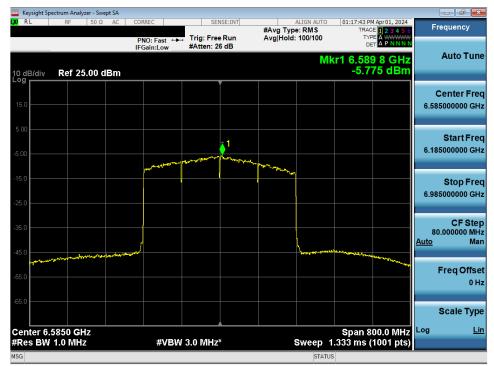
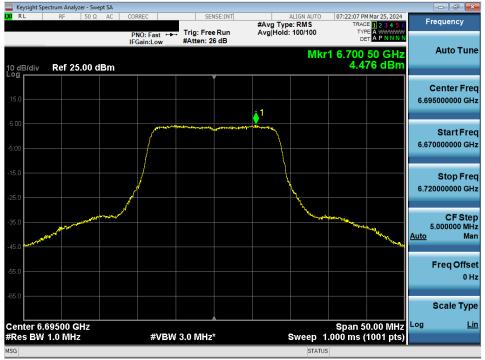
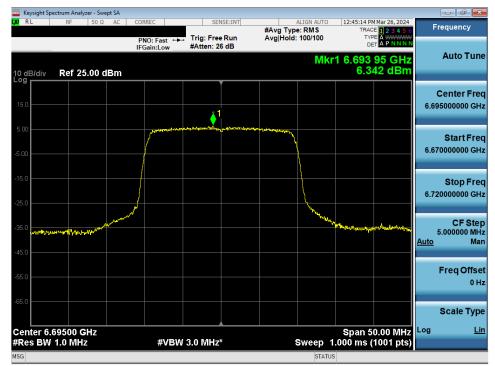


Plot 7-107. Power Spectral Density MIMO ANT2 (40MHz 802.11ax/be (UNII Band 7) - Ch. 155) - LPI

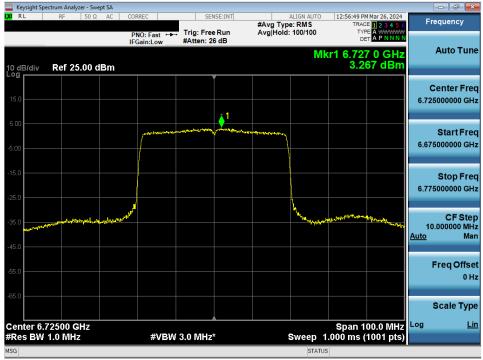

Plot 7-108. Power Spectral Density MIMO ANT2 (80MHz 802.11ax/be (UNII Band 7) - Ch. 151) - LPI

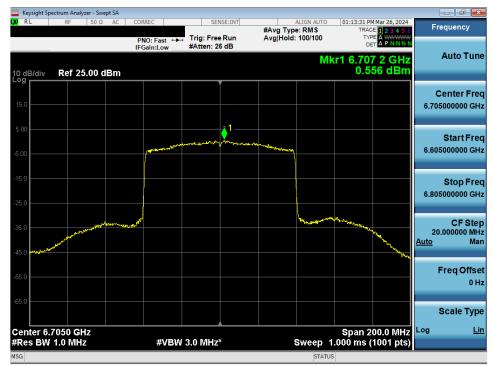
FCC ID: A3LNP960XMA		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dega 92 of 165
1M2401250007-07-R3.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 83 of 165
© 2024 ELEMENT			V 9.0 02/01/2019


Plot 7-109. Power Spectral Density MIMO ANT2 (160MHz 802.11ax/be (UNII Band 7) - Ch. 143) - LPI


Plot 7-110. Power Spectral Density MIMO ANT2 (320MHz 802.11ax/be (UNII Band 6/7) - Ch. 127) - LPI

FCC ID: A3LNP960XMA	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 04 of 165
1M2401250007-07-R3.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 84 of 165
© 2024 ELEMENT			V 9.0 02/01/2019


Plot 7-111. Power Spectral Density MIMO ANT2 (20MHz 802.11a (UNII Band 7) - Ch. 149) - SP

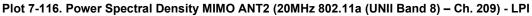

Plot 7-112. Power Spectral Density MIMO ANT2 (20MHz 802.11ax/be (UNII Band 7) - Ch. 149) - SP

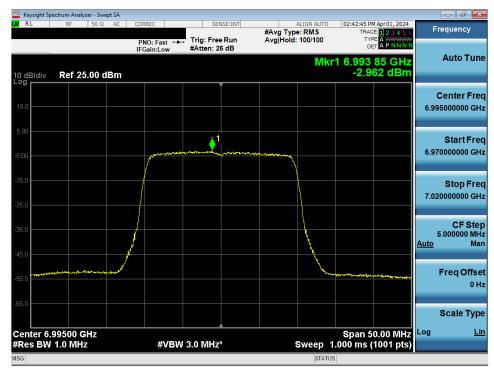
FCC ID: A3LNP960XMA	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dege 95 of 165
1M2401250007-07-R3.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 85 of 165
© 2024 ELEMENT		·	V 9.0 02/01/2019

Plot 7-113. Power Spectral Density MIMO ANT2 (40MHz 802.11ax/be (UNII Band 7) - Ch. 155) - SP

Plot 7-114. Power Spectral Density MIMO ANT2 (80MHz 802.11ax/be (UNII Band 7) - Ch. 151) - SP

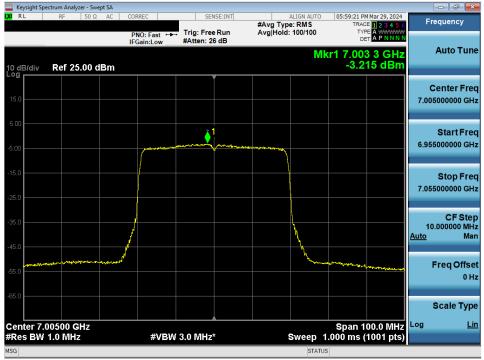
FCC ID: A3LNP960XMA		MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	EUT Type:	Page 86 of 165
1M2401250007-07-R3.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 60 01 105
© 2024 ELEMENT			V 9.0 02/01/2019


Plot 7-115. Power Spectral Density MIMO ANT2 (160MHz 802.11ax/be (UNII Band 7) - Ch. 143) - SP


FCC ID: A3LNP960XMA	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 97 of 165
1M2401250007-07-R3.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 87 of 165
© 2024 ELEMENT	•		V 9.0 02/01/2019

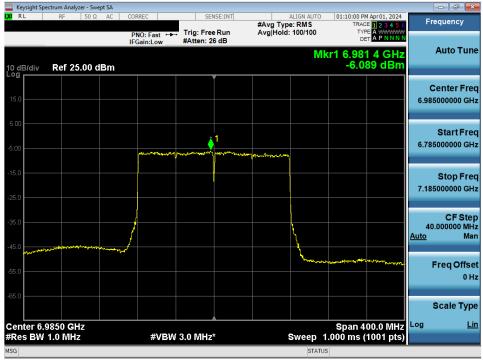
Keysight Spectrum Analyzer - Swept SA ALIGN AUTO #Avg Type: RMS Avg|Hold: 100/100 05:30:52 PM Mar 29, 2024 TRACE 1 2 3 4 5 (SENSE:INT Frequency Trig: Free Run #Atten: 26 dB TYPE PNO: Fast IFGain:Low DET A P N N Auto Tune Mkr1 6.990 05 GHz -3.612 dBm 0 dB/div Ref 25.00 dBm Center Fred 6.995000000 GHz 1 Start Freq 6.970000000 GHz Stop Freq 7.02000000 GHz CF Step 5.000000 MHz Man Auto **Freq Offset** 0 Hz Scale Type Center 6.99500 GHz #Res BW 1.0 MHz Span 50.00 MHz Sweep 1.000 ms (1001 pts) Lin #VBW 3.0 MHz*

MIMO Antenna-2 Power Spectral Density Measurements - (UNII Band 8)




Plot 7-117. Power Spectral Density MIMO ANT2 (20MHz 802.11ax/be (UNII Band 8) - Ch. 209) - LPI

FCC ID: A3LNP960XMA	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 99 of 165
1M2401250007-07-R3.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 88 of 165
© 2024 ELEMENT			V 9.0 02/01/2019


Plot 7-118. Power Spectral Density MIMO ANT2 (40MHz 802.11ax/be (UNII Band 8) - Ch. 211) - LPI

Plot 7-119. Power Spectral Density MIMO ANT2 (80MHz 802.11ax/be (UNII Band 8) - Ch. 199) - LPI

FCC ID: A3LNP960XMA	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 90 of 165
1M2401250007-07-R3.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 89 of 165
© 2024 ELEMENT			V 9.0 02/01/2019

Plot 7-120. Power Spectral Density MIMO ANT2 (160MHz 802.11ax/be (UNII Band 8) - Ch. 207) - LPI

Plot 7-121. Power Spectral Density MIMO ANT2 (320MHz 802.11ax/be (UNII Band 7/8) - Ch. 191) - LPI

FCC ID: A3LNP960XMA	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dega 00 of 165
1M2401250007-07-R3.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 90 of 165
© 2024 ELEMENT			V 9.0 02/01/2019

Note:

Per ANSI C63.10-2013 Section 14.3.2.2 and KDB 662911 v02r01 Section E)2), the power spectral density at Antenna 1 and Antenna 2 were first measured separately as shown in the section above. The measured values were then summed in linear power units then converted back to dBm.

Per ANSI C63.10-2013 Section 14.4.3, the directional gain is calculated using the following formula, where GN is the gain of the nth antenna and NANT, the total number of antennas used.

Directional gain = 10 log[(10^{G1/20} + 10^{G2/20} + ... + 10^{GN/20})² / N_{ANT}] dBi

Sample MIMO Calculation:

At 5935MHz in 802.11a (20MHz BW) mode, the average conducted power spectral density was measured to be -5.69 dBm for Antenna-1 and -6.13 dBm for Antenna-2.

Antenna 1 + Antenna 2 = MIMO

(-5.69 dBm + -6.13 dBm) = (0.270 mW + 0.244 mW) = 0.514 mW = -2.89 dBm

Sample e.i.r.p Power Spectral Density Calculation:

At 5935 MHz in 802.11a (20MHz BW) mode, the average MIMO power density was calculated to be -2.89 dBm with directional gain of -0.61 dBi.

e.i.r.p. Power Spectral Density(dBm) = Power Spectral Density (dBm) + Ant gain (dBi)

-2.89 dBm + -0.61 dBi = -3.51 dBm

FCC ID: A3LNP960XMA		MEASUREMENT REPORT		
Test Report S/N:	Test Dates:	EUT Type:	Dage 01 of 165	
1M2401250007-07-R3.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 91 of 165	
© 2024 ELEMENT	-		V 9.0 02/01/2019	

Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from Element. If you have any questions about this or have an inquiry about obtaining additional rights to this report or assembly of contents thereof, please contact ct.info@element.com.

7.5 In-Band Emissions

Test Overview and Limit

The spectrum analyzer was connected to the antenna terminal while the EUT was operating at its maximum duty cycle, at its maximum power control level, as defined in ANSI C63.10-2013, and at the appropriate frequencies.

For transmitters operating within the 5.925-7.125 GHz bands: Power spectral density must be suppressed by 20 dB at 1 MHz outside of channel edge, by 28 dB at one channel bandwidth from the channel center, and by 40 dB at one- and one-half times the channel bandwidth away from channel center. At frequencies between one megahertz outside an unlicensed device's channel edge and one channel bandwidth from the center of the channel, the limits must be linearly interpolated between 20 dB and 28 dB suppression, and at frequencies between one and one- and one-half times an unlicensed device's channel bandwidth, the limits must be linearly interpolated between 28 dB and 40 dB suppression. Emissions removed from the channel center by more than one- and one-half times the channel bandwidth must be suppressed by at least 40 dB.

Test Procedure Used

KDB 987594 D02 v02r01

Test Settings

- 1. Connect output of the antenna port to a spectrum analyzer or EMI receiver, with appropriate attenuation, as to not damage the instrumentation.
- 2. Set the reference level of the measuring equipment in accordance with procedure 4.1.5.2 of ANSI C63.10- 2013.
- 3. Measure the 26 dB EBW using the test procedure 12.4.1 of ANSI C63.10-2013. (This will be used to determine the channel edge.)
- 4. Measure the power spectral density (which will be used for emissions mask reference) using the following procedure:
 - a) Set the span to encompass the entire 26 dB EBW of the signal.
 - b) Set RBW = same RBW used for 26 dB EBW measurement.
 - c) Set VBW ≥ 3 X RBW
 - d) Number of points in sweep \geq [2 X span / RBW].
 - e) Sweep time = auto.
 - f) Detector = RMS (i.e., power averaging)
 - g) Trace average at least 100 traces in power averaging (rms) mode.
 - h) Use the peak search function on the instrument to find the peak of the spectrum.
- 5. For the purposes of developing the emission mask, the channel bandwidth is defined as the 26 dB EBW.
- 6. Using the measuring equipment limit line function, develop the emissions mask based on the following requirements. The emissions power spectral density must be reduced below the peak power spectral density (in dB) as follows:
 - i) Suppressed by 20 dB at 1 MHz outside of the channel edge. (The channel edge is defined as the 26-dB point on either side of the carrier center frequency.)
 - Suppressed by 28 dB at one channel bandwidth from the channel center.
 - k) Suppressed by 40 dB at one- and one-half times the channel bandwidth from the channel center.
- 7. Adjust the span to encompass the entire mask as necessary.
- 8. Clear trace.
- 9. Trace average at least 100 traces in power averaging (rms) mode.
- 10. Adjust the reference level as necessary so that the crest of the channel touches the top of the emission mask.

FCC ID: A3LNP960XMA	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dega 02 of 165
1M2401250007-07-R3.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 92 of 165
© 2024 ELEMENT			V 9.0 02/01/2019

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-4. Test Instrument & Measurement Setup

Test Notes

None.

FCC ID: A3LNP960XMA	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 02 of 165
1M2401250007-07-R3.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 93 of 165
© 2024 ELEMENT			V 9.0 02/01/2019

	Frequency [MHz]	Channel	802.11 MODE	Antenna-1 In-Band Emission	Antenna-2 In-Band Emission
	5935	2	а	Pass	Pass
	6175	45	a	Pass	Pass
	6415	93	a	Pass	Pass
	5935	2	be (20MHz)	Pass	Pass
	6175	45	be (20MHz)	Pass	Pass
10	6415	93	be (20MHz)	Pass	Pass
Band 5	5965	3	be (40MHz)	Pass	Pass
Bai	6165	43	be (40MHz)	Pass	Pass
	6405	91	be (40MHz)	Pass	Pass
	5985	7	be (80MHz)	Pass	Pass
	6145	39	be (80MHz)	Pass	Pass
	6385	87	be (80MHz)	Pass	Pass
	6025	15	be (160MHz)	Pass	Pass
	6185	47	be (160MHz)	Pass	Pass
	6345	79	be (160MHz)	Pass	Pass
	6105	31	be (320MHz)	Pass	Pass
	6265	63	be (320MHz)	Pass	Pass
	6435	97	a	Pass	Pass
	6475	105	a	Pass	Pass
50	6515	113	а	Pass	Pass
Band 6	6435	97	be (20MHz)	Pass	Pass
Bai	6475	105	be (20MHz)	Pass	Pass
	6515	113	be (20MHz)	Pass	Pass
	6445	99	be (40MHz)	Pass	Pass
	6485	107	be (40MHz)	Pass	Pass
	6525	115	be (40MHz)	Pass	Pass
	6465	103	be (80MHz)	Pass	Pass
	6505	111	be (160MHz)	Pass	Pass
Band 5/6/7	6425	95	be (320MHz)	Pass	Pass
	6535	117	a	Pass	Pass
	6695	149	а	Pass	Pass
	6875	185	а	Pass	Pass
	6535	117	be (20MHz)	Pass	Pass
17	6695	149	be (20MHz)	Pass	Pass
Band 7	6875	185	be (20MHz)	Pass	Pass
	6565	123	be (40MHz)	Pass	Pass
	6725	155	be (40MHz)	Pass	Pass
	6885	179	be (40MHz)	Pass	Pass
	6545	119	be (80MHz)	Pass	Pass
	6705	151	be (80MHz)	Pass	Pass
	6865	183	be (80MHz)	Pass	Pass
	6665	143	be (160MHz)	Pass	Pass
	6825	175	be (160MHz)	Pass	Pass
Band 6/7	6665	143	be (160MHz)	Pass	Pass
Band 7/8	6825	175	be (160MHz)	Pass	Pass
	6895	189	а	Pass	Pass
	6995	209	а	Pass	Pass
	7115	233	а	Pass	Pass
Band 8	6895	189	be (20MHz)	Pass	Pass
Ban	6995	209	be (20MHz)	Pass	Pass
	7115	233	be (20MHz)	Pass	Pass
	6925	187	be (40MHz)	Pass	Pass
	7005	211	be (40MHz)	Pass	Pass
	7085	227	be (40MHz)	Pass	Pass
	6945	199	be (80MHz)	Pass	Pass
	7025	215	be (80MHz)	Pass	Pass
	6985	207	be (160MHz)	Pass	Pass
Band 7/8	6905	191	be (320MHz)	Pass	Pass
Tabla	7 40 lm	Pand	Emission	a Taat Baau	

Table 7-40. In- Band Emissions Test Result – LPI

FCC ID: A3LNP960XMA		MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	EUT Type:	Dega 04 of 165
1M2401250007-07-R3.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 94 of 165
© 2024 ELEMENT	·		V 9.0 02/01/2019

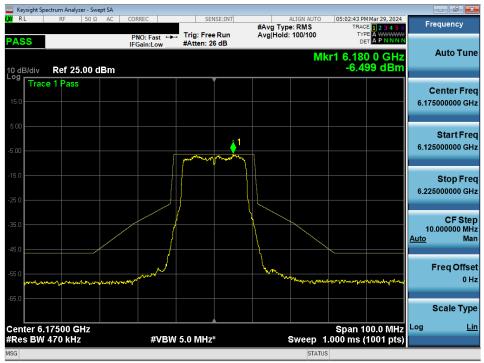
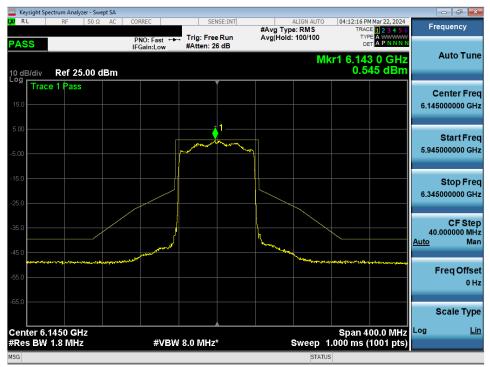

	Frequency [MHz]	Channel	802.11 MODE	In-Band Emission Ant1	In-Band Emission Ant2
	5935	2	а	Pass	Pass
	6175	45	а	Pass	Pass
	6415	93	а	Pass	Pass
	5935	2	be (20MHz)	Pass	Pass
	6175	45	be (20MHz)	Pass	Pass
	6415	93	be (20MHz)	Pass	Pass
	5695	3	be (40MHz)	Pass	Pass
Band 5	6165	43	be (40MHz)	Pass	Pass
Bar	6405	91	be (40MHz)	Pass	Pass
	5985	7	be (80MHz)	Pass	Pass
	6145	39	be (80MHz)	Pass	Pass
	6385	87	be (80MHz)	Pass	Pass
	6025	15	be (160MHz)	Pass	Pass
	6185	47	be (160MHz)	Pass	Pass
	6345	79	be (160MHz)	Pass	Pass
	6105	31	be (320MHz)	Pass	Pass
	6535	117	а	Pass	Pass
	6695	149	а	Pass	Pass
	6875	185	а	Pass	Pass
	6535	117	be (20MHz)	Pass	Pass
	6695	149	be (20MHz)	Pass	Pass
	6875	185	be (20MHz)	Pass	Pass
Band 7	6565	123	be (40MHz)	Pass	Pass
Bar	6725	155	be (40MHz)	Pass	Pass
	6885	179	be (40MHz)	Pass	Pass
	6545	119	be (80MHz)	Pass	Pass
	6705	151	be (80MHz)	Pass	Pass
	6865	183	be (80MHz)	Pass	Pass
	6665	143	be (160MHz)	Pass	Pass
	6825	175	be (160MHz)	Pass	Pass

Table 7-41. In- Band Emissions Test Result – SP

FCC ID: A3LNP960XMA		MEASUREMENT REPORT		
Test Report S/N:	Test Dates:	EUT Type:	Dega 05 of 165	
1M2401250007-07-R3.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 95 of 165	
© 2024 ELEMENT	-		V 9.0 02/01/2019	

MIMO Antenna-1 In-Band Emission Measurements - (UNII Band 5)

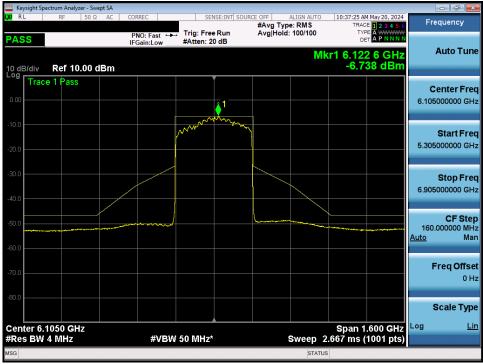
Plot 7-122. In-Band Emission MIMO ANT1 (20MHz 802.11a (UNII Band 5) - Ch. 45)


Plot 7-123. In-Band Emission MIMO ANT1 (20MHz 802.11ax/be (UNII Band 5) - Ch. 45)

FCC ID: A3LNP960XMA		MEASUREMENT REPORT		
Test Report S/N:	Test Dates:	EUT Type:	Dage 06 of 165	
1M2401250007-07-R3.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 96 of 165	
© 2024 ELEMENT			V 9.0 02/01/2019	

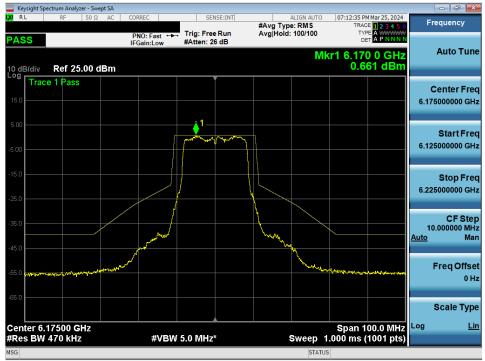
	pectrum Analyzer - Swe									
L <mark>XI</mark> RL	RF 50 Ω	AC CO	ORREC	SEN	SE:INT	#Avg Typ	ALIGN AUTO		Mar 22, 2024	Frequency
PASS			PNO:Fast ↔ FGain:Low	Trig: Free #Atten: 2		Avg Hold	: 100/100	TYF De		Auto Tune
10 dB/div Log	Ref 25.00 c	lBm					IVII	kr1 6.16 -4.0	24 GHZ 24 dBm	
Tra	ce 1 Pass									Center Freq
15.0										6.165000000 GHz
5.00										
-5.00					∮ ¹	_				Start Freq 6.065000000 GHz
-5.00				(manual and	and the second s	1				
-15.0										Stop Freq
-25.0										6.265000000 GHz
				ļ						CF Step
-35.0						1				20.000000 MHz Auto Man
-45.0			- /			1				
-55.0	produces of the print of the second	ang pangang Pangang Sala	and a start and a start and a start and a start			Jacophanet	Agendel Lindelsen de la	getting of the second sector	and a state of the	Freq Offset 0 Hz
										012
-65.0										Scale Type
Center 6	.1650 GHz							Span 2	00.0 MHz	Log <u>Lin</u>
	910 kHz		#VBV	v 8.0 MHz	*		Sweep 1	1.000 ms (1001 pts)	
MSG							STATU	S		

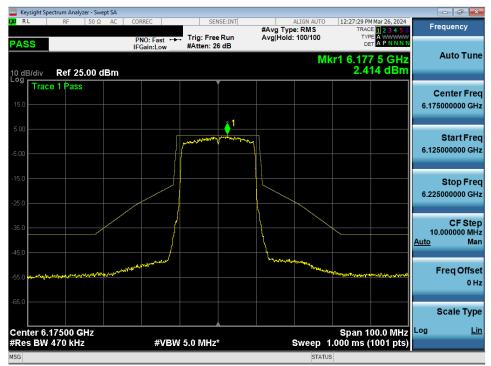
Plot 7-124. In-Band Emission MIMO ANT1 (40MHz 802.11ax/be (UNII Band 5) - Ch. 43)


Plot 7-125. In-Band Emission MIMO ANT1 (80MHz 802.11ax/be (UNII Band 5) - Ch. 39)

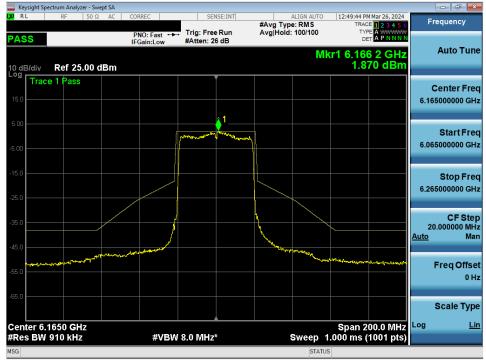
FCC ID: A3LNP960XMA		MEASUREMENT REPORT		
Test Report S/N:	Test Dates:	EUT Type:	Dage 07 of 165	
1M2401250007-07-R3.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 97 of 165	
© 2024 ELEMENT			V 9.0 02/01/2019	

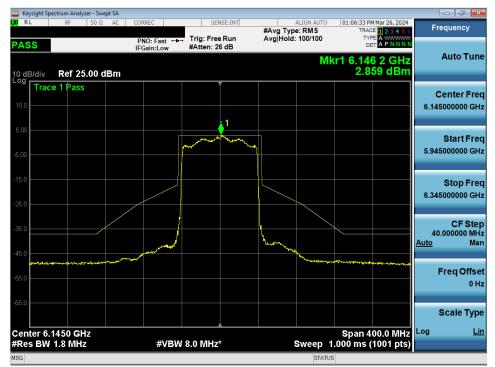
Keysight Spectrum Analyzer - Swept SA					
LX/ R L RF 50 Ω AC	CORREC	SENSE:INT	ALIGN AUTO #Avg Type: RMS	04:34:19 PM Mar 22, 2024 TRACE 1 2 3 4 5 6	Frequency
PASS	PNO: Fast ↔ IFGain:Low	Trig: Free Run #Atten: 26 dB	Avg Hold: 100/100	DET A PNNN	Auto Tune
10 dB/div Ref 25.00 dBm			M.	kr1 6.189 0 GHz 0.345 dBm	Auto Tulle
Trace 1 Pass		Ĭ			Center Freq
15.0					6.185000000 GHz
5.00		1			Start Freq
-5.00			•		5.785000000 GHz
-15.0					Stop Freq 6.585000000 GHz
-25.0					0.38500000 GH2
-35.0					CF Step
					80.000000 MHz <u>Auto</u> Man
-45.0					
-55.0					Freq Offset 0 Hz
-65.0					
					Scale Type
Center 6.1850 GHz	-#\ (D\A)	50 MHz*	Swaan	Span 800.0 MHz	Log <u>Lin</u>
#Res BW 3.0 MHz	#VBW	50 WHZ*	Sweep	1.333 ms (1001 pts)	


Plot 7-126. In-Band Emission MIMO ANT1 (160MHz 802.11ax/be (UNII Band 5) - Ch. 47)

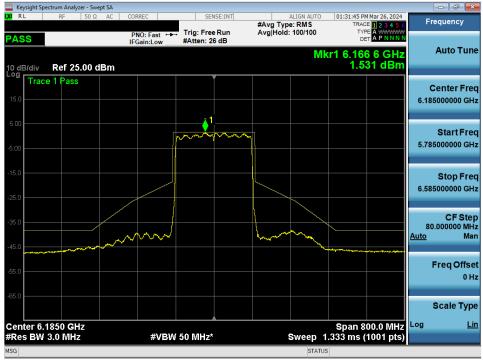

Plot 7-127. In-Band Emission MIMO ANT1 (320MHz 802.11ax/be (UNII Band 5) - Ch.31)

FCC ID: A3LNP960XMA		MEASUREMENT REPORT		
Test Report S/N:	Test Dates:	EUT Type:	Dage 09 of 165	
1M2401250007-07-R3.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 98 of 165	
© 2024 ELEMENT			V 9.0 02/01/2019	


Plot 7-128. In-Band Emission MIMO ANT1 (20MHz 802.11a (UNII Band 5) - Ch. 45) - SP


Plot 7-129. In-Band Emission MIMO ANT1 (20MHz 802.11ax/be (UNII Band 5) - Ch. 45) - SP

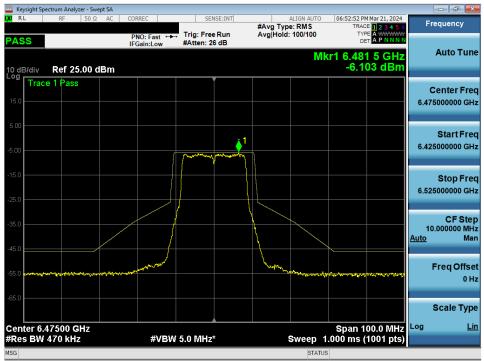
FCC ID: A3LNP960XMA		MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	EUT Type:	Demo 00 of 165
1M2401250007-07-R3.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 99 of 165
© 2024 ELEMENT		·	V 9.0 02/01/2019

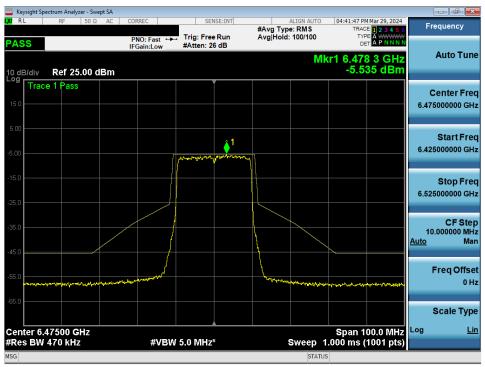

Plot 7-130. In-Band Emission MIMO ANT1 (40MHz 802.11ax/be (UNII Band 5) - Ch. 43) - SP


Plot 7-131. In-Band Emission MIMO ANT1 (80MHz 802.11ax/be (UNII Band 5) - Ch. 39) - SP

FCC ID: A3LNP960XMA		MEASUREMENT REPORT		
Test Report S/N:	Test Dates:	EUT Type:	Dage 100 of 165	
1M2401250007-07-R3.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 100 of 165	
© 2024 ELEMENT		·	V 9.0 02/01/2019	

Plot 7-132. In-Band Emission MIMO ANT1 (160MHz 802.11ax/be (UNII Band 5) - Ch. 47) - SP

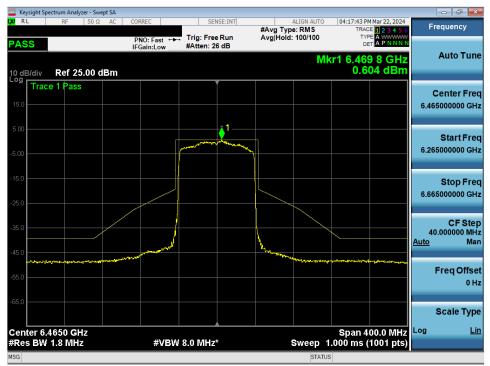



Plot 7-133. In-Band Emission MIMO ANT1 (320MHz 802.11ax/be (UNII Band 5) - Ch.31) - SP

FCC ID: A3LNP960XMA		MEASUREMENT REPORT		
Test Report S/N:	Test Dates:	EUT Type:	Dage 101 of 165	
1M2401250007-07-R3.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 101 of 165	
© 2024 ELEMENT			V 9.0 02/01/2019	

MIMO Antenna-1 In-Band Emission Measurements - (UNII Band 6)

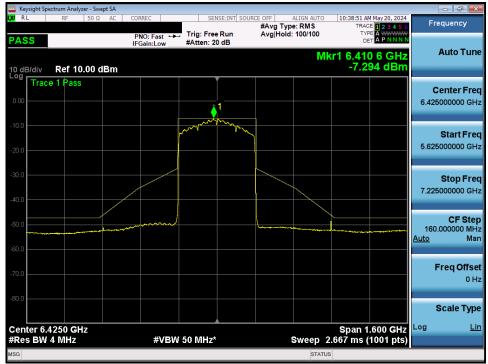
Plot 7-134. In-Band Emission MIMO ANT1 (20MHz 802.11a (UNII Band 6) - Ch. 105)


Plot 7-135. In-Band Emission MIMO ANT1 (20MHz 802.11ax/be (UNII Band 6) - Ch. 105)

FCC ID: A3LNP960XMA		MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	EUT Type:	Dega 102 of 165
1M2401250007-07-R3.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 102 of 165
© 2024 ELEMENT			V 9.0 02/01/2019

Keysight Spectrum Analyzer - Swept SA						- 6 ×
IX/RL RF 50Ω AC	CORREC	SENSE:INT	#Avg Type: F	RMS TF	5 PM Mar 22, 2024 RACE 1 2 3 4 5 6	Frequency
PASS	PNO: Fast ↔ IFGain:Low	Trig: Free Run #Atten: 26 dB	Avg Hold: 10	00/100		A
10 dB/div Ref 25.00 dBm				Mkr1 6.4 -3.	87 0 GHz 857 dBm	Auto Tune
Trace 1 Pass						Center Freq
15.0						6.485000000 GHz
5.00		<u> </u>				Start Freq
-5.00		putrimenter Jummer	my			6.385000000 GHz
-15.0						Stop Freq
						6.585000000 GHz
-25.0						CF Step
-35.0	/					20.000000 MHz Auto Man
-45.0						
-55.0				March and a second s	an a sharan	Freq Offset 0 Hz
-65.0						
						Scale Type
Center 6.4850 GHz #Res BW 910 kHz	#VBW	8.0 MHz*	Sv	Span veep 1.000 ms	200.0 MHz s (1001 pts)	Log <u>Lin</u>
MSG				STATUS		

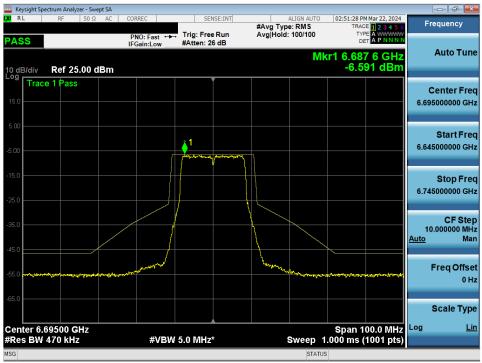
Plot 7-136. In-Band Emission MIMO ANT1 (40MHz 802.11ax/be (UNII Band 6) - Ch. 107)

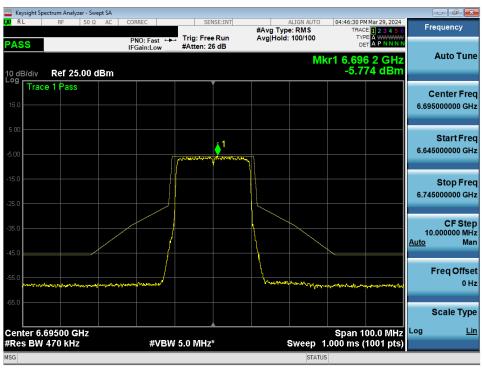

Plot 7-137. In-Band Emission MIMO ANT1 (80MHz 802.11ax/be (UNII Band 6) - Ch. 103)

FCC ID: A3LNP960XMA		MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	est Dates: EUT Type:			
1M2401250007-07-R3.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 103 of 165		
© 2024 ELEMENT V 9					

🔤 Keysight Spectrum Ar								- F ×
LXIRL RF	50 Ω AC	CORREC	SENSE:INT	#Avg Typ	ALIGN AUTO	04:38:59 PM Ma TRACE	2 2, 2024	Frequency
	25.00 dBm	PNO: Fast ↔ IFGain:Low	Trig: Free Run #Atten: 26 dB	Avg Hold:	: 100/100	TYPE DET (r1 6.509 8	PNNNN	Auto Tune
10 dB/div Ref								Center Freq 6.50500000 GHz
-5.00		Г 	^1-	~				Start Freq 6.105000000 GHz
-15.0								Stop Freq 6.90500000 GHz
-35.0								CF Step 80.000000 MHz <u>Auto</u> Man
-55.0								Freq Offset 0 Hz
-65.0 Center 6.5050						Span 800	.0 MHz	Scale Type Log <u>Lin</u>
#Res BW 3.0 M	HZ	#VBW	50 MHz*		Sweep 1	.333 ms (10	01 pts)	
DCM					STATUS			

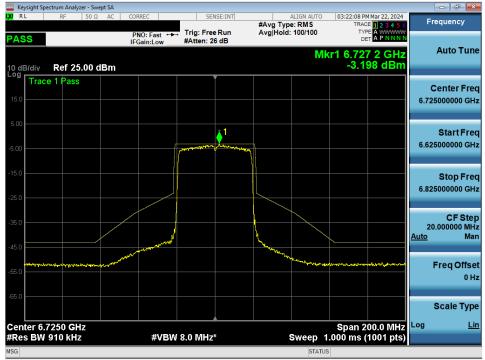
Plot 7-138. In-Band Emission MIMO ANT1 (160MHz 802.11ax/be (UNII Band 6) - Ch. 111)



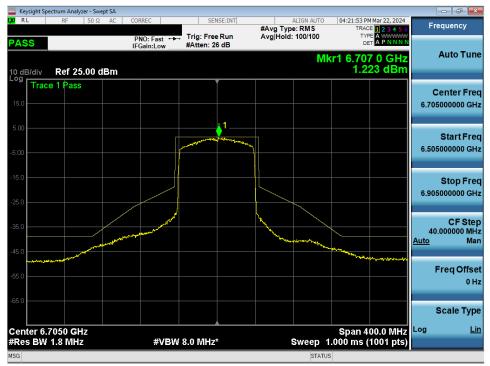

Plot 7-139. In-Band Emission MIMO ANT1 (320MHz 802.11ax/be (UNII Band 5/6/7) - Ch. 95)

FCC ID: A3LNP960XMA		MEASUREMENT REPORT	Approved by: Technical Manager		
Test Report S/N:	Test Dates:	est Dates: EUT Type:			
1M2401250007-07-R3.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 104 of 165		
© 2024 ELEMENT			V 9.0 02/01/2019		

MIMO Antenna-1 In-Band Emission Measurements - (UNII Band 7)

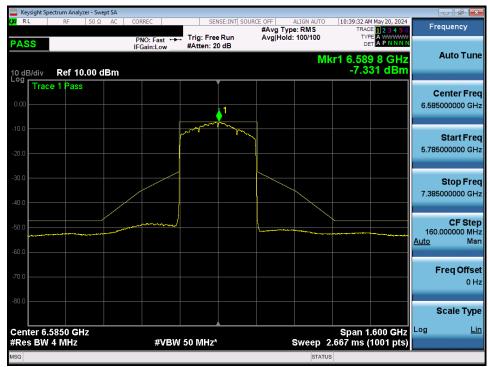


Plot 7-140. In-Band Emission MIMO ANT1 (20MHz 802.11a (UNII Band 7) - Ch. 149)


Plot 7-141. In-Band Emission MIMO ANT1 (20MHz 802.11ax/be (UNII Band 7) - Ch. 149)

FCC ID: A3LNP960XMA		MEASUREMENT REPORT	Approved by: Technical Manager		
Test Report S/N:	Test Dates:	EUT Type:	Dega 105 of 165		
1M2401250007-07-R3.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 105 of 165		
© 2024 ELEMENT					

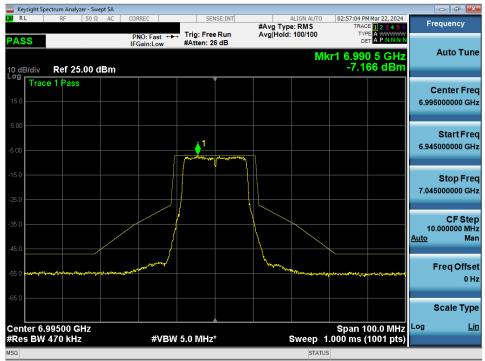
Plot 7-142. In-Band Emission MIMO ANT1 (40MHz 802.11ax/be (UNII Band 7) - Ch. 155)

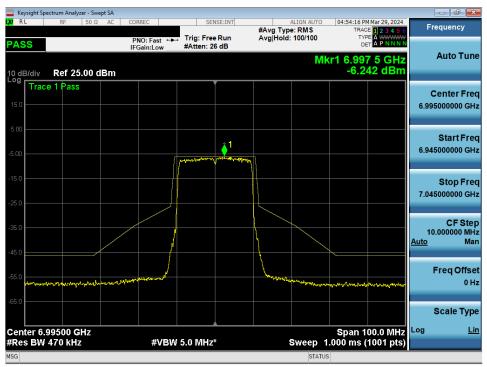

Plot 7-143. In-Band Emission MIMO ANT1 (80MHz 802.11ax/be (UNII Band 7) - Ch. 151)

FCC ID: A3LNP960XMA		MEASUREMENT REPORT	Approved by: Technical Manager		
Test Report S/N:	Test Dates:	est Dates: EUT Type:			
1M2401250007-07-R3.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 106 of 165		
© 2024 ELEMENT					

	ectrum Analyzer - Swep										
L <mark>XI</mark> RL	RF 50 Ω	AC COF	REC	SEI	ISE:INT	#Avg Typ	ALIGN AUTO e: RMS	TRAC	M Mar 22, 2024	Fre	quency
PASS			NO:Fast 🔶 Gain:Low	Trig: Free #Atten: 2		Avg Hold:	100/100	TYI Di			Auto Tune
10 dB/div Log	Ref 25.00 dl	Bm					Mł	r1 6.67 0.2	3 0 GHz 89 dBm		Auto i une
15.0 Trac	e 1 Pass										enter Freq 000000 GHz
-5.00				prover a manager	1						Start Freq 000000 GHz
-15.0											Stop Freq 000000 GHz
-35.0										80.0 <u>Auto</u>	CF Step 000000 MHz Man
-55.0										F	req Offset 0 Hz
-65.0 Center 6.0	650 GHz							Span 8	:00.0 MHz	Log	cale Type <u>Lin</u>
#Res BW	3.0 MHz		#VBW	50 MHz*			0	.333 ms ((1001 pts)		
MSG							STATUS				

Plot 7-144. In-Band Emission MIMO ANT1 (160MHz 802.11ax/be (UNII Band 7) - Ch. 143)

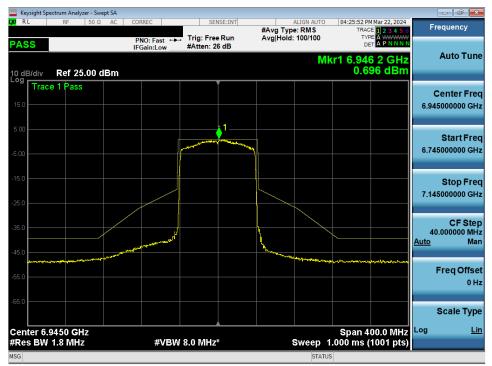



Plot 7-145. In-Band Emission MIMO ANT1 (320MHz 802.11ax/be (UNII Band 6/7) - Ch. 127)

FCC ID: A3LNP960XMA		MEASUREMENT REPORT	Approved by: Technical Manager		
Test Report S/N:	Test Dates:	est Dates: EUT Type:			
1M2401250007-07-R3.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 107 of 165		
© 2024 ELEMENT					

MIMO Antenna-1 In-Band Emission Measurements - (UNII Band 8)

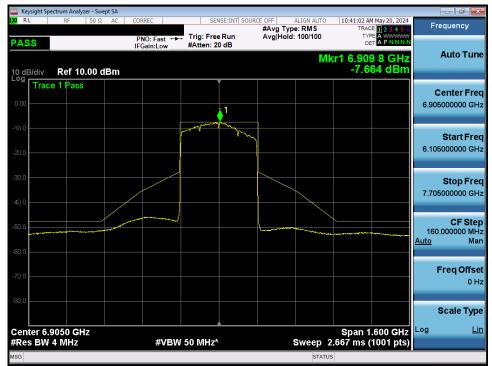
Plot 7-146. In-Band Emission MIMO ANT1 (20MHz 802.11a (UNII Band 8) - Ch. 209)


Plot 7-147. In-Band Emission MIMO ANT1 (20MHz 802.11ax/be (UNII Band 8) - Ch. 209)

FCC ID: A3LNP960XMA		MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Dega 100 of 165		
1M2401250007-07-R3.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 108 of 165		
© 2024 ELEMENT			V 9.0 02/01/2019		

	ctrum Analyzer - Swe									- 6	×
LX/IRL	RF 50 Ω	AC CO	RREC	SEI	NSE:INT	#Avg Typ	ALIGN AUTO e: RMS		Mar 22, 2024	Frequency	
PASS			NO:Fast ↔ Gain:Low	Atten: 2		Avg Hold:	: 100/100	TYF De		Auto Tui	ne
10 dB/div Log	Ref 25.00 d	Bm						-4.8	15 dBm		
Trace	e 1 Pass									Center Fre	eq
15.0										7.005000000 GI	Hz
5.00											
					<u></u> 1					Start Fre 6.905000000 GI	
-5.00				- when we want	- Martinet	~\				6.90500000 Gi	пг
-15.0										Stop Fre	ea
										7.105000000 GI	
-25.0											
-35.0										CF Ste 20.000000 MI	
-45.0						1,					an
-45.0						home and					
-55.0							ĸĸĸ₽₽₽₽₽₩₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽	Variation of the second second	al an	Freq Offs	iet Hz
-65.0											
										Scale Typ	ре
Center 7.0	0050 GHz							Span 2	00.0 MHz	Log <u>L</u>	<u>_in</u>
#Res BW			#VBV	V 8.0 MHz	*		Sweep 1	.000 ms (1001 pts)		
MSG							STATUS	5			

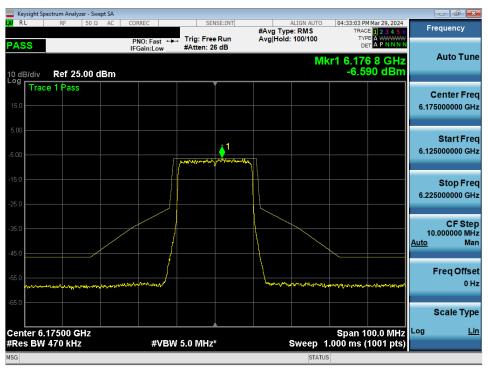
Plot 7-148. In-Band Emission MIMO ANT1 (40MHz 802.11ax/be (UNII Band 8) - Ch. 211)


Plot 7-149. In-Band Emission MIMO ANT1 (80MHz 802.11ax/be (UNII Band 8) - Ch. 199)

FCC ID: A3LNP960XMA		MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	est Dates: EUT Type:			
1M2401250007-07-R3.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 109 of 165		
© 2024 ELEMENT V 9.0					

	um Analyzer - Swept SA						
LXI RL	RF 50 Ω AC	CORREC	SENSE:INT	#Avg Type		04:46:07 PM Mar 22, 2024 TRACE 1 2 3 4 5 6	Frequency
PASS		PNO: Fast ↔ IFGain:Low	Trig: Free Run #Atten: 26 dB	Avg Hold:		DET A PNNN	
10 dB/div	Ref 25.00 dBm				MK	r1 6.989 0 GHz -0.080 dBm	Auto Tulle
15.0 Trace ²	1 Pass						Center Freq 6.985000000 GHz
-5.00							Start Freq 6.585000000 GHz
-15.0							Stop Freq 7.385000000 GHz
-35.0							CF Step 80.000000 MHz <u>Auto</u> Man
-55.0							Freq Offset 0 Hz
-65.0 Center 6.98	50 GHz					Span 800.0 MHz	Scale Type
#Res BW 3.		#VBW	50 MHz*	\$	Sweep 1	.333 ms (1001 pts)	
MSG					STATUS		

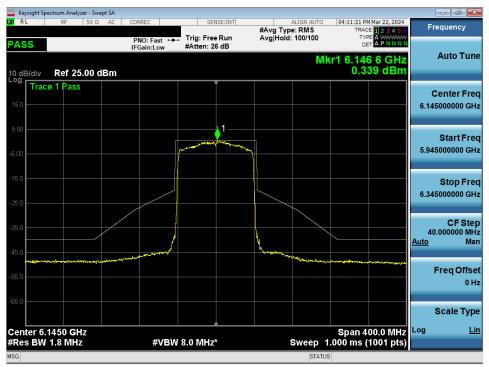
Plot 7-150. In-Band Emission MIMO ANT1 (160MHz 802.11ax/be (UNII Band 8) - Ch. 207)


Plot 7-151. In-Band Emission MIMO ANT1 (320MHz 802.11ax/be (UNII Band 7/8) - Ch. 191)

FCC ID: A3LNP960XMA		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dega 110 of 165
1M2401250007-07-R3.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 110 of 165
© 2024 ELEMENT		•	V 9.0 02/01/2019

MIMO Antenna-2 In-Band Emission Measurements - (UNII Band 5)

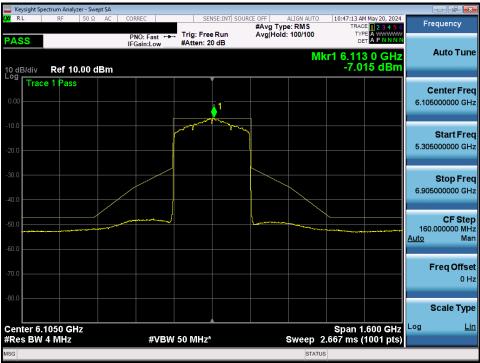
Plot 7-152. In-Band Emission MIMO ANT2 (20MHz 802.11a (UNII Band 5) - Ch. 45)


Plot 7-153. In-Band Emission MIMO ANT2 (20MHz 802.11ax/be (UNII Band 5) - Ch. 45)

FCC ID: A3LNP960XMA		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dega 111 of 165
1M2401250007-07-R3.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 111 of 165
© 2024 ELEMENT		·	V 9.0 02/01/2019

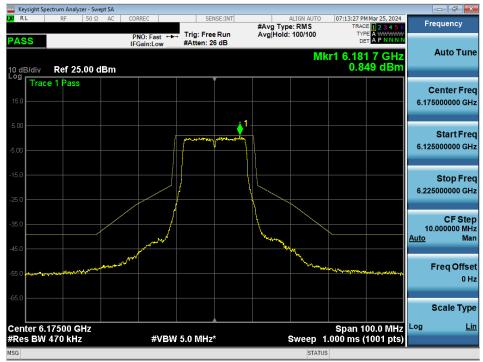
🔤 Keysight Spectrum Analyzer									- 6 ×
LXIRL RF	50 Ω AC CO	RREC	SEN	SE:INT	#Avg Typ	ALIGN AUTO		Mar 22, 2024	Frequency
PASS	IF	NO: Fast ↔ Gain:Low	 Trig: Free #Atten: 26 		Avg Hold	: 100/100	TYP DE	0 6 GHz 42 dBm	Auto Tune
Trace 1 Pass									Center Freq 6.165000000 GHz
-5.00			frankraugetart	<mark>بالا</mark>					Start Freq 6.065000000 GHz
-15.0									Stop Freq 6.265000000 GHz
-35.0									CF Step 20.000000 MHz <u>Auto</u> Man
-55.0	ententententente	an-million and a			have a second	- Contractor - Con		y Mar Marshall Marca	Freq Offset 0 Hz
-65.0									Scale Type
Center 6.1650 GHz #Res BW 910 kHz		#VBW	/ 8.0 MHz*			Sweep 1	Span 2) (000 ms (00.0 MHz 1001 pts)	Lug <u>Lin</u>
MSG						STATUS			

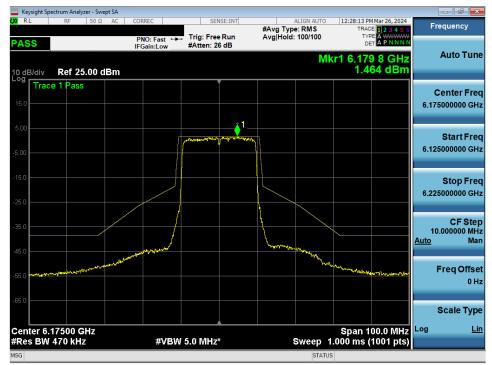
Plot 7-154. In-Band Emission MIMO ANT2 (40MHz 802.11ax/be (UNII Band 5) - Ch. 43)


Plot 7-155. In-Band Emission MIMO ANT2 (80MHz 802.11ax/be (UNII Band 5) - Ch. 39)

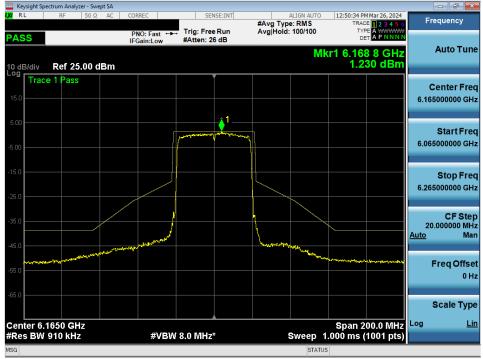
FCC ID: A3LNP960XMA		MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Dogo 112 of 165		
1M2401250007-07-R3.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 112 of 165		
© 2024 ELEMENT			V 9.0 02/01/2019		

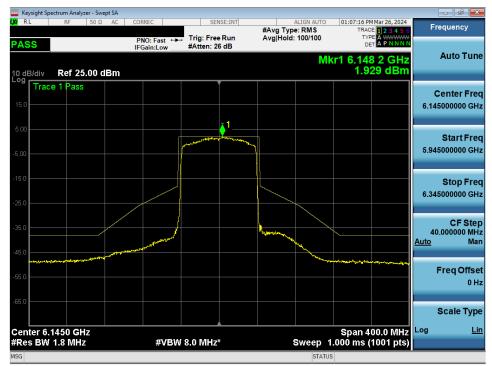
🔤 Keysight Spectrum Analy									- 6 2
IXI RL RF	50 Ω AC	CORREC		ISE:INT	#Avg Typ		TRA	M Mar 22, 2024 CE 1 2 3 4 5 6	Frequency
PASS		PNO: Fast ↔ IFGain:Low	Trig: Free #Atten: 20		Avg Hold		D		Auto Tun
10 dB/div Ref 2	5.00 dBm					Mł	(r1 6.20 0.0	5 0 GHz 43 dBm	Auto Tun
Trace 1 Pass									Center Fre
15.0									6.185000000 GH
5.00			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						Start Fre
-5.00									5.785000000 GH
-15.0									Stop Fre
-25.0									6.585000000 GH
-35.0									CF Ste
		m			hum	man			80.000000 MH <u>Auto</u> Ma
-45.0							and the second second		Freq Offse
-55.0									0 H
-65.0									Scale Typ
Center 6.1850 GI	17						Snap	300.0 MHz	
#Res BW 3.0 MH		#VBW	/ 50 MHz*			Sweep 1	.333 ms	(1001 pts)	
MSG						STATUS	5		


Plot 7-156. In-Band Emission MIMO ANT2 (160MHz 802.11ax/be (UNII Band 5) - Ch. 47)

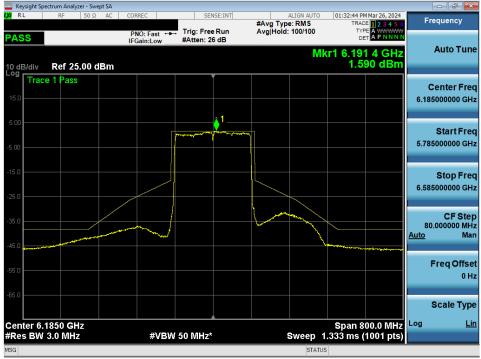

Plot 7-157. In-Band Emission MIMO ANT2 (320MHz 802.11be (UNII Band 5) – Ch.31)

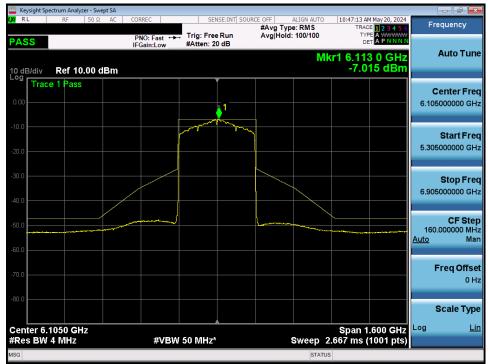
FCC ID: A3LNP960XMA		MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Dega 112 of 165		
1M2401250007-07-R3.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 113 of 165		
© 2024 ELEMENT	•		V 9.0 02/01/2019		


Plot 7-158. In-Band Emission MIMO ANT2 (20MHz 802.11a (UNII Band 5) - Ch. 45) - SP


Plot 7-159. In-Band Emission MIMO ANT2 (20MHz 802.11ax/be (UNII Band 5) - Ch. 45) - SP

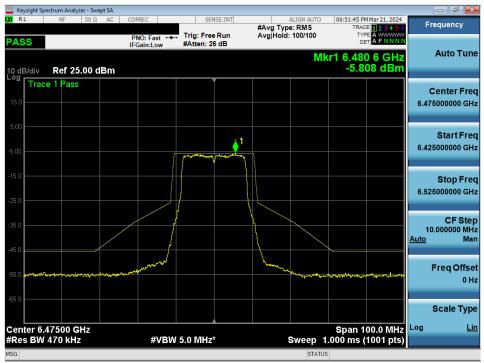
FCC ID: A3LNP960XMA		MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Deg. 114 of 165		
1M2401250007-07-R3.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 114 of 165		
© 2024 ELEMENT	-		V 9.0 02/01/2019		

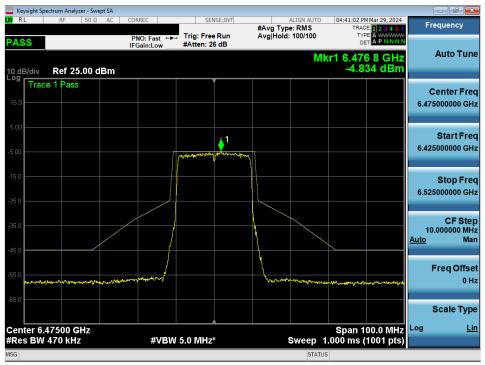

Plot 7-160. In-Band Emission MIMO ANT2 (40MHz 802.11ax/be (UNII Band 5) - Ch. 43) - SP


Plot 7-161. In-Band Emission MIMO ANT2 (80MHz 802.11ax/be (UNII Band 5) - Ch. 39) - SP

FCC ID: A3LNP960XMA		MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Dega 115 of 165		
1M2401250007-07-R3.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 115 of 165		
© 2024 ELEMENT			V 9.0 02/01/2019		

Plot 7-162. In-Band Emission MIMO ANT2 (160MHz 802.11ax/be (UNII Band 5) - Ch. 47) - SP

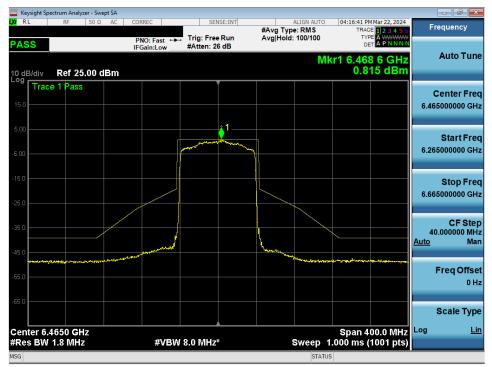



Plot 7-163. In-Band Emission MIMO ANT2 (320MHz 802.11ax/be (UNII Band 5) - Ch.31) - SP

FCC ID: A3LNP960XMA		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dere 116 of 165
1M2401250007-07-R3.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 116 of 165
© 2024 ELEMENT		·	V 9.0 02/01/2019

MIMO Antenna-2 In-Band Emission Measurements - (UNII Band 6)

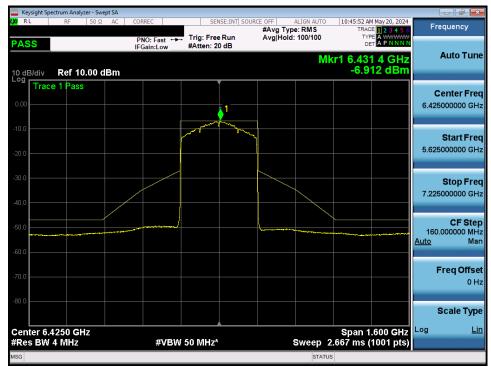
Plot 7-164. In-Band Emission MIMO ANT2 (20MHz 802.11a (UNII Band 6) - Ch. 105)


Plot 7-165. In-Band Emission MIMO ANT2 (20MHz 802.11ax/be (UNII Band 6) - Ch. 105)

FCC ID: A3LNP960XMA		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dega 117 of 165
1M2401250007-07-R3.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 117 of 165
© 2024 ELEMENT			V 9.0 02/01/2019

	ectrum Analyzer - Swe									- P	×
LXI RL	RF 50 Ω	AC CO	RREC	SEN	ISE:INT	#Avg Typ	ALIGN AUTO		Mar 22, 2024	Frequency	
PASS	Ref 25.00 d	IF	NO:Fast ↔ Gain:Low	 Trig: Free #Atten: 26 		Avg Hold		cr1 6.48		Auto Tu	Jne
	e 1 Pass									Center Fi 6.485000000 0	
-5.00				for the second s	1 	7				Start Fi 6.385000000 0	
-15.0										Stop Fi 6.585000000 0	
-35.0										CF S1 20.000000 M <u>Auto</u> M	
-55.0	albeertenservallenve ^{rs} tmastrinser	and the second	and a second			homene	and a constraint of the second	alaran daga da katar	~\$ \$^\$***	Freq Off 0	fset) Hz
	4850 GHz							Span 2	00.0 MHz	Scale Ty Log	ype <u>Lin</u>
#Res BW	910 kHz		#VBN	/ 8.0 MHz*			Sweep 1	1.000 ms (1001 pts)		
MBG							STATU	3			

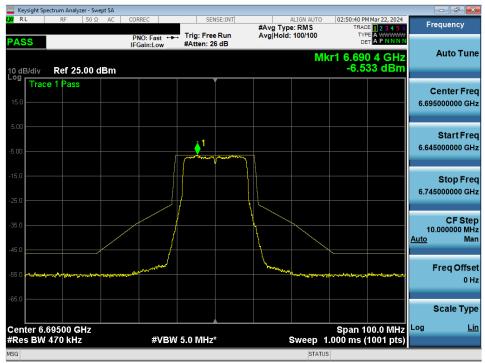
Plot 7-166. In-Band Emission MIMO ANT2 (40MHz 802.11ax/be (UNII Band 6) - Ch. 107)

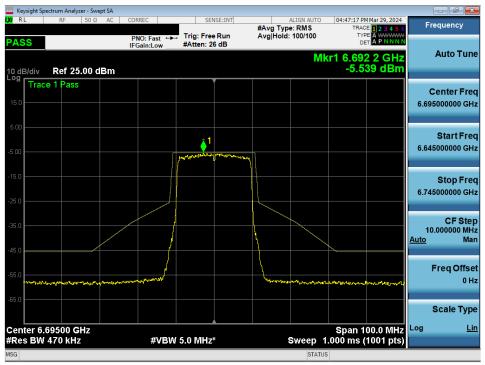

Plot 7-167. In-Band Emission MIMO ANT2 (80MHz 802.11ax/be (UNII Band 6) - Ch. 103)

FCC ID: A3LNP960XMA		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dega 119 of 165
1M2401250007-07-R3.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 118 of 165
© 2024 ELEMENT			V 9.0 02/01/2019

	ctrum Analyzer - Swe										- # 🗙
L <mark>XI</mark> RL	RF 50 Ω	AC COF	REC	SEN	ISE:INT	#Avg Typ	ALIGN AUTO	TRAC	Mar 22, 2024	Fre	quency
PASS		Pi IFC	NO: Fast 🔸 Gain:Low	Trig: Free #Atten: 2		Avg Hold	: 100/100	TYF DE			
10 dB/div Log	Ref 25.00 d	Bm					Mk	r1 6.48 0.7	9 0 GHz 32 dBm		Auto Tune
15.0 Trac	e 1 Pass										enter Freq 000000 GHz
-5.00						4					Start Freq 000000 GHz
-15.0											Stop Freq 000000 GHz
-35.0			~~							80. <u>Auto</u>	CF Step 000000 MHz Man
-55.0										F	req Offset 0 Hz
-65.0 Center 6.5	5050 GHz							Span 8	00.0 MHz		cale Type <u>Lin</u>
#Res BW			#VBW	50 MHz*				.333 ms (1001 pts)		
MSG							STATUS				

Plot 7-168. In-Band Emission MIMO ANT2 (160MHz 802.11ax/be (UNII Band 6) - Ch. 111)

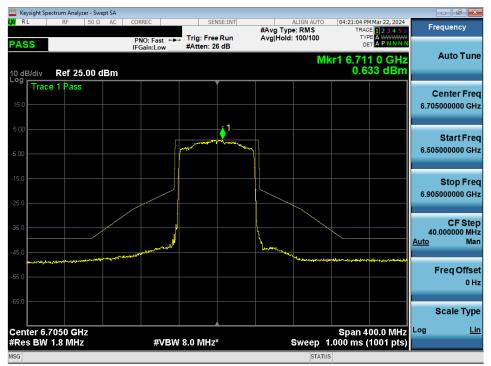



Plot 7-169. In-Band Emission MIMO ANT2 (320MHz 802.11ax/be (UNII Band 5/6/7) - Ch. 95)

FCC ID: A3LNP960XMA		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dega 110 of 165
1M2401250007-07-R3.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 119 of 165
© 2024 ELEMENT		•	V 9.0 02/01/2019

MIMO Antenna-2 In-Band Emission Measurements - (UNII Band 7)

Plot 7-170. In-Band Emission MIMO ANT2 (20MHz 802.11a (UNII Band 7) - Ch. 149)


Plot 7-171. In-Band Emission MIMO ANT2 (20MHz 802.11ax/be (UNII Band 7) - Ch. 149)

FCC ID: A3LNP960XMA		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dega 100 of 165
1M2401250007-07-R3.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 120 of 165
© 2024 ELEMENT	•		V 9.0 02/01/2019

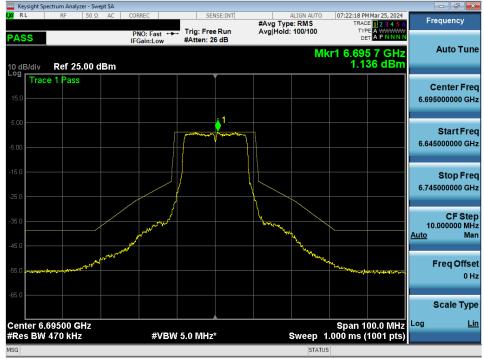
weysight Spectrum Analyzer - Swept SA							- F ×
LX/RL RF 50Ω AC	CORREC	SENSE:INT	#Avg Type	LIGN AUTO	03:21:12 PM TRACE	Mar 22, 2024	Frequency
PASS		g: Free Run tten: 26 dB	Avg Hold:	100/100	TYPE DET r1 6.722	A P NNNN 2 GHz	Auto Tune
10 dB/div Ref 25.00 dBm					-3.22	6 dBm	
15.0							Center Freq 6.725000000 GHz
.6.00		A I washed washing					Start Freq 6.625000000 GHz
-15.0							Stop Freq 6.825000000 GHz
-35.0							CF Step 20.000000 MHz <u>Auto</u> Man
.55.0	survey of		Lumpere	vier Ingelannen	Ballan ya yakin di ya yin ya	and a faile of the state of the	Freq Offset 0 Hz
-65.0							Scale Type
Center 6.7250 GHz #Res BW 910 kHz	#VBW 8.0	MHz*		weep <u>1</u> .	59 Span 1.000 ms (1	0.0 MHz 001 pts)	
MSG				STATUS			

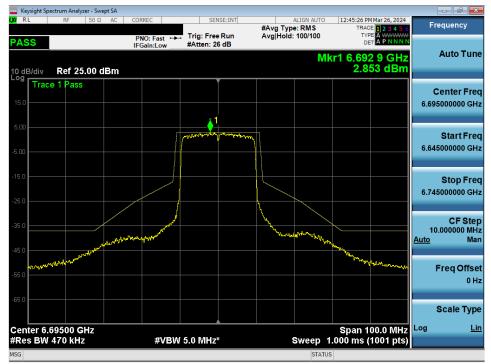
Plot 7-172. In-Band Emission MIMO ANT2 (40MHz 802.11ax/be (UNII Band 7) - Ch. 155)

Plot 7-173. In-Band Emission MIMO ANT2 (80MHz 802.11ax/be (UNII Band 7) - Ch. 151)

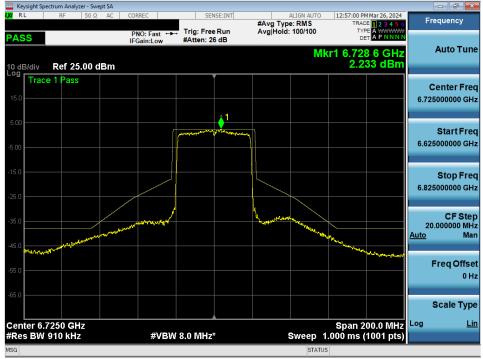
FCC ID: A3LNP960XMA		MEASUREMENT REPORT		
Test Report S/N:	Test Dates:	EUT Type:	Dega 101 of 165	
1M2401250007-07-R3.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 121 of 165	
© 2024 ELEMENT	•		V 9.0 02/01/2019	

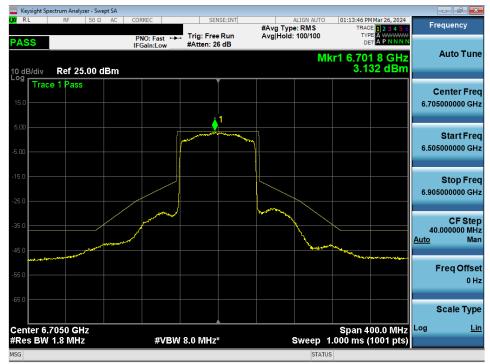
	ctrum Analyzer - Swe									[
L <mark>XI</mark> RL	RF 50 Ω	AC CO	RREC	SEN	ISE:INT	#Avg Ty	ALIGN AUTO	TRAC	M Mar 22, 2024	Fre	equency
PASS		P	NO:Fast ↔ Gain:Low	Trig: Free #Atten: 2			d: 100/100	TY			
10 dB/div Log	Ref 25.00 d	Bm					M	(r1 6.64 0.4	9 8 GHz 88 dBm		Auto Tune
15.0 Trace	e 1 Pass										enter Freq 6000000 GHz
5.00				¹	nange de son	~				6.265	Start Freq 5000000 GHz
-15.0										7.065	Stop Freq 6000000 GHz
-35.0		and the second	personal designed			La				80. <u>Auto</u>	CF Step 000000 MHz Man
-55.0										F	Freq Offset 0 Hz
-65.0 Center 6.6	650 GHz							Snan 8	00.0 MHz		Scale Type Lin
#Res BW			#VBW	50 MHz*			Sweep 1	.333 ms (1001 pts)		
MSG							STATUS	6			


Plot 7-174. In-Band Emission MIMO ANT2 (160MHz 802.11ax/be (UNII Band 7) - Ch. 143)

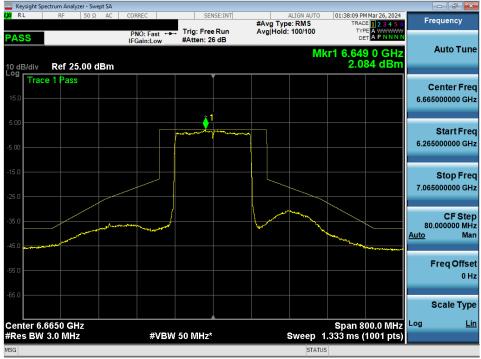

Plot 7-175. In-Band Emission MIMO ANT2 (320MHz 802.11ax/be (UNII Band 6/7) - Ch. 127)

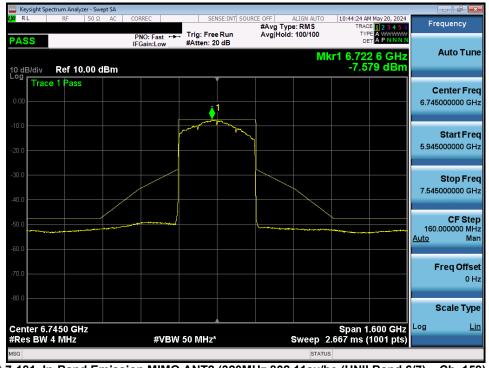
FCC ID: A3LNP960XMA		MEASUREMENT REPORT		
Test Report S/N:	Test Dates:	EUT Type:	Dega 100 of 165	
1M2401250007-07-R3.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 122 of 165	
© 2024 ELEMENT	•		V 9.0 02/01/2019	


Plot 7-176. In-Band Emission MIMO ANT2 (20MHz 802.11a (UNII Band 7) - Ch. 149) - SP


Plot 7-177. In-Band Emission MIMO ANT2 (20MHz 802.11ax/be (UNII Band 7) - Ch. 149) - SP

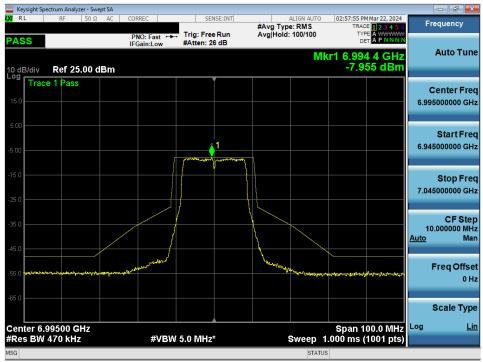
FCC ID: A3LNP960XMA		MEASUREMENT REPORT		
Test Report S/N:	Test Dates:	EUT Type:	Dega 102 of 165	
1M2401250007-07-R3.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 123 of 165	
© 2024 ELEMENT			V 9.0 02/01/2019	

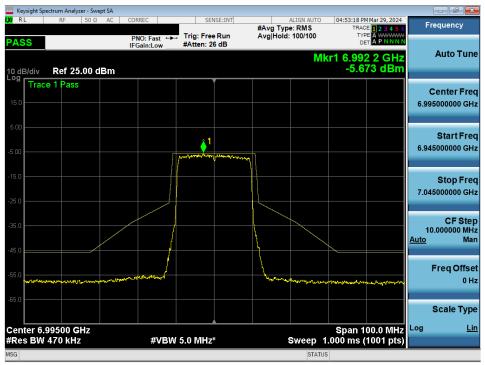

Plot 7-178. In-Band Emission MIMO ANT2 (40MHz 802.11ax/be (UNII Band 7) - Ch. 155) - SP


Plot 7-179. In-Band Emission MIMO ANT2 (80MHz 802.11ax/be (UNII Band 7) - Ch. 151) - SP

FCC ID: A3LNP960XMA		MEASUREMENT REPORT		
Test Report S/N:	Test Dates:	EUT Type:	Dega 124 of 165	
1M2401250007-07-R3.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 124 of 165	
© 2024 ELEMENT			V 9.0 02/01/2019	

Plot 7-180. In-Band Emission MIMO ANT2 (160MHz 802.11ax/be (UNII Band 7) - Ch. 143) - SP

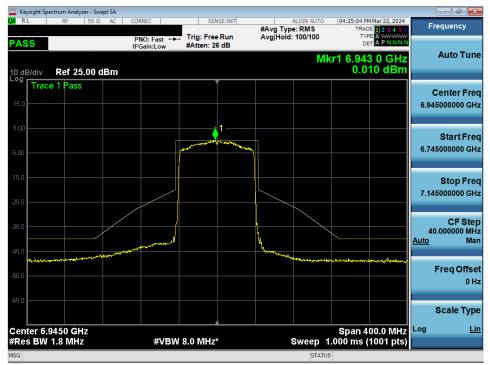



Plot 7-181. In-Band Emission MIMO ANT2 (320MHz 802.11ax/be (UNII Band 6/7) - Ch. 159) - SP

FCC ID: A3LNP960XMA		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 125 of 165
1M2401250007-07-R3.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 125 of 165
© 2024 ELEMENT			V 9.0 02/01/2019

MIMO Antenna-2 In-Band Emission Measurements - (UNII Band 8)

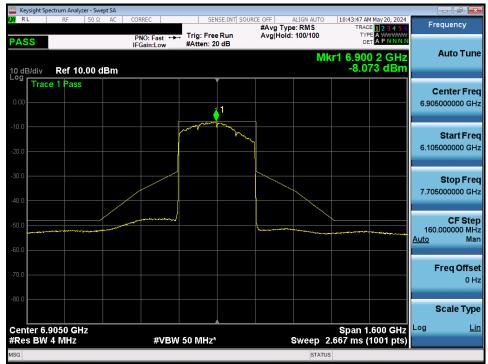
Plot 7-182. In-Band Emission MIMO ANT2 (20MHz 802.11a (UNII Band 8) - Ch. 209)


Plot 7-183. In-Band Emission MIMO ANT2 (20MHz 802.11ax/be (UNII Band 8) - Ch. 209)

FCC ID: A3LNP960XMA		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dega 106 of 165
1M2401250007-07-R3.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 126 of 165
© 2024 ELEMENT	•		V 9.0 02/01/2019

wy Keysight Spectrum Analyzer - Swept SA						
LX/RL RF 50Ω AC	CORREC	SENSE:INT	#Avg Type: RMS		lar 22, 2024 1 2 3 4 5 6	Frequency
PASS	PNO: Fast +++ IFGain:Low	Trig: Free Run #Atten: 26 dB	Avg Hold: 100/10	0 TYPE DET	A P N N N N	Auto Tune
10 dB/div Ref 25.00 dBm				Mkr1 7.000 -5.07	8 GHz 5 dBm	Auto Tune
Trace 1 Pass						Center Freq
15.0						7.005000000 GHz
5.00		÷ 1				Start Freq
-5.00		Mart and and a start of the sta				6.905000000 GHz
-15.0						Stop Freq
-25.0						7.105000000 GHz
						CF Step
-35.0					<u>A</u>	20.000000 MHz <u>uto</u> Man
-45.0	and a start of the		maren			
-55.0				Virely glasser and		Freq Offset 0 Hz
-65.0						
						Scale Type
Center 7.0050 GHz #Res BW 910 kHz	#VBW	8.0 MHz*	Swee	Span 20 p 1.000 ms (1	0.0 MHz 40 001 pts)	og <u>Lin</u>
MSG			S	TATUS		

Plot 7-184. In-Band Emission MIMO ANT2 (40MHz 802.11ax/be (UNII Band 8) - Ch. 211)


Plot 7-185. In-Band Emission MIMO ANT2 (80MHz 802.11ax/be (UNII Band 8) - Ch. 199)

FCC ID: A3LNP960XMA		MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dega 127 of 165
1M2401250007-07-R3.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 127 of 165
© 2024 ELEMENT	•		V 9.0 02/01/2019

	ctrum Analyzer - Swept										- # 🗙
L <mark>XI</mark> RL	RF 50 Ω	AC COR	REC	SEN	SE:INT	#Avg Typ	ALIGN AUTO	04:47:09 P	M Mar 22, 2024	Fre	quency
PASS		PN IFC	IO: Fast ↔ Gain:Low	Trig: Free #Atten: 20		AvgHold	I: 100/100		E 1 2 3 4 5 6 E A WWWWW A P N N N N		
10 dB/div Log	Ref 25.00 dE	3m					M	kr1 6.97 -0.5	7 8 GHz 54 dBm		Auto Tune
15.0 Trac	e 1 Pass										enter Freq 000000 GHz
5.00					1						Start Freq 000000 GHz
-15.0											Stop Freq 000000 GHz
-35.0			anne d			hanner	Anderson and the			80. <u>Auto</u>	CF Step 000000 MHz Man
-55.0										F	req Offset 0 Hz
-65.0 Center 6.9								Enan 9	00.0 MHz		cale Type Lin
#Res BW			#VBW	50 MHz*			Sweep 1	.333 ms (10010 MH2 1001 pts)		200
MSG							STATU	5			

Plot 7-186. In-Band Emission MIMO ANT2 (160MHz 802.11ax/be (UNII Band 8) - Ch. 207)

Plot 7-187. In-Band Emission MIMO ANT2 (320MHz 802.11ax/be (UNII Band 7/8) - Ch. 191)

FCC ID: A3LNP960XMA		MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 128 of 165	
1M2401250007-07-R3.A3L	03/14/2024 - 05/20/2024	Portable Computing Device		
© 2024 ELEMENT		•	V 9.0 02/01/2019	

7.6 Contention Based Protocol

Test Overview and Limit

Indoor access points, subordinate devices and client devices operating in the 5.925-7.125 GHz band (herein referred to as unlicensed devices) are required to use technologies that include a contention-based protocol to avoid co-channel interference with incumbent devices sharing the band. To ensure incumbent co-channel operations are detected in a technology-agnostic manner, unlicensed devices are required to detect co-channel radio frequency energy (energy detect) and avoid simultaneous transmission.

Unlicensed indoor low-power devices must detect co-channel radio frequency power that is at least -62 dBm or lower. Upon detection of energy in the band, unlicensed low power indoor devices must vacate the channel and stay off the channel if detected radio frequency power is equal to or greater than the threshold (-62 dBm). The -62 dBm (or lower) threshold is referenced to a 0 dBi antenna gain.

To ensure incumbent operations are reliably detected in the band, low power indoor devices must detect RF energy throughout their intended operating channel.

Test Procedure Used

KDB 987594 D02 v02r01

Test Settings

- 1. Configure the EUT to transmit with a constant duty cycle.
- 2. Set the operating parameters of the EUT including power level, operating frequency, modulation, and bandwidth.
- 3. Set the signal analyzer center frequency to the nominal EUT channel center frequency. The span range of the signal analyzer shall be between two times and five times the OBW of the EUT. Connect the output port of the EUT to the signal analyzer 2. Ensure that the attenuator 2 provides enough attenuation to not overload the signal analyzer 2 receiver.
- 4. Monitoring the signal analyzer 2, verify the EUT is operating and transmitting with the parameters set at step two.
- 5. Using an AWGN signal source, generate (but do not transmit, i.e., RF OFF) a 10 MHz-wide AWGN signal. Use Table 1 to determine the center frequency of the 10 MHz AWGN signal relative to the EUT's channel bandwidth and center frequency.
- Set the AWGN signal power to an extremely low level (more than 20 dB below the -62 dBm threshold). Connect the AWGN signal source, via a 3-dB splitter, to the signal analyzer 1 and the EUT as shown in Figure 2.
- 7. Transmit the AWGN signal (RF ON) and verify its characteristics on the signal analyzer 1.
- Monitor the signal analyzer 2 to verify if the AWGN signal has been detected and the EUT has ceased transmission. If the EUT continues to transmit, then incrementally increase the AWGN signal power level until the EUT stops transmitting.
- 9. (Including all losses in the RF paths) Determine and record the AWGN signal power level (at the EUT's antenna port) at which the EUT ceased transmission. Repeat the procedure at least 10 times to verify the EUT can detect an AWGN signal with 90% (or better) level of certainty.
- 10. Refer to Table 1 of KDB 987594 D02 v02r01 to determine the number of times the detection threshold testing needs to be repeated. If testing is required more than once, then go back to step 5, choose a different center frequency for the AWGN signal, and repeat the process.

FCC ID: A3LNP960XMA		MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 120 of 165
1M2401250007-07-R3.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 129 of 165
© 2024 ELEMENT	·	·	V 9.0 02/01/2019

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

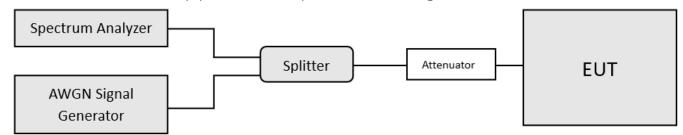


Figure 7-5. Contention-based protocol test setup conducted method.

Test Notes

- Per guidance from KDB 987594 D02 v02r01, contention-based protocol was tested using an AWGN signal with a bandwidth of 10MHz (see Plot 7-192). The amplitude of the signal was increased until detected by the EUT, signaled by the ceasing of transmission (see Plot 7-193), M1 indicates the point at which the AWGN signal is introduced. D1 indicates where the AWGN signal is terminated, at least 10 seconds following M1.
- 2. 15 trials were run to assure that at least 90% of certainty was met.
- 3. Per Guidance from KDB 987594 D04 v01, contention-based protocol was tested with receiver with the lowest antenna gain.
- 4. All CBP Timing Plots shown are for the ceased condition. Some spikes that may be shown are from adjacent portions of the spectrum that are still transmitting.
- 5. In the presence of an AWGN signal, the EUT was shown to either completely move out of the channel or to reduce its bandwidth for the purpose of incumbent avoidance. Representative channel move plots are included for one sub-band to show how the channel reduces when the AWGN is injected at the lower edge, the center, and the upper edge of a channel.
- 6. This device only punctures to optimize network performance and never to avoid licensed incumbents.
- 7. For the channel move demonstration in Section 7.6.3, only plots from UNII-5 band are included. Additionally, the AWGN signal is not visible because the AWGN level is well below the noise floor.

Detection Level = Injected AWGN Power (dBm) – Antenna Gain (dBi) + Path Loss (dB)

Equation 7-1. Detection Level Calculation

FCC ID: A3LNP960XMA		MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 120 of 165
1M2401250007-07-R3.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 130 of 165
© 2024 ELEMENT			V 9.0 02/01/2019

Band	Channel	Channel Freq [MHz]	Channel BW [MHz]	Incumbent Freq [MHz]	Injected (AWGN) [dBm]	Antenna Gain [dBi]	Path Loss (dB)	Adjusted Power Level [dBm]	Detection Limit [dBm]	Margin [dB]
	53	6215	20	6215	-70.31	-3.67	1.31	-65.33	-62.0	-3.33
UNII				6110	-69.04	-3.67	1.31	-64.06	-62.0	-2.06
Band 5	31	6265	320	6265	-72.11	-3.67	1.31	-67.13	-62.0	-5.13
				6420	-71.36	-3.67	1.31	-66.38	-62.0	-4.38
	101	6455	20	6455	-68.58	-3.21	1.31	-64.06	-62.0	-2.06
UNII				6270	-72.79	-3.21	1.31	-68.27	-62.0	-6.27
Band 6	95	6425	320	6425	-70.73	-3.21	1.31	-66.21	-62.0	-4.21
				6580	-68.65	-3.21	1.31	-64.13	-62.0	-2.13
	149	6695	20	6695	-70.44	-4.11	1.31	-65.02	-62.0	-3.02
UNII				6590	-72.95	-4.11	1.31	-67.53	-62.0	-5.53
Band 7	159	6745	320	6745	-70.01	-4.11	1.31	-64.59	-62.0	-2.59
				6900	-71.74	-4.11	1.31	-66.32	-62.0	-4.32
	197	6935	20	6935	-75.05	-4.31	1.31	-69.43	-62.0	-7.43
UNII				6750	-72.82	-4.31	1.31	-67.20	-62.0	-5.20
Band 8	191	6905	320	6905	-69.79	-4.31	1.31	-64.17	-62.0	-2.17
				7060	-73.89	-4.31	1.31	-68.27	-62.0	-6.27

Table 7-42. Contention Based Protocol – Incumbent Detection Results

		Channel	Channel DM		Antenna	-	ransmission S d AWGN Powe		Datastica	D. da marina
Band	Channel	Freq [MHz]	Channel BW [MHz]	Incumbent Freq [MHz]	Gain [dBi]	Normal	Minimal	Ceased	Detection Limit [dBm]	Margin [dB]
	53	6215	20	6215	-3.67	-68.33	-66.43	-65.33	-62.0	-3.33
UNII				6110	-3.67	-65.30	-64.38	-64.06	-62.0	-2.06
Band 5	31	6265	320	6265	-3.67	-70.43	-68.03	-67.13	-62.0	-5.13
			6340	-3.67	-69.77	-67.29	-66.38	-62.0	-4.38	
	101	6455	20	6455	-3.21	-65.16	-64.26	-64.06	-62.0	-2.06
UNII				6350	-3.21	-69.57	-68.97	-68.27	-62.0	-6.27
Band 6	95	6425	320	6425	-3.21	-67.51	-66.61	-66.21	-62.0	-4.21
				6500	-3.21	-65.82	-64.88	-64.13	-62.0	-2.13
	149	6695	20	6695	-4.11	-65.82	-64.62	-65.02	-62.0	-3.02
UNII				6670	-4.11	-68.83	-68.03	-67.53	-62.0	-5.53
Band 7	159	6745	320	6745	-4.11	-66.07	-65.29	-64.59	-62.0	-2.59
				6820	-4.11	-67.58	-67.14	-66.32	-62.0	-4.32
	197	6935	20	6935	-4.31	-72.57	-70.47	-69.43	-62.0	-7.43
UNII				6830	-4.31	-68.60	-67.93	-67.20	-62.0	-5.20
Band 8	191	6905	320	6905	-4.31	-65.42	-63.97	-64.17	-62.0	-2.17
				6980	-4.31	-70.59	-68.67	-68.27	-62.0	-6.27

Table 7-43. Contention Based Protocol – Detection Results – All Tx Cases

FCC ID: A3LNP960XMA		MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dere 121 of 165	
1M2401250007-07-R3.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 131 of 165	
© 2024 ELEMENT			V 9.0 02/01/2019	

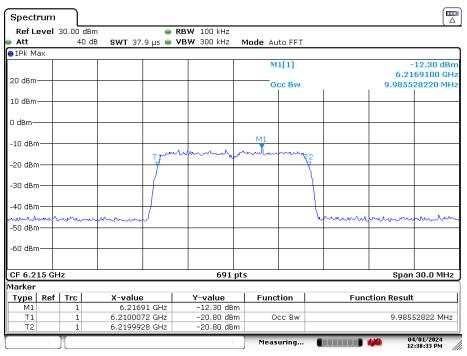
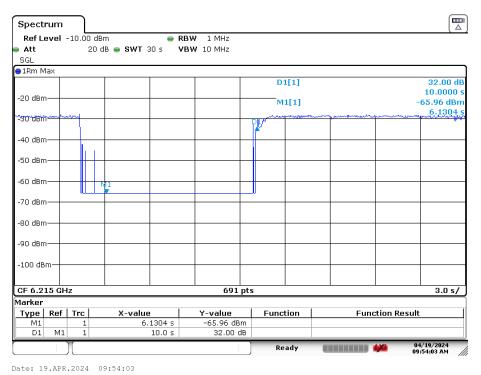

Band	Channel	Channel Freq [MHz]	Channel BW [MHz]	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	Detection Rate (%)
	53	6215	20	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	100
UNII				1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	100
Band 5	31	6265	320	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	100
				1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	100
	101	6455	20	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	100
UNII				1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	100
Band 6	95	6425	320	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	100
				1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	100
	149	6695	20	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	100
UNII				1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	100
Band 7	159	6745	320	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	100
				1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	100
	197	6935	20	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	100
UNII				1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	100
Band 8	191	6905	320	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	100
				1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	100

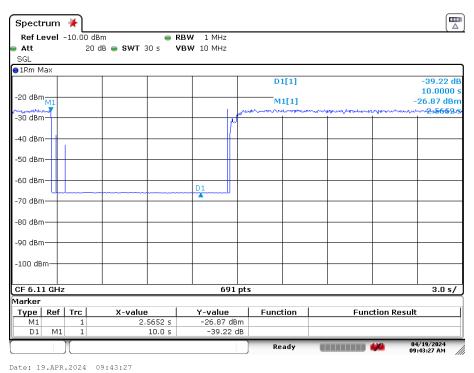
Table 7-44. Contention Based Protocol – Incumbent Detection Trial Results

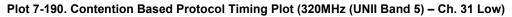
FCC ID: A3LNP960XMA		MEASUREMENT REPORT	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 132 of 165	
1M2401250007-07-R3.A3L	03/14/2024 - 05/20/2024	Portable Computing Device		
© 2024 ELEMENT			V 9.0 02/01/2019	

7.6.1 AWGN Plots

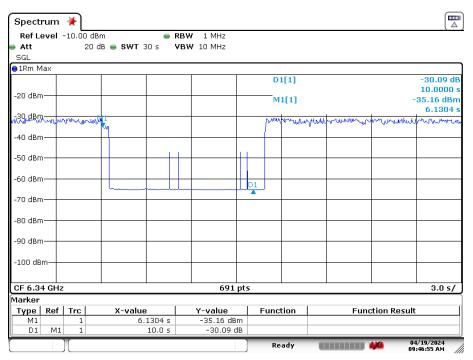

Date: 1.APR.2024 12:38:32

Plot 7-188. AWGN Signal (Demonstration)


FCC ID: A3LNP960XMA		MEASUREMENT REPORT	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 122 of 165
1M2401250007-07-R3.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 133 of 165
© 2024 ELEMENT	<u>.</u>	•	V 9.0 02/01/2019



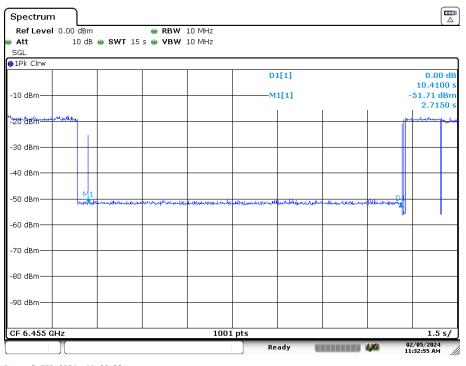
7.6.2 CBP Timing Plots

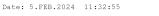

FCC ID: A3LNP960XMA		MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Dama 404 af 405		
1M2401250007-07-R3.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 134 of 165		
© 2024 ELEMENT	·	•	V 9.0 02/01/2019		

Spectru	ım	¥													
Ref Lev	vel -	10.00	dBm		😑 F	RBW	1 MHz								
🖷 Att		2	20 dB 🔵	● SWT 3	0s \	/BW 🗄	10 MHz								
SGL															
😑 1Rm Max	х														
									D	1[1]					-22.83 dB
-20 dBm-															10.0000 s
20 00.00									м	1[1]					43.31 dBm 6.0000 s
-30 dBm-	_									I			-		6.0000 s
-40 dBm—	a direte	- alkabas	_M1_							<u>ALLLI (</u>	ti ti č	mmu	mann	winn	www.smyshy
	~~~~									UNINIM	1111				
-50 dBm—	-		_										-		
				1			1				NHI -				
-60 dBm—								D1							
-70 dBm—										000000	JUUU				
-70 uBIII-															
-80 dBm-															
00 0011															
-90 dBm—	_												_		
-100 dBm	_												-		
CF 6.265	5 GHz	z				I	691	pts		1		I	1		3.0 s/
Marker								•							
	Ref	Trc		X-value	1	Y	-value	1	Func	tion		Fu	nction I	Result	1
M1		1			6.0 s		-43.31 dE	\m							
D1	M1	1			10.0 s		-22.83	dВ							
		(							Re	ady			446	04	/19/2024
														09:	45:07 AM

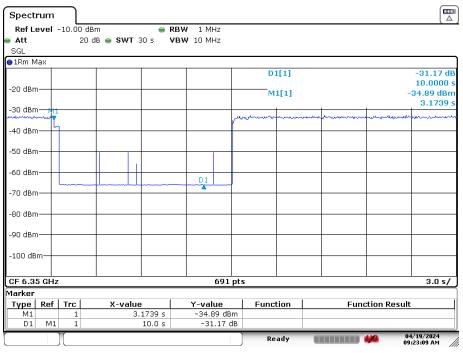
Date: 19.APR.2024 09:45:07







Date: 19.APR.2024 09:46:55

Plot 7-192. Contention Based Protocol Timing Plot (320MHz (UNII Band 5) - Ch. 31 High)


FCC ID: A3LNP960XMA		MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	tes: EUT Type:			
1M2401250007-07-R3.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 135 of 165		
© 2024 ELEMENT			V 9.0 02/01/2019		





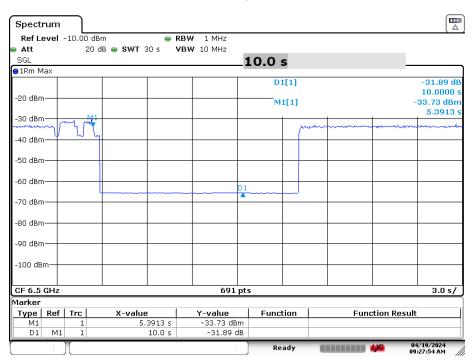






Date: 19.APR.2024 09:23:09

Plot 7-194. Contention Based Protocol Timing Plot (320MHz (UNII Band 6) - Ch. 95 Low)

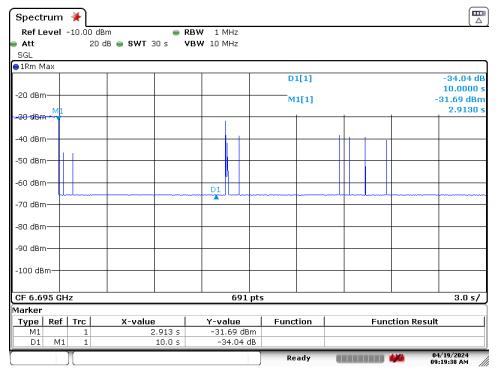

FCC ID: A3LNP960XMA		MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Dage 126 of 165		
1M2401250007-07-R3.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 136 of 165		
© 2024 ELEMENT			V 9.0 02/01/2019		



Spectru	m 🖣	⊁										
Ref Lev Att SGL	<b>el</b> -1		dBm 20 dB 😑 SWT 3	e R 30s V	BW 1 MHz BW 10 MHz							
😑 1Rm Max												
-20 dBm—								1[1] 1[1]				-26.78 dB 10.0000 s -39.89 dBm 2.9565 s
-30 dBm—	-										1	2.5000 3
∿≏40°đ®m'≕	M1				مېر		منظلم مناكبه		<u>menonella</u>	-wi-	mar	on the second second second
-50 dBm—						-						
-60 dBm—					D1	-						
-70 dBm—												
-80 dBm—						-						
-90 dBm—						-						
-100 dBm-												
CF 6.425	GHz				69:	l pts	;					3.0 s/
Marker												
	ef i	Trc	X-value		Y-value		Func	tion		Fun	ction Re	esult
M1 D1	M1	1 1		9565 s 10.0 s	-39.89 d -26.78							
							Re	ady			4/4	04/19/2024 09:24:48 AM

Date: 19.APR.2024 09:24:48

#### Plot 7-195. Contention Based Protocol Timing Plot (320MHz (UNII Band 6) - Ch. 95 Mid)




Date: 19.APR.2024 09:27:54

### Plot 7-196. Contention Based Protocol Timing Plot (320MHz (UNII Band 6) - Ch. 95 High)

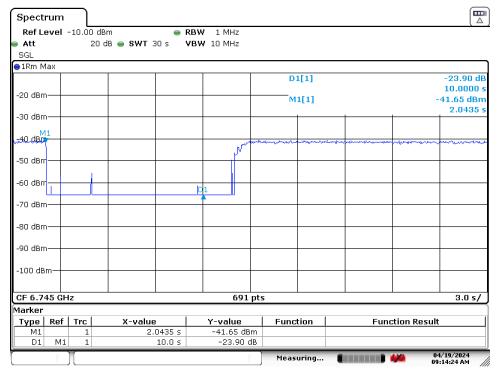
FCC ID: A3LNP960XMA		MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	est Dates: EUT Type:			
1M2401250007-07-R3.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 137 of 165		
© 2024 ELEMENT			V 9.0 02/01/2019		





Date: 19.APR.2024 09:19:38




Spectrum	☀									
Ref Level Att SGL		dBm IdB <b>● SWT</b> 3	● R 0s V	BW 1 MHz BW 10 MHz						
●1Rm Max -20 dBm -30 dBM1							1[1] 1[1]			-31.76 df 10.0000 -33.56 dBn 2.0870
-30 uBill -40 dBm								 	and the second	~~~~
-50 dBm										
-60 dBm				C1						
-70 dBm				- <u>F</u>						
-80 dBm										
-90 dBm										
-100 dBm										
CF 6.59 GHz	2			691	pts					3.0 s/
Marker Type   Ref	Trc	X-value	1	Y-value	1	Func	tion	Fund	tion Res	ult
M1 D1 M1	1	2	.087 s 10.0 s	-33.56 dl -31.76				 		
	)[]					Re	ady		444	04/19/2024 09:09:34 AM

Date: 19.APR.2024 09:09:34

### Plot 7-198. Contention Based Protocol Timing Plot (320MHz (UNII Band 7) - Ch. 159 Low)

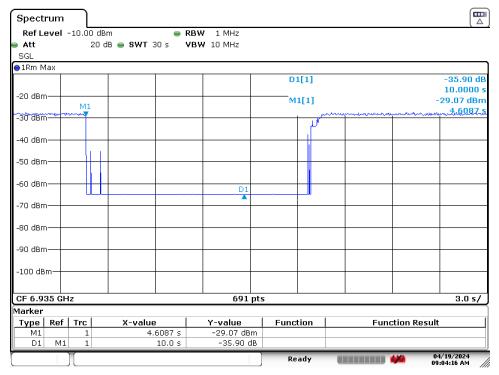
FCC ID: A3LNP960XMA		MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Dage 120 of 165		
1M2401250007-07-R3.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 138 of 165		
© 2024 ELEMENT	·		V 9.0 02/01/2019		





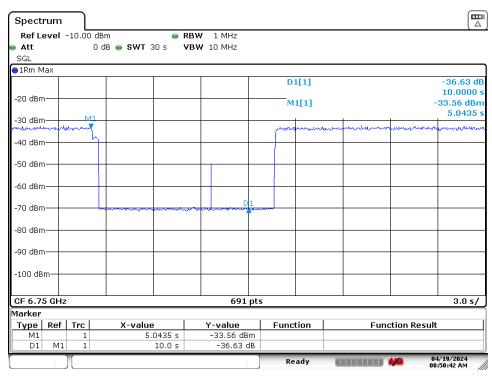
Date: 19.APR.2024 09:14:24




Spectrum 🔆							
Ref Level -10.00 dE	3m 👄 F	RBW 1 MHz					
	dB 🛑 SWT 30 s 🛛 🛛	/BW 10 MHz					
SGL							
●1Rm Max							
			D	1[1]			-26.53 d
-20 dBm							10.0000
			IV.	11[1]		-	38.00 dBr 1.8696
-30 dBm				1	1	1	1.0090
M1			phone	Lunny	and man and and a second	mummer war	manna
-40 dBm							
-50 dBm							
co dour							
-60 dBm		DL					
-70 dBm		1					
, o abiii							
-80 dBm							
-90 dBm							
-100 dBm							
CF 6.9 GHz	1 1	691	pts	1	1	1	3.0 s/
Marker							
Type   Ref   Trc	X-value	Y-value	Fund	tion	Fun	ction Result	
M1 1	1.8696 s	-38.00 dB					
D1 M1 1	10.0 s	-26.53 c	IB				
			R	eady			/19/2024 :16:51 AM

Date: 19.APR.2024 09:16:51

### Plot 7-200. Contention Based Protocol Timing Plot (320MHz (UNII Band 7) - Ch. 159 High)

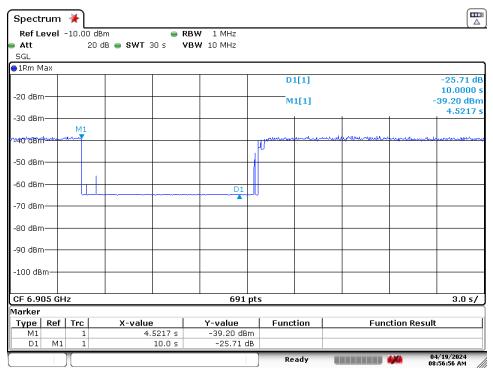

FCC ID: A3LNP960XMA		MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Dega 120 of 165		
1M2401250007-07-R3.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 139 of 165		
© 2024 ELEMENT			V 9.0 02/01/2019		





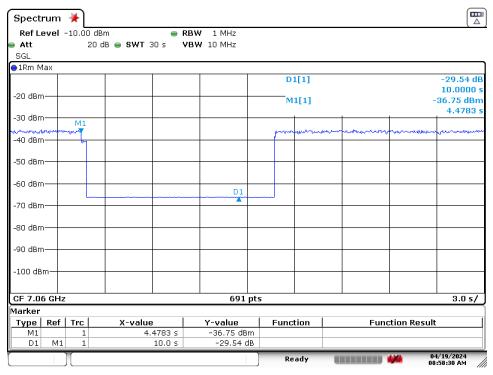
Date: 19.APR.2024 09:04:17






Date: 19.APR.2024 08:50:42

### Plot 7-202. Contention Based Protocol Timing Plot (320MHz (UNII Band 8) - Ch. 191 Low)


FCC ID: A3LNP960XMA		MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:			
1M2401250007-07-R3.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 140 of 165		
© 2024 ELEMENT	•	·	V 9.0 02/01/2019		





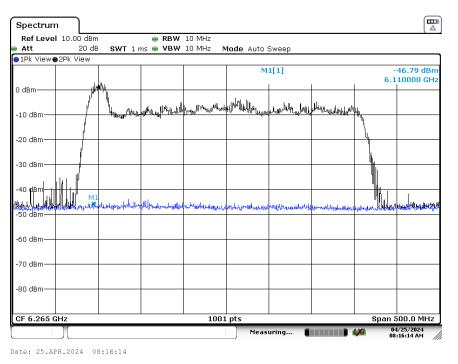
Date: 19.APR.2024 08:56:56





Date: 19.APR.2024 08:58:30

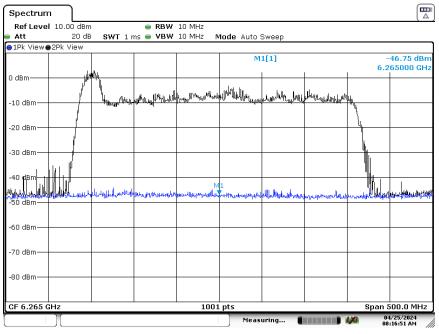
#### Plot 7-204. Contention Based Protocol Timing Plot (320MHz (UNII Band 8) - Ch. 191 High)


FCC ID: A3LNP960XMA		MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Dogo 141 of 165		
1M2401250007-07-R3.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 141 of 165		
© 2024 ELEMENT			V 9.0 02/01/2019		



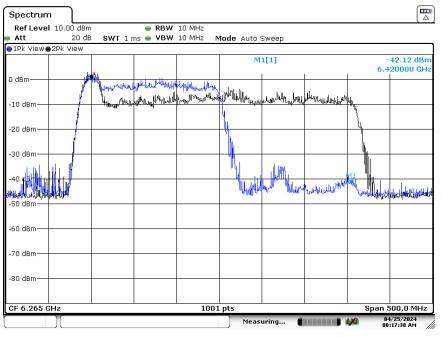
# 7.6.3 Channel Move Plots

This section demonstrates the effect of injecting the AWGN signal at various locations throughout the 320MHz signal. The black trace shows the full 320MHz signal prior to AWGN injection while the blue trace shows the spectrum following AWGN injection. The following items were observed as demonstrated in the three plots shown below:


- When a 10 MHz AWGN signal centered at 6110 MHz (lower edge of channel) is injected, the channel completely stops transmitting.
- When a 10 MHz AWGN signal centered at 6265 MHz (middle of channel) is injected, the channel completely stops transmitting.
- When a 10 MHz AWGN signal centered at 6420 MHz (upper edge of channel) is injected, the channel reduces its bandwidth down to 160MHz operation at the lower end of the channel.



Plot 7-205. CBP 320MHz Channel - Injection Lower Edge – [6110 MHz]


FCC ID: A3LNP960XMA		MEASUREMENT REPORT			
Test Report S/N:	Test Dates:	EUT Type:	Page 142 of 165		
1M2401250007-07-R3.A3L	03/14/2024 - 05/20/2024	Portable Computing Device			
© 2024 ELEMENT			V 9.0 02/01/2019		





Date: 25.APR.2024 08:16:51





Date: 25.APR.2024 08:17:38

Plot 7-207. CBP 320MHz Channel - Injection Upper Edge – [6420 MHz]

FCC ID: A3LNP960XMA	MEASUREMENT REPORT		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 142 of 165	
1M2401250007-07-R3.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 143 of 165	
© 2024 ELEMENT		·	V 9.0 02/01/2019	



# 7.7 Radiated Emission Measurements

### Test Overview and Limit

All out of band radiated spurious emissions are measured with a spectrum analyzer connected to a receive antenna while the EUT is operating at its maximum duty cycle, at its maximum power control level, as defined in ANSI C63.10-2013, and at the appropriate frequencies. All channels, modes (e.g. 802.11a, 802.11ax (20/40/80/160MHz), and modulations/data rates were investigated among all UNII bands. Only the radiated emissions of the configuration that produced the worst-case emissions are reported in this section.

For transmitters operating in the 5.925-7.125 GHz band: All emissions outside of the 5.925-7.125 GHz band shall not exceed an EIRP of -27dBm/MHz (68.2dBuV/m at a 3m distance). Emissions found in a restricted band are subject to the limits of 15.209 as shown in the table below.

Frequency	Field Strength [μV/m]	Measured Distance [Meters]
0.009 – 0.490 MHz	2400\F (kHz)	300
0.490 – 1.705 MHz	24000\F (kHz)	30
1.705 – 30.00 MHz	30	30
30.00 – 88.00 MHz	100	3
88.00 – 216.0 MHz	150	3
216.0 – 960.0 MHz	200	3
Above 960.0 MHz	500	3

Table 7-45. Radiated Limits

### Test Procedures Used

ANSI C63.10-2013 – Sections 12.7.7.2, 12.7.6, 12.7.5

### Test Settings – Above 1GHz

### Average Field Strength Measurements (Method AD – Average Detection)

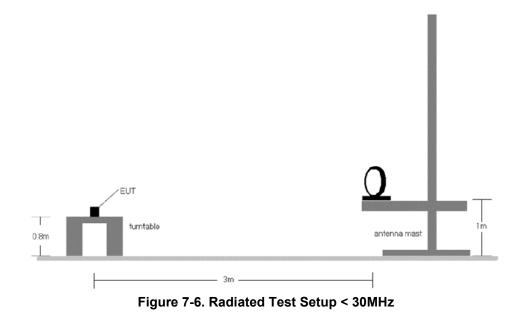
- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest.
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = power average (RMS)
- 5. Number of measurement points = 1001 (Number of points must be  $\geq$  2 x span\\RBW)
- 6. Sweep time = auto
- 7. Trace (RMS) averaging was performed over at least 100 traces.

FCC ID: A3LNP960XMA		MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	EUT Type:	Daga 114 of 165
1M2401250007-07-R3.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 144 of 165
© 2024 ELEMENT	•	•	V 9.0 02/01/2019



### Peak Field Strength Measurements

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest.
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = peak
- 5. Sweep time = auto couple
- 6. Trace mode = max hold
- 7. Trace was allowed to stabilize.


### Test Settings – Below 1GHz

### **Quasi-Peak Field Strength Measurements**

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest.
- 2. RBW = 120kHz (for emissions from 30MHz 1GHz)
- 3. Detector = quasi-peak
- 4. Sweep time = auto couple
- 5. Trace mode = max hold
- 6. Trace was allowed to stabilize.

### Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.



FCC ID: A3LNP960XMA	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dere 145 of 165
1M2401250007-07-R3.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 145 of 165
© 2024 ELEMENT	•	·	V 9.0 02/01/2019

Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from Element. If you have any questions about this or have an inquiry about obtaining additional rights to this report or assembly of contents thereof, please contact ct.info@element.com.



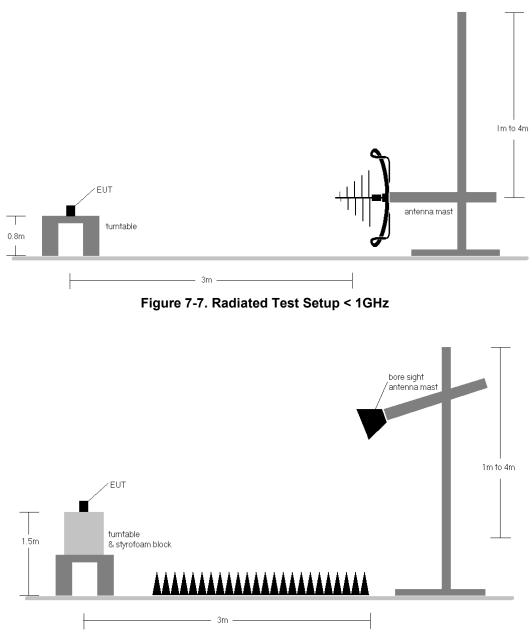



Figure 7-8. Radiated Test Setup > 1GHz

FCC ID: A3LNP960XMA	MEASUREMENT REPORT		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 146 of 165
1M2401250007-07-R3.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 146 of 165
© 2024 ELEMENT			V 9.0 02/01/2019



### Test Notes

- All spurious emissions lying in restricted bands specified in §15.205 are below the limits specified in §15.209. All spurious emissions that do not lie in a restricted band are subject to an average limit of -27dBm/MHz. At 3 meters, the field strength limit in dBμV/m can be determined by adding a "conversion" factor of 95.2dB to the EIRP limit of -27dBm/MHz to obtain the limit for out of band spurious emissions of 68.2dBμV/m.
- All spurious emissions that do not lie in a restricted band are subject to a peak limit not to exceed 20dB of the average limit [68.2dBµV/m]. If a peak measurement passes the average limit, it was determined no further investigation is necessary.
- 3. The antenna is manipulated through typical positions, polarity, and length during the tests. The EUT is manipulated through three orthogonal planes.
- 4. This unit was tested with its standard battery.
- 5. The spectrum is measured from 9kHz to the 10th harmonic of the fundamental frequency of the transmitter using CISPR quasi peak detector below 1GHz. Above 1 GHz, average and peak measurements were taken using linearly polarized horn antennas. The worst-case emissions are reported, however emissions whose levels were not within 20dB of the respective limits were not reported.
- 6. Emissions below 18GHz were measured at a 3-meter test distance while emissions above 18GHz were measured at a 1-meter test distance with the application of a distance correction factor.
- 7. The wide spectrum spurious emissions plots shown on the following pages are used only for the purpose of emission identification. Any emissions found to be within 20dB of the limit are fully investigated and the results are shown in this section. The "-" shown in the following RSE tables are used to denote a noise floor measurement.
- 8. In the case where a peak-detector measurement passed the given RMS limit it was determined sufficient to demonstrate compliance.
- 9. The results recorded using the broadband antenna are known to correlate with the results obtained by using a tuned dipole with an acceptable degree of accuracy. The VSWR for the measurement antenna was found to be less than 2:1.

# Sample Calculations

# **Determining Spurious Emissions Levels**

- ο Field Strength Level [dBµV/m] = Analyzer Level [dBm] + 107 + AFCL [dB/m]
- AFCL [dB/m] = Antenna Factor [dB/m] + Cable Loss [dB]
- Margin [dB] = Field Strength Level  $[dB\mu V/m]$  Limit  $[dB\mu V/m]$

# Radiated Band Edge Measurement Offset

The amplitude offset shown in the radiated restricted band edge plots was calculated using the formula:

### Offset (dB) = (Antenna Factor + Cable Loss + Attenuator) – Preamplifier Gain

FCC ID: A3LNP960XMA		MEASUREMENT REPORT	
Test Report S/N:	Test Dates:	EUT Type:	Daga 117 of 165
1M2401250007-07-R3.A3L	03/14/2024 - 05/20/2024	Portable Computing Device	Page 147 of 165
© 2024 ELEMENT			V 9 0 02/01/2019