

PCTEST ENGINEERING LABORATORY, INC.

6660-B Dobbin Road, Columbia, MD 21045 USA Tel. 410.290.6652 / Fax 410.290.6554 http://www.pctestlab.com

HEARING AID COMPATIBILITY

Applicant Name:

Samsung Electronics Co., Ltd. 416 Maetan 3-Dong, Yeongtong-gu, Suwon-si Gyeonggi-do, 443-742, Republic of Korea Date of Testing: Aug. 30 - Sept. 4, 2012 Test Site/Location: PCTEST Lab, Columbia, MD, USA Test Report Serial No.: 0Y1209101318.A3L

FCC ID:

A3LSCHI605

APPLICANT:

SAMSUNG ELECTRONICS CO., LTD.

Scope of Test: Application Type: FCC Rule Part(s): HAC Standard:	RF Emissions Testing Certification § 20.19(b) ANSI C63.19-2007 §6.3(v), §7.3(v); CTIA Test Plan for Hearing Aid Compatibility Rev 2.0, April 2010
EUT Type: Model(s): Tx Frequencies Tested:	Portable Handset SCH-I605 824.70 - 848.31 MHz (Cellular CDMA) 1851.25 - 1908.75 MHz (PCS CDMA) 824.20 - 848.80 MHz (GSM 850) 1850.20 - 1909.80 MHz (GSM 1900) 826.40 - 846.60 MHz (WCDMA850) 1852.4 - 1907.6 MHz (WCDMA1900)
Test Device Serial No.:	Pre-Production Sample [S/N: 332F0]

C63.19-2007 HAC Category: M3 (RF EMISSIONS CATEGORY)

This wireless portable device has been shown to be hearing-aid compatible under the above rated category, specified in ANSI/IEEE Std. C63.19-2007 and had been tested in accordance with the specified measurement procedures. Hearing-Aid Compatibility is based on the assumption that all production units will be designed electrically identical to the device tested in this report. Test results reported herein relate only to the item(s) tested and are for North American Bands only.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

PCTEST certifies that no party to this application has been subject to a denial of Federal benefits that includes FCC benefits pursuant to Section 5301 of the Anti-Drug Abuse Act of 1988, 21 U.S.C. 862.

FCC ID: A3LSCHI605				Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 1 of 92
0Y1209101318.A3L	Aug. 30 - Sept. 4, 2012	Portable Handset		Fage 1 01 92
2012 PCTEST Engineering Laboratory, Inc.				REV 8.4C

1.	INTRODUCTION	3
2.	TEST SITE LOCATION	4
3.	EUT DESCRIPTION	. 5
4.	ANSI/IEEE C63.19 PERFORMANCE CATEGORIES	6
5.	SYSTEM SPECIFICATIONS	7
6.	TEST PROCEDURE	13
7.	SYSTEM CHECK	15
8.	MODULATION FACTOR	18
9.	FCC 3G MEASUREMENTS	21
10.	OVERALL MEASUREMENT SUMMARY	23
11.	EQUIPMENT LIST	27
12.	MEASUREMENT UNCERTAINTY	28
13.	TEST DATA	29
14.	CALIBRATION CERTIFICATES	50
15.	CONCLUSION	87
16.	REFERENCES	88
17.	TEST PHOTOGRAPHS	90

FCC ID: A3LSCHI605		HAC (RF EMISSIONS) TEST REPORT		Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 2 of 92
0Y1209101318.A3L	Aug. 30 - Sept. 4, 2012	Portable Handset		Fage 2 01 92
© 2012 PCTEST Engineering L	aboratory, Inc.			REV 8.4C

1. INTRODUCTION

On July 10, 2003, the Federal Communications Commission (FCC) adopted new rules requiring wireless manufacturers and service providers to provide digital wireless phones that are compatible with hearing aids. The FCC has modified the exemption for wireless phones under the Hearing Aid Compatibility Act of 1998 (HAC Act) in WT Docket 01-309 RM-8658¹ to extend the benefits of wireless telecommunications to individuals with hearing disabilities. These benefits encompass business, social and emergency communications, which increase the value of the wireless network for everyone. An estimated more than 10% of the population in the United States show signs of hearing impairment and of that fraction, almost 80% use hearing aids. Approximately 500 million people worldwide suffer from hearing loss.

Compatibility Tests Involved:

The standard calls for wireless communications devices to be measured for:

- RF Electric-field emissions
- RF Magnetic-field emissions
- T-coil mode, magnetic-signal strength in the audio band
- T-coil mode, magnetic-signal frequency response through the audio band
- T-coil mode, magnetic-signal and noise articulation index

The hearing aid must be measured for:

- RF immunity in microphone mode
- RF immunity in T-coil mode

In the following tests and results, this report includes the evaluation for a wireless communications device.

Figure 1-1 Hearing Aid in-vitu

¹ FCC Rule & Order, WT Docket 01-309 RM-8658

FCC ID: A3LSCHI605				Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 3 of 92
0Y1209101318.A3L	Aug. 30 - Sept. 4, 2012	Portable Handset		Fage 5 01 92
0 2012 PCTEST Engineering Laboratory, Inc.				REV 8.4C

2. TEST SITE LOCATION

2.1 INTRODUCTION

The map at the right shows the location of the PCTEST LABORATORY in Columbia, Maryland. It is in proximity to the FCC Laboratory, the Baltimore-Washington International (BWI) airport, the city of Baltimore and Washington, DC (See Figure 2).

These measurement tests were conducted at the PCTEST Engineering Laboratory, Inc. facility in New Concept Business Park, Guilford Industrial Park, Columbia, Maryland. The site address is 6660-B Dobbin Road, Columbia, MD 21045. The test site is one of the highest points in the Columbia area with an elevation of 390 feet above mean sea level. The site coordinates are 39° 11'15" N latitude and 76° 49' 38" W longitude. The facility is 1.5 miles North of the FCC laboratory, and the ambient signal and ambient signal strength are approximately equal to

Figure 2-1 Map of the Greater Baltimore and Metropolitan Washington D.C. area

those of the FCC laboratory. There are no FM or TV transmitters within 15 miles of the site. The detailed description of the measurement facility was found to be in compliance with the requirements of § 2.948 according to ANSI C63.4 on January 27, 2006 and Industry Canada.

2.2 Test Facility / Accreditations:

Measurements were performed at an independent accredited PCTEST Engineering Lab located in Columbia, MD 21045, U.S.A.

- PCTEST Lab is accredited to ISO 17025-2005 by the American Association for Laboratory Accreditation (A2LA) in Specific Absorption Rate (SAR) testing, Hearing-Aid Compatibility (HAC), CTIA Test Plans, and wireless testing for FCC and Industry Canada Rules.
- PCTEST Lab is accredited to ISO 17025 by U.S. National Institute of Standards and Technology (NIST) under the National Voluntary Laboratory Accreditation Program (NVLAP Lab code: 100431-0) in EMC, FCC and Telecommunications.
- PCTEST facility is an FCC registered (PCTEST Reg. No. 90864) test facility with the site description report on file and has met all the requirements specified in Section 2.948 of the FCC Rules and Industry Canada (IC-2451).
- PCTEST Lab is a recognized U.S. Conformity Assessment Body (CAB) in EMC and R&TTE (n.b. 0982) under the U.S.-EU Mutual Recognition Agreement (MRA).
- PCTEST TCB is a Telecommunication Certification Body (TCB) accredited to ISO/IEC Guide 65 by the American National Standards Institute (ANSI) in all scopes of FCC Rules and all Industry Canada Standards (RSS).
- PCTEST facility is an IC registered (IC-2451) test laboratory with the site description on file at Industry Canada.
- PCTEST is a CTIA Authorized Test Laboratory (CATL) for AMPS and CDMA, and EvDO mobile phones.
- PCTEST is a CTIA Authorized Test Laboratory (CATL) for Over-the-Air (OTA) Antenna Performance testing for AMPS, CDMA, GSM, GPRS, EGPRS, UMTS (W-CDMA), CDMA 1xEVDO Data, CDMA 1xRTT Data.

FCC ID: A3LSCHI605				Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Dogo 4 of 02
0Y1209101318.A3L	Aug. 30 - Sept. 4, 2012	Portable Handset		Page 4 of 92
© 2012 PCTEST Engineering L	REV 8.4C			

3. EUT DESCRIPTION

SAMSUNG

FCC ID: Manufacturer:	A3LSCHI605 Samsung Electronics Co., Ltd.				
	416 Maetan 3-Dong, Yeongtong-gu, Suwon-si				
	Gyeonggi-do, 443-742, Republic of Korea				
Model(s):	SCH-1605				
Serial Number:	332F0				
Tx Frequencies Tested:	824.70 - 848.31 MHz (Cellular CDMA)				
	1851.25 - 1908.75 MHz (PCS CDMA)				
	824.20 - 848.80 MHz (GSM 850)				
	1850.20 - 1909.80 MHz (GSM 1900)				
	826.40 - 846.60 MHz (WCDMA850)				
	1852.4 - 1907.6 MHz (WCDMA1900)				
Antenna Configurations:	Internal Antenna				
Maximum Tested	24.94 dBm (Cell. CDMA), 24.58 dBm (PCS CDMA),				
Conducted Power (HAC):	32.77 dBm (GSM 850), 29.65 dBm (GSM 1900),				
	22.45 dBm (WCDMA850), 22.49 dBm (WCDMA1900)				
HAC Test Configurations:	Cell. CDMA, 1013, 384, 777, BT Off, WLAN Off, LTE Off				
	PCS CDMA, 25, 600, 1175, BT Off, WLAN Off, LTE Off				
	GSM 850, 128, 190, 251, BT Off, WLAN Off, LTE Off				
	GSM 1900, 512, 661, 810, BT Off, WLAN Off, LTE Off				
	WCDMA850, 4132, 4183, 4233, BT Off, WLAN Off, LTE Off				
	WCDMA1900, 9262, 9400, 9538, BT Off, WLAN Off, LTE Off				
EUT Type:	Portable Handset				
Band	Simultaneous Reduced Voice Over Digital				

Air-Interface	Band (MHz)	Туре	C63.19/tested	Simultaneous Transmissions (Not to be tested)	Reduced power 20.19 (c)(1)	Voice Over Digital Transport (Data)
	850	Voice	Yes	Yes: BT or WIFI	N/A	N/A
GSM	1900	Voice	163	Tes. BI OF WITT	N/A	N/A
	GPRS/EDGE	Data	N/A	Yes: BT or WIFI	N/A	Yes
	850) (ai aa	¥	Yes: BT or WIFI	NI / A	21/2
WCDM44	1900	Voice	Yes	Yes: BI OF WIFI	N/A	N/A
WCDMA	HSPA	Data	N/A	Yes: BT or WIFI	N/A	Yes
850 CDMA 1900 EVDO	850	Voice		Yes: LTE, BT or WIFI	N/A	N/A
	1900		Yes		N/A	N/A
	EVDO	Data	N/A	Yes: LTE, BT or WIFI	N/A	Yes
LTE (B13)	780	Data	N/A	Yes: CDMA, BT or WIFI	N/A	Yes
ВТ	2450	Data	N/A	Yes: GSM, WCDMA, CDMA or LTE	N/A	N/A
	2450					
	5200			Yes: GSM, WCDMA, CDMA		
WIFI	5300	Data	N/A	or LTE	N/A	Yes
	5500			ULL L		
	5800					
NOTE: HAC Ra	iting was not based	on concurrent vo	ice and data mode	es. Standalone mode was fou	nd to represen	t worst case rating.
		Table 3:	A3LSCHI60	05 Air Interfaces		
	CORT				1.100	Revi

FCC ID: A3LSCHI605	HAC (RF EMISSIONS) TEST REPORT		SAMSUNG	Reviewed by: Quality Manager	
HAC Filename:	Test Dates:	EUT Type:		Page 5 of 92	
0Y1209101318.A3L	Aug. 30 - Sept. 4, 2012	Portable Handset		Page 5 01 92	

© 2012 PCTEST Engineering Laboratory, Inc.

ANSI/IEEE C63.19 PERFORMANCE CATEGORIES 4.

I. RF EMISSIONS

The ANSI Standard presents performance requirements for acceptable interoperability of hearing aids with wireless communications devices. When these parameters are met, a hearing aid operates acceptably in close proximity to a wireless communications device.

Category	Telephone RF Parameters			
Near field Category	E-field emissions CW dB(V/m) H-field emissions CW CW dB(A/m)			
	f < 960 MHz			
M1	56 to 61 + 0.5 x AWF	5.6 to 10.6 +0.5 x AWF		
M2	51 to 56 + 0.5 x AWF	0.6 to 5.6 +0.5 x AWF		
M3	46 to 51 + 0.5 x AWF	-4.4 to 0.6 +0.5 x AWF		
M4	< 46 + 0.5 x AWF < -4.4 + 0.5 x AWF			
	f > 960 MHz			
M1	46 to 51 + 0.5 x AWF	-4.4 to 0.6 +0.5 x AWF		
M2	41 to 46 + 0.5 x AWF	-9.4 to -4.4 +0.5 x AWF		
M3	36 to 41 + 0.5 x AWF -14.4 to -9.4 +0.5 x AWF			
M4	< 36 + 0.5 x AWF	< -14.4 + 0.5 x AWF		
Table 4-1 Hearing aid and WD near-field categories as defined in ANSI C63.19-2007				

II. ARTICULATION WEIGHTING FACTOR (AWF)

Standard	Technology	Articulation Weighing Factor (AWF)		
T1/T1P1/3GPP	UMTS (WCDMA)	0		
TIA/EIA/IS-2000	CDMA	0		
iden ^T	0			
J-STD-007	-5			
Table 4-2Articulation Weighting Factors				

FCC ID: A3LSCHI605				Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Dogo 6 of 02
0Y1209101318.A3L	Aug. 30 - Sept. 4, 2012	Portable Handset		Page 6 of 92
© 2012 PCTEST Engineering I	REV 8.4C			

SYSTEM SPECIFICATIONS 5.

ER3DV6 E-Field Probe Description

Construction:	One dipole parallel, two dipoles normal to probe axis
Calibration:	Built-in shielding against static charges In air from 100 MHz to 3.0 GHz (absolute accuracy ±6.0%, k=2)
Frequency:	100 MHz to > 6 GHz;
	Linearity: ± 0.2 dB (100 MHz to 3 GHz)
Directivity	± 0.2 dB in air (rotation around probe axis)
-	± 0.4 dB in air (rotation normal to probe axis)
Dynamic Range	2 V/m to > 1000 V/m
, 0	(M3 or better device readings fall well below diode
	compression point)
Linearity:	± 0.2 dB
Dimensions	Overall length: 330 mm (Tip: 16 mm)
	Tip diameter: 8 mm (Body: 12 mm)
	Distance from probe tip to dipole centers: 2.5 mm

Figure 5-1 E-field Free-space Probe

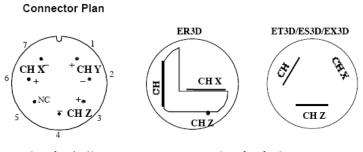
H3DV6 H-Field Probe Description

Construction:	Three concentric loop sensors with 3.8 mm loop diameters Resistively loaded detector diodes for linear response Built-in shielding against static charges
Frequency:	200 MHz to 3 GHz (absolute accuracy ± 6.0%, k=2); Output linearized
Directivity:	± 0.25 dB (spherical isotropy error)
Dynamic Range:	10 mA/m to 2 A/m at 1 GHz
	(M3 or better device readings fall well below diode compression point)
Dimensions:	Overall length: 330 mm (Tip: 40 mm)
	Tip diameter: 6 mm (Body: 12 mm)
	Distance from probe tip to dipole centers: 3 mm
E-Field Interference:	< 10% at 3 GHz (for plane wave)

Figure 5-2 H-Field Free-space Probe

Probe Tip Description

HAC field measurements take place in the close near field with high gradients. Increasing the measuring distance from the source will generally decrease the measured field values (in case of the validation dipole approx. 10% per mm).


Magnetic field sensors are measuring the integral of the H-field across their sensor area surrounded by the loop. They are calibrated in a precise, homogeneous field. When measuring a gradient field, the result will be very close to the field in the center of the loop which is equivalent to the value of a homogeneous field equivalent to the center value. But it will be different from the field at the border of the loop.

FCC ID: A3LSCHI605		HAC (RF EMISSIONS) TEST REPORT	SAMSUNG	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 7 of 92
0Y1209101318.A3L	Aug. 30 - Sept. 4, 2012	Portable Handset		Fage / 01 92
© 2012 PCTEST Engineering	2012 PCTEST Engineering Laboratory. Inc.			

Consequently, two sensors with different loop diameters - both calibrated ideally - would give different results when measuring from the edge of the probe sensor elements. The behavior for electrically small E-field sensors is equivalent.

The magnetic field loops of the H3D probes are concentric, with the center 3mm from the tip for H3DV6. Their radius is 1.9mm.

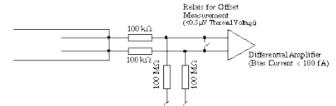
The electric field probes have a more irregular internal geometry because it is physically not possible to have the 3 orthogonal sensors situated with the same center. The effect of the different sensor centers is accounted for in the HAC uncertainty budget ("sensor displacement"). Their geometric center is at 2.5mm from the tip, and the element ends are 1.1mm closer to the tip.

(seen from back)

(seen from front)

The antistatic shielding inside the probe is connected to the probe connector case.

Instrumentation Chain


Equation 1 Conversion of Connector Voltage *u_i* to E-Field *E_i*

$$E_i = \sqrt{\frac{u_i + (u_i^2 \cdot CF)/(DCP)}{Norm_i \cdot ConvF}}$$

whereby

Ei:	electric field in V/m
Uj:	voltage of channel i at the connector in μV
Norm:	sensitivity of channel i in μV/(V/m) ²
ConvF:	enhancement factor in liquid (ConvF=1 for Air)
DCP:	diode compression point in µV
CF:	signal crest factor (peak power/average power)

Conditions of Calibration

Please note:

- · a lower input impedance of the amplifier will result in different sensitivity factors Norm, and DCP
 - larger bias currents will cause higher offset

FCC ID: A3LSCHI605		HAC (RF EMISSIONS) TEST REPORT	SAMSUNG	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 8 of 92
0Y1209101318.A3L	Aug. 30 - Sept. 4, 2012	Portable Handset		Faye o UI 92
© 2012 PCTEST Engineering L	© 2012 PCTEST Engineering Laboratory, Inc.			

Probe Response to Frequency

The E-field sensors have inherently a very flat frequency response. They are calibrated with a number of frequencies resulting in a common calibration factor, with the frequency behavior documented in the calibration certificate (See also below).

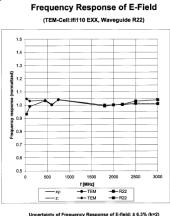
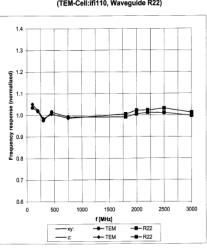



Figure 5-3 E-Field Probe Frequency Response

H-field sensors have a frequency dependent sensitivity which is evaluated for a series of frequencies also visible in the probe calibration certificate. The calibration factors result from a fitting algorithm. The proper conversion is calculated by the DASY4 software depending on the frequency setting in the procedure. See below for H-field frequency response:

Frequency Response of H-Field (TEM-Cell:ifi110, Waveguide R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) Figure 5-4 H-Field Probe Frequency Response

FCC ID: A3LSCHI605		HAC (RF EMISSIONS) TEST REPORT	SAMSUNG	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 9 of 92
0Y1209101318.A3L	Aug. 30 - Sept. 4, 2012	Portable Handset		Fage 9 01 92
© 2012 PCTEST Engineering Laboratory, Inc.				REV 8.4C

Conversion to Peak

Peak is defined as Peak Envelope Power. All raw measurements from the HAC measurement system are RMS values. The DASY4 system incorporates the crest factor of the signal in the computation of the RMS values (See Equation 1). Although the software also has capability to estimate the peak field by applying a square root of crest factor value to the readings, the probe modulation factor was applied manually instead per C63.19 in the measurement tables in this report. The equation to convert the raw measurements in the data tables are:

Peak Field = $20 \cdot \log (\text{Raw} \cdot \text{PMF})$

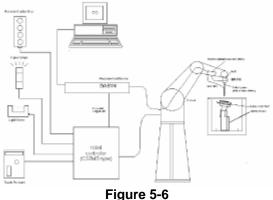
Where:

Peak Field = Peak field (in dBV/m or dBA/m) Raw = Raw field measurement from the measurement system (in V/m or A/m). PMF = Probe Modulation Factor (in linear units).

SPEAG Robotic System

E-field and H-field measurements are performed using the DASY4 automated dosimetric assessment system. The DASY4 is made by Schmid & Partner Engineering AG (SPEAG) in Zurich, Switzerland and consists of high precision robotics system (Staubli), robot controller, Pentium 4 computer, nearfield probe, probe alignment sensor, and the HAC phantom. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF).

Figure 5-5 SPEAG Robotic System


System Hardware

A cell controller system contains the power supply, robot controller, teach pendant (Joystick), and a remote control used to drive the robot motors. The PC consists of the Gateway Pentium 4 2.53 GHz computer with Windows XP system and RF Measurement Software DASY4 v4.5 (with HAC Extension), A/D interface card, monitor, mouse, and keyboard. The Staubli Robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit that performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the PC plug-in card.

FCC ID: A3LSCHI605		HAC (RF EMISSIONS) TEST REPORT	SAMSUNE	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 10 of 92
0Y1209101318.A3L	Aug. 30 - Sept. 4, 2012	Portable Handset		Fage 10 01 92
© 2012 PCTEST Engineering I	REV 8.4C			

System Electronics

The DAE consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the PC-card is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer.

SPEAG Robotic System Diagram

DASY4 Instrumentation Chain

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

with	V_i	= compensated signal of channel i	(i = x, y, z)
	U_i	= input signal of channel i	(i = x, y, z)
	cf	= crest factor of exciting field	(DASY parameter)
	dcp_i	= diode compression point	(DASY parameter)

FCC ID: A3LSCHI605		HAC (RF EMISSIONS) TEST REPORT	SAMSUNG	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 11 of 92
0Y1209101318.A3L	Aug. 30 - Sept. 4, 2012	Portable Handset		Fage 11 01 92
© 2012 PCTEST Engineering	2012 PCTEST Engineering Laboratory. Inc.			

From the compensated input signals the primary field data for each channel can be evaluated:

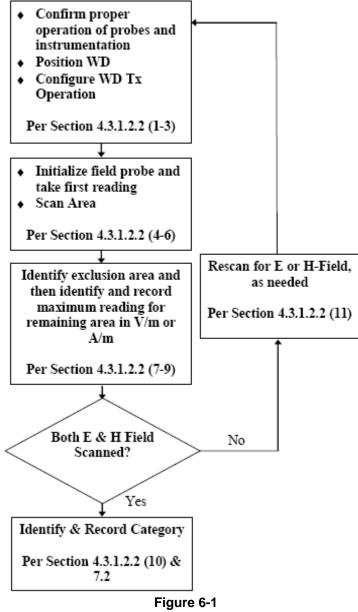
$$\begin{split} \mathrm{E-field probes}: \qquad E_i = \sqrt{\frac{V_i}{Norm_i \cdot ConvF}} \\ \mathrm{H-field probes}: \qquad H_i = \sqrt{V_i} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}f^2}{f} \\ \end{split}$$
 with $V_i = \mathrm{compensated \ signal \ of \ channel \ i} \qquad (i = \mathrm{x}, \mathrm{y}, \mathrm{z}) \\ Norm_i = \mathrm{sensor \ sensitivity \ of \ channel \ i} \qquad (i = \mathrm{x}, \mathrm{y}, \mathrm{z}) \\ \mu \mathrm{V}/(\mathrm{V/m})^2 \ \mathrm{for \ E-field \ Probes} \\ ConvF = \mathrm{sensitivity \ enhancement \ in \ solution} \\ a_{ij} = \mathrm{sensor \ sensitivity \ factors \ for \ H-field \ probes} \\ f = \mathrm{carrier \ frequency \ [GHz]} \\ E_i = \mathrm{electric \ field \ strength \ of \ channel \ i \ m \ V/m} \\ H_i = \mathrm{magnetic \ field \ strength \ of \ channel \ i \ m \ A/m} \end{split}$

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot}=\sqrt{E_x^2+E_y^2+E_z^2}$$

The primary field data are used to calculate the derived field units.

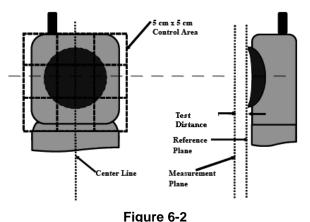
The measurement/integration time per point, as specified by the system manufacturer is >500 ms.

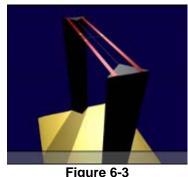

The signal response time is evaluated as the time required by the system to reach 90% of the expected final value after an on/off switch of the power source with an integration time of 500 ms and a probe response time of <5 ms. In the current implementation, DASY4 waits longer than 100 ms after having reached the grid point before starting a measurement, i.e., the response time uncertainty is negligible.

If the device under test does not emit a CW signal, the integration time applied to measure the electric field at a specific point may introduce additional uncertainties due to the discretization. The tolerances for the different systems had the worst-case of 2.6%.

FCC ID: A3LSCHI605		HAC (RF EMISSIONS) TEST REPORT	SAMSUNG	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 12 of 92
0Y1209101318.A3L	Aug. 30 - Sept. 4, 2012	Portable Handset		Fage 12 01 92
© 2012 PCTEST Engineering Laboratory, Inc.				REV 8.4C

6. TEST PROCEDURE


I. RF EMISSIONS



WD Near-Field Emissions Flow Chart

FCC ID: A3LSCHI605		HAC (RF EMISSIONS) TEST REPORT	SAMSUNG	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 13 of 92
0Y1209101318.A3L	Aug. 30 - Sept. 4, 2012	Portable Handset		Fage 13 01 92
© 2012 PCTEST Engineering La	© 2012 PCTEST Engineering Laboratory, Inc.			

Test Setup

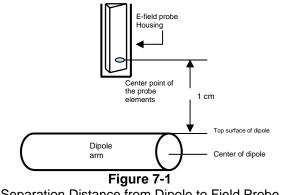
HAC Phantom

E/H-Field Emissions Test Setup Diagram (See Test Photographs for actual WD scan grid overlay)

RF Emissions Test Procedure:

The following illustrate a typical RF emissions test scan over a wireless communications device:

- 1. Proper operation of the field probe, probe measurement system, other instrumentation, and the positioning system was confirmed.
- 2. WD is positioned in its intended test position, acoustic output point of the device perpendicular to the field probe.
- 3. The WD operation for maximum rated RF output power was configured and confirmed with the base station simulator, at the test channel and other normal operating parameters as intended for the test. The battery was ensured to be fully charged before each test.
- 4. The center sub-grid was centered over the center of the acoustic output (also audio band magnetic output, if applicable). The WD audio output was positioned tangent (as physically possible) to the measurement plane.
- 5. A surface calibration was performed before each setup change to ensure repeatable spacing and proper maintenance of the measurement plane using the HAC Phantom.
- 6. The measurement system measured the field strength at the reference location.
- 7. Measurements at 2mm or 5mm increments in the 5 x 5 cm region were performed at a distance 15 mm from the center point of the probe measurement element to the WD. A 360° rotation about the azimuth axis at the maximum interpolated position was measured. For the worst-case condition, the peak reading from this rotation was used in re-evaluating the HAC category.
- 8. The system performed a drift evaluation by measuring the field at the reference location.
- 9. Steps 1-8 were done for both the E and H-Field measurements.


FCC ID: A3LSCHI605		HAC (RF EMISSIONS) TEST REPORT	SAMSUNG	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Dage 14 of 02
0Y1209101318.A3L	Aug. 30 - Sept. 4, 2012	Portable Handset		Page 14 of 92
2012 PCTEST Engineering Laboratory Inc				REV 8 4C

SYSTEM CHECK 7.

System Check Parameters I.

The input signal was an un-modulated continuous wave. The following points were taken into consideration in performing this check:

- Average Input Power P = 100mW RMS (20dBm RMS) after adjustment for return loss
- The test fixture must meet the 2 wavelength separation criterion •
- The proper measurement of the 1 cm probe to dipole separation, which is measured from top surface • of the dipole to the calibration reference point of the sensor, defined by the probe manufacturer is shown in the following diagram:

Separation Distance from Dipole to Field Probe

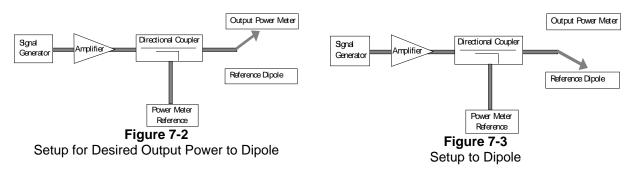
RF power was recorded using both an average reading meter and a peak reading meter. Readings of the probe are provided by the measurement system.

To assure proper operation of the near-field measurement probe the input power to the dipole shall be commensurate with the full rated output power of the wireless device (e.g. - for a cellular phone wireless device the average peak antenna input power will be on the order of 100mW (i.e. - 20dBm) RMS after adjustment for any mismatch.

II. Validation Procedure

A dipole antenna meeting the requirements given in C63.19 was placed in the position normally occupied by the WD.

The length of the dipole was scanned with both E-field and H-field probes and the maximum values for each were recorded.

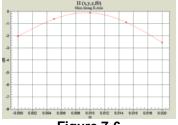

Measurement of CW

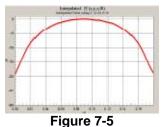
Using the near-field measurement system, scan the antenna over the radiating dipole and record the greatest field reading observed. Due to the nature of E-fields about free-space dipoles, the two E-field peaks measured over the dipole are averaged to compensate for non-parallelity of the setup (

FCC ID: A3LSCHI605		HAC (RF EMISSIONS) TEST REPORT	SAMSUNG	Reviewed by: Quality Manager			
HAC Filename:	Test Dates:	EUT Type:		Page 15 of 92			
0Y1209101318.A3L	Aug. 30 - Sept. 4, 2012	Portable Handset		Fage 15 01 92			
© 2012 PCTEST Engineering	2012 PCTEST Engineering Laboratory, Inc.						

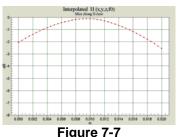
see manufacturer method on dipole calibration certificates, page 2). Field strength measurements shall be made only when the probe is stationary.

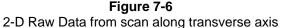
RF power was recorded using both an average and a peak power reading meter.




Using this setup configuration, the signal generator was adjusted for the desired output power (100mW) at a specified frequency. The reference power from the coupled port of the directional coupler is recorded. Next, the output cable is connected to the reference dipole, as shown in Figure 7-3.

The input signal level was adjusted until the reference power from the coupled port of the directional coupler was the same as previously recorded, to compensate for the impedance mismatch between the output cable and the reference dipole. To assure proper operation of the near-field measurement probe the input power to the reference dipole was verified to the full rated output power of the wireless device. The dipole was secured in a holder in a manner to meet the 20 dB reflection. The near-field measurement probe was positioned over the dipole. The antenna was scanned over the appropriate sized area to cover the dipole from end to end. SPEAG uses 2D interpolation algorithms between the measured points. Please see below two dimensional plots showing that the interpolated values interpolate smoothly between 5mm steps for a free-space RF dipole:




2-D Raw Data from scan along dipole axis

2-D Interpolated points from scan along dipole axis

2-D Interpolated points from scan along transverse axis

FCC ID: A3LSCHI605		HAC (RF EMISSIONS) TEST REPORT	SAMSUNG	Reviewed by: Quality Manager		
HAC Filename:	Test Dates:	EUT Type:		Page 16 of 92		
0Y1209101318.A3L	Aug. 30 - Sept. 4, 2012	Portable Handset		Fage 10 01 92		
© 2012 PCTEST Engineering L	© 2012 PCTEST Engineering Laboratory, Inc.					

III. System Check Results

Validation Results

Frequency (MHz)	Dipole S/N	Input Power (dBm)	E-field Result (V/m)	Target Field (V/m)	% Deviation
835	1003	20.0	164.1	166.0	-1.1%
1880	1137	20.0	132.9	136.8	-2.9%
Frequency (MHz)	Dipole S/N	Input Power (dBm)	H-field Result (A/m)	Target Field (A/m)	% Deviation
835	1003	20.0	0.470	0.458	2.6%

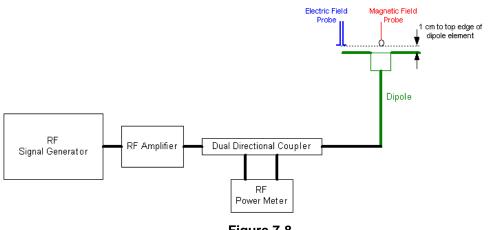


Figure 7-8 System Check Setup

FCC ID: A3LSCHI605		HAC (RF EMISSIONS) TEST REPORT	SAMSUNG	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 17 of 92
0Y1209101318.A3L	Aug. 30 - Sept. 4, 2012	Portable Handset		Fage 17 01 92
© 2012 PCTEST Engineering	_aboratory, Inc.			REV 8.40

8. MODULATION FACTOR

A calibration was made of the modulation response of the probe and its instrumentation chain. This calibration was performed with the field probe, attached to its instrumentation. The response of the probe system to a CW field at the frequency of interest is compared to its response to a modulated signal with equal peak amplitude to that of a CW signal. The field level of the test signals are ensured to be more than 10 dB above the ambient level and the noise floor of the instrumentation being used. The ratio of the CW reading to that taken with a modulated reading was applied to the DUT measurements.

All voice modes for this device have been investigated in this section of the report. According to the FCC 3G Measurement Procedures, May 2006 for RF Emissions, variations in peak field and power readings.

This was done using the following procedure:

- 1. The probe was illuminated with a CW signal at the intended measurement frequency and wireless device power.
- 2. The probe was positioned at the field maxima over the dipole antenna (determined after an area scan over the dipole) illuminated with the CW signal.
- 3. The reading of the probe measurement system of the CW signal at the maximum point was recorded.
- 4. Using a Spectrum Analyzer, the modulated signal adjusted with the same peak level of the CW signal was determined.
- 5. The probe measurement system reading was recorded with the modulated signal. The appropriate system crest factors for the modulation type were configured in the software to the system measurements.
- 6. The ratio of the CW reading to modulated signal reading is the probe modulation factor (PMF) for the modulation and field probe combination. This was repeated for 80% AM.
- 7. Steps 1-6 were repeated at all frequency bands and for both E and H field probes.

The modulation factors obtained were applied to readings taken of the actual wireless device, in order to obtain an accurate peak field reading using the formula:

$$Peak = 20 \cdot log (Raw \cdot PMF)$$

This method correlates well with the modulation using the DUT in the alternative substitution method. See below for correlation of signal:

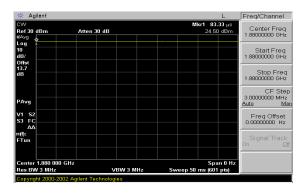
🦉 Agilent	Freq/Channel
Ch Freq 1.88 GHz Trig Free hannel Power	Center Freq 1.8800000 GHz
SG-D CDMA Nef 48 dB Atten 48 dB	Start Fred 1.87850000 GH;
Avg	Stop Fred 1.88150000 GH;
	CF Step 484,888888 MH: Auto Ma
Eenter 1.88 GHz Span 3 MHz tes EH 30 kHz VEH 300 kHz Sweep 8 ms (401 pts)	Freq Offse 8,88888888 H
Channel Power Power Spectral Density	Signal Track
24.48 dBm /2.0000 MHz -38.53 dBm/Hz	Scale Type

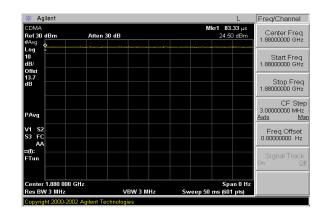
Figure 8-1 Signal Generator Modulated Signal

Figure 8-2 Wireless Device Modulated Signal

FCC ID: A3LSCHI605		HAC (RF EMISSIONS) TEST REPORT	SAMSUNG	Reviewed by: Quality Manager		
HAC Filename:	Test Dates:	EUT Type:		Page 18 of 92		
0Y1209101318.A3L	Aug. 30 - Sept. 4, 2012	Portable Handset		Fage to 0192		
© 2012 PCTEST Engineering La	© 2012 PCTEST Engineering Laboratory, Inc.					

Ι. **CDMA Modulation Factors**


f (MHz)	Protocol	E-Field (V/m)	H-Field (A/m)	E-Field Modulation Factor	H-Field Modulation Factor
835	AM	204.50	0.5971	1.411	1.326
835	CDMA	311.00	0.9799	0.928	0.808
835	CW	288.60	0.7915		
1880	AM	155.40	0.6561	1.445	1.501
1880	CDMA	226.80	1.2010	0.990	0.820
1880	CW	224.50	0.9846		
835	CDMA / SO3	46.28	0.2267	3.025	2.895
835	CW	140.00	0.6562		
1880	CDMA / SO3	58.27	0.1999	3.151	2.853
1880	CW	183.60	0.5704		


Table 8-1 **CDMA Modulation Factors**

FCC 3G Note: "CDMA" represents RC1/SO55 mode, while "CDMA/SO3" represents RC1/SO3 mode. Other modes were investigated and were within 0.25 dB of the RC1/SO55 configuration per Table 8-1.

CW and Modulated Signal Zero-Span plots:

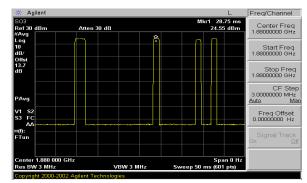


Figure 8-3 Zero-Span Plots

FCC ID: A3LSCHI605		HAC (RF EMISSIONS) TEST REPORT	SAMSUNG	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 19 of 92
0Y1209101318.A3L	Aug. 30 - Sept. 4, 2012	Portable Handset		Fage 19 01 92
© 2012 PCTEST Engineering L	aboratory Inc.			REV 8 4C

© 2012 PCTEST Engineering Laboratory, Inc.

II. GSM/WCDMA Modulation Factors

f (MHz)	Protocol	E-Field (V/m)	H-Field (A/m)	E-Field Modulation Factor	H-Field Modulation Factor	f (MHz)	Protocol	E-Field (V/m)	H-Field (A/m)	E-Field Modulation Factor	H-Field Modulation Factor
835	AM	629.3	2.212	1.290	0.910	835	AM	175.1	0.4947	1.385	1.313
835	GSM	287	1.033	2.829	1.948	835	WCDMA	252.3	0.703	0.961	0.924
835	CW	811.8	2.012			835	CW	242.5	0.6497		
1880	AM	390.8	1.215	1.319	1.115	1880	AM	129.2	0.5285	1.449	1.219
1880	GSM	184.8	0.5843	2.790	2.319	1880	WCDMA	192.5	0.6853	0.972	0.940
1880	CW	515.6	1.355			1880	CW	187.2	0.6442		

 Table 8-2

 GSM/WCDMA Modulation Factors

Spectrum Analyzer Plots of ESG-D Signal used for PMF measurements:

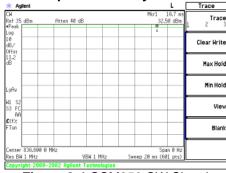
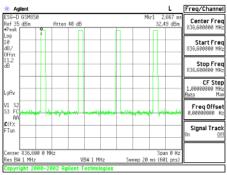



Figure 8-4 GSM850 CW Signal

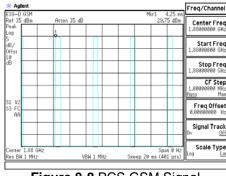


Figure 8-8 PCS GSM Signal

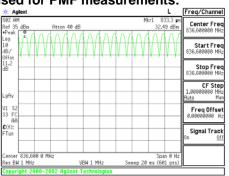


Figure 8-5 GSM850 80% AM Signal

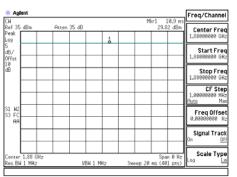


Figure 8-7 PCS CW Signal

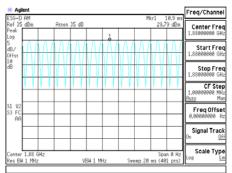


Figure 8-9 PCS 80% AM Signal

FCC ID: A3LSCHI605	INGINEERING LABORATORY, INC.	HAC (RF EMISSIONS) TEST REPORT	SAMSUNG	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Dage 20 of 02
0Y1209101318.A3L	Aug. 30 - Sept. 4, 2012	Portable Handset		Page 20 of 92
© 2012 PCTEST Engineering	Laboratory Inc			REV 8.4C

© 2012 PCTEST Engineering Laboratory, Inc.

FCC 3G MEASUREMENTS 9.

Power measurements were performed using a base station simulator under digital average power.

Ι. Procedures Used to Establish RF Signal for HAC Testing

The handset was placed into a simulated call using a base station simulator in a shielded chamber. Such test signals offer a consistent means for testing HAC and are recommended for evaluating HAC. Measurements were taken with a fully charged battery. In order to verify that the device was tested and maintained at full power, this was configured with the base station simulator. The HAC measurement software calculates a reference point at the start and end of the test to check for power drifts. If power deviations of more than 5% occurred, the tests were repeated.

II. **Conducted RF Output Power Measurements:**

Figure 9-1 **Power Measurement Setup**

Band	Channel	Frequency	SO2 [dBm]	SO2 [dBm]	SO2 [dBm]	SO55 [dBm]	SO55 [dBm]	SO9 [dBm]	SO9 [dBm]	SO3 [dBm]	SO3 [dBm]	SO3 [dBm]
	F-RC	MHz	RC1	RC3	RC4	RC1	RC3	RC2	RC5	RC1	RC3	RC4
	1013	824.7	24.82	24.79	24.92	24.94	24.77	24.81	24.80	24.88	24.88	24.82
Cellular	384	836.52	24.71	24.68	24.82	24.82	24.82	24.67	24.66	24.77	24.73	24.74
	777	848.31	24.68	24.62	24.76	24.76	24.70	24.64	24.75	24.76	24.76	24.68
	25	1851.25	24.29	24.26	24.40	24.38	24.40	24.41	24.38	24.16	24.29	24.27
PCS	600	1880	24.49	24.36	24.46	24.36	24.44	24.51	24.47	24.42	24.35	24.43
	1175	1908.75	24.41	24.37	24.34	24.41	24.32	24.42	24.33	24.58	24.31	24.33

Table 9-1 **CDMA Conducted Powers**

FCC ID: A3LSCHI605		HAC (RF EMISSIONS) TEST REPORT	SAMSUNG	Reviewed by: Quality Manager		
HAC Filename:	Test Dates:	EUT Type:		Page 21 of 92		
0Y1209101318.A3L	Aug. 30 - Sept. 4, 2012	Portable Handset		Fage 21 01 92		
© 2012 PCTEST Engineering	© 2012 PCTEST Engineering Laboratory Inc.					

Band	Channel	GSM [dBm] CS (1 Slot)
	128	32.77
Cellular	190	32.67
	251	32.36
	512	29.40
PCS	661	29.65
	810	29.55

Table 9-2

GSM Conducted Powers

3GPP 34.121 Subtest	Cellu	lar Band [dBm]	PCS Band [dBm]						
Sublest	4132	41 83	4233	9262	9400	9538				
12.2 kbps RMC	22.45	22.29	22.40	22.48	22.35	22.49				
12.2 kbps AMR	22.62	22.51	22.61	22.50	22.42	22.47				
Table 9-3										

WCDMA Conducted Powers

III. CDMA Worst-Case RC/SO Investigation

Sample pre-testing of the various CDMA modes was performed at the worst case probe location as part of subset testing justification. Below are RC/SO mode investigation results of the device at the worst-case (maximum) field point location. The worst-case RC/SO was used for HAC testing.

Mode	Channel	Backlight	RC/SO	Scan Center	Time Avg. Field (V/m)	Peak Field (V/m)	Peak Field (dBV/m)	FCC Limit (dBV/m)	FCC MARGIN (dB)	RESULT	Excl Blocks per 4.4
PCS	25	on	SO3/RC1	Acoustic	12.52	39.4	31.9	41.0	-9.08	M4	none
PCS	25	off	SO3/RC3	Acoustic	35.54	35.2	30.9	41.0	-10.07	M4	none
PCS	25	off	SO3/RC4	Acoustic	36.81	36.4	31.2	41.0	-9.77	M4	none
PCS	25	off	SO55/RC3	Acoustic	33.96	33.6	30.5	41.0	-10.47	M4	none
PCS	25	off	SO55/RC1	Acoustic	34.15	33.8	30.6	41.0	-10.42	M4	none
PCS	25	off	SO2/RC1	Acoustic	34.39	34.0	30.6	41.0	-10.36	M4	none
PCS	25	off	SO2/RC3	Acoustic	34.31	34.0	30.6	41.0	-10.38	M4	none
PCS	25	off	SO9/RC2	Acoustic	34.71	34.4	30.7	41.0	-10.28	M4	none
PCS	25	off	SO9/RC5	Acoustic	34.28	33.9	30.6	41.0	-10.39	M4	none

Table 9-4Handset 3G mode variation on RF Emissions

IV. HAC Measurement Conditions for WCDMA

HAC is measured using the 12.2 kbps RMC with TPC bits configured to all "1s". HAC in AMR configurations is not required when the maximum average output of each RF channel for 12.2 kbps AMR is less than ¼ dB higher than that measured in 12.2 kbps RMC. Otherwise, HAC is measured on the maximum output channel in 12.2 AMR with a 3.4 kbps SRB (signaling radio bearer) using the configuration that results in the highest HAC for that RF channel in 12.2 RMC.

FCC ID: A3LSCHI605		HAC (RF EMISSIONS) TEST REPORT	SAMSUNG	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 22 of 92
0Y1209101318.A3L	Aug. 30 - Sept. 4, 2012	Portable Handset		Fage 22 01 92
© 2012 PCTEST Engineering L	REV 8.4C			

10. OVERALL MEASUREMENT SUMMARY

FCC ID:	A3LSCHI605
Model:	SCH-1605
S/N:	332F0

I. E-FIELD EMISSIONS:

			CD	MA HA	C Data Su	mmary	for E-fie	ld, RC1/	SO3			
Band	Channel	Backlight	RC/SO	Scan Center	Conducted Power at BS (dBm)	Time Avg. Field (V/m)	Peak Field (V/m)	Peak Field (dBV/m)	FCC Limit (dBV/m)	FCC MARGIN (dB)	RESULT	Excl Blocks per 4.4
E-field Emi	issions											
CDMA	1013	off	SO3/RC1	Acoustic	24.88	11.88	35.9	31.1	51.0	-19.89	M4	none
CDMA	384	off	SO3/RC1	Acoustic	24.77	11.13	33.7	30.5	51.0	-20.46	M4	none
CDMA	777	off	SO3/RC1	Acoustic	24.76	14.35	43.4	32.8	51.0	-18.25	M4	none
PCS	25	off	SO3/RC1	Acoustic	24.16	12.70	40.0	32.0	41.0	-8.96	M4	none
PCS	600	off	SO3/RC1	Acoustic	24.42	10.23	32.2	30.2	41.0	-10.83	M4	none
PCS	1175	off	SO3/RC1	Acoustic	24.58	10.38	32.7	30.3	41.0	-10.71	M4	none

 Table 10-1

 CDMA HAC Data Summary for E-field, RC1/SO3

 Table 10-2

 CDMA HAC Data Summary for E-field, RC1/SO55

Band	Channel	Backlight	RC/SO	Scan Center	Conducted Power at BS (dBm)	Time Avg. Field (V/m)	Peak Field (V/m)	Peak Field (dBV/m)	FCC Limit (dBV/m)	FCC MARGIN (dB)	RESULT	Excl Blocks per 4.4
E-field Em	issions											
CDMA	1013	off	SO55/RC1	Acoustic	24.94	32.51	30.2	29.6	51.0	-21.41	M4	none
CDMA	384	off	SO55/RC1	Acoustic	24.82	29.64	27.5	28.8	51.0	-22.21	M4	none
CDMA	777	off	SO55/RC1	Acoustic	24.76	41.73	38.7	31.8	51.0	-19.24	M4	none
PCS	25	off	SO55/RC1	Acoustic	24.38	37.80	37.4	31.5	41.0	-9.54	M4	none
PCS	600	off	SO55/RC1	Acoustic	24.36	29.06	28.8	29.2	41.0	-11.82	M4	none
PCS	1175	off	SO55/RC1	Acoustic	24.41	29.79	29.5	29.4	41.0	-11.61	M4	none

 Table 10-3

 GSM HAC Data Summary for E-field

Mode	Channel	Backlight	Scan Center	Conducted Power at BS (dBm)	Time Avg. Field (V/m)	Peak Field (V/m)	Peak Field (dBV/m)	FCC Limit (dBV/m)	FCC MARGIN (dB)	RESULT	Excl Blocks per 4.4
E-field Emi	issions										
GSM850	128	off	Acoustic	32.77	33.75	95.5	39.60	48.50	-8.90	M4	none
GSM850	190	off	Acoustic	32.67	28.81	81.5	38.22	48.50	-10.28	M4	none
GSM850	251	off	Acoustic	32.36	35.18	99.5	39.96	48.50	-8.54	M4	none
GSM1900	512	off	Acoustic	29.40	21.03	58.7	35.37	38.50	-3.13	M3	none
GSM1900	661	off	Acoustic	29.65	21.88	61.0	35.71	38.50	-2.79	M3	none
GSM1900	810	off	Acoustic	29.55	20.64	57.6	35.21	38.50	-3.29	M3	none

Table 10-4 WCDMA HAC Data Summary for E-field

Channel	Backlight		Conducted							
		Scan Center	Power at BS (dBm)	Time Avg. Field (V/m)	Peak Field (V/m)	Peak Field (dBV/m)	FCC Limit (dBV/m)	FCC MARGIN (dB)	RESULT	Excl Blocks per 4.4
;										
4132	off	Acoustic	22.45	67.62	65.0	36.3	51.0	-14.74	M4	none
4183	off	Acoustic	22.29	59.48	57.2	35.1	51.0	-15.86	M4	none
4233	off	Acoustic	22.40	57.06	54.8	34.8	51.0	-16.22	M4	none
9262	off	Acoustic	22.48	41.41	40.3	32.1	41.0	-8.90	M4	none
9400	off	Acoustic	22.35	43.36	42.2	32.5	41.0	-8.50	M4	none
9538	off	Acoustic	22.49	33.20	32.3	30.2	41.0	-10.82	M4	none
FCC ID: A3LSCHI605				AC (RF EMIS	SIONS) TES	T REPORT	SA	MSUNG	Reviewed by: Quality Manager	
HAC Filename: Test Dates: 0Y1209101318.A3L Aug. 30 - Sept. 4, 2012									Page 23 of 92	
:+	4183 4233 9262 9400 9538 HI605	4183 off 4233 off 9262 off 9400 off 9538 off 41605 Image: Comparison of the second	4183 off Acoustic 4233 off Acoustic 9262 off Acoustic 9400 off Acoustic 9538 off Acoustic 11605 Image: Construction of the second	4132 off Acoustic 22.45 4183 off Acoustic 22.29 4233 off Acoustic 22.29 4233 off Acoustic 22.40 9262 off Acoustic 22.48 9400 off Acoustic 22.35 9538 off Acoustic 22.49 41605 Image: Constraint of the state of the st	4132 off Acoustic 22.45 67.62 4183 off Acoustic 22.29 59.48 4233 off Acoustic 22.29 59.48 4233 off Acoustic 22.40 57.06 9262 off Acoustic 22.48 41.41 9400 off Acoustic 22.35 43.36 9538 off Acoustic 22.49 33.20 HI605 Image: Construct Const	4132 off Acoustic 22.45 67.62 65.0 4183 off Acoustic 22.29 59.48 57.2 4233 off Acoustic 22.29 59.48 57.2 4233 off Acoustic 22.40 57.06 54.8 9262 off Acoustic 22.35 43.36 42.2 9538 off Acoustic 22.49 33.20 32.3 41605 Image: Construct Constru	4132 off Acoustic 22.45 67.62 65.0 36.3 4183 off Acoustic 22.29 59.48 57.2 35.1 4233 off Acoustic 22.29 59.48 57.2 35.1 4233 off Acoustic 22.40 57.06 54.8 34.8 9262 off Acoustic 22.35 43.36 42.2 32.5 9538 off Acoustic 22.49 33.20 32.3 30.2 HI605 Image: Construct Const	4132 off Acoustic 22.45 67.62 65.0 36.3 51.0 4183 off Acoustic 22.29 59.48 57.2 35.1 51.0 4233 off Acoustic 22.29 59.48 57.2 35.1 51.0 4233 off Acoustic 22.40 57.06 54.8 34.8 51.0 9262 off Acoustic 22.48 41.41 40.3 32.1 41.0 9400 off Acoustic 22.49 33.20 32.3 30.2 41.0 9538 off Acoustic 22.49 33.20 32.3 30.2 41.0 41605 Image: Image	4132 off Acoustic 22.45 67.62 65.0 36.3 51.0 -14.74 4183 off Acoustic 22.29 59.48 57.2 35.1 51.0 -15.86 4233 off Acoustic 22.40 57.06 54.8 34.8 51.0 -16.22 9262 off Acoustic 22.48 41.41 40.3 32.1 41.0 -8.90 9400 off Acoustic 22.35 43.36 42.2 32.5 41.0 -8.50 9538 off Acoustic 22.49 33.20 32.3 30.2 41.0 -10.82 41605 Image: Test Dates: EUT Type: EUT Type: Image: Test Dates: EUT Type: Image: Test Dates: EUT Type: Image: Test Dates: Image: Test Dates: EUT Type: Image: Test Dates: Image: Test Dates:<	4132 off Acoustic 22.45 67.62 65.0 36.3 51.0 -14.74 M4 4183 off Acoustic 22.29 59.48 57.2 35.1 51.0 -15.86 M4 4233 off Acoustic 22.40 57.06 54.8 34.8 51.0 -16.22 M4 9262 off Acoustic 22.48 41.41 40.3 32.1 41.0 -8.90 M4 9400 off Acoustic 22.49 33.20 32.3 30.2 41.0 -8.50 M4 9538 off Acoustic 22.49 33.20 32.3 30.2 41.0 -10.82 M4 41605 Image: Constance EUT Type: Fet Dates: EUT Type: Page 23 constance Pa

© 2012 PCTEST Engineering Laboratory, Inc.

FCC ID:	A3LSCHI605
Model:	SCH-I605
S/N:	332F0

II. H-FIELD EMISSIONS:

Table 10-5 CDMA HAC Data Summary for H-field, RC1/SO3

Mode	Channel	Backlight	RC/SO	Scan Center	Conducted Power at BS (dBm)	Time Avg. Field (A <i>I</i> m)	Peak Field (A/m)	Peak Field (dBA/m)	FCC Limit (dBA/m)	FCC MARGIN (dB)	RESULT	Excl Blocks per 4.4
H-field Em	issions											
CDMA	1013	off	SO3/RC1	Acoustic	24.88	0.0285	0.083	-21.7	0.6	-22.26	M4	none
CDMA	384	off	SO3/RC1	Acoustic	24.77	0.0198	0.057	-24.8	0.6	-25.44	M4	none
CDMA	777	off	SO3/RC1	Acoustic	24.76	0.0265	0.077	-22.3	0.6	-22.91	M4	none
PCS	25	off	SO3/RC1	Acoustic	24.16	0.0274	0.078	-22.1	-9.4	-12.74	M4	none
PCS	600	off	SO3/RC1	Acoustic	24.42	0.0306	0.087	-21.2	-9.4	-11.78	M4	none
PCS	1175	off	SO3/RC1	Acoustic	24.58	0.0228	0.065	-23.8	-9.4	-14.35	M4	none

Table 10-6 CDMA HAC Data Summary for H-field, RC1/SO55

Mode	Channel	Backlight	RC/SO	Scan Center	Conducted Power at BS (dBm)	Time Avg. Field (A/m)	Peak Field (A/m)	Peak Field (dBA/m)	FCC Limit (dBA/m)	FCC MARGIN (dB)	RESULT	Excl Blocks per 4.4
H-field Emi	issio ns											
CDMA	1013	off	SO55/RC1	Acoustic	24.94	0.0637	0.051	-25.8	0.6	-26.37	M4	none
CDMA	384	off	SO55/RC1	Acoustic	24.82	0.0526	0.042	-27.4	0.6	-28.04	M4	none
CDMA	777	off	SO55/RC1	Acoustic	24.76	0.0722	0.058	-24.7	0.6	-25.28	M4	none
PCS	25	off	SO55/RC1	Acoustic	24.38	0.0825	0.068	-23.4	-9.4	-14.00	M4	none
PCS	600	off	SO55/RC1	Acoustic	24.36	0.0648	0.053	-25.5	-9.4	-16.10	M4	none
PCS	1175	off	SO55/RC1	Acoustic	24.41	0.0655	0.054	-25.4	-9.4	-16.00	M4	none

Table 10-7 **GSM HAC Data Summary for H-field**

Mode	Channel	Backlight	Scan Center	Conducted Power at BS (dBm)	Time Avg. Field (A/m)	Peak Field (A/m)	Peak Field (dBA/m)	FCC Limit (dBA/m)	FCC MARGIN (dB)	RESULT	Excl Blocks per 4.4
H-field Em	issions										
GSM850	128	off	Acoustic	32.77	0.0628	0.122	-18.3	-1.9	-16.35	M4	none
GSM850	190	off	Acoustic	32.67	0.0643	0.125	-18.0	-1.9	-16.14	M4	none
GSM850	251	off	Acoustic	32.36	0.0540	0.105	-19.6	-1.9	-17.66	M4	none
GSM1900	512	off	Acoustic	29.40	0.0387	0.090	-20.9	-11.9	-9.05	M4	none
GSM1900	661	off	Acoustic	29.65	0.0426	0.099	-20.1	-11.9	-8.20	M4	none
GSM1900	810	off	Acoustic	29.55	0.0531	0.123	-18.2	-11.9	-6.29	M4	none

Table 10-8 WCDMA HAC Data Summary for H-field

Mode	Channel	Backlight	Scan Center	Conducted Power at BS (dBm)	Time Avg. Field (A/m)	Peak Field (A/m)	Peak Field (dBA/m)	FCC Limit (dBA/m)	FCC MARGIN (dB)	RESULT	Excl Blocks per 4.4
H-field Emissio	ns										
WCDMA850	4132	off	Acoustic	22.45	0.1107	0.102	-19.8	0.6	-20.40	M4	none
WCDMA850	4183	off	Acoustic	22.29	0.1260	0.116	-18.7	0.6	-19.28	M4	none
WCDMA850	4233	off	Acoustic	22.40	0.0965	0.089	-21.0	0.6	-21.60	M4	none
WCDMA1900	9262	off	Acoustic	22.48	0.0774	0.073	-22.8	-9.4	-13.37	M4	none
WCDMA1900	9400	off	Acoustic	22.35	0.0896	0.084	-21.5	-9.4	-12.09	M4	none
WCDMA1900	9538	off	Acoustic	22.49	0.0822	0.077	-22.2	-9.4	-12.84	M4	none

FCC ID: A3LSCHI605		HAC (RF EMISSIONS) TEST REPORT	SAMSUNG	Reviewed by: Quality Manager			
HAC Filename:	Test Dates:	EUT Type:		Page 24 of 92			
0Y1209101318.A3L	Aug. 30 - Sept. 4, 2012 Portable Handset			Fage 24 01 92			
© 2012 PCTEST Engineering Laboratory, Inc.							

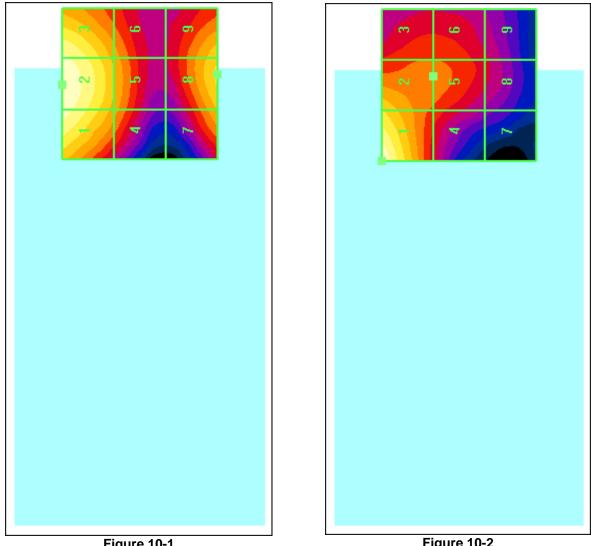
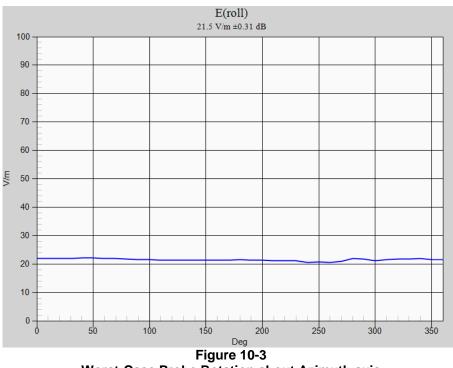


Figure 10-1 Sample E-field Scan Overlay

Figure 10-2 Sample H-field Scan Overlay

Note: See Test Setup Photographs for actual WD overlay


FCC ID: A3LSCHI605		HAC (RF EMISSIONS) TEST REPORT	SAMSUNG	Reviewed by: Quality Manager	
HAC Filename:	Test Dates:	EUT Type:		Dage 25 of 02	
0Y1209101318.A3L	Aug. 30 - Sept. 4, 2012	Portable Handset		Page 25 of 92	
© 2012 PCTEST Engineering L	aboratory, Inc.			REV 8.4C	

FCC ID:	A3LSCHI605
Model:	SCH-1605
S/N:	332F0

III. Worst-case Configuration Evaluation

	Peak Reading 360° Probe Rotation at Azimuth axis									
Mode	e Channel	Backlight	Scan Center	Time Avg. Field (V/m)	Peak Field (V/m)	Peak Field (dBV/m)	FCC Limit (dBV/m)	FCC MARGIN (dB)	RESULT	
Probe Rotation at Worst-Case										
GSM19	661	off	Acoustic	22.10	61.6	35.80	38.50	-2.70	M3	

Table 10-9

Worst-Case Probe Rotation about Azimuth axis

* Note: Locations of probe rotation (with and without exclusions) are shown in Figure 10-1 or Figure 10-2 denoted by the green square markers.

FCC ID: A3LSCHI605		HAC (RF EMISSIONS) TEST REPORT	SAMSUNG	Reviewed by: Quality Manager		
HAC Filename:	Test Dates:	EUT Type:		Page 26 of 92		
0Y1209101318.A3L	Aug. 30 - Sept. 4, 2012	Portable Handset		Page 26 01 92		
© 2012 PCTEST Engineering	2012 PCTEST Engineering Laboratory, Inc.					

EQUIPMENT LIST 11.

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	E4407B	ESA Spectrum Analyzer	4/3/2012	Annual	4/3/2013	US39210313
Agilent	E4432B	ESG-D Series Signal Generator	3/15/2012	Annual	3/15/2013	US40053896
Agilent	E5515C	Wireless Communications Test Set	10/10/2011	Annual	10/10/2012	GB46110872
Agilent	E5515C	Wireless Communications Test Set	10/14/2011	Annual	10/14/2012	GB41450275
Agilent	E5515C	Wireless Communications Test Set	10/20/2011	Annual	10/20/2012	GB46310798
Agilent	E5515C	Wireless Communications Test Set	2/9/2012	Annual	2/9/2013	GB43460554
Agilent	E5515C	Wireless Communications Test Set	2/12/2012	Annual	2/12/2013	GB45360985
Agilent	E5515C	Wireless Communications Test Set	2/14/2012	Annual	2/14/2013	GB43304447
Agilent	E5515C	Wireless Communications Test Set	2/14/2012	Annual	2/14/2013	GB43163447
Anritsu	MA2481A	Power Sensor	2/14/2012	Annual	2/14/2013	3681
Control Company	36934-158	Wall-Mounted Thermometer	1/4/2012	Biennial	1/4/2014	122014497
Control Company	36934-158	Wall-Mounted Thermometer	1/4/2012	Biennial	1/4/2014	122014488
Mini-Circuits	NLP-1200+	Low Pass Filter DC to 1000 MHz	N/A	CBT*	N/A	N/A
Mini-Circuits	NLP-2950+	Low Pass Filter DC to 2700 MHz	N/A	CBT*	N/A	N/A
Rohde & Schwarz	CMU200	Base Station Simulator	5/22/2012	Annual	5/22/2013	109892
Rohde & Schwarz	NRVD	Dual Channel Power Meter	4/8/2011	Biennial	4/8/2013	101695
Seekonk	NC-100	Torque Wrench (8" lb)	11/29/2011	Triennial	11/29/2014	21053
SPEAG	DAE3	Dasy Data Acquisition Electronics	11/9/2011	Annual	11/9/2012	455
SPEAG	DAE4	Dasy Data Acquisition Electronics	1/18/2012	Annual	1/18/2013	1272
SPEAG	DAE4	Dasy Data Acquisition Electronics	2/20/2012	Annual	2/20/2013	649
SPEAG	DAE4	Dasy Data Acquisition Electronics	4/19/2012	Annual	4/19/2013	665
SPEAG	DAE4	Dasy Data Acquisition Electronics	5/15/2012	Annual	5/15/2013	859
SPEAG	CD1880V3	Freespace 1880 MHz Dipole	2/9/2011	Biennial	2/9/2013	1137
SPEAG	CD835V3	Freespace 835 MHz Dipole	2/8/2011	Biennial	2/8/2013	1003
SPEAG	ER3DV6	Freespace E-field Probe	1/20/2012	Annual	1/20/2013	2353
SPEAG	H3DV6	Freespace H-field Probe	1/20/2012	Annual	1/20/2013	6207

Table 11-1

Equipment List

Calibration traceable to the National Institute of Standards and Technology (NIST)

* Note: CBT (Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, attenuator, coupler or filter were connected to a calibrated source (i.e. a signal generator) to determine the losses of the measurement path. The power meter offset was then adjusted to compensate for the measurement system losses. This level offset is stored within the power meter before measurements are made. This calibration verification procedure applies to the system verification and output power measurements. The calibrated reading is then taken directly from the power meter after compensation of the losses for all final power measurements.

FCC ID: A3LSCHI605		HAC (RF EMISSIONS) TEST REPORT	SAMSUNG	Reviewed by: Quality Manager		
HAC Filename:	Test Dates:	EUT Type:		Page 27 of 92		
0Y1209101318.A3L	Aug. 30 - Sept. 4, 2012	Portable Handset		Fage 27 01 92		
© 2012 PCTEST Engineering L	2012 PCTEST Engineering Laboratory, Inc.					

12. MEASUREMENT UNCERTAINTY

Wirele	Wireless Communications Device Near-Field Measurement								
		Uncertainty	Estimation						
Uncertainty Component	Data (dB)	Data Type	Prob. Dist.	Divisor	Ci (E)	Ci (H)	Unc. (dB)	Notes/Comments	
Measurement System									
RF System Reflections	0.50	Tolerance	Ν	1.00	1	1	0.50	Refl. < -20 dB	
Field Probe Calibration	0.21	Tolerance	Ν	1.00	1	1	0.21		
Field Probe Isotropy	0.01	Tolerance	Ν	1.00	1	1	0.01		
Field Probe Frequency Response	0.135	Tolerance	Ν	1.00	1	1	0.14		
Field Probe Linearity	0.013	Tolerance	Ν	1.00	1	1	0.01		
Probe Modulation Factor	0.270	Accuracy	R	1.73	1	1	0.16		
Boundary Effects	0.105	Accuracy	R	1.73	1	1	0.06	*	
Probe Positioning Accuracy	0.20	Accuracy	R	1.73	1	0.670	0.12	*	
Probe Positioner	0.050	Accuracy	R	1.73	1	0.670	0.03	*	
Extrapolation/Interpolation	0.045	Tolerance	R	1.73	1	1	0.03	*	
Resolution to 2mm error	0.210	Tolerance	Ν	1.00	1	1	0.21		
System Detection Limit	0.05	Tolerance	R	1.73	1	1	0.03	*	
Readout Electronics	0.015	Tolerance	Ν	1.00	1	1	0.02	*	
Integration Time	0.11	Tolerance	R	1.73	1	1	0.06	*	
Response Time	0.033	Tolerance	R	1.73	1	1	0.02	*	
Phantom Thickness	0.10	Tolerance	R	1.73	1	1	0.06	*	
System Repeatability (Field x 2=power)	0.17	Tolerance	Ν	1.00	1	1	0.17		
Test Sample Related								-	
Device Positioning Vertical	0.2	Tolerance	R	1.73	1	1	0.12	*	
Device Positioning Lateral	0.045	Tolerance	R	1.73	1	1	0.03	*	
Device Holder and Phantom	0.1	Tolerance	R	1.73	1	1	0.06	*	
Power Drift	0.21	Tolerance	R	1.73	1	1	0.12		
Combined Standard Uncertainty (k=1)							0.66	16.5%	
Expanded Uncertainty [95% confidence] (k	=2)						1.33	32.3%	
Expanded Uncertainty [95% confidence] on Field						0.66	16.2%	

Table 12-1Uncertainty Estimation Table

Notes:

- 1. Test equipments are calibrated according to techniques outlined in NIS81, NIS3003 and NIST Tech Note 1297. All equipments have traceability according to NIST. Measurement Uncertainties are defined in further detail in NIS 81 and NIST Tech Note 1297 and UKAS M3003.
- 2. * Uncertainty specifications from Schmidt & Partner Engineering AG (not site specific)

Measurement uncertainty reflects the quality and accuracy of a measured result as compared to the true value. Such statements are generally required when stating results of measurements so that it is clear to the intended audience that the results may differ when reproduced by different facilities. Measurement results vary due to the measurement uncertainty of the instrumentation, measurement technique, and test engineer. Most uncertainties are calculated using the tolerances of the instrumentation used in the measurement, the measurement setup variability, and the technique used in performing the test. While not generally included, the variability of the equipment under test also figures into the overall measurement uncertainty. Another component of the overall uncertainty is based on the variability of repeated measurements (so-called Type A uncertainty). This may mean that the Hearing Aid immunity tests may have to be repeated by taking down the test setup and resetting it up so that there are a statistically significant number of repeat measurements to identify the measurement uncertainty. By combining the repeat measurements to identify the measurement uncertainty. By combining the repeat measurements with that of the instrumentation chain using the technique contained in NIS 81 and NIS 3003, the overall measurement uncertainty was estimated.

FCC ID: A3LSCHI605		HAC (RF EMISSIONS) TEST REPORT	SAMSUNG	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 28 of 92
0Y1209101318.A3L	Aug. 30 - Sept. 4, 2012	Portable Handset		Faye 20 01 92
© 2012 PCTEST Engineering L	REV 8 40			

© 2012 PCTEST Engineering Laboratory, Inc.

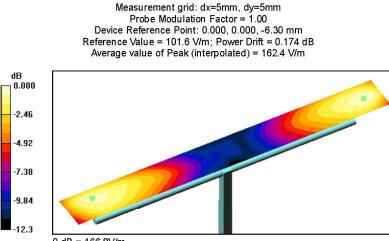
TEST DATA 13.

See following Attached Pages for Test Data.

FCC ID: A3LSCHI605		HAC (RF EMISSIONS) TEST REPORT	SAMSUNG	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 29 of 92
0Y1209101318.A3L	Aug. 30 - Sept. 4, 2012	Portable Handset		Fage 29 01 92
© 2012 PCTEST Engineering I	_aboratory, Inc.			REV 8.4C

DUT: CD835V3 - SN1003

Type: CD835V3 Serial: 1003


Communication System: CW; Frequency: 835 MHz;

Measurement Standard: DASY5 (High Precision Assessment)

DASY5 Configuration:

- Probe: ER3DV6 SN2353; Calibrated: 1/20/2012
- Sensor-Surface: 0mm (Fix Surface)
- Electronics: DAE4 Sn859; Calibrated: 5/15/2012
- · Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;
- Measurement SW: DASY52, V52.8 Build 1;

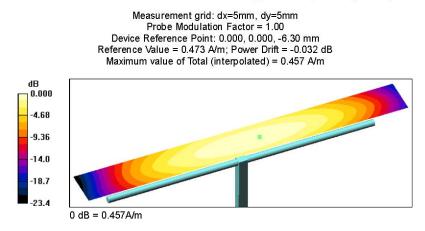
835 MHz / 100mW HAC Dipole Validation at 10mm/Hearing Aid Compatibility Test (41x361x1):

0 dB = 166.8V/m

FCC ID: A3LSCHI605		HAC (RF EMISSIONS) TEST REPORT	SAMSUNG	Reviewed by: Quality Manager	
HAC Filename:	Test Dates:	EUT Type:		Page 30 of 92	
0Y1209101318.A3L	Aug. 30 - Sept. 4, 2012	Portable Handset		Fage 30 01 92	
© 2012 PCTEST Engineering L	aboratory, Inc.			REV 8.4C 08/10/10	

DUT: CD835V3 - SN1003

Type: CD835V3 Serial: 1003


Communication System: CW; Frequency: 835 MHz;

Measurement Standard: DASY5 (High Precision Assessment)

DASY5 Configuration:

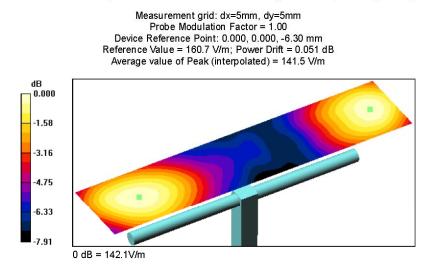
- Probe: H3DV6 SN6207; Calibrated: 1/20/2012
- Sensor-Surface: 0mm (Fix Surface)
- Electronics: DAE4 Sn859; Calibrated: 5/15/2012
- · Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;
- Measurement SW: DASY52, V52.8 Build 1;

835 MHz / 100 mW HAC Validation at 10 mm/Hearing Aid Compatibility Test (41x361x1):

FCC ID: A3LSCHI605		HAC (RF EMISSIONS) TEST REPORT	SAMSUNG	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 31 of 92
0Y1209101318.A3L	Aug. 30 - Sept. 4, 2012	Portable Handset		Fage ST 01 92
© 2012 PCTEST Engineering Laboratory, Inc.			REV 8.4C	

DUT: CD1880V3 - SN1137

Type: CD1880V3 Serial: 1137


Communication System: CW; Frequency: 1880 MHz;

Measurement Standard: DASY5 (High Precision Assessment)

DASY5 Configuration:

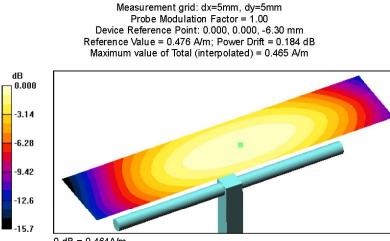
- Probe: ER3DV6 SN2353; Calibrated: 1/20/2012
- Sensor-Surface: 0mm (Fix Surface)
- Electronics: DAE4 Sn859; Calibrated: 5/15/2012
- · Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;
- Measurement SW: DASY52, V52.8 Build 1;

1880 MHz / 100mW HAC Dipole Validation at 10mm/Hearing Aid Compatibility Test (41x181x1):

FCC ID: A3LSCHI605		HAC (RF EMISSIONS) TEST REPORT	SAMSUNG	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 32 of 92
0Y1209101318.A3L	Aug. 30 - Sept. 4, 2012	Portable Handset		Fage 32 01 92
© 2012 PCTEST Engineering Laboratory, Inc.				REV 8.4C

DUT: CD1880V3 - SN1137

Type: CD1880V3 Serial: 1137


Communication System: CW; Frequency: 1880 MHz;

Measurement Standard: DASY5 (High Precision Assessment)

DASY5 Configuration:

- Probe: H3DV6 SN6207; Calibrated: 1/20/2012
- Sensor-Surface: 0mm (Fix Surface)
- Electronics: DAE4 Sn859; Calibrated: 5/15/2012
- · Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;
- Measurement SW: DASY52, V52.8 Build 1;

1880 MHz / 100 mW HAC Validation at 10 mm/Hearing Aid Compatibility Test (41x181x1):

0 dB = 0.464A/m

FCC ID: A3LSCHI605		HAC (RF EMISSIONS) TEST REPORT	SAMSUNG	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 33 of 92
0Y1209101318.A3L	Aug. 30 - Sept. 4, 2012	Portable Handset		Fage 33 01 92
© 2012 PCTEST Engineering Laboratory, Inc.				REV 8.4C

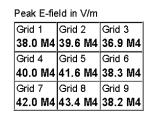
Date: 9/4/2012

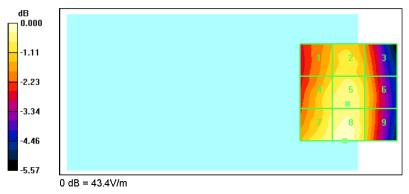
PCTEST Hearing-Aid Compatability Facility

DUT: A3LSCHI605

Type: Portable Handset Serial: 332F0 Backlight off Duty Cycle: 1:8

Communication System: CDMA; Frequency: 848.31 MHz;


Measurement Standard: DASY5 (High Precision Assessment)


DASY5 Configuration:

- Probe: ER3DV6 SN2353; Calibrated: 1/20/2012
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn859; Calibrated: 5/15/2012
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;
- Measurement SW: DASY52, V52.8 Build 1;

Cell. CDMA, RC1/SO3, High Channel/Hearing Aid Compatibility Test (101x101x1):

Measurement grid: dx=5mm, dy=5mm Maximum value of peak Total field = 43.4 V/m Probe Modulation Factor = 3.025 Device Reference Point: 0.000, 0.000, -6.30 mm Reference Value = 17.3 V/m; Power Drift = -0.005 dB Hearing Aid Near-Field Category: M4 (AWF 0 dB)

FCC ID: A3LSCHI605		HAC (RF EMISSIONS) TEST REPORT	SAMSUNG	Reviewed by: Quality Manager	
HAC Filename:	Test Dates:	EUT Type:		Dogo 24 of 02	
0Y1209101318.A3L	Aug. 30 - Sept. 4, 2012	Portable Handset		Page 34 of 92	
© 2012 PCTEST Engineering Laboratory, Inc.			REV 8.4C		

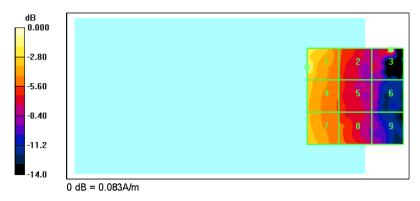
Date: 9/4/2012

DUT: A3LSCHI605

Type: Portable Handset Serial: 332F0 Backlight off Duty Cycle: 1:8

Communication System: CDMA; Frequency: 824.7 MHz;

Measurement Standard: DASY5 (High Precision Assessment)


DASY5 Configuration:

- Probe: H3DV6 SN6207; Calibrated: 1/20/2012
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn859; Calibrated: 5/15/2012
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;
- Measurement SW: DASY52, V52.8 Build 1;

Cell. CDMA, RC1/SO3, Low Channel/Hearing Aid Compatibility Test (101x101x1):

Measurement grid: dx=5mm, dy=5mm Maximum value of peak Total field = 0.083 A/m Probe Modulation Factor = 2.895 Device Reference Point: 0.000, 0.000, -6.30 mm Reference Value = 0.013 A/m; Power Drift = 0.195 dB Hearing Aid Near-Field Category: M4 (AWF 0 dB)

Peak H-field in A/m				
Grid 1	Grid 2	Grid 3		
0.083 M4	0.045 M4	0.055 M4		
Grid 4	Grid 5	Grid 6		
0.057 M4	0.044 M4	0.034 M4		
		Grid 9		
0.057 M4	0.046 M4	0.035 M4		

FCC ID: A3LSCHI605		HAC (RF EMISSIONS) TEST REPORT	SAMSUNG	Reviewed by: Quality Manager	
HAC Filename:	Test Dates:	EUT Type:		Dogo 25 of 02	
0Y1209101318.A3L	Aug. 30 - Sept. 4, 2012	Portable Handset		Page 35 of 92	
2012 PCTEST Engineering Laboratory. Inc.				REV 8.4C	

Date: 9/4/2012

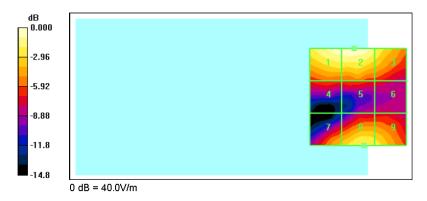
PCTEST Hearing-Aid Compatability Facility

DUT: A3LSCHI605

Type: Portable Handset Serial: 332F0 Backlight off Duty Cycle: 1:8

Communication System: CDMA; Frequency: 1851.25 MHz;

Measurement Standard: DASY5 (High Precision Assessment)


DASY5 Configuration:

- Probe: ER3DV6 SN2353; Calibrated: 1/20/2012
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn859; Calibrated: 5/15/2012
- · Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;
- Measurement SW: DASY52, V52.8 Build 1;

PCS CDMA, RC1/SO3, Low Channel/Hearing Aid Compatibility Test (101x101x1):

Measurement grid: dx=5mm, dy=5mm Maximum value of peak Total field = 40.0 V/m Probe Modulation Factor = 3.151 Device Reference Point: 0.000, 0.000, -6.30 mm Reference Value = 4.83 V/m; Power Drift = -0.198 dB Hearing Aid Near-Field Category: M4 (AWF 0 dB)

> Peak E-field in V/m Grid 1 Grid 2 Grid 3 38.7 M4 40.0 M4 32.7 M4 Grid 5 Grid 4 Grid 6 20.5 M4 21.2 M4 18.9 M4 Grid 7 Grid 8 Grid 9 26.7 M4 32.5 M4 31.0 M4

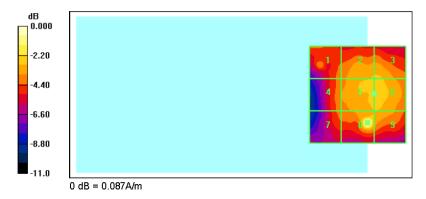
FCC ID: A3LSCHI605		HAC (RF EMISSIONS) TEST REPORT	SAMSUNG	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 36 of 92
0Y1209101318.A3L	Aug. 30 - Sept. 4, 2012	Portable Handset		Fage 30 01 92
© 2012 PCTEST Engineering Laboratory Inc.				REV 8 4C

DUT: A3LSCHI605

Type: Portable Handset Serial: 332F0 Backlight off Duty Cycle: 1:8

Communication System: CDMA; Frequency: 1880 MHz;

Measurement Standard: DASY5 (High Precision Assessment)


DASY5 Configuration:

- Probe: H3DV6 SN6207; Calibrated: 1/20/2012
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn859; Calibrated: 5/15/2012
- · Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;
- Measurement SW: DASY52, V52.8 Build 1;

PCS CDMA, RC1/SO3, Mid Channel/Hearing Aid Compatibility Test (101x101x1):

Measurement grid: dx=5mm, dy=5mm Maximum value of peak Total field = 0.087 A/m Probe Modulation Factor = 2.853 Device Reference Point: 0.000, 0.000, -6.30 mm Reference Value = 0.028 A/m; Power Drift = 0.196 dB Hearing Aid Near-Field Category: M4 (AWF 0 dB)

Peak H-fiel	Peak H-field in A/m		
		Grid 3	
0.057 M4	0.063 M4	0.063 M4	
Grid 4	Grid 5	Grid 6	
0.057 M4	0.066 M4	0.067 M4	
Grid 7	Grid 8	Grid 9	
0.055 M4	0.087 M4	0.063 M4	

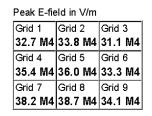
FCC ID: A3LSCHI605		HAC (RF EMISSIONS) TEST REPORT	SAMSUNG	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 37 of 92
0Y1209101318.A3L	Aug. 30 - Sept. 4, 2012	Portable Handset		Fage 37 01 92
© 2012 PCTEST Engineering L	aboratory Inc			REV 8 4C

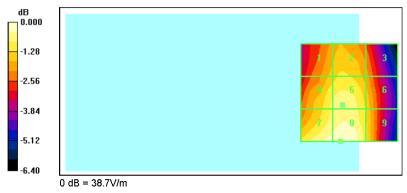
PCTEST Hearing-Aid Compatability Facility

DUT: A3LSCHI605

Type: Portable Handset Serial: 332F0 Backlight off Duty Cycle: 1:1

Communication System: CDMA; Frequency: 848.31 MHz;


Measurement Standard: DASY5 (High Precision Assessment)


DASY5 Configuration:

- Probe: ER3DV6 SN2353; Calibrated: 1/20/2012
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn859; Calibrated: 5/15/2012
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;
- Measurement SW: DASY52, V52.8 Build 1;

Cell. CDMA, RC1/SO55, High Channel/Hearing Aid Compatibility Test (101x101x1):

Measurement grid: dx=5mm, dy=5mm Maximum value of peak Total field = 38.7 V/m Probe Modulation Factor = 0.928 Device Reference Point: 0.000, 0.000, -6.30 mm Reference Value = 49.0 V/m; Power Drift = -0.032 dB Hearing Aid Near-Field Category: M4 (AWF 0 dB)

FCC ID: A3LSCHI605		HAC (RF EMISSIONS) TEST REPORT	SAMSUNG	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 38 of 92
0Y1209101318.A3L	Aug. 30 - Sept. 4, 2012	Portable Handset		Fage 30 01 92
© 2012 PCTEST Engineering L	aboratory Inc			REV 8 4C

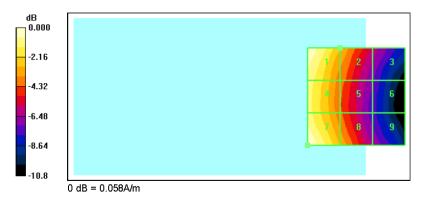
PCTEST Hearing-Aid Compatability Facility

DUT: A3LSCHI605

Type: Portable Handset Serial: 332F0 Backlight off Duty Cycle: 1:1

Communication System: CDMA; Frequency: 848.31 MHz;

Measurement Standard: DASY5 (High Precision Assessment)


DASY5 Configuration:

- Probe: H3DV6 SN6207; Calibrated: 1/20/2012
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn859; Calibrated: 5/15/2012
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;
- Measurement SW: DASY52, V52.8 Build 1;

Cell. CDMA, RC1/SO55, High Channel/Hearing Aid Compatibility Test (101x101x1):

Measurement grid: dx=5mm, dy=5mm Maximum value of peak Total field = 0.058 A/m Probe Modulation Factor = 0.808 Device Reference Point: 0.000, 0.000, -6.30 mm Reference Value = 0.037 A/m; Power Drift = -0.177 dB Hearing Aid Near-Field Category: M4 (AWF 0 dB)

Peak H-fiel	Peak H-field in A/m		
		Grid 3	
0.058 M4	0.042 M4	0.029 M4	
Grid 4	Grid 5	Grid 6	
0.052 M4	0.037 M4	0.026 M4	
Grid 7	Grid 8	Grid 9	
0.058 M4	0.042 M4	0.028 M4	

FCC ID: A3LSCHI605		HAC (RF EMISSIONS) TEST REPORT	SAMSUNG	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 39 of 92
0Y1209101318.A3L	Aug. 30 - Sept. 4, 2012	Portable Handset		Fage 39 01 92
© 2012 PCTEST Engineering L	aboratory. Inc.	•		REV 8.4C

DUT: A3LSCHI605

Type: Portable Handset Serial: 332F0 Backlight off Duty Cycle: 1:1

Communication System: CDMA; Frequency: 1851.25 MHz;

Measurement Standard: DASY5 (High Precision Assessment)

DASY5 Configuration:

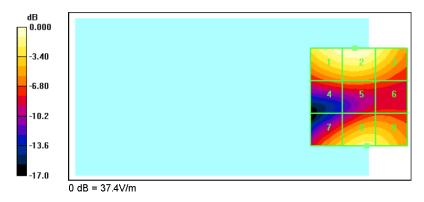
- Probe: ER3DV6 SN2353; Calibrated: 1/20/2012
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn859; Calibrated: 5/15/2012
- · Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;
- Measurement SW: DASY52, V52.8 Build 1;

PCS CDMA, RC1/SO55, Low Channel/Hearing Aid Compatibility Test (101x101x1):

Measurement grid: dx=5mm, dy=5mm Maximum value of peak Total field = 37.4 V/m Probe Modulation Factor = 0.990 Device Reference Point: 0.000, 0.000, -6.30 mm Reference Value = 13.1 V/m; Power Drift = 0.194 dB Hearing Aid Near-Field Category: M4 (AWF 0 dB)

 Peak E-field in V/m

 Grid 1
 Grid 2
 Grid 3


 36.0 M4
 37.4 M4
 32.7 M4

 Grid 4
 Grid 5
 Grid 6

 19.1 M4
 19.8 M4
 18.2 M4

 Grid 7
 Grid 8
 Grid 9

 25.1 M4
 30.3 M4
 29.3 M4

FCC ID: A3LSCHI605		HAC (RF EMISSIONS) TEST REPORT	SAMSUNG	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 40 of 92
0Y1209101318.A3L	Aug. 30 - Sept. 4, 2012	Portable Handset		Fage 40 01 92
© 2012 PCTEST Engineering L	aboratory. Inc.			REV 8.4C

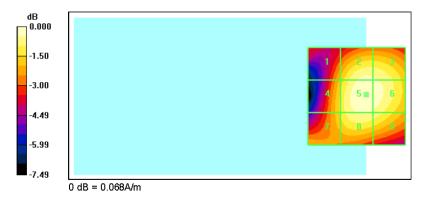
PCTEST Hearing-Aid Compatability Facility

DUT: A3LSCHI605

Type: Portable Handset Serial: 332F0 Backlight off Duty Cycle: 1:1

Communication System: CDMA; Frequency: 1851.25 MHz;

Measurement Standard: DASY5 (High Precision Assessment)


DASY5 Configuration:

- Probe: H3DV6 SN6207; Calibrated: 1/20/2012
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn859; Calibrated: 5/15/2012
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;
- Measurement SW: DASY52, V52.8 Build 1;

PCS CDMA, RC1/SO55, Low Channel/Hearing Aid Compatibility Test (101x101x1):

Measurement grid: dx=5mm, dy=5mm Maximum value of peak Total field = 0.068 A/m Probe Modulation Factor = 0.820 Device Reference Point: 0.000, 0.000, -6.30 mm Reference Value = 0.100 A/m; Power Drift = 0.128 dB Hearing Aid Near-Field Category: M4 (AWF 0 dB)

Peak H-fiel	Peak H-field in A/m		
		Grid 3	
0.055 M4	0.066 M4	0.065 M4	
Grid 4	Grid 5	Grid 6	
0.058 M4	0.068 M4	0.067 M4	
Grid 7	Grid 8	Grid 9	
0.058 M4	0.065 M4	0.063 M4	

FCC ID: A3LSCHI605		HAC (RF EMISSIONS) TEST REPORT	SAMSUNG	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 41 of 92
0Y1209101318.A3L	Aug. 30 - Sept. 4, 2012	Portable Handset		Fage 41 01 92
© 2012 PCTEST Engineering La	aboratory, Inc.			REV 8.4C

DUT: A3LSCHI605

Type: Portable Handset Serial: 332F0 Backlight off Duty Cycle: 1:8.3

Communication System: GSM; Frequency: 848.8 MHz;

Measurement Standard: DASY5 (High Precision Assessment)

DASY5 Configuration:

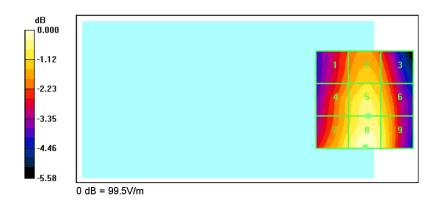
- Probe: ER3DV6 SN2353; Calibrated: 1/20/2012
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn859; Calibrated: 5/15/2012
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;
- Measurement SW: DASY52, V52.8 Build 1;

GSM850 High Channel/Hearing Aid Compatibility Test (101x101x1):

Measurement grid: dx=5mm, dy=5mm Maximum value of peak Total field = 99.5 V/m Probe Modulation Factor = 2.829 Device Reference Point: 0.000, 0.000, -6.30 mm Reference Value = 42.0 V/m; Power Drift = 0.178 dB Hearing Aid Near-Field Category: M4 (AWF -5 dB)

 Peak E-field in V/m

 Grid 1
 Grid 2
 Grid 3


 81.0 M4
 87.4 M4
 82.8 M4

 Grid 4
 Grid 5
 Grid 6

 86.0 M4
 93.4 M4
 88.9 M4

 Grid 7
 Grid 8
 Grid 9

 91.4 M4
 99.5 M4
 92.9 M4

2012 PCTEST

FCC ID: A3LSCHI605		HAC (RF EMISSIONS) TEST REPORT	SAMSUNG	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 42 of 92
0Y1209101318.A3L	Aug. 30 - Sept. 4, 2012	Portable Handset		Fage 42 01 92
© 2012 PCTEST Engineering L	aboratory Inc			REV 8 4C

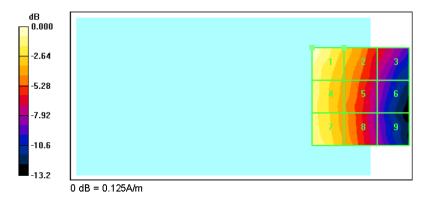
© 2012 PCTEST Engineering Laboratory, Inc.

DUT: A3LSCHI605

Type: Portable Handset Serial: 332F0 Backlight off Duty Cycle: 1:8.3

Communication System: GSM; Frequency: 836.6 MHz;

Measurement Standard: DASY5 (High Precision Assessment)


DASY5 Configuration:

- Probe: H3DV6 SN6207; Calibrated: 1/20/2012
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn859; Calibrated: 5/15/2012
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;
- Measurement SW: DASY52, V52.8 Build 1;

GSM850 Mid Channel/Hearing Aid Compatibility Test (101x101x1):

Measurement grid: dx=5mm, dy=5mm Maximum value of peak Total field = 0.125 A/m Probe Modulation Factor = 1.948 Device Reference Point: 0.000, 0.000, -6.30 mm Reference Value = 0.035 A/m; Power Drift = -0.084 dB Hearing Aid Near-Field Category: M4 (AWF -5 dB)

Peak H-field	Peak H-field in A/m		
		Grid 3	
0.125 M4	0.091 M4	0.062 M4	
		Grid 6	
0.110 M4	0.081 M4	0.053 M4	
		Grid 9	
0.114 M4	0.082 M4	0.051 M4	

FCC ID: A3LSCHI605		HAC (RF EMISSIONS) TEST REPORT	SAMSUNG	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 43 of 92
0Y1209101318.A3L	Aug. 30 - Sept. 4, 2012	Portable Handset		Fage 43 01 92
© 2012 PCTEST Engineering La	aboratory, Inc.	-		REV 8.4C

DUT: A3LSCHI605

Type: Portable Handset Serial: 332F0 Backlight off Duty Cycle: 1:8.3

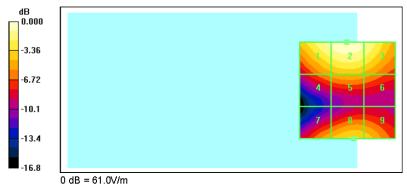
Communication System: GSM; Frequency: 1880 MHz;

Measurement Standard: DASY5 (High Precision Assessment)

DASY5 Configuration:

- Probe: ER3DV6 SN2353; Calibrated: 1/20/2012
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn859; Calibrated: 5/15/2012
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;
- Measurement SW: DASY52, V52.8 Build 1;

PCS GSM Mid Channel/Hearing Aid Compatibility Test (101x101x1):


Measurement grid: dx=5mm, dy=5mm Maximum value of peak Total field = 61.0 V/m Probe Modulation Factor = 2.79 Device Reference Point: 0.000, 0.000, -6.30 mm Reference Value = 10.2 V/m; Power Drift = 0.192 dB Hearing Aid Near-Field Category: M3 (AWF -5 dB)

 Peak E-field in V/m

 Grid 1
 Grid 2
 Grid 3

 57.1
 M3
 61.0
 M3
 55.6
 M3

	Grid 5	
34.4 M4	37.2 M4	35.0 M4
		Grid 9
36.6 M4	42.5 M4	40.7 M4

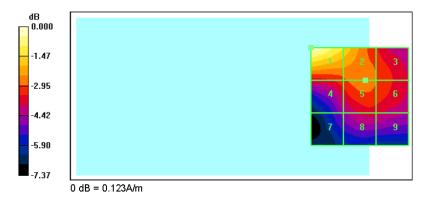
FCC ID: A3LSCHI605		HAC (RF EMISSIONS) TEST REPORT	SAMSUNG	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 44 of 92
0Y1209101318.A3L	Aug. 30 - Sept. 4, 2012	Portable Handset		Fage 44 01 92
© 2012 PCTEST Engineering L	aboratory Inc			REV 8 4C

DUT: A3LSCHI605

Type: Portable Handset Serial: 332F0 Backlight off Duty Cycle: 1:8.3

Communication System: GSM; Frequency: 1909.8 MHz;

Measurement Standard: DASY5 (High Precision Assessment)


DASY5 Configuration:

- Probe: H3DV6 SN6207; Calibrated: 1/20/2012
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn859; Calibrated: 5/15/2012
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;
- Measurement SW: DASY52, V52.8 Build 1;

PCS GSM High Channel/Hearing Aid Compatibility Test (101x101x1):

Measurement grid: dx=5mm, dy=5mm Maximum value of peak Total field = 0.123 A/m Probe Modulation Factor = 2.319 Device Reference Point: 0.000, 0.000, -6.30 mm Reference Value = 0.045 A/m; Power Drift = 0.080 dB Hearing Aid Near-Field Category: M4 (AWF -5 dB)

Peak H-field in A/m				
		Grid 3		
0.123 M4	0.104 M4	0.088 M4		
		Grid 6		
0.086 M4	0.090 M4	0.088 M4		
Grid 7	Grid 8	Grid 9		
0.072 M4	0.080 M4	0.080 M4		

FCC ID: A3LSCHI605		HAC (RF EMISSIONS) TEST REPORT	SAMSUNG	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 45 of 92
0Y1209101318.A3L	Aug. 30 - Sept. 4, 2012	Portable Handset		Fage 45 01 92
© 2012 PCTEST Engineering L	aboratory. Inc.			REV 8.4C

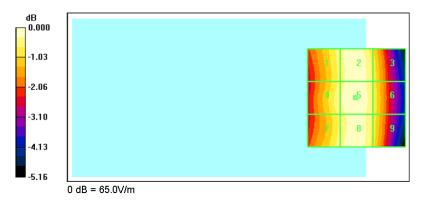
DUT: A3LSCHI605

Type: Portable Handset Serial: 332F0 Backlight off Duty Cycle: 1:1

Communication System: WCDMA; Frequency: 826.4 MHz;

Measurement Standard: DASY5 (High Precision Assessment)

DASY5 Configuration:


- Probe: ER3DV6 SN2353; Calibrated: 1/20/2012
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn859; Calibrated: 5/15/2012
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;
- Measurement SW: DASY52, V52.8 Build 1;

WCDMA850 Low Channel/Hearing Aid Compatibility Test (101x101x1):

Measurement grid: dx=5mm, dy=5mm Maximum value of peak Total field = 65.0 V/m Probe Modulation Factor = 0.961 Device Reference Point: 0.000, 0.000, -6.30 mm Reference Value = 90.0 V/m; Power Drift = -0.195 dB Hearing Aid Near-Field Category: M4 (AWF 0 dB)

> Peak E-field in V/m Grid 1 Grid 2 Grid 3

		Gilu S
61.4 M4	64.2 M4	59.6 M4
	Grid 5	
62.2 M4	65.0 M4	60.1 M4
		Grid 9
61 6 M/	64 2 MA	59.6 M4

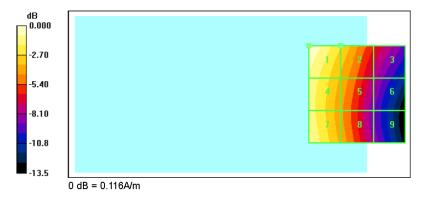
FCC ID: A3LSCHI605		HAC (RF EMISSIONS) TEST REPORT	SAMSUNG	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 46 of 92
0Y1209101318.A3L	Aug. 30 - Sept. 4, 2012	Portable Handset		Fage 40 01 92
© 2012 PCTEST Engineering L	aboratory, Inc.			REV 8.4C

DUT: A3LSCHI605

Type: Portable Handset Serial: 332F0 Backlight off Duty Cycle: 1:1

Communication System: WCDMA; Frequency: 836.6 MHz;

Measurement Standard: DASY5 (High Precision Assessment)


DASY5 Configuration:

- Probe: H3DV6 SN6207; Calibrated: 1/20/2012
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn859; Calibrated: 5/15/2012
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;
- Measurement SW: DASY52, V52.8 Build 1;

WCDMA850 Mid Channel/Hearing Aid Compatibility Test (101x101x1):

Measurement grid: dx=5mm, dy=5mm Maximum value of peak Total field = 0.116 A/m Probe Modulation Factor = 0.924 Device Reference Point: 0.000, 0.000, -6.30 mm Reference Value = 0.065 A/m; Power Drift = -0.140 dB Hearing Aid Near-Field Category: M4 (AWF 0 dB)

Peak H-field in A/m				
		Grid 3		
0.116 M4	0.086 M4	0.057 M4		
		Grid 6		
0.103 M4	0.076 M4	0.048 M4		
		Grid 9		
0.106 M4	0.075 M4	0.045 M4		

FCC ID: A3LSCHI605		HAC (RF EMISSIONS) TEST REPORT	SAMSUNG	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 47 of 92
0Y1209101318.A3L	Aug. 30 - Sept. 4, 2012	Portable Handset		Fage 47 01 92
© 2012 PCTEST Engineering La	aboratory, Inc.			REV 8.4C

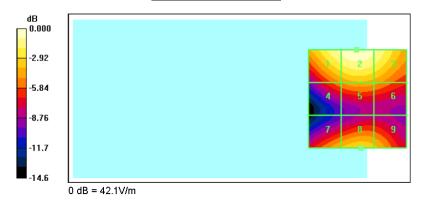
DUT: A3LSCHI605

Type: Portable Handset Serial: 332F0 Backlight off Duty Cycle: 1:1

Communication System: WCDMA; Frequency: 1880 MHz;

Measurement Standard: DASY5 (High Precision Assessment)

DASY5 Configuration:


- Probe: ER3DV6 SN2353; Calibrated: 1/20/2012
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn859; Calibrated: 5/15/2012
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;
- Measurement SW: DASY52, V52.8 Build 1;

WCDMA1900 Mid Channel/Hearing Aid Compatibility Test (101x101x1):

Measurement grid: dx=5mm, dy=5mm Maximum value of peak Total field = 42.1 V/m Probe Modulation Factor = 0.972 Device Reference Point: 0.000, 0.000, -6.30 mm Reference Value = 24.0 V/m; Power Drift = -0.106 dB Hearing Aid Near-Field Category: M4 (AWF 0 dB)

Peak E-field in V/m

		Grid 3
39.3 M4	42.1 M4	38.5 M4
		Grid 6
04 0 144	A A A 444	
Z4.Z ₩4	26.6 144	25.4 M4
		25.4 114 Grid 9

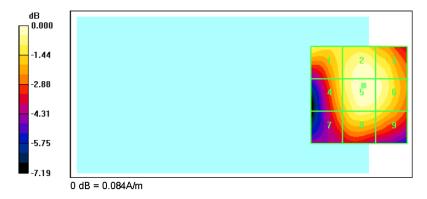
FCC ID: A3LSCHI605		HAC (RF EMISSIONS) TEST REPORT	SAMSUNG	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 48 of 92
0Y1209101318.A3L	Aug. 30 - Sept. 4, 2012	Portable Handset		Fage 40 01 92
© 2012 PCTEST Engineering L	aboratory Inc			REV 8 4C

DUT: A3LSCHI605

Type: Portable Handset Serial: 332F0 Backlight off Duty Cycle: 1:1

Communication System: WCDMA; Frequency: 1880 MHz;

Measurement Standard: DASY5 (High Precision Assessment)


DASY5 Configuration:

- Probe: H3DV6 SN6207; Calibrated: 1/20/2012
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn859; Calibrated: 5/15/2012
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA;
- Measurement SW: DASY52, V52.8 Build 1;

WCDMA1900 Mid Channel/Hearing Aid Compatibility Test (101x101x1):

Measurement grid: dx=5mm, dy=5mm Maximum value of peak Total field = 0.084 A/m Probe Modulation Factor = 0.940 Device Reference Point: 0.000, 0.000, -6.30 mm Reference Value = 0.106 A/m; Power Drift = 0.122 dB Hearing Aid Near-Field Category: M4 (AWF 0 dB)

Peak H-field in A/m				
		Grid 3		
0.078 M4	0.084 M4	0.081 M4		
Grid 4	Grid 5	Grid 6		
0.074 M4	0.084 M4	0.082 M4		
		Grid 9		
0.068 M4	0.077 M4	0.075 M4		

FCC ID: A3LSCHI605		HAC (RF EMISSIONS) TEST REPORT	SAMSUNG	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 49 of 92
0Y1209101318.A3L	Aug. 30 - Sept. 4, 2012	Portable Handset		Fage 49 01 92
© 2012 PCTEST Engineering L	aboratory Inc			REV 8 4C

CALIBRATION CERTIFICATES 14.

The following pages include the probe calibration used to evaluate HAC for the DUT.

FCC ID: A3LSCHI605		HAC (RF EMISSIONS) TEST REPORT	SAMSUNG	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 50 of 92
0Y1209101318.A3L	Aug. 30 - Sept. 4, 2012	Portable Handset		Fage 50 01 92
© 2012 PCTEST Engineering La	aboratory, Inc.			REV 8.40

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108

С

S

llent PC Test		Certificate No:	ER3-2353_Jan12	
CALIBRATION	CERTIFICATI	E		
Object	ER3DV6 - SN:23	53		
Calibration procedure(s)	QA CAL-02.v6, C Calibration proce evaluations in air	dure for E-field probes optimized f	or close near field	
Calibration date:	January 20, 2012	2		
The measurements and the unc All calibrations have been condu	ertainties with confidence p ucted in the closed laborator	onal standards, which realize the physical units robability are given on the following pages and ry facility: environment temperature (22 ± 3)°C a	are part of the certificate.	KOX 2/6
Calibration Equipment used (M8	TE criticat for calibration)			
Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration	
Power meter E4419B	GB41293874	31-Mar-11 (No. 217-01372)	Apr-12	
Power sensor E4412A	MY41498087	31-Mar-11 (No. 217-01372)	Apr-12	
Reference 3 dB Attenuator	SN: S5054 (3c)	29-Mar-11 (No. 217-01369)	Apr-12	
Reference 20 dB Attenuator	SN: S5086 (20b)	29-Mar-11 (No. 217-01367)	Apr-12	
Reference 30 dB Attenuator	SN: S5129 (30b)	29-Mar-11 (No. 217-01370)	Apr-12	
Reference Probe ER3DV6	SN: 2328	11-Oct-11 (No. ER3-2328_Oct11)	Oct-12	
DAE4	SN: 789	6-Apr-11 (No. DAE4-789_Apr11)	Apr-12	
Secondary Standards	ID	Check Date (in house)	Scheduled Check	
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-11)	In house check: Apr-13	
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-11)	In house check: Oct-12	
	Name	Function	Signature	
Calibrated by:	Dince Iliev	Laboratory Technician	O. Hier	
Approved by:	Kalja Pokovic	Technical Manager	Ll4=	
			Issued: January 25, 2012	

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: ER3-2353_Jan12

Page 1 of 11

FCC ID: A3LSCHI605		HAC (RF EMISSIONS) TEST REPORT	SAMSUNG	Reviewed by: Quality Manager	
HAC Filename:	Test Dates:	EUT Type:		Page 51 of 92	
0Y1209101318.A3L	Aug. 30 - Sept. 4, 2012	Portable Handset	ortable Handset		
© 2012 PCTEST Engineering La	2012 PCTEST Engineering Laboratory, Inc.				

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kallbrierdienst Service suisse d'étalonnage Servizlo svizzero di taratura Swiss Callbration Service

Accreditation No.: SCS 108

S

С

S

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

 NORMx,y,z
 sensitivity in free space

 DCP
 diode compression point

 CF
 crest factor (1/duty_cycle) of the RF signal

 A, B, C
 modulation dependent linearization parameters

 Polarization φ
 φ rotation around probe axis

 Polarization 9
 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., 9 = 0 is normal to probe axis

 Connector Angle
 information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

 a) IEEE Std 1309-2005, "IEEE Standard for calibration of electromagnetic field sensors and probes, excluding antennas, from 9 kHz to 40 GHz", December 2005.

Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization 9 = 0 for XY sensors and 9 = 90 for Z sensor (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart).
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z: A, B, C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- Spherical isotropy (3D deviation from isotropy): in a locally homogeneous field realized using an open waveguide setup.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: ER3-2353_Jan12

Page 2 of 11

FCC ID: A3LSCHI605		HAC (RF EMISSIONS) TEST REPORT	SAMSUNG	Reviewed by: Quality Manager	
HAC Filename:	Test Dates:	EUT Type:		Page 52 of 92	
0Y1209101318.A3L	Aug. 30 - Sept. 4, 2012	Portable Handset		Fage 52 01 92	
© 2012 PCTEST Engineering La	© 2012 PCTEST Engineering Laboratory, Inc.				

ER3DV6 - SN:2353

January 20, 2012

Probe ER3DV6

SN:2353

Manufactured: March 8, 2005 Calibrated: January 20, 2012

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: ER3-2353_Jan12

Page 3 of 11

FCC ID: A3LSCHI605		HAC (RF EMISSIONS) TEST REPORT	SAMSUNG	Reviewed by: Quality Manager	
HAC Filename:	Test Dates:	EUT Type:		Page 53 of 92	
0Y1209101318.A3L	Aug. 30 - Sept. 4, 2012	Portable Handset		Fage 33 01 92	
© 2012 PCTEST Engineering L	© 2012 PCTEST Engineering Laboratory, Inc.				

DASY/EASY - Parameters of Probe: ER3DV6 - SN:2353

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)$	1.53	1.73	1.81	± 10.1 %
DCP (mV) ⁸	100.9	98.7	102.3	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dB	C dB	VR mV	Unc ^E (k=2)
10000	CW	0.00	X	0.00	0.00	1.00	103.6	±3.0 %
			Y	0.00	0.00	1.00	88.2	
			Z	0.00	0.00	1.00	105.7	
10011	UMTS-FDD (WCDMA)	3.40	X	3.44	65.6	18.3	111.4	±0.7 %
			Y	3.51	65.9	18.5	130.9	
			Z	3.53	66.6	18.9	114.5	
10021	GSM-FDD (TDMA, GMSK)	9.40	X	16.75	99.3	28.2	144.6	±1.7 %
			Y	16.85	99.3	28.8	124.1	
			Z	22.94	99.8	28.7	128.7	
10039	CDMA2000 (1xRTT, RC1)	4.57	X	4.56	66.0	18.8	112.4	±0.9 %
			Y	4.84	67.1	19.5	133.1	
			Z	4.49	65.9	18.7	115.8	
10081	CDMA2000 (1xRTT, RC3)	3.96	X	3.68	64.9	18.0	109.1	±0.7 %
			Y	3.89	65.9	18.7	129.0	
			Z	3.71	65.4	18.4	113.2	
10169	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	5.73	x	5.16	67.7	20.5	145.7	±1.7 %
			Y	5.14	67.1	20.3	124.7	
			Z	4.82	65.7	19.3	108.5	
10170	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	6.52	x	6.10	69.5	21.9	146.2	±2.7 %
			Y	6.13	69.1	21.8	125.5	
			Z	5.66	67.0	20.2	110.4	
10175	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	5.73	X	5.13	67.6	20.5	145.7	±1.7 %
			Y	5.15	67.1	20.3	124.9	
			Z	4.88	66.0	19.4	110.1	
10176	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	6.52	X	6.12	69.6	22.0	145.7	±3.0 %
			Y	6.12	69.2	21.9	124.6	
			Z	5.69	67.2	20.4	110.6	
10177	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	5.73	X	5.19	67.8	20.6	145.8	±1.7 %
			Y	5.17	67.3	20.4	124.7	
			Z	4.88	66.0	19.4	110.3	
10178	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 16- QAM)	6.52	X	6.05	69.3	21.8	146.8	±2.5 %
			Y	5.98	68.5	21.5	123.9	
			Z	5.55	66.6	20.1	109.9	
10181	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	5.73	X	5.17	67.8	20.6	145.9	±1.7 %
			Y	4.92	66.1	19.7	123.5	
			Z	4.90	66.1	19.5	110.0	

Certificate No: ER3-2353_Jan12

Page 4 of 11

FCC ID: A3LSCHI605		HAC (RF EMISSIONS) TEST REPORT	SAMSUNG	Reviewed by: Quality Manager		
HAC Filename:	Test Dates:	EUT Type:		Dogo 54 of 02		
0Y1209101318.A3L	Aug. 30 - Sept. 4, 2012	Portable Handset		Page 54 of 92		
© 2012 PCTEST Engineering L	2012 PCTEST Engineering Laboratory, Inc.					

ER3DV6-- SN:2353

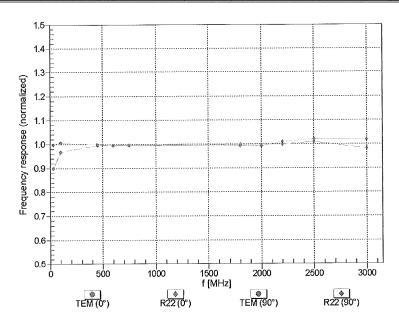
January 20, 2012

10182	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	6.52	X	6.00	69.1	21.7	146.3	±3.0 %
			Y	6.43	70.5	22.6	125.7	
			Z	5.70	67.2	20.4	110.4	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^B Numerical linearization parameter: uncertainty not required.
^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Certificate No: ER3-2353_Jan12

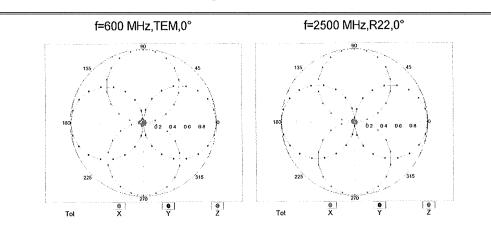

Page 5 of 11

FCC ID: A3LSCHI605		HAC (RF EMISSIONS) TEST REPORT	SAMSUNG	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 55 of 92
0Y1209101318.A3L	Aug. 30 - Sept. 4, 2012	Portable Handset		Fage 35 01 92
© 2012 PCTEST Engineering La	aboratory, Inc.			REV 8.4C

ER3DV6- SN:2353

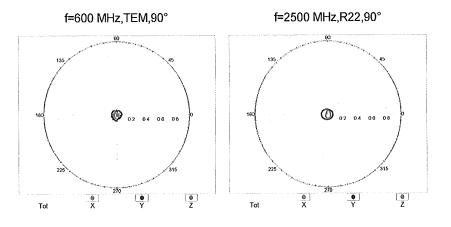
January 20, 2012

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)


Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Certificate No: ER3-2353_Jan12

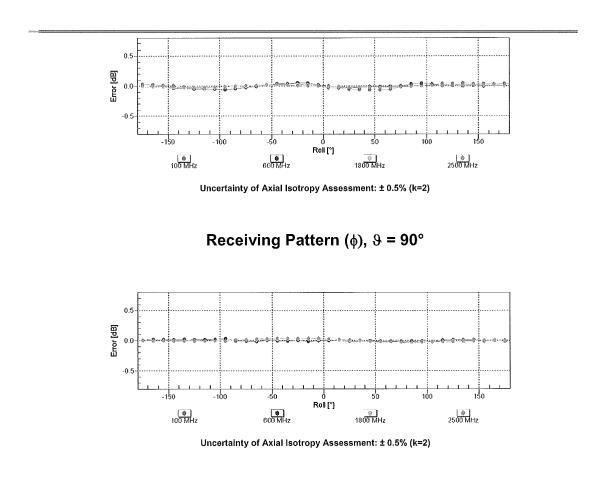
Page 6 of 11


FCC ID: A3LSCHI605		HAC (RF EMISSIONS) TEST REPORT	SAMSUNE	Reviewed by: Quality Manager		
HAC Filename:	Test Dates:	EUT Type:		Page 56 of 92		
0Y1209101318.A3L	Aug. 30 - Sept. 4, 2012	Portable Handset		Fage 30 01 92		
© 2012 PCTEST Engineering L	© 2012 PCTEST Engineering Laboratory, Inc.					

January 20, 2012

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Receiving Pattern (ϕ), ϑ = 90°


Certificate No: ER3-2353_Jan12

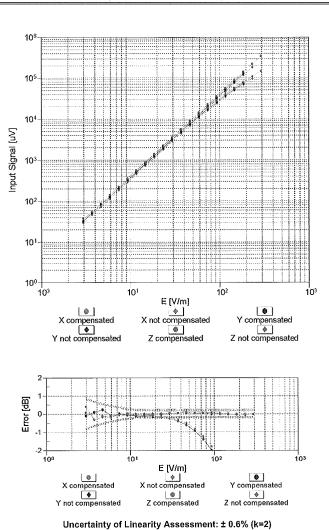
Page 7 of 11

FCC ID: A3LSCHI605		HAC (RF EMISSIONS) TEST REPORT	SAMSUNG	Reviewed by: Quality Manager	
HAC Filename:	Test Dates:	EUT Type:		Page 57 of 92	
0Y1209101318.A3L	Aug. 30 - Sept. 4, 2012	Portable Handset		Fage 57 01 92	
© 2012 PCTEST Engineering Laboratory, Inc.					

ER3DV6-- SN:2353

January 20, 2012

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$


Certificate No: ER3-2353_Jan12

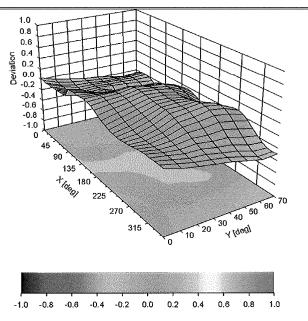
Page 8 of 11

FCC ID: A3LSCHI605		HAC (RF EMISSIONS) TEST REPORT	SAMSUNG	Reviewed by: Quality Manager		
HAC Filename:	Test Dates:	EUT Type:		Page 58 of 92		
0Y1209101318.A3L	Aug. 30 - Sept. 4, 2012	Portable Handset		Fage 56 01 92		
© 2012 PCTEST Engineering L	© 2012 PCTEST Engineering Laboratory, Inc.					

ER3DV6- SN:2353

January 20, 2012

Certificate No: ER3-2353_Jan12


Page 9 of 11

FCC ID: A3LSCHI605	CID: A3LSCHI605 HAC (RF EMISSIONS) TEST REPORT		SAMSUNG	Reviewed by: Quality Manager	
HAC Filename:	Test Dates:	EUT Type:		Page 59 of 92	
0Y1209101318.A3L	Aug. 30 - Sept. 4, 2012	Portable Handset		Fage 59 01 92	
© 2012 PCTEST Engineering La	2012 PCTEST Engineering Laboratory, Inc.				

January 20, 2012

ER3DV6- SN:2353

Deviation from Isotropy in Air Error (ϕ , ϑ), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Certificate No: ER3-2353_Jan12

Page 10 of 11

FCC ID: A3LSCHI605	CHI605 HAC (RF EMISSIONS) TEST REPORT		SAMSUNG	Reviewed by: Quality Manager	
HAC Filename:	Test Dates:	EUT Type:		Page 60 of 92	
0Y1209101318.A3L	Aug. 30 - Sept. 4, 2012	Portable Handset		Fage 60 01 92	
© 2012 PCTEST Engineering L	2012 PCTEST Engineering Laboratory, Inc.				

January 20, 2012

DASY/EASY - Parameters of Probe: ER3DV6 - SN:2353

Sensor Arrangement	Rectangular
Connector Angle (°)	-4.9
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	8 mm
Probe Tip to Sensor X Calibration Point	2.5 mm
Probe Tip to Sensor Y Calibration Point	2.5 mm
Probe Tip to Sensor Z Calibration Point	2.5 mm

Certificate No: ER3-2353_Jan12

Page 11 of 11

FCC ID: A3LSCHI605	A3LSCHI605 HAC (RF EMISS		SAMSUNG	Reviewed by: Quality Manager	
HAC Filename:	Test Dates:	EUT Type:		Page 61 of 92	
0Y1209101318.A3L	Aug. 30 - Sept. 4, 2012	Portable Handset		1 age 01 01 02	
© 2012 PCTEST Engineering Laboratory, Inc.					

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service Is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108

s

Ĉ

S

Client PC Test		Certificate No:	H3-6207_Jan12
CALIBRATION	CERTIFICATE		
Object	H3DV6 - SN:6207	•	
Calibration procedure(s)	QA CAL-03.v6, Q Calibration procee evaluations in air	A CAL-25.v4 dure for H-field probes optimized f	· · · · · · · · · · · · · · · · · · ·
Calibration date:	January 20, 2012		Vipit
The measurements and the unc	ertainties with confidence pro ucted in the closed laboratory	nal standards, which realize the physical units obability are given on the following pages and γ facility: environment temperature (22 ± 3)°C a	are part of the certificate.
Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	31-Mar-11 (No. 217-01372)	Apr-12
Power sensor E4412A	MY41498087	31-Mar-11 (No. 217-01372)	Apr-12
Reference 3 dB Attenuator	SN: S5054 (3c)	29-Mar-11 (No. 217-01369)	Apr-12
Reference 20 dB Attenuator	SN: S5086 (20b)	29-Mar-11 (No. 217-01367)	Apr-12
Reference 30 dB Attenuator	SN: S5129 (30b)	29-Mar-11 (No. 217-01370)	Apr-12
Reference Probe H3DV6	SN: 6182	11-Oct-11 (No. H3-6182_Oct11)	Oct-12
DAE4	SN: 789	6-Apr-11 (No. DAE4-789_Apr11)	Apr-12
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-11)	In house check: Apr-13
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-11)	In house check: Oct-12
	Name	Function	Signature
Calibrated by:	Dimce Illev	Laboratory Technician	D'Hiev
Approved by:	Katja Pokovic	Technical Manager	Elle-
		full without written approval of the laboratory.	Issued: January 25, 2012

Certificate No: H3-6207_Jan12

Page 1 of 10

FCC ID: A3LSCHI605	CHI605 HAC (RF EMISSIONS) TEST REPORT		SAMSUNG	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 62 of 92
0Y1209101318.A3L	Aug. 30 - Sept. 4, 2012	Portable Handset		Fage 02 01 92
© 2012 PCTEST Engineering L	aboratory, Inc.			REV 8.4C

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kallbrierdienst Service sulsse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

S

С

S

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

•.••••	
NORMx,y,z	sensitivity in free space
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization 9	9 rotation around an axis that is in the plane normal to probe axis (at measurement center),
	i.e., 9 = 0 is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

 a) IEEE Std 1309-2005, "IEEE Standard for calibration of electromagnetic field sensors and probes, excluding antennas, from 9 kHz to 40 GHz", December 2005.

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 for XY sensors and 9 = 90 for Z sensor (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
- X,Y,Z(f)_a0a1a2= X,Y,Z_a0a1a2* frequency_response (see Frequency Response Chart).
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z; A, B, C are numerical linearization parameters assessed based on the data of
 power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the
 maximum calibration range expressed in RMS voltage across the diode.
- Spherical isotropy (3D deviation from isotropy): in a locally homogeneous field realized using an open waveguide setup.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the X_a0a1a2 (no
 uncertainty required).

Certificate No: H3-6207_Jan12

Page 2 of 10

FCC ID: A3LSCHI605				Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 63 of 92
0Y1209101318.A3L	Aug. 30 - Sept. 4, 2012	Portable Handset		Fage 03 01 92
© 2012 PCTEST Engineering L	REV 8.4C			

January 20, 2012

Probe H3DV6

SN:6207

Manufactured: June 12, 2006 Calibrated: January 20, 2012

Nibratad for DASV/EASV Systems

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: H3-6207_Jan12

Page 3 of 10

FCC ID: A3LSCHI605	HAC (RF EMISSIONS) TEST REPORT		SAMSUNG	Reviewed by: Quality Manager	
HAC Filename:	Test Dates:	EUT Type:		Page 64 of 92	
0Y1209101318.A3L	Aug. 30 - Sept. 4, 2012	Portable Handset		Fage 04 01 92	
© 2012 PCTEST Engineering La	2012 PCTEST Engineering Laboratory, Inc.				

H3DV6- SN:6207

January 20, 2012

DASY/EASY - Parameters of Probe: H3DV6 - SN:6207

Basic	Calibi	ation I	Parame	ters

		Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (A/m / √(mV))	a0	2.41E-003	2.37E-003	2.94E-003	± 5.1 %
Norm (A/m / √(mV))	a1	1.77E-004	6.07E-004	8.69E-005	± 5.1 %
Norm (A/m / √(mV))	a2	1.63E-004	2.45E-004	1.96E-004	± 5.1 %
DCP (mV) ^B		94.0	94.6	94.5	

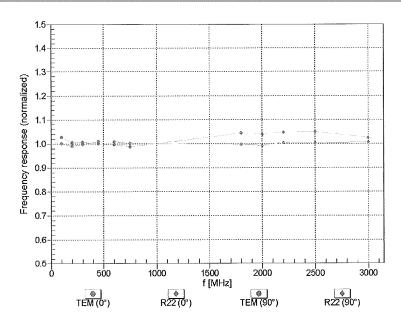
Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dB	C dB	VR mV	Unc ^E (k=2)
10000	CW	0.00	Х	0.00	0.00	1.00	92.5	±2.7 %
			Y	0.00	0.00	1.00	107.4	
			Ζ	0.00	0.00	1.00	119.1	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

⁸ Numerical linearization parameter: uncertainty not required. ^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Certificate No: H3-6207_Jan12

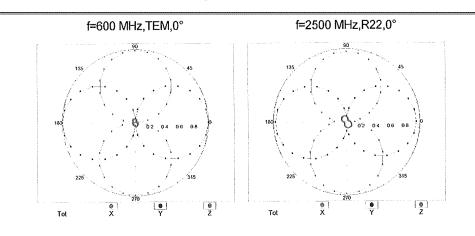

Page 4 of 10

FCC ID: A3LSCHI605		HAC (RF EMISSIONS) TEST REPORT	SAMSUNG	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 65 of 92
0Y1209101318.A3L	Aug. 30 - Sept. 4, 2012	Portable Handset		Fage 03 01 92
© 2012 PCTEST Engineering Laboratory, Inc.			REV 8.4C	

H3DV6- SN:6207

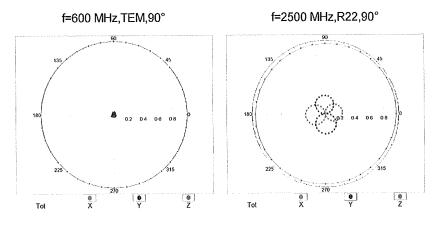
January 20, 2012

Frequency Response of H-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)


Uncertainty of Frequency Response of H-field: ± 6.3% (k=2)

Certificate No: H3-6207_Jan12

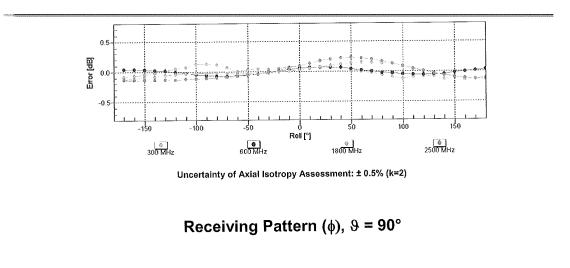
Page 5 of 10


FCC ID: A3LSCHI605		HAC (RF EMISSIONS) TEST REPORT	SAMSUNG	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 66 of 92
0Y1209101318.A3L	Aug. 30 - Sept. 4, 2012	Portable Handset		Fage 00 01 92
© 2012 PCTEST Engineering Laboratory, Inc.			REV 8.4C	

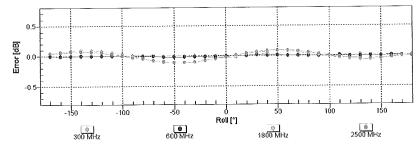
January 20, 2012

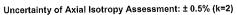
Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Receiving Pattern (ϕ), ϑ = 90°


Certificate No: H3-6207_Jan12

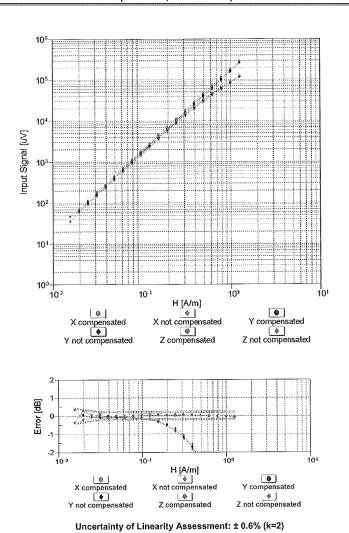
Page 6 of 10


FCC ID: A3LSCHI605		HAC (RF EMISSIONS) TEST REPORT	SAMSUNG	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 67 of 92
0Y1209101318.A3L	Aug. 30 - Sept. 4, 2012	Portable Handset		Fage 67 01 92
© 2012 PCTEST Engineering Laboratory, Inc.			REV 8.4C	


H3DV6-- SN:6207

January 20, 2012

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$


Certificate No: H3-6207_Jan12

Page 7 of 10

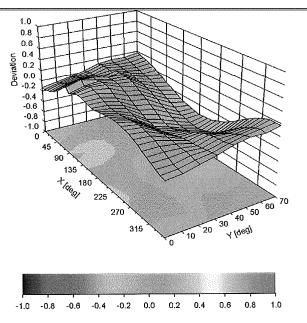
FCC ID: A3LSCHI605		HAC (RF EMISSIONS) TEST REPORT	SAMSUNG	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 68 of 92
0Y1209101318.A3L	Aug. 30 - Sept. 4, 2012	Portable Handset		Fage 00 01 92
© 2012 PCTEST Engineering Laboratory, Inc.				REV 8.4C

H3DV6- SN:6207

January 20, 2012

Dynamic Range f(H-field) (TEM cell, f = 900 MHz)

Certificate No: H3-6207_Jan12


Page 8 of 10

FCC ID: A3LSCHI605		HAC (RF EMISSIONS) TEST REPORT	SAMSUNG	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 69 of 92
0Y1209101318.A3L	Aug. 30 - Sept. 4, 2012	Portable Handset		Fage 09 01 92
© 2012 PCTEST Engineering Laboratory, Inc.			REV 8.4C	

H3DV6- SN:6207

January 20, 2012

Deviation from Isotropy in Air Error (\, \vartheta), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Certificate No: H3-6207_Jan12

Page 9 of 10

FCC ID: A3LSCHI605		HAC (RF EMISSIONS) TEST REPORT	SAMSUNG	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 70 of 92
0Y1209101318.A3L	Aug. 30 - Sept. 4, 2012	Portable Handset		Fage 70 01 92
© 2012 PCTEST Engineering Laboratory, Inc.			REV 8.4C	

January 20, 2012

H3DV6- SN:6207

DASY/EASY - Parameters of Probe: H3DV6 - SN:6207

Sensor Arrangement	Rectangular
Connector Angle (°)	179.8
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	20 mm
Tip Diameter	6 mm
Probe Tip to Sensor X Calibration Point	3 mm
Probe Tip to Sensor Y Calibration Point	3 mm
Probe Tip to Sensor Z Calibration Point	3 mm

Certificate No: H3-6207_Jan12

Page 10 of 10

FCC ID: A3LSCHI605		HAC (RF EMISSIONS) TEST REPORT	SAMSUNG	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 71 of 92
0Y1209101318.A3L	Aug. 30 - Sept. 4, 2012	Portable Handset		Fage / 1 01 92
© 2012 PCTEST Engineering Laboratory, Inc.				REV 8.4C

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurlch, Switzerland

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

S Schweizerischer Kalibrierdienst
 Service suisse d'étalonnage
 Servizio svizzero di taratura
 S Swiss Calibration Service

Accreditation No.: SCS 108

Certificate No: CD835V3-1003_Feb11 PC Test Client **CALIBRATION CERTIFICATE** Object CD835V3 - SN: 1003 Calibration procedure(s) QA CAL-20.v5 Calibration procedure for dipoles in air February 08, 2011 Calibration date: ×014211 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) (D # Cal Date (Certificate No.) Primary Standards Scheduled Calibration Power meter EPM-442A GB37480704 06-Oct-10 (No. 217-01266) Oct-11 Power sensor HP 8481A US37292783 06-Oct-10 (No. 217-01266) Oct-11 Probe ER3DV6 SN: 2336 29-Dec-10 (No. ER3-2336_Dec10) Dec-11 Probe H3DV6 SN: 6065 29-Dec-10 (No. H3-6065_Dec10) Dec-11 20-Oct-10 (No. DAE4-781_Oct10) DAE4 SN: 781 Oct-11 Secondary Standards ID # Check Date (in house) Scheduled Check SN: GB42420191 Power meter Agilent 4419B 09-Oct-09 (in house check Oct-10) In house check: Oct-11 Power sensor HP 8482H SN: 3318A09450 09-Oct-09 (in house check Oct-10) In house check: Oct-11 Power sensor HP 8482A SN: US37295597 09-Oct-09 (in house check Oct-10) In house check: Oct-11 Network Analyzer HP 8753E US37390585 18-Oct-01 (in house check Oct-10) In house check: Oct-11 MY 41000675 In house check: Oct-11 RF generator E4433B 03-Nov-04 (in house check Oct-09) Name Function Laboratory Technician Calibrated by: Claudio Leubler Approved by: Katja Pokovic Technical Manager Issued: February 10, 2011 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: CD835V3-1003_Feb11

Page 1 of 6

FCC ID: A3LSCHI605		HAC (RF EMISSIONS) TEST REPORT	SAMSUNG	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 72 of 92
0Y1209101318.A3L	Aug. 30 - Sept. 4, 2012	Portable Handset		Fage 72 01 92
© 2012 PCTEST Engineering Laboratory, Inc.				REV 8.4

Calibration Laboratory of Schmid & Partner

Zeughausstrasse 43, 8004 Zurich, Switzerland

Engineering AG

lac-mRA

SWISS Servi C Servi Servi Servi S Swis

Schweizerischer Kalibrierdienst Service suisse d'étalonnage

Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

References

- [1] ANSI-C63.19-2006
 - American National Standard for Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids.
- [2] ANSI-C63.19-2007 American National Standard for Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids.

Methods Applied and Interpretation of Parameters:

- Coordinate System: y-axis is in the direction of the dipole arms. z-axis is from the basis of the antenna (mounted on the table) towards its feed point between the two dipole arms. x-axis is normal to the other axes. In coincidence with the standards [1, 2], the measurement planes (probe sensor center) are selected to be at a distance of 10 mm above the top edge of the dipole arms.
- Measurement Conditions: Further details are available from the hardcopies at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. The forward power to the dipole connector is set with a calibrated power meter connected and monitored with an auxiliary power meter connected to a directional coupler. While the dipole under test is connected, the forward power is adjusted to the same level.
- Antenna Positioning: The dipole is mounted on a HAC Test Arch phantom using the matching dipole positioner with the arms horizontal and the feeding cable coming from the floor. The measurements are performed in a shielded room with absorbers around the setup to reduce the reflections. It is verified before the mounting of the dipole under the Test Arch phantom, that its arms are perfectly in a line. It is installed on the HAC dipole positioner with its arms parallel below the dielectric reference wire and able to move elastically in vertical direction without changing its relative position to the top center of the Test Arch phantom. The vertical distance to the probe is adjusted after dipole mounting with a DASY5 Surface Check job. Before the measurement, the distance between phantom surface and probe tip is verified. The proper measurement distance is selected by choosing the matching section of the HAC Test Arch phantom with the proper device reference point (upper surface of the dipole) and the matching grid reference point (tip of the probe) considering the probe sensor offset. The vertical distance to the probe sensor offset. The vertical distance to the probe is essential for the accuracy.
- Feed Point Impedance and Return Loss: These parameters are measured using a HP 8753E Vector Network Analyzer. The impedance is specified at the SMA connector of the dipole. The influence of reflections was eliminating by applying the averaging function while moving the dipole in the air, at least 70cm away from any obstacles.
- E- field distribution: E field is measured in the x-y-plane with an isotropic ER3D-field probe with 100 mW forward power to the antenna feed point. In accordance with [1, 2], the scan area is 20mm wide, its length exceeds the dipole arm length (180 or 90mm). The sensor center is 10 mm (in z) above the top of the dipole arms. Two 3D maxima are available near the end of the dipole arms. Assuming the dipole arms are perfectly in one line, the average of these two maxima (in subgrid 2 and subgrid 8) is determined to compensate for any non-parallelity to the measurement plane as well as the sensor displacement. The E-field value stated as calibration value represents the maximum of the interpolated 3D-E-field, 10mm above the dipole surface.
- H-field distribution: H-field is measured with an isotropic H-field probe with 100mW forward power to the
 antenna feed point, in the x-y-plane. The scan area and sensor distance is equivalent to the E-field
 scan. The maximum of the field is available at the center (subgrid 5) above the feed point. The H-field
 value stated as calibration value represents the maximum of the interpolated H-field, 10mm above the
 dipole surface at the feed point.

Certificate No: CD835V3-1003_Feb11

Page 2 of 6

FCC ID: A3LSCHI605	INGINE CARONA DAY, INC.	HAC (RF EMISSIONS) TEST REPORT	SAMSUNG	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 73 of 92
0Y1209101318.A3L	Aug. 30 - Sept. 4, 2012	Portable Handset		Fage 15 01 92
© 2012 PCTEST Engineering	Laboratory Inc			REV 8 4C

1 Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.6.1 (408)
DASY PP Version	SEMCAD X	V14.4.2 (2595)
Phantom	HAC Test Arch	SD HAC P01 BA, #1070
Distance Dipole Top - Probe Center	10 mm	
Scan resolution	dx, dy = 5 mm	area = 20 x 180 mm
Frequency	835 MHz ± 1 MHz	
Forward power at dipole connector	20.0 dBm = 100mW	
Input power drift	< 0.05 dB	

2 Maximum Field values

H-field 10 mm above dipole surface	condition	interpolated maximum
Maximum measured	100 mW forward power	0.458 A/m
Uncertainty for H-field measurement: 8.2% (k=2)		

E-field 10 mm above dipole surface	condition	Interpolated maximum
Maximum measured above high end-	100 mW forward power	170.7 V/m
Maximum measured above low end	100 mW forward power	161.3 V/m
Averaged maximum above arm	100 mW forward power	166.0 V/m

Uncertainty for E-field measurement: 12.8% (k=2)

3 Appendix

3.1 Antenna Parameters

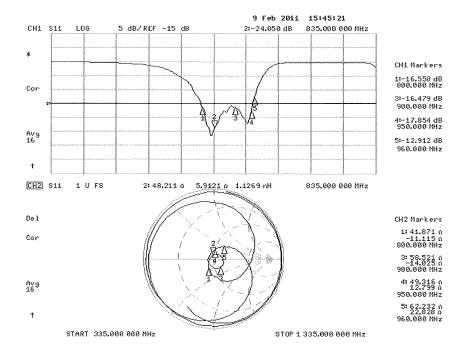
Frequency	Return Loss	Impedance
800 MHz	16.6 dB	(41.9 – j11.1) Ohm
835 MHz	24.1 dB	(48.2 + j5.9) Ohm
900 MHz	16.5 dB	(58.5 – j14.0) Ohm
950 MHz	17.9 dB	(49.3 + j12.8) Ohm
960 MHz	12.9 dB	(62.2 + j22.8) Ohm

3.2 Antenna Design and Handling

The calibration dipole has a symmetric geometry with a built-in two stub matching network, which leads to the enhanced bandwidth.

The dipole is built of standard semirigid coaxial cable. The internal matching line is open ended. The antenna is therefore open for DC signals.

Do not apply force to dipole arms, as they are liable to bend. The soldered connections near the feedpoint may be damaged. After excessive mechanical stress or overheating, check the impedance characteristics to ensure that the internal matching network is not affected.


After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

Certificate No: CD835V3-1003_Feb11

Page 3 of 6

FCC ID: A3LSCHI605		HAC (RF EMISSIONS) TEST REPORT	SAMSUNG	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Dogo 74 of 02
0Y1209101318.A3L	Aug. 30 - Sept. 4, 2012	Portable Handset		Page 74 of 92
© 2012 PCTEST Engineering L	aboratory Inc	•		REV 8 4C

3.3 Measurement Sheets

3.3.1 Return Loss and Smith Chart

Certificate No: CD835V3-1003_Feb11

Page 4 of 6

FCC ID: A3LSCHI605		HAC (RF EMISSIONS) TEST REPORT	SAMSUNE	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 75 of 92
0Y1209101318.A3L	Aug. 30 - Sept. 4, 2012	Portable Handset		Fage 75 01 92
© 2012 PCTEST Engineering L	aboratory, Inc.			REV 8.4C

3.3.3 DASY4 H-field Result

Date/Time: 08.02.2011 13:00:11

Test Laboratory: SPEAG Lab2

HAC RF_CD835_1003_H_110208_CL

DUT: HAC-Dipole 835 MHz; Type: CD835V3; Serial: 1003

Communication System: CW; Frequency: 835 MHz Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³ Phantom section: RF Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

.

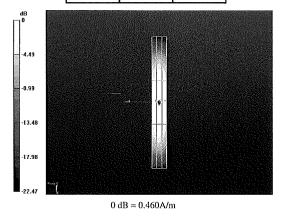
- Probe: H3DV6 SN6065; ; Calibrated: 29.12.2010 •
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn781; Calibrated: 20.10.2010 Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; Serial: 1070
- Measurement SW: DASY52, V52.6.1 Build (408)
- Postprocessing SW: SEMCAD X, V14.4.2 Build (2595)

Dipole H-Field measurement @ 835MHz/H Scan - measurement distance from the probe sensor center to CD835 Dipole = 10mm/Hearing Aid Compatibility Test (41x361x1):

Measurement grid: dx=5mm, dy=5mm

Maximum value of peak Total field = 0.458 A/m

Probe Modulation Factor = 1.000


Device Reference Point: 0, 0, -6.3 mm

Reference Value = 0.488 A/m; Power Drift = -0.0088 dB

Hearing Aid Near-Field Category: M4 (AWF 0 dB)

Peak H-field in A/m

Grid 1	Grid 2	Grid 3
0.376	0.398	0.379
M4	M4	M4
Grid 4	Grid 5	Grid 6
0.435	0.458	0.434
M4	M4	M4
Grid 7	Grid 8	Grid 9
0.388	0.407	0.381
M4	M4	M4

Certificate No: CD835V3-1003_Feb11

Page 5 of 6

FCC ID: A3LSCHI605		HAC (RF EMISSIONS) TEST REPORT	SAMSUNG	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 76 of 92
0Y1209101318.A3L	Aug. 30 - Sept. 4, 2012	Portable Handset		Fage 70 01 92
© 2012 PCTEST Engineering La	aboratory, Inc.	*		REV 8.4C

3.3.2 DASY4 E-field Result

Date/Time: 08.02.2011 13:58:56

Test Laboratory: SPEAG Lab2

HAC RF_CD835_1003_E_110208_CL

DUT: HAC-Dipole 835 MHz; Type: CD835V3; Serial: 1003

Communication System: CW; Frequency: 835 MHz Medium parameters used: $\sigma = 0$ mho/m, $\epsilon_r = 1$; $\rho = 1000$ kg/m³ Phantom section: RF Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

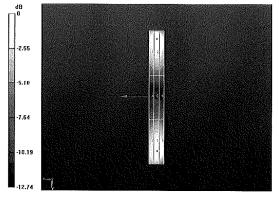
- Probe: ER3DV6 SN2336; ConvF(1, 1, 1); Calibrated: 29.12.2010
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn781; Calibrated: 20.10.2010
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; Serial: 1070
- Measurement SW: DASY52, V52.6.1 Build (408)
- Postprocessing SW: SEMCAD X, V14.4.2 Build (2595)

Dipole E-Field measurement @ 835MHz/E Scan - measurement distance from the probe sensor center to CD835 Dipole = 10mm/Hearing Aid Compatibility Test (41x361x1):

Measurement grid: dx=5mm, dy=5mm

Maximum value of peak Total field = 170.7 V/m

Probe Modulation Factor = 1.000


Device Reference Point: 0, 0, -6.3 mm

Reference Value = 123.4 V/m; Power Drift = 0.02 dB

Hearing Aid Near-Field Category: M4 (AWF 0 dB)

Peak E-field in V/m

Grid 1	Grid 2	Grid 3
164.3	170.7	164.5
M4	M4	M4
Grid 4	Grid 5	Grid 6
85.8	90.5	88.8
M4	M4	M4
Grid 7	Grid 8	Grid 9
152.9	161.3	158.3
M4	M4	M4

0 dB = 170.7 V/m

Certificate No: CD835V3-1003_Feb11

Page 6 of 6

FCC ID: A3LSCHI605		HAC (RF EMISSIONS) TEST REPORT	SAMSUNG	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 77 of 92
0Y1209101318.A3L	Aug. 30 - Sept. 4, 2012	Portable Handset		Fage // 01 92
© 2012 PCTEST Engineering La	aboratory, Inc.	-		REV 8.4C

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage С Servizio svizzero di taratura s Swiss Calibration Service

Accreditation No.: SCS 108

PC Test Client

Certificate No: CD1880V3-1137_Feb11/2

Object	CD1880V3 - SN: 1137		
Calibration procedure(s)	QA CAL-20.v5 Calibration proc		
Calibration date:	February 09, 20	11	1+0+2121/11
		tional standards, which realize the physical un ory facility: environment temperature (22 \pm 3)°C	
Calibration Equipment used (M8	TE critical for calibration)		
Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	06-Oct-10 (No. 217-01266)	Oct-11
Power sensor HP 8481A	US37292783	06-Oct-10 (No. 217-01266)	Oct-11
Probe ER3DV6	SN: 2336	29-Dec-10 (No. ER3-2336 Dec10)	Dec-11
Probe H3DV6	SN: 6065	29-Dec-10 (No. H3-6065_Dec10)	Dec-11
DAE4	SN: 781	20-Oct-10 (No. DAE4-781_Oct10)	Oct-11
Secondary Standards	1D #	Check Date (in house)	Scheduled Check
Power meter Agilent 4419B	SN: GB42420191	09-Oct-09 (in house check Oct-10)	In house check: Oct-11
Power sensor HP 8482H	SN: 3318A09450	09-Oct-09 (in house check Oct-10)	In house check: Oct-11
	SN: US37295597	09-Oct-09 (in house check Oct-10)	In house check: Oct-11
Power sensor HP 8482A	US37390585	18-Oct-01 (in house check Oct-10)	In house check: Oct-11
Network Analyzer HP 8753E			In house check: Oct-11
Network Analyzer HP 8753E	MY 41000675	03-Nov-04 (in house check Oct-09)	
Power sensor HP 8482A Network Analyzer HP 8753E RF generator E4433B		03-Nov-04 (in house check Oct-09) Function	Signature \
Network Analyzer HP 8753E	MY 41000675		Signature
Network Analyzer HP 8753E RF generator E4433B	MY 41000675 Name	Function	Signature
Network Analyzer HP 8753E RF generator E4433B	MY 41000675 Name	Function	Signature AAA ACUS

Certificate No: CD1880V3-1137_Feb11/2

Page 1 of 9

FCC ID: A3LSCHI605		HAC (RF EMISSIONS) TEST REPORT	SAMSUNG	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 78 of 92
0Y1209101318.A3L	Aug. 30 - Sept. 4, 2012	Portable Handset		Fage 76 01 92
© 2012 PCTEST Engineering L	aboratory, Inc.			REV 8.4C

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kallbrierdienst C Service suisse d'étalonnage

Servizio svizzero di taratura Swiss Calibration Service

S

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

References

ANSI-C63.19-2007

American National Standard for Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids.

Methods Applied and Interpretation of Parameters:

- Coordinate System: y-axis is in the direction of the dipole arms. z-axis is from the basis of the antenna (mounted on the table) towards its feed point between the two dipole arms. x-axis is normal to the other axes. In coincidence with the standards [1], the measurement planes (probe sensor center) are selected to be at a distance of 10 mm above the top edge of the dipole arms.
- Measurement Conditions: Further details are available from the hardcopies at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. The forward power to the dipole connector is set with a calibrated power meter connected and monitored with an auxiliary power meter connected to a directional coupler. While the dipole under test is connected, the forward power is adjusted to the same level.
- Antenna Positioning: The dipole is mounted on a HAC Test Arch phantom using the matching dipole positioner with the arms horizontal and the feeding cable coming from the floor. The measurements are performed in a shielded room with absorbers around the setup to reduce the reflections. It is verified before the mounting of the dipole under the Test Arch phantom, that its arms are perfectly in a line. It is installed on the HAC dipole positioner with its arms parallel below the dielectric reference wire and able to move elastically in vertical direction without changing its relative position to the top center of the Test Arch phantom. The vertical distance to the probe is adjusted after dipole mounting with a DASY5 Surface Check job. Before the measurement, the distance between phantom surface and probe tip is verified. The proper measurement distance is selected by choosing the matching section of the HAC rest Arch phantom with the proper device reference point (upper surface of the dipole) and the matching grid reference point (tip of the probe) considering the probe sensor offset. The vertical distance to the probe is proventive and the dipole) and the matching grid reference point (tip of the probe) considering the probe sensor offset. The vertical distance to the probe is essential for the accuracy.
- Feed Point Impedance and Return Loss: These parameters are measured using a HP 8753E Vector Network Analyzer. The impedance is specified at the SMA connector of the dipole. The influence of reflections was eliminating by applying the averaging function while moving the dipole in the air, at least 70cm away from any obstacles.
- E- field distribution: E field is measured in the x-y-plane with an isotropic ER3D-field probe with 100 mW forward power to the antenna feed point. In accordance with [1], the scan area is 20mm wide, its length exceeds the dipole arm length (180 or 90mm). The sensor center is 10 mm (in z) above the top of the dipole arms. Two 3D maxima are available near the end of the dipole arms. Assuming the dipole arms are perfectly in one line, the average of these two maxima (in subgrid 2 and subgrid 8) is determined to compensate for any non-parallelity to the measurement plane as well as the sensor displacement. The E-field value stated as calibration value represents the maximum of the interpolated 3D-E-field, 10mm above the dipole surface.
- H-field distribution: H-field is measured with an isotropic H-field probe with 100mW forward power to the
 antenna feed point, in the x-y-plane. The scan area and sensor distance is equivalent to the E-field
 scan. The maximum of the field is available at the center (subgrid 5) above the feed point. The H-field
 value stated as calibration value represents the maximum of the interpolated H-field, 10mm above the
 dipole surface at the feed point.

Certificate No: CD1880V3-1137_Feb11/2

Page 2 of 9

FCC ID: A3LSCHI605		HAC (RF EMISSIONS) TEST REPORT	SAMSUNG	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 79 of 92
0Y1209101318.A3L	Aug. 30 - Sept. 4, 2012	Portable Handset		Fage 79 01 92
© 2012 PCTEST Engineering La	aboratory, Inc.	•		REV 8.4C

1. Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.6.1 (408)
DASY PP Version	SEMCAD X	V14.4.2 (2595)
Phantom	HAC Test Arch	SD HAC P01 BA, #1070
Distance Dipole Top - Probe Center	10 mm	
Scan resolution	dx, dy = 5 mm	area = 20 x 90 mm
Frequency	1880 MHz ± 1 MHz	
Forward power at dipole connector	20.0 dBm = 100mW	
Input power drift	< 0.05 dB	

2. Maximum Field values

H-field 10 mm above dipole surface	condition	Interpolated maximum	
Maximum measured	100 mW forward power	0.460 A/m	

Uncertainty for H-field measurement: 8.2% (k=2)

E-field 10 mm above dipole surface	condition	Interpolated maximum	
Maximum measured above high end	100 mW forward power	139.0 V/m	
Maximum measured above low end	100 mW forward power	134.5 V/m	
Averaged maximum above arm	100 mW forward power	136.8 V/m	

Uncertainty for E-field measurement: 12.8% (k=2)

3. Appendix

3.1 Antenna Parameters

Frequency	Return Loss	Impedance
1730 MHz	23.0 dB	(49.6 + j7.1) Ohm
1880 MHz	21.2 dB	(51.1 + j8.7) Ohm
1900 MHz	21.8 dB	(53.3 + j7.7) Ohm
1950 MHz	28.1 dB	(54.1 – j0.2) Ohm
2000 MHz	20.5 dB	(41.4 – j0.8) Ohm

3.2 Antenna Design and Handling

The calibration dipole has a symmetric geometry with a built-in two stub matching network, which leads to the enhanced bandwidth.

The dipole is built of standard semirigid coaxial cable. The internal matching line is open ended. The antenna is therefore open for DC signals.

Do not apply force to dipole arms, as they are liable to bend. The soldered connections near the feedpoint may be damaged. After excessive mechanical stress or overheating, check the impedance characteristics to ensure that the internal matching network is not affected.


After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

Certificate No: CD1880V3-1137_Feb11/2

Page 3 of 9

FCC ID: A3LSCHI605		HAC (RF EMISSIONS) TEST REPORT	SAMSUNG	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 80 of 92
0Y1209101318.A3L	Aug. 30 - Sept. 4, 2012	Portable Handset		Fage 60 01 92
© 2012 PCTEST Engineering	aboratory Inc	•		REV 8 40

3.3 Measurement Sheets

3.3.1 Return Loss and Smith Chart

Certificate No: CD1880V3-1137_Feb11/2

Page 4 of 9

FCC ID: A3LSCHI605		HAC (RF EMISSIONS) TEST REPORT	SAMSUNG	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 81 of 92
0Y1209101318.A3L	Aug. 30 - Sept. 4, 2012	Portable Handset		Fage of 01 92
© 2012 PCTEST Engineering I	_aboratory, Inc.			REV 8.4C

3.3.2 DASY4 H-Field Result

Date/Time: 09.02.2011 11:34:28

Test Laboratory: SPEAG Lab2

HAC_RF_CD1880_1137_H_110208_CL

DUT: HAC Dipole 1880 MHz; Type: CD1880V3; Serial: 1137

Communication System: CW; Frequency: 1880 MHz

Medium parameters used: $\sigma = 0$ mho/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³ Phantom section: RF Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

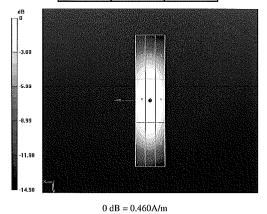
- Probe: H3DV6 SN6065; ; Calibrated: 29.12.2010
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn781; Calibrated: 20.10.2010
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; Serial: 1070
- Measurement SW: DASY52, V52.6.1 Build (408)
- Postprocessing SW: SEMCAD X, V14.4.2 Build (2595)

Dipole H-Field measurement @ 1880MHz/H Scan - measurement distance from the probe sensor center to CD1880 Dipole = 10mm/Hearing Aid Compatibility Test (41x181x1):

Measurement grid: dx=5mm, dy=5mm

Maximum value of peak Total field = 0.460 A/m

Probe Modulation Factor = 1.000


Device Reference Point: 0, 0, -6.3 mm

Reference Value = 0.487 A/m; Power Drift = 0.0057 dB

Hearing Aid Near-Field Category: M2 (AWF 0 dB)

Peak H-field in A/m

Grid 1	Grid 2	Grid 3
0.401	0.418	0.396
M2	M2	M2
Grid 4	Grid 5	Grid 6
0.443	0.460	0.435
M2	M2	M2
Grid 7	Grid 8	Grid 9
0.409	0.426	0.399
M2	M2	M2

Certificate No: CD1880V3-1137_Feb11/2

Page 5 of 9

FCC ID: A3LSCHI605		HAC (RF EMISSIONS) TEST REPORT	SAMSUNG	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 82 of 92
0Y1209101318.A3L	Aug. 30 - Sept. 4, 2012	Portable Handset		Fage 62 01 92
© 2012 PCTEST Engineering L	aboratory, Inc.	-		REV 8.4C

3.3.3 DASY4 E-Field Result

Date/Time: 08.02.2011 16:54:42

Test Laboratory: SPEAG Lab2

HAC_RF_CD1880_1137_E_110208_CL

DUT: HAC Dipole 1880 MHz; Type: CD1880V3; Serial: 1137

Communication System: CW; Frequency: 1880 MHz Medium parameters used: $\sigma = 0$ mho/m, $\epsilon_r = 1$; $\rho = 1000$ kg/m³ Phantom section: RF Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

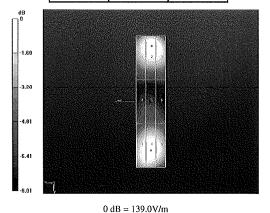
DASY5 Configuration:

- Probe: ER3DV6 SN2336; ConvF(1, 1, 1); Calibrated: 29.12.2010
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn781; Calibrated: 20.10.2010
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; Serial: 1070
- Measurement SW: DASY52, V52.6.1 Build (408)
- Postprocessing SW: SEMCAD X, V14.4.2 Build (2595)

Dipole E-Field measurement @ 1880MHz/E Scan - measurement distance from the probe sensor center to CD1880 Dipole = 10mm/Hearing Aid Compatibility Test (41x181x1);

Measurement grid: dx=5mm, dy=5mm

Maximum value of peak Total field = 139.0 V/m


Probe Modulation Factor = 1.000

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 138.8 V/m; Power Drift = -0.05 dB

Hearing Aid Near-Field Category: M2 (AWF 0 dB)

Grid 1	Grid 2	Grid 3
131.8	139.0	135.0
M2	M2	M2
Grid 4	Grid 5	Grid 6
84.076	87.648	85.767
M3	M3	M3
Grid 7	Grid 8	Grid 9
131.1	134.5	130.5
M2	M2	M2

Certificate No: CD1880V3-1137_Feb11/2

Page 6 of 9

FCC ID: A3LSCHI605		HAC (RF EMISSIONS) TEST REPORT	SAMSUNG	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 83 of 92
0Y1209101318.A3L	Aug. 30 - Sept. 4, 2012	Portable Handset		Fage 65 01 92
© 2012 PCTEST Engineering L	2012 PCTEST Engineering Laboratory, Inc.			REV 8.4C

4. Additional Measurements

4.1 Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.6.1 (408)
DASY PP Version	SEMCAD X	V14.4.2 (2595)
Phantom	HAC Test Arch	SD HAC P01 BA, #1070
Distance Dipole Top - Probe Center	10 mm	
Scan resolution	dx, dy = 5 mm	area = 20 x 90 mm
Frequency	1730 MHz ± 1 MHz	
Forward power at dipole connector	20.0 dBm = 100mW	
Input power drift	< 0.05 dB	

4.1.1 Maximum Field values

H-field 10 mm above dipole surface	condition	interpolated maximum
Maximum measured	100 mW forward power	0.489 A/m
Uncertainty for H-field measurement: 8.2% (k=2)	•	

E-field 10 mm above dipole surface	condition	Interpolated maximum
Maximum measured above high end	100 mW forward power	152.7 V/m
Maximum measured above low end	100 mW forward power	150.2 V/m
Averaged maximum above arm	100 mW forward power	151.5 V/m

Uncertainty for E-field measurement: 12.8% (k=2)

Certificate No: CD1880V3-1137_Feb11/2

Page 7 of 9

FCC ID: A3LSCHI605	INDIRECTING LARONATORY, INC.	HAC (RF EMISSIONS) TEST REPORT	SAMSUNG	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 84 of 92
0Y1209101318.A3L	Aug. 30 - Sept. 4, 2012	Portable Handset		Fage 04 01 92
© 2012 PCTEST Engineering	Laboratory, Inc.			REV 8.4C

4.1.2 DASY4 H-field result

Date/Time: 09.02.2011 11:27:03

Test Laboratory: SPEAG Lab2

HAC_RF_CD1880_1137_H_1730_110208_CL

DUT: HAC Dipole 1880 MHz; Type: CD1880V3; Serial: 1137

Communication System: CW; Frequency: 1730 MHz Medium parameters used: $\sigma = 0$ mho/m, $\epsilon_r = 1$; $\rho = 1$ kg/m³

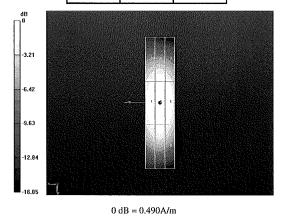
Phantom section: RF Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: H3DV6 SN6065; ; Calibrated: 29.12.2010
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn781; Calibrated: 20.10.2010 ٠
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; Serial: 1070 ٠
- Measurement SW: DASY52, V52.6.1 Build (408) .
- Postprocessing SW: SEMCAD X, V14.4.2 Build (2595)

Dipole H-Field measurement @ 1880MHz/H Scan - measurement distance from the probe sensor center to CD1880 Dipole = 10mm @ 1730 MHz/Hearing Aid Compatibility Test (41x181x1): Measurement grid: dx=5mm, dy=5mm


Maximum value of peak Total field = 0.489 A/m

Probe Modulation Factor = 1.000 Device Reference Point: 0, 0, -6.3 mm

Reference Value = 0.519 A/m; Power Drift = 0.02 dB Hearing Aid Near-Field Category: M2 (AWF 0 dB)

Peak H-field in A/m

Grid 1	Grid 2	Grid 3
0.407	0.424	0.403
M2	M2	M2
Grid 4	Grid 5	Grid 6
0.467	0.489	0.462
M2	M2	M2
Grid 7	Grid 8	Grid 9
0.418	0.437	0.409
M2	M2	M2

Certificate No: CD1880V3-1137_Feb11/2

Page 8 of 9

FCC ID: A3LSCHI605		HAC (RF EMISSIONS) TEST REPORT	SAMSUNG	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 85 of 92
0Y1209101318.A3L	Aug. 30 - Sept. 4, 2012	Portable Handset		Fage 65 01 92
2012 PCTEST Engineering Laboratory, Inc.				REV 8.4C

4.1.3 DASY4 E-field result

Date/Time: 08.02.2011 16:26:13

Test Laboratory: SPEAG Lab2

HAC_RF_CD1880_1137_E_1730_110208_CL

DUT: HAC Dipole 1880 MHz; Type: CD1880V3; Serial: 1137

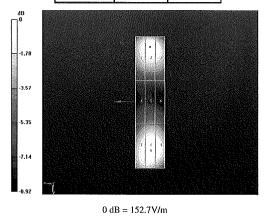
Communication System: CW; Frequency: 1730 MHz Medium parameters used: $\sigma = 0$ mho/m, $\epsilon_r = 1$; $\rho = 1000$ kg/m³

Phantom section: RF Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ER3DV6 SN2336; ConvF(1, 1, 1); Calibrated: 29.12.2010
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn781; Calibrated: 20.10.2010 ٠
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; Serial: 1070 ٠
- Measurement SW: DASY52, V52.6.1 Build (408) ٠
- Postprocessing SW: SEMCAD X, V14.4.2 Build (2595)

Dipole E-Field measurement @ 1880MHz/E Scan - measurement distance from the probe sensor center to CD1880 Dipole = 10mm @ 1730 MHz/Hearing Aid Compatibility Test (41x181x1):


Measurement grid: dx=5mm, dy=5mm Maximum value of peak Total field = 152.7 V/m

Probe Modulation Factor = 1.000Device Reference Point: 0, 0, -6.3 mm

Reference Value = 156.8 V/m; Power Drift = 0.0092 dB Hearing Aid Near-Field Category: M2 (AWF 0 dB)

Peak E-field in V/m

Grid 1	Grid 2	Grid 3
143.8	150.2	144.8
M2	M2	M2
Grid 4	Grid 5	Grid 6
97.621	103.8	102.2
M3	M3	M3
Grid 7	Grid 8	Grid 9
145.9	152.7	149.2
M2	M2	M2

Certificate No: CD1880V3-1137_Feb11/2

Page 9 of 9

FCC ID: A3LSCHI605		HAC (RF EMISSIONS) TEST REPORT	SAMSUNG	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 86 of 92
0Y1209101318.A3L	Aug. 30 - Sept. 4, 2012	Portable Handset		Fage 60 01 92
© 2012 PCTEST Engineering La	2012 PCTEST Engineering Laboratory, Inc.			REV 8.4C

15. CONCLUSION

The measurements taken in accordance with the procedures provided in the CTIA Test Plan for Hearing Aid Compatibility Rev 2.0, April 2010, indicate that the wireless communications device complies with the HAC limits specified in the ANSI C63.19 Standard and FCC WT Docket No. 01-309 RM-8658. Precise laboratory measures were taken to assure repeatability of the tests. The tested device complies with the requirements in respect to all parameters specific to the test. The test results and statements relate only to the item(s) tested.

Please note that the M-rating for this equipment only represents the field interference possible against a hypothetical and typical hearing aid. The measurement system and techniques presented in this evaluation are proposed in the ANSI standard as a means of best approximating wireless device compatibility with a hearing-aid. The literature is under continual re-construction.

FCC ID: A3LSCHI605		HAC (RF EMISSIONS) TEST REPORT	SAMSUNG	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 87 of 92
0Y1209101318.A3L	Aug. 30 - Sept. 4, 2012	Portable Handset		Fage 67 01 92
© 2012 PCTEST Engineering Laboratory, Inc.				REV 8.4C

16. REFERENCES

- ANSI/IEEE C63.19-2007, "American National Standard for Methods of Measurement of Compatibility between Wireless Communication Devices and Hearing Aids.", New York, NY, IEEE, June 2007
- 2. CTIA Test Plan for Hearing Aid Compatibility, Revision 2.0, April 2010.
- 3. FCC Public Notice DA 06-1215, Wireless Telecommunications Bureau and Office of Engineering and Technology Clarify Use of Revised Wireless Phone Hearing Aid Compatibility Standard, June 6, 2006
- 4. Review Guidance for Reviewing Applications for Certification of 3G Devices, May/June 2006
- 5. Berger, H. S., "Compatibility Between Hearing Aids and Wireless Devices," Electronic Industries Forum, Boston, MA, May, 1997
- 6. Berger, H. S., "Hearing Aid and Cellular Phone Compatibility: Working Toward Solutions," Wireless Telephones and Hearing Aids: New Challenges for Audiology, Gallaudet University, Washington, D.C., May, 1997 (To be reprinted in the American Journal of Audiology).
- 7. Berger, H. S., "Hearing Aid Compatibility with Wireless Communications Devices, " IEEE International Symposium on Electromagnetic Compatibility, Austin, TX, August, 1997.
- Bronaugh, E. L., "Simplifying EMI Immunity (Susceptibility) Tests in TEM Cells," in the 1990 IEEE International Symposium on Electromagnetic Compatibility Symposium Record, Washington, D.C., August 1990, pp. 488-491
- 9. Byme, D. and Dillon, H., The National Acoustics Laboratory (NAL) New Procedure for Selecting the Gain and Frequency Response of a Hearing Aid, Ear and Hearing 7:257-265, 1986.
- Crawford, M. L., "Measurement of Electromagnetic Radiation from Electronic Equipment using TEM Transmission Cells, "U.S. Department of Commerce, National Bureau of Standards, NBSIR 73-306, Feb. 1973.
- Crawford, M. L., and Workman, J. L., "Using a TEM Cell for EMC Measurements of Electronic Equipment," U.S. Department of Commerce, National Bureau of Standards. Technical Note 1013, July 1981.
- 12. EHIMA GSM Project, Development phase, Project Report (1st part) Revision A. Technical-Audiological Laboratory and Telecom Denmark, October 1993.
- 13. EHIMA GSM Project, Development phase, Part II Project Report. Technical-Audiological Laboratory and Telecom Denmark, June 1994.
- EHIMA GSM Project Final Report, Hearing Aids and GSM Mobile Telephones: Interference Problems, Methods of Measurement and Levels of Immunity. Technical-Audiological Laboratory and Telecom Denmark, 1995.
- 15. HAMPIS Report, Comparison of Mobile phone electromagnetic near field with an upscaled electromagnetic far field, using hearing aid as reference, 21 October 1999.

FCC ID: A3LSCHI605	ENGINEERING LABORATORY, INC.	HAC (RF EMISSIONS) TEST REPORT	SAMSUNE	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 88 of 92
0Y1209101318.A3L	Aug. 30 - Sept. 4, 2012	Portable Handset		Fage 00 01 92
© 2012 PCTEST Engineering	REV 8 4C			

- 16. Hearing Aids/GSM, Report from OTWIDAM, Technical-Audiological Laboratory and Telecom Denmark, April 1993.
- 17. IEEE 100, The Authoritative Dictionary of IEEE Standards Terms, Seventh Edition.
- Joyner, K. H, et. al., Interference to Hearing Aids by the New Digital Mobile Telephone System, Global System for Mobile (GSM) Communication Standard, National Acoustic Laboratory, Australian Hearing Series, Sydney 1993.
- Joyner, K. H., et. al., Interference to Hearing Aids by the Digital Mobile Telephone System, Global System for Mobile Communications (GSM), NAL Report #131, National Acoustic Laboratory, Australian Hearing Series, Sydney, 1995.
- Kecker, W. T., Crawford, M. L., and Wilson, W. A., "Contruction of a Transverse Electromagnetic Cell", U.S. Department of Commerce, National Bureau of Standards, Technical Note 1011, Nov. 1978.
- Konigstein, D., and Hansen, D., "A New Family of TEM Cells with enlarged bandwidth and Optimized working Volume," in the Proceedings of the 7th International Symposium on EMC, Zurich, Switzerland, March 1987; 50:9, pp. 127-132.
- 22. Kuk, F., and Hjorstgaard, N. K., "Factors affecting interference from digital cellular telephones," Hearing Journal, 1997; 50:9, pp 32-34.
- Ma, M. A., and Kanda, M., "Electromagnetic Compatibility and Interference Metrology," U.S. Department of Commerce, National Bureau of Standards, Technical Note 1099, July 1986, pp. 17-43.
- Ma, M. A., Sreenivashiah, I., and Chang, D. C., "A Method of Determining the Emission and Susceptibility Levels of Electrically Small Objects Using a TEM Cell," U.S. Department of Commerce, National Bureau of Standards, Technial Note 1040, July 1981.
- 25. McCandless, G. A., and Lyregaard, P. E., Prescription of Gain/Output (POGO) for Hearing Aids, Hearing Instruments 1:16-21, 1983
- 26. Skopec, M., "Hearing Aid Electromagnetic Interference from Digital Wireless Telephones, "IEEE Transactions on Rehabilitation Engineering, vol. 6, no. 2, pp. 235-239, June 1998.
- 27. Technical Report, GSM 05.90, GSM EMC Considerations, European Telecommunications Standards Institute, January 1993.
- 28. Victorian, T. A., "Digital Cellular Telephone Interference and Hearing Aid Compatibility—an Update," Hearing Journal 1998; 51:10, pp. 53-60
- 29. Wong, G. S. K., and Embleton, T. F. W., eds., AIP Handbook of Condenser Microphones: Theory, Calibration and Measurements, AIP Press.

FCC ID: A3LSCHI605		HAC (RF EMISSIONS) TEST REPORT	SAMSUNG	Reviewed by: Quality Manager
HAC Filename:	Test Dates:	EUT Type:		Page 89 of 92
0Y1209101318.A3L	Aug. 30 - Sept. 4, 2012	Portable Handset	Page	
2012 PCTEST Engineering Laboratory Inc				REV 8 4C