

SAMSUNG ELECTRONICS Co., Ltd.,
Regulatory Compliance Group
IT R&D Center

416, Maetan-3dong,
Yeongtong-gu, Suwon-si,
Gyeonggi-do, Korea 443-742

TEST REPORT ON SAR

Model Tested:

SGH-C510

Additional Model:

SGH-B600 / SGH-M300
/ SGH-M300V

FCC ID (Requested):

A3LSGHC510

Job No:

FE-057

Report No:

FE-057-S1

Date issued:

Apr.13, 2007

- Abstract -

This document reports on SAR Tests carried out in accordance with FCC/OET Bulletin 65, Supplement C(July 2001).

Prepared By

S PARK - Test Engineer

Authorized By

JH NAM - Technical Manager

Contents

1. GENERAL INFORMATION.....	3
2. DESCRIPTION OF DEVICE	3
3. DESCRIPTION OF TEST EQUIPMENT	4
3.1 SAR Measurement Setup	4
3.2 E-field Probe	6
3.3 SAM Phantom	8
3.4 Brain & Muscle Simulating Mixture Characterization.....	8
3.5 Device Holder for Transmitters	9
3.6 Validation Dipole	9
3.7 Equipment Calibration.....	10
4. SAR MEASUREMENT PROCEDURE	11
5. DESCRIPTION OF TEST POSITION	12
5.1 SAM Phantom Shape.....	12
5.2 Cheek/Touch Position	12
5.3 EAR/Tilt 15° Position.....	14
5.4 Body Holster/Belt Clip Configurations.....	15
6. MEASUREMENT UNCERTAINTY.....	17
7. SYSTEM VERIFICATION	18
7.1 Tissue Verification	18
7.2 Test System Validation	18
8. SAR MEASUREMENT RESULTS.....	19
8.1 Measurement Results(GSM1900 Right Head SAR - Touch)	20
8.2 Measurement Results(GSM1900 Right Head SAR - Tilt)	21
8.3 Measurement Results(GSM1900 Left Head SAR - Touch).....	22
8.4 Measurement Results(GSM1900 Left Head SAR - Tilt).....	23
8.5 Measurement Results(GPRS1900 Body SAR without Holster).....	24
9. CONCLUSION	25
10. REFERENCES.....	26

1. GENERAL INFORMATION

Test Sample : Single-Band PCS GSM Phone
Model Number : SGH-C510
Serial Number : Identical prototype (S/N : # FE-057-A)

Manufacturer : SAMSUNG ELECTRONICS Co., Ltd.
Contact : YY KIM

Phone : +82-54-479-7615
Fax : +82-54-479-5921
Test Standard : §2.1093; FCC/OET Bulletin 65, Supplement C(July 2001)
FCC Classification : Licensed Portable Transmitter Held to Ear (PCE)
Test Dates : Apr.03, 2007
Tested for : FCC/TCB Certification

2. DESCRIPTION OF DEVICE

Tx Freq. Range : 1850.20 ~ 1909.80 MHz (GSM1900)
Rx Freq. Range : 1930.20 ~ 1989.80 MHz (GSM1900)
Max. RF Output Power : 1.517 W EIRP GSM1900 (31.81 dBm)
Antenna Manufacturer : SB-TELCOM
Model No.: SGH-C510
Antenna Dimensions : 35.5 mm

3. DESCRIPTION OF TEST EQUIPMENT

3.1 SAR Measurement Setup

Robotic System

Measurements are performed using the DASY4 automated dosimetric assessment system. Which is made by Schmid & Partner Engineering AG (SPEAG) in Zurich, Switzerland and consists of high precision robotics system (Stäubli), robot controller, measurement server, Samsung computer, near-field probe, probe alignment sensor, and the SAM twin phantom containing the brain equivalent material. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF) (see Fig. 3.1).

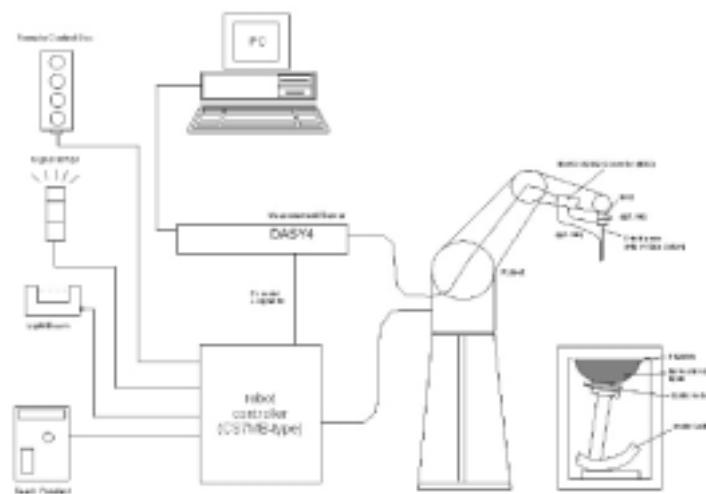


Figure 3.1 SAR Measurement System Setup

System Hardware

A cell controller system contains the power supply, robot controller, teach pendant (Joystick), and a remote control is used to drive the robot motors. The PC consists of the Samsung computer with Windows XP system and SAR Measurement Software DASY4, LCD monitor, mouse and keyboard. The Stäubli Robot is connected to the cell controller to allow software manipulation of the robot. A

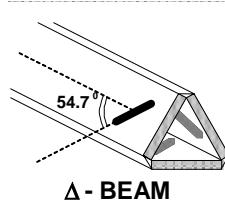
data acquisition electronic (DAE) circuit that performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the measurement server

System Electronics

The DAE4(or DAE3) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16-bit AD-converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer.

3.2 E-field Probe

The SAR measurement were conducted with the dosimetric probe EX3DV4, designed in the classical triangular configuration and optimized for dosimetric evaluation. The tip of the EX3DV4 probe type is as small as 2.5 mm, with which measurements as close as 1.5 mm from the shell-liquid interface can be conducted. The spatial resolution is better than 20 mg. The EX3DV4 probe is fully compatible with the latest draft of IEC 62209 Part 2. It is the only probe enabling measurements at 5-6 GHz with a precision of better than 30% (uncertainty assessed according to the standards). The EX3DV4 probe is universally applicable for dosimetric assessments and is fully compatible with the mechanical detection system of DASY4.


Figure 3.2 DAE System

Probe Specifications

Construction Symmetrical design with triangular core
 Built-in shielding against static charges
 PEEK enclosure material (resistant to organic solvents, e.g., DGBE)

Calibration Basic Broad Band Calibration in air: 10-3000 MHz
 Conversion Factors (CF) for HSL 900 and HSL 1800
 Additional CF for other liquids and frequencies
 upon request

Frequency 10 MHz to > 6 GHz; Linearity: ± 0.2 dB (30
MHz to 3 GHz)

Directivity ± 0.3 dB in HSL (rotation around probe axis)
 ± 0.5 dB in tissue material (rotation normal to
probe axis)

Figure 3.3 Triangular Probe Configuration

Dynamic Range 10 μ W/g to > 100 mW/g; Linearity: ± 0.2 dB
(noise: typically < 1 μ W/g)

Dimensions Overall length: 330 mm (Tip: 20 mm)
Tip diameter: **2.5 mm** (Body: 12 mm)
Typical distance from probe tip to dipole centers: **1 mm**

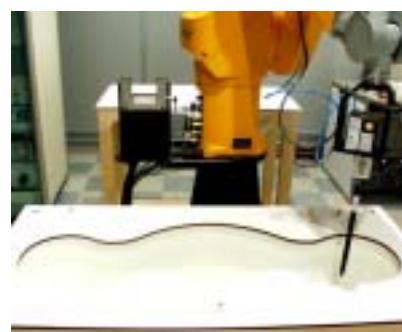
Figure 3.4 Probe Thick-Film Technique

Application High precision dosimetric measurements in any exposure scenario (e.g., very strong gradient fields). Only probe which enables compliance testing for frequencies up to 6 GHz with precision of better 30%.

3.3 SAM Phantom

The SAM Twin Phantom V4.0 is constructed of a fiberglass shell integrated in a wooden table. The shape of the shell is based on data from an anatomical study designed to determine the maximum exposure in at least 90% of all users. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents the evaporation of the liquid.

Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot. (See Figure 3.5)


Figure 3.5 SAM Twin Phantom

Phantom Specification

Construction	The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528-2003, CENELEC 50361 and IEC 62209. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid.
Shell Thickness	2 ± 0.2 mm
Filling Volume	Approx. 25 liters
Dimensions	Height: 810 mm; Length: 1000 mm; Width: 500 mm

3.4 Brain & Muscle Simulating Mixture Characterization

The brain and muscle mixtures consist of a viscous gel using hydroxethylcellulose (HEC) gelling agent and saline solution (see Table 3.1). Preservation with a bactericide is added and visual inspection is made to make sure air bubbles are not trapped during the mixing process. The mixture is calibrated to obtain proper dielectric constant (permittivity) and conductivity of the desired tissue. The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 have been

Figure 3.6 Simulated Tissue

incorporated in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations.

Table 3.1 Composition of the Brain & Muscle Tissue Equivalent Matter

INGREDIENTS	1900MHz Brain	1900MHz Muscle
WATER	55.24%	70.23%
SUGAR	-	-
SALT	0.31%	0.29%
DGBE	44.45%	29.47%
BACTERIACIDE	-	-
HEC	-	-
Dielectric Constant Target	40.0	53.3
Conductivity Target (S/m)	1.40	1.52

3.5 Device Holder for Transmitters

In combination with the Twin SAM Phantom V4.0, the Mounting Device (see Fig. 3.7) enables the rotation of the mounted transmitter in spherical coordinates whereby the rotation points is the ear opening. The devices can be easily, accurately and repeatedly be positioned according to the FCC specifications. The device holder can be locked at different phantom locations (left head, right head, flat phantom).

*Note: A simulating human hand is not used due to the complex anatomical and geometrical structure of the hand that may produced infinite number of configuration. To produce worst-case condition (the hand absorbs antenna output power), the hand is omitted during the tests.

Figure 3.7 Device Holder

3.6 Validation Dipole

The reference dipole should have a return loss better than -20 dB (measured in the setup) at the resonant frequency to reduce the uncertainty in the power measurement.

Frequency	1900 MHz
Return Loss	< -20 dB at specified validation position
Dimensions	D1900V2: dipole length: 68 mm; overall height: 300 mm

3.7 Equipment Calibration

Table 3.2 Test Equipment Calibration

Type	Calibration Due Date	Serial No.
SPEAG DAE4	Nov.16, 2007	533
SPEAG E-Field Probe EX3DV4	Nov.23, 2007	3537
SPEAG Validation Dipole D1900V2	Feb.20, 2009	5d023
Stäubli Robot RX90BL	Not Required	F05/51G6A1/A/01
SPEAG SAM Twin Phantom V4.0	Not Required	TP-1364
E4438C Signal Generator	Mar.21, 2008	MY45092224
NRVD Power Meter	Feb.21, 2008	836416/020
NRV-Z53 Power Sensor	Feb.21, 2008	835324/001
NRV-Z53 Power Sensor	Feb.21, 2008	835324/007
BBS3Q7ECK Power Amp	Jan.22, 2008	1023
HP-8753ES Network Analyzer	May.11, 2007	US39173712
HP85070C Dielectric Probe Kit	Not Required	US99360087
DASY4 S/W (ver 4.7)	Not Required	-
Directional Coupler	Jun.12, 2007	18842
Base Station Simulator	Jun.27, 2007	GB45360270

NOTE:

The E-field probe was calibrated by SPEAG, by temperature measurement procedure. Dipole Validation measurement is performed by Samsung Lab. before each test. (see § 7.2) The brain simulating material is calibrated by Samsung using the dielectric probe system and network analyzer to determine the conductivity and permittivity (dielectric constant) of the brain-equivalent material. (see § 7.1)

4. SAR MEASUREMENT PROCEDURE

The evaluation was performed using the following procedure.

STEP 1

The SAR measurement was taken at a selected spatial reference point to monitor power variations during testing. This fixed location point was measured and used as a reference value.

STEP 2

The SAR distribution at the exposed side of the head was measured at a distance of 3.9mm from the inner surface of the shell. The area covered the entire dimension of the head and the horizontal grid spacing was 20mm x 20mm. Based on the area scan data, the area of the maximum absorption was determined by spline interpolation.

STEP 3

Around this point, a volume of 32mm x 32mm x 34mm (fine resolution volume scan, zoom scan) was assessed by measuring 5 x 5 x 7 points. On this basis of this data set, the spatial peak SAR value was evaluated with the following procedure:

The data at the surface was extrapolated, since the center of the dipoles is 2.7mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.2mm.(This can be variable. Refer to the probe specification) The extrapolation was based on a least square algorithm. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluate the points between the surface and the probe tip. The maximum interpolated value was searched with a straight-forward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1g or 10g) were computed using the 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions). The volume was integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were interpolated to calculate the average. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.

STEP 4

The SAR value at the same location as in step 1 was again measured. (If the value changed by more than 5%, the evaluation is repeated.)

5. DESCRIPTION OF TEST POSITION

5.1 SAM Phantom Shape

Figure 5.1 shows the front, back and side views of SAM. The point "M" is the reference point for the center of mouth, "LE" is the left ear reference point (ERP), and "RE" is the right ERP. The ERPs are 15 mm posterior to the entrance to ear canal (EEC) along the B-M line (Back-Mouth), as shown in Figure 5.2.

Figure 5.1 Front, back and side view of SAM

The plane passing through the two ear canals and M is defined as the Reference Plane. The line N-F (Neck-Front) perpendicular to the reference plane and passing through the RE (or LE) is called the Reference Pivoting Line (see Figure 5.3). Line B-M is perpendicular to the N-F line. Both N-F and B-M lines should be marked on the external phantom shell to facilitate handset positioning. Posterior to the N-F line, the thickness of the phantom shell with the shape of an ear is a flat surface 6 mm thick at the ERPs.

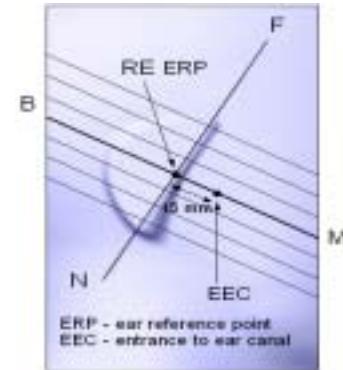
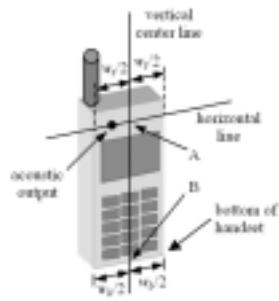
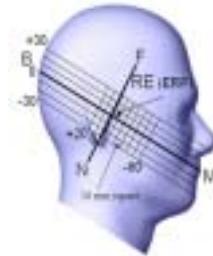
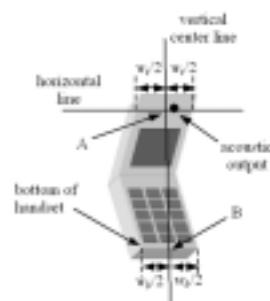



Figure 5.2 Close up side view



5.2 Cheek/Touch Position

Two imaginary lines on the handset were established: the vertical centerline and the horizontal line. The test device was placed in a normal operating position with the "test device reference point" located along the "vertical centerline" on the front of the device aligned to the "ear reference point" (see Fig. 5.4). The "test device reference point" was then located at the same level as the center of

the ear reference point. The test device was positioned so that the “vertical centerline” was bisecting the front surface of the handset at its tip and bottom edges, positioning the “ear reference point” on the outer surface of the both the left and right head phantoms on the ear reference point

Figure 5.4 Handset vertical and horizontal reference lines

Figure 5.3 Side view of the phantom showing relevant markings

Step 1

The test device was positioned with the handset close to the surface of the phantom such that point A is on the (virtual) extension of the line passing through points RE and LE on the phantom (see Figure 5.5), such that the plane defined by the vertical center line and the horizontal line of the phone is approximately parallel to the sagittal plane of the phantom

Figure 5.5 Front, Side and Top View of Cheek/Touch Position

Step 2

The handset was translated towards the phantom along the line passing through RE & LE until the handset touches the ear.

Step 3

While maintaining the handset in this plane, the handset was rotated around the LE-RE line until the vertical centerline was in the plane normal to MB-NF including the line MB (reference plane).

Step 4

Rotate the handset around the vertical centerline until the phone (horizontal line) was symmetrical with respect to the line NF.

Step 5

While maintaining the vertical centerline in the reference plane, keeping point A on the line passing through RE and LE, and maintaining the phone contact with the ear, the handset was rotated about the line NF until any point on the handset made contact with a phantom point below the ear (cheek). See Figure 5.2.

5.3 EAR/Tilt 15° Position

With the test device aligned in the "Cheek/Touch Position":

Step 1

Repeat steps 1 to 5 of 5.2 to place the device in the "Cheek/Touch Position"

Figure 5.6 Front, side and Top View of Ear/Tilt 15° Position

Step 2

While maintaining the orientation of the phone, the phone was retracted parallel to the reference plane far enough to enable a rotation of the phone by 15 degree.

Step 3

The phone was then rotated around the horizontal line by 15 degree.

Step 4

While maintaining the orientation of the phone, the phone was moved parallel to the reference plane until any part of the phone touches the head. (In this position, point A was located on the line RE-LE). The tilted position is obtained when the contact is on the pinna. If the contact was at any location other than the pinna, the angle of the phone would then be reduced. The tilted position was obtained when any part of the phone was in contact of the ear as well as a second part of the phone was in contact with the head.

5.4 Body Holster/Belt Clip Configurations

Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration (see Figure 5.7). A device with a headset output is tested with a headset connected to the device. Body dielectric parameters are used.

Figure 5.7 Body Belt Clip and Holster Configurations

Accessories for Body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are supplied with the device, the device is tested with each accessory that contains unique metallic component. If multiple accessory share an identical

metallic component (i.e. the same metallic belt-clip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

Body-worn accessories may not always be supplied or available as options for some Devices intended to be authorized for body-worn use. In this case, a test configuration where a separation distance between the back of the device and the flat phantom is used.

Transmitters that are designed to operate in front of a person's face, as in push-to-talk configurations, are tested for SAR compliance with the front of the device positioned to face the flat phantom. For devices that are carried next to the body such as a shoulder, waist or chest-worn transmitters, SAR compliance is tested with the accessory(ies), Including headsets and microphones, attached to the device and positioned against a flat phantom in a normal use configuration.

In all cases SAR measurements are performed to investigate the worst-case positioning. Worst-case positioning is then documented and used to perform Body SAR testing.

In order for users to be aware of the body-worn operating requirements for meeting RF exposure compliance, operating instructions and cautions statements must be included in the user's manual.

6. MEASUREMENT UNCERTAINTY

Table 6.1 Uncertainty Budget at 1900MHz(Mar 2007)

Error Description	Uncertainty Value(±%)	Probability Distribution	Divisor	c _i	Standard uncertainty (±%)	v _i ² or v _{eff}
Measurement System						
Probe Calibration	11.80	Normal	2.000	1	5.90	
Axial Isotropy	4.70	rectangular	1.732	0.7	1.90	
Hemispherical Isotropy	9.60	rectangular	1.732	0.7	3.88	
Linearity	4.70	rectangular	1.732	1	2.71	
System Detection Limits	0.25	rectangular	1.732	1	0.14	
Boundary effects	1.00	rectangular	1.732	1	0.58	
Readout electronics	0.30	Normal	1.000	1	0.30	
Response time	0.80	rectangular	1.732	1	0.46	
RF ambient conditions	3.00	rectangular	1.732	1	1.73	
Integration time	0.00	rectangular	1.732	1	0.00	
Mechanical constrains of robot	1.50	rectangular	1.732	1	0.87	
Probe positioning	2.90	rectangular	1.732	1	1.67	
Extrapolation and integration	1.00	rectangular	1.732	1	0.58	
Test Sample Related						
Test Sample positioning	0.47	Normal	1.000	1	0.47	14
Device holded uncertainty	0.41	Normal	1.000	1	0.41	
Power Drift	5.00	Rectangular	1.732	1	2.89	
Phantom and Setup						
Phantom uncertainty	4.00	Rectangular	1.732	1	2.31	
Liquid conductivity (deviation from target)	5.00	Rectangular	1.732	0.64	1.85	
Liquid conductivity (measurement error)	2.43	Normal	1.000	0.64	1.55	
Liquid permittivity (deviation from target)	5.00	Rectangular	1.732	0.6	1.73	
Liquid permittivity (measurement error)	4.78	Normal	1000	0.6	2.87	
Combined Standard Uncertainty		Normal	-	-	9.97	2838728
Extended Standard Uncertainty(K=2.00)					19.95	2838728

7. SYSTEM VERIFICATION

7.1 Tissue Verification

Table 7.1 MEASURED TISSUE PARAMETERS

	1900MHz Brain		1900MHz Muscle	
	Target	Measured	Target	Measured
Date	-	Apr03,2007	-	Apr03,2007
Liquid Temperature(°C)	-	21.2	-	21.3
Dielectric Constant: ϵ'	400	396	533	521
Conductivity: σ	1.40	1.41	1.52	1.55

The measured value must be within $\pm 5\%$ of the target value.

7.2 Test System Validation

Prior to assessment, the system is verified to the $\pm 10\%$ of the specification at 1900MHz by using the system validation kit(s). (see Appendix E, Graphic Plot Attached)

Table 7.2 System Validation Results

System Validation Kit	Tissue	Targeted SAR ₁₀ (mW/g)	Measured SAR ₁₀ (mW/g)	Deviation (%)	Date	Liquid Temperature(°C)	Ambient Temperature(°C)
D1900V2	1900MHz Brain	9.925	10.4	4.79	Apr.03, 2007	21.1	21.4

*Validation was measured with input power 250 mW.

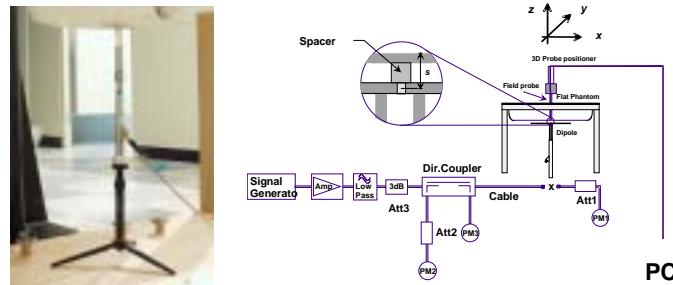


Figure 7.1 Dipole Validation Test Setup

8. SAR MEASUREMENT RESULTS

Procedures Used To Establish Test Signal

The handset was placed into simulated call mode using manufacturers test codes. Such test signals offer a consistent means for testing SAR and are recommended for evaluating SAR. When test modes are not available or inappropriate for testing a handset, the actual transmission is activated through a base station simulator or similar equipment. See data pages for actual procedure used in measurement.

Device Test Conditions

The handset is battery operated. Each SAR measurement was taken with a fully charged battery. In order to verify that the device was tested at full power, conducted output power measurements were performed before and after each SAR measurement to confirm the output power. If a conducted power deviation of more than 5% occurred, the test was repeated.

8.1 Measurement Results(GSM1900 Right Head SAR - Touch)

Mixture Type : 1900 MHz Brain

FREQUENCY		Modulation	Begin/End POWER*			Device Test Position	Antenna Position	SAR (W/kg)
MHz	Ch.		(dBm)		Battery			
1850.2	512	PCS GSM	28.84	28.82	Standard	Cheek/Touch	Intenna	1.15
1880.0	661	PCS GSM	28.33	28.39	Standard	Cheek/Touch	Intenna	0.987
1909.8	810	PCS GSM	29.00	28.93	Standard	Cheek/Touch	Intenna	0.718
ANSI / IEEE C95.1 1992 – SAFETY LIMIT Spatial Peak Uncontrolled Exposure / General Population						1.6W/kg (mW/g) averaged over 1 gram		

NOTES:

1. The test data reported are the worst-case SAR value with the antenna-head position set in a typical configuration. Test procedures used are according to FCC/OET Bulletin 65, Supp.C [July 2001].
2. All modes of operation were investigated, and the worst-case results are reported.
3. Tissue parameters and temperatures are listed on the SAR plot.
4. Liquid tissue depth is $15.2 \pm 0.2\text{cm}$
5. Battery is fully charged for all readings.

*Power Measured Conducted

6. Battery Option	<input checked="" type="checkbox"/> Standard	<input type="checkbox"/> Extended	<input type="checkbox"/> Slim
7. Phantom Configuration	<input type="checkbox"/> Left Head	<input type="checkbox"/> Flat Phantom	<input checked="" type="checkbox"/> Right Head
8. SAR Configuration	<input checked="" type="checkbox"/> Head	<input type="checkbox"/> Body	<input type="checkbox"/> Hand
9. Test Signal Call Mode	<input type="checkbox"/> Manu. Test Codes	<input checked="" type="checkbox"/> Base Station Simulator	

8.2 Measurement Results(GSM1900 Right Head SAR - Tilt)

Mixture Type : 1900 MHz Brain

FREQUENCY		Modulation	Begin/End POWER*			Device Test Position	Antenna Position	SAR (W/kg)
MHz	Ch.		(dBm)		Battery			
1880.0	661	PCS GSM	28.34	28.33	Standard	Ear/Tilt 15°	Intenna	0.118
ANSI / IEEE C95.1 1992 – SAFETY LIMIT Spatial Peak Uncontrolled Exposure / General Population						1.6W/kg (mW/g) averaged over 1 gram		

NOTES:

1. The test data reported are the worst-case SAR value with the antenna-head position set in a typical configuration. Test procedures used are according to FCC/OET Bulletin 65, Supp.C [July 2001].
2. All modes of operation were investigated, and the worst-case results are reported.
3. Tissue parameters and temperatures are listed on the SAR plot.
4. Liquid tissue depth is $15.2 \pm 0.2\text{cm}$
5. Battery is fully charged for all readings.

*Power Measured Conducted Standard Extended Slim

6. Battery Option Left Head Flat Phantom Right Head

7. Phantom Configuration Head Body Hand

8. SAR Configuration Manu. Test Codes Base Station Simulator

9. Test Signal Call Mode Justification for reduced test configurations: Per FCC/OET Bulletin 65 Supplement C (July, 2001), if the SAR measured at the middle channel for each test configuration (left, right, cheek/touch, tilt/ear, extended and retracted) is least 3.0 dB lower than the SAR limit, testing at the high and low channels is optional for such test configuration(s).

8.3 Measurement Results(GSM1900 Left Head SAR - Touch)

Mixture Type : 1900 MHz Brain

FREQUENCY		Modulation	Begin/End POWER*			Device Test Position	Antenna Position	SAR (W/kg)
MHz	Ch.		(dBm)		Battery			
1850.2	512	PCS GSM	28.87	28.81	Standard	Cheek/Touch	Intenna	0.972
1880.0	661	PCS GSM	28.36	28.42	Standard	Cheek/Touch	Intenna	0.857
1909.8	810	PCS GSM	29.02	29.01	Standard	Cheek/Touch	Intenna	0.643
ANSI / IEEE C95.1 1992 – SAFETY LIMIT Spatial Peak Uncontrolled Exposure / General Population					1.6W/kg (mW/g) averaged over 1 gram			

NOTES:

1. The test data reported are the worst-case SAR value with the antenna-head position set in a typical configuration. Test procedures used are according to FCC/OET Bulletin 65, Supp.C [July 2001].
2. All modes of operation were investigated, and the worst-case results are reported.
3. Tissue parameters and temperatures are listed on the SAR plot.
4. Liquid tissue depth is $15.2 \pm 0.2\text{cm}$
5. Battery is fully charged for all readings.

*Power Measured Conducted

6. Battery Option	<input checked="" type="checkbox"/> Standard	<input type="checkbox"/> Extended	<input type="checkbox"/> Slim
7. Phantom Configuration	<input checked="" type="checkbox"/> Left Head	<input type="checkbox"/> Flat Phantom	<input type="checkbox"/> Right Head
8. SAR Configuration	<input checked="" type="checkbox"/> Head	<input type="checkbox"/> Body	<input type="checkbox"/> Hand
9. Test Signal Call Mode	<input type="checkbox"/> Manu. Test Codes	<input checked="" type="checkbox"/> Base Station Simulator	

8.4 Measurement Results(GSM1900 Left Head SAR - Tilt)

Mixture Type : 1900 MHz Brain

FREQUENCY		Modulation	Begin/End POWER*			Device Test Position	Antenna Position	SAR (W/kg)
MHz	Ch.		(dBm)		Battery			
1880.0	661	PCS GSM	28.31	28.38	Standard	Ear/Tilt 15°	Intenna	0.116
ANSI / IEEE C95.1 1992 – SAFETY LIMIT Spatial Peak Uncontrolled Exposure / General Population						1.6W/kg (mW/g) averaged over 1 gram		

NOTES:

1. The test data reported are the worst-case SAR value with the antenna-head position set in a typical configuration. Test procedures used are according to FCC/OET Bulletin 65, Supp.C [July 2001].
2. All modes of operation were investigated, and the worst-case results are reported.
3. Tissue parameters and temperatures are listed on the SAR plot.
4. Liquid tissue depth is $15.2 \pm 0.2\text{cm}$
5. Battery is fully charged for all readings.

*Power Measured Conducted Standard Extended Slim

6. Battery Option Left Head Flat Phantom Right Head

7. Phantom Configuration Head Body Hand

8. SAR Configuration Manu. Test Codes Base Station Simulator

9. Test Signal Call Mode Justification for reduced test configurations: Per FCC/OET Bulletin 65 Supplement C (July, 2001), if the SAR measured at the middle channel for each test configuration (left, right, cheek/touch, tilt/ear, extended and retracted) is least 3.0 dB lower than the SAR limit, testing at the high and low channels is optional for such test configuration(s).

8.5 Measurement Results(GPRS1900 Body SAR without Holster)

Mixture Type : 1900 MHz Muscle

FREQUENCY		Modulation	Begin/End POWER*			Device Test Position	Antenna Position	SAR (W/kg)
MHz	Ch.		(dBm)		Battery			
1850.2	512	PCS GSM	28.80	28.76	Standard	1.5 cm [w/o Holster]	Intenna	0.427
1880.0	661	PCS GSM	28.34	28.43	Standard	1.5 cm [w/o Holster]	Intenna	0.413
1909.8	810	PCS GSM	29.02	29.02	Standard	1.5 cm [w/o Holster]	Intenna	0.357
ANSI / IEEE C95.1 1992 – SAFETY LIMIT Spatial Peak Uncontrolled Exposure / General Population						1.6W/kg (mW/g) averaged over 1 gram		

NOTES:

1. The test data reported are the worst-case SAR value with the antenna-head position set in a typical configuration. Test procedures used are according to FCC/OET Bulletin 65, Supp.C [July 2001].
2. All modes of operation were investigated, and the worst-case results are reported.
3. Tissue parameters and temperatures are listed on the SAR plot.
4. Liquid tissue depth is $15.2 \pm 0.2\text{cm}$
5. Battery is fully charged for all readings.

*Power Measured Conducted Extended Slim

6. Battery Option	<input checked="" type="checkbox"/> Standard	<input type="checkbox"/> Extended	<input type="checkbox"/> Right Head
7. Phantom Configuration	<input type="checkbox"/> Left Head	<input checked="" type="checkbox"/> Flat Phantom	<input type="checkbox"/> Hand
8. SAR Configuration	<input type="checkbox"/> Head	<input checked="" type="checkbox"/> Body	<input type="checkbox"/> Hand
9. Test Signal Call Mode	<input type="checkbox"/> Manu. Test Codes	<input checked="" type="checkbox"/> Base Station Simulator	
10. Test Configuration	<input type="checkbox"/> With Holster	<input checked="" type="checkbox"/> Without Holster	

11. Justification for reduced test configurations: This model supports GPRS CLASS "10" (2Tx).
So the burst power and timing period is more than 2dB higher in GPRS mode than in
GSM1900 mode. Hence, the GSM1900 mode was not measured.

9. CONCLUSION

The SAR measurement indicates that the EUT complies with the RF radiation exposure limits of the FCC. These measurements are taken to simulate the RF effects exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The test results and statements relate only to the item(s) tested.

Please note that the absorption and distribution of electromagnetic energy in the body are very complex phenomena that depend on the mass, shape, and size of the body, the orientation of the body with respect to the field vectors, and the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because innumerable factors may interact to determine the specific biological outcome of an exposure to electromagnetic fields, any protection guide shall consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables.

The highest reported SAR values are as follows:

GSM1900: Head: 1.15 W/Kg : Body-worn: 0.427 W/Kg

10. REFERENCES

- [1] IEEE Standards Coordinating Committee 34 – IEEE Std. 1528-2003 (Draft 6.1 – July 2001), *IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques..*
- [2] Federal Communications Commission, OET Bulletin 65 (Edition 97-01), Supplement C (Edition 01-01), *Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields*, July 2001.
- [3] ANSI/IEEE C95.3 – 1991, *IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields – RF and Microwave*, New York: IEEE, 1992.
- [4] Federal Communications Commission, OET Bulletin 65, Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields. Supplement C, Dec. 1997.
- [5] ANSI/IEEE C95.1 – 1991, *American National Standard Safety levels with respect to human exposure to radio frequency electromagnetic fields, 300kHz to 100GHz*, New York: : IEEE, Aug. 1992.
- [6] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radiofrequency Radiation, Aug. 1996.
- [7] NCRP, National Council on Radiation Protection and Measurements, *Biological Effects and Exposure Criteria for RadioFrequency Electromagnetic Fields*, NCRP Report No. 86, 1986. Reprinted Feb. 1995.
- [8] T. Schmid, O. Egger, N. Kuster, *Automated E-field scanning system for dosimetric assessments*, IEEE Transaction on Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113.
- [9] K. Pokovic, T.Schmid, N. Kuster, *Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies*, ICECOM97, Oct. 1997, pp. 120-124.
- [10] G.Hartsgrave, A. raszewski, A. Surowiec, *Simulated Biological Materials for Electromagnetic Radiation Absorption Studies*, University of Ottawa, Bioelectromagnetics, Canada: 1987, pp. 29-36
- [11] Q. Balzano, O. Garay, T. Manning Jr., *Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones*, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995.
- [12] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, *Numerical Receipes in C*, The Art of Scientific Computing, Second edition, Cambridge University Press, 1992.
- [13] K. Pokovic, T.Schmid, N. Kuster, *E-field Probe with improved isotropy in brain simulating liquids*, Proceedings of the ELMAR, Zadar, June 23-25, 1996, pp. 172-175.
- [14] Schmid & Partner Engineering AG, Application Note: Data Storage and Evaluation, June 1998, p2.
- [15] V. Hombach, K.Meier, M. Burkhardt, E. Kuhn, N. Kuster, *The Dependence of EM Energy Absorption upon Human Head Modeling at 900MHz*, IEEE Transaction on Microwave Theory and Techniques, vol 44 no. 10, Oct. 1996, pp. 1865-1873.
- [16] N. Kuster and Q. Balzano, *Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300MHz*, IEEE Transaction on Vehicular Technology, vol. 41, no.1, Feb.1992, pp. 17-23.
- [17] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp.645-652.

APPENDIX A

SAR Definition

Specific Absorption Rate (SAR) is defined as the time derivative (rate) of the incremental energy (dU) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (p). It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body (see Fig. A.1) .

$$SAR = \frac{d}{dt} \left(\frac{dU}{dm} \right) = \frac{d}{dt} \left(\frac{dU}{pdv} \right)$$

Figure A.1 SAR Mathematical Equation

SAR is expressed in units of Watts per Kilogram (W/kg).

$$SAR = E^2 / p$$

Where :

- σ = conductivity of the tissue-simulant material (S/m)
- p = mass density of the tissue-simulant material (kg/m³)
- E = Total RMS electric field strength (V/m)

Note: The primary factors that control rate or energy absorption were found to be the wavelength of the incident field in relations to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane.

APPENDIX B

Probe Calibration Process

Dosimetric Assessment Procedure

Each probe is calibrated according to a dosimetric assessment procedure described in **K. Pokovic, T.Schmid, N. Kuster, Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies, ICECOM97, Oct. 1997, pp. 120-124** with an accuracy better than +/-10%. The spherical isotropy was evaluated with the procedure described in **K. Pokovic, T.Schmid, N. Kuster, E-field Probe with improved isotropy in brain simulating liquids, Proceedings of the ELMAR, Zadar, June 23-25, 1996, pp. 172-175** and found to be better than +/-0.25dB. The sensitivity parameters (NormX, NormY, NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe is tested.

Free Space Assessment

The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies below 1 GHz (see Fig. B.1), and in a waveguide above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees.

Temperature Assessment

E-field temperature correlation calibration is performed in a flat phantom flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium correlates to temperature rise in a dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe (see Fig. B.2).

$$\text{SAR} = C \frac{\Delta T}{\Delta t}$$

where:

t = exposure time (30 seconds)

C = heat capacity of tissue (brain or muscle).

T = temperature increase due to RF exposure.

SAR is proportional to T/t , the initial rate of tissue heating, before thermal diffusion takes place. Now it's possible to quantify the electric field in the simulated tissue

by equating the thermally derived SAR to the E-field;

$$\text{SAR} = \frac{|E|^2 \cdot \sigma}{p}$$

where:

σ = simulated tissue conductivity

p = Tissue density (1.25 g/cm³ for brain tissue)

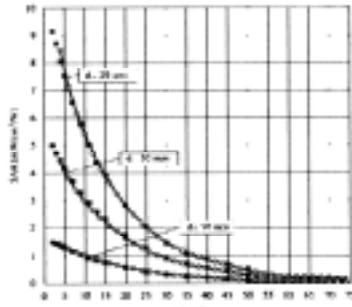


Figure B.1. E-Field and Temperature measurements at 900MHz

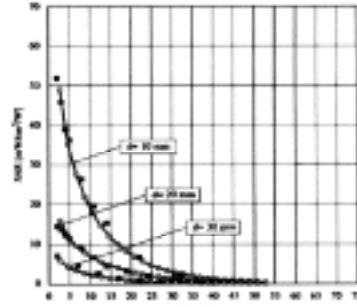


Figure B.2. E-Field and temperature measurements at 1.9GHz

APPENDIX C

ANSI/IEEE C95.1 – 1992 RF EXPOSURE LIMITS

Uncontrolled Environment

UNCONTROLLED ENVIRONMENTS are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

Controlled Environment

CONTROLLED ENVIRONMENTS are defined as locations where there is the exposure that may be incurred by persons who are aware of the potential for exposure,(i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Table C.1 Safety Limits for Partial Body Exposure

	UNCONTROLLED ENVIRONMENT General Population (W/kg) or (mW/g)	CONTROLLED ENVIRONMENT General Population (W/kg) or (mW/g)
SPATIAL PEAK SAR ¹ Brain	1.60	8.00
SPATIAL PEAK SAR ² Whole Body	0.08	0.40
SPATIAL PEAK SAR ³ Hands,Feet,Ankles, Wrists	4.00	20.00

¹ The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as tissue volume in the shape of a cube) and over the appropriate averaging time.

² The Spatial Average value of the SAR averaged over the whole body.

³ The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

APPENDIX D

Test Setup Photographs

APPENDIX E

The Validation Measurements

DUT: Dipole 1900 MHz; Serial: 5d023

Program Name: 1900MHz Dipole Validation 2007.04.03

Procedure Name: 1900MHz

Meas.Tissue Temp(celsius)-21.1, Ambient Temp-21.4; Test Date-03/Apr/2007

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 1900$ MHz; $\sigma = 1.41$ mho/m; $\rho = 39.6$; $\epsilon = 1000$ kg/m³

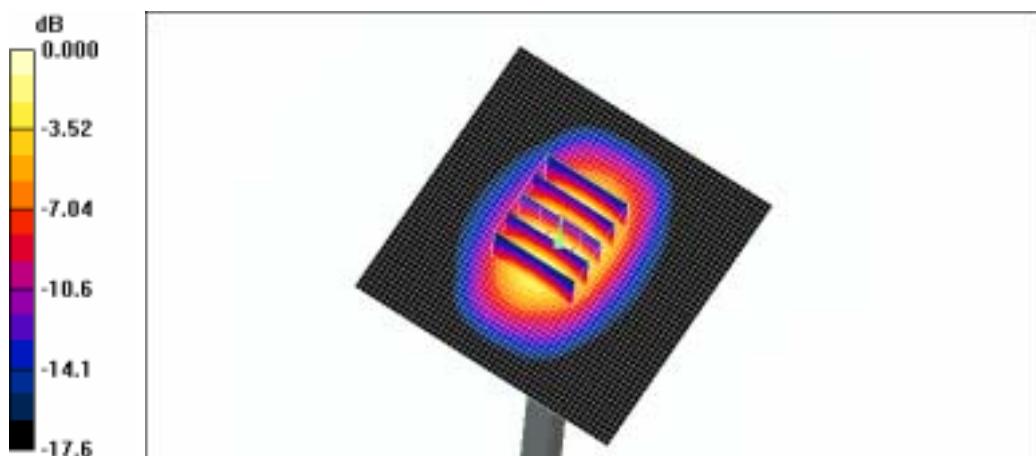
Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 - SN3537; ConvF(8.32, 8.32, 8.32); Calibrated: 2006-11-23
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn533; Calibrated: 2006-11-16
- Phantom: PHANTOM All; Type: SAM; Serial: TP-1364
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

1900MHz/Area Scan (51x51x1): Measurement grid: dx=20mm, dy=20mm

Maximum value of SAR (interpolated) = 15.8 mW/g


1900MHz/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 90.6 V/m; Power Drift = 0.031 dB

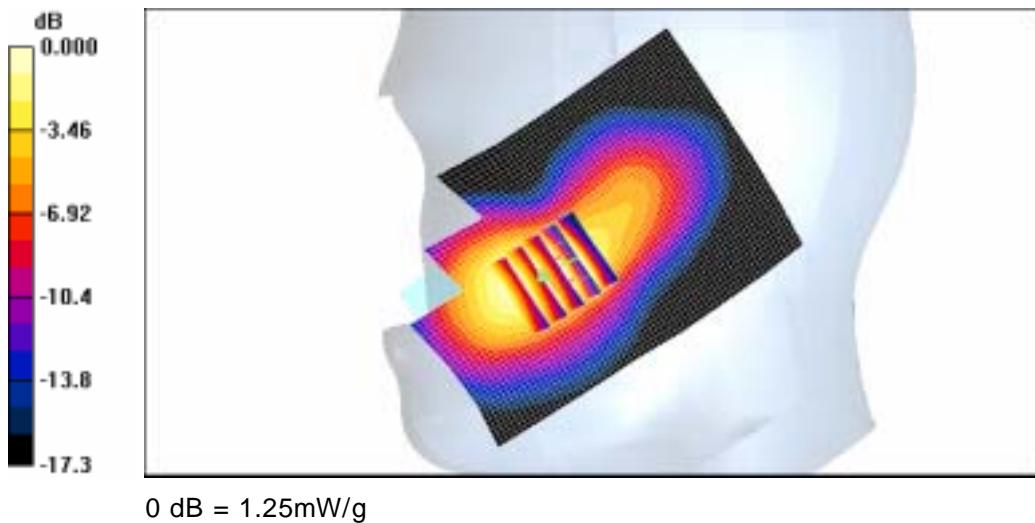
Peak SAR (extrapolated) = 18.9 W/kg

SAR(1 g) = 10.4 mW/g

Maximum value of SAR (measured) = 11.6 mW/g

0 dB = 11.6mW/g

APPENDIX F


Plots of The SAR Measurements

SAMSUNG FCC ID : A3LSGHC510 1900MHz GSM1900 Head SAR
DUT: SGH-C510; Serial: FE-057-A
Program Name: SGH-C510 GSM1900 Right (Job No. : FE-057)
Procedure Name: Cheek/Touch, Ch.512, Ant.Intenna, Bat.Standard
Meas.Tissue Temp(celsius)-21.1, Ambient Temp-21.4; Test Date-03/Apr/2007
Communication System: GSM 1900; Frequency: 1850.2 MHz; Duty Cycle: 1:8.3
Medium parameters used: $f = 1850.2$ MHz; $\sigma = 1.41$ mho/m; $\rho = 39.6$; $\epsilon = 1000$ kg/m³
Phantom section: Right Section
DASY4 Configuration:

- Probe: EX3DV4 - SN3537; ConvF(8.32, 8.32, 8.32); Calibrated: 2006-11-23
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn533; Calibrated: 2006-11-16
- Phantom: PHANTOM All; Type: SAM; Serial: TP-1364
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Cheek/Touch, Ch.512, Ant.Intenna, Bat.Standard/Area Scan (51x71x1): Measurement grid: $dx=20$ mm, $dy=20$ mm
 Maximum value of SAR (interpolated) = 1.32 mW/g

Cheek/Touch, Ch.512, Ant.Intenna, Bat.Standard/Zoom Scan (5x5x7)/Cube 0:
 Measurement grid: $dx=8$ mm, $dy=8$ mm, $dz=5$ mm
 Reference Value = 19.6 V/m; Power Drift = -0.087 dB
 Peak SAR (extrapolated) = 1.99 W/kg
SAR(1 g) = 1.15 mW/g
 Maximum value of SAR (measured) = 1.25 mW/g

SAMSUNG FCC ID : A3LSGHC510 1900MHz GSM1900 Head SAR

DUT: SGH-C510; Serial: FE-057-A

Program Name: SGH-C510 GSM1900 Right (Job No. : FE-057)

Procedure Name: Ear/Tilt, Ch.661, Ant.Intenna, Bat.Standard

Meas.Tissue Temp(celsius)-21.1, Ambient Temp-21.4; Test Date-03/Apr/2007

Communication System: GSM 1900; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Medium parameters used: $f = 1880$ MHz; $\sigma = 1.41$ mho/m; $\rho = 39.6$; $\epsilon = 1000$ kg/m³

Phantom section: Right Section

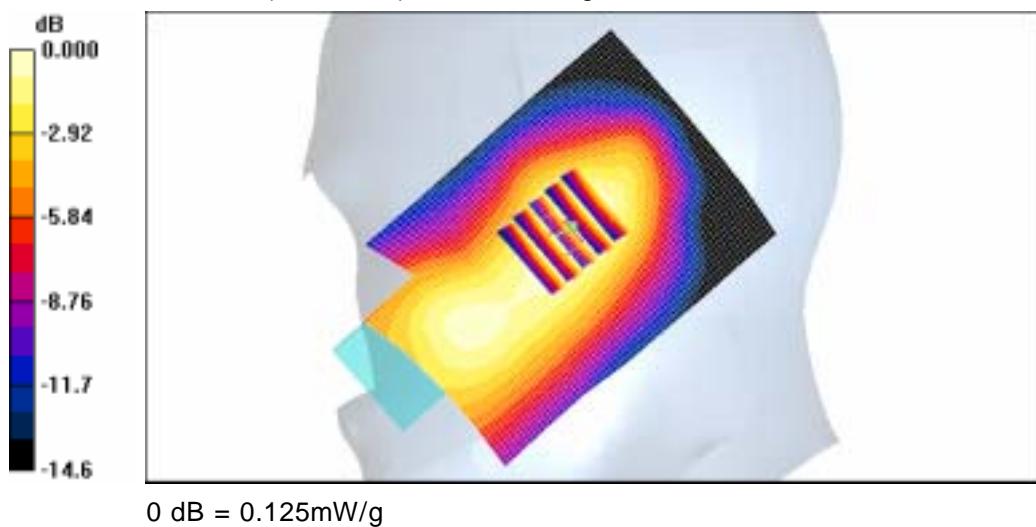
DASY4 Configuration:

- Probe: EX3DV4 - SN3537; ConvF(8.32, 8.32, 8.32); Calibrated: 2006-11-23
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn533; Calibrated: 2006-11-16
- Phantom: PHANTOM All; Type: SAM; Serial: TP-1364
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Ear/Tilt, Ch.661, Ant.Intenna, Bat.Standard/Area Scan (51x71x1): Measurement grid:

dx=20mm, dy=20mm

Maximum value of SAR (interpolated) = 0.132 mW/g


Ear/Tilt, Ch.661, Ant.Intenna, Bat.Standard/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 7.39 V/m; Power Drift = 0.157 dB

Peak SAR (extrapolated) = 0.180 W/kg

SAR(1 g) = 0.118 mW/g

Maximum value of SAR (measured) = 0.125 mW/g

SAMSUNG FCC ID : A3LSGHC510 1900MHz GSM1900 Head SAR

DUT: SGH-C510; Serial: FE-057-A

Program Name: SGH-C510 GSM1900 Left (Job No. : FE-057)

Procedure Name: Cheek/Touch, Ch.512, Ant.Intenna, Bat.Standard

Meas. Tissue Temp(celsius)-21.1, Ambient Temp-21.4; Test Date-03/Apr/2007

Communication System: GSM 1900; Frequency: 1850.2 MHz; Duty Cycle: 1:8.3

Medium parameters used: $f = 1850.2$ MHz; $\sigma = 1.41$ mho/m; $\rho = 39.6$; $\epsilon = 1000$ kg/m³

Phantom section: Left Section

DASY4 Configuration:

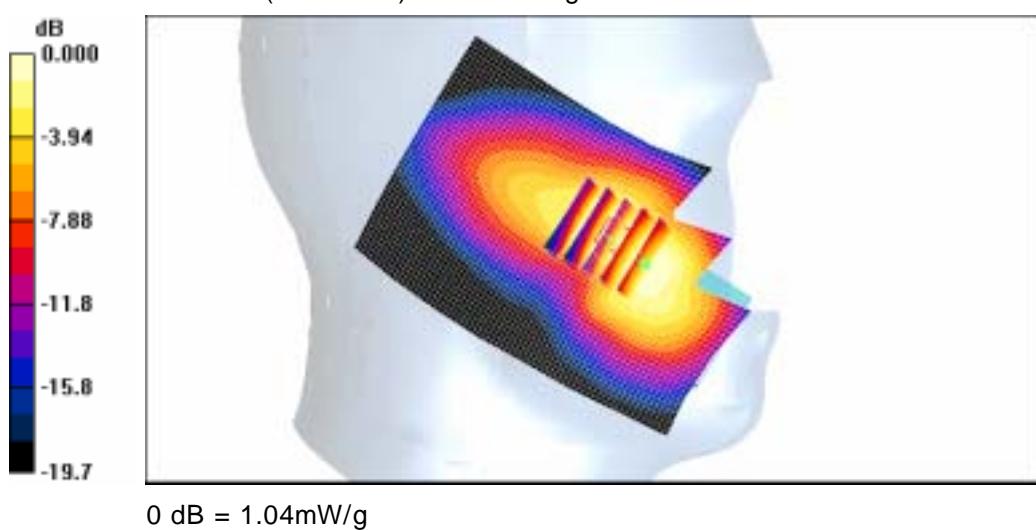
- Probe: EX3DV4 - SN3537; ConvF(8.32, 8.32, 8.32); Calibrated: 2006-11-23
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn533; Calibrated: 2006-11-16
- Phantom: PHANTOM All; Type: SAM; Serial: TP-1364
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Cheek/Touch, Ch.512, Ant.Intenna, Bat.Standard/Area Scan (51x71x1): Measurement

grid: dx=20mm, dy=20mm

Maximum value of SAR (interpolated) = 0.985 mW/g

Cheek/Touch, Ch.512, Ant.Intenna, Bat.Standard/Zoom Scan (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 18.8 V/m; Power Drift = -0.095 dB

Peak SAR (extrapolated) = 1.64 W/kg

SAR(1 g) = 0.972 mW/g

Maximum value of SAR (measured) = 1.04 mW/g

SAMSUNG FCC ID : A3LSGHC510 1900MHz GSM1900 Head SAR

DUT: SGH-C510; Serial: FE-057-A

Program Name: SGH-C510 GSM1900 Left (Job No. : FE-057)

Procedure Name: Ear/Tilt, Ch.661, Ant.Intenna, Bat.Standard

Meas.Tissue Temp(celsius)-21.1, Ambient Temp-21.4; Test Date-03/Apr/2007

Communication System: GSM 1900; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Medium parameters used: $f = 1880$ MHz; $\sigma = 1.41$ mho/m; $\epsilon_r = 39.6$; $\rho = 1000$ kg/m³

Phantom section: Left Section

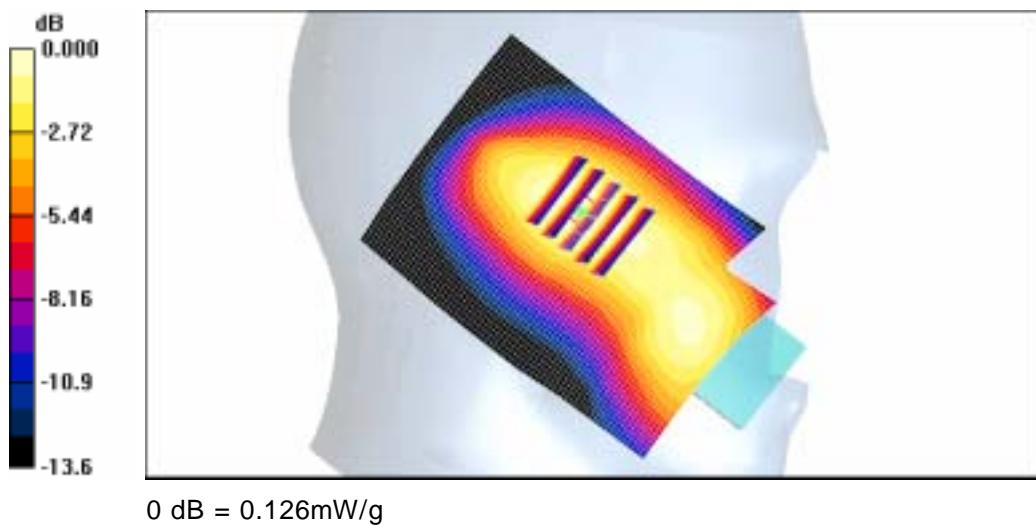
DASY4 Configuration:

- Probe: EX3DV4 - SN3537; ConvF(8.32, 8.32, 8.32); Calibrated: 2006-11-23
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn533; Calibrated: 2006-11-16
- Phantom: PHANTOM All; Type: SAM; Serial: TP-1364
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Ear/Tilt, Ch.661, Ant.Intenna, Bat.Standard/Area Scan (51x71x1): Measurement grid:

dx=20mm, dy=20mm

Maximum value of SAR (interpolated) = 0.122 mW/g


Ear/Tilt, Ch.661, Ant.Intenna, Bat.Standard/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 7.66 V/m; Power Drift = 0.116 dB

Peak SAR (extrapolated) = 0.178 W/kg

SAR(1 g) = 0.116 mW/g

Maximum value of SAR (measured) = 0.126 mW/g

SAMSUNG FCC ID : A3LSGHC510 1900MHz GSM1900 Head SAR

DUT: SGH-C510; Serial: FE-057-A

Program Name: SGH-C510 GSM1900 Right (Job No. : FE-057)

Procedure Name: Cheek/Touch, Ch.512, Ant.Intenna, Bat.Standard

Meas.Tissue Temp(celsius)-21.1, Ambient Temp-21.4; Test Date-03/Apr/2007

Communication System: GSM 1900; Frequency: 1850.2 MHz; Duty Cycle: 1:8.3

Medium parameters used: $f = 1850.2$ MHz; $\sigma = 1.41$ mho/m; $\rho = 39.6$; $\epsilon = 1000$ kg/m³

Phantom section: Right Section

DASY4 Configuration:

- Probe: EX3DV4 - SN3537; ConvF(8.32, 8.32, 8.32); Calibrated: 2006-11-23
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn533; Calibrated: 2006-11-16
- Phantom: PHANTOM All; Type: SAM; Serial: TP-1364
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Cheek/Touch, Ch.512, Ant.Intenna, Bat.Standard/Area Scan (51x71x1): Measurement

grid: dx=20mm, dy=20mm

Maximum value of SAR (interpolated) = 1.32 mW/g

Cheek/Touch, Ch.512, Ant.Intenna, Bat.Standard/Zoom Scan (5x5x7)/Cube 0:

Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 19.6 V/m; Power Drift = -0.087 dB

Peak SAR (extrapolated) = 1.99 W/kg

SAR(1 g) = 1.15 mW/g

Maximum value of SAR (measured) = 1.25 mW/g

SAMSUNG FCC ID : A3LSGHC510 1900MHz GSM1900 Body SAR

DUT: SGH-C510; Serial: FE-057-A

Program Name: SGH-C510 GPRS1900 Body (Job No. : FE-057)

Procedure Name: Body, Ch.512, Ant.Intenna, Bat.Standard

Meas.Tissue Temp(celsius)-21.1, Ambient Temp-21.3; Test Date-03/Apr/2007

Communication System: GSM1900 GPRS; Frequency: 1850.2 MHz; Duty Cycle: 1:4.15

Medium parameters used: $f = 1850.2$ MHz; $\sigma = 1.55$ mho/m; $\epsilon_r = 52.1$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

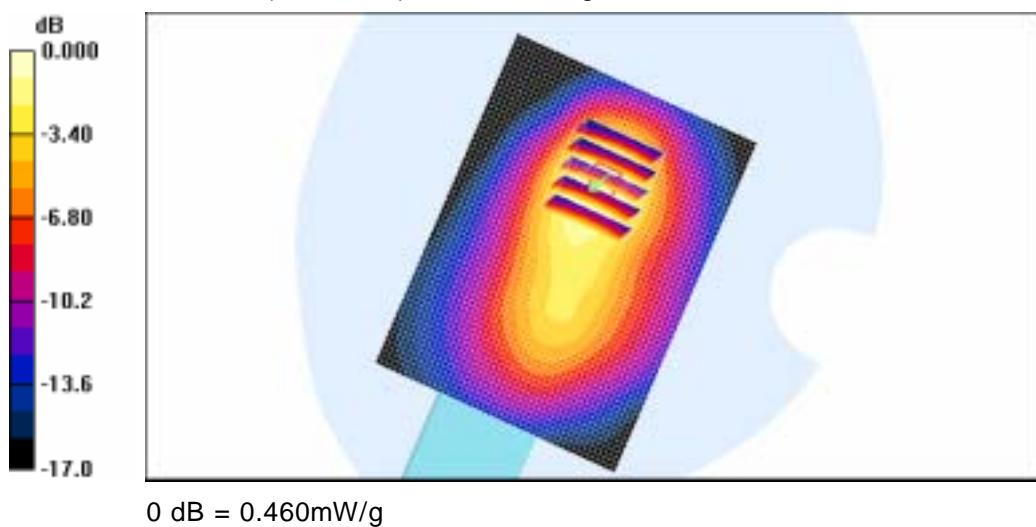
- Probe: EX3DV4 - SN3537; ConvF(7.86, 7.86, 7.86); Calibrated: 2006-11-23
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn533; Calibrated: 2006-11-16
- Phantom: PHANTOM All; Type: SAM; Serial: TP-1364
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Body, Ch.512, Ant.Intenna, Bat.Standard/Area Scan (51x71x1): Measurement grid:

dx=20mm, dy=20mm

Maximum value of SAR (interpolated) = 0.516 mW/g

Body, Ch.512, Ant.Intenna, Bat.Standard/Zoom Scan (5x5x7)/Cube 0: Measurement grid:


dx=8mm, dy=8mm, dz=5mm

Reference Value = 17.4 V/m; Power Drift = -0.019 dB

Peak SAR (extrapolated) = 0.717 W/kg

SAR(1 g) = 0.427 mW/g

Maximum value of SAR (measured) = 0.460 mW/g

SAMSUNG FCC ID : A3LSGHC510 1900MHz GSM1900 Body SAR

DUT: SGH-C510; Serial: FE-057-A

Program Name: SGH-C510 GPRS1900 Body (Job No. : FE-057)

Procedure Name: Body, Ch.512, Ant.Intenna, Bat.Standard

Meas.Tissue Temp(celsius)-21.1, Ambient Temp-21.3; Test Date-03/Apr/2007

Communication System: GSM1900 GPRS; Frequency: 1850.2 MHz; Duty Cycle: 1:4.15

Medium parameters used: $f = 1850.2$ MHz; $\sigma = 1.55$ mho/m; $\rho = 52.1$; $\epsilon = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 - SN3537; ConvF(7.86, 7.86, 7.86); Calibrated: 2006-11-23
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn533; Calibrated: 2006-11-16
- Phantom: PHANTOM All; Type: SAM; Serial: TP-1364
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Body, Ch.512, Ant.Intenna, Bat.Standard/Area Scan (51x71x1): Measurement grid:

dx=20mm, dy=20mm

Maximum value of SAR (interpolated) = 0.516 mW/g

Body, Ch.512, Ant.Intenna, Bat.Standard/Zoom Scan (5x5x7)/Cube 0: Measurement grid:

dx=8mm, dy=8mm, dz=5mm

Reference Value = 17.4 V/m; Power Drift = -0.019 dB

Peak SAR (extrapolated) = 0.717 W/kg

SAR(1 g) = 0.427 mW/g

Maximum value of SAR (measured) = 0.460 mW/g

APPENDIX G

Probe Calibration

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client Samsung Suwon C (Dymstec)

Certificate No: EX3-3537_Nov06

CALIBRATION CERTIFICATE

Object EX3DV4 - SN:3537

Calibration procedure(s) QA CAL-01.v5
Calibration procedure for dosimetric E-field probes

Calibration date: November 23, 2006

Condition of the calibrated item In Tolerance

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^\circ\text{C}$ and humidity $< 70\%$.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	5-Apr-06 (METAS, No. 251-00557)	Apr-07
Power sensor E4412A	MY41495277	5-Apr-06 (METAS, No. 251-00557)	Apr-07
Power sensor E4412A	MY41498087	5-Apr-06 (METAS, No. 251-00557)	Apr-07
Reference 3 dB Attenuator	SN: S5054 (3c)	10-Aug-06 (METAS, No. 217-00592)	Aug-07
Reference 20 dB Attenuator	SN: S5086 (20b)	4-Apr-06 (METAS, No. 251-00558)	Apr-07
Reference 30 dB Attenuator	SN: S5129 (30b)	10-Aug-06 (METAS, No. 217-00593)	Aug-07
Reference Probe ES3DV2	SN: 3013	2-Jan-06 (SPEAG, No. ES3-3013_Jan06)	Jan-07
DAE4	SN: 654	21-Jun-06 (SPEAG, No. DAE4-654_Jun06)	Jun-07

Secondary Standards	ID #	Check Date (In house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (SPEAG, In house check Nov-05)	In house check: Nov-07
Network Analyzer HP 8753E	US37390585	18-Oct-01 (SPEAG, In house check Oct-06)	In house check: Oct-07

Calibrated by:	Name	Function	Signature
	Katja Pekovic	Technical Manager	

Approved by:	Name	Function	Signature
	Niels Kuster	Quality Manager	

Issued: November 23, 2006

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: EX3-3537_Nov06

Page 1 of 9

2006 - 11 - 01(C)

Accredited by the Swiss Federal Office of Metrology and Accreditation
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Glossary:

TSL	tissue simulating liquid
NORM x,y,z	sensitivity in free space
ConF	sensitivity in TSL / NORM x,y,z
DCP	diode compression point
Polarization φ	φ rotation around probe axis
Polarization θ	θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\theta = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz)", July 2001

Methods Applied and Interpretation of Parameters:

- $NORMx,y,z$: Assessed for E-field polarization $\theta = 0$ ($f \leq 900$ MHz in TEM-cell; $f > 1800$ MHz: R22 waveguide). $NORMx,y,z$ are only intermediate values, i.e., the uncertainties of $NORMx,y,z$ does not effect the E^2 -field uncertainty inside TSL (see below *ConvF*).
- $NORM(f)x,y,z = NORMx,y,z * frequency_response$ (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of *ConvF*.
- $DCPx,y,z$: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters*: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \leq 800$ MHz) and inside waveguide using analytical field distributions based on power measurements for $f > 800$ MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to $NORMx,y,z * ConvF$ whereby the uncertainty corresponds to that given for *ConvF*. A frequency dependent *ConvF* is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical Isotropy (3D deviation from isotropy)*: in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset*: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Probe EX3DV4

SN:3537

Manufactured: August 23, 2004
Last calibrated: November 22, 2005
Recalibrated: November 23, 2006

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

DASY - Parameters of Probe: EX3DV4 SN:3537

Sensitivity in Free Space^A

NormX	$0.379 \pm 10.1\%$	$\mu\text{V}/(\text{V}/\text{m})^2$
NormY	$0.395 \pm 10.1\%$	$\mu\text{V}/(\text{V}/\text{m})^2$
NormZ	$0.437 \pm 10.1\%$	$\mu\text{V}/(\text{V}/\text{m})^2$

Diode Compression^B

DCP X	93 mV
DCP Y	93 mV
DCP Z	91 mV

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

Boundary Effect

TSL 900 MHz Typical SAR gradient: 5 % per mm

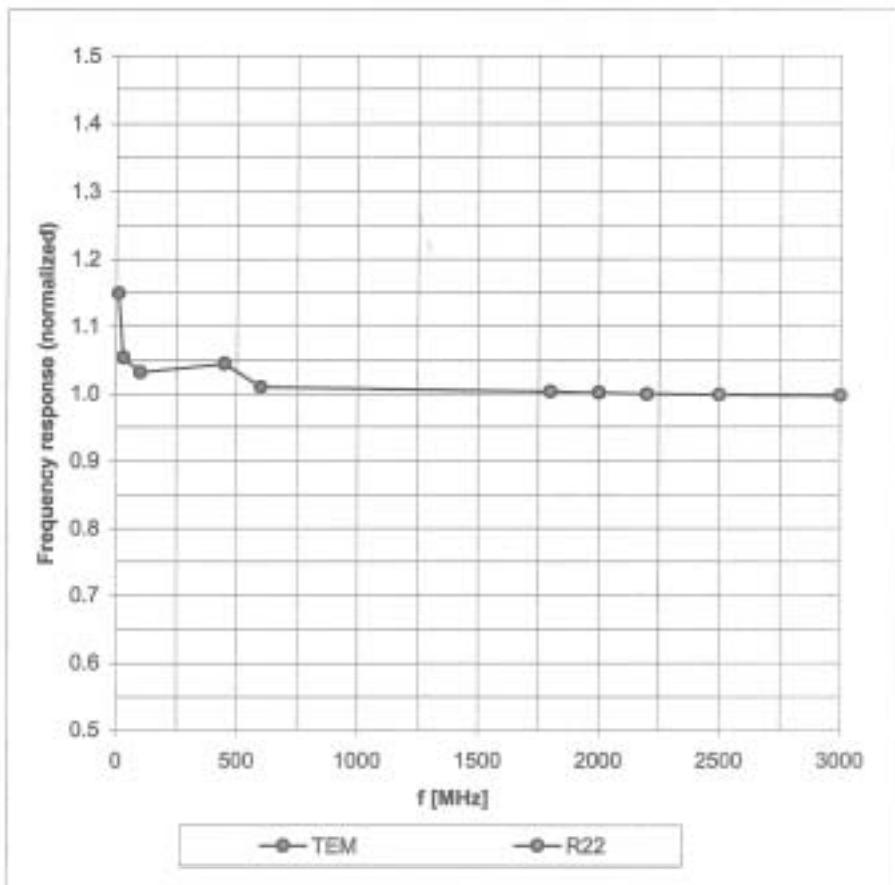
Sensor Center to Phantom Surface Distance	2.0 mm	3.0 mm
SAR _{bo} [%] Without Correction Algorithm	4.1	1.5
SAR _{bo} [%] With Correction Algorithm	0.3	0.5

TSL 1810 MHz Typical SAR gradient: 10 % per mm

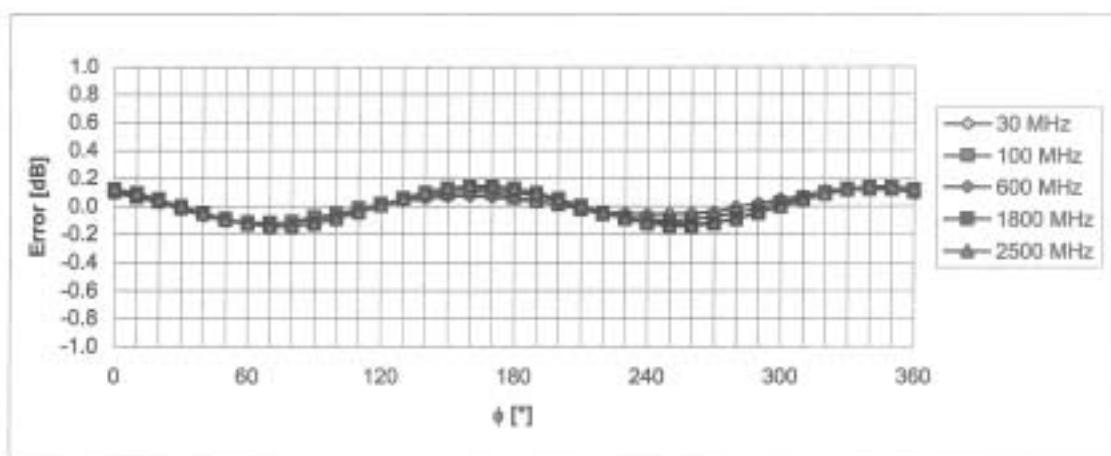
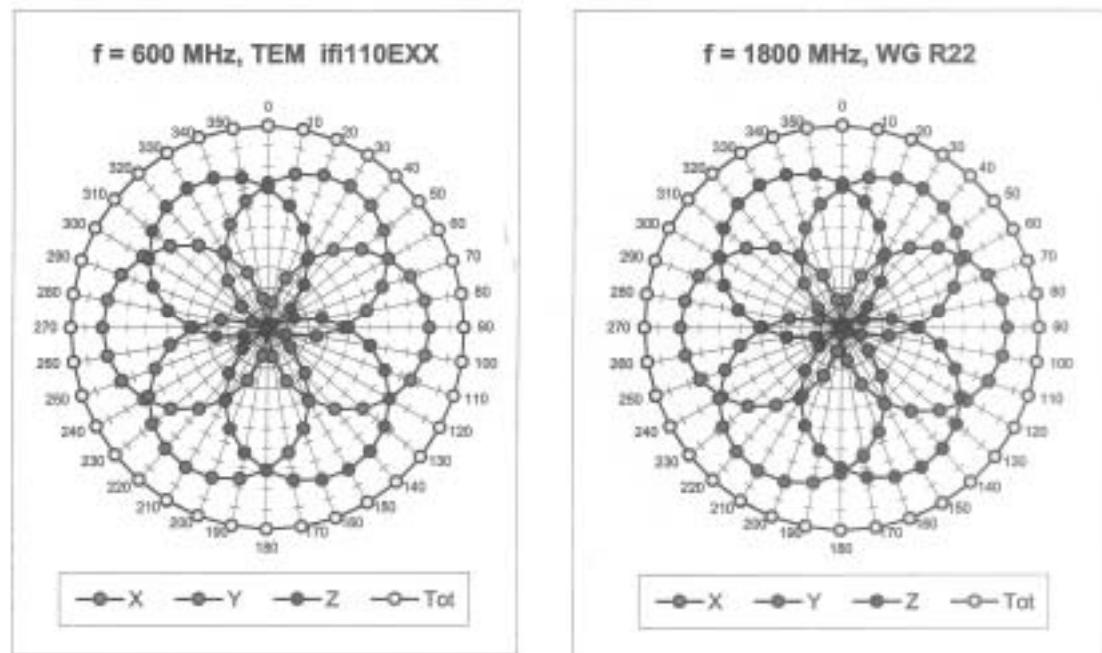
Sensor Center to Phantom Surface Distance	2.0 mm	3.0 mm
SAR _{bo} [%] Without Correction Algorithm	4.8	2.5
SAR _{bo} [%] With Correction Algorithm	0.8	0.8

Sensor Offset

Probe Tip to Sensor Center 1.0 mm

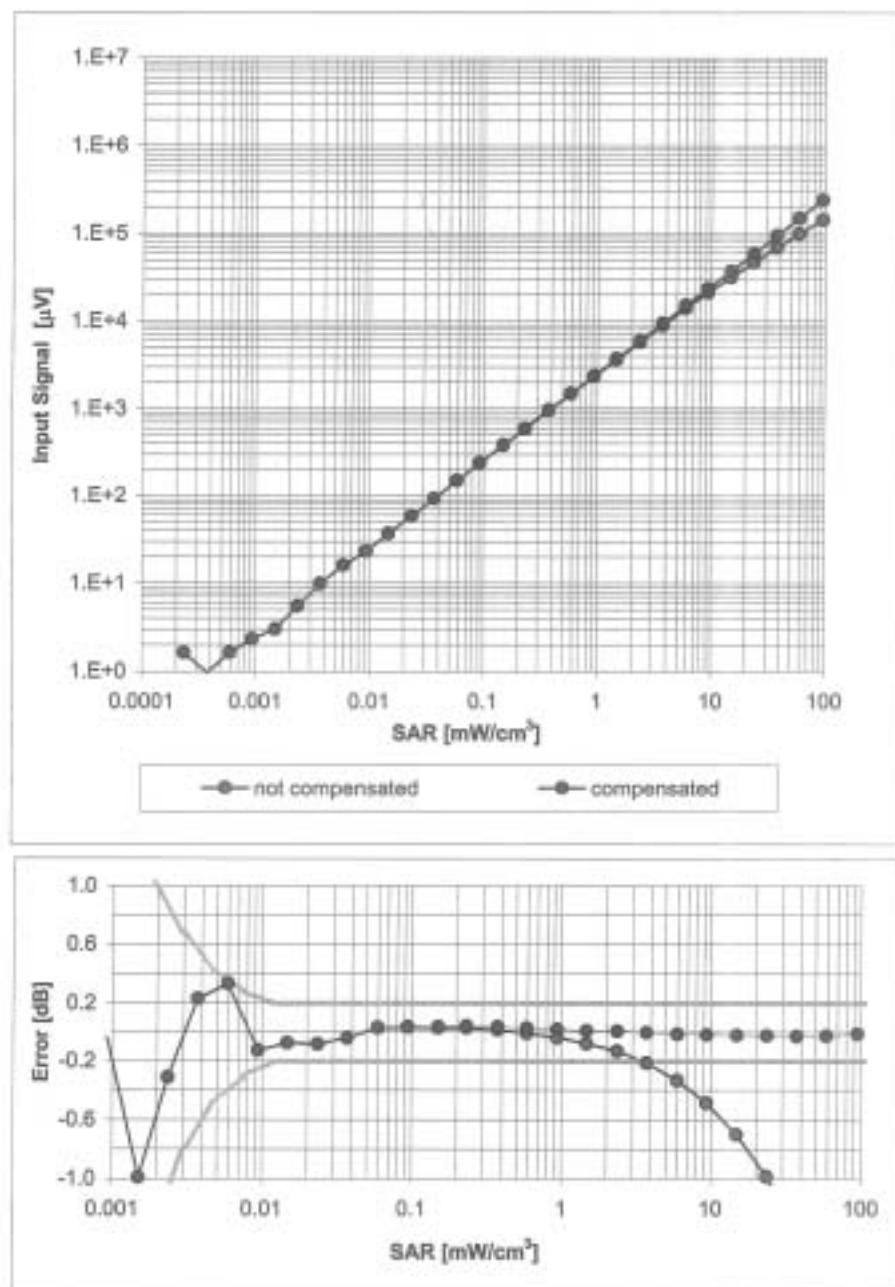

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $k=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 8).



^B Numerical linearization parameter; uncertainty not required.

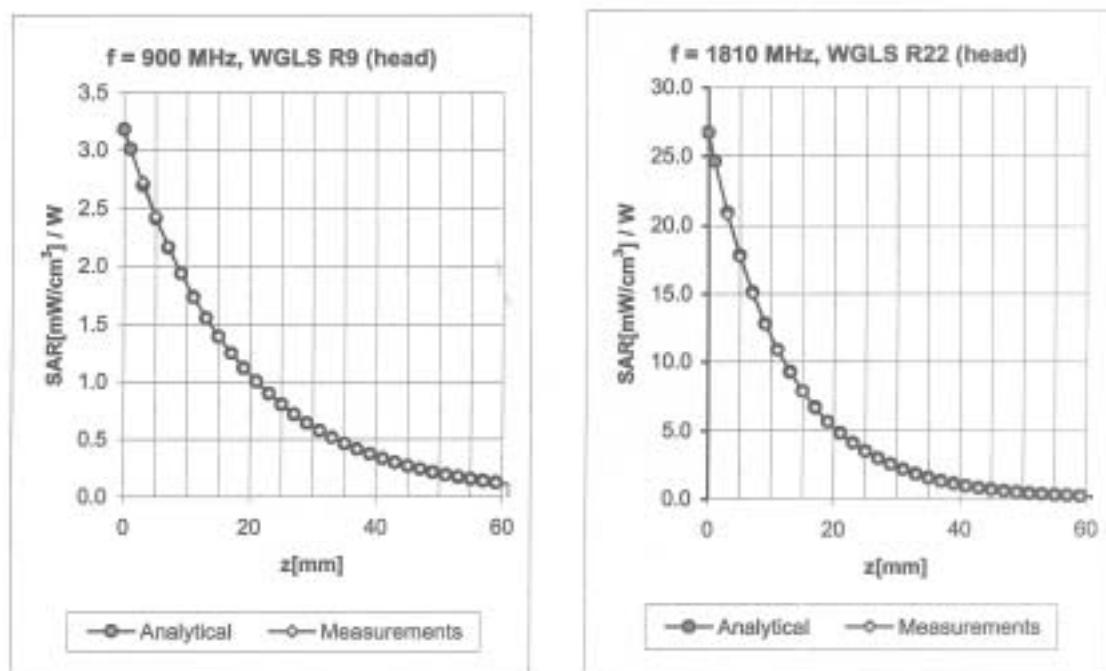
Frequency Response of E-Field

(TEM-Cell:ifi110 EXX, Waveguide: R22)



Uncertainty of Frequency Response of E-field: $\pm 6.3\%$ ($k=2$)

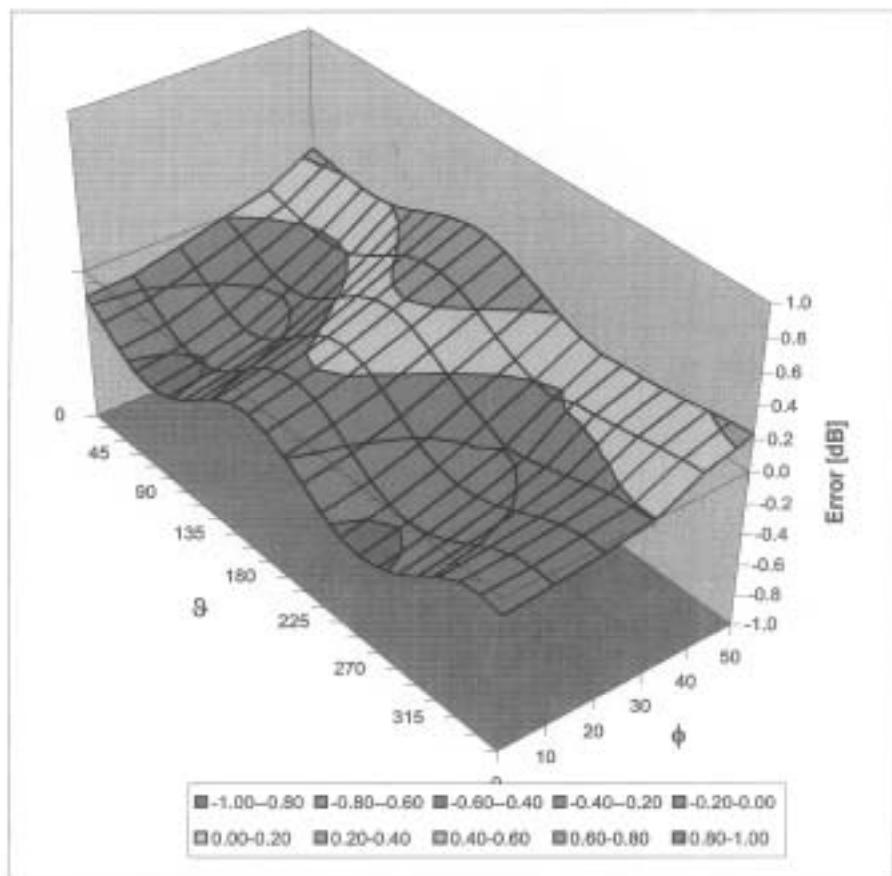
Receiving Pattern (ϕ), $\theta = 0^\circ$ Uncertainty of Axial Isotropy Assessment: $\pm 0.5\%$ ($k=2$)


Dynamic Range f(SAR_{head})

(Waveguide R22, f = 1800 MHz)

Uncertainty of Linearity Assessment: $\pm 0.6\%$ ($k=2$)

Conversion Factor Assessment


f [MHz]	Validity [MHz] ^c	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF	Uncertainty
900	$\pm 50 / \pm 100$	Head	$41.5 \pm 5\%$	$0.97 \pm 5\%$	0.88	0.60	9.48	$\pm 11.0\%$ ($k=2$)
1810	$\pm 50 / \pm 100$	Head	$40.0 \pm 5\%$	$1.40 \pm 5\%$	0.18	1.13	8.32	$\pm 11.0\%$ ($k=2$)
2000	$\pm 50 / \pm 100$	Head	$40.0 \pm 5\%$	$1.40 \pm 5\%$	0.42	1.00	7.92	$\pm 11.0\%$ ($k=2$)
2450	$\pm 50 / \pm 100$	Head	$39.2 \pm 5\%$	$1.80 \pm 5\%$	0.42	1.00	7.70	$\pm 11.8\%$ ($k=2$)

f [MHz]	Validity [MHz] ^c	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF	Uncertainty
900	$\pm 50 / \pm 100$	Body	$55.0 \pm 5\%$	$1.05 \pm 5\%$	0.85	0.65	9.78	$\pm 11.0\%$ ($k=2$)
1810	$\pm 50 / \pm 100$	Body	$53.3 \pm 5\%$	$1.52 \pm 5\%$	0.16	1.32	7.86	$\pm 11.0\%$ ($k=2$)
2000	$\pm 50 / \pm 100$	Body	$53.3 \pm 5\%$	$1.52 \pm 5\%$	0.46	1.00	7.70	$\pm 11.0\%$ ($k=2$)
2450	$\pm 50 / \pm 100$	Body	$52.7 \pm 5\%$	$1.95 \pm 5\%$	0.45	1.00	7.69	$\pm 11.8\%$ ($k=2$)

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Deviation from Isotropy in HSL

Error (ϕ, θ), $f = 900$ MHz

Uncertainty of Spherical Isotropy Assessment: $\pm 2.6\%$ ($k=2$)

APPENDIX H

Calibration of The Validation Dipole

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client Samsung C (Dymstec)

Certificate No: D1900V2-5d023_Feb07

CALIBRATION CERTIFICATE

Object D1900V2 - SN: 5d023

Calibration procedure(s) QA CAL-05.v6
Calibration procedure for dipole validation kits

Calibration date: February 20, 2007

Condition of the calibrated item In Tolerance

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	03-Oct-06 (METAS, No. 217-00608)	Oct-07
Power sensor HP 8481A	US37292783	03-Oct-06 (METAS, No. 217-00608)	Oct-07
Reference 20 dB Attenuator	SN: 5086 (20g)	10-Aug-06 (METAS, No 217-00591)	Aug-07
Reference 10 dB Attenuator	SN: 5047.2 (10r)	10-Aug-06 (METAS, No 217-00591)	Aug-07
Reference Probe ET3DV6	SN: 1507	19-Oct-06 (SPEAG, No. ET3-1507_Oct06)	Oct-07
DAE4	SN 601	30-Jan-07 (SPEAG, No. DAE4-601_Jan07)	Jan-08
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (SPEAG, in house check Oct-05)	In house check: Oct-07
RF generator Agilent E4421B	MY41000675	11-May-05 (SPEAG, in house check Nov-05)	In house check: Nov-07
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (SPEAG, in house check Oct-06)	In house check: Oct-07

Calibrated by:	Name	Function	Signature
	Mike Meli	Laboratory Technician	
Approved by:	Katja Pokovic	Technical Manager	

Issued: February 21, 2007

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Accredited by the Swiss Federal Office of Metrology and Accreditation
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz)", July 2001
- Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

- DASY4 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL:* The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss:* These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured:* SAR measured at the stated antenna input power.
- SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters:* The measured TSL parameters are used to calculate the nominal SAR result.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY4	V4.7
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz \pm 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 \pm 0.2) °C	38.8 \pm 6 %	1.43 mho/m \pm 6 %
Head TSL temperature during test	(21.0 \pm 0.2) °C	---	---

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.41 mW / g
SAR normalized	normalized to 1W	37.6 mW / g
SAR for nominal Head TSL parameters ¹	normalized to 1W	36.6 mW / g \pm 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	4.96 mW / g
SAR normalized	normalized to 1W	19.8 mW / g
SAR for nominal Head TSL parameters ¹	normalized to 1W	19.5 mW / g \pm 16.5 % (k=2)

¹ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.8 Ω + 2.5 $j\Omega$
Return Loss	- 27.1 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.191 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	September 28, 2002

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d023

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: HSL U10 BB;

Medium parameters used: $f = 1900$ MHz; $\sigma = 1.43$ mho/m; $\epsilon_r = 38.9$; $\rho = 1000$ kg/m³

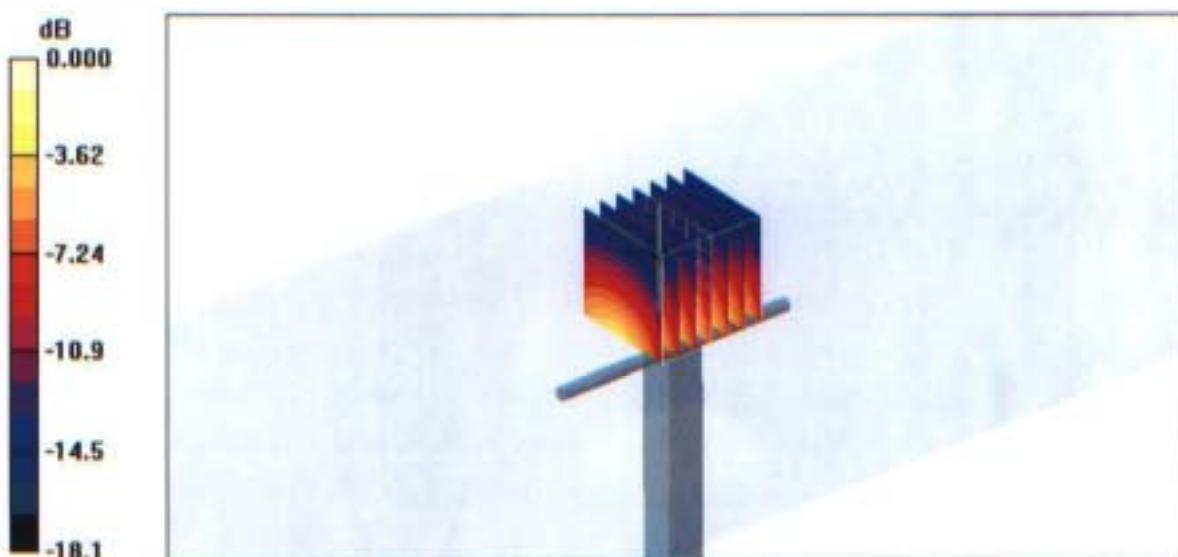
Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

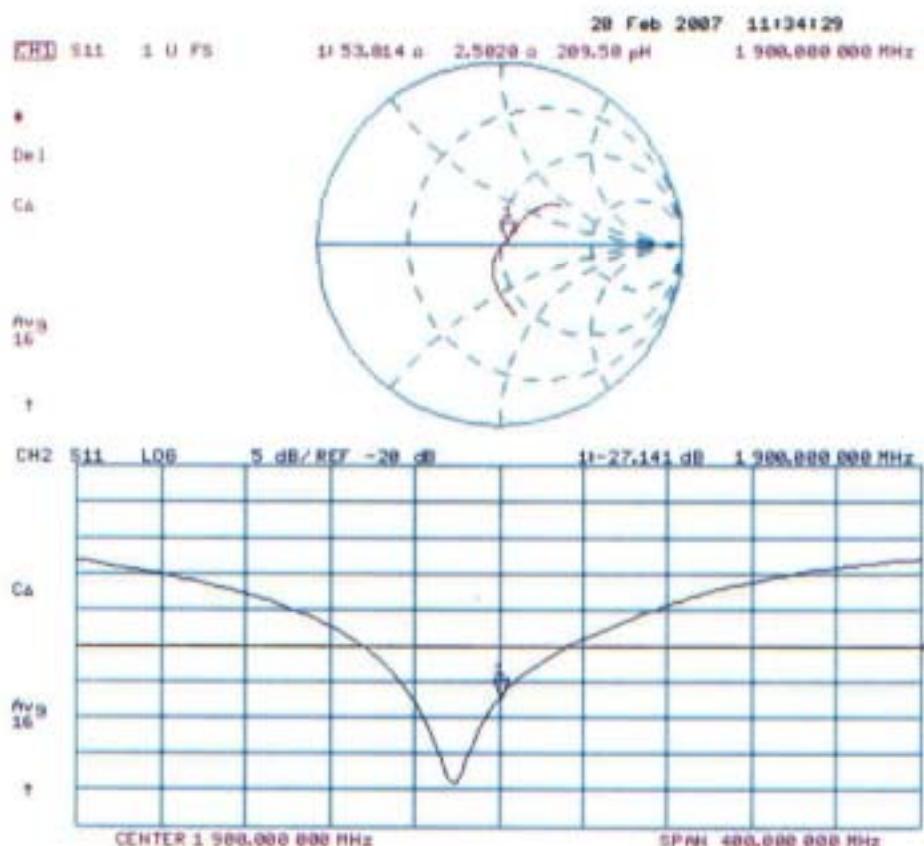
DASY4 Configuration:

- Probe: ET3DV6 - SN1507 (HF); ConvF(4.97, 4.97, 4.97); Calibrated: 19.10.2006
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.01.2007
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 89.5 V/m; Power Drift = 0.068 dB


Peak SAR (extrapolated) = 16.2 W/kg

SAR(1 g) = 9.41 mW/g; SAR(10 g) = 4.96 mW/g

Maximum value of SAR (measured) = 10.4 mW/g

Impedance Measurement Plot for Head TSL

