.1 38.0 37.9 37.9 37.8	ured HP-e ⁻ 14.96 14.91 14.92 14.94 14.95 15.00 15.04 15.04	0.985 3.383 2.83 2.99 3.07 3.16 3.24 3.34 3.43 3.52 3.52	g/cm k,J/(k Targe eps 38.0 37.9 37.8 37.7 37.8 37.7 37.6 37.5 37.4 37.2 37.1 37.2	3 g*K) sigma 2.81 2.91 3.02 3.12 3.22 3.32 3.43 3.53 3.63 3.63	Diff.to ▲-eps 1.8 1.7 1.7 1.7 1.7 1.7 1.7 1.8 1.8 1.8 1.8	Target [%] <u>A-sigma</u> 0.7 0.3 -0.9 -1.5 -1.9 -2.4 -2.5 -2.8 -2.9	Dev. Permittvity %	10.0 7.5 5.0 2.5 0.0 -2.5 -5.0 -7.5 -10.0 3	400	39	00	4400		1900	54	00	590
TSL D TSL H Result 3400 3500 3600 3800 3900 4000 4100 4200 4300	ts Measu HP-9' 38.7 38.6 38.5 38.3 38.2 38.1 38.0 37.9 37.8 37.8 37.7	ured HP-e 14.96 14.91 14.92 14.92 14.94 14.95 15.00 15.04 15.08 15.14	0.985 3.383 2.83 2.99 3.07 3.16 3.24 3.34 3.52 3.62 3.52	g/cm k,J/(k eps 38.0 37.9 37.8 37.7 37.8 37.7 37.6 37.5 37.4 37.2 37.1 37.0	3 g*K) sigma 2.81 2.91 3.02 3.12 3.22 3.43 3.53 3.63 3.63 3.73	Diff.to ▲-eps 1.8 1.7 1.7 1.7 1.7 1.7 1.7 1.8 1.8 1.8 1.8 1.8	Target [%] A-sigma 0.9 -0.9 -1.9 -1.9 -2.4 -2.5 -2.6 -2.9 -3.0	Dev. Permittvity %	10.0 7.5 5.0 2.5 0.0 -2.5 -5.0 -7.5 -10.0 3	400	39	00	4400 Freq	4 uency 1	1900 MHz	54	00	590
TSL D TSL H Result 3400 3500 3600 3800 3800 3900 4000 4100 4200 4300 4400	ts Measu HP-9' 38.7 38.6 38.5 38.3 38.2 38.1 38.0 37.9 37.8 37.7 37.5	red HP-e ¹ 14.96 14.91 14.92 14.94 14.94 14.95 15.00 15.04 15.08 15.14 15.18	0.985 3.383 2.83 2.99 3.07 3.16 3.24 3.34 3.52 3.62 3.71	g/cm kJ/(k Targe eps 38.0 37.9 37.8 37.7 37.6 37.5 37.4 37.2 37.1 37.0 36.9	3 g*K) sigma 2.81 2.91 3.02 3.12 3.22 3.43 3.53 3.63 3.63 3.63 3.73 3.64	Diff.to A-eps 1.8 1.7 1.7 1.7 1.7 1.7 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.7	Target [%] A-sigma 0.7 0.3 -0.9 -1.5 -1.9 -2.4 -2.5 -2.8 -2.9 -3.0 -3.1	Dev. Permititivity %	10.0 7.5 5.0 2.5 -5.0 -2.5 -5.0 -7.5 -10.0 3	400	39	00	4400 Freq	++++++++++++++++++++++++++++++++++++++	ISOD VHz	54	00	590
TSL D TSL H Result 3400 3500 3800 3900 4000 4000 4000 4000 4000 4000 40	ts Measu HP-9' 38.7 38.6 38.3 38.3 38.3 38.3 38.2 38.1 38.0 37.9 37.8 37.9 37.8 37.7 37.5 37.4	ured HP-e ¹ 14.96 14.91 14.92 14.92 14.92 14.93 15.00 15.04 15.08 15.14 15.18 15.20	0.985 3.383 2.83 2.99 3.07 3.16 3.24 3.34 3.52 3.62 3.71 3.81	g/cm kJ/(k Farge eps 38.0 37.9 37.8 37.9 37.6 37.5 37.4 37.5 37.4 37.2 37.1 37.0 36.9 36.8	sigma 2.81 2.91 3.02 3.12 3.32 3.43 3.53 3.63 3.63 3.63 3.73 3.64 3.94	Diff.to <u>A-eps</u> 1.8 1.7 1.7 1.7 1.7 1.7 1.8 1.8 1.8 1.8 1.8 1.7 1.6	Target [%] A-sigma 0.7 -0.3 -0.9 -1.9 -2.4 -2.5 -2.6 -2.9 -3.0 -3.1 -3.3	Dev. Permittivity %	10.0 7.5 5.0 2.5 -0.0 -2.5 -5.0 -7.5 -10.0 3	400	7 2 2 7 2 2 7 2 2 7 2 7 2 7 2 7 2 7 2 7	00	4400 Freq	a and a second s	IPO0 MHz	54		590
TSL D TSL H Result 3400 3500 3800 4000 4000 4000 4000 4400 4500 4600	ensity ts Measu HP-e' 38.7 38.6 38.3 38.2 38.3 38.3	ured HP-e ⁻ 14.96 14.91 14.92 14.93 15.00 15.04 15.04 15.14 15.18 15.20 15.29	0.985 3.383 2.83 2.99 3.07 3.16 3.24 3.34 3.52 3.62 3.62 3.71 3.81 3.91	9 g/cm kJ/(k eps 38.0 37.9 37.8 37.5 37.4 37.5 37.4 37.2 37.1 37.0 36.9 36.8 36.7	sigma 2.81 2.91 3.02 3.12 3.43 3.53 3.63 3.63 3.63 3.63 3.63 3.64 3.94 4.04	Diff.to <u>A-eps</u> 1.8 1.7 1.7 1.7 1.7 1.7 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8	Target (%) A-sigma 0.7 0.3 0.9 -1.5 -1.9 -2.4 -2.5 -2.8 -2.9 -3.0 -3.1 -3.3 -3.2	Dev. Permittivity %	10.0 7.5 5.0 2.5 -5.0 -2.5 -5.0 -7.5 -10.0 3	400	39	00	4400 Freq	4 Juency 1	igoo vifiz	54	00	590
TSL D TSL H Result 3400 3500 3800 3900 4000 4100 4200 4400 4500 4400 4500 4000	ensity eat-ca Measure HP-e' 38.6 38.5 38.3 38.2 38.3 38.3	Pacity HP-e* 14.96 14.92 14.92 14.92 14.92 14.92 15.00 15.04 15.04 15.04 15.18 15.19 15.29 15.34	0.985 3.383 2.89 2.99 3.07 3.16 3.24 3.34 3.52 3.62 3.62 3.61 3.51 3.51 3.51 3.51 3.51 3.51 3.51 3.5	g/cm kJ/(k kJ/(k eps 38.0 37.9 37.8 37.5 37.4 37.5 37.4 37.5 37.4 37.5 37.4 37.5 37.4 36.9 36.8 36.9 36.8	s g*K) sigma 2.81 2.91 3.02 3.02 3.02 3.02 3.02 3.02 3.02 3.02	Diff.to A-eps 1.8 1.7 1.7 1.7 1.7 1.7 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.5	Target (%) A-sigma 0.7 0.3 -0.9 -1.5 -1.9 -2.5 -2.6 -2.9 -3.0 -3.1 -3.3 -3.2	Dev. Permittvity %	10.0 7.5 5.0 2.5 -5.0 -2.5 -5.0 -7.5 -10.0 3	400	39		4400 Freq	4 vency 1	4444 Kilon K	54	000	590
TSL D TSL H Result (MH2) 3400 3500 3800 3900 4000 4100 4200 4400 4400 4400 4400 44	ensity leat-ca Measu HP-e' 38.7 38.6 38.5 38.3 38.2 38.3 38.2 38.3 38.2 38.3 38.3	red HP-e [*] 14.96 14.92 14.92 14.92 14.92 14.92 15.00 15.04 15.08 15.14 15.29 15.29 15.24 15.29 15.24 15.29 15.24 15.29 15.24 15.29 15.24 15.29 15.24 15.29 15.24 15.29 15.24 15.24 15.29 15.24 15	0.985 3.383 2.83 2.99 3.07 3.16 3.24 3.34 3.52 3.62 3.71 3.81 3.91 4.01 4.01	g/cm kJ/(k Targe eps 38.0 37.9 37.8 37.8 37.7 37.8 37.7 37.8 37.7 37.8 37.7 37.8 37.7 37.8 37.7 37.8 37.9 37.8 37.7 37.8 37.9 36.8 37.9 36.8 36.7 37.8 36.8 36.7 37.8 36.8 37.9 36.8 36.9 37.9 36.8 36.9 36.8 36.9 36.9 37.9 36.8 36.9 36.9 36.9 37.9 36.8 36.9 36.9 36.9 36.9 36.9 36.9 36.9 36.9	sigma 2.81 2.81 3.02 3.12 3.32 3.43 3.53 3.63 3.53 3.63 3.73 3.84 4.04 4.14 4.25	Diff.to A-eps 1.8 1.7 1.7 1.7 1.7 1.7 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.7 1.6 1.5 1.4	Target [%] A-sigma 0.7 0.9 1.5 1.9 2.4 -2.5 -2.6 -2.0 -3.0 -3.1 -3.3 -3.2 -3.2 -3.2	Dev. Permittvity %	10.0 7.5 5.0 -2.5 -5.0 -7.5 -10.0 3 10.0 7.5 2	400	39	••••	4400 Freq	4 uency 1	s s s s s s s s s s s s s s s s s s s	54	000	590

0000	CINCLES S	S SHIER	0.000000000	0,00,0		25.29040;225	52.1 04.18 165
5550	35.9	15.80	4,88	35.6	5.01	0.8	-2.7
5600	35.8	15.92	4.93	35.5	5.07	0.7	-2.7
5650	35,7	15.86	4.98	35.5	5.12	0.7	-2.6
5700	35.7	15.88	5.03	35.4	5.17	0.7	-2.6
5750	35.6	15.90	5.08	35.4	5.22	0.6	-2.6
5800	35.5	15.94	5,14	35.3	5,27	0.5	-2.4
5850	35.4	15.98	5.20	35.3	5.34	0.4	-2.5
5900	35.4	16.02	5.26	35.3	5.40	0.2	-2.6
							Fig
						_	9

5GHz Head Tissue Equivalent Matter

FCC ID: A3LSGHI337		SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Test Dates:	DUT Type:			APPENDIX D:
07/29/13 - 08/05/13	Portable Handset			Page 2 of 2
© 2013 PCTEST Engineering La	boratory Inc			REV 12.51

© 2013 PCTEST Engineering Laboratory, Inc.

4900

4950

5000

5050

5100

5150

4.21 4.26 36,3 36,3 36,2 36,2

4.31 4.37

4.43 4.48

 0100
 36.4
 15.02
 4.48
 36.0
 4.60

 5200
 36.3
 15.67
 4.58
 35.9
 4.71

 5300
 36.3
 15.67
 4.58
 35.9
 4.71

 5300
 36.1
 15.67
 4.58
 35.9
 4.71

 5300
 36.1
 15.70
 4.63
 35.9
 4.71

 5350
 36.1
 15.70
 4.63
 35.8
 4.81

 5400
 36.1
 15.74
 4.73
 35.8
 4.81

 5450
 36.0
 15.74
 4.77
 35.7
 4.91

 5500
 35.9
 15.75
 4.82
 35.6
 4.96

 5550
 35.9
 15.80
 4.88
 35.6
 5.01

 37.0
 15.39

 36.9
 15.43

 36.8
 15.45

 36.7
 15.47

 36.7
 15.50

 36.6
 15.55

 36.5
 15.60

 36.4
 15.62

4.35 1.3 1.2

4.40

4.45

4.50

36.1 4.55

36.0 4.60 1.0

1.2 1.1 1.1

1.0

1.0 1.0 0.9

0.8

0.9

0.8

-3.2 -3.1 -3.1 -3.1

-3.1 -3.0 -2.8

-2.8

-2.9

-2.7

-2.8

-2.9

-2.8 -2.8 -2.7

APPENDIX E: SAR SYSTEM VALIDATION

Per FCC KDB 865664 D02v01, SAR system validation status should be documented to confirm measurement accuracy. The SAR systems (including SAR probes, system components and software versions) used for this device were validated against its performance specifications prior to the SAR measurements. Reference dipoles were used with the required tissue- equivalent media for system validation, according to the procedures outlined in IEEE 1528-2003 and FCC KDB 865664 D01 v01. Since SAR probe calibrations are frequency dependent, each probe calibration point was validated at a frequency within the valid frequency range of the probe calibration point, using the system that normally operates with the probe for routine SAR measurements and according to the required tissue-equivalent media.

A tabulated summary of the system validation status including the validation date(s), measurement frequencies, SAR probes and tissue dielectric parameters has been included.

	SAR System valuation Summary													
SAR	SAR					COND.	PERM.		CW VALIDATIO	N	N	10D. VALIDATI	ON	
SYSTEM #	FREQ. [MHz]	DATE	PROBE SN	PROBE TYPE	PROBE C	AL. POINT	(σ)	(ε _r)	SENSI- TIVITY	PROBE LINEARITY	PROBE ISOTROPY	MOD. TYPE	DUTY FACTOR	PAR
A	5200	1/24/2013	3589	EX3DV4	5200	Head	4.659	35.55	PASS	PASS	PASS	OFDM	N/A	PASS
A	5300	1/24/2013	3589	EX3DV4	5300	Head	4.800	35.40	PASS	PASS	PASS	OFDM	N/A	PASS
A	5500	1/24/2013	3589	EX3DV4	5500	Head	5.004	34.83	PASS	PASS	PASS	OFDM	N/A	PASS
A	5800	1/24/2013	3589	EX3DV4	5800	Head	5.392	34.17	PASS	PASS	PASS	OFDM	N/A	PASS
Α	5200	1/23/2013	3589	EX3DV4	5200	Body	5.292	47.85	PASS	PASS	PASS	OFDM	N/A	PASS
Α	5300	1/23/2013	3589	EX3DV4	5300	Body	5.477	47.47	PASS	PASS	PASS	OFDM	N/A	PASS
Α	5500	1/23/2013	3589	EX3DV4	5500	Body	5.729	47.03	PASS	PASS	PASS	OFDM	N/A	PASS
A	5800	1/23/2013	3589	EX3DV4	5800	Body	6.233	46.20	PASS	PASS	PASS	OFDM	N/A	PASS

Table E-I SAR System Validation Summary

NOTE: All measurements were performed using probes calibrated for CW signals only. Modulations in the table above represent test configurations for which the measurement system has been validated per FCC KDB Publication 865664 D01v01. SAR systems were validated for modulated signals with a periodic duty cycle, such as GMSK, or with a high peak to average ratio (>5 dB), such as OFDM according to KDB 865664.

FCC ID A3LSGHI337		SAR EVALUATION REPORT	SAMSUNG	Reviewed by: Quality Manager
Test Dates:	DUT Type:			APPENDIX E:
07/29/13 - 08/05/13	Portable Handset			Page 1 of 1
© 2013 PCTEST Engineering Lab	oratory, Inc.			REV 12.5 M