PCTEST ENGINEERING LABORATORY, INC.

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. 410.290.6652 / Fax 410.290.6654 http://www.pctestlab.com

MEASUREMENT REPORT FCC Part 24 & 27 LTE

Applicant Name:

Samsung Electronics, Co. Ltd. 129, Samsung-ro, Maetan dong, Yeongtong-gu, Suwon-si Gyeonggi-do 443-742, Korea Date of Testing: 7/22/2014 Test Site/Location: PCTEST Lab., Columbia, MD, USA Test Report Serial No.: 0Y1407221429.A3L

FCC ID: A3LSCHR950

APPLICANT: SAMSUNG ELECTRONICS, CO. LTD.

Application Type: Class II Permissive Change

FCC Classification: PCS Licensed Transmitter Held to Ear (PCE)

FCC Rule Part(s): §2; §24; §27

Test Procedure(s): ANSI/TIA-603-C-2004, KDB 971168 v02r01

EUT Type: Portable Handset Model(s): SCH-R950

Test Device Serial No.: identical prototype [S/N: LTE EMC] **Class II Permissive Change:** Please see FCC change document

Original Grant Date: 10/02/2012

				ERP/	EIRP
Mode	Tx Frequency (MHz)	Emission Designator Modulation		Max. Pow er (W)	Max. Pow er (dBm)
LTE Band 4	1717.5 - 1747.5	13M5G7W	QPSK	0.033	15.17
LTE Band 4	1717.5 - 1747.5	13M4W7W	16QAM	0.027	14.39
LTE Band 4	1720 - 1745	18M0G7W	QPSK	0.032	15.04
LTE Band 4	1720 - 1745	18M0W7W	16QAM	0.027	14.27
LTE Band 2	1857.5 - 1902.5	13M4G7W	QPSK	0.055	17.40
LTE Band 2	1857.5 - 1902.5	13M4W7W	16QAM	0.041	16.16
LTE Band 2	1860 - 1900	17M9G7W	QPSK	0.040	15.98
LTE Band 2	1860 - 1900	18M0W7W	16QAM	0.030	14.76

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in §2.947. Test results reported herein relate only to the item(s) tested.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

FCC ID: A3LSCHR950	PCTEST*	FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dog 1 of 10
0Y1407221429.A3L	7/22/2014	Portable Handset	Page 1 of 48

TABLE OF CONTENTS

FCC F	PART 2	24 & 27 MEASUREMENT REPORT	3
1.0	INTE	RODUCTION	4
	1.1	SCOPE	4
	1.2	TESTING FACILITY	4
2.0	PRC	DDUCT INFORMATION	5
	2.1	EQUIPMENT DESCRIPTION	5
	2.2	DEVICE CAPABILITIES	5
	2.3	EMI SUPPRESSION DEVICE(S)/MODIFICATIONS	5
	2.4	LABELING REQUIREMENTS	5
3.0	DES	SCRIPTION OF TESTS	6
	3.1	MEASUREMENT PROCEDURE	6
	3.2	PCS - BASE FREQUENCY BLOCKS	6
	3.3	PCS - MOBILE FREQUENCY BLOCKS	6
	3.4	AWS - BASE FREQUENCY BLOCKS	6
	3.5	AWS - MOBILE FREQUENCY BLOCKS	7
	3.6	RADIATED POWER AND RADIATED SPURIOUS EMISSIONS	7
4.0	TES	T EQUIPMENT CALIBRATION DATA	8
5.0	SAM	IPLE CALCULATIONS	9
6.0	TES	T RESULTS	10
	6.1	SUMMARY	10
	6.2	OCCUPIED BANDWIDTH	11
	6.3	SPURIOUS AND HARMONIC EMISSIONS AT ANTENNA TERMINAL	16
	6.4	BAND EDGE EMISSIONS AT ANTENNA TERMINAL	23
	6.5	PEAK-AVERAGE RATIO	32
	6.6	RADIATED POWER (EIRP)	35
	6.7	RADIATED SPURIOUS EMISSIONS MEASUREMENTS	38
	6.8	FREQUENCY STABILITY / TEMPERATURE VARIATION	43
7.0	CON	NCLUSION	48

FCC ID: A3LSCHR950	PCTEST*	FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dags 2 of 40
0Y1407221429.A3L	7/22/2014	Portable Handset		Page 2 of 48

MEASUREMENT REPORT

FCC Part 24 & 27

§2.1033 General Information

APPLICANT: Samsung Electronics, Co. Ltd. APPLICANT ADDRESS: 129, Samsung-ro, Maetan dong,

Yeongtong-gu, Suwon-si, Gyeonggi-do 443-742, Korea

TEST SITE: PCTEST ENGINEERING LABORATORY, INC.

TEST SITE ADDRESS: 7185 Oakland Mills Road, Columbia, MD 21045 USA

FCC RULE PART(S): §2; §24; §27 **BASE MODEL:** SCH-R950 FCC ID: A3LSCHR950

FCC CLASSIFICATION: PCS Licensed Transmitter Held to Ear (PCE)

FREQUENCY TOLERANCE: ±0.00025 % (2.5 ppm)

Test Device Serial No.: LTE EMC ☐ Production ☐ Engineering

DATE(S) OF TEST: 7/22/2014

TEST REPORT S/N: 0Y1407221429.A3L

Test Facility / Accreditations

Measurements were performed at PCTEST Engineering Lab located in Columbia, MD 21046, U.S.A.

- PCTEST facility is an FCC registered (PCTEST Reg. No. 159966) test facility with the site description report on file and has met all the requirements specified in Section 2.948 of the FCC Rules and Industry Canada (2451B-1).
- PCTEST Lab is accredited to ISO 17025 by U.S. National Institute of Standards and Technology (NIST) under the National Voluntary Laboratory Accreditation Program (NVLAP Lab code: 100431-0) in EMC, FCC and Telecommunications.
- PCTEST Lab is accredited to ISO 17025-2005 by the American Association for Laboratory Accreditation (A2LA) in Specific Absorption Rate (SAR) testing, Hearing Aid Compatibility (HAC) testing, CTIA Test Plans, and wireless testing for FCC and Industry Canada Rules.
- PCTEST Lab is a recognized U.S. Conformity Assessment Body (CAB) in EMC and R&TTE (n.b. 0982) under the U.S.-EU Mutual Recognition Agreement (MRA).
- PCTEST TCB is a Telecommunication Certification Body (TCB) accredited to ISO/IEC Guide 65 by the American National Standards Institute (ANSI) in all scopes of FCC Rules and Industry Canada Standards (RSS).
- PCTEST facility is an IC registered (2451B-1) test laboratory with the site description on file at Industry Canada.
- PCTEST is a CTIA Authorized Test Laboratory (CATL) for AMPS, CDMA, and EvDO wireless devices and for Over-the-Air (OTA) Antenna Performance testing for AMPS, CDMA, GSM, GPRS, EGPRS, UMTS (W-CDMA), CDMA 1xEVDO, and CDMA 1xRTT.

FCC ID: A3LSCHR950	PCTEST	FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dog 2 of 40
0Y1407221429.A3L	7/22/2014	Portable Handset		Page 3 of 48
© 2014 PCTEST Engineering	Laboratory Inc	·		V 1 1

INTRODUCTION 1.0

1.1 Scope

Measurement and determination of electromagnetic emissions (EME) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Industry Canada Certification and Engineering Bureau.

1.2 Testing Facility

© 2014 PCTEST Engineering Laboratory, Inc.

The map below shows the location of the PCTEST LABORATORY, its proximity to the FCC Laboratory. the Columbia vicinity, the Baltimore-Washington Internt'i (BWI) airport, the city of Baltimore and the Washington, DC area. (See Figure 1-1).

These measurement tests were conducted at the PCTEST Engineering Laboratory, Inc. facility located at 7185 Oakland Mills Road, Columbia, MD 21046. The site coordinates are 39° 10'23" N latitude and 76° 49'50" W longitude. The facility is 0.4 miles North of the FCC laboratory, and the ambient signal and ambient signal strength are approximately equal to those of the FCC laboratory. The detailed description of the measurement facility was found to be in compliance with the requirements of § 2.948 according to ANSI C63.4-2003 on February 15, 2012.

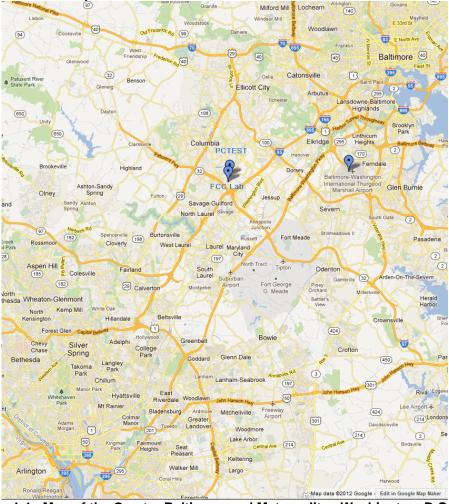


Figure 1-1. Map of the Greater Baltimore and Metropolitan Washington, D.C. area

FCC ID: A3LSCHR950	PCTEST	FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 4 of 49
0Y1407221429.A3L	7/22/2014	Portable Handset	Page 4 of 48

V 1.13

2.0 PRODUCT INFORMATION

2.1 Equipment Description

The Equipment Under Test (EUT) is the **Samsung Portable Handset FCC ID: A3LSCHR950**. The test data contained in this report pertains only to the emissions due to the EUT's LTE function.

2.2 Device Capabilities

This device contains the following capabilities:

850/1700/1900 CDMA/EvDO Rev 0 (BC0, BC15, BC1), Multi-band LTE, 802.11a/b/g/n WLAN (DTS/NII), Bluetooth (1x, EDR, LE), NFC

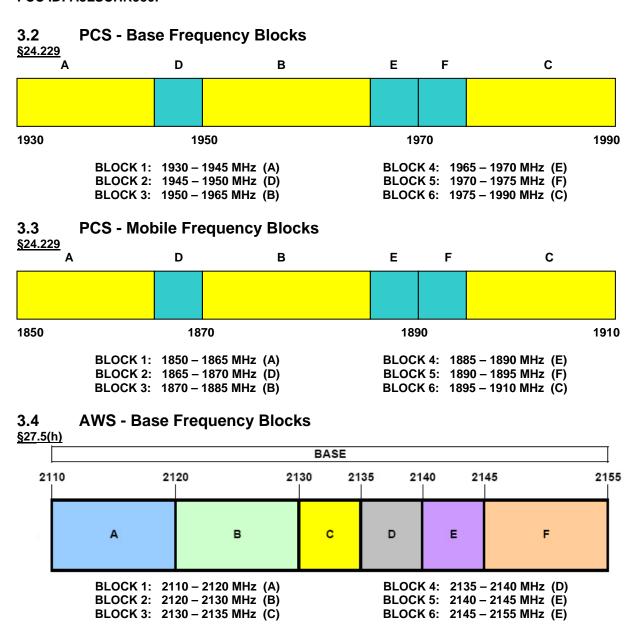
2.3 EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and no modifications were made during testing.

2.4 Labeling Requirements

Per 2.925

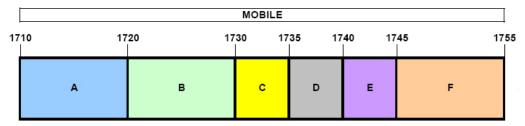
The FCC identifier shall be permanently affixed to the equipment and shall be readily visible to the purchaser at the time of purchase.


FCC ID: A3LSCHR950	PCTEST*	FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo E of 49
0Y1407221429.A3L	7/22/2014	Portable Handset	Page 5 of 48

3.0 DESCRIPTION OF TESTS

3.1 Measurement Procedure

The measurement procedures described in the document titled "Land Mobile FM or PM – Communications Equipment – Measurements and Performance Standards" (ANSI/TIA-603-C-2004) and "Procedures for Compliance Measurement of the Fundamental Emission Power of Licensed Wideband (> 1 MHz) Digital Transmission Systems" (KDB 971168) were used in the measurement of the **Samsung Portable Handset FCC ID: A3LSCHR950.**



FCC ID: A3LSCHR950	PCTEST*	FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dago C of 40
0Y1407221429.A3L	7/22/2014	Portable Handset	Page 6 of 48

3.5 AWS - Mobile Frequency Blocks

§27.5(h)

BLOCK 1: 1710 – 1720 MHz (A) BLOCK 4: 1735 – 1740 MHz (D) BLOCK 2: 1720 – 1730 MHz (B) BLOCK 5: 1740 – 1745 MHz (E) BLOCK 3: 1730 – 1735 MHz (C) BLOCK 6: 1745 – 1755 MHz (F)

3.6 Radiated Power and Radiated Spurious Emissions §2.1053 §24.232(c) §24.238(a) §27.50(d.4) §27.53(h)

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. The test site inside the chamber is a 6m x 5.2m elliptical, obstruction-free area in accordance with Clause 5, Figure 5.7 of ANSI C63.4-2009. For measurements above 1GHz absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections. For measurements below 1GHz, the absorbers are removed. An ETS Lindgren Model 2188 raised turntable is used for radiated measurement. It is a continuously rotatable, remote-controlled, metallic turntable and 2 meters (6.56 ft.) in diameter. The turn table is flush with the raised floor of the chamber in order to maintain its function as a ground plane. A 78cm high PVC support structure is placed on top of the turntable. A ¾" (~1.9cm) sheet of high density polyethylene is used as the table top and is placed on top of the PVC supports to bring the total height of the table to 80cm.

The equipment under test was transmitting while connected to its integral antenna and is placed on a wooden turntable 80cm above the ground plane and 3 meters from the receive antenna. The receive antenna height is adjusted between 1 and 4 meter height, the turntable is rotated through 360 degrees, and the EUT is manipulated through all orthogonal planes representative of its typical use to achieve the highest reading on the receive spectrum analyzer. Radiated power levels are also investigated with the receive antenna horizontally and vertically polarized. The maximized power level is recorded using the spectrum analyzer "Channel Power" function with the integration band set to the emissions' occupied bandwidth, a RMS detector, RBW = 100kHz, VBW = 300kHz, and a 1 second sweep time over a minimum of 10 sweeps, per the guidelines of KDB 971168.

Per the guidance of ANSI/TIA-603-C-2004, a half-wave dipole is then substituted in place of the EUT. For emissions above 1GHz, a horn antenna is substituted in place of the EUT. The substitute antenna is driven by a signal generator with the level of the signal generator being adjusted to obtain the same receive spectrum analyzer level previously recorded from the spurious emission from the EUT. The power of the emission is calculated using the following formula:

$$P_{d [dBm]} = P_{g [dBm]} - cable loss_{[dB]} + antenna gain_{[dBd/dBi]}$$

Where, P_d is the dipole equivalent power, P_g is the generator output into the substitution antenna, and the antenna gain is the gain of the substitute antenna used relative to either a half-wave dipole (dBd) or an isotropic source (dBi). The substitute level is equal to $P_{g [dBm]}$ – cable loss [dB].

The calculated P_d levels are then compared to the absolute spurious emission limit of -13dBm which is equivalent to the required minimum attenuation of 43 + $10log_{10}(Power_{IWatts1})$.

FCC ID: A3LSCHR950	PCTEST*	FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dog 7 of 40
0Y1407221429.A3L	7/22/2014	Portable Handset	Page 7 of 48

TEST EQUIPMENT CALIBRATION DATA 4.0

Test Equipment Calibration is traceable to the National Institute of Standards and Technology (NIST).

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
-	LTx1	Licensed Transmitter Cable Set	1/29/2014	Annual	1/29/2015	N/A
-	RE1	Radiated Emissions Cable Set (UHF/EHF)	5/29/2014	Annual	5/29/2015	N/A
Agilent	8447D	Broadband Amplifier	6/2/2014	Annual	6/2/2015	1937A03348
Agilent	E5515C	Wireless Communications Test Set	3/18/2014	Annual	3/18/2015	GB46110872
Agilent	N9020A	MXA Signal Analyzer	10/29/2013	Annual	10/29/2014	US46470561
Agilent	N9030A	PXA Signal Analyzer (26.5GHz)	5/8/2014	Annual	5/8/2015	MY49432391
Com-Power	AL-130	9kHz - 30MHz Loop Antenna	6/26/2013	Biennial	6/26/2015	121034
Emco	3115	Horn Antenna (1-18GHz)	1/30/2014	Biennial	1/30/2016	9704-5182
ETS Lindgren	3117	1-18 GHz DRG Horn (Medium)	4/8/2014	Biennial	4/8/2016	125518
ETS Lindgren	3160-09	18-26.5 GHz Standard Gain Horn	6/17/2014	Biennial	6/17/2016	135427
ETS Lindgren	3164-08	Quad Ridge Horn Antenna	3/12/2014	Biennial	3/12/2016	128337
K & L	11SH10-3075/U18000	High Pass Filter	5/2/2014	Annual	5/2/2015	2
Mini-Circuits	SSG-4000HP	USB Synthesized Signal Generator		N/A		11208010032
Mini-Circuits	PWR-SENS-4RMS	USB Power Sensor	4/17/2014	Annual	4/17/2015	11210140001
Mini-Circuits	TVA-11-422	RF Power Amp		N/A		QA1303002
Rhode & Schwarz	TS-PR18	Pre-Amplifier	6/12/2014	Annual	6/12/2015	101622
Rohde & Schwarz	CMW500	Radio Communication Tester	10/18/2013	Annual	10/18/2014	100976
Rohde & Schwarz	TS-PR18	1-18 GHz Pre-Amplifier	3/5/2014	Annual	3/5/2015	100071
Rohde & Schwarz	TS-PR26	18-26.5 GHz Pre-Amplifier	3/12/2014	Annual	3/12/2015	100040
Rohde & Schwarz	ESU26	EMI Test Receiver (26.5GHz)	1/27/2014	Annual	1/27/2015	100342
Sunol	JB5	Bi-Log Antenna (30M - 5GHz)	1/28/2014	Biennial	1/28/2016	A051107
VWR	62344-734	Thermometer with Clock	2/20/2014	Biennial	2/20/2016	140140420

Table 4-1. Test Equipment

Notes:

1. Equipment with a calibration date of "N/A" shown in this list was not used to make direct calibrated measurements.

FCC ID: A3LSCHR950	PCTEST	FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dags 0 of 40
0Y1407221429.A3L	7/22/2014	Portable Handset	Page 8 of 48

5.0 SAMPLE CALCULATIONS

Emission Designator

QPSK Modulation

Emission Designator = 8M62G7D

LTE BW = 8.62 MHz
G = Phase Modulation
7 = Quantized/Digital Info
D = Amplitude/Angle Modulated

16QAM Modulation

Emission Designator = 8M45W7D

LTE BW = 8.45 MHz W = Amplitude/Angle Modulated 7 = Quantized/Digital Info D = Combination (Audio/Data)

Spurious Radiated Emission – LTE Band

Example: Middle Channel LTE Mode 2nd Harmonic (1564 MHz)

The average spectrum analyzer reading at 3 meters with the EUT on the turntable was -81.0 dBm. The gain of the substituted antenna is 8.1 dBi. The signal generator connected to the substituted antenna terminals is adjusted to produce a reading of -81.0 dBm on the spectrum analyzer. The loss of the cable between the signal generator and the terminals of the substituted antenna is 2.0 dB at 1564 MHz. So 6.1 dB is added to the signal generator reading of -30.9 dBm yielding -24.80 dBm. The fundamental EIRP was 25.501 dBm so this harmonic was 25.501 dBm - (-24.80).

FCC ID: A3LSCHR950	PCTEST*	FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 0 of 49
0Y1407221429.A3L	7/22/2014	Portable Handset	Page 9 of 48

6.0 TEST RESULTS

6.1 Summary

Company Name: Samsung Electronics, Co. Ltd.

FCC ID: A3LSCHR950

FCC Classification: PCS Licensed Transmitter Held to Ear (PCE)

Mode(s): LTE

FCC Part Section(s)	Test Description	Test Limit	Test Condition	Result	Reference		
TRANSMITTER MODE (TX)							
2.1049	Occupied Bandwidth	N/A		PASS	Section 6.2		
2.1051 24.238(a) 27.53(h)	Band Edge / Conducted Spurious Emissions	> 43 + 10log ₁₀ (P[Watts]) at Band Edge and for all out-of- band emissions		PASS	Section 6.3, 6.4		
24.232(d)	Peak-Average Ratio	< 13 dB		PASS	Section 6.5		
2.1046	Transmitter Conducted Output Power	N/A	CONDUCTED	PASS	See RF Exposure Report		
2.1055. 24.235 27.54	Frequency Stability	Fundamental emissions stay within authorized frequency block (Part 24, 27)		PASS	Section 6.8		
24.232(c)	Equivalent Isotropic Radiated Power (Band 2)	< 2 Watts max. EIRP		PASS	Section 6.6		
27.50(d.4)	Equivalent Isotropic Radiated Power (Band 4)	< 1 Watts max. EIRP	RADIATED	PASS	Section 6.6		
2.1053 24.238(a) 27.53(h)	Undesirable Emissions	> 43 + 10log ₁₀ (P[Watts]) for all out-of-band emissions		PASS	Section 6.7		

Table 6-1. Summary of Test Results

Notes:

- 1) All modes of operation and data rates were investigated. The test results shown in the following sections represent the worst case emissions.
- 2) The analyzer plots (Sections 6.2, 6.3, 6.4, 6.5) were all taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables, directional couplers, and attenuators used as part of the system to maintain a link between the call box and the EUT at all frequencies of interest.
- 3) All antenna port conducted emissions testing was performed on a test bench with the antenna port of the EUT connected to the spectrum analyzer through calibrated cables, attenuators, and couplers.
- 4) For conducted spurious emissions, automated test software was used to measure emissions and capture the corresponding plots necessary to show compliance. The measurement software utilized is PCTEST "LTE Automation", Version 2.4.

FCC ID: A3LSCHR950	PCTEST	FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 10 of 48
0Y1407221429.A3L	7/22/2014	Portable Handset	Fage 10 01 46

6.2 Occupied Bandwidth §2.1049

Test Overview

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured. All modes of operation were investigated and the worst case configuration results are reported in this section.

Test Procedure Used

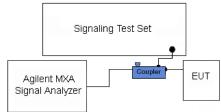
KDB 971168 v02r01 - Section 4.2

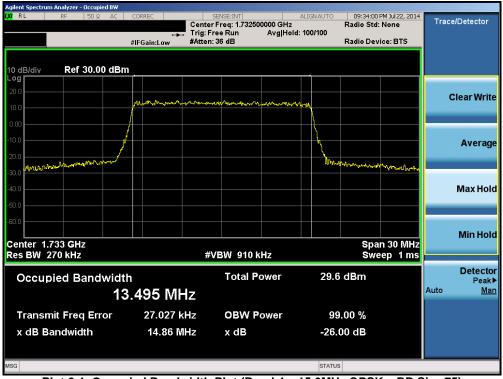
Test Settings

- The signal analyzer's automatic bandwidth measurement capability was used to perform the 99% occupied bandwidth and the 26dB bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = 1 5% of the expected OBW
- 3. VBW \geq 3 x RBW
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep = auto couple
- 7. The trace was allowed to stabilize
- 8. If necessary, steps 2-7 were repeated after changing the RBW such that it would be within 1-5% of the 99% occupied bandwidth observed in Step 7

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

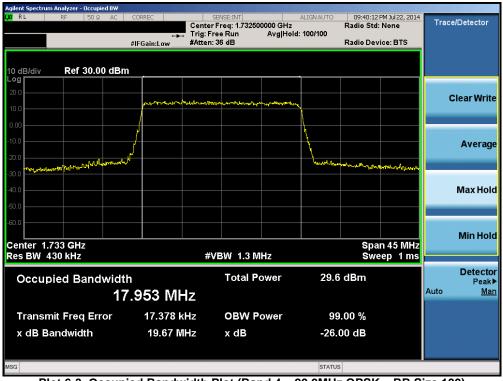


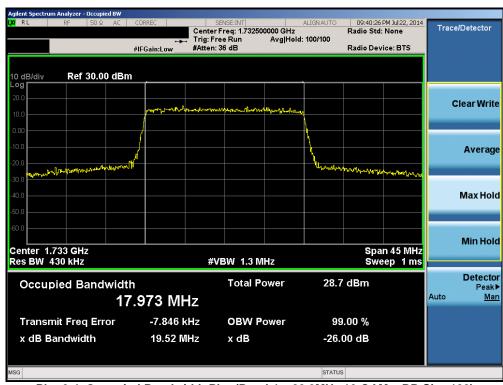

Figure 6-1. Test Instrument & Measurement Setup

Test Notes


None.

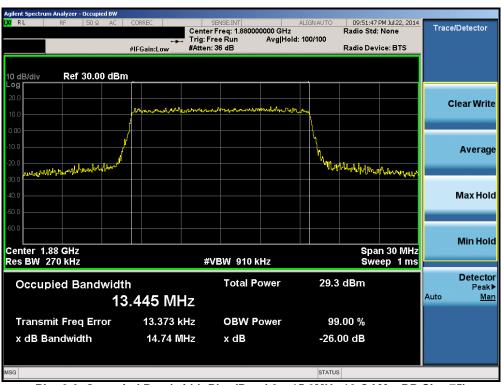
FCC ID: A3LSCHR950	PCTEST*	FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogg 11 of 10
0Y1407221429.A3L	7/22/2014	Portable Handset		Page 11 of 48


Plot 6-1. Occupied Bandwidth Plot (Band 4 – 15.0MHz QPSK – RB Size 75)


Plot 6-2. Occupied Bandwidth Plot (Band 4 – 15.0MHz 16-QAM – RB Size 75)

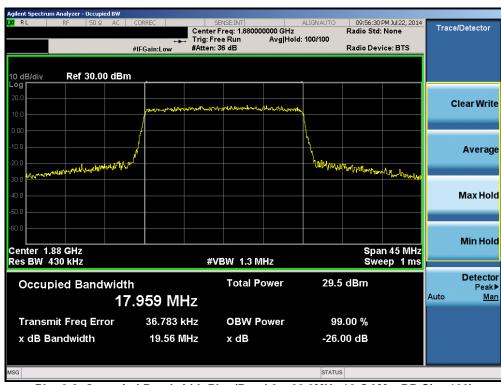
FCC ID: A3LSCHR950	PCTEST*	FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 12 of 48
0Y1407221429.A3L	7/22/2014	Portable Handset	Fage 12 01 46

Plot 6-3. Occupied Bandwidth Plot (Band 4 - 20.0MHz QPSK - RB Size 100)


Plot 6-4. Occupied Bandwidth Plot (Band 4 - 20.0MHz 16-QAM - RB Size 100)

FCC ID: A3LSCHR950	PCTEST*	FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 13 of 48
0Y1407221429.A3L	7/22/2014	Portable Handset	Fage 13 01 46

Plot 6-5. Occupied Bandwidth Plot (Band 2 – 15.0MHz QPSK – RB Size 75)


Plot 6-6. Occupied Bandwidth Plot (Band 2 - 15.0MHz 16-QAM - RB Size 75)

FCC ID: A3LSCHR950	PCTEST*	FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 14 of 48
0Y1407221429.A3L	7/22/2014	Portable Handset	raye 14 01 46

Plot 6-7. Occupied Bandwidth Plot (Band 2 – 20.0MHz QPSK – RB Size 100)

Plot 6-8. Occupied Bandwidth Plot (Band 2 – 20.0MHz 16-QAM – RB Size 100)

FCC ID: A3LSCHR950	PCTEST*	FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 15 of 48
0Y1407221429.A3L	7/22/2014	Portable Handset	raye 13 01 46

6.3 Spurious and Harmonic Emissions at Antenna Terminal §2.1051 §24.238(a) §27.53(h)

Test Overview

The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10th harmonic. All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.

The minimum permissible attenuation level of any spurious emission is 43 + $log_{10}(P_{IWatts1})$, where P is the transmitter power in Watts.

Test Procedure Used

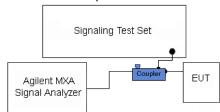
KDB 971168 v02r01 - Section 6.0

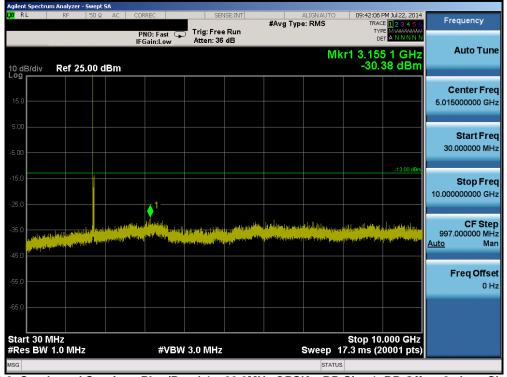
Test Settings

- 1. Start frequency was set to 30MHz and stop frequency was set to at least 10 * the fundamental frequency (separated into at least two plots per channel)
- Detector = RMS
- 3. Trace mode = max hold
- 4. Sweep time = auto couple
- The trace was allowed to stabilize
- 6. Please see test notes below for RBW and VBW settings

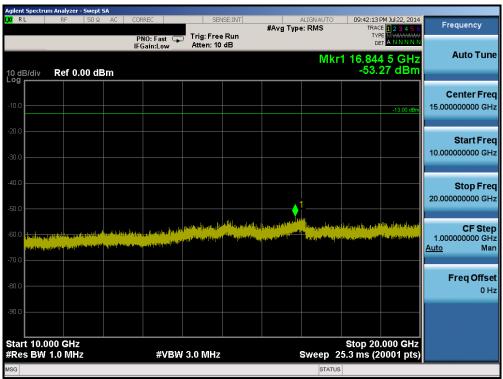
Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

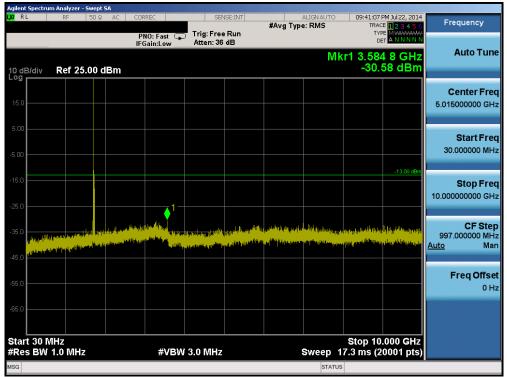



Figure 6-2. Test Instrument & Measurement Setup

Test Notes

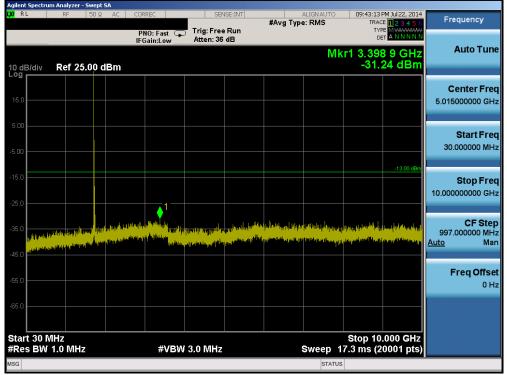

Compliance with the applicable limits is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz or greater for frequencies less than 1 GHz and 1 MHz or greater for frequencies greater than 1 GHz. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emission are attenuated at least 26 dB below the transmitter power.

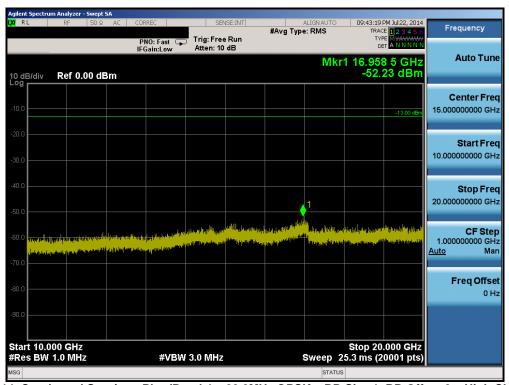
FCC ID: A3LSCHR950	PCTEST*	FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogg 16 of 40
0Y1407221429.A3L	7/22/2014	Portable Handset	Page 16 of 48


Plot 6-9. Conducted Spurious Plot (Band 4 - 20.0MHz QPSK - RB Size 1, RB Offset 0- Low Channel)

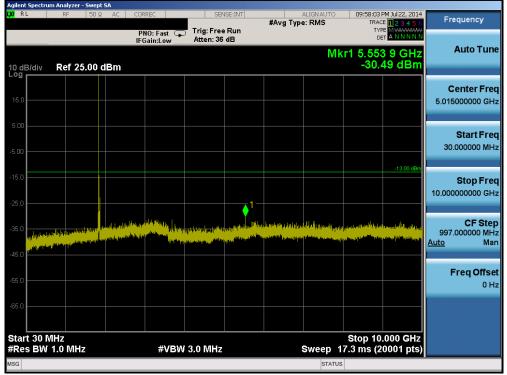

Plot 6-10. Conducted Spurious Plot (Band 4 - 20.0MHz QPSK - RB Size 1, RB Offset 0 - Low Channel)

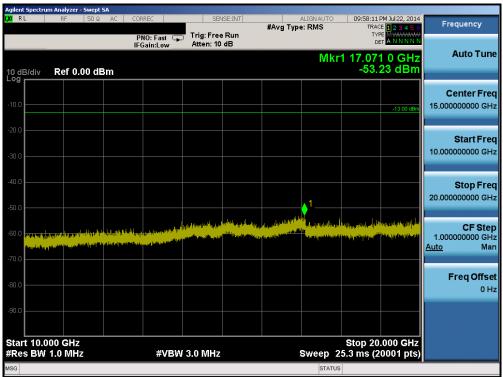
FCC ID: A3LSCHR950	PCTEST*	FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dags 17 of 10
0Y1407221429.A3L	7/22/2014	Portable Handset	Page 17 of 48


Plot 6-11. Conducted Spurious Plot (Band 4 - 20.0MHz QPSK - RB Size 1, RB Offset 0 - Mid Channel)

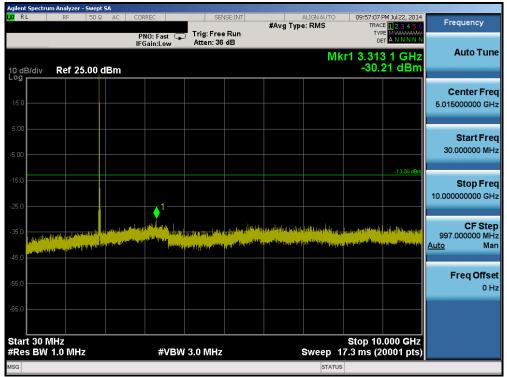

Plot 6-12. Conducted Spurious Plot (Band 4 - 20.0MHz QPSK - RB Size 1, RB Offset 0 - Mid Channel)

FCC ID: A3LSCHR950	PCTEST*	FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 18 of 48
0Y1407221429.A3L	7/22/2014	Portable Handset	Page 16 01 46


Plot 6-13. Conducted Spurious Plot (Band 4 – 20.0MHz QPSK – RB Size 1, RB Offset 0 – High Channel)

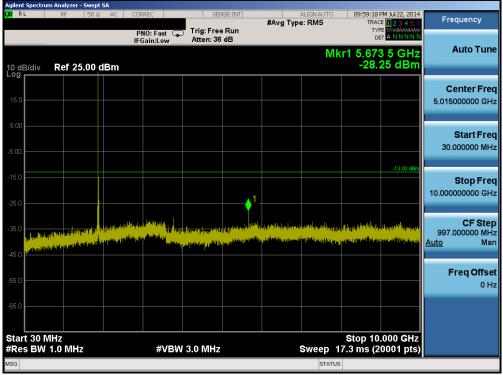

Plot 6-14. Conducted Spurious Plot (Band 4 - 20.0MHz QPSK - RB Size 1, RB Offset 0 - High Channel)

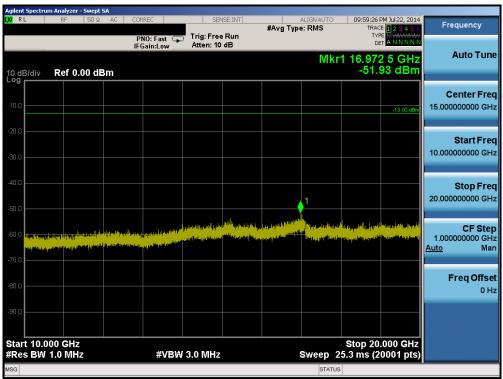
FCC ID: A3LSCHR950	PCTEST*	FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 19 of 48
0Y1407221429.A3L	7/22/2014	Portable Handset	Faye 19 01 46


Plot 6-15. Conducted Spurious Plot (Band 2 - 20.0MHz QPSK - RB Size 1, RB Offset 0- Low Channel)


Plot 6-16. Conducted Spurious Plot (Band 2 - 20.0MHz QPSK - RB Size 1, RB Offset 0 - Low Channel)

FCC ID: A3LSCHR950	PCTEST*	FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogg 20 of 40
0Y1407221429.A3L	7/22/2014	Portable Handset	Page 20 of 48


Plot 6-17. Conducted Spurious Plot (Band 2 - 20.0MHz QPSK - RB Size 1, RB Offset 0 - Mid Channel)


Plot 6-18. Conducted Spurious Plot (Band 2 - 20.0MHz QPSK - RB Size 1, RB Offset 0 - Mid Channel)

FCC ID: A3LSCHR950	PCTEST*	FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 21 of 48
0Y1407221429.A3L	7/22/2014	Portable Handset	Fage 21 01 46

Plot 6-19. Conducted Spurious Plot (Band 2 – 20.0MHz QPSK – RB Size 1, RB Offset 0 – High Channel)

Plot 6-20. Conducted Spurious Plot (Band 2 - 20.0MHz QPSK - RB Size 1, RB Offset 0 - High Channel)

FCC ID: A3LSCHR950	PCTEST*	FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 22 of 48
0Y1407221429.A3L	7/22/2014	Portable Handset	Page 22 01 46

6.4 Band Edge Emissions at Antenna Terminal §2.1051 §24.238(a) §27.53(h)

Test Overview

All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.

The minimum permissible attenuation level of any spurious emission is $43 + \log_{10}(P_{[Watts]})$, where P is the transmitter power in Watts.

Test Procedure Used

KDB 971168 v02r01 - Section 6.0

Test Settings

- 1. Start and stop frequency were set such that the band edge would be placed in the center of the plot
- 2. Span was set large enough so as to capture all out of band emissions near the band edge
- 3. RBW > 1% of the emission bandwidth
- 4. VBW > 3 x RBW
- 5. Detector = RMS
- 6. Number of sweep points ≥ 2 x Span/RBW
- 7. Trace mode = max hold
- 8. Sweep time = auto couple
- The trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

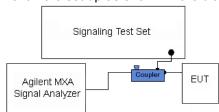


Figure 6-3. Test Instrument & Measurement Setup

Test Notes

Per 24.238(a) and 27.53(h) in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed to demonstrate compliance with the out-of-band emissions limit. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emission are attenuated at least 26 dB below the transmitter power.

FCC ID: A3LSCHR950	PCTEST*	FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 22 of 49
0Y1407221429.A3L	7/22/2014	Portable Handset	Page 23 of 48

Plot 6-21. Lower Band Edge Plot (Band 4 - 15.0MHz QPSK - RB Size 75)

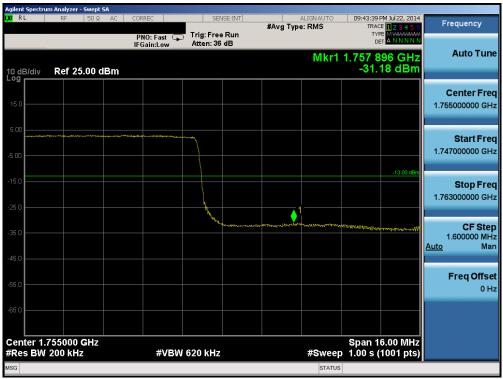
Plot 6-22. Lower Extended Band Edge Plot (Band 4 - 15.0MHz QPSK - RB Size 75)

FCC ID: A3LSCHR950	PCTEST*	FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 24 of 48
0Y1407221429.A3L	7/22/2014	Portable Handset	Page 24 01 46


Plot 6-23. Upper Band Edge Plot (Band 4 – 15.0MHz QPSK – RB Size 75)

Plot 6-24. Upper Extended Band Edge Plot (Band 4 – 15.0MHz QPSK – RB Size 75)

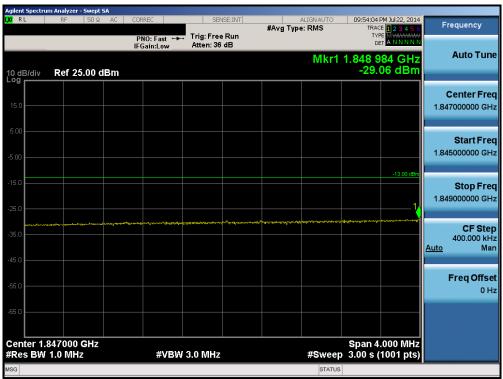
FCC ID: A3LSCHR950	PCTEST*	FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 25 of 48
0Y1407221429.A3L	7/22/2014	Portable Handset	Faye 20 01 46


Plot 6-25. Lower Band Edge Plot (Band 4 – 20.0MHz QPSK – RB Size 100)

Plot 6-26. Lower Extended Band Edge Plot (Band 4 – 20.0MHz QPSK – RB Size 100)

FCC ID: A3LSCHR950	PCTEST*	FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogg 26 of 40
0Y1407221429.A3L	7/22/2014	Portable Handset	Page 26 of 48

Plot 6-27. Upper Band Edge Plot (Band 4 – 20.0MHz QPSK – RB Size 100)

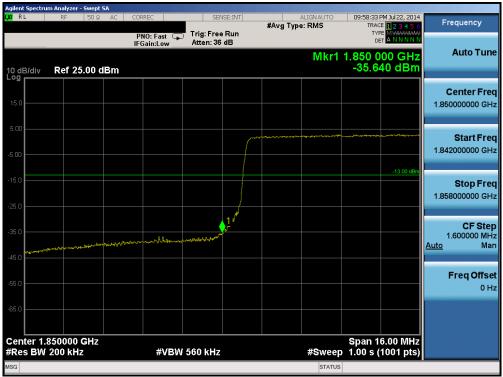

Plot 6-28. Upper Extended Band Edge Plot (Band 4 - 20.0MHz QPSK - RB Size 100)

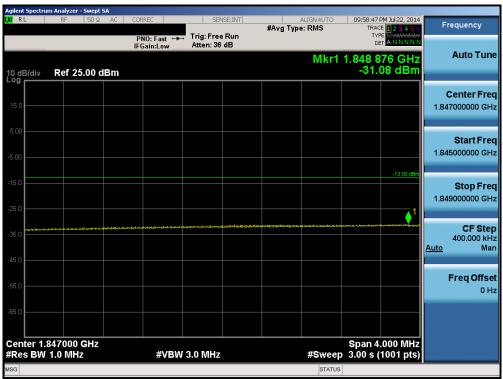
FCC ID: A3LSCHR950	PCTEST*	FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogg 27 of 49
0Y1407221429.A3L	7/22/2014	Portable Handset	Page 27 of 48

Plot 6-29. Lower Band Edge Plot (Band 2 - 15.0MHz QPSK - RB Size 75)

Plot 6-30. Lower Extended Band Edge Plot (Band 2 - 15.0MHz QPSK - RB Size 75)

FCC ID: A3LSCHR950	PCTEST*	FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogg 20 of 40
0Y1407221429.A3L	7/22/2014	Portable Handset	Page 28 of 48


Plot 6-31. Upper Band Edge Plot (Band 2 – 15.0MHz QPSK – RB Size 75)


Plot 6-32. Upper Extended Band Edge Plot (Band 2 - 15.0MHz QPSK - RB Size 75)

FCC ID: A3LSCHR950	PCTEST*	FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 29 of 48
0Y1407221429.A3L	7/22/2014	Portable Handset	Faye 29 01 46

Plot 6-33. Lower Band Edge Plot (Band 2 – 20.0MHz QPSK – RB Size 100)

Plot 6-34. Lower Extended Band Edge Plot (Band 2 - 20.0MHz QPSK - RB Size 100)

FCC ID: A3LSCHR950	PCTEST*	FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogg 20 of 40
0Y1407221429.A3L	7/22/2014	Portable Handset	Page 30 of 48

Plot 6-35. Upper Band Edge Plot (Band 2 - 20.0MHz QPSK - RB Size 100)

Plot 6-36. Upper Extended Band Edge Plot (Band 2 - 20.0MHz QPSK - RB Size 100)

FCC ID: A3LSCHR950	PCTEST*	FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 21 of 49
0Y1407221429.A3L	7/22/2014	Portable Handset	Page 31 of 48

6.5 Peak-Average Ratio §24.232(d)

Test Overview

A peak to average ratio measurement is performed at the conducted port of the EUT. The spectrum analyzers Complementary Cumulative Distribution Function (CCDF) measurement profile is used to determine the largest deviation between the average and the peak power of the EUT in a given bandwidth. The CCDF curve shows how much time the peak waveform spends at or above a given average power level. The percent of time the signal spends at or above the level defines the probability for that particular power level.

Test Procedure Used

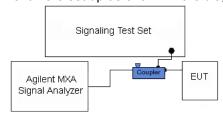
KDB 971168 v02r01 - Section 5.7.1

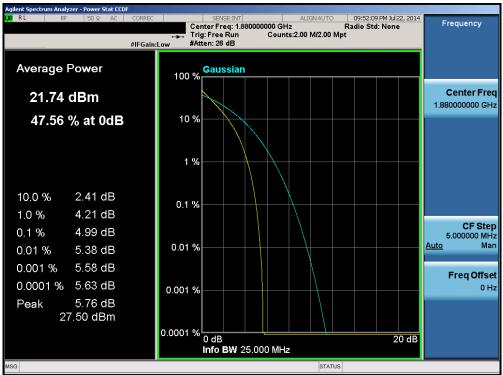
Test Settings

- 1. The signal analyzer's CCDF measurement profile is enabled
- 2. Frequency = carrier center frequency
- 3. Measurement BW > Emission bandwidth of signal
- 4. The signal analyzer was set to collect one million samples to generate the CCDF curve
- 5. The measurement interval was set depending on the type of signal analyzed. For continuous signals (>98% duty cycle), the measurement interval was set to 1ms.

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

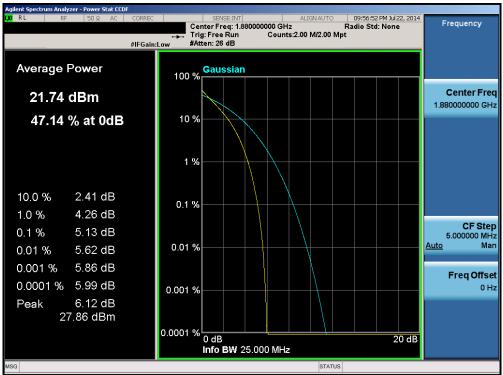


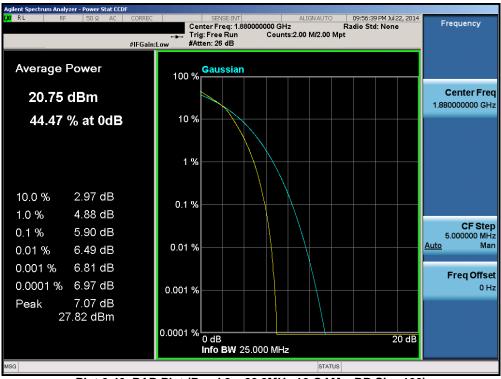

Figure 6-4. Test Instrument & Measurement Setup

Test Notes


None.

FCC ID: A3LSCHR950	PCTEST*	FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogg 22 of 40
0Y1407221429.A3L	7/22/2014	Portable Handset		Page 32 of 48


Plot 6-37. PAR Plot (Band 2 - 15.0MHz QPSK - RB Size 75)


Plot 6-38. PAR Plot (Band 2 - 15.0MHz 16-QAM - RB Size 75)

FCC ID: A3LSCHR950	PCTEST*	FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 33 of 48	
0Y1407221429.A3L	7/22/2014	Portable Handset	Page 33 01 46	

Plot 6-39. PAR Plot (Band 2 - 20.0MHz QPSK - RB Size 100)

Plot 6-40. PAR Plot (Band 2 - 20.0MHz 16-QAM - RB Size 100)

FCC ID: A3LSCHR950	PCTEST*	FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 34 of 48	
0Y1407221429.A3L	7/22/2014	Portable Handset	Fage 34 01 46	

6.6 Radiated Power (EIRP) §24.232(c) §27.50(d.4)

Test Overview

Equivalent Isotropic Radiated Power (EIRP) measurements are performed using the substitution method described in ANSI/TIA-603-C-2004 with the EUT transmitting into an integral antenna. Measurements on signals operating below 1GHz are performed using vertically polarized tuned dipole antennas. Measurements on signals operating above 1GHz are performed using vertically polarized broadband horn antennas. All measurements are performed as RMS average measurements while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies.

Test Procedures Used

KDB 971168 v02r01 - Section 5.2.1

ANSI/TIA-603-C-2004 - Section 2.2.17

Test Settings

- Radiated power measurements are performed using the signal analyzer's "channel power" measurement capability for signals with continuous operation.
- 2. RBW = 1 5% of the expected OBW, not to exceed 1MHz
- 3. VBW \geq 3 x RBW
- 4. Span = 1.5 times the OBW
- 5. No. of sweep points $\geq 2 \times \text{span} / \text{RBW}$
- 6. Detector = RMS
- 7. Trigger is set to "free run" for signals with continuous operation with the sweep times set to "auto".
- 8. The integration bandwidth was roughly set equal to the measured OBW of the signal for signals with continuous operation.
- 9. Trace mode = trace averaging (RMS) over 100 sweeps
- 10. The trace was allowed to stabilize

FCC ID: A3LSCHR950	PCTEST*	FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	AMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dags 25 of 40
0Y1407221429.A3L	7/22/2014	Portable Handset		Page 35 of 48

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

3 Meter EMC Chamber

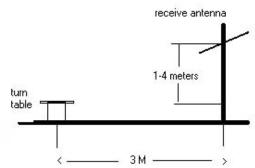


Figure 6-5. Test Instrument & Measurement Setup

Test Notes

- 1) The EUT was tested in three orthogonal planes and in all possible test configurations and positioning. The "H" positioning is defined with the EUT lying flat on the test surface, the "H2" positioning is defined with the EUT standing up on its side, and the "V" positioning is defined with the EUT standing upright. The worst case emissions are reported with the EUT positioning, modulations, RB sizes and offsets, and channel bandwidth configurations shown in the tables below.
- 2) The EUT is supplied with a new fully-recharged battery. The battery for this model is EB595675LA contains an embedded NFC antenna.

Frequency [MHz]	Channel Bandwidth [MHz]	Mod.	Battery	RB Size/Offset	Substitute Level [dBm]	Ant. Gain [dBi]	Ant. Pol. [H/V]	EUT Pol.	EIRP [dBm]	EIRP [Watts]	Margin [dB]
1717.50	15	QPSK	Standard	1 / 74	5.51	9.66	٧	٧	15.17	0.033	-14.83
1732.50	15	QPSK	Standard	1/0	5.45	9.65	٧	V	15.10	0.032	-14.90
1747.50	15	QPSK	Standard	1/0	3.84	9.63	٧	٧	13.47	0.022	-16.53
1717.50	15	16-QAM	Standard	1 / 74	4.73	9.66	٧	٧	14.39	0.027	-15.61
1732.50	15	16-QAM	Standard	1/0	4.49	9.65	٧	٧	14.14	0.026	-15.86
1747.50	15	16-QAM	Standard	1/0	2.17	9.63	٧	٧	11.80	0.015	-18.20
1720.00	20	QPSK	Standard	1 / 99	5.38	9.66	٧	V	15.04	0.032	-14.96
1732.50	20	QPSK	Standard	1/0	4.96	9.65	٧	V	14.61	0.029	-15.39
1745.00	20	QPSK	Standard	1 / 99	5.15	9.63	٧	V	14.78	0.030	-15.22
1720.00	20	16-QAM	Standard	1 / 99	4.61	9.66	٧	٧	14.27	0.027	-15.73
1732.50	20	16-QAM	Standard	1/0	3.96	9.65	V	٧	13.61	0.023	-16.39
1745.00	20	16-QAM	Standard	1 / 99	3.86	9.63	٧	V	13.49	0.022	-16.51

Table 6-2. EIRP Data (Band 4)

· · · · · · · · · · · · · · · · · · ·							
FCC ID: A3LSCHR950	PCTEST*	FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	Reviewed by: Quality Manager				
Test Report S/N:	Test Dates:	EUT Type:	Page 36 of 48				
0Y1407221429.A3L	7/22/2014	Portable Handset	_				

Frequency [MHz]	Channel Bandwidth [MHz]	Mod.	Battery	RB Size/Offset	Substitute Level [dBm]	Ant. Gain [dBi]	Ant. Pol. [H/V]	EUT Pol.	EIRP [dBm]	EIRP [Watts]	Margin [dB]
1857.50	15	QPSK	Standard	1/0	7.49	9.48	٧	H2	16.97	0.050	-16.04
1880.00	15	QPSK	Standard	1/0	7.96	9.44	٧	H2	17.40	0.055	-15.61
1902.50	15	QPSK	Standard	1/0	7.24	9.41	٧	H2	16.65	0.046	-16.36
1857.50	15	16-QAM	Standard	1/0	6.68	9.48	٧	H2	16.16	0.041	-16.85
1880.00	15	16-QAM	Standard	1/0	5.80	9.44	٧	H2	15.24	0.033	-17.77
1902.50	15	16-QAM	Standard	1/0	5.54	9.41	٧	H2	14.95	0.031	-18.06
1860.00	20	QPSK	Standard	1 / 99	6.23	9.48	٧	H2	15.71	0.037	-17.30
1880.00	20	QPSK	Standard	1/0	6.31	9.44	٧	H2	15.75	0.038	-17.26
1900.00	20	QPSK	Standard	1 / 99	6.57	9.41	٧	H2	15.98	0.040	-17.03
1860.00	20	16-QAM	Standard	1 / 99	5.18	9.48	٧	H2	14.66	0.029	-18.35
1880.00	20	16-QAM	Standard	1/0	5.20	9.44	٧	H2	14.64	0.029	-18.37
1900.00	20	16-QAM	Standard	1 / 99	5.35	9.41	٧	H2	14.76	0.030	-18.25

Table 6-3. EIRP Data (Band 2)

FCC ID: A3LSCHR950	PCTEST*	FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogg 27 of 40
0Y1407221429.A3L	7/22/2014	Portable Handset	Page 37 of 48

6.7 Radiated Spurious Emissions Measurements §2.1053 §24.238(a) §27.53(h)

Test Overview

Radiated spurious emissions measurements are performed using the substitution method described in ANSI/TIA-603-C-2004 with the EUT transmitting into an integral antenna. Measurements on signals operating below 1GHz are performed using vertically and vertically polarized tuned dipole antennas. Measurements on signals operating above 1GHz are performed using vertically and horizontally polarized broadband horn antennas. All measurements are performed as peak measurements while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies.

Test Procedures Used

KDB 971168 v02r01 - Section 5.8

ANSI/TIA-603-C-2004 - Section 2.2.12

Test Settings

- 1. RBW = 100kHz for emissions below 1GHz and 1MHz for emissions above 1GHz
- 2. VBW \geq 3 x RBW
- 3. Span = 1.5 times the OBW
- 4. No. of sweep points > 2 x span / RBW
- 5. Detector = Peak
- 6. Trace mode = max hold
- 7. The trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

3 Meter EMC Chamber

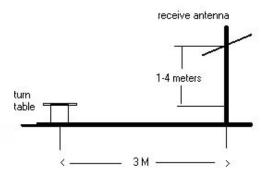


Figure 6-6. Test Instrument & Measurement Setup

FCC ID: A3LSCHR950	PCTEST*	FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	AMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dags 20 of 40
0Y1407221429.A3L	7/22/2014	Portable Handset		Page 38 of 48
© 0044 DOTEOT Facilities				1/44/

Test Notes

- 1) The EUT was tested in three orthogonal planes and in all possible test configurations and positioning. The "H" positioning is defined with the EUT lying flat on the test surface, the "H2" positioning is defined with the EUT standing up on its side, and the "V" positioning is defined with the EUT standing upright. The worst case emissions are reported with the EUT positioning, modulations, RB sizes and offsets, and channel bandwidth configurations shown in the tables below.
- 2) The battery used with this device for testing (Model:) contains an embedded NFC antenna.
- 3) The spectrum is measured from 9kHz to the 10th harmonic of the fundamental frequency of the transmitter. The worst-case emissions are reported.
- 4) Emissions below 18GHz were measured at a 3 meter test distance while emissions above 18GHz were measured at a 1 meter test distance with the application of a distance correction factor.

1717.50 OPERATING FREQUENCY: MHz 20025 CHANNEL: MEASURED OUTPUT POWER: 15.17 0.033 dBm W MODULATION SIGNAL: QPSK BANDWIDTH: 15.0 MHz 3 DISTANCE: meters LIMIT: $43 + 10 \log_{10} (W) =$ 28.17 dBc

Frequency [MHz]	Level at Antenna Terminals IdBml	Substitute Antenna Gain [dBi]	Spurious Emission Level [dBm]		EUT Pol. [H/H2/V]	[dBc]
3435.00	-54.74	9.69	-45.05	Н	Н	60.2
5152.50	-57.86	10.65	-47.20	Н	Н	62.4

Table 6-4. Radiated Spurious Data (Band 4 – Low Channel)

FCC ID: A3LSCHR950	PCTEST*	FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 39 of 48
0Y1407221429.A3L	7/22/2014	Portable Handset		Page 39 01 46

OPERATING FREQUENCY: 1732.50 MHz

> CHANNEL: 20175

15.10 MEASURED OUTPUT POWER: dBm 0.032 W

MODULATION SIGNAL: QPSK

> BANDWIDTH: 15.0 MHz DISTANCE: 3 meters

> > LIMIT: $43 + 10 \log_{10} (W) = 28.10$ dBc

Frequency [MHz]	Level at Antenna Terminals [dBm]	Substitute Antenna Gain [dBi]	Spurious Emission Level [dBm]		EUT Pol. [H/H2/V]	
3465.00	-57.00	9.71	-47.30	Н	Н	62.4
5197.50	-53.72	10.59	-43.13	Н	Н	58.2

Table 6-5. Radiated Spurious Data (Band 4 – Mid Channel)

OPERATING FREQUENCY: 1747.50 MHz

> 1748 CHANNEL:

MEASURED OUTPUT POWER: 13.47 dBm 0.022 W

QPSK MODULATION SIGNAL:

> 15.0 BANDWIDTH: MHz DISTANCE: 3 meters

> > LIMIT: $43 + 10 \log_{10} (W) = 26.47$

Frequency [MHz]	Level at Antenna Terminals [dBm]	Substitute Antenna Gain [dBi]	Spurious Emission Level [dBm]		EUT Pol. [H/H2/V]	[dBc]
3495.00	-51.54	9.72	-41.82	Н	Н	55.3
5242.50	-52.11	10.62	-41.48	Н	Н	55.0

Table 6-6. Radiated Spurious Data (Band 4 – High Channel)

FCC ID: A3LSCHR950	PCTEST	FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 40 of 48
0Y1407221429.A3L	7/22/2014	Portable Handset		Page 40 01 46

OPERATING FREQUENCY: 1857.50 MHz

> CHANNEL: 18675

MEASURED OUTPUT POWER: 16.97 dBm 0.050 W

MODULATION SIGNAL: **QPSK**

> BANDWIDTH: 15.0 DISTANCE: 3 meters

> > LIMIT: $43 + 10 \log_{10} (W) = 29.97$ dBc

Frequency [MHz]	Level at Antenna Terminals [dBm]	Substitute Antenna Gain [dBi]	Spurious Emission Level [dBm]	Ant. Pol. [H/V]	EUT Pol. [H/H2/V]	[dBc]
3715.00	-44.57	9.40	-35.17	Η	Н	52.1
5572.50	-45.72	10.83	-34.88	Η	Н	51.9
7430.00	-43.47	10.76	-32.71	Н	Н	49.7

Table 6-7. Radiated Spurious Data (Band 2 – Low Channel)

OPERATING FREQUENCY: 1880.00 MHz

> CHANNEL: 18900

MEASURED OUTPUT POWER: 17.40 dBm 0.055 W

MODULATION SIGNAL: QPSK

BANDWIDTH: 15.0 MHz DISTANCE: 3 meters

> LIMIT: $43 + 10 \log_{10} (W) = 30.40$ dBc

Frequency [MHz]	Level at Antenna Terminals [dBm]	Substitute Antenna Gain [dBi]	Spurious Emission Level [dBm]	Ant. Pol. [H/V]	EUT Pol. [H/H2/V]	[dBc]
3760.00	-41.38	9.28	-32.10	Н	Н	49.5
5640.00	-43.24	11.03	-32.21	Н	Н	49.6
7520.00	-42.74	10.97	-31.77	Н	Н	49.2

Table 6-8. Radiated Spurious Data (Band 2 – Mid Channel)

FCC ID: A3LSCHR950	PCTEST*	FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogg 41 of 40
0Y1407221429.A3L	7/22/2014	Portable Handset		Page 41 of 48

1902.50 OPERATING FREQUENCY: MHz

> 19125 CHANNEL:

MEASURED OUTPUT POWER: 16.65 $\mathsf{d}\mathsf{B}\mathsf{m}$ 0.046 W

MODULATION SIGNAL: **QPSK**

> 15.0 BANDWIDTH: MHz DISTANCE: 3 meters

> > LIMIT: $43 + 10 \log_{10} (W) = 29.65$ dBc

Frequency [MHz]	Level at Antenna Terminals [dBm]	Substitute Antenna Gain [dBi]	Spurious Emission Level [dBm]	Ant. Pol. [H/V]	EUT Pol. [H/H2/V]	[dBc]
3805.00	-38.81	9.18	-29.62	Η	Н	46.3
5707.50	-42.95	11.25	-31.70	Н	Н	48.3
7610.00	-43.78	11.15	-32.63	Н	Н	49.3

Table 6-9. Radiated Spurious Data (Band 2 – High Channel)

FCC ID: A3LSCHR950	PCTEST	FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)		Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 42 of 48
0Y1407221429.A3L	7/22/2014	Portable Handset		raye 42 01 46

6.8 Frequency Stability / Temperature Variation §2.1055 §24.235 §27.54

Test Overview and Limit

Frequency stability testing is performed in accordance with the guidelines of ANSI/TIA-603-C-2004. The frequency stability of the transmitter is measured by:

- a.) **Temperature:** The temperature is varied from -30°C to +50°C in 10°C increments using an environmental chamber.
- b.) **Primary Supply Voltage:** The primary supply voltage is varied from 85% to 115% of the nominal value for non hand-carried battery and AC powered equipment. For hand-carried, battery-powered equipment, primary supply voltage is reduced to the battery operating end point which shall be specified by the manufacturer.

For Part 24 and Part 27, the frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

Test Procedure Used

ANSI/TIA-603-C-2004

Test Settings

- 1. The carrier frequency of the transmitter is measured at room temperature (20°C to provide a reference).
- 2. The equipment is turned on in a "standby" condition for fifteen minutes before applying power to the transmitter. Measurement of the carrier frequency of the transmitter is made within one minute after applying power to the transmitter.
- 3. Frequency measurements are made at 10°C intervals ranging from -30°C to +50°C. A period of at least one half-hour is provided to allow stabilization of the equipment at each temperature level.

Test Setup

The EUT was connected via an RF cable to a spectrum analyzer with the EUT placed inside an environmental chamber.

Test Notes

None

FCC ID: A3LSCHR950	PCTEST*	FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogg 42 of 40
0Y1407221429.A3L	7/22/2014	Portable Handset	Page 43 of 48

Band 4 Frequency Stability Measurements §2.1055 §§27.54

OPERATING FREQUENCY: 1,732,500,000 Hz

CHANNEL: 20175

REFERENCE VOLTAGE: 3.80 VDC

VOLTAGE (%)	POWER (VDC)	TEMP (°C)	FREQUENCY (Hz)	Freq. Dev. (Hz)	Deviation (%)
100 %	3.80	+ 20 (Ref)	1,732,499,976	-24	-0.0000014
100 %		- 30	1,732,500,016	16	0.0000009
100 %		- 20	1,732,500,024	24	0.0000014
100 %		- 10	1,732,499,979	-21	-0.0000012
100 %		0	1,732,500,027	27	0.0000016
100 %		+ 10	1,732,499,970	-30	-0.0000017
100 %		+ 20	1,732,500,030	30	0.0000017
100 %		+ 30	1,732,499,976	-24	-0.0000014
100 %		+ 40	1,732,500,018	18	0.0000010
100 %		+ 50	1,732,500,017	17	0.0000010
BATT. ENDPOINT	3.50	+ 20	1,732,499,983	-17	-0.0000010

Table 6-10. Frequency Stability Data (Band 4)

Note:

Based on the results of the frequency stability test at the center channel the frequency deviation results measured are very small. As such it is determined that the channels at the band edge would remain inband when the maximum measured frequency deviation noted during the frequency stability tests is applied. Therefore the device is determined to remain operating in band over the temperature and voltage range as tested.

FCC ID: A3LSCHR950	PCTEST*	FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 44 of 49
0Y1407221429.A3L	7/22/2014	Portable Handset	Page 44 of 48

Band 4 Frequency Stability Measurements §2.1055 §§27.54

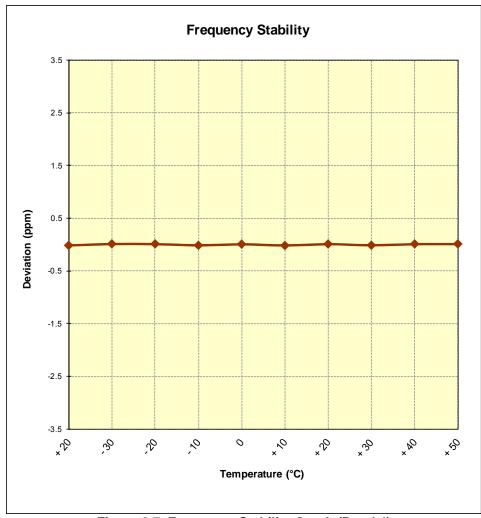


Figure 6-7. Frequency Stability Graph (Band 4)

FCC ID: A3LSCHR950	PCTEST	FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)		Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 45 of 48
0Y1407221429.A3L	7/22/2014	Portable Handset		Page 45 01 46

Band 2 Frequency Stability Measurements §2.1055 §24.235

OPERATING FREQUENCY: 1,880,000,000 Hz

CHANNEL: 18900

REFERENCE VOLTAGE: 3.80 VDC

VOLTAGE (%)	POWER (VDC)	TEMP (°C)	FREQUENCY (Hz)	Freq. Dev. (Hz)	Deviation (%)
100 %	3.80	+ 20 (Ref)	1,879,999,983	-17	-0.0000009
100 %		- 30	1,880,000,017	17	0.0000009
100 %		- 20	1,880,000,021	21	0.0000011
100 %		- 10	1,879,999,983	-17	-0.0000009
100 %		0	1,880,000,027	27	0.0000014
100 %		+ 10	1,879,999,976	-24	-0.0000013
100 %		+ 20	1,880,000,027	27	0.0000014
100 %		+ 30	1,879,999,973	-27	-0.0000014
100 %		+ 40	1,880,000,029	29	0.0000015
100 %		+ 50	1,880,000,021	21	0.000011
BATT. ENDPOINT	3.50	+ 20	1,879,999,975	-25	-0.0000013

Table 6-11. Frequency Stability Data (Band 2)

Note:

Based on the results of the frequency stability test at the center channel the frequency deviation results measured are very small. As such it is determined that the channels at the band edge would remain inband when the maximum measured frequency deviation noted during the frequency stability tests is applied. Therefore the device is determined to remain operating in band over the temperature and voltage range as tested.

FCC ID: A3LSCHR950	PCTEST*	FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dog 46 of 49
0Y1407221429.A3L	7/22/2014	Portable Handset	Page 46 of 48

Band 2 Frequency Stability Measurements §2.1055 §24.235



Figure 6-8. Frequency Stability Graph (Band 2)

FCC ID: A3LSCHR950	PCTEST	FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogg 47 of 40
0Y1407221429.A3L	7/22/2014	Portable Handset	Page 47 of 48

7.0 CONCLUSION

The data collected relate only to the item(s) tested and show that the Samsung Portable Handset FCC ID: A3LSCHR950 complies with all the requirements of Parts 24 & 27 of the FCC rules for LTE operation only.

FCC ID: A3LSCHR950	PCTEST*	FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 48 of 48
0Y1407221429.A3L	7/22/2014	Portable Handset	Fage 40 01 40