PCTEST ENGINEERING LABORATORY, INC.

6660-B Dobbin Road, Columbia, MD 21045 USA Tel. 410.290.6652 / Fax 410.290.6554 http://www.pctestlab.com

MEASUREMENT REPORT FCC Part 27 LTE

Applicant Name:

Samsung Electronics, Co. Ltd. 18600 Broadwick St. Rancho Dominguez, CA 90220 United States

Date of Testing: January 10, 2011 **Test Site/Location:**

PCTEST Lab., Columbia, MD, USA

Test Report Serial No.: 0Y1101050044.A3L

FCC ID: A3LSCHLC11

APPLICANT: SAMSUNG ELECTRONICS, CO. LTD.

Application Type: Class II Permissive Change

FCC Classification: PCS Licensed Transmitter (PCB)

FCC Rule Part(s): §2; §27

Cellular/PCS CDMA/EVDO and 750 MHz LTE Portable Wireless Router with **EUT Type:**

WLAN

Model(s): SCH-LC11

Tx Frequency Range: 782MHz (10MHz BW LTE - Band 13)

Max. RF Output Power: 0.056 W ERP (10MHz BW - QPSK) (17.5 dBm)

0.059 W ERP (10MHz BW – 16QAM) (17.7 dBm)

Test Device Serial No.: identical prototype [S/N: FCC#2]

Please see FCC Change Document. Class II Perm. Change:

Original Grant Date: December 7, 2010

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in §2.947. Test results reported herein relate only to the item(s) tested.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

Grant Conditions: Power output listed is ERP for Part 27.

PCTEST certifies that no party to this application has been subject to a denial of Federal benefits that includes FCC benefits pursuant to Section 5301 of the Anti-Drug Abuse Act of 1988, 21 U.S.C. 862.

FCC ID: A3LSCHL	C11	FCC Pt. 27 LTE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	
Test Report S/N:	Test Dates:	EUT Type:	Page 1 of 14
0Y1101050044.A3	January 10, 2011	Cellular/PCS CDMA/EVDO and 750 MHz LTE Portable Wireless Router with WLAN	. ago . o

TABLE OF CONTENTS

FCC	PART 2	27 MEASUREMENT REPORT	3
1.0	INTE	RODUCTION	4
	1.1	SCOPE	4
	1.2	TESTING FACILITY	4
2.0	PRC	DDUCT INFORMATION	5
	2.1	EQUIPMENT DESCRIPTION	5
	2.2	EMI SUPPRESSION DEVICE(S)/MODIFICATIONS	5
	2.3	LABELING REQUIREMENTS	5
3.0	DES	SCRIPTION OF TESTS	6
	3.1	MEASUREMENT PROCEDURE	
	3.2	BLOCK C FREQUENCY RANGE	6
	3.3	RADIATED POWER AND RADIATED SPURIOUS EMISSIONS	6
4.0	TES	T EQUIPMENT CALIB RATION DATA	7
5.0	SAM	MPLE CALCULATIONS	8
6.0	TES	T RESULTS	9
	6.1	SUMMARY	9
	6.2	TRANSMITTER CONDUCTED OUTPUT POWER	
	6.3	EFFECTIVE RADIATED POWER OUTPUT DATA	11
	6.4	LTE RADIATED MEASUREMENTS	12
	6.5	LTE RADIATED MEASUREMENTS IN 1559 – 1610MHZ BAND	13
7.0	CON	NCLUSION	14

FCC ID: A3LSCHLC11	PCTEST	FCC Pt. 27 LTE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 2 of 14
0Y1101050044.A3L	January 10, 2011	Cellular/PCS CDMA/EVDO and 750 MHz LTE Portable Wireless Router with WLAN	. ago _ o

MEASUREMENT REPORT FCC Part 27

§2.1033 General Information

APPLICANT: Samsung Electronics, Co. Ltd.

APPLICANT ADDRESS: 18600 Broadwick St.

Rancho Dominguez, CA 90220

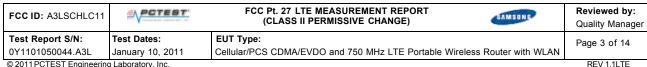
TEST SITE: PCTEST ENGINEERING LABORATORY, INC. **TEST SITE ADDRESS:** 6660-B Dobbin Road, Columbia, MD 21045 USA

FCC RULE PART(S): §2; §27 **BASE MODEL:** SCH-LC11 FCC ID: A3LSCHLC11

FCC CLASSIFICATION: PCS Licensed Transmitter (PCB)

MODULATIONS: QPSK, 16-QAM (Uplink) FREQUENCY TOLERANCE: Emission must remain in band

FCC#2 **Test Device Serial No.:** ☐ Production ☐ Pre-Production Engineering


DATE(S) OF TEST: January 10, 2011 **TEST REPORT S/N:** 0Y1101050044.A3L

Test Facility / Accreditations

Measurements were performed at PCTEST Engineering Lab. located in Columbia, MD 21045, U.S.A.

- PCTEST facility is an FCC registered (PCTEST Reg. No. 90864) test facility with the site description report on file and has met all the requirements specified in Section 2.948 of the FCC Rules and Industry Canada (2451A-1).
- PCTEST Lab is accredited to ISO 17025 by U.S. National Institute of Standards and Technology (NIST) under the National Voluntary Laboratory Accreditation Program (NVLAP Lab code: 100431-0) in EMC, FCC and Telecommunications.
- PCTEST Lab is accredited to ISO 17025-2005 by the American Association for Laboratory Accreditation (A2LA) in Specific Absorption Rate (SAR) testing, Hearing Aid Compatibility (HAC) testing, CTIA Test Plans, and wireless testing for FCC and Industry Canada Rules.
- PCTEST Lab is a recognized U.S. Conformity Assessment Body (CAB) in EMC and R&TTE (n.b. 0982) under the U.S.-EU Mutual Recognition Agreement (MRA).
- PCTEST TCB is a Telecommunication Certification Body (TCB) accredited to ISO/IEC Guide 65 by the American National Standards Institute (ANSI) in all scopes of FCC Rules and Industry Canada Standards (RSS).
- PCTEST facility is an IC registered (2451A-1) test laboratory with the site description on file at Industry Canada.
- PCTEST is a CTIA Authorized Test Laboratory (CATL) for AMPS, CDMA, and EvDO wireless devices and for Over-the-Air (OTA) Antenna Performance testing for AMPS, CDMA, GSM, GPRS, EGPRS, UMTS (W-CDMA), CDMA 1xEVDO, and CDMA 1xRTT.

© 2011 PCTEST Engineering Laboratory, Inc.

INTRODUCTION

1.1 Scope

Measurement and determination of electromagnetic emissions (EME) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission.

1.2 Testing Facility

The map below shows the location of the PCTEST LABORATORY, its proximity to the FCC Laboratory, the Columbia vicinity are, the Baltimore-Washington Internt'l (BWI) airport, the city of Baltimore and the Washington, DC area. (See Figure 1-1).

These measurement tests were conducted at the PCTEST Engineering Laboratory, Inc. facility in New Concept Business Park, Guilford Industrial Park, Columbia, Maryland. The site address is 6660-B Dobbin Road, Columbia, MD 21045. The test site is one of the highest points in the Columbia area with an elevation of 390 feet above mean sea level. The site coordinates are 39° 11'15" N latitude and 76° 49'38" W longitude. The facility is 1.5 miles North of the FCC laboratory, and the ambient signal and ambient signal strength are approximately equal to those of the FCC laboratory. There are no FM or TV transmitters within 15 miles of the site. The detailed description of the measurement facility was found to be in compliance with the requirements of § 2.948 according to ANSI C63.4-2003 on January 28, 2009.

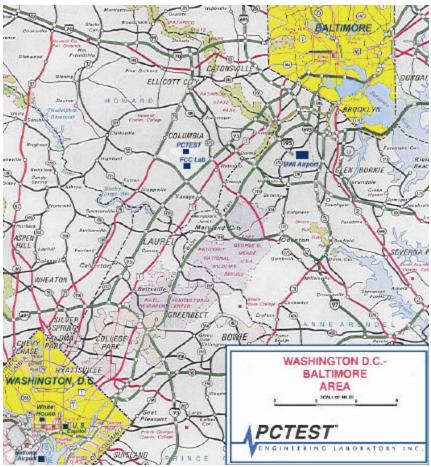


Figure 1-1. Map of the Greater Baltimore and Metropolitan Washington, D.C. area

FCC ID: A3LSCHLC11	PCTEST	FCC Pt. 27 LTE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 4 of 14
0Y1101050044.A3L	January 10, 2011	Cellular/PCS CDMA/EVDO and 750 MHz LTE Portable Wireless Router with WLAN	rage rorrr
© 0044 DOTEOT Facility and	a I alcandani Ina		DEVAME

© 2011 PCTEST Engineering Laboratory, Inc.

2.0 PRODUCT INFORMATION

2.1 Equipment Description

The Equipment Under Test (EUT) is the Samsung Cellular/PCS CDMA/EVDO and 750 MHz LTE Portable Wireless Router with WLAN FCC ID: A3LSCHLC11. The test data contained in this report pertains only to the emissions due to the EUT's LTE function. The EUT consisted of the following component(s):

Trade Name / Base Model	FCC ID	Description
Samsung / Model: SCH-LC11	A3LSCHLC11	Cellular/PCS CDMA/EVDO and 750 MHz LTE Portable Wireless Router with WLAN

Table 2-1. EUT Equipment Description

The EUT was set to transmit at full power in the available 10MHz BW 782MHz frequency with a CMW500 LTE Base Station Simulator. Each available modulation type (i.e. QPSK, 16-QAM) and resource block size configuration was also tested to determine the configuration producing the worst case emissions.

2.2 EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and no modifications were made during testing.

2.3 Labeling Requirements

Per 2.925

The FCC identifier shall be permanently affixed to the equipment and shall be readily visible to the purchaser at the time of purchase.

Per 15.19; Docket 95-19

In addition to this requirement, a device subject to certification shall be labeled as follows:

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

The label shall be permanently affixed at a conspicuous location on the device; instruction manual or pamphlet supplied to the user and be readily visible to the purchaser at the time of purchase. However, when the device is so small wherein placement of the label with specified statement is not practical, only the trade name and FCC ID must be displayed on the device per Section 15.19(b)(2).

Please see attachment for FCC ID label and label location.

FCC ID: A3LSCHLC11	PCTEST	FCC Pt. 27 LTE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 5 of 14
0Y1101050044.A3L	January 10, 2011	Cellular/PCS CDMA/EVDO and 750 MHz LTE Portable Wireless Router with WLAN	. ago o o

DESCRIPTION OF TESTS

3.1 Measurement Procedure

The radiated spurious measurements were made outdoors at a 3meter test range (see Figure 3-1). The equipment under test is placed on a wooden turntable 80cm above the ground plane and 3 meters from the receive antenna. The receive antenna height and turntable rotations were adjusted for the highest reading on the receive spectrum analyzer. This power level was recorded using a broadband average power meter. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. This level is recorded with the power meter. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic antenna are taken into consideration.

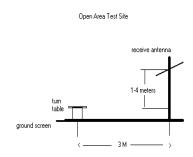


Figure 3-1. Diagram of 3-meter outdoor test range

Deviation from Measurement Procedure......None

3.2 Block C Frequency Range §27.5(b)(3)

Two paired channels of 11 megahertz each are available for assignment in Block C in the 746-757 MHz and 776-787 MHz bands. In the event that no licenses for two channels in this Block C are assigned based on the results of the first auction in which such licenses were offered because the auction results do not satisfy the applicable reserve price, the spectrum in the 746-757 MHz and 776-787 MHz bands will instead be made available for assignment at a subsequent auction as follows: (i) Two paired channels of 6 megahertz each available for assignment in Block C1 in the 746-752 MHz and 776-782 MHz bands. (ii) Two paired channels of 5 megahertz each available for assignment in Block C2 in the 752-757 MHz and 782-787 MHz bands.

3.3 Radiated Power and Radiated Spurious Emissions §2.1053, §27.53(c)

Spurious and harmonic radiated emissions are measured outdoors at our 3-meter test range. The equipment under test is placed on a wooden turntable 80cm above the ground plane and 3 meters from the receive antenna. The receive antenna height and turntable rotations were adjusted for the highest reading on the receive spectrum analyzer. This level is then measured with a broadband average power meter. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10th harmonic. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator with the level of the signal generator being adjusted to obtain the same receive average power meter reading. This spurious level is recorded with the power meter. For readings above 1 GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration. This device was tested under all configurations and the worst case radiated power is reported while transmitting with 25 Resource Block in the 16-QAM modulation.

FCC ID: A3LSCHLC11	PCTEST	FCC Pt. 27 LTE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 6 of 14
0Y1101050044.A3L	January 10, 2011	Cellular/PCS CDMA/EVDO and 750 MHz LTE Portable Wireless Router with WLAN	3 0

TEST EQUIPMENT CALIBRATION DATA

Test Equipment Calibration is traceable to the National Institute of Standards and Technology (NIST).

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
-	263-10dB	(DC-18GHz) 10 dB Attenuator	N/A		N/A	N/A
-	No.166	(1000-26500MHz) Microwave RF Cable	N/A		N/A	N/A
-	No.167	(100kHz - 100MHz) RG58 Coax Cable	N/A		N/A	N/A
Agilent	8449B	(1-26.5GHz) Pre-Amplifier	12/2/2010	Annual	12/2/2011	3008A00985
Agilent	85650A	Quasi-Peak Adapter	3/30/2010	Annual	3/30/2011	2043A00301
Agilent	8648D	(9kHz-4GHz) Signal Generator	10/11/2010	Annual	10/11/2011	3613A00315
Agilent	E4407B	ESA Spectrum Analyzer	3/30/2010	Annual	3/30/2011	US39210313
Agilent	E4448A	PSA (3Hz-50GHz) Spectrum Analyzer	10/11/2010	Annual	10/11/2011	US42510244
Agilent	E5515C	Wireless Communications Test Set	10/11/2010	Annual	10/11/2011	GB46110872
Agilent	E5515C	Wireless Communications Test Set	10/11/2010	Annual	10/11/2011	GB46310798
Agilent	E5515C	Wireless Communications Test Set	8/12/2010	Annual	8/12/2011	GB41450275
Agilent	E8257D	(250kHz-20GHz) Signal Generator	3/30/2010	Annual	3/30/2011	MY45470194
Agilent	E8267C	Vector Signal Generator	10/11/2010	Annual	10/11/2011	US42340152
Agilent	N9020A	MXA Signal Analyzer	9/8/2010	Annual	9/8/2011	US46470561
Anritsu	ML2495A	Power Meter	10/13/2010	Annual	10/13/2011	941001
Anritsu	MA2411B	Pulse Sensor	11/13/2010	Annual	11/13/2011	1027293
Compliance Design	Roberts	Dipole Set	4/7/2010	Biennial	4/7/2012	146
Compliance Design	Roberts	Dipole Set	4/7/2010	Biennial	4/7/2012	147
Emco	3115	Horn Antenna (1-18GHz)	10/14/2009	Biennial	10/14/2011	9704-5182
Emco	3115	Horn Antenna (1-18GHz)	4/8/2010	Biennial	4/8/2012	9205-3874
Espec	ESX-2CA	Environmental Chamber	4/1/2010	Annual	4/1/2011	17620
Gigatronics	80701A	(0.05-18GHz) Power Sensor	10/11/2010	Annual	10/11/2011	1833460
Gigatronics	8651A	Universal Power Meter	10/11/2010	Annual	10/11/2011	8650319
K&L	11SH10	Band Pass Filter	N/A	Annual	N/A	1300/4000
K&L	11SH10	Band Pass Filter	N/A	Annual	N/A	4000/12000
MiniCircuits	VHF-1300+	High Pass Filter	N/A		N/A	30716
MiniCircuits	VHF-3100+	High Pass Filter	N/A		N/A	30721
Pasternack	PE2208-6	Bidirectional Coupler	N/A		N/A	N/A
Rohde & Schwarz	CMU200	Base Station Simulator	6/21/2010	Annual	6/21/2011	833855/0010
Rohde & Schwarz	CMU200	Base Station Simulator	6/17/2010	Annual	6/17/2011	836536/0005
Rohde & Schwarz	FSQ 26	Spectrum Analyzer	8/28/2010	Annual	8/28/2011	200452
Rohde & Schwarz	CMW500	LTE Radio Communication Tester	8/30/2010	Annual	8/30/2011	100976
Schwarzbeck	UHA9105	Dipole Antenna (400 - 1GHz) Rx	7/17/2009	Biennial	7/17/2011	9105-2404
Schwarzbeck	UHA9105	Dipole Antenna (400 - 1GHz) Tx	7/17/2009	Biennial	7/17/2011	9105-2403
Sunol	DRH-118	Horn Antenna (1 - 18GHz)	5/14/2009	Biennial	5/14/2011	A050307
Sunol	JB5	Bi-Log Antenna (30M - 5GHz)	7/17/2009	Biennial	7/17/2011	A051107

Table 4-1. Test Equipment

FCC ID: A3LSCHLC11	PCTEST	FCC Pt. 27 LTE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 7 of 14
0Y1101050044.A3L	January 10, 2011	Cellular/PCS CDMA/EVDO and 750 MHz LTE Portable Wireless Router with WLAN	. ago . o

SAMPLE CALCULATIONS

Spurious Radiated Emission - LTE Band

Example: Middle Channel LTE Mode 2nd Harmonic (1564 MHz)

The average receive power meter reading at 3 meters with the EUT on the turntable was -81.0 dBm. The gain of the substituted antenna is 8.1 dBi. The signal generator connected to the substituted antenna terminals is adjusted to produce a reading of -81.0 dBm on the power meter. The loss of the cable between the signal generator and the terminals of the substituted antenna is 2.0 dB at 1564 MHz. So 6.1 dB is added to the signal generator reading of -30.9 dBm yielding -24.80 dBm. The fundamental EIRP was 25.501 dBm so this harmonic was 25.501 dBm - (-24.80).

FCC ID: A3LSCHLC11	PCTEST	FCC Pt. 27 LTE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 8 of 14
0Y1101050044.A3L	January 10, 2011	Cellular/PCS CDMA/EVDO and 750 MHz LTE Portable Wireless Router with WLAN	. ago o o

TEST RESULTS

6.1 **Summary**

Company Name: Samsung Electronics, Co. Ltd.

FCC ID: A3LSCHLC11

FCC Classification: PCS Licensed Transmitter (PCB)

Mode(s): <u>LTE</u>

FCC Part Section(s)	Test Description	Test Limit	Test Condition	Test Result	Reference
TRANSMITTER MO	ODE (Tx)				
2.1046	Transmitter Conducted Output Power Measurements	N/A	CONDUCTED	N/A	Section 6.2
27.50(b)(10)	Effective Radiated Power	< 3 Watts max. ERP		PASS	Section 6.3
2.1053, 27.53(c)(2) 27.53(c)(4)	Undesirable Out-of-Band Emissions	< 43 + 10log ₁₀ (P[Watts]) for all out-of-band emissions	RADIATED	PASS	Section 6.4
2.1053, 27.53(f)	Undesirable Emissions in the 1559 – 1610MHz band	< -40dBm/MHz EIRP (wideband) < -50dBm EIRP (narrowband)		PASS	Section 6.5

Table 6-1. Summary of Test Results

Notes:

* - For out of band conducted spurious emissions (including those at the band edges), the emissions of both QPSK and 16-QAM modulations were investigated. The worst case transmitter emissions are shown in Sections 7.0.

FCC ID: A3LSCHLC11	PCTEST	FCC Pt. 27 LTE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 9 of 14
0Y1101050044.A3L	January 10, 2011	Cellular/PCS CDMA/EVDO and 750 MHz LTE Portable Wireless Router with WLAN	

6.2 **Transmitter Conducted Output Power** §2.1046

The Samsung Cellular/PCS CDMA/EVDO and 750 MHz LTE Portable Wireless Router with WLAN FCC ID: A3LSCHLC11 was connected to a Rohde and Schwarz LTE Base Station Simulator (Model: CMW500). The EUT was configured through the CMW500 to produce all required combinations of modulations, channel bandwidths, and resource block sizes to determine the configuration producing the worst case emissions. The transmitter conducted output power was measured with the Anritsu wideband power meter.

Frequency	BW	Modulation	RB Size	RB Offset	Maximum Average Power [dBm]
	10 MHz	QPSK	1	0	22.71
		16QAM	1	0	23.08
		QPSK	1	49	22.41
782 MHz		16QAM	1	49	22.82
702 111112		QPSK	25	13	22.50
		16QAM	25	13	23.05
		QPSK	50	0	22.46
		16QAM	50	0	22.55

Table 6-2. Maximum Average Conducted Output Power

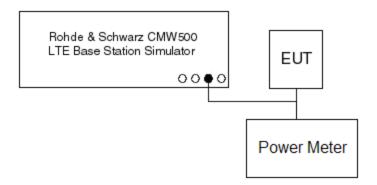


Figure 6-1. Conducted Output Power Test Setup Diagram

FCC ID: A3LSCHLC11	PCTEST	FCC Pt. 27 LTE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 10 of 14
0Y1101050044.A3L	January 10, 2011	Cellular/PCS CDMA/EVDO and 750 MHz LTE Portable Wireless Router with WLAN	

© 2011 PCTEST Engineering Laboratory, Inc.

6.3 **Effective Radiated Power Output Data** §27.50(b)(10)

Frequency [MHz]	Modulation	Resource Block Size	Measured Level [dBm]	Substitute Level [dBm]	Antenna Gain [dBd]	Pol [H/V]	ERP [dBm]	ERP [Watts]
782.00	QPSK	1	-19.700	16.50	0.00	Н	16.50	0.045
782.00	16-QAM	1	-19.700	16.50	0.00	Н	16.50	0.045
782.00	QPSK	25	-18.800	17.40	0.00	Н	17.40	0.055
782.00	16-QAM	25	-18.500	17.70	0.00	Н	17.70	0.059
782.00	QPSK	50	-18.700	17.50	0.00	Н	17.50	0.056
782.00	16-QAM	50	-19.600	16.60	0.00	Н	16.60	0.046

Table 6-3. Effective Radiated Power Output Data

NOTES:

Effective Radiated Power Output Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 80cm above the ground plane and 3 meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. Final power measurements are made with a broadband average power meter. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same spectrum analyzer reading. This level is recorded using the power meter. The conducted power at the terminals of the dipole is measured. The ERP is recorded.

This device was tested under all configurations and the worst case radiated power is reported while transmitting with 25 Resource Block in the 16-QAM modulation. This unit was tested with its standard battery. The EUT was tested in three orthogonal planes and in all possible test configurations and positioning. The worst case test configuration was found with the EUT in the horizontal flat setup. The data reported in the table above was measured in this test setup.

FCC ID: A3LSCHLC11	PCTEST	FCC Pt. 27 LTE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 11 of 14
0Y1101050044.A3L	January 10, 2011	Cellular/PCS CDMA/EVDO and 750 MHz LTE Portable Wireless Router with WLAN	. ago o

6.4 LTE Radiated Measurements §2.1053, §27.53(c)(2)

Field Strength of SPURIOUS Radiation

782.00 OPERATING FREQUENCY: MHz 10 BANDWIDTH: MHz MEASURED OUTPUT POWER: 17.700 dBm 0.059 W MODULATION SIGNAL: 16-QAM DISTANCE: 3 meters LIMIT: $43 + 10 \log_{10} (W) =$ 30.71 dBc

FREQUENCY (MHz)	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBi)	SPURIOUS EMISSION LEVEL (dBm)	POL (H/V)	(dBc)
2346.00	-68.90	8.84	-60.05	Н	77.8
3128.00	-67.89	9.70	-58.19	Н	75.9
3910.00	-94.02	9.29	-84.74	Н	102.4
4692.00	-94.92	11.20	-83.72	Н	101.4

Table 6-4. Radiated Spurious Data (16-QAM Modulation, 25RB)

NOTES:

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 80cm above the ground plane and 3 meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. Final power measurements are made with a broadband average power meter. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same spectrum analyzer reading. This spurious level is recorded using the power meter. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

This device was tested under all configurations and the worst case radiated power is reported while transmitting with 25 Resource Block in the 16-QAM modulation. This unit was tested with its standard battery. The EUT was tested in three orthogonal planes and in all possible test configurations and positioning. The worst case test configuration was found with the EUT in the horizontal flat setup. The data reported in the table above was measured in this test setup.

FCC ID: A3LSCHLC11	PCTEST	FCC Pt. 27 LTE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 12 of 14
0Y1101050044.A3L	January 10, 2011	Cellular/PCS CDMA/EVDO and 750 MHz LTE Portable Wireless Router with WLAN	. ago o

6.5 LTE Radiated Measurements in 1559 – 1610MHz Band §2.1053, §27.53(f)

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY: 782.00 MHz

BANDWIDTH: 10 MHz

MEASURED OUTPUT POWER: $\underline{17.700}$ dBm = $\underline{0.059}$ W

MODULATION SIGNAL: 16-QAM

DISTANCE: _____ meters

NARROWBAND EMISSION LIMIT: -50 dBm

WIDEBAND EMISSION LIMIT: ______dBm/MHz

FREQUENCY (MHz)	EMISSION TYPE	LEVEL @ ANTENNA TERMINALS (dBm)	SUBSTITUTE ANTENNA GAIN (dBi)	SPURIOUS EMISSION LEVEL (dBm)	POL (H/V)	MARGIN (dB)
1564.00	WIDEBAND	-66.10	8.53	-57.57	Н	-17.57

Table 6-5. Radiated Spurious Data (16-QAM Modulation, 1RB)

NOTES:

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-C-2004, Aug. 17, 2004:

The EUT was placed on a wooden turn table 80cm above the ground plane and 3 meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. Final power measurements are made with a broadband average power meter. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same spectrum analyzer reading. This spurious level is recorded using the power meter. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

This device was tested under all configurations and the worst case radiated power is reported while transmitting with 25 Resource Block in the 16-QAM modulation. This unit was tested with its standard battery. The EUT was tested in three orthogonal planes and in all possible test configurations and positioning. The worst case test configuration was found with the EUT in the horizontal flat setup. The data reported in the table above was measured in this test setup.

FCC ID: A3LSCHLC11	PCTEST	FCC Pt. 27 LTE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 13 of 14
0Y1101050044.A3L	January 10, 2011	Cellular/PCS CDMA/EVDO and 750 MHz LTE Portable Wireless Router with WLAN	. ago .o o

CONCLUSION 7.0

The data collected relate only to the item(s) tested and show that the Samsung Cellular/PCS CDMA/EVDO and 750 MHz LTE Portable Wireless Router with WLAN FCC ID: A3LSCHLC11 complies with all the requirements of Parts 2 and 27 of the FCC rules.

FCC ID: A3LSCHLC11	PCTEST	FCC Pt. 27 LTE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 14 of 14
0Y1101050044.A3L	January 10, 2011	Cellular/PCS CDMA/EVDO and 750 MHz LTE Portable Wireless Router with WLAN	. ago o