

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR22-SPF0047-A Page (1) of (15)

1. Client

Name

: Samsung Electronics Co., Ltd.

129, Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677

Address

Rep. of Korea

Date of Receipt

2022-09-05

2. Use of Report

: Certification

3. Name of Product and Model

: Notebook PC

Model Number

: NP345XNA

Manufacturer and Country of Origin : Samsung Electronics Co., Ltd. / VIETNAM

4. FCC ID

: A3LNP345XNA

5. Date of Test

: 2022-09-23 ~ 2022-10-19

6. Location of Test

Permanent Testing Lab □ On Site Testing

(Address: 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea)

7. Test Standards

: FCC 47 CFR § 2.1093

8. Test Results

: Refer to the test result in the test report

Tested by

Technical Manager

Affirmation

Jewon Choi (Signature) Name:

Name:

Jongwon Ma __(Signature

2022-11-04

Eurofins KCTL Co.,Ltd.

As a test result of the sample which was submitted from the client, this report does not guarantee the whole product quality. This test report should not be used and copied without a written agreement by Eurofins KCTL Co., Ltd.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR22-SPF0047-A Page (2) of (15)

REPORT REVISION HISTORY

Date	Revision	Page No
2022-10-28	Originally issued	-
2022-11-04	Added LTE Band 5/17 information	5,14,15

Note: The Report No. KR22-SPF0047 is superseded by the report No. KR22-SPF0047-A

This report shall not be reproduced except in full, without the written approval of Eurofins KCTL Co., Ltd. This document may be altered or revised by Eurofins KCTL Co., Ltd. personnel only, and shall be noted in the revision section of the document. Any alteration of this document not carried out by Eurofins KCTL Co., Ltd. will constitute fraud and shall nullify the document. This test report is a general report that does not use the KOLAS accreditation mark and is not related to KS Q ISO/IEC 17025 and KOLAS accreditation.

G

eneral remarks for test reports
Statement concerning the uncertainty of the measurement systems used for the tests
(may be required by the product standard or client)
☐ Internal procedure used for type testing through which traceability of the measuring uncertainty has been established:
Procedure number, issue date and title: Calculations leading to the reported values are on file with the testing laboratory that conducted the testing.
☑ Statement not required by the standard or client used for type testing
1. Identification when information is provided by the customer: Information marked "#" is provided by the customer Disclaimer: This information is provided by the customer and can affect the validity of results.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR22-SPF0047-A Page (3) of (15)

CONTENTS

1.	General information	[∠]
2.	Device information	5
3.	Time-Averaging for SAR	6
4.	SAR Measurement System & Test Equipment	7
5.	SAR Characterizations	. 10
6.	SAR Test results for P _{Limit} calculations	. 15
End	of test report	1 0

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR22-SPF0047-A Page (4) of (15)

1. General information

Client : Intel Mobile Communications

Address : 100 Center Point Circle, Suite 200 Columbia, South Carolina 29210 USA

Manufacturer : Intel Mobile Communications

Address : 100 Center Point Circle, Suite 200 Columbia, South Carolina 29210 USA

Laboratory : Eurofins KCTL Co.,Ltd.

Address : 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea Accreditations : FCC Site Designation No: KR0040, FCC Site Registration No: 687132

VCCI Registration No.: R-3327, G-198, C-3706, T-1849

CAB Identifier: KR0040, ISED Number: 8035A

KOLAS No.: KT231

1.1 Report Overview

This report details the results of testing carried out on the samples listed in section 2, the results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this test report is used in any configuration other than that detailed in the test report, the manufacturer must ensure the new configuration complies with all relevant standards and certification requirements. Any mention of Eurofins KCTL Co.,Ltd. Wireless lab or testing done by Eurofins KCTL Co.,Ltd. Wireless lab made in connection with the distribution or use of the tested product must be approved in writing by Eurofins KCTL Co.,Ltd. Wireless lab.

1.2 Report Compositions

Report Type	Report name
SAR Report_Part.0	KR22-SPF0047 FCC Report SAR_Part 0
SAR Report_Part.1	KR22-SPF0047 FCC Report SAR_Part 1
RF exposure Report_Part.2	KR22-SPF0047 FCC Report RF exposure_Part 2

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR22-SPF0047-A Page (5) of (15)

2. Device information

The equipment under test (EUT) is SAMSUNG Notebook PC (FCC ID: A3LNP345XNA), it contains the Qualcomm modems supporting 3G/4G/5G NR technologies.

These modems are enable with Qualcomm Smart Transmit feature to control and manage transmitting power in real time and to ensure at all times the time-averaged RF exposure is in compliance with FCC requirement.

Product Name	Notebook PC
Product Model Number	NP345XNA
Product Manufacturer	Samsung Electronics Co., Ltd WCDMA II/ IV/ V, LTE Band 2/4/5/12/13/17/26/41/66
Mode of Operation	NR Band n5/n66, WLAN 802.11a/b/g/n/ac/ax, Bluetooth
	WCDMA II: 1 852.4 MHz ~ 1 907.6 MHz
	WCDMA IV: 1 712.4 MHz ~ 1 752.6 MHz
	WCDMA V: 826.4 MHz ~ 846.6 MHz
	LTE Band 2: 1 850.7 MHz ~ 1 909.3 MHz
	LTE Band 4: 1 710.7 MHz ~ 1 754.3 MHz
	LTE Band 5: 824.7 MHz ~ 848.3 MHz
	LTE Band 12: 699.7 MHz ~ 715.3 MHz
	LTE Band 13: 779.5 MHz ~ 784.5 MHz
	LTE Band 17: 706.5 MHz ~ 713.5 MHz
	LTE Band 26: 814.7 MHz ~ 848.3 MHz
	LTE Band 41: 2 498.5 MHz ~ 2 687.5 MHz
	LTE Band 66: 1 710.7 MHz ~ 1 777.3 MHz
Device Overview	NR Band n5: 826.5 MHz ~ 846.5 MHz
	NR Band n66: 1 712. <mark>5 Mb ∼ 1</mark> 775.0 Mb
	WLAN 2.4 GHz: 2 412.0 MHz ~ 2 472.0 MHz
	U-NII-1: 5 180.0 MHz ~ 5 240.0 MHz
	U-NII-2A: 5 260.0 MHz ~ 5 320.0 MHz
	U-NII-2C: 5 500.0 MHz ~ 5 720.0 MHz
	U-NII-3: 5 745.0 MHz ~ 5 825.0 MHz
	U-NII-4: 5 845.0 MHz ~ 5 885.0 MHz
	U-NII-5: 5 955.0 MHz ~ 6 415.0 MHz
	U-NII-6: 6 435.0 MHz ~ 6 515.0 MHz
	U-NII-7: 6 535.0 MHz ~ 6 855.0 MHz
	U-NII-8: 6 875.0 MHz ~ 7 115.0 MHz
	Bluetooth: 2 402.0 MHz ~ 2 480.0 MHz
TDWR Information	5.60 เป็น~ 5.65 เป็น band (TDWR) is supported by the device.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR22-SPF0047-A Page (6) of (15)

3. Time-Averaging for SAR

This device is enabled with Qualcomm Smart Transmit algorithm to control and manage transmitting power in real time and to ensure that the time-averaged RF exposure from 3G/4G/5G NR Sub6 WWAN is compliance with FCC requirement.

This purpose of the part 0 report is to determine SAR char is derived from SAR test measurements and conducted power measurements to determine P_{Limit} for each technology/band.

This part.0 report shows SAR characterization of WWAN radios for 3G/4G/5G NR Sub6. Characterization is achieved by determining P_{Limit} for 3G/4G/5G NR Sub6 that correspond to the SAR_design_targets after accounting for all device design related uncertainty.

The SAR Characterization is denoted as SAR Char in this report.

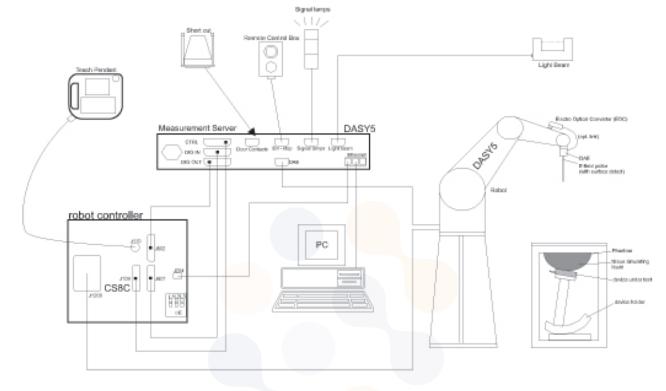
The P_{Limit} represents the maximum time-averaged power level for the corresponding radio/antenna configuration.

3.1 Nomenclature for Report

Supported Technologies	Term	Description	
	P _{limit}	Power level that corresp <mark>onds to t</mark> he exposure design target (SAR_design_target) after accounting for all device design related uncertainties	
	P _{max}	Maximum tune up output power	
2G/3G/4G/5G	Tsar	Defined time averaging window for f < 6 GHz	
Sub6 NR	SAR_design_target	Target SAR level resulting in maximum time-averaged exposure optimized from total uncertainty	
	SAR Char	Table containing Plimit for all technologies	
	regulatory body	Regulatory body that the algorithm is designed to comply. Algorithm's time averaging window is dependent on either FCC ot ICNIRP requirements	
	reserve_power_margin	Margin below PLimit reserved for future transmission	
	Preserve	Minimum transmit power with a designated margin below Plimit	

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr


Report No.: KR22-SPF0047-A Page (7) of (15)

4. SAR Measurement System & Test Equipment

4.1 SAR Measurement System

The DASY5 system used for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic Field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, ADconversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP or Win7 and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps,
- The phantom, the device holder and other accessories according to the targeted measurement.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR22-SPF0047-A Page (8) of (15)

4.2 SAR Scan Procedures

Step 1: Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. The minimum distance of probe sensors to surface is 2.1 mm. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

Step 2: Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE Standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan). If only one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of Zoom Scans has to be increased accordingly.

Area Scan Parameters extracted from KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz

	≤ 3 GHz	> 3 GHz	
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	5 m <mark>m ± 1 mm</mark>	½·δ·ln(2) mm 0.5 mm	
Maximum probe angle from probe axis to phantom surface normal at the measurement location	30° ± 1°	20° ± 1°	
	≤ 2 GHz: ≤ 15 mm 2 – 3 GHz: ≤ 12 mm	3 – 4 GHz: ≤ 12 mm 4 – 6 GHz: ≤ 10 mm	
Maximum area scan spatial resolution: Δx _{Area} , Δy _{Area}	When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be ≤ the corresponding x or y dimension of the test device with at least one measurement point on the test device.		

Step 3: Zoom Scan

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The Zoom Scan measures points (refer to table below) within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1 g and 10 g and displays these values next to the job's label.

Zoom Scan Parameters extracted from KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR22-SPF0047-A Page (9) of (15)

Maximum zoom scan spatial resolution: Δx _{Zoom} , Δy _{Zoom}		≤ 2 GHz: ≤ 8 mm	3 – 4 GHz: ≤ 5 mm*	
		2 – 3 GHz: ≤ 5 mm*	4 – 6 GHz: ≤ 4 mm*	
	uniform grid: Δz _{zoom} (n)		≤ 5 mm	3 – 4 GHz: ≤ 4 mm
				4 – 5 GHz: ≤ 3 mm
Maximum zoom scan spatial resolution, normal to phantom surface				5 – 6 GHz: ≤ 2 mm
		graded grid $\Delta z_{Zoom}(1)$: between 1st two points closest to phantom surface	≤ 4 mm	3 – 4 GHz: ≤ 3 mm
				4 – 5 GHz: ≤ 2.5 mm
	grid			5 – 6 GHz: ≤ 2 mm
	Δz _{Zoom} (n>1): between subsequent points	≤ 1.5·Δz _{Zoom} (n-1) mm		
				3 – 4 GHz: ≥ 28 mm
Minimum zoom scan volume	x, y, z	≥ 30 mm	4 – 5 GHz: ≥ 25 mm	
			5 – 6 GHz: ≥ 22 mm	

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see IEEE Std 1528-2013 for details.

Step 4: Power drift measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

Step 5: Z-Scan (FCC only)

The Z Scan measures points along a vertical straight line. The line runs along the Z-axis of a one-dimensional grid. In order to get a reasonable extrapolation the extrapolated distance should not be larger than the step size in Z-direction.

^{*} When zoom scan is required and the reported SAR from the area scan based 1-g SAR estimation procedures of KDB Publication 447498 is \leq 1.4 W/kg, \leq 8 mm, \leq 7 mm and \leq 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR22-SPF0047-A Page (10) of (15)

4.3 Test Equipment

The measuring equipment used to perform the tests documented in this report has been calibrated in accordance with the manufacturers' recommendations, and is traceable to recognized national standards

Test Platform SPEAG DASY5 System					
Version	DASY52: 52.10.4.1535 / SI	DASY52: 52.10.4.1535 / SEMCAD: 14.6.14 (7501)			
Location	Eurofins KCTL Co.,Ltd. 65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, Korea				
Manufacture	anufacture SPEAG				
	Hardwa	are Reference			
Equipment	Model	Serial Number	Date of Calibration	Due date of next Calibration	
Shield Room	-	8F - 3	-	-	
Shield Room	-	8F - 4	-	-	
DASY6 Robot	TX90XL speag	F/18/0004968/A/001	-	-	
DASY6 Robot	TX60 Lspeag	F/19/0007289/A/001	-	-	
Phantom	2mm Oval Phantom ELI5	2097	-	-	
Phantom	2mm Oval Phantom ELI5	2098	-	-	
Mounting Device	Mounting Device	-	-	-	
Mounting Device	Laptop H <mark>older</mark>	-	-	-	
DAE	DAE4	666	2022-01-26	2023-01-26	
DAE	DAE4	1342	2022-05-31	2023-05-31	
Probe	EX3DV4	7540	2022-04-29	2023-04-29	
Probe	EX3DV4	7541	2022-07-22	2023-07-22	
ESG Vector Signal Generator	E4438C	MY <mark>420804</mark> 86	2022-05-02	2023-05-02	
ESG Vector Signal Generator	E4438C	MY42080845	2022-02-24	2023-02-24	
Dual Power Meter	E4419B	GB43312301	2022-05-02	2023-05-02	
Dual Power Meter	EPM-442A	GB37480680	2022-05-02	2023-05-02	
Power Sensor	8481H	3318A 19379	2022-05-02	2023-05-02	
Power Sensor	8481H	3318A 19377	2022-05-02	2023-05-02	
Power Sensor	8481H	2703A11902	2022-05-02	2023-05-02	
Power Sensor	8481H	3318A18090	2022-05-02	2023-05-02	
Attenuator	8491B 3dB	17387	2022-05-02	2023-05-02	
Attenuator	8491B-6dB	MY39270294	2022-05-02	2023-05-02	
Attenuator	8491B 10dB	29425	2022-05-02	2023-05-02	
Attenuator	8491A	21552	2022-05-02	2023-05-02	
Attenuator	8491A	35560	2022-05-02	2023-05-02	
Attenuator	8491A	35934	2022-05-02	2023-05-02	
Power Amplifier	GRF5039	1062	2022-05-02	2023-05-02	
Power Amplifier	2055-BBS3Q7E9I	1005D/C0521	2022-02-24	2023-02-24	
Power Amplifier	5190FE	1012	2022-05-02	2023-05-02	

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR22-SPF0047-A Page (11) of (15)

Equipment	Model	Serial Number	Date of Calibration	Due date of next Calibration
Power Amplifier	AMP2027	10010	2022-05-02	2023-05-02
Dual Directional Coupler	778D	16059	2022-05-02	2023-05-02
Dual Directional Coupler	772D	2839A00719	2022-05-02	2023-05-02
Dual Directional Coupler	778D	17236	2022-05-02	2023-05-02
Dual Directional Coupler	772D	2839A160504	2022-05-02	2023-05-02
Low Pass Filter	NLP-1000+	VUU86701432	2022-05-02	2023-05-02
Low Pass Filter	LA-15N	36543	2022-05-02	2023-05-02
Low Pass Filter	LA-30N	40058	2022-05-02	2023-05-02
Low Pass Filter	LA-60N	40059	2022-05-02	2023-05-02
Low Pass Filter	VLF-3000+	31831	2022-05-02	2023-05-02
Low Pass Filter	VLF-6000+	31838	2022-05-02	2023-05-02
Dipole Validation Kits	D750V3	1217	2022-05-03	2024-05-03
Dipole Validation Kits	D850V2	100 <mark>6</mark>	2022-04-26	2024-04-26
Dipole Validation Kits	D1750V2	1072	2022-04-27	2024-04-27
Dipole Validation Kits	D1900V2	5d160	2022-04-29	2024-04-29
Dipole Validation Kits	D2450V2	895	2022-07-15	2024-07-15
Dipole Validation Kits	D2600V2	1050	2022-07-15	2024-07-15
Dipole Validation Kits	D5GHzV2	1134	2022-01-27	2024-01-27
Network Analyzer	E5071B	MY42403524	2022-02-15	2023-02-15
Radio Communication Test Station	MT8000A	6261987922	2022-02-11	2023-02-11
Radio Communication Analyzer	MT8821C	6 <mark>20180723</mark> 3	2022-01-19	2023-01-19
Radio Communication Analyzer	MT8821C	6262170371	2021-11-09	2022-11-09
Radio Communication Analyzer	MT8821C	6262170372	2021-11-09	2022-11-09
Wideband Radio Communication Tester	CMW500	132120	2022-05-02	2023-05-02
Dielectric Assessment Kit	DAK-3.5	1078	2022-05-30	2023-05-30
Humidity/Temp	MHB-382SD	46301	2022-02-25	2023-02-25
Humidity/Temp	MHB-382SD	46307	2022-03-17	2023-03-17
Spectrum Analyzer	FSQ40	200062	2022-05-02	2023-05-02
·				

Notes:

- 1. Each equipment item is used solely within its respective calibration period.
- 2. Cal.certificates are refer to Appendix A in Part.1

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR22-SPF0047-A Page (12) of (15)

SAR Characterizations

5.1 **SAR Design Target**

SAR_Design_target is determined by ensuring that it is less than FCC SAR limit after accounting for total device designed related uncertainties specified by the manufacturer.

SAR_design_target			
$SAR_design_target < SAR_regulatory_limit \times 10^{\frac{-Total\ Uncertainty}{10}}$			
1g SAR (W/kg)			
Total Uncertainty 1.0 dB			
SAR_regulatory_limit 1.6 W/kg			
SAR_design_target	1.0 W/kg		

DSI and SAR Determination

This device uses different Device State Index (DSI) to configure different time averaged power levels based on certain exposure scenarios. Depending on the detection scheme implemented in the Tablet, the worst-case SAR was determined by measurements for the relevant exposure conditions for that DSI. Detailed descriptions of the detection mechanisms are included in the operational description.

The device state index (DSI) conditions used in below table represent different exposure scenarios.

DSI and Corresponding Exposure Scenarios

Exposure Scenario (DSI = No.)	Description	KDB guide for SAR test
Standalone exposure Without triggering sensor (DSI = 0)	 Grip sensor is not triggered even if Device was touched to user's body or hands. Grip sensor is not triggered due to triggering distance. 	KDB 616217 D04
Standalone exposure With triggering sensor (DSI = 1)	■ Grip sensor is triggered, when Device was touched to user's body or hands.	KDB 616217 D04

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR22-SPF0047-A Page (13) of (15)

5.3 SAR Char

SAR results corresponding to P_{max} for each antenna/technology/band/DSI can be found in Section.6. P_{limit} is calculated by linearly scaling with the measured SAR at the P_{max} to correspond to the SAR_ design_target. P_{limit} determination for each exposure scenario corresponding to SAR_design_target are shown in table.

P_{Limit} Determination

Device State Index (DSI)	P _{Limit} Determination Scenarios
DSI = 0	The worst-case SAR exposure is determined as maximum SAR normalized To the limit among; 1. Standalone SAR measured at 17 mm spacing for Rear (Main 1 Ant.) 2. Standalone SAR measured at 13 mm spacing for Rear (Main 2 Ant.)
DSI = 1	1. Plimit is calculated based on Standalone SAR (1-g SAR) at 0 mm for Rear (Main 1 Ant.) 2. Plimit is calculated based on Standalone SAR (1-g SAR) at 0 mm for Rear (Main 2 Ant.)

Notes:

For DSI = 0, Plimit is calculated by:

Main 1 Ant.)

Plimit = Plimit corresponding to 1g Standalone SAR evaluation at 17 mm spacing at Rear Main 2 Ant.)

Plimit = Plimit corresponding to 1g Standalone SAR evaluation at 13 mm spacing at Rear

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311 www.kctl.co.kr Report No.: KR22-SPF0047-A Page (14) of (15)

SAR Characterizations

SAN Characterizations									
Device State Index	(DSI)	0 1							
Exposure scenar	rio	Standalone SAR without triggering sensor	Standalone SAR with triggering sensor	P _{max} (Maximum tune-up Power)					
Test Distance (m	m)	Refet to S	(dBm)						
Spatial-average		1g	1g	(==)					
WWAN Bands	Antenna	P _{Limit} (
WCDMA Band II	MAIN 2	26.4	15.5	23.5					
WCDMA Band IV	MAIN 2	25.8	15.5	23.5					
WCDMA Band V	MAIN 1	30.0	19.5	23.5					
LTE Band 2	MAIN 2	25.9	15.5	23.5					
LTE Band 2	SUB 2	28.2	16.0	23.5					
LTE Band 5	MAIN 1	28.8	19.5	23.5					
LTE Band 12/17	MAIN 1	28.3	19.5	23.5					
LTE Band 13	MAIN 1	28.6	19.5	23.5					
LTE Band 26	MAIN 1	29.0	19.5	22.5					
LTE Band 41	MAIN 2	27.8	16.5	22.5					
LTE Band 66	MAIN 2	25.8	15.5	23.5					
LTE Band 66	SUB 2	33.7	16.5	23.5					
NR Band 5	MAIN 1	29.4	20.5	23.5					
NR Band 66	MAIN 2	24.5	16.5	23.5					
Notes:									

Notes:

- 1. P_{max} (Maximum tune-up power) is specified in tune-up document. The maximum allowed power is equal to maximum tune up power + 1 dB device design uncertainty.
- 2. If Pl_{imit} is higher than P_{max} for some modes / bands, The modes/bands will operate at a power level up to P_{max} .
- 3. Some bands were determined more conservative Plimit instead of calculation Plimit.
- 4. LTE Band 5 Measured Results

LTE Band 5 (Frequency range: 824.7 ~ 848.3 MHz) is covered by LTE Band 26 (Frequency range: 814.7 ~ 848.3 MHz) due to overlapping frequency range, same maximum tune-up limit and same channel bandwidth.

5. LTE Band 17 Measured Results

LTE Band 17 (Frequency range: 706.5 ~ 713.5 MHz) is covered by LTE Band 12 (Frequency range: 699.7 ~ 715.3 MHz) due to overlapping frequency range, same maximum tune-up limit and same channel bandwidth.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea TEL: 82-31-285-0894 FAX: 82-505-299-8311

www.kctl.co.kr

Report No.: KR22-SPF0047-A Page (15) of (15)

6. SAR Test results for PLimit calculations

Standalone exposure without triggering proximity sensor (DSI = 0)

Test results were refer to reference model (FCC ID: A3LNP345XNA).

Frequency (MHz)	Antenn a	Band	Mode	DSI	Test position	Test distance (mm)	Measured Output power (dBm)	measured SAR 1g (W/kg)	P _{Limit} (dBm)
1 880.0	MAIN 2	UMTS Band 2	RMC	0	Rear	13	24.09	0.585	26.4
1 732.4	MAIN 2	UMTS Band 4	RMC	0	Rear	13	24.43	0.723	25.8
836.6	MAIN 1	UMTS Band 5	RMC	0	Rear	17	23.74	0.237	30.0
1 880.0	MAIN 2	LTE Band 2	QPSK 20 MHz	0	Rear	13	23.10	0.525	25.9
1 880.0	SUB 1	LTE Band 2	QPSK 20 MHz	0	Rear	17	23.65	0.349	28.2
836.5	MAIN 1	LTE Band 5	QPSK 10 MHz	0	Rear	17	23.34	0.287	28.8
707.5	MAIN 1	LTE Band 12/17	QPSK 10 MHz	0	Rear	17	23.11	0.306	28.3
782.0	MAIN 1	LTE Band 13	QPSK 10 MHz	0	Rear	17	23.45	0.305	28.6
831.5	MAIN 1	LTE Band 26	QPSK 15 MHz	0	Rear	17	22.41	0.217	29.0
2 506.0	MAIN 2	LTE Band 41	QPSK 20 MHz	0	Rear	13	22.68	0.305	27.8
1 745.0	MAIN 2	LTE Band 66	QPSK 20 MHz	0	Rear	13	23.61	0.610	25.8
1 745.0	SUB 1	LTE Band 66	QPSK 20 MHz	0	Rear	17	24.02	0.108	33.7
836.5	MAIN 1	NR 5	DFT-S-OFDM QPSK 20 MHz	0	Rear	17	24.33	0.313	29.4
1 770.0	MAIN 2	NR 66	DFT-S-OFDM QPSK 20 MHz	0	Rear	13	23.82	0.851	24.5

Standalone exposure without triggering proximity sensor (DSI = 1)

Test results were refer to reference model (FCC ID: A3LNP345XNA).

Frequency (MHz)	Antenna	Band	Mode	DSI	Test position	Test distance (mm)	Measured Output power (dBm)	measured SAR 1g (W/kg)	P _{Limit} (dBm)
1 880.0	MAIN 2	UMTS Band 2	RMC	1	Rear	0	15.66	0.908	15.5
1 752.6	MAIN 2	UMTS Band 4	RMC	1	Rear	0	15.68	0.845	15.5
836.6	MAIN 1	UMTS Band 5	RMC	1	Rear	0	19.20	0.578	19.5
1 900.0	MAIN 2	LTE Band 2	QPSK 20 MHz	1	Rear	0	15.77	0.832	15.5
1 900.0	SUB 1	LTE Band 2	QPSK 20 MHz	1	Rear	0	16.79	1.180	16.0
836.5	MAIN 1	LTE Band 5	QPSK 10 MHz	1	Rear	0	19.17	0.500	19.5
707.5	MAIN 1	LTE Band 12/17	QPSK 10 MHz	1	Rear	0	18.87	0.685	19.5
782.0	MAIN 1	LTE Band 13	QPSK 10 MHz	1	Rear	0	19.35	0.486	19.5
831.5	MAIN 1	LTE Band 26	QPSK 15 MHz	1	Rear	0	19.09	0.500	19.5
2 549.5	MAIN 2	LTE Band 41	QPSK 20 MHz	1	Rear	0	16.19	0.600	16.5
1 720.0	MAIN 2	LTE Band 66	QPSK 20 MHz	1	Rear	0	16.05	0.826	15.5
1 745.0	SUB 1	LTE Band 66	QPSK 20 MHz	1	Rear	0	17.05	0.920	16.5
836.5	MAIN 1	NR 5	DFT-S-OFDM QPSK 20 MHz	1	Rear	0	20.35	0.732	20.5
1 720.0	MAIN 2	NR 66	DFT-S-OFDM QPSK 20 MHz	1	Rear	0	15.82	0.809	16.5

Notes:

- 1. SAR Test Results and Measured Output power refer in SAR part.1 report.
- 2. LTE Band 5 (DSI=1) is covered by LTE Band 26 due to overlapping frequency range.
- 3. LTE Band 17 is covered by LTE Band 12 due to overlapping frequency range.

End of test report