

SAMSUNG ELECTRONICS Co., Ltd., Regulatory Compliance Group IT R&D Center

416, Maetan-3dong, Yeongtong-gu, Suwon-si, Gyeonggi-do, Korea 443-742

TEST REPORT ON SAR

Model Tested:

FCC ID (Requested):

Job No:

Report No:

Date issued:

SGH-A177 A3LSGHA177 FG-050

FG-050-S1

Mar.23, 2009

- Abstract -

This document reports on SAR Tests carried out in accordance with FCC/OET Bulletin 65, Supplement C(July 2001).

Aug

KS PARK-Test Engineer

Authorized By

Prepared By

JD JANG-Technical Manager

Contents

1. GENERAL INFORMATION	3
2. DESCRIPTION OF DEVICE	3
3. DESCRIPTION OF TEST EQUIPMENT	4
3.1 SAR Measurement Setup	4
3.2 E-field Probe	6
3.3 Phantom	-
3.4 Brain & Muscle Simulating Mixture Characterization	
3.5 Device Holder for Transmitters	
3.6 Validation Dipole	
3.7 Equipment Calibration	
4. SAR MEASUREMENT PROCEDURE	12
5. DESCRIPTION OF TEST POSITION	13
5.1 SAM Phantom Shape	13
5.2 Cheek/Touch Position	13
5.3 EAR/Tilt 15° Position	
5.4 Body Holster/Belt Clip Configurations	
6. MEASUREMENT UNCERTAINTY	18
7. SYSTEM VERIFICATION	
7. SYSTEM VERIFICATION	 20 20
7. SYSTEM VERIFICATION 7.1 Tissue Verification 7.2 Test System Validation	 20 20 20
7. SYSTEM VERIFICATION	 20 20 20
7. SYSTEM VERIFICATION 7.1 Tissue Verification 7.2 Test System Validation	20 20 20 21
 7. SYSTEM VERIFICATION	20 20 20 21 23 24
 7. SYSTEM VERIFICATION	20 20 20 21 23 24 25
 7. SYSTEM VERIFICATION	20 20 20 21 23 24 25 26
 7. SYSTEM VERIFICATION 7.1 Tissue Verification 7.2 Test System Validation 8. SAR MEASUREMENT RESULTS 8.1 Measurement Results(GSM850 Right Head SAR - Touch) 8.2 Measurement Results(GSM850 Right Head SAR - Tilt) 8.3 Measurement Results(GSM850 Left Head SAR - Touch) 8.4 Measurement Results(GSM850 Left Head SAR - Tilt) 8.5 Measurement Results(GPRS850 Body SAR without Holster) 	20 20 21 23 24 25 26 27
 7. SYSTEM VERIFICATION	20 20 21 23 24 25 26 27 28
 7. SYSTEM VERIFICATION 7.1 Tissue Verification 7.2 Test System Validation 8. SAR MEASUREMENT RESULTS 8.1 Measurement Results(GSM850 Right Head SAR - Touch) 8.2 Measurement Results(GSM850 Right Head SAR - Tilt) 8.3 Measurement Results(GSM850 Left Head SAR - Touch) 8.4 Measurement Results(GSM850 Left Head SAR - Tilt) 8.5 Measurement Results(GPR850 Body SAR without Holster) 8.6 Measurement Results(GSM1900 Right Head SAR - Tilt) 	20 20 21 23 24 25 26 27 28 29
 7. SYSTEM VERIFICATION 7.1 Tissue Verification 7.2 Test System Validation 8. SAR MEASUREMENT RESULTS 8.1 Measurement Results(GSM850 Right Head SAR - Touch) 8.2 Measurement Results(GSM850 Right Head SAR - Tilt) 8.3 Measurement Results(GSM850 Left Head SAR - Touch) 8.4 Measurement Results(GSM850 Left Head SAR - Tilt) 8.5 Measurement Results(GPR8850 Body SAR without Holster) 8.6 Measurement Results(GSM1900 Right Head SAR - Tilt) 8.7 Measurement Results(GSM1900 Right Head SAR - Touch) 8.8 Measurement Results(GSM1900 Left Head SAR - Touch) 	20 20 21 23 24 25 26 27 28 29 30
 7. SYSTEM VERIFICATION 7.1 Tissue Verification 7.2 Test System Validation 8. SAR MEASUREMENT RESULTS 8.1 Measurement Results(GSM850 Right Head SAR - Touch) 8.2 Measurement Results(GSM850 Right Head SAR - Tilt) 8.3 Measurement Results(GSM850 Left Head SAR - Touch) 8.4 Measurement Results(GSM850 Left Head SAR - Tilt) 8.5 Measurement Results(GPRS850 Body SAR without Holster) 8.6 Measurement Results(GSM1900 Right Head SAR - Touch) 8.7 Measurement Results(GSM1900 Left Head SAR - Touch) 8.8 Measurement Results(GSM1900 Left Head SAR - Touch) 8.9 Measurement Results(GSM1900 Left Head SAR - Tilt) 	20 20 21 23 24 25 26 27 28 29 30 31
 7. SYSTEM VERIFICATION 7.1 Tissue Verification 7.2 Test System Validation 8. SAR MEASUREMENT RESULTS 8.1 Measurement Results(GSM850 Right Head SAR - Touch) 8.2 Measurement Results(GSM850 Right Head SAR - Tilt) 8.3 Measurement Results(GSM850 Left Head SAR - Touch) 8.4 Measurement Results(GSM850 Left Head SAR - Tilt) 8.5 Measurement Results(GPRS850 Body SAR without Holster) 8.6 Measurement Results(GSM1900 Right Head SAR - Touch) 8.7 Measurement Results(GSM1900 Right Head SAR - Touch) 8.8 Measurement Results(GSM1900 Left Head SAR - Touch) 8.9 Measurement Results(GSM1900 Left Head SAR - Tilt) 8.10 Measurement Results(GPRS1900 Body SAR without Holster) 	20 20 21 23 24 25 26 27 28 29 30 31 32
 7. SYSTEM VERIFICATION 7.1 Tissue Verification 7.2 Test System Validation 8. SAR MEASUREMENT RESULTS 8.1 Measurement Results(GSM850 Right Head SAR - Touch) 8.2 Measurement Results(GSM850 Right Head SAR - Tilt) 8.3 Measurement Results(GSM850 Left Head SAR - Touch) 8.4 Measurement Results(GSM850 Left Head SAR - Tilt) 8.5 Measurement Results(GPRS850 Body SAR without Holster) 8.6 Measurement Results(GSM1900 Right Head SAR - Touch) 8.7 Measurement Results(GSM1900 Left Head SAR - Touch) 8.8 Measurement Results(GSM1900 Left Head SAR - Touch) 8.9 Measurement Results(GSM1900 Left Head SAR - Tilt) 	20 20 21 23 24 25 26 27 28 29 30 31 32 33

1. GENERAL INFORMATION

Test Sample : Model Number :	Dual-Band GSM/EDGE 850/1900 Phone with Bluetooth SGH-A177
Serial Number :	Identical prototype (S/N : # FG-050-A)
Manufacturer :	SAMSUNG ELECTRONICS Co., Ltd.
Contact :	JM KIM
Phone :	+82-54-479-3576
Fax :	+82-54-479-7228
Test Standard :	§2.1093; FCC/OET Bulletin 65, Supplement C(July 2001)
FCC Classification :	Licensed Portable Transmitter Held to Ear (PCE)
Test Dates :	Mar.17, 2009
Tested for :	FCC/TCB Certification

2. DESCRIPTION OF DEVICE

Tx Freq. Range :	824.2 ~ 848.8 MHz (GSM850)
	1850.20 ~ 1909.80 MHz (GSM1900)
	2402 ~ 2480 MHz (Bluetooth)
Rx Freq. Range :	869.2 ~ 893.8 MHz (GSM850)
	1930.20 ~ 1989.80 MHz (GSM1900)
	2402 ~ 2480 MHz (Bluetooth)
Antenna Manufacturer :	Galtronics
	Model No.: 02105136-04068
Antenna Dimensions :	51.73 X 12.25 X 8.25 mm
GPRS	Class 10
Separation distance between	
Main and Bluetooth antenna :	39mm

3. DESCRIPTION OF TEST EQUIPMENT

3.1 SAR Measurement Setup

Robotic System

Measurements are performed using the DASY4 automated dosimetric assessment system. Which is made by Schmid & Partner Engineering AG (SPEAG) in Zurich, Switzerland and consists of high precision robotics system (Stäubli), robot controller, measurement server, Samsung computer, near-field probe, probe alignment sensor, and the SAM twin phantom containing the brain equivalent material. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF) (see Fig. 3.1).

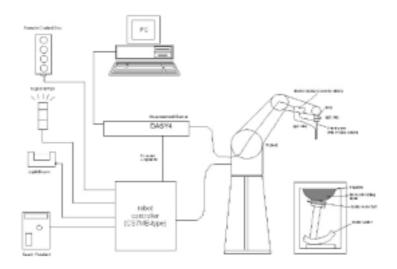


Figure 3.1 SAR Measurement System Setup

System Hardware

A cell controller system contains the power supply, robot controller, teach pendant (Joystick), and a remote control is used to drive the robot motors. The PC consists of the Samsung computer with Windows XP system and SAR Measurement Software DASY4, LCD monitor, mouse and keyboard. The Stäubli Robot is connected to the cell controller to allow software manipulation of the robot. A

data acquisition electronic (DAE) circuit that performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the measurement server

System Electronics

The DAE4(or DAE3) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16-bit AD-converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer.

If the

The SAR measurement were conducted with the dosimetric probe ES3DV3, designed in the classical triangular configuration (see Fig.3.3) and optimized for dosimetric evaluation. The probe is constructed using the thick

probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY4 software reads the reflection during a software approach and looks for the maximum using a 2nd order fitting (see Fig.3.2). The approach is stopped at reaching

film technique; with printed resistive lines on ceramic substrates.

3.2 E-field Probe

Figure 3.2 DAE System

the maximum.

Probe Specifications

Construction	Symmetrical design with triangular core
	Interleaved sensors
	Built-in shielding against static charges
	PEEK enclosure material (resistant to organic solvents, e.g., DGBE)
Calibration	Basic Broad Band Calibration in air: 10-3000 MHz
	Conversion Factors (CF) for HSL 900 and HSL 1800
	Additional CF for other liquids and frequencies upon request
Frequency	10 MHz to > 6 GHz; Linearity: \pm 0.2 dB (30 MHz to 3 GHz)
Directivity	± 0.2 dB in HSL (rotation around probe axis)
	\pm 0.3 dB in tissue material (rotation normal to probe axis)
Dynamic	5μW/g to > 100mW/g; Linearity: ±
Range	0.2dB

∆-BEAM

Figure 3.3 Triangular Probe Configuration

Report Number: FG-050-S1

Dimensions Overall length: 330 mm (Tip: 20 mm) Tip diameter: 3.9 mm (Body: 12 mm) Distance from probe tip to dipole centers: 2.1 mm

 Application
 General dosimetry up to 5 GHz

 Dosimetry in strong gradient fields

 Compliance tests of mobile phones

Figure 3.4 Probe Thick-Film Technique

3.3 Phantom

SAM Twin Phantom

The SAM Twin Phantom V4.0 is constructed of a fiberglass shell integrated in a wooden table. The shape of the shell is based on data from an anatomical study designed to determine the maximum exposure in at least 90% of all users. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents the evaporation of the liquid.

Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot. (See Figure 3.5)

Figure 3.5 SAM Twin Phantom

SAM Twin Phantom Specification

Construction	The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM)
	phantom defined in IEEE 1528-2003, CENELEC 50361 and IEC 62209. It enables the dosimetric
	evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom
	region. A cover prevents evaporation of the liquid.
Shell Thickness	2 ± 0.2 mm
Filling Volume	Approx. 25 liters
Dimensions	Height: 810 mm; Length: 1000 mm; Width: 500 mm

Modular Flat Phantom

The Modular Flat Phantom V5.1 is constructed of a fiberglass shell integrated in a wooden table. Also It consists of three identical flat phantoms (modules) which can be installed and removed separately without emptying the liquid, as well as a wooden support. It enables the dosimetric evaluation of body mounted usage at the flat phantom region. A cover prevents the evaporation of the liquid.

Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot. (See Figure 3.6)

Figure 3.6 Modular Flat Phantom

Modular Flat Phantom Specification

Construction	The shell corresponds to the specifications of IEEE 1528-2003. It enables the dosimetric evaluation
	of body mounted usage above 800 MHz at the flat phantom region. A cover prevents evaporation of
	the liquid.
Shell Thickness	2 ± 0.2 mm
Filling Volume	Approx. 10 liters
Dimension	Wooden support - Height: 810 mm; Length: 830 mm; Width: 500 mm
	Each Module - Height: 190 mm; Length: 200 mm; width: 300 mm

3.4 Brain & Muscle Simulating Mixture Characterization

The brain and muscle mixtures consist of a viscous gel using hydroxethylcellullose (HEC) gelling agent and saline solution (see Table 3.1). Preservation with a bactericide is added and visual inspection is made to make sure air bubbles are not trapped during the mixing process. The mixture is calibrated to obtain proper dielectric constant (permittivity) and conductivity of the desired tissue. The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 have been incorporated in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations.

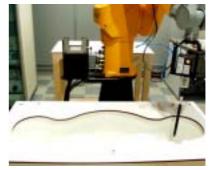


Figure 3.7 Simulated Tissue

INGREDIENTS	835MHz Brain	835MHz Muscle	1900MHz Brain	1900MHz Muscle
WATER	40.29%	50.75%	55.24%	70.23%
SUGAR	57.90%	48.21%	-	-
SALT	1.38%	0.94%	0.31%	0.29%
DGBE	-	-	44.45%	29.47%
BACTERIACIDE	0.18%	0.10%	-	-
HEC	0.24%	-	-	-
Dielectric Constant Target	41.50	55.20	40.00	53.30
Conductivity Target (S/m)	0.900	0.970	1.400	1.520

Table 3.1 Composition of the Brain & Muscle Tissue Equivalent Matter

3.5 Device Holder for Transmitters

In combination with the Twin SAM Phantom V4.0, the Mounting Device (see Fig. 3.7) enables the rotation of the mounted transmitter in spherical coordinates whereby the rotation points is the ear

opening. The devices can be easily, accurately and repeatedly be positioned according to the FCC specifications. The device holder can be locked at different phantom locations (left head, right head, flat phantom).

*Note: A simulating human hand is not used due to the complex anatomical and geometrical structure of the hand that may produced infinite number of configuration. To produce worst-case condition (the hand absorbs antenna output power), the hand is omitted during the tests.

Figure 3.8 Device Holder

3.6 Validation Dipole

The reference dipole should have a return loss better than -20 dB (measured in the setup) at the resonant frequency to reduce the uncertainty in the power measurement.

Frequency	835, 1900 MHz
Return Loss	< -20 dB at specified validation position
Dimensions	D835V2: dipole length: 161 mm; overall height: 330 mm D1900V2: dipole length: 68 mm; overall height: 300 mm

3.7 Equipment Calibration

Table 3.2 Test Equipment Calibration

Туре	Calibration Due Date	Serial No.
SPEAG DAE4 V2	Jan.20, 2010	686
E-Field Probe ES3DV3	Nov.18, 2009	3085
SPEAG Validation Dipole D835V2	Feb.11, 2010	451
SPEAG Validation Dipole D1900V2	Feb.14, 2010	5d023
Stäubli Robot RX90BL	Not Required	F01/5N19A1/A/01
SPEAG SAM Twin Phantom V4.0	Not Required	TP-1141
SPEAG SAM Twin Phantom V4.0	Not Required	TP-1143
SPEAG Modular Phantom	Not Required	MP-1001
E4438C Signal Generator	Mar.06, 2010	MY45092224
BBS3Q7ECK Power Amp	Oct.21, 2009	1007D/C0035
E4419B Power Meter	May.02, 2009	MY45101765
E9300B Power Sensor	May.02, 2009	MY41495885
HP-8753ES Network Analyzer	Apr.28, 2009	US39173712
HP85070C Dielectric Probe Kit	Not Required	US99360087
E4419B Power Meter	Oct.23, 2009	GB41293847
8481A Power Sensor	Oct.23, 2009	MY41092080
8481A Power Sensor	Dec.16, 2009	MY41092077
DASY4 S/W (ver4.7)	Not Required	-
Directional Coupler	May.23, 2009	18842
Base Satation Simulator	Dec.29, 2009	GB46490113

NOTE:

The E-field probe was calibrated by SPEAG, by temperature measurement procedure. Dipole Validation measurement is performed by Samsung Lab. before each test. (see § 7.2) The brain simulating material is calibrated by Samsung using the dielectric probe system and network analyzer to determine the conductivity and permittivity (dielectric constant) of the brain-equivalent material. (see § 7.1)

4. SAR MEASUREMENT PROCEDURE

The evaluation was performed using the following procedure.

STEP 1

The SAR measurement was taken at a selected spatial reference point to monitor power variations during testing. This fixed location point was measured and used as a reference value.

STEP 2

The SAR distribution at the exposed side of the head was measured at a distance of 3.9mm from the inner surface of the shell. The area covered the entire dimension of the head and the horizontal grid spacing was 20mm x 20mm. Based on the area scan data, the area of the maximum absorption was determined by spline interpolation.

STEP 3

Around this point, a volume of $32mm \times 32mm \times 30mm$ (fine resolution volume scan, zoom scan) was assessed by measuring 5 x 5 x 7 points. On this basis of this data set, the spatial peak SAR value was evaluated with the following procedure:

The data at the surface was extrapolated, since the center of the dipoles is 2.7mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.2mm.(This can be variable. Refer to the probe specification) The extrapolation was based on a least square algorithm. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluated the points between the surface and the probe tip. The maximum interpolated value was searched with a straight-forward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1g or 10g) were computed using the 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions). The volume was integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were interpolated to calculate the average. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.

STEP 4

The SAR value at the same location as in step 1 was again measured. (If the value changed by more than 5%, the evaluation is repeated.)

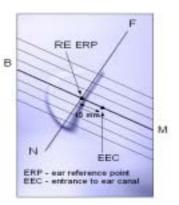
5. DESCRIPTION OF TEST POSITION

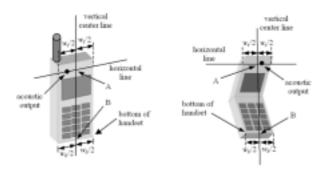
5.1 SAM Phantom Shape

Figure 5.1 shows the front, back and side views of SAM. The point "M" is the reference point for the center of mouth, "LE" is the left ear reference point (ERP), and "RE" is the right ERP. The ERPs are 15 mm posterior to the entrance to ear canal (EEC) along the B-M line (Back-Mouth), as shown in Figure 5.2.

Figure 5.1 Front, back and side view of SAM

The plane passing through the two ear canals and M is defined as the Reference Plane. The line N-F (Neck-Front) perpendicular to the reference plane and passing through the RE (or LE) is called the Reference Pivoting Line (see Figure 5.3). Line B-M is perpendicular to the N-F line. Both N-F and B-M lines should be marked on the external phantom shell to facilitate handset positioning. Posterior to the N-F line, the thickness of the phantom shell with the shape of an ear is a flat surface 6 mm thick at the ERPs.




Figure 5.2 Close up side view

5.2 Cheek/Touch Position

Two imaginary lines on the handset were established: the vertical centerline and the horizontal line. The test device was placed in a normal operating position with the "test device reference point" located along the "vertical centerline" on the front of the device aligned to the "ear reference point" (see Fig. 5.4). The "test device reference point" was than located at the same level as the center of

the eat reference point. The test device was positioned so that the "vertical centerline" was bisecting the front surface of the handset at it's tip and bottom edges, positioning the "ear reference point" on the outer surface of the both the left and right head phantoms on the ear reference point

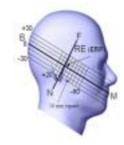


Figure 5.4 Handset vertical and horizontal reference Figure 5.3 Side view of the phantom showing relevant markings

Step 1

The test device was positioned with the handset close to the surface of the phantom such that point A is on the (virtual) extension of the line passing through points RE and LE on the phantom (see Figure 5.5), such that the plane defined by the vertical center line and the horizontal line of the phone is approximately parallel to the sagittal plane of the phantom

Figure 5.5 Front, Side and Top View of Cheek/Touch Position

Step 2

The handset was translated towards the phantom along the line passing through RE & LE until the handset touches the ear.

Step 3

While maintaining the handset in this plane, the handset was rotated around the LE-RE line until the vertical centerline was in the plane normal to MB-NF including the line MB (reference plane).

Step 4

Rotate the handset around the vertical centerline until the phone (horizontal line) was symmetrical was respect to the line NF.

Step 5

While maintaining the vertical centerline in the reference plane, keeping point A on the line passing through RE and LE, and maintaining the phone contact with the ear, the handset was rotated about the line NF until any point on the handset made contact with a phantom point below the ear (cheek). See Figure 5.2.

5.3 EAR/Tilt 15° Position

With the test device aligned in the "Cheek/Touch Position":

Step 1

Repeat steps 1 to 5 of 5.2 to place the device in the "Cheek/Touch Position"

Figure 5.6 Front, side and Top View of Ear/Tilt 15° Position

Step 2

While maintaining the orientation of the phone, the phone was retracted parallel to the reference plane far enough to enable a rotation of the phone by 15 degree.

Step 3

The phone was then rotated around the horizontal line by 15 degree.

Step 4

While maintaining the orientation of the phone, the phone was moved parallel to the reference plane until any part of the phone touches the head. (In this position, point A was located on the line RE-LE). The tilted position is obtained when the contact is on the pinna. If the contact was at any location other than the pinna, the angle of the phone would then be reduced. The tilted position was obtained when any part of the phone was in contact of the ear as well as a second part of the phone was in contact with the head.

5.4 Body Holster/Belt Clip Configurations

Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration (see Figure 5.7). A device with a headset output is tested with a headset connected to the device. Body dielectric parameters are used.

Figure 5.7 Body Belt Clip and Holster Configurations

Accessories for Body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are supplied with the device is tested with each accessory that contains unique metallic component. If multiple accessory share an identical

metallic component (i.e. the same metallic belt-clip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

Body-worn accessories may not always be supplied or available as options for some Devices intended to be authorized for body-worn use. In this case, a test configuration where a separation distance between the back of the device and the flat phantom is used.

Transmitters that are designed to operate in front of a person's face, as in push-to-talk configurations, are tested for SAR compliance with the front of the device positioned to face the flat phantom. For devices that are carried next to the body such as a shoulder, waist or chest-worn transmitters, SAR compliance is tested with the accessory(ies), Including headsets and microphones, attached to the device and positioned against a flat phantom in a normal use configuration.

In all cases SAR measurements are performed to investigate the worst-case positioning. Worstcase positioning is then documented and used to perform Body SAR testing.

In order for users to be aware of the body-worn operating requirements for meeting RF exposure compliance, operating instructions and cautions statements must be included in the user's manual.

6. MEASUREMENT UNCERTAINTY

Error Description	Uncertainty Value (±%)	Probability Distribution	Divisor	Ci	Standard uncertainty (±%)	v _i ² or V _{eff}
		Measurement S	ystem			
Probe Calibration	11.80	normal	2.000	1	5.90	∞
Axial Isotropy	4.70	rectangular	1.732	0.7	1.90	×
Hemispherical Isotropy	9.60	rectangular	1.732	0.7	3.88	×
Linearity	4.70	rectangular	1.732	1	2.71	×
System Detection Limits	0.25	rectangular	1.732	1	0.14	×
Boundary effects	1.00	rectangular	1.732	1	0.58	×
Readout electronics	0.30	normal	1.000	1	0.30	×
Response time	0.80	rectangular	1.732	1	0.46	×
RF ambient conditions	3.00	rectangular	1.732	1	1.73	×
Integration time	0.00	rectangular	1.732	1	0.00	×
Mechanical constrains of robot	1.50	rectangular	1.732	1	0.87	×
Probe positioning	2.90	rectangular	1.732	1	1.67	×
Extrapolation and integration	1.00	rectangular	1.732	1	0.58	×
		Test Sample Re	elated			
Test Sample positioning	1.16	normal	1.000	1	1.16	14
Device holded uncertainty	4.37	normal	1.000	1	4.37	×
Power Drift	5.00	rectangular	1.732	1	2.89	×
		Phantom and S	Setup			
Modular Phantom uncertainty	5.62	normal	1.000	1	5.62	2
Phantom uncertainty	4.00	rectangular	1.732	1	2.31	∞
Liquid conductivity (deviation from target)	5.00	rectangular	1.732	0.64	1.85	œ
Liquid conductivity (measurement error)	5.84	normal	1.000	0.64	3.74	∞
Liquid permittivity (deviation from target)	5.00	rectangular	1.732	0.6	1.73	∞
Liquid permittivity (measurement error)	5.40	normal	1.000	0.6	3.24	∞
Combined Standard Uncerta	inty	Normal	-	-	12.84	213263
Extended Standard Uncertainty(Extended Standard Uncertainty(K=2.00)				25.17	213263

Table 6.1 Uncertainty Budget at 835MHz (Mar 2008)

Error Description	Uncertainty Value (±%)	Probability Distribution	Divisor	Ci	Standard uncertainty (±%)	v _i ² or v _{eff}
Measurement System						
Probe Calibration	11.80	normal	2.000	1	5.90	∞
Axial Isotropy	4.70	rectangular	1.732	0.7	1.90	∞
Hemispherical Isotropy	9.60	rectangular	1.732	0.7	3.88	8
Linearity	4.70	rectangular	1.732	1	2.71	8
System Detection Limits	0.25	rectangular	1.732	1	0.14	8
Boundary effects	1.00	rectangular	1.732	1	0.58	8
Readout electronics	0.30	normal	1.000	1	0.30	8
Response time	0.80	rectangular	1.732	1	0.46	8
RF ambient conditions	3.00	rectangular	1.732	1	1.73	8
Integration time	0.00	rectangular	1.732	1	0.00	8
Mechanical constrains of robot	1.50	rectangular	1.732	1	0.87	∞
Probe positioning	2.90	rectangular	1.732	1	1.67	∞
Extrapolation and integration	1.00	rectangular	1.732	1	0.58	∞
Test Sample Related						
Test Sample positioning	1.16	normal	1.000	1	1.16	14
Device holded uncertainty	4.37	normal	1.000	1	4.37	8
Power Drift	5.00	rectangular	1.732	1	2.89	8
Phantom and Setup						
Modular Phantom uncertainty	6.02	normal	1.000	1	6.02	2
Phantom uncertainty	4.00	rectangular	1.732	1	2.31	∞
Liquid conductivity (deviation from target)	5.00	rectangular	1.732	0.64	1.85	∞
Liquid conductivity (measurement error)	5.18	normal	1.000	0.64	3.32	∞
Liquid permittivity (deviation from target)	5.00	rectangular	1.732	0.6	1.73	∞
Liquid permittivity (measurement error)	4.65	normal	1.000	0.6	2.79	∞
Combined Standard Uncerta	ainty	Normal	-	-	12.80	210539
Extended Standard Uncertainty	(K=2.00)	L		I	25.09	210539

Table 6.2 Uncertainty Budget at 1900MHz (Mar 2008)

7. SYSTEM VERIFICATION

7.1 Tissue Verification

	835MHz Brain 835MHz Musde			zMusde	1900M	HzBrain	1900MHzMusde		
	Target	Measured	Target	Measured	Target	Measured	Target	Measured	
Date	-	Mar:17, 2009	-	Mar:17, 2009	-	Mar:17, 2009	-	Mar:17, 2009	
Liquid Temperature(°C)	-	21.8	-	21.6	-	21.6	-	21.5	
Dielectric Constant: '	41.5	41.1	552	53.6	40.0	38.9	53.3	52.1	
Conductivity: σ	0.90	0.92	0.97	0.99	1.40	1.41	1.52	1.54	

Table 7.1 MEASURED TISSUE PARAMETERS

The measured value must be within $\pm 5\%$ of the target value.

7.2 Test System Validation

Prior to assessment, the system is verified to the ±10% of the specification at 835MHz and

1900MHz by using the system validation kit(s). (see Appendix E, Graphic Plot Attached)

Table 7.2 System Validation Results

System Validation Kit	Tissue	Targeted SAR _{1q} (mW/g)	$\begin{array}{c} \text{Measured} \\ \text{SAR}_{1g} \left(\text{mW/g} \right) \end{array}$	Deviation (%)	Date	Liquid Temperature(°C)	Ambient Temperature(°C)
451	835MHz Brain	9.55	9.68	1.36	Mar.17, 2009	21.6	22.1
5d023	1900MHz Brain	40.3	38.52	-4.42	Mar.17, 2009	21.6	22.3

*Validation was measured with input power 250 mW and normalized to 1W.

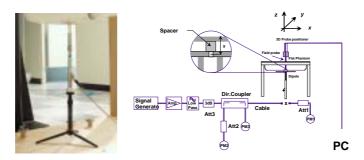


Figure 7.1 Dipole Validation Test Setup

8. SAR MEASUREMENT RESULTS

Procedures Used To Establish Test Signal

The handset was placed into simulated call mode using manufacturers test codes. Such test signals offer a consistent means for testing SAR and are recommended for evaluating SAR. When test modes are not available or inappropriate for testing a handset, the actual transmission is activated through a base station simulator or similar equipment. See data pages for actual procedure used in measurement.

Device Test Conditions

The handset is battery operated. Each SAR measurement was taken with a fully charged battery. In order to verify that the device was tested at full power, conducted output power measurements were performed before and after each SAR measurement to confirm the output power. If a conducted power deviation of more than 5% occurred, the test was repeated.

Simultaneous Transmission

Refer to the FCC OET document, 'SAR Evaluation Considerations for Handsets with Multiple Transmitters and Antennas' (Feb 2008)

	2.45	5.15 - 5.35	5.47 - 5.85	GHz						
P Ref	12	6	5	mW						
Device output power should be rounded to the nearest mW to compare with values specified in this										
table										

Table 8.1 Output Power Thresholds for Unlicensed Transmitters

	Individual Transmitter	Simultaneous Transmission
Licensed Transmitters	Routine evaluation required	SAR not required: <u>Unlicensed only</u> o when stand-alone 1-g SAR is not
Unlicensed Transmitters	 When there is no simultaneous transmission – o output < 60/f: SAR not required o output 60/f: stand-alone SAR required When there is simultaneous transmission – <u>Stand-alone SAR not required when</u> O output 2.P_{Ref} and antenna is > 5.0 cm from other antennas o output P_{Ref} and antenna is > 2.5 cm from other antennas, each either output power output P_{Ref} or 1-g SAR < 1.2 W/Kg Otherwise stand-alone SAR is required o test SAR on highest output channel for each wireless mode and exposure condition o if SAR for highest output channel is > 50% of SAR limit, evaluate all channels according to normal procedures 	required and antenna is > 5 cm from other antennas Licensed & Unlicensed o when the sum of the 1-g SAR is <1.6 W/kg for all simultaneous transmitting antennas o when SAR to antenna separation ratio of simultaneous transmitting antenna pair is < 0.3 SAR required: Licensed & Unlicensed antenna pairs with SAR to antenna separation ratio 0.3; test is only required for the configuration that results in the highest SAR in standalone configuration for each wireless mode and exposure condition Note: simultaneous transmission exposure conditions for head and body can be different for different style phones; therefore, different test requirements may apply

Table 8.2 Summary of SAR Evaluation Requirements for Cell phones with Multiple Transmitters

8.1 Measurement Results(GSM850 Right Head SAR - Touch)

Mixture Type : 835 MHz Brain

FREQUE	FREQUENCY		Be	gin/End F	POWER*	Device Test	Antenna	SAR	
MHz	Ch.	Wouldtion	(dBm)		Battery	Position	Position	(W/kg)	
836.6	190	GSM 850	32.61	32.53	Standard	Cheek/Touch	Intenna	0.474	
ι		IEEE C95.1 20 / Spatial olled Exposure	Peak			1.6W/kg (mW/g) averaged over 1 gram			

NOTES:

9.

- 1. The test data reported are the worst-case SAR value with the antenna-head position set in a typical configuration. Test procedures used are according to FCC/OET Bulletin 65, Supp.C [July 2001].
- 2. All modes of operation were investigated, and the worst-case results are reported.
- 3. Tissue parameters and temperatures are listed on the SAR plot.
- 4. Liquid tissue depth is 15.2 ± 0.2cm

5.	Battery is fu	lly charged for	all readings.
Ο.	Duttory io iu	ny onargoa ior	un rouunigo.

- *Power Measured 🛛 Conducted
- 6. Battery Option
- Standard

Left Head

□ Extended
 □ Flat Phantom
 ⊠ Right Head

7. Phantom Configuration

Test Signal Call Mode

- 8. SAR Configuration
- ☑ Head□ Body□ Manu. Test Codes☑ Ba

Base Station Simulator

□ Hand

10. Justification for reduced test configurations: Per FCC/OET Bulletin 65 Supplement C (July, 2001), if the SAR measured at the middle channel for each test configuration (left, right, cheek/touch, tilt/ear, extended and retracted) is least 3.0 dB lower than the SAR limit, testing at the high and low channels is optional for such test configuration(s).

8.2 Measurement Results(GSM850 Right Head SAR - Tilt)

Mixture Type : 835 MHz Brain

FREQUE	FREQUENCY		Be	gin/End F	POWER*	Device Test	Antenna	SAR (W/kg)
MHz	Ch.	wouldtion	(dBm)		Battery	Position	Position	
836.6	190	GSM 850	32.61	32.60	Standard	Ear/Tilt 15°	Intenna	0.267
ι		/ IEEE C95.1 20 Spatial olled Exposure	Peak				6W/kg (mW/g) aged over 1 gra	ım

NOTES:

7.

- The test data reported are the worst-case SAR value with the antenna-head position set in a 1. typical configuration. Test procedures used are according to FCC/OET Bulletin 65, Supp.C [July 2001].
- 2. All modes of operation were investigated, and the worst-case results are reported.
- 3. Tissue parameters and temperatures are listed on the SAR plot.
- Liquid tissue depth is 15.2 ± 0.2cm 4.
- 5. Battery is fully charged for all readings. *Power Measured ⊠ Conducted
- **Battery Option** 6.
- Standard
- Extended □ Slim Right Head

□ Hand

- Phantom Configuration Left Head Flat Phantom ⊠ Head Body
- SAR Configuration 8.
- 9. Test Signal Call Mode
- Base Station Simulator Manu. Test Codes 10. Justification for reduced test configurations: Per FCC/OET Bulletin 65 Supplement C (July, 2001), if the SAR measured at the middle channel for each test configuration (left, right, cheek/touch, tilt/ear, extended and retracted) is least 3.0 dB lower than the SAR limit, testing at the high and low channels is optional for such test configuration(s).

8.3 Measurement Results(GSM850 Left Head SAR - Touch)

Mixture Type : 835 MHz Brain

FREQUE	FREQUENCY		Be	gin/End F	POWER*	Device Test	Antenna	SAR
MHz	Ch.	wouldtion	(dBm)		Battery	Position	Position	(W/kg)
836.6	190	GSM 850	32.63	32.73	Standard	Cheek/Touch	Intenna	0.483
U		/ IEEE C95.1 20 Spatial olled Exposure	Peak				6W/kg (mW/g) aged over 1 gra	ım

NOTES:

- 1. The test data reported are the worst-case SAR value with the antenna-head position set in a typical configuration. Test procedures used are according to FCC/OET Bulletin 65, Supp.C [July 2001].
- 2. All modes of operation were investigated, and the worst-case results are reported.
- 3. Tissue parameters and temperatures are listed on the SAR plot.
- 4. Liquid tissue depth is 15.2 ± 0.2cm
- 6. Battery Option
- ConductedStandard
- Extended
 Slim
 Flat Phantom
 Right Head

- 7. Phantom Configuration
- SAR Configuration
 Test Signal Call Mode
- ☑ Left Head
 □ Flat Phantom
 ☑ Head
 □ Body
 □ Manu. Test Codes
 ☑ Base S
 - Body □ Hand ⊠ Base Station Simulator
- 10. Justification for reduced test configurations: Per FCC/OET Bulletin 65 Supplement C (July, 2001), if the SAR measured at the middle channel for each test configuration (left, right, cheek/touch, tilt/ear, extended and retracted) is least 3.0 dB lower than the SAR limit, testing at the high and low channels is optional for such test configuration(s).

8.4 Measurement Results(GSM850 Left Head SAR - Tilt)

Mixture Type : 835 MHz Brain

FREQUE	FREQUENCY		Be	gin/End F	POWER*	Device Test	Antenna	SAR	
MHz	Ch.	wouldtion	(dBm)		Battery	Position	Position	(W/kg)	
836.6	190	GSM 850	32.62	32.57	Standard	Ear/Tilt 15°	Intenna	0.273	
ι		/ IEEE C95.1 20 Spatial olled Exposure	Peak				6W/kg (mW/g) aged over 1 gra	ım	

NOTES:

8.

- The test data reported are the worst-case SAR value with the antenna-head position set in a 1. typical configuration. Test procedures used are according to FCC/OET Bulletin 65, Supp.C [July 2001].
- 2. All modes of operation were investigated, and the worst-case results are reported.
- 3. Tissue parameters and temperatures are listed on the SAR plot.
- Liquid tissue depth is 15.2 ± 0.2cm 4.
- 5. Battery is fully charged for all readings. *Power Measured
- **Battery Option** 6.
- ⊠ Conducted Standard
- Extended □ Slim □ Right Head
- Phantom Configuration 7. ⊠ Head
 - SAR Configuration
- 9. Test Signal Call Mode
- Left Head Flat Phantom Body
 - □ Hand Base Station Simulator
- 10. Justification for reduced test configurations: Per FCC/OET Bulletin 65 Supplement C (July, 2001), if the SAR measured at the middle channel for each test configuration (left, right, cheek/touch, tilt/ear, extended and retracted) is least 3.0 dB lower than the SAR limit, testing at the high and low channels is optional for such test configuration(s).

Manu. Test Codes

8.5 Measurement Results(GPRS850 Body SAR without Holster)

FREQUENCY		Modulation	Begin/End POWER*			Device Test	Antenna	SAR
MHz	Ch.	Wodulation	(dE	3m)	Battery	Position	Position	(W/kg)
824.2	128	GSM 850	32.79	32.71	Standard	1.5 cm [w/o Holster]	Intenna	0.970
836.6	190	GSM 850	32.61	32.64	Standard	1.5 cm [w/o Holster]	Intenna	1.21
848.8	251	GSM 850	32.48	32.42	Standard	1.5 cm [w/o Holster]	Intenna	1.31
l		/ IEEE C95.1 20 Spatial olled Exposure	Peak		1.6W/kg (mW/g) averaged over 1 gram			

Mixture Type : 835 MHz Muscle

NOTES:

- The test data reported are the worst-case SAR value with the antenna-head position set in a 1. typical configuration. Test procedures used are according to FCC/OET Bulletin 65, Supp.C [July 2001].
- 2 All modes of operation were investigated, and the worst-case results are reported.
- 3. Tissue parameters and temperatures are listed on the SAR plot.
- 4. Liquid tissue depth is 15.2 ± 0.2cm
- 5. Battery is fully charged for all readings. *Power Measured
- 6. **Battery Option**
- ⊠ Conducted Standard
- 7. Phantom Configuration
- SAR Configuration 8.
- Test Signal Call Mode 9.
- 10. Test Configuration
- Left Head I Flat Phantom Head 🗵 Body Manu. Test Codes

□ Extended

Base Station Simulator ☑ Without Holster

□ Slim

□ Hand

□ Right Head

11. Justification for reduced test configurations: This model supports GPRS CLASS "10" (2Tx) and EDGE. The burst power and timing period is more than 2dB higher in GPRS mode than in GSM850 mode. Hence, the GSM850 mode was not measured. EDGE mode was also measured but not reported because it's TX power is 6dB lower than GPRS mode.

□ With Holster

8.6 Measurement Results(GSM1900 Right Head SAR - Touch)

Mixture Type : 1900 MHz Brain

FREQUE	REQUENCY		Begin/End POWER*			Device Test	Antenna	SAR
MHz	Ch.	wooulation	(dBm)		Battery	Position	Position	(W/kg)
1880.0	661	PCS GSM	29.60	29.51	Standard	Cheek/Touch	Intenna	0.548
U		IEEE C95.1 20/ Spatial olled Exposure	Peak				6W/kg (mW/g) aged over 1 gra	ım

NOTES:

7.

- The test data reported are the worst-case SAR value with the antenna-head position set in a 1. typical configuration. Test procedures used are according to FCC/OET Bulletin 65, Supp.C [July 2001].
- 2. All modes of operation were investigated, and the worst-case results are reported.
- 3. Tissue parameters and temperatures are listed on the SAR plot.
- Liquid tissue depth is 15.2 ± 0.2cm 4.
- Battery is fully charged for all readings. 5. *Power Measured ⊠ Conducted
- **Battery Option** 6.
- Standard
- Extended □ Slim Right Head Flat Phantom

□ Hand

- Phantom Configuration Left Head ⊠ Head Body
- SAR Configuration 8.
- 9. Test Signal Call Mode
- Base Station Simulator Manu. Test Codes 10. Justification for reduced test configurations: Per FCC/OET Bulletin 65 Supplement C (July, 2001), if the SAR measured at the middle channel for each test configuration (left, right, cheek/touch, tilt/ear, extended and retracted) is least 3.0 dB lower than the SAR limit, testing at the high and low channels is optional for such test configuration(s).

8.7 Measurement Results(GSM1900 Right Head SAR - Tilt)

Mixture Type : 1900 MHz Brain

FREQUE	REQUENCY		Begin/End POWER*			Device Test	Antenna	SAR
MHz	Ch.	wooulation	(dBm)		Battery	Position	Position	(W/kg)
1880.0	661	PCS GSM	29.63	29.60	Standard	Ear/Tilt 15°	Intenna	0.229
L		IEEE C95.1 20 / Spatial olled Exposure	Peak				6W/kg (mW/g) aged over 1 gra	Im

NOTES:

7.

- The test data reported are the worst-case SAR value with the antenna-head position set in a 1. typical configuration. Test procedures used are according to FCC/OET Bulletin 65, Supp.C [July 2001].
- 2. All modes of operation were investigated, and the worst-case results are reported.
- 3. Tissue parameters and temperatures are listed on the SAR plot.
- Liquid tissue depth is 15.2 ± 0.2cm 4.
- 5. Battery is fully charged for all readings. *Power Measured ⊠ Conducted
- **Battery Option** 6.
- Standard
- Extended □ Slim Right Head Flat Phantom

□ Hand

- Phantom Configuration Left Head ⊠ Head Body
- SAR Configuration 8.
- 9. Test Signal Call Mode
- Base Station Simulator Manu. Test Codes 10. Justification for reduced test configurations: Per FCC/OET Bulletin 65 Supplement C (July, 2001), if the SAR measured at the middle channel for each test configuration (left, right, cheek/touch, tilt/ear, extended and retracted) is least 3.0 dB lower than the SAR limit, testing at the high and low channels is optional for such test configuration(s).

8.8 Measurement Results(GSM1900 Left Head SAR - Touch)

Mixture Type : 1900 MHz Brain

FREQUE			Begin/End POWER*			Device Test	Antenna	SAR	
MHz	Ch.	Wouldtion	(dBm)		Battery	Position	Position	(W/kg)	
1880.0	661	PCS GSM	29.66	29.65	Standard	Cheek/Touch	Intenna	0.724	
U		/ IEEE C95.1 20 Spatial olled Exposure	Peak				6W/kg (mW/g) aged over 1 gra	ım	

NOTES:

9.

- 1. The test data reported are the worst-case SAR value with the antenna-head position set in a typical configuration. Test procedures used are according to FCC/OET Bulletin 65, Supp.C [July 2001].
- 2. All modes of operation were investigated, and the worst-case results are reported.
- 3. Tissue parameters and temperatures are listed on the SAR plot.
- 4. Liquid tissue depth is 15.2 ± 0.2cm
- 6. Battery Option
- ConductedStandard
- Extended
 Slim
 Flat Phantom
 Right Head

Phantom Configuration
 SAR Configuration

Test Signal Call Mode

- ☑ Left Head☑ Flat Phantom☑ Head☑ Body
- ☑ Head
 □ Body
 □ Hand
 □ Manu. Test Codes
 ☑ Base Station Simulator
- 10. Justification for reduced test configurations: Per FCC/OET Bulletin 65 Supplement C (July, 2001), if the SAR measured at the middle channel for each test configuration (left, right, cheek/touch, tilt/ear, extended and retracted) is least 3.0 dB lower than the SAR limit, testing at the high and low channels is optional for such test configuration(s).

8.9 Measurement Results(GSM1900 Left Head SAR - Tilt)

Mixture Type : 1900 MHz Brain

FREQUENCY		Modulation	Begin/End POWER*			Device Test	Antenna	SAR
MHz	Ch.	wouldtion	(dBm)		Battery	Position	Position	(W/kg)
1880.0	661	PCS GSM	29.61	29.62	Standard	Ear/Tilt 15°	Intenna	0.265
l		IEEE C95.1 20/ Spatial olled Exposure	Peak		1.6W/kg (mW/g) averaged over 1 gram			

NOTES:

7.

- The test data reported are the worst-case SAR value with the antenna-head position set in a 1. typical configuration. Test procedures used are according to FCC/OET Bulletin 65, Supp.C [July 2001].
- 2. All modes of operation were investigated, and the worst-case results are reported.
- 3. Tissue parameters and temperatures are listed on the SAR plot.
- Liquid tissue depth is 15.2 ± 0.2cm 4.
- 5. Battery is fully charged for all readings. *Power Measured
- **Battery Option** 6.
- ⊠ Conducted Standard
- Extended □ Slim □ Right Head
- Phantom Configuration ⊠ Head
- SAR Configuration 8. 9.
 - Test Signal Call Mode
- Left Head Flat Phantom Body
- □ Hand Base Station Simulator Manu. Test Codes
- 10. Justification for reduced test configurations: Per FCC/OET Bulletin 65 Supplement C (July, 2001), if the SAR measured at the middle channel for each test configuration (left, right, cheek/touch, tilt/ear, extended and retracted) is least 3.0 dB lower than the SAR limit, testing at the high and low channels is optional for such test configuration(s).

8.10 Measurement Results(GPRS1900 Body SAR without Holster)

FREQUENCY		Modulation	Begin/End POWER*			Device Test	Antenna	SAR
MHz	Ch.	wooulation	(dBm)		Battery	Position	Position	(W/kg)
1909.8	810	PCS GSM	29.82	29.74	Standard	1.5 cm [w/o Holster]	Intenna	0.951
1880.0	661	PCS GSM	29.64	29.67	Standard	1.5 cm [w/o Holster]	Intenna	1.05
1850.2	512	PCS GSM	29.48	29.43	Standard	1.5 cm [w/o Holster]	Intenna	1.01
ANSI / IEEE C95.1 2005– SAFETY LIMIT Spatial Peak Uncontrolled Exposure / General Population						1.6W/kg (mW/g) averaged over 1 gram		

Mixture Type : 1900 MHz Muscle

NOTES:

- The test data reported are the worst-case SAR value with the antenna-head position set in a typical configuration. Test procedures used are according to FCC/OET Bulletin 65, Supp.C [July 2001].
- 2. All modes of operation were investigated, and the worst-case results are reported.
- 3. Tissue parameters and temperatures are listed on the SAR plot.
- 4. Liquid tissue depth is 15.2 ± 0.2 cm
- 6. Battery Option
- ConductedStandard
- Battery Option
- 7. Phantom Configuration
- 8. SAR Configuration
- 9. Test Signal Call Mode
- 10. Test Configuration
- □ Left Head ⊠ Flat Phantom
 □ Head ⊠ Body
 □ Manu. Test Codes ⊠ Base
- □ Manu. Test Codes
 □ With Holster

□ Extended

Base Station SimulatorWithout Holster

□ Slim

□ Hand

□ Right Head

 Justification for reduced test configurations: This model supports GPRS CLASS "10" (2Tx) and EDGE. The burst power and timing period is more than 2dB higher in GPRS mode than in GSM1900 mode. Hence, the GSM1900 mode was not measured. EDGE mode was also measured but not reported because it's TX power is 4dB lower than GPRS mode.

9. CONCLUSION

The SAR measurement indicates that the EUT complies with the RF radiation exposure limits of the FCC. These measurements are taken to simulate the RF effects exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The test results and statements relate only to the item(s) tested.

Please note that the absorption and distribution of electromagnetic energy in the body are very complex phenomena that depend on the mass, shape, and size of the body, the orientation of the body with respect to the field vectors, and the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because innumerable factors may interact to determine the specific biological outcome of an exposure to electromagnetic fields, any protection guide shall consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables.

The highest reported SAR values are as follows: GSM850: Head: 0.483 W/Kg : Body-worn: 1.31 W/Kg GSM1900: Head: 0.724 W/Kg : Body-worn: 1.05 W/Kg

10. REFERENCES

[1] IEEE Standards Coordinating Committee 34 – IEEE Std. 1528-2003 (Draft 6.1 – July 2001), *IEE Recommended Practice* for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques..

[2] Federal Communications Commission, OET Bulletin 65 (Edition 97-01), Supplement C (Edition 01-01), *Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields*, July 2001.

[3] ANSI/IEEE C95.3 – 1991, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields – RF and Microwave, New York: IEEE, 1992.

[4] Federal Communications Commission, OET Bulletin 65, Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields. Supplement C, Dec. 1997.

[5] ANSI/IEEE C95.1 – 1991, American National Standard Safety levels with respect to human exposure to radio frequency electromagnetic fields, 300kHz to 100GHz, New York: : IEEE, Aug. 1992.

[6] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radiofrequency Radiation, Aug. 1996.

[7] NCRP, National Council on Radiation Protection and Measurements, *Biological Effects and Exposure Criteria for RadioFrequency Electromagnetic Fields*, NCRP Report No. 86, 1986. Reprinted Feb. 1995.

[8] T. Schmid, O. Egger, N. Kuster, *Automated E-field scanning system for dosimetric assessments,* IEEE Transaction on Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113.

[9] K. Pokovic, T.Schmid, N. Kuster, *Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies*, ICECOM97, Oct. 1997, pp. 120-124.

[10] G.Hartsgrove, A. raszewski, A. Surowiec, *Simulated Biological Materials for Electromagnetic Radiation Absorption Studies*, University of Ottawa, Bioelectromagnetics, Canada: 1987, pp. 29-36

[11] Q. Balzano, O. Garay, T. Manning Jr,. *Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones*, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995.

[12] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, *Numerical Recepies in C*, The Art of Scientific Computing, Second edition, Cambridge University Press, 1992.

[13] K. Pokovic, T.Schmid, N. Kuster, *E-field Probe with improved isotropy in brain simulating liquids*, Proceedings of the ELMAR, Zadar, June 23-25, 1996, pp. 172-175.

[14] Schmid & Partner Engineering AG, Application Note: Data Storage and Evaluation, June 1998, p2.

[15] V. Hombach, K.Meier, M. Burkhardt, E. Kuhn, N. Kuster, *The Dependence of EM Energy Absorption upon Human Head Modeling at 900MHz*, IEEE Transaction on Microwave Theory and Techniques, vol 44 no. 10, Oct. 1996, pp. 1865-1873.

[16] N. Kuster and Q. Balzano, *Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300MHz*, IEEE Transaction on Vehicular Technology, vol. 41, no.1, Feb.1992, pp. 17-23.

[17] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp.645-652.

[18] ANSI/IEEE C95.1-2005, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 300kHz to 100GHz, New York: IEEE, April 2006.

[19] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic Fields High-frequency: 10kHz-300GHz, Jan. 1995.

[20] Prof. Dr. Niels Kuster, ETH, Eidgenössische Technische Hoschschule Zürich, Dosimetric Evaluation of the Cellular Phone.

[21] FCC SAR Measurement Procedures for 3G Devices, June 2006

[22] SAR Measurement procedures for IEEE 802.11a/b/g rev 1.1, Oct 2006

[23] IEC 62209-1, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Human models, instrumentation, and procedures - Part 1: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz), Feb. 2005.

[24] FCC Public Notice DA-02-1438. Office of Engineering and Technology Announces a Transition Period for the Phantom Requirements of Supplement C to OET Bulletin 65, June 19, 2002.

[25] FCC SAR Evaluation Considerations for Handsets with Multiple Transmitters and Antennas. Feb 2008

APPENDIX A

SAR Definition

Specific Absorption Rate (SAR) is defined as the time derivative (rate) of the incremental energy (*dU*) absorbed by (dissipated in) an incremental mass (*dm*) contained in a volume element (*dV*) of a given density (*p*). It is also defined as the rate of RF energy absorption pet unit mass at a point in an absorbing body (see Fig. A.1).

$$SAR = \frac{d}{dt} \left(\frac{dU}{dm} \right) = \frac{d}{dt} \left(\frac{dU}{pdv} \right)$$

Figure A.1 SAR Mathematical Equation

SAR is expressed in units of Watts per Kilogram (W/kg).

SAR =
$$E^2/p$$

Where :

conductivity of the tissue-simulant material (S/m)
 mass density of the tissue-simulant material (kg/m³)

E = Total RMS electric field strength (V/m)

Note: The primary factors that control rate or energy absorption were found to be the wavelength of the incident field in relations to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane.

APPENDIX B

Probe Calibration Process

Dosimetric Assessment Procedure

Each probe is calibrated according to a dosimetric assessment procedure described in **K. Pokovic**, **T.Schmid**, **N. Kuster**, *Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies*, ICECOM97, Oct. 1997, pp. 120-124 with an accuracy better than +/-10%. The spherical isotropy was evaluated with the procedure described in **K. Pokovic**, **T.Schmid**, **N. Kuster**, *E-field Probe with improved isotropy in brain simulating liquids*, Proceedings of the ELMAR, Zadar, June 23-25, 1996, pp. 172-175 and found to be better than +/-0.25dB. The sensitivity parameters (NormX, NormY, NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe is tested.

Free Space Assessment

The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies bellow 1 GHz (see Fig. B.1), and in a waveguide above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees.

Temperature Assessment

E-field temperature correlation calibration is performed in a flat phantom flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium correlates to temperature rise in a dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe (see Fig. B.2).

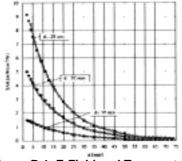
SAR =
$$C \frac{\Delta T}{\Delta t}$$

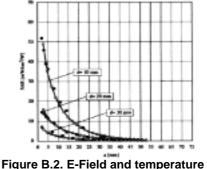
where:

t = exposure time (30 seconds)

C = heat capacity of tissue (brain or muscle).

T = temperature increase due to RF exposure.
 SAR is proportional to T/ t, the initial rate of tissue heating, before thermal diffusion takes place. Now it's possible to quantify the electric field in the simulated tissue by equating the thermally derived SAR to the E-field;




Figure B.1. E-Field and Temperature measurements at 900MHz

SAR =
$$\frac{|E|^2 \cdot \sigma}{p}$$

where:

= simulated tissue conductivity

p = Tissue density (1.25 g/cm³ for brain tissue)

rigure B.2. E-Field and temperature measurements at 1.9GHz

APPENDIX C

ANSI/IEEE C95.1 – 2005 RF EXPOSURE LIMITS

Uncontrolled Environment

UNCONTROLLED ENVIRONMENTS are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

Controlled Environment

CONTROLLED ENVIRONMENTS are defined as locations where there is the exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Table C.1 Safety Limits for Partial Body Exposure

	UNCONTROLLED ENVIRONMENT General Population (W/kg) or (mW/g)	CONTROLLED ENVIRONMENT General Population (W/kg) or (mW/g)
SPATIAL PEAK SAR ¹ Brain	1.60	8.00
SPATIAL PEAK SAR ² Whole Body	0.08	0.40
SPATIAL PEAK SAR ³ Hands,Feet,Ankles, Wrists	4.00	20.00

¹ The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as tissue volume in the shape of a cube) and over the appropriate averaging time.

² The Spatial Average value of the SAR averaged over the whole body.

³ The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

APPENDIX D

Test Setup Photographs

APPENDIX E

The Validation Measurements

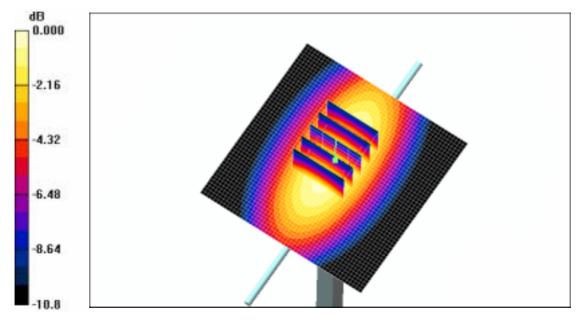
DUT: Dipole 835 MHz; Serial: 451 Program Name: 835MHz Dipole Validation 2009.03.17 Procedure Name: 835MHz @ 250mW

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; σ = 0.92 mho/m; ε_r = 41.1; ρ = 1000 ka/m³ Phantom section: Flat Section

DASY4 Configuration:

- Probe: ES3DV3 SN3085; ConvF(5.76, 5.76, 5.76); Calibrated: 2008-11-18
- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn686; Calibrated: 2009-01-20
 Phantom: PHANTOM #2; Type: SAM; Serial: TP-1141
 Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD,


V1.8 Build 184

835MHz @ 250mW/Area Scan (51x51x1): Measurement grid: dx=20mm, dy=20mm

Maximum value of SAR (interpolated) = 2.63 mW/g

835MHz @ 250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid:

dx=8mm, dy=8mm, dz=5mm Reference Value = 54.1 V/m; Power Drift = -0.056 dB Peak SAR (extrapolated) = 3.55 W/kg SAR(1 g) = 2.42 mW/g; SAR(10 g) = 1.58 mW/g Maximum value of SAR (measured) = 2.62 mW/g

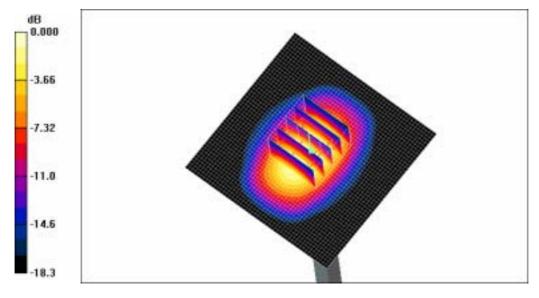
 $0 \, dB = 2.62 \, mW/g$

DUT: Dipole 1900 MHz; Serial: 5d023 Program Name: 1900 Dipole Validation 2009.03.17 Procedure Name: 1900MHz @250mW

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; σ = 1.41 mho/m; ϵ_r = 38.9; ρ = 1000 ka/m³ Phantom section: Flat Section

DASY4 Configuration:

- Probe: ES3DV3 SN3085; ConvF(4.85, 4.85, 4.85); Calibrated: 2008-11-18
- Sensor-Surface: 4mm (Mechanical Surface Detection)


Electronics: DAE4 Sn686; Calibrated: 2009-01-20
Phantom: PHANTOM #1; Type: SAM; Serial: TP-1143
Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

1900MHz @250mW/Area Scan (51x51x1): Measurement grid:

dx=20mm, dy=20mm Maximum value of SAR (interpolated) = 14.5 mW/g

1900MHz @250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid:

dx=8mm, dy=8mm, dz=5mm Reference Value = 88.8 V/m; Power Drift = -0.031 dB Peak SAR (extrapolated) = 17.5 W/kg SAR(1 g) = 9.63 mW/g; SAR(10 g) = 4.98 mW/g Maximum value of SAR (measured) = 10.8 mW/g

 $0 \, dB = 10.8 \, mW/g$

APPENDIX F

Plots of The SAR Measurements

DUT: SGH-A177; Serial: FG-050-A Program Name: SGH-A177 GSM850 Right (Job No. : FG-050) Procedure Name: Cheek/Touch, Ch.190, Ant.Intenna, Bat.Standard Meas. Ambient Temp(celsius)-22.1 Tissue Temp(celsius)-21.6; Test Date-17/Mar/2009

Communication System: GSM 850; Frequency: 836.6 MHz;Duty Cycle: 1:8.3 Medium parameters used: f = 836.6 MHz; σ = 0.92 mho/m; ϵ_r = 41.1; ρ = 1000 kg/m³

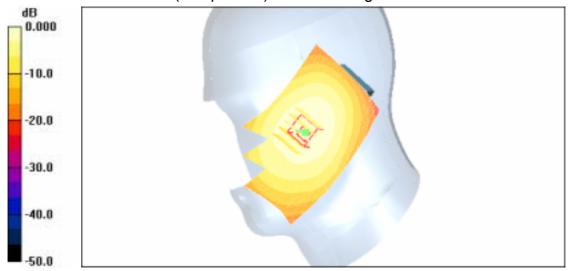
Phantom section: Right Section

DASY4 Configuration:

- Probe: ES3DV3 - SN3085; ConvF(5.76, 5.76, 5.76); Calibrated: 2008-11-18

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn686; Calibrated: 2009-01-20


- Phantom: PHANTOM #2; Type: SAM; Serial: TP-1141

- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Cheek/Touch, Ch.190, Ant.Intenna, Bat.Standard/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 23.9 V/m; Power Drift = -0.056 dB Peak SAR (extrapolated) = 0.597 W/kg SAR(1 g) = 0.474 mW/g; SAR(10 g) = 0.354 mW/g Maximum value of SAR (measured) = 0.502 mW/g

Cheek/Touch, Ch.190, Ant.Intenna, Bat.Standard/Area Scan

(51x71x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (interpolated) = 0.514 mW/g

 $0 \, dB = 0.514 mW/g$

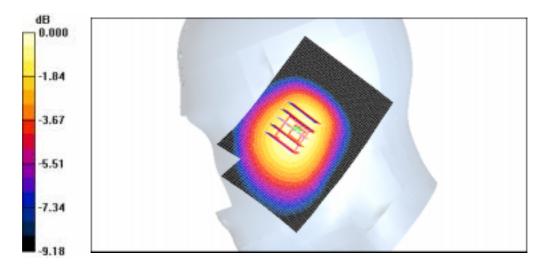
DUT: SGH-A177; Serial: FG-050-A Program Name: SGH-A177 GSM850 Right (Job No. : FG-050) Procedure Name: Ear/Tilt, Ch.190, Ant.Intenna, Bat.Standard Meas. Ambient Temp(celsius)-22.1 Tissue Temp(celsius)-21.6; Test Date-17/Mar/2009

Communication System: GSM 850; Frequency: 836.6 MHz;Duty Cycle: 1:8.3 Medium parameters used: f = 836.6 MHz; σ = 0.92 mho/m; ε_r = 41.1; ρ = 1000 kg/m³

Phantom section: Right Section

DASY4 Configuration:

- Probe: ES3DV3 - SN3085; ConvF(5.76, 5.76, 5.76); Calibrated: 2008-11-18


- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn686; Calibrated: 2009-01-20

 Phantom: PHANTOM #2; Type: SAM; Serial: TP-1141
 Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Ear/Tilt, Ch.190, Ant.Intenna, Bat.Standard/Area Scan (51x71x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (interpolated) = 0.282 mW/g

Ear/Tilt, Ch.190, Ant.Intenna, Bat.Standard/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 9.91 V/m; Power Drift = -0.008 dB Peak SAR (extrapolated) = 0.330 W/kg SAR(1 g) = 0.267 mW/g; SAR(10 g) = 0.201 mW/g Maximum value of SAR (measured) = 0.280 mW/g

 $0 \, dB = 0.280 \, mW/g$

DUT: SGH-A177; Serial: FG-050-A Program Name: SGH-A177 GSM850 Left (Job No. : FG-050) Procedure Name: Cheek/Touch, Ch.190, Ant.Intenna, Bat.Standard Meas. Ambient Temp(celsius)-22.1 Tissue Temp(celsius)-21.6; Test Date-17/Mar/2009

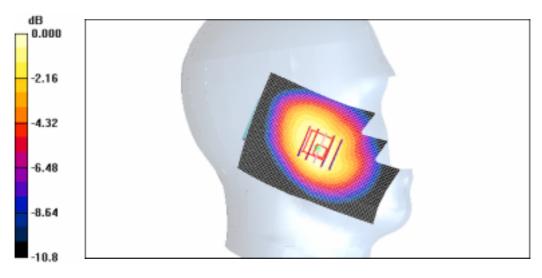
Communication System: GSM 850; Frequency: 836.6 MHz;Duty Cycle: 1:8.3 Medium parameters used: f = 836.6 MHz; σ = 0.92 mho/m; ϵ_r = 41.1; ρ = 1000 kg/m³

Phantom section: Left Section

DASY4 Configuration:

- Probe: ES3DV3 SN3085; ConvF(5.76, 5.76, 5.76); Calibrated: 2008-11-18
- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn686; Calibrated: 2009-01-20


- Phantom: PHANTOM #2; Type: SAM; Serial: TP-1141

- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Cheek/Touch, Ch.190, Ant.Intenna, Bat.Standard/Area Scan

(51x71x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (interpolated) = 0.542 mW/g

Cheek/Touch, Ch.190, Ant.Intenna, Bat.Standard/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 23.7 V/m; Power Drift = 0.000 dB Peak SAR (extrapolated) = 0.669 W/kg SAR(1 g) = 0.483 mW/g; SAR(10 g) = 0.353 mW/g Maximum value of SAR (measured) = 0.507 mW/g

 $0 \, dB = 0.507 mW/g$

DUT: SGH-A177; Serial: FG-050-A Program Name: SGH-A177 GSM850 Left (Job No. : FG-050) Procedure Name: Ear/Tilt, Ch.190, Ant.Intenna, Bat.Standard Meas. Ambient Temp(celsius)-22.1 Tissue Temp(celsius)-21.6; Test Date-17/Mar/2009

Communication System: GSM 850; Frequency: 836.6 MHz;Duty Cycle: 1:8.3 Medium parameters used: f = 836.6 MHz; σ = 0.92 mho/m; ϵ_r = 41.1; ρ = 1000 kg/m³

Phantom section: Left Section

DASY4 Configuration:

- Probe: ES3DV3 SN3085; ConvF(5.76, 5.76, 5.76); Calibrated: 2008-11-18
- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn686; Calibrated: 2009-01-20


- Phantom: PHANTOM #2; Type: SAM; Serial: TP-1141

- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Ear/Tilt, Ch.190, Ant.Intenna, Bat.Standard/Area Scan (51x71x1):

Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (interpolated) = 0.291 mW/g

Ear/Tilt, Ch.190, Ant.Intenna, Bat.Standard/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 10.0 V/m; Power Drift = 0.049 dB Peak SAR (extrapolated) = 0.340 W/kg SAR(1 g) = 0.273 mW/g; SAR(10 g) = 0.204 mW/g Maximum value of SAR (measured) = 0.287 mW/g

 $0 \, dB = 0.287 mW/g$

DUT: SGH-A177; Serial: FG-050-A Program Name: SGH-A177 GSM850 Left (Job No. : FG-050) Procedure Name: Cheek/Touch, Ch.190, Ant.Intenna, Bat.Standard Meas. Ambient Temp(celsius)-22.1 Tissue Temp(celsius)-21.6; Test Date-17/Mar/2009

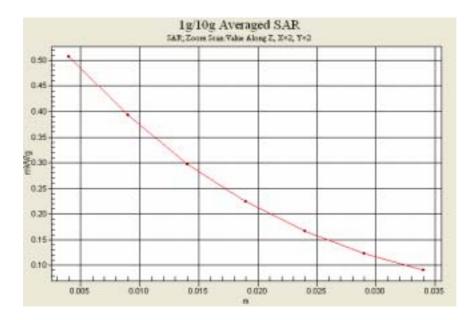
Communication System: GSM 850; Frequency: 836.6 MHz;Duty Cycle: 1:8.3 Medium parameters used: f = 836.6 MHz; σ = 0.92 mho/m; ϵ_r = 41.1; ρ = 1000 kg/m³

Phantom section: Left Section

DASY4 Configuration:

- Probe: ES3DV3 SN3085; ConvF(5.76, 5.76, 5.76); Calibrated: 2008-11-18
- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn686; Calibrated: 2009-01-20


- Phantom: PHANTOM #2; Type: SAM; Serial: TP-1141

- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Cheek/Touch, Ch.190, Ant.Intenna, Bat.Standard/Area Scan

(51x71x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (interpolated) = 0.542 mW/g

Cheek/Touch, Ch.190, Ant.Intenna, Bat.Standard/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 23.7 V/m; Power Drift = 0.000 dB Peak SAR (extrapolated) = 0.669 W/kg SAR(1 g) = 0.483 mW/g; SAR(10 g) = 0.353 mW/g Maximum value of SAR (measured) = 0.507 mW/g

DUT: SGH-A177(Body); Serial: FG-050-A Program Name: SGH-A177 GPRS850 Body (Job No. : FG-050) Procedure Name: Body, Ch.251, Ant.Intenna, Bat.Standard 3 Meas. Ambient Temp(celsius)-22.1 Tissue Temp(celsius)-21.7; Test Date-17/Mar/2009

Communication System: GPRS 850; Frequency: 848.8 MHz;Duty Cycle: 1:4.15 Medium parameters used: f = 848.8 MHz; σ = 0.99 mho/m; ϵ_r = 53.6; ρ = 1000 kg/m³

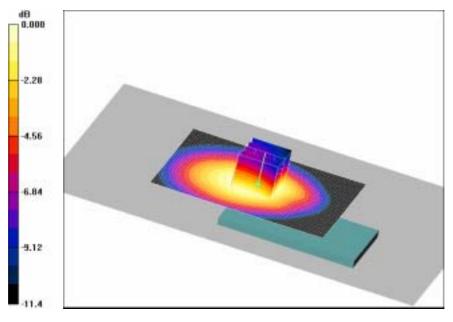
Phantom section: Center Section

DASY4 Configuration:

- Probe: ES3DV3 - SN3085; ConvF(5.69, 5.69, 5.69); Calibrated: 2008-11-18

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn686; Calibrated: 2009-01-20


- Phantom: Triple Flat Phantom 5.1; Type: Triple Flat Phantom 5.1; Serial: 1001

- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Body, Ch.251, Ant.Intenna, Bat.Standard 3/Area Scan (51x71x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (interpolated) = 1.41 mW/g

Body, Ch.251, Ant.Intenna, Bat.Standard 3/Zoom Scan

(5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 35.8 V/m; Power Drift = -0.053 dB Peak SAR (extrapolated) = 1.72 W/kg SAR(1 g) = 1.31 mW/g; SAR(10 g) = 0.939 mW/g Maximum value of SAR (measured) = 1.37 mW/g

 $0 \, dB = 1.37 mW/g$

DUT: SGH-A177(Body); Serial: FG-050-A Program Name: SGH-A177 GPRS850 Body (Job No. : FG-050) Procedure Name: Body, Ch.251, Ant.Intenna, Bat.Standard 3 Meas. Ambient Temp(celsius)-22.1 Tissue Temp(celsius)-21.7; Test Date-17/Mar/2009

Communication System: GPRS 850; Frequency: 848.8 MHz;Duty Cycle: 1:4.15 Medium parameters used: f = 848.8 MHz; σ = 0.99 mho/m; ε_r = 53.6; ρ = 1000 kg/m³ Phantom section: Center Section

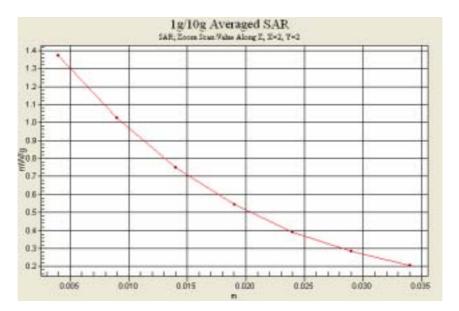
DASY4 Configuration:

- Probe: ES3DV3 - SN3085; ConvF(5.69, 5.69, 5.69); Calibrated: 2008-11-18

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn686: Calibrated: 2009-01-20

- Phantom: Triple Flat Phantom 5.1; Type: Triple Flat Phantom 5.1; Serial: 1001


- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD. V1.8 Build 184

Body, Ch.251, Ant.Intenna, Bat.Standard 3/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 35.8 V/m; Power Drift = -0.053 dB Peak SAR (extrapolated) = 1.72 W/kg

SAR(1 g) = 1.31 mW/g; SAR(10 g) = 0.939 mW/g Maximum value of SAR (measured) = 1.37 mW/g

Body, Ch.251, Ant.Intenna, Bat.Standard 3/Area Scan (51x71x1):

Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (interpolated) = 1.41 mW/g

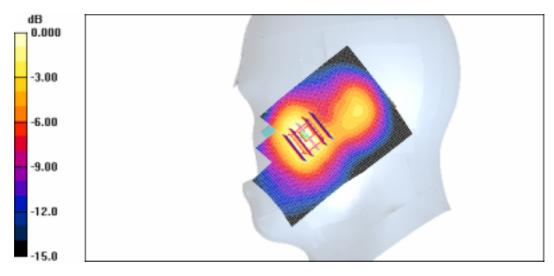
DUT: SGH-A177; Serial: FG-050-A Program Name: SGH-A177 GSM1900 Right (Job No. : FG-050) Procedure Name: Cheek/Touch, Ch.661, Ant.Intenna, Bat.Standard Meas. Ambient Temp(celsius)-22.3 Tissue Temp(celsius)-21.6; Test Date-17/Mar/2009

Communication System: GSM 1900; Frequency: 1880 MHz;Duty Cycle: 1:8.3 Medium parameters used: f = 1880 MHz; σ = 1.41 mho/m; ϵ_r = 38.9; ρ = 1000 kg/m³

Phantom section: Right Section

DASY4 Configuration:

- Probe: ES3DV3 SN3085; ConvF(4.85, 4.85, 4.85); Calibrated: 2008-11-18
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn686; Calibrated: 2009-01-20


- Phantom: PHANTOM #1; Type: SAM; Serial: TP-1143

- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Cheek/Touch, Ch.661, Ant.Intenna, Bat.Standard/Area Scan

(51x71x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (interpolated) = 0.625 mW/g

Cheek/Touch, Ch.661, Ant.Intenna, Bat.Standard/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 19.9 V/m; Power Drift = -0.057 dB Peak SAR (extrapolated) = 0.818 W/kg SAR(1 g) = 0.548 mW/g; SAR(10 g) = 0.337 mW/g Maximum value of SAR (measured) = 0.570 mW/g

 $0 \, dB = 0.570 \, mW/g$

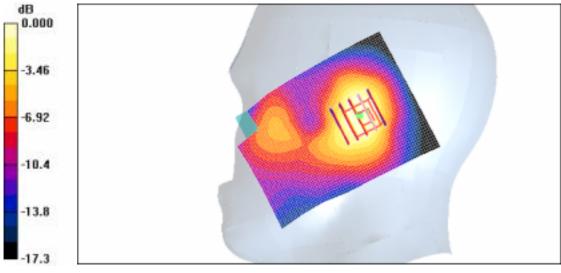
DUT: SGH-A177; Serial: FG-050-A Program Name: SGH-A177 GSM1900 Right (Job No. : FG-050) Procedure Name: Ear/Tilt, Ch.661, Ant.Intenna, Bat.Standard Meas. Ambient Temp(celsius)-22.3 Tissue Temp(celsius)-21.6; Test Date-17/Mar/2009

Communication System: GSM 1900; Frequency: 1880 MHz;Duty Cycle: 1:8.3 Medium parameters used: f = 1880 MHz; σ = 1.41 mho/m; ϵ_r = 38.9; ρ = 1000 kg/m³

Phantom section: Right Section

DASY4 Configuration:

- Probe: ES3DV3 SN3085; ConvF(4.85, 4.85, 4.85); Calibrated: 2008-11-18
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn686; Calibrated: 2009-01-20


- Phantom: PHANTOM #1; Type: SAM; Serial: TP-1143

- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Ear/Tilt, Ch.661, Ant.Intenna, Bat.Standard/Area Scan (51x71x1):

Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (interpolated) = 0.306 mW/g

Ear/Tilt, Ch.661, Ant.Intenna, Bat.Standard/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 11.6 V/m; Power Drift = 0.085 dB Peak SAR (extrapolated) = 0.341 W/kg SAR(1 g) = 0.229 mW/g; SAR(10 g) = 0.142 mW/g Maximum value of SAR (measured) = 0.239 mW/g

 $0 \, dB = 0.239 mW/g$

DUT: SGH-A177; Serial: FG-050-A Program Name: SGH-A177 GSM1900 Left (Job No. : FG-050) Procedure Name: Cheek/Touch, Ch.661, Ant.Intenna, Bat.Standard Meas. Ambient Temp(celsius)-22.3 Tissue Temp(celsius)-21.6; Test Date-17/Mar/2009

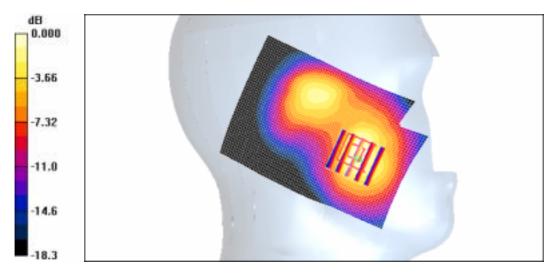
Communication System: GSM 1900; Frequency: 1880 MHz;Duty Cycle: 1:8.3 Medium parameters used: f = 1880 MHz; σ = 1.41 mho/m; ϵ_r = 38.9; ρ = 1000 kg/m³

Phantom section: Left Section

DASY4 Configuration:

- Probe: ES3DV3 SN3085; ConvF(4.85, 4.85, 4.85); Calibrated: 2008-11-18
- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn686; Calibrated: 2009-01-20


- Phantom: PHANTOM #1; Type: SAM; Serial: TP-1143

- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Cheek/Touch, Ch.661, Ant.Intenna, Bat.Standard/Area Scan (51x71x1): Measurement grid: dx=20mm, dy=20mm

Maximum value of SAR (interpolated) = 0.752 mW/g

Cheek/Touch, Ch.661, Ant.Intenna, Bat.Standard/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 22.7 V/m; Power Drift = -0.034 dB Peak SAR (extrapolated) = 1.08 W/kg SAR(1 g) = 0.724 mW/g; SAR(10 g) = 0.426 mW/g Maximum value of SAR (measured) = 0.756 mW/g

 $0 \, dB = 0.756 \, mW/g$

DUT: SGH-A177; Serial: FG-050-A Program Name: SGH-A177 GSM1900 Left (Job No. : FG-050) Procedure Name: Ear/Tilt, Ch.661, Ant.Intenna, Bat.Standard Meas. Ambient Temp(celsius)-22.3 Tissue Temp(celsius)-21.6; Test Date-17/Mar/2009

Communication System: GSM 1900; Frequency: 1880 MHz;Duty Cycle: 1:8.3 Medium parameters used: f = 1880 MHz; σ = 1.41 mho/m; ϵ_r = 38.9; ρ = 1000 kg/m³

Phantom section: Left Section

DASY4 Configuration:

- Probe: ES3DV3 SN3085; ConvF(4.85, 4.85, 4.85); Calibrated: 2008-11-18
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn686; Calibrated: 2009-01-20


- Phantom: PHANTOM #1; Type: SAM; Serial: TP-1143

- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Ear/Tilt, Ch.661, Ant.Intenna, Bat.Standard/Area Scan (51x71x1):

Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (interpolated) = 0.337 mW/g

Ear/Tilt, Ch.661, Ant.Intenna, Bat.Standard/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 11.0 V/m; Power Drift = 0.015 dB Peak SAR (extrapolated) = 0.397 W/kg SAR(1 g) = 0.265 mW/g; SAR(10 g) = 0.164 mW/g Maximum value of SAR (measured) = 0.285 mW/g

 $0 \, dB = 0.285 mW/g$

DUT: SGH-A177; Serial: FG-050-A Program Name: SGH-A177 GSM1900 Left (Job No. : FG-050) Procedure Name: Cheek/Touch, Ch.661, Ant.Intenna, Bat.Standard Meas. Ambient Temp(celsius)-22.3 Tissue Temp(celsius)-21.6; Test Date-17/Mar/2009

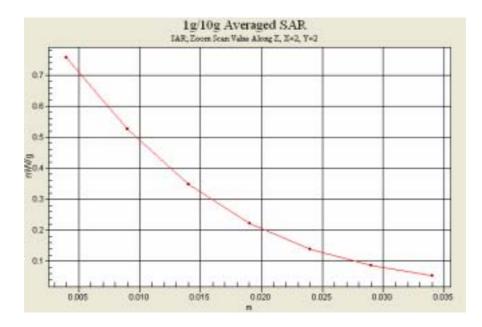
Communication System: GSM 1900; Frequency: 1880 MHz;Duty Cycle: 1:8.3 Medium parameters used: f = 1880 MHz; σ = 1.41 mho/m; ϵ_r = 38.9; ρ = 1000 kg/m³

Phantom section: Left Section

DASY4 Configuration:

- Probe: ES3DV3 SN3085; ConvF(4.85, 4.85, 4.85); Calibrated: 2008-11-18
- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn686; Calibrated: 2009-01-20


- Phantom: PHANTOM #1; Type: SAM; Serial: TP-1143

- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Cheek/Touch, Ch.661, Ant.Intenna, Bat.Standard/Area Scan

(51x71x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (interpolated) = 0.752 mW/g

Cheek/Touch, Ch.661, Ant.Intenna, Bat.Standard/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 22.7 V/m; Power Drift = -0.034 dB Peak SAR (extrapolated) = 1.08 W/kg SAR(1 g) = 0.724 mW/g; SAR(10 g) = 0.426 mW/g Maximum value of SAR (measured) = 0.756 mW/g

DUT: SGH-A177(Body); Serial: FG-050-A Program Name: SGH-A177 GPRS1900 Body (Job No. : FG-050) Procedure Name: Body, Ch.661, Ant.Intenna, Bat.Standard Meas. Ambient Temp(celsius)-22.4 Tissue Temp(celsius)-21.7; Test Date-17/Mar/2009

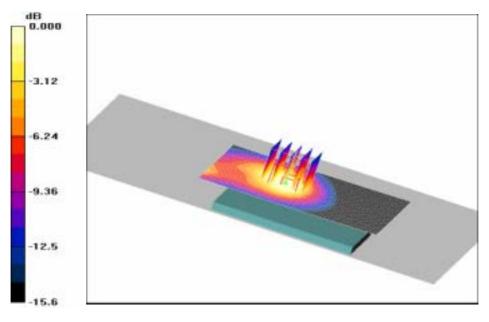
Communication System: GPRS 1900; Frequency: 1880 MHz;Duty Cycle: 1:4.15 Medium parameters used: f = 1880 MHz; σ = 1.54 mho/m; ϵ_r = 52.1; ρ = 1000 kg/m³ Phantom section: Left Section

DASY4 Configuration:

- Probe: ES3DV3 - SN3085; ConvF(4.53, 4.53, 4.53); Calibrated: 2008-11-18

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn686; Calibrated: 2009-01-20


- Phantom: Triple Flat Phantom 5.1; Type: Triple Flat Phantom 5.1; Serial: 1001

- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Body, Ch.661, Ant.Intenna, Bat.Standard/Area Scan (51x71x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (interpolated) = 1.31 mW/g

Body, Ch.661, Ant.Intenna, Bat.Standard/Zoom Scan

(5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 26.1 V/m; Power Drift = -0.009 dB Peak SAR (extrapolated) = 1.59 W/kg SAR(1 g) = 1.05 mW/g; SAR(10 g) = 0.633 mW/g Maximum value of SAR (measured) = 1.11 mW/g

 $0 \, dB = 1.11 \, mW/g$

DUT: SGH-A177(Body); Serial: FG-050-A Program Name: SGH-A177 GPRS1900 Body (Job No. : FG-050) Procedure Name: Body, Ch.661, Ant.Intenna, Bat.Standard Meas. Ambient Temp(celsius)-22.4 Tissue Temp(celsius)-21.7; Test Date-17/Mar/2009

Communication System: GPRS 1900; Frequency: 1880 MHz;Duty Cycle: 1:4.15 Medium parameters used: f = 1880 MHz; σ = 1.54 mho/m; ϵ_r = 52.1; ρ = 1000 kg/m³ Phantom section: Left Section

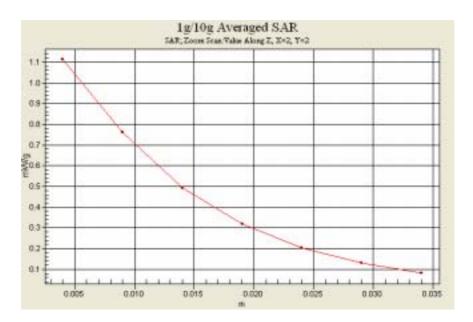
DASY4 Configuration:

- Probe: ES3DV3 - SN3085; ConvF(4.53, 4.53, 4.53); Calibrated: 2008-11-18

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn686; Calibrated: 2009-01-20

- Phantom: Triple Flat Phantom 5.1; Type: Triple Flat Phantom 5.1; Serial: 1001


- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Body, Ch.661, Ant.Intenna, Bat.Standard/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm. dy=8mm. dz=5mm

Reference Value = 26.1 V/m; Power Drift = -0.009 dB Peak SAR (extrapolated) = 1.59 W/kg SAR(1 g) = 1.05 mW/g; SAR(10 g) = 0.633 mW/g Maximum value of SAR (measured) = 1.11 mW/g

Body, Ch.661, Ant.Intenna, Bat.Standard/Area Scan (51x71x1):

Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (interpolated) = 1.31 mW/g

APPENDIX G

Probe Calibration

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Client

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108

s

C

ŝ

Cartificata No: ES3-3085 Nov08 Samsung (Dymstec) CALIBRATION CERTIFICATE ES3DV3 - SN:3085 Object Calibration procedure(s) QA CAL-01.v6 and QA CAL-23.v3 Calibration procedure for dosimetric E-field probes Calibration date: November 18, 2008 Condition of the calibrated item In Tolerance This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)*C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID# Cal Date (Certificate No.) Scheduled Calibration Power meter E4419B GB41293874 1-Apr-08 (No. 217-00788) Apr-09 Power sensor E4412A MY41495277 1-Apr-08 (No. 217-00788) Apr-09 Power sensor E4412A MY41498087 1-Apr-08 (No. 217-00788) Apr-09 Reference 3 dB Attenuator SN: S5054 (3c) 1-Jul-08 (No. 217-00865) Jul-09 Reference 20 dB Attenuator SN: S5086 (20b) 31-Mar-08 (No. 217-00787) Apr-09 Reference 30 dB Attenuator SN: 85129 (30b) 1-Jul-08 (No. 217-00866) Jul-09 Reference Probe ES3DV2 SN: 3013 2-Jan-08 (No. ES3-3013 Jan08) Jan-09 DAE4 SN: 660 9-Sep-08 (No. DAE4-660_Sep08) Sep-09 Secondary Standards ID # Check Date (in house) Scheduled Check RF generator HP 8645C U\$3542U01700 4-Aug-99 (in house check Oct-07) In house check: Oct-09 Network Analyzer HP 8753E US37390585 18-Oct-01 (in house check Oct-08) In house check: Oct-09 Function Name Signature Calibrated by: Marcel Fahr Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: November 18, 2008 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: ES3-3085 Nov08

Page 1 of 9

ok to use

2000/11/5

51 - 1E- 01(C)

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

Schweizerischer Kallbrierdienst

- Service suisse d'étalonnage
- C Servizio svizzero di taratura
- s Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
Polarization ϕ	or rotation around probe axis
Polarization 8	9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz; R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ES3-3085 Nov08

Page 2 of 9

November 18, 2008

ES3DV3 SN:3085

Probe ES3DV3

SN:3085

Manufactured: Last calibrated: Recalibrated: April 12, 2005 November 19, 2007 November 18, 2008

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

SBI - 16- 01(C)

Page 3 of 9

November 18, 2008

DASY - Parameters of Probe: ES3DV3 SN:3085

Sensitivity in Free Space^A

Diode Compression^B

NormX	1.23 ± 10.1%	μV/(V/m) ²	DCP X	90 mV
NormY	1.25 ± 10.1%	$\mu V/(V/m)^2$	DCP Y	93 mV
NormZ	$1.32 \pm 10.1\%$	μV/(V/m) ²	DCP Z	93 mV

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

Boundary Effect

TSL 900 MHz Typical SAR gradient: 5 % per mm

Sensor Cente	r to Phantom Surface Distance	3.0 mm	4.0 mm
SAR _{be} [%]	Without Correction Algorithm	9.4	5.7
SAR _{be} [%]	With Correction Algorithm	0.8	0.5

TSL 1810 MHz Typical SAR gradient: 10 % per mm

Sensor Cente	r to Phantom Surface Distance	3.0 mm	4.0 mm
SAR _{be} [%]	Without Correction Algorithm	10.1	6.4
SAR _{be} [%]	With Correction Algorithm	0.7	0.4

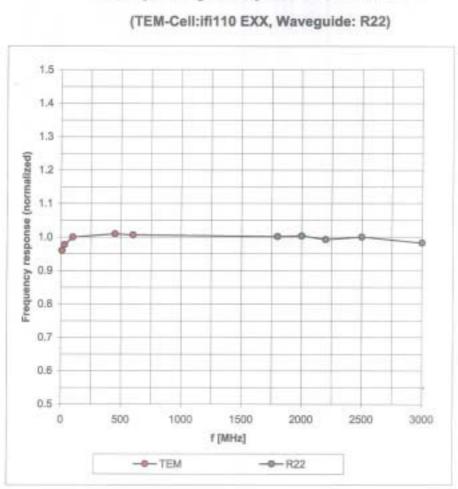
Sensor Offset

Probe Tip to Sensor Center

2.0 mm

SST - 16- 01(C)

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

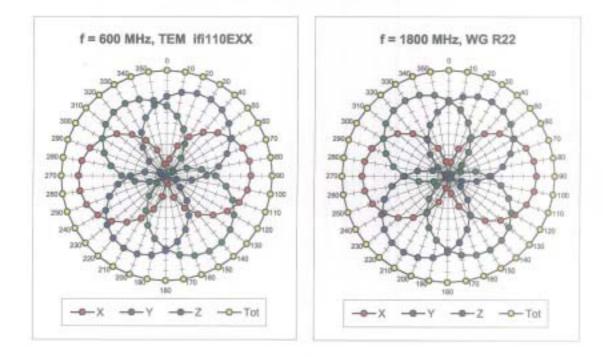

A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 8).

⁸ Numerical linearization parameter: uncertainty not required.

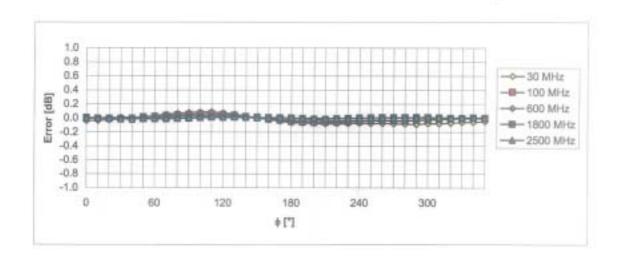
Certificate No: ES3-3085_Nov08

Page 4 of 9

ż



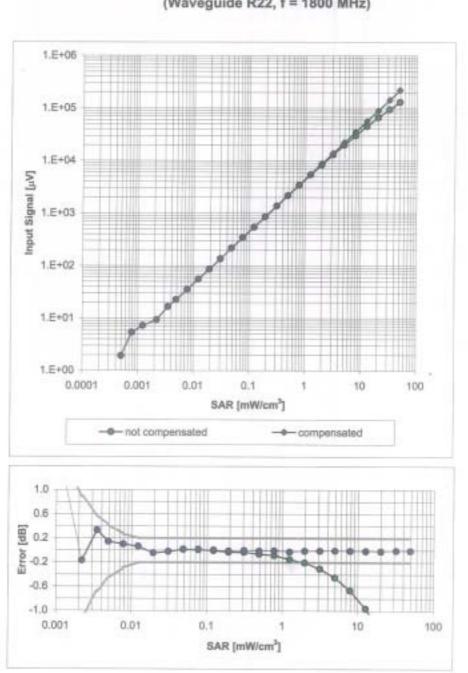
Frequency Response of E-Field


Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Page 5 of 9

November 18, 2008

Receiving Pattern (\$), 9 = 0°

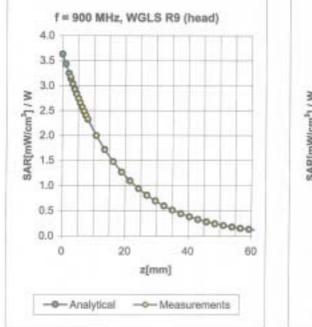

Uncertainty of Axiai Isotropy Assessment: ± 0.5% (k=2)

Certificate No: ES3-3085_Nov08

Page 6 of 9

, 12

SBI - 1E- 01(C)



(Waveguide R22, f = 1800 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

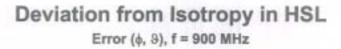
Page 7 of 9

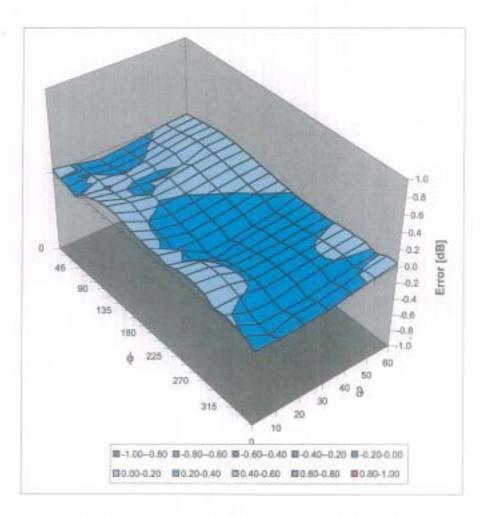
ż

) f = 1810 MHz, WGLS R22 (head) 30.0

Conversion Factor Assessment

f [MHz]	Validity [MHz] ^C	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF Uncertainty
900	± 50 / ± 100	Head	$41.5\pm5\%$	0.97 ± 5%	0.30	1.86	5.76 ± 11.0% (k=2)
1810	$\pm 50/\pm 100$	Head	$40.0\pm5\%$	1.40 ± 5%	0.48	1.58	4.85 ± 11.0% (k=2)
2000	± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.56	1.43	4.71 ± 11.0% (k=2)
900	±50/±100	Body	55.0 ± 5%	1.05 ± 5%	0.52	1.38	5.69 ± 11.0% (k=2)
1810	± 50 / ± 100	Body	$53.3\pm5\%$	1.52 ± 5%	0.40	1.84	4.53 ± 11.0% (k=2)
2000	± 50 / ± 100	Body	$53.3\pm5\%$	1.52 ± 5%	0.56	1.59	4.41 ± 11.0% (k=2)


^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.


Certificate No: ES3-3085_Nov08

Page 8 of 9

November 18, 2008

ES3DV3 SN:3085

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

SIG1 - 16- 01(C)

Page 9 of 9

Certificate No: ES3-3085_Nov08

APPENDIX H

Calibration of The Validation Dipole

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Samsung (Dymstec)

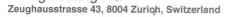
1

Client

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
 - Servizio svizzero di taratura

S Swiss Calibration Service


Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No: D835V2-451_Feb08

Accreditation No.: SCS 108

Object	D835V2 - SN: 45	51	
Calibration procedure(s)	QA CAL-05.v7 Calibration proce	dure for dipole validation kits	
Calibration date:	February 11, 200	08	
Condition of the calibrated item	In Tolerance		
The measurements and the unce	rtainties with confidence p	ional standards, which realize the physical units of robability are given on the following pages and a ry facility: environment temperature $(22 \pm 3)^{\circ}$ C ar	re part of the certificate.
Primary Standards	ID #	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	04-Oct-07 (METAS, No. 217-00736)	Oct-08
Power sensor HP 8481A	US37292783	04-Oct-07 (METAS, No. 217-00736)	Oct-08
Reference 20 dB Attenuator	SN: 5086 (20g)	07-Aug-07 (METAS, No 217-00718)	Aug-08
Reference 10 dB Attenuator	SN: 5047.2 (10r)	07-Aug-07 (METAS, No 217-00718)	Aug-08
Reference Probe ET3DV6 (HF)	SN 1507	26-Oct-07 (SPEAG, No. ET3-1507_Oct07)	Oct-08
DAE4	SN 601	03-Jan-08 (SPEAG, No. DAE4-601_Jan08)	Jan-09
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (SPEAG, in house check Oct-07)	In house check: Oct-09
RF generator R&S SMT-06	100005	04-Aug-99 (SPEAG, in house check Oct-07)	In house check: Oct-09
letwork Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (SPEAG, in house check Oct-07)	In house check: Oct-08
	Name	Function	Signature
Calibrated by:	Mike Meili	Laboratory Technician	D. terili
Approved by:	Katja Pokovic	Technical Manager	alar that
This calibration certificate shall no	t be reproduced except in	full without written approval of the laboratory.	Issued: February 14, 2008
			1 1
ertificate No: D835V2-451_Fe	b08	Page 1 of 6 Ole for	use days

Calibration Laboratory of Schmid & Partner Engineering AG

S

C

S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura

Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

8

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D835V2-451_Feb08

Page 2 of 6

Measurement Conditions

8

DASY system configuration, as far as not given on page 1.

DASY Version	DASY4	V4.7
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V4.9	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	43.4 ± 6 %	0.92 mho/m ± 6 %
Head TSL temperature during test	(21.6 ± 0.2) °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.36 mW / g
SAR normalized	normalized to 1W	9.44 mW / g
SAR for nominal Head TSL parameters ¹	normalized to 1W	9.55 mW / g ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured	condition 250 mW input power	1.55 mW / g
		1.55 mW / g 6.20 mW / g

¹ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Certificate No: D835V2-451_Feb08

Page 3 of 6

<u> 정</u> - 1E- 01(C)

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.0 Ω - 3.4 jΩ
Return Loss	- 28.3 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.395 ns	
----------------------------------	----------	--

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	December 24, 2001	

<u> 정</u>더 - 1E- 01(C)

Page 4 of 6

DASY4 Validation Report for Head TSL

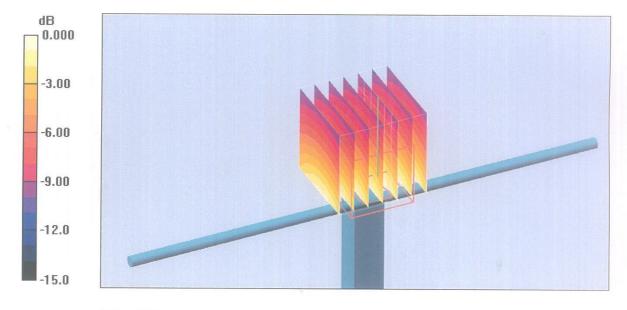
Date/Time: 11.02.2008 15:56:21

외대 - 1E- 01(C)

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:451

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: HSL 900 MHz; Medium parameters used: f = 835 MHz; σ = 0.919 mho/m; ϵ_r = 43.3; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY4 (High Precision Assessment)

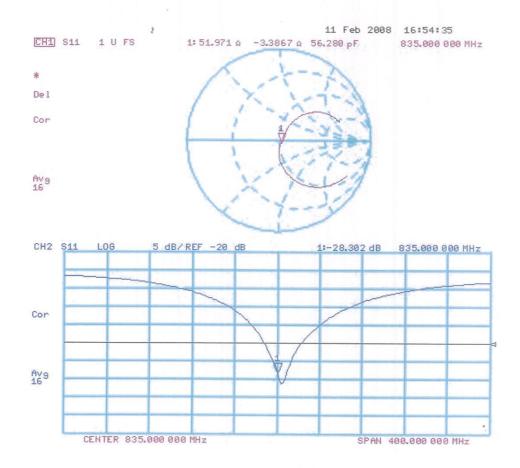

DASY4 Configuration:

- Probe: ET3DV6 SN1507 (HF); ConvF(6.01, 6.01, 6.01); Calibrated: 26.10.2007
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 03.01.2008
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA
- Measurement SW: DASY4, V4.7 Build 55; Postprocessing SW: SEMCAD, V1.8 Build 172

Pin = 250 mW; d = 15 mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 54.8 V/m; Power Drift = -0.025 dB

Peak SAR (extrapolated) = 3.45 W/kgSAR(1 g) = 2.36 mW/g; SAR(10 g) = 1.55 mW/gMaximum value of SAR (measured) = 2.54 mW/g



0 dB = 2.54 mW/g

Certificate No: D835V2-451_Feb08

Page 5 of 6

Impedance Measurement Plot for Head TSL

요더 - 1E- 01(C)

Certificate No: D835V2-451_Feb08

Page 6 of 6

i:

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage С Servizio svizzero di taratura S **Swiss Calibration Service**

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Object	D1900V2 - SN: 5	5d023	
Calibration procedure(s)	QA CAL-05.v7 Calibration proce	dure for dipole validation kits	
Calibration date:	January 06, 2009	9	
Condition of the calibrated item	In Tolerance		
All calibrations have been conduct		ry facility: environment temperature (22 \pm 3)°C a	and humidity < 70%.
rimany Standards	ID #	Cal Data (Calibrated by Cartificate No.)	Schodulad Calibration
	ID # GB37480704	Cal Date (Calibrated by, Certificate No.) 08-Oct-08 (No. 217-00898)	Scheduled Calibration
ower meter EPM-442A	ID # GB37480704 US37292783	08-Oct-08 (No. 217-00898)	Oct-09
ower meter EPM-442A ower sensor HP 8481A	GB37480704		
ower meter EPM-442A ower sensor HP 8481A eference 20 dB Attenuator	GB37480704 US37292783	08-Oct-08 (No. 217-00898) 08-Oct-08 (No. 217-00898)	Oct-09 Oct-09
ower meter EPM-442A ower sensor HP 8481A eference 20 dB Attenuator ype-N mismatch combination eference Probe ES3DV2	GB37480704 US37292783 SN: 5086 (20g)	08-Oct-08 (No. 217-00898) 08-Oct-08 (No. 217-00898) 01-Jul-08 (No. 217-00864) 01-Jul-08 (No. 217-00867) 28-Apr-08 (No. ES3-3025_Apr08)	Oct-09 Oct-09 Jul-09
ower meter EPM-442A ower sensor HP 8481A eference 20 dB Attenuator /pe-N mismatch combination eference Probe ES3DV2	GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327	08-Oct-08 (No. 217-00898) 08-Oct-08 (No. 217-00898) 01-Jul-08 (No. 217-00864) 01-Jul-08 (No. 217-00867)	Oct-09 Oct-09 Jul-09 Jul-09
ower meter EPM-442A ower sensor HP 8481A eference 20 dB Attenuator ype-N mismatch combination eference Probe ES3DV2 AE4	GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3025	08-Oct-08 (No. 217-00898) 08-Oct-08 (No. 217-00898) 01-Jul-08 (No. 217-00864) 01-Jul-08 (No. 217-00867) 28-Apr-08 (No. ES3-3025_Apr08) 14-Mar-08 (No. DAE4-601_Mar08)	Oct-09 Oct-09 Jul-09 Jul-09 Apr-09
Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV2 PAE4 Recondary Standards	GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3025 SN: 601	08-Oct-08 (No. 217-00898) 08-Oct-08 (No. 217-00898) 01-Jul-08 (No. 217-00864) 01-Jul-08 (No. 217-00867) 28-Apr-08 (No. ES3-3025_Apr08)	Oct-09 Oct-09 Jul-09 Jul-09 Apr-09 Mar-09
ower meter EPM-442A ower sensor HP 8481A eference 20 dB Attenuator ype-N mismatch combination eference Probe ES3DV2 AE4 econdary Standards ower sensor HP 8481A	GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3025 SN: 601 ID #	08-Oct-08 (No. 217-00898) 08-Oct-08 (No. 217-00898) 01-Jul-08 (No. 217-00864) 01-Jul-08 (No. 217-00867) 28-Apr-08 (No. ES3-3025_Apr08) 14-Mar-08 (No. DAE4-601_Mar08) Check Date (in house)	Oct-09 Oct-09 Jul-09 Jul-09 Apr-09 Mar-09 Scheduled Check
ower meter EPM-442A ower sensor HP 8481A eference 20 dB Attenuator ype-N mismatch combination eference Probe ES3DV2 AE4 econdary Standards ower sensor HP 8481A F generator R&S SMT-06	GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3025 SN: 601 ID # MY41092317	08-Oct-08 (No. 217-00898) 08-Oct-08 (No. 217-00898) 01-Jul-08 (No. 217-00864) 01-Jul-08 (No. 217-00867) 28-Apr-08 (No. ES3-3025_Apr08) 14-Mar-08 (No. DAE4-601_Mar08) Check Date (in house) 18-Oct-02 (in house check Oct-07)	Oct-09 Oct-09 Jul-09 Jul-09 Apr-09 Mar-09 Scheduled Check In house check: Oct-09
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 letwork Analyzer HP 8753E	GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3025 SN: 601 ID # MY41092317 100005	08-Oct-08 (No. 217-00898) 08-Oct-08 (No. 217-00898) 01-Jul-08 (No. 217-00864) 01-Jul-08 (No. 217-00867) 28-Apr-08 (No. ES3-3025_Apr08) 14-Mar-08 (No. DAE4-601_Mar08) Check Date (in house) 18-Oct-02 (in house check Oct-07) 4-Aug-99 (in house check Oct-07)	Oct-09 Oct-09 Jul-09 Jul-09 Apr-09 Mar-09 Scheduled Check In house check: Oct-09 In house check: Oct-09
Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A R generator R&S SMT-06	GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3025 SN: 601 ID # MY41092317 100005 US37390585 S4206	08-Oct-08 (No. 217-00898) 08-Oct-08 (No. 217-00898) 01-Jul-08 (No. 217-00864) 01-Jul-08 (No. 217-00867) 28-Apr-08 (No. ES3-3025_Apr08) 14-Mar-08 (No. DAE4-601_Mar08) Check Date (in house) 18-Oct-02 (in house check Oct-07) 4-Aug-99 (in house check Oct-07) 18-Oct-01 (in house check Oct-08)	Oct-09 Oct-09 Jul-09 Jul-09 Apr-09 Mar-09 Scheduled Check In house check: Oct-09 In house check: Oct-09 In house check: Oct-09
Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV2 0AE4 Becondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Retwork Analyzer HP 8753E	GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3025 SN: 601 ID # MY41092317 100005 US37390585 S4206 Name	08-Oct-08 (No. 217-00898) 08-Oct-08 (No. 217-00898) 01-Jul-08 (No. 217-00864) 01-Jul-08 (No. 217-00867) 28-Apr-08 (No. ES3-3025_Apr08) 14-Mar-08 (No. DAE4-601_Mar08) Check Date (in house) 18-Oct-02 (in house check Oct-07) 4-Aug-99 (in house check Oct-07) 18-Oct-01 (in house check Oct-08) Function	Oct-09 Oct-09 Jul-09 Jul-09 Apr-09 Mar-09 Scheduled Check In house check: Oct-09 In house check: Oct-09 In house check: Oct-09

2009.3.3

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 108

<u> 정</u> - 1E- 01(C)

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), July 2001
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D1900V2-5d023_Jan09

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V5.0
Extrapolation [?]	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.2 ± 6 %	1.47 mho/m ± 6 %
Head TSL temperature during test	(21.0 ± 0.2) °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	condition	
SAR measured	250 mW input power	10.4 mW / g
SAR normalized	normalized to 1W	41.6 mW / g
SAR for nominal Head TSL parameters ¹	normalized to 1W	40.3 mW / g ± 17.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
	Condition 250 mW input power	5.40 mW / g
SAR averaged over 10 cm ³ (10 g) of Head TSL SAR measured SAR normalized		5.40 mW / g 21.6 mW / g

¹ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Certificate No: D1900V2-5d023_Jan09

Page 3 of 6

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	49.8 Ω + 7.6 jΩ	
Return Loss	- 22.3 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.196 ns	
----------------------------------	----------	--

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	March 28, 2008	

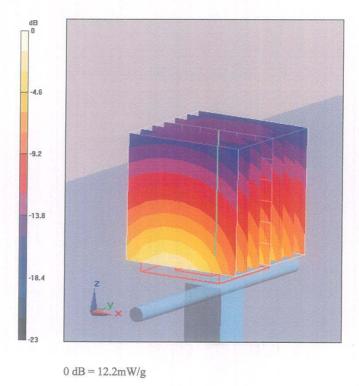
<u> 정</u>더 - 1E- 01(C)

DASY5 Validation Report for Head TSL

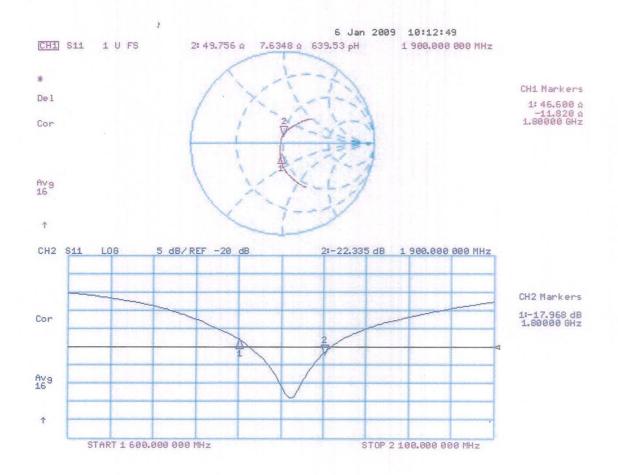
Date/Time: 06.01.2009 14:02:16

요데 - 1E- 01(C)

Test Laboratory: SPEAG; Zurich, Switzerland


DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d023

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: HSL U10 BB Medium parameters used: f = 1900 MHz; σ = 1.47 mho/m; ϵ_r = 39.4; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC)


DASY5 Configuration:

- Probe: ES3DV2 SN3025; ConvF(4.9, 4.9, 4.9); Calibrated: 28.04.2008
- Sensor-Surface: 3.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 14.03.2008
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

Pin = 250 mW; dip = 10 mm, scan at 3.4mm/Zoom Scan (dist=3.4mm, probe 0deg) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 93.2 V/m; Power Drift = 0.043 dB Peak SAR (extrapolated) = 19.4 W/kg SAR(1 g) = 10.4 mW/g; SAR(10 g) = 5.4 mW/g Maximum value of SAR (measured) = 12.2 mW/g

Impedance Measurement Plot for Head TSL

<u> 정</u>더 - 1E- 01(C)

Page 6 of 6