

PCTEST ENGINEERING LABORATORY, INC.

7185 Oakland Mills Road, Columbia, MD 21045 USA Tel. 410.290.6652 / Fax 410.290.6654 http://www.pctestlab.com

MEASUREMENT REPORT FCC PART 15.407 / IC RSS-210 DFS

Company Name:

Samsung Electronics Co., Ltd. 129, Samsung-ro, Yeongtong-gu Suwon-city, Gyeonggi-do, 443-803 Republic of Korea

Date of Testing:

July 31, 2013 Test Site/Location: PCTEST Lab. Columbia, MD, USA Test Report Serial No.: 0Y1307231399.A3L

FCC ID:	A3LSCL22		
COMPANY:	Samsung Electronics Co., Ltd.		
Model(s):	SCL22		
EUT Type:	Portable Handset		
Type of Device:	Client Only Device, No Radar Detection Capability		
Frequency Range: 5260 – 5320 MHz (UNII-II Band)			
	5500 – 5700 MHz (UNII-III Band)		
Output Power:	20.749 mW (13.17 dBm) Conducted (802.11a UNII Band II)		
	19.815 mW (12.97 dBm) Conducted (802.11a UNII Band III)		
FCC Classification:	Unlicensed National Information Infrastructure (UNII)		
FCC Rule Part(s):	Part 15.407(UNII)		

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in FCC 06-96 Appendix B Compliance Measurement Procedures for Unlicensed-National Information Infrastructure Devices Operating in the 5.25 – 5.35 GHz and 5.47 – 5.725 GHz Bands Incorporating Dynamic Frequency Selection. Test results reported herein relate only to the item(s) tested.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

Randy Ortanez President

FCC ID: A3LSCL22		FCC Pt. 15.407 DFS TEST REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dego 1 of 20
0Y1307231399.A3L	July 31, 2013	Portable Handset		Page 1 of 20
© 2013 PCTEST Engineering Laboratory, Inc. v2.0				

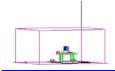


TABLE OF CONTENTS

PART 15.407 MEASUREMENT REPORT	3
INTRODUCTION	4
1.1 SCOPE	4
1.2 EVALUATION PROCEDURE	4
1.3 SUMMARY OF TEST RESULTS	4
PRODUCT INFORMATION	5
2.1 EQUIPMENT DESCRIPTION	5
2.2 EUT CAPABILITIES	5
2.3 MODIFICATIONS	5
DESCRIPTION OF DYNAMIC FREQUENCY SELECTION TEST	6
3.1 APPLICABILITY	6
3.2 REQUIREMENTS	6
3.3 DFS DETECTION THRESHOLD VALUES	8
3.4 PARAMETERS OF DFS TEST SIGNALS	8
3.5 PROCEDURE	9
TEST EQUIPMENT	11
4.1 ADDITIONAL EQUIPMENT	11
TEST PLOTS AND DATA - UNII BAND II	12
TEST PLOTS AND DATA - UNII BAND III	16
CONCLUSION	
	INTRODUCTION

FCC ID: A3LSCL22		FCC Pt. 15.407 DFS TEST REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 2 of 20
0Y1307231399.A3L	July 31, 2013	Portable Handset		Page 2 of 20
© 2013 PCTEST Engineering Laboratory, Inc.				v2.0

DFS MEASUREMENT REPORT FCC Part 15.407

§ 2.1033 General Information

APPLICANT: APPLICANT ADDRESS:	Samsung Electronics Co., Ltd. 129, Samsung-ro, Yeongtong-gu			
AITEICAITADDILLOC.	Suwon-city, Gyeonggi-do, 443-803, Republic of Korea			rea
TEST SITE:	PCTEST ENGIN	IEERING LABOR	ATORY, INC.	
TEST SITE ADDRESS:	7185 Oakland N	lills Road, Columb	oia, MD 21046 USA	
FCC RULE PART(S):	Part 15.407(h)			
BASE MODEL:	SCL22			
FCC ID:	A3LSCL22			
Test Device Serial No.:	61269	Production	Pre-Production	Engineering
DEVICE CLASSIFICATION:	Client Only, No I	Radar Detection		
DATE(S) OF TEST:	July 31, 2013			
TEST REPORT S/N:	0Y1307231399.	A3L		

Test Facility / Accreditations

Measurements were performed at PCTEST Engineering Lab located in Columbia, MD 21045, U.S.A.

- PCTEST facility is an FCC registered (PCTEST Reg. No. 159966) test facility with the site description report on file and has met all the requirements specified in Section 2.948 of the FCC Rules and Industry Canada (2451B-1).
 - PCTEST Lab is accredited to ISO 17025 by U.S. National Institute of Standards and Technology (NIST) under the National Voluntary Laboratory Accreditation Program (NVLAP Lab code: 100431-0) in EMC, FCC and Telecommunications.
 - PCTEST Lab is accredited to ISO 17025-2005 by the American Association for Laboratory Accreditation (A2LA) in Specific Absorption Rate (SAR) testing, Hearing Aid Compatibility (HAC) testing, CTIA Test Plans, and wireless testing for FCC and Industry Canada Rules.
 - PCTEST Lab is a recognized U.S. Conformity Assessment Body (CAB) in EMC and R&TTE (n.b. 0982) under the U.S.-EU Mutual Recognition Agreement (MRA).

- PCTEST TCB is a Telecommunication Certification Body (TCB) accredited to ISO/IEC Guide 65 by the American National Standards Institute (ANSI) in all scopes of FCC Rules and Industry Canada Standards (RSS).
- PCTEST facility is an IC registered (2451B-1) test laboratory with the site description on file at Industry Canada.
- PCTEST is a CTIA Authorized Test Laboratory (CATL) for AMPS, CDMA, and EvDO wireless devices and for Over-the-Air (OTA) Antenna Performance testing for AMPS, CDMA, GSM, GPRS, EGPRS, UMTS (W-CDMA), CDMA 1xEVDO, and CDMA 1xRTT.

FCC ID: A3LSCL22		FCC Pt. 15.407 DFS TEST REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 3 of 20
0Y1307231399.A3L	July 31, 2013	Portable Handset		Faye 3 01 20
© 2013 PCTEST Engineering Laboratory, Inc. v2.0				

1.0 INTRODUCTION

1.1 Scope

This report has been prepared to demonstrate compliance with the requirements for Dynamic Frequency Selection (DFS) as stated in FCC 06-96. Testing was performed on the **Samsung Portable Handset FCC ID: A3LSCL22** in accordance with the measurement procedure described in Appendix B of FCC 06-96. As of July 20, 2007 all devices operating in the 5250 - 5350 MHz and/or the 5470 - 5725 MHz bands must comply with the DFS requirements. As the EUT does not have radar detection capability it was evaluated as a Client Only Device. All test results reported herein are applicable to the sample selected for testing. The unit used for testing was supplied by Samsung Electronics Co., Ltd..

1.2 Evaluation Procedure

Conducted test methodology was used for the DFS evaluation procedure of the **Samsung Portable Handset FCC ID: A3LSCL22**. No deviations to the test procedure and test methods occurred during the evaluation of the EUT.

1.3 Summary of Test Results

The **Samsung Portable Handset FCC ID: A3LSCL22** was found to be compliant with the requirements for DFS as required for a Client Device per Part 15.407(h) and FCC 06-96. The following table lists the measured parameters. The actual data and plots can be found in Section 5 and 6 of this report.

	Parameter	Measured	Limit	Result
MHz and	Channel Move Time	0.000 ms	10 seconds	Pass
5320 MH - II Band	Channel Closing Transmission Time	< 200ms + 0.00 ms (aggregate)	200ms + aggregate of 60ms over remaining 10 second period	Pass
5260 - UNII	Non-occupancy Period	Monitored > 30 minutes (No transmission occurred)	30 minutes	Pass
MHz and	Channel Move Time	0.000 ms	10 seconds	Pass
5725 MH _z - III Band	Channel Closing Transmission Time	< 200ms + 0.00 ms (aggregate)	200ms + aggregate of 60ms over remaining 10 second period	Pass
5470 – UNII -	Non-occupancy Period	Monitored > 30 minutes (No transmission occurred)	30 minutes	Pass

Table 1-1. DFS Test Results Summary

FCC ID: A3LSCL22		FCC Pt. 15.407 DFS TEST REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 4 of 20
0Y1307231399.A3L	July 31, 2013	Portable Handset		Page 4 of 20
© 2013 PCTEST Engineering Laboratory, Inc. v2.0				

6/17/2013

PRODUCT INFORMATION 2.0

2.1 Equipment Description

The Equipment Under Test (EUT) is the Samsung Portable Handset FCC ID: A3LSCL22.

Mode of Operation:

Master Device	
Client Device (No radar detection)	\boxtimes
Client Device with Radar Detection	

Parameters of EUT:	Parameters of EUT:		
Frequency	5260 – 5320 MHz 5500 – 5700 MHz		
Output Power:	20.749 mW (13.17 dBm) Conducted (802.11a UNII Band II) 19.815 mW (12.97 dBm) Conducted (802.11a UNII Band III)		
Modulation:	OFDM		
Channel Bandwidth:	20/40/80 MHz		

2.2 EUT Capabilities

This device contains the following capabilities:

850/1900 GSM/GPRS/EDGE, 850/1900 WCDMA/HSPA, 802.11a/b/g/n/ac WLAN (DTS/NII), Bluetooth (1x, EDR, LE), ANT+, NFC

2.3 Modifications

No modifications to the EUT were required in order to comply with the DFS specifications.

FCC ID: A3LSCL22		FCC Pt. 15.407 DFS TEST REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 5 of 20
0Y1307231399.A3L	July 31, 2013	Portable Handset		Page 5 of 20
© 2013 PCTEST Engineering Laboratory. Inc. v2.0				

Engineering Laboratory,

3.0 DESCRIPTION OF DYNAMIC FREQUENCY SELECTION TEST

3.1 Applicability

The following table from FCC 06-96 lists the applicable requirements for the DFS testing. The device evaluated in this report is considered a client device without radar detection capability.

Requirement	Operational Mode			
	Master	Client Without Radar Detection	Client With Radar Detection	
Non-Occupancy Period	Yes	Not required	Yes	
DFS Detection Threshold	Yes	Not required	Yes	
Channel Availability Check Time	Yes	Not required	Not required	
Uniform Spreading	Yes	Not required	Not required	
U-NII Detection Bandwidth	Yes	Not required	Yes	

Table 3-1. DFS Applicability

Requirement	Operational Mode				
	Master Client Without Radar Detection		Client With Radar Detection		
DFS Detection Threshold	Yes	Not required	Yes		
Channel Closing Transmission Time	Yes	Yes	Yes		
Channel Move Time	Yes	Yes	Yes		
U-NII Detection Bandwidth	Yes	Not required	Yes		
Client Beacon Test	N/A	Yes	Yes		

Table 3-2. DFS Applicability During Normal Operation

3.2 Requirements

Per FCC 06-96 the following are the requirements for Client Devices:

- a) A Client Device will not transmit before having received appropriate control signals from a Master Device.
- b) A Client Device will stop all its transmissions whenever instructed by a Master Device to which it is associated and will meet the Channel Move Time and Channel Closing Transmission Time requirements.

FCC ID: A3LSCL22		FCC Pt. 15.407 DFS TEST REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 6 of 20
0Y1307231399.A3L	July 31, 2013	Portable Handset		Page 6 of 20
© 2013 PCTEST Engineeri	ing Laboratory Inc.	•		v2.0

© 2013 PCTEST Engineering Laboratory, Inc.

The Client Device will not resume any transmissions until it has again received control signals from a Master Device.

- c) If a Client Device is performing In-Service Monitoring and detects a Radar Waveform above the DFS Detection Threshold, it will inform the Master Device. This is equivalent to the Master Device detecting the Radar Waveform and d) through f) of section 5.1.1 apply.
- d) Irrespective of Client Device or Master Device detection the Channel Move Time and Channel Closing Transmission Time requirements remain the same.

Channel Move Time and Channel Closing Transmission Time requirements are listed in the following table.

Parameter	Value
Non-occupancy period	Minimum 30 minutes
Channel Availability Check Time	60 seconds
Channel Move Time	10 seconds See Note 1.
Channel Closing Transmission Time	200 milliseconds + an aggregate of 60 milliseconds over remaining 10 second period. See Notes 1 and 2.
U-NII Detection Bandwidth	Minimum 80% of the U- NII 99% transmission power bandwidth. See Note 3.

Note 1: The instant that the Channel Move Time and the Channel Closing Transmission Time begins is as follows:

• For the Short Pulse Radar Test Signals this instant is the end of the Burst.

• For the Frequency Hopping radar Test Signal, this instant is the end of the last radar Burst generated.

• For the Long Pulse Radar Test Signal this instant is the end of the 12 second period defining the Radar Waveform.

Note 2: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions. **Note 3: During the U-NII Detection Bandwidth detection test, radar type 1 is used and for each**

frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.

Table 3-3: DFS Response Requirements

FCC ID: A3LSCL22		FCC Pt. 15.407 DFS TEST REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Dage 7 of 20		
0Y1307231399.A3L	July 31, 2013	Portable Handset		Page 7 of 20		
© 2013 PCTEST Enginee	© 2013 PCTEST Engineering Laboratory Inc					

3.3 DFS Detection Threshold Values

The DFS detection thresholds are defined for Master devices and Client Devices with In-service monitoring. These detection thresholds are listed in the following table.

Maximum Transmit Power	Value (See Notes 1 and 2)			
≥ 200 milliwatt	-64 dBm			
< 200 milliwatt	-62 dBm			
Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna.				
Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of				

the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response.

Table 3-4: Detection Thresholds for Master Devices and Client Devices with Radar Detection

3.4 Parameters of DFS Test Signals

As the EUT is a Client Device with no Radar Detection only one type radar pulse is required for the testing. Radar Pulse type 1 was used in the evaluation of the Client device for the purpose of measuring the Channel Move Time and the Channel Closing Transmission Time. Table 3-5 lists the parameters for the Short Pulse Radar Waveforms. A plot of the Radar Pulse Type 1 used for testing is included in Section 5.0 of this report.

Radar Type	Pulse Width (µsec)	PRI (µsec)	Number of Pulses	Minimum Percentage of Successful Detection	Minimum Number of Trials
1	1	1428	18	60%	30
2	1-5	150-230	23-29	60%	30
3	6-10	200-500	16-18	60%	30
4	11-20	200-500	12-16	60%	30
Aggregate (Ra	adar Types 1-4)	80%	120		

Table 3-5: Parameters for Short Pulse Radar Waveforms

Radar Type	Pulse Width (μsec)	Chirp Width (MHz)	PRI (µsec)	Number of Pulses per <i>Burst</i>	Number of <i>Burst</i> s	Minimum Percentage of Successful Detection	Minimum Number of Trials
5	50 - 100	5 - 20	5 – 20	1 - 3	8 - 20	60%	30

Table 3-6. Parameters for Long Pulse Radar Waveforms

FCC ID: A3LSCL22		FCC Pt. 15.407 DFS TEST REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dana 0 of 00	
0Y1307231399.A3L	July 31, 2013	Portable Handset		Page 8 of 20	
© 2013 PCTEST Enginee	© 2013 PCTEST Engineering Laboratory, Inc.				

Radar Type	Pulse Width (μsec)	PRI (µsec)	Pulses per Hop	Hopping Rate (kHz)	Hopping Sequence Length (msec)	Minimum Percentage of Successful Detection	Minimum Number of Trials
6	1	333	9	0.333	300	70%	30

3.5 Procedure

The FCC 06-96 describes a radiated test setup and a conducted test setup. The conducted test setup was used for this testing. Figure 3-1 shows the typical test setup. In Band 2, one channel selected between 5260 and 5350 MHz is chosen for the testing. In Band 3, one channel selected between 5500 and 5700 MHz was chosen for testing.

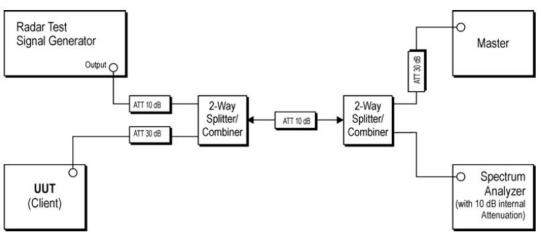


Figure 3-1. Conducted Test Setup for DFS

- 1. The radar pulse generator is setup to provide a pulse at the frequency that the Master and Client are operating. A Type 1 radar pulse with a 1μs pulse width and a 1428μs PRI is used for the testing.
- 2. The vector signal generator is adjusted to provide the radar burst (18 pulses) at a level of approximately -62dBm at the antenna of the Master device.
- 3. A trigger is provided from the pulse generator to the DFS monitoring system in order to capture the traffic and the occurrence of the radar pulse.
- 4. The Client Device (EUT) is set up per the diagram in Figure 3-1 and communications between the Master device and the Client is established.

FCC ID: A3LSCL22		FCC Pt. 15.407 DFS TEST REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 0 of 20
0Y1307231399.A3L	July 31, 2013	Portable Handset		Page 9 of 20
© 2013 PCTEST Enginee	ring Laboratory Inc.	•		v2.0

- 5. The MPEG file specified by the FCC (*"6 ½ Magic Hours"*) is streamed from the "file computer" through the Master to the Slave Device and played in full motion video using Media Player Classic Ver. 6.4.8.6 in order to properly load the network.
- 6. The real time spectrum analyzer is set to record a 12sec window to any transmissions occurring up to and after 10sec.
- 7. The system is again setup and the monitoring time is shortened in order to capture the Channel Closing Transmission Time. This time is measured to insure that the Client ceases transmission within 200ms and the aggregate of emissions occurring after 200ms up to 10 sec do not exceed 60ms.

(Note: the channel may be different since the Master and Client have changed channels due to the detection of the initial radar pulse.)

8. After the initial radar burst the channel is monitored for 30 minutes to insure no transmissions or beacons occur. A second monitoring setup is used to verify that the Master and Client have both moved to different channels.

FCC ID: A3LSCL22		FCC Pt. 15.407 DFS TEST REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dego 10 of 20
0Y1307231399.A3L	July 31, 2013	Portable Handset		Page 10 of 20
© 2013 PCTEST Engineerin	v2.0			

4.0 TEST EQUIPMENT

Test Equipment Calibration is traceable to the National Institute of Standards and Technology (NIST).

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	N9020A	MXA Signal Analyzer	10/9/2012	Annual	10/9/2013	US46470561
Agilent	E8267C	Vector Signal Generator	10/10/2011	Biennial	10/10/2013	US42340152
Tektronix	RSA6114A	Real Time Spectrum Analyzer	4/17/2013	Annual	4/17/2014	B010177

Table 4-1. Annual Test Equipment Calibration Schedule

4.1 Additional Equipment

The following equipment was used in support of the DFS testing.

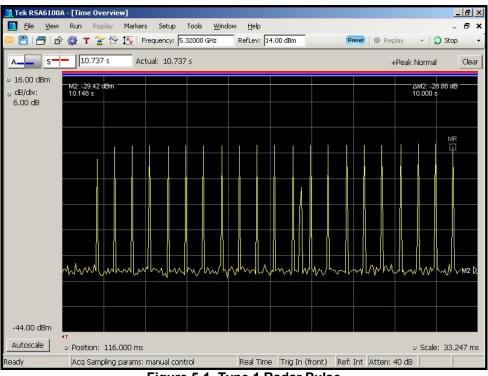
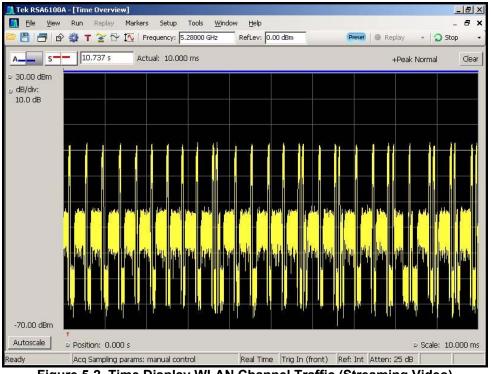

Device	Manufacturer	Model/Description	Description	S/N:	FCC ID:
Master	Cisco Systems	Aironet AIR- AP1242AG-A-K9	Access Point	FTX1114B151	LDK102056

 Table 4-2. Support Equipment


FCC ID: A3LSCL22		FCC Pt. 15.407 DFS TEST REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 11 of 20
0Y1307231399.A3L	July 31, 2013	Portable Handset		Page 11 of 20
© 2013 PCTEST Engineerin	ng Laboratory, Inc.			v2.0

TEST PLOTS AND DATA - UNII BAND II 5.0

Figure 5-1. Type 1 Radar Pulse

Figure 5-2. Time Display WLAN Channel Traffic (Streaming Video)

FCC ID: A3LSCL22		FCC Pt. 15.407 DFS TEST REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dago 12 of 20
0Y1307231399.A3L	July 31, 2013	Portable Handset		Page 12 of 20
© 2013 PCTEST Engineer	ing Laboratory, Inc.			v2.0 6/17/2013

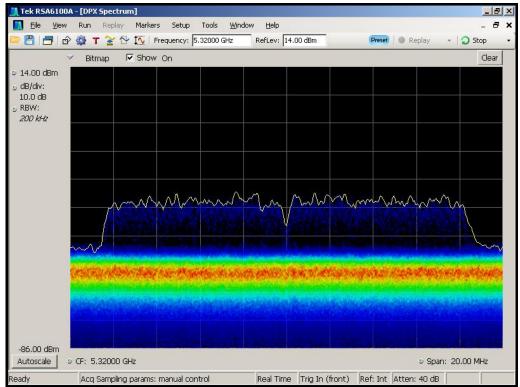


Figure 5-3. Real-Time Spectrum Display, No WLAN Traffic

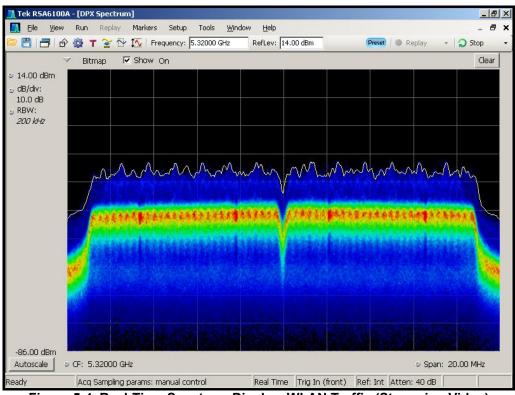


Figure 5-4. Real-Time Spectrum Display, WLAN Traffic (Streaming Video)

FCC ID: A3LSCL22		FCC Pt. 15.407 DFS TEST REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dago 12 of 20
0Y1307231399.A3L	July 31, 2013	Portable Handset		Page 13 of 20
© 2013 PCTEST Engineerin	g Laboratory, Inc.			v2.0

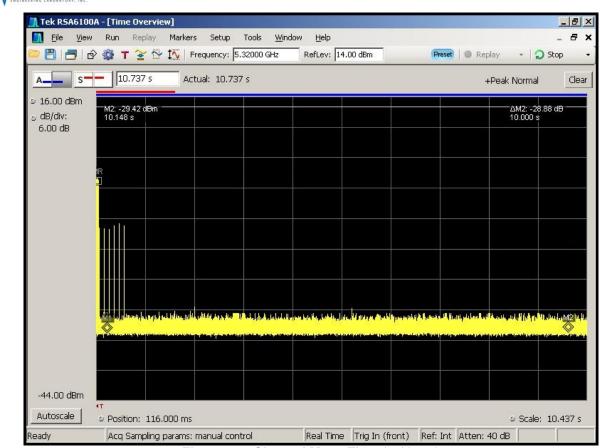


Figure 5-5. Channel Move Time (< 10sec)

Move Time Marker Descriptions:

- MR = End of Radar Burst
- M1 = 200ms from end of Radar Burst
- M2 = 10sec from end of Burst

FCC ID: A3LSCL22		FCC Pt. 15.407 DFS TEST REPORT (CERTIFICATION)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 14 of 20
0Y1307231399.A3L	July 31, 2013	Portable Handset	Page 14 of 20
© 2013 PCTEST Engineerin	v2.0		

Calculation of Aggregate Time:

The aggregate time was calculated using the "Pulse Table" capability on the Tektronix RSA 6114A Real-Time Spectrum Analyzer. This capability generates a table(s) that includes all the pulses and their corresponding pulse widths. The pulses are detected using a specified power threshold set by the user which allows for detection of all client (EUT) pulses. Only client (EUT) transmission pulses after M1 (marker1 @ 200ms) were analyzed.

The aggregate time is calculated as the sum of all pulse widths.

Note: No client pulses were detected after the radar.

Agilent Spectru		Swept SA									
XI	RF	50 Ω AC	CORRE	C	SEN	ISE:INT	#Avg Typ	ALIGN AUTO	TRA	E <mark>123456</mark>	Frequency
				:Fast ↔ n:Low	Trig: Free Atten: 20				TY D	CE 123456 PE MWWWWW ET P NNNNN	
10 dB/div Log	Ref 10	.00 dBm	1						Mkr1 ⁻ -49.	l.415 ks 03 dBm	Auto Tune
0.00											Center Freq 5.320000000 GHz
-10.0											Start Freq 5.320000000 GHz
-30.0											Stop Freq 5.320000000 GHz
-50.0			a ita in i		n tarang ini (ang tang) ang t		l a fan styl fan styl a fan styl fan ster	יין איזינערי דער דער איז דער איז די		te a tan ing daran is ng até papaté	CF Step 1.000000 MHz <u>Auto</u> Man
-70.0											Freq Offset 0 Hz
-80.0	32000 <u>00</u>	100 GHz								ipan 0 Hz	
Res BW 1				#VBW	3.0 MHz			Sweep 1.	800 ks (1	0000 pts)	
MSG								STATUS			

Figure 5-6 Non-occupancy Period - Monitoring live spectrum - Elapse time 30 minutes

FCC ID: A3LSCL22		FCC Pt. 15.407 DFS TEST REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dana 45 af 20
0Y1307231399.A3L	July 31, 2013	Portable Handset		Page 15 of 20
© 2013 PCTEST Enginee	ring Laboratory, Inc.			v2.0

ering L эгу, ıyı

6.0 TEST PLOTS AND DATA - UNII BAND III

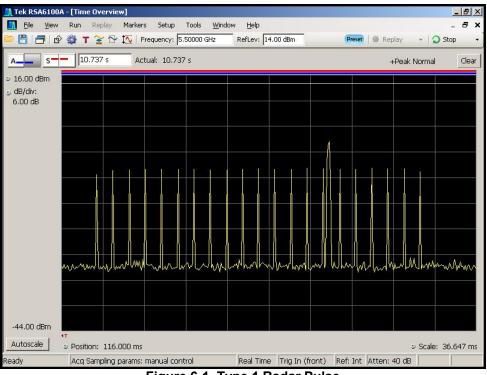
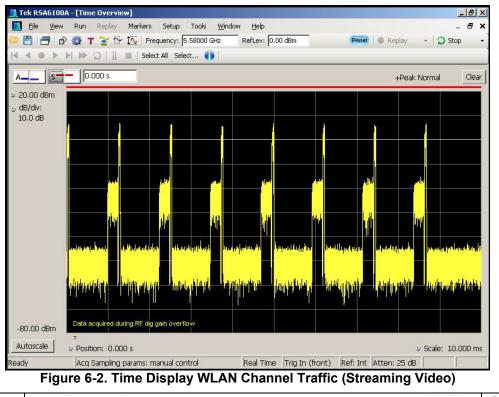



Figure 6-1. Type 1 Radar Pulse

FCC ID: A3LSCL22		FCC Pt. 15.407 DFS TEST REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 16 of 20
0Y1307231399.A3L	July 31, 2013	Portable Handset		Page 16 of 20
© 0040 DOTEOT Es sis s sis	a laboraten i la s			

© 2013 PCTEST Engineering Laboratory, Inc.

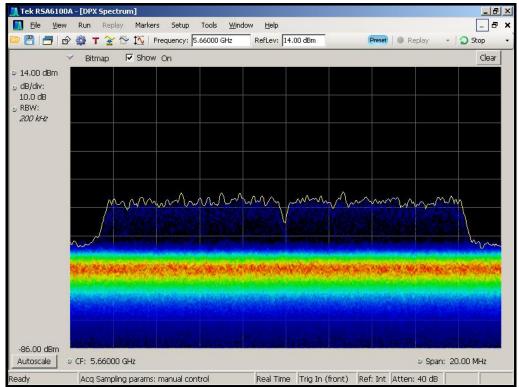


Figure 6-3. Real-Time Spectrum Display, No WLAN Traffic

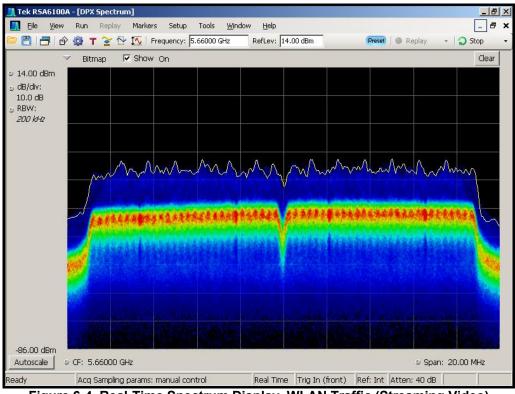


Figure 6-4. Real-Time Spectrum Display, WLAN Traffic (Streaming Video)

FCC ID: A3LSCL22		FCC Pt. 15.407 DFS TEST REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dego 17 of 20
0Y1307231399.A3L	July 31, 2013	Portable Handset		Page 17 of 20
© 2013 PCTEST Engineerin	ng Laboratory, Inc.			v2.0

Eile ⊻ie		Replay Marl	10		elp	_		-	đ
	o? 💭 1	r 🔮 🏠 🌆	Frequency: 5.5000	00 GHz RefL	ev: 14.00 dBm		Preset 🛛 🌑 Replay	- 🔉 Stop	,
S.	10).737 s	Actual: 10.737 s				+Pea	ik Normal	_C
6.00 dBm B/div: .00 dB	M2: -2 10.148	19.61 dBm 3 s						ΔM2: -23.03 dE 10.000 s	9
	R								
	M1					L L	n en tre la succession elle succession el succession el succession el succession el succession el succession e	a addida o bha da a	100
4.00 dBm									
utoscale	Interpretation of the second seco	tion: 116.000 r	าร					⇒ Scale: 10.2	237
rker	Marker	Frequency	∆ Frequency	Time	∆ Time	Amplitude	∆ Amplitude	Ph.	
adout ble	MR		1	147.675 ms					×
DIE	M1	1	1.000	347.654 ms	199.979 ms	1.775	10758		
	M2			10.148 s	10.000 s	8272			

Figure 6-5. Channel Move Time (< 10sec)

Marker Descriptions:

- MR = End of Radar Burst
- M1 = 200ms from end of Radar Burst
- M2 = 10sec from end of Burst

FCC ID: A3LSCL22		FCC Pt. 15.407 DFS TEST REPORT (CERTIFICATION)	Reviewed by: Quality Manager			
Test Report S/N:	Test Dates:	EUT Type:	Deg. 10 of 20			
0Y1307231399.A3L	July 31, 2013	Portable Handset	Page 18 of 20			
© 2013 PCTEST Engineerin	© 2013 PCTEST Engineering Laboratory, Inc.					

Calculation of Aggregate Time:

The aggregate time was calculated using the "Pulse Table" capability on the Tektronix RSA 6114A Real-Time Spectrum Analyzer. This capability generates a table(s) that includes all the pulses and their corresponding pulse widths. The pulses are detected using a specified power threshold set by the user which allows for detection of all client (EUT) pulses. Only client (EUT) transmission pulses after M1 (marker1 @ 200ms) were analyzed.

The aggregate time is calculated as the sum of all pulse widths.

Note: No client pulses were detected after the radar.

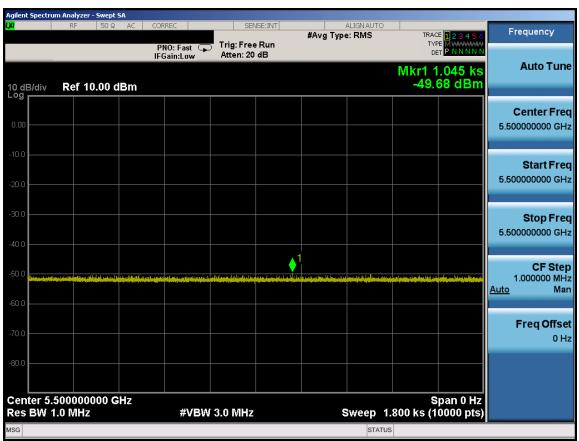


Figure 6-6. Non-occupancy Period - Monitoring live spectrum - Elapse time 30 minutes

FCC ID: A3LSCL22		FCC Pt. 15.407 DFS TEST REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 19 of 20
0Y1307231399.A3L	July 31, 2013	Portable Handset		
© 2013 PCTEST Engineering Laboratory, Inc.				

6/17/2013

7.0 CONCLUSION

The data collected relate only to the item(s) tested and show that theSamsung **Portable Handset FCC ID: A3LSCL22** is in compliance with the DFS requirements for a Client Device without radar detection in accordance with Part 15.407 of the FCC Rules.

FCC ID: A3LSCL22		FCC Pt. 15.407 DFS TEST REPORT (CERTIFICATION)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dago 20 of 20
0Y1307231399.A3L	July 31, 2013	Portable Handset		Page 20 of 20
© 2013 PCTEST Engineering Laboratory, Inc.				