

# **Element Suwon**

(#1407) 13, Heungdeok 1-ro, Giheung-gu, Yongin-si, Gyeonggi-do 16954, Korea Tel. +82 31.660.7319 / Fax +82 31.660.7918 http://www.element.com



# TEST REPORT PART 27 MEASUREMENT REPORT

**Applicant Name:** 

Samsung Electronics Co., Ltd. 129, Samsung-ro, Yeongtong-gu, Suwon-si Gyeonggi-do, 16677, Korea **Date of Testing:** 

04/21/2023 - 05/24/2023

Test Site/Location:

Element Lab., Suwon,

Yongin-si, Gyeonggi-do, Korea

**Test Report Serial No.:** 

8K23041001-00-R2.A3L

FCC ID: A3LMT1602D-48A

APPLICANT: Samsung Electronics Co., Ltd.

Application Type: Certification

Model: MT1602d-48A

**EUT Type:** MMU(MT1602d)

FCC Classification: Licensed Non-Broadcast Station Transmitter

FCC Rule Part(s): §27

**Test Procedure(s):** ANSI C63.26-2015, KDB 971168 D01 v03r01, KDB 662911 D01 v02r01

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in §2.947. Test results reported herein relate only to the item(s) tested.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.





Prepared by Jonathan Jang Test Engineer Reviewed by Charles.Shin Technical Manager

| FCC ID: A3LMT1602D-48A | element                 | MEASUREMENT REPORT (CERTIFICATION) | Approved by:<br>Technical Manager |
|------------------------|-------------------------|------------------------------------|-----------------------------------|
| Test Report S/N:       | Test Dates:             | EUT Type:                          | Dogg 1 of 00                      |
| 8K23041001-00-R2.A3L   | 04/21/2023 - 05/24/2023 | MMU(MT1602d)                       | Page 1 of 90                      |



# TABLE OF CONTENTS

| 1.0  | REV  | ISION RECORD                                           | 4  |
|------|------|--------------------------------------------------------|----|
| 2.0  |      | RODUCTION                                              |    |
|      | 2.1  | Scope                                                  |    |
|      | 2.2  | Element Test Location                                  |    |
|      | 2.3  | Test Facility / Accreditation                          |    |
| 3.0  | PRO  | DUCT INFORMATION                                       |    |
|      | 3.1  | Equipment Description                                  | 6  |
|      | 3.2  | Device Capabilities                                    |    |
|      | 3.3  | Test Configuration                                     | 7  |
|      | 3.4  | EMI Suppression Device(s)/Modifications                | 7  |
| 4.0  | DES  | CRIPTION OF TESTS                                      | 8  |
|      | 4.1  | Measurement Procedure                                  | 8  |
|      | 4.2  | Radiated Emissions                                     | g  |
|      | 4.3  | Measurement Software                                   | g  |
|      | 4.4  | Enviromental Conditions                                | g  |
| 5.0  | MEA  | SUREMENT UNCERTAINTY                                   | 10 |
| 6.0  | TES  | T EQUIPMENT CALIBRATION DATA                           | 11 |
| 7.0  | SAM  | PLE CALCULATIONS                                       | 12 |
| 8.0  | TES  | T RESULTS                                              | 13 |
|      | 8.1  | Summary                                                | 13 |
|      | 8.2  | Occupied Bandwidth                                     | 14 |
|      | 8.3  | Equivalent Isotropic Radiated Power: FCC Part 27.50(j) | 18 |
|      | 8.4  | Peak To Average Ratio                                  | 32 |
|      | 8.5  | Band Edge Emissions at Antenna Terminal                | 36 |
|      | 8.6  | Spurious and Harmonic Emissions at Antenna Terminal    | 45 |
|      | 8.7  | Frequency Stability                                    | 64 |
|      | 8.8  | Radiated spurious emission                             | 66 |
| 9.0  | CON  | ICLUSION                                               | 78 |
| 10.0 | APP  | ENDIX. A                                               | 79 |
|      | 10.1 | Conducted Average Output Power                         | 79 |

| FCC ID: A3LMT1602D-48A | element                 | MEASUREMENT REPORT (CERTIFICATION) | Approved by:<br>Technical Manager |
|------------------------|-------------------------|------------------------------------|-----------------------------------|
| Test Report S/N:       | Test Dates:             | EUT Type:                          | Page 2 of 90                      |
| 8K23041001-00-R2.A3L   | 04/21/2023 - 05/24/2023 | MMU(MT1602d)                       | Page 2 01 90                      |





# **MEASUREMENT REPORT**



FCC 47 CFR Part 27\_§ 27.50, § 27.53, § 27.54

| Mode           | Tx Frequency (MHz) | Max. EIRP<br>(dBm/MHz) | Max. EIRP<br>(W/MHz) | § 27.50 (j)(2)<br>Limit (W/MHz) | Emission<br>Designator | Modulation |
|----------------|--------------------|------------------------|----------------------|---------------------------------|------------------------|------------|
| n77 10 10M     |                    | 53.87 243.78           |                      |                                 | 38M1G7D                | QPSK       |
| n77_1C_40M     |                    | 53.86                  | 243.22               |                                 | 38M1W7D                | QAM        |
| n77_1C_60M     |                    | 54.12                  | 258.23               |                                 | 58M5G7D                | QPSK       |
| 1177_TC_60W    |                    | 54.06                  | 254.68               |                                 | 58M5W7D                | QAM        |
| n77 10 90M     | 3 700 to<br>3 980  | 52.86                  | 193.20               | 1640                            | 77M9G7D                | QPSK       |
| n77_1C_80M     |                    | 52.94                  | 196.79               |                                 | 78M0W7D                | QAM        |
| n77_1C_100M    |                    | 51.89                  | 154.53               |                                 | 97M7G7D                | QPSK       |
| 1177_1C_100lVI |                    | 51.89                  | 154.53               |                                 | 97M7W7D                | QAM        |
| n77_2C_        |                    | 50.22                  | 105.20               |                                 | 137MG7D                | QPSK       |
| 100M+40M       |                    | 50.30                  | 107.15               |                                 | 137MW7D                | QAM        |
| n77_2C_        |                    | 48.63                  | 72.95                |                                 | 196MG7D                | QPSK       |
| 100M+100M      |                    | 48.59                  | 72.28                |                                 | 196MW7D                | QAM        |

**EUT Overview** 

| FCC ID: A3LMT1602D-48A | element                 | MEASUREMENT REPORT (CERTIFICATION) | Approved by:<br>Technical Manager |
|------------------------|-------------------------|------------------------------------|-----------------------------------|
| Test Report S/N:       | Test Dates:             | EUT Type:                          | Dogg 2 of 00                      |
| 8K23041001-00-R2.A3L   | 04/21/2023 - 05/24/2023 | MMU(MT1602d)                       | Page 3 of 90                      |



# 1.0 REVISION RECORD

| Issue Number         | Issued Date | Revision History                                             |
|----------------------|-------------|--------------------------------------------------------------|
| 8K23041001-00.A3L    | 05/25/2023  | Initial Issue                                                |
| 8K23041001-00-R1.A3L | 06/19/2023  | Revision due to updated EUT Overview table and summary table |
| 8K23041001-00-R2.A3L | 06/20/2023  | Revision due to updated EUT Overview table                   |

| FCC ID: A3LMT1602D-48A | element                 | MEASUREMENT REPORT (CERTIFICATION) | Approved by:<br>Technical Manager |
|------------------------|-------------------------|------------------------------------|-----------------------------------|
| Test Report S/N:       | Test Dates:             | EUT Type:                          | Dogg 4 of 00                      |
| 8K23041001-00-R2.A3L   | 04/21/2023 - 05/24/2023 | MMU(MT1602d)                       | Page 4 of 90                      |



# 2.0 INTRODUCTION

# 2.1 Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Innovation, Science and Economic Development Canada.

#### 2.2 Element Test Location

These measurement tests were conducted at the Element Materials Technology Suwon. Ltd. facility located at (#1407) 13, Heungdeok 1-ro, Giheung-gu, Yongin-si, Gyeonggi-do 16954, Korea.

# 2.3 Test Facility / Accreditation

Measurements were performed at Element Materials Technology Suwon Lab located in Yongin-si, Gyeonggi, Korea.

- Element Materials Technology Suwon is an ISO 17025-2017 accredited test facility under the American Association for Laboratory Accreditation(A2LA) with Certificate number 2041.04 for Specific Absorption Rate (SAR), where applicable, and Electromagnetic Compatibility (EMC) testing for FCC and Innovation, Science, and Economic Development Canada rules.
- Element Materials Technology Suwon facility is accredited, designated, and recognized in accordance with the provision of Radio Wave Act and International Standard ISO/IEC 17025:2017 under the National Radio Research Agency.
  - Designation Number / CABID: KR0169
  - Test Firm Registration Number of FCC: 417945
  - Test Firm Registration Number of IC: 26168

| FCC ID: A3LMT1602D-48A | element                 | MEASUREMENT REPORT (CERTIFICATION) | Approved by:<br>Technical Manager |
|------------------------|-------------------------|------------------------------------|-----------------------------------|
| Test Report S/N:       | Test Dates:             | EUT Type:                          | Dogg F of OO                      |
| 8K23041001-00-R2.A3L   | 04/21/2023 - 05/24/2023 | MMU(MT1602d)                       | Page 5 of 90                      |



# 3.0 PRODUCT INFORMATION

# 3.1 Equipment Description

The Equipment Under Test (EUT) is the Samsung MMU(MT1602d) FCC ID: A3LMT1602D-48A.

The test data contained in this report pertains only to the emissions due to the EUT's licensed transmitters that operate under the provisions of Part 27.

# 3.2 Device Capabilities

This device supports the following conditional features and filter information:

| EUT Type                                                 | MMU(MT1602d)                                                                                                                                                                               |  |  |  |  |
|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Model Name                                               | MT1602d-48A                                                                                                                                                                                |  |  |  |  |
| Test Device Serial No                                    | S619345961                                                                                                                                                                                 |  |  |  |  |
| Device Capabilities:                                     | 5G NR                                                                                                                                                                                      |  |  |  |  |
| Operating Band/Frequency                                 | Band Tx Rx                                                                                                                                                                                 |  |  |  |  |
| Range:                                                   | n77: 3700 MHz to 3980 MHz 3700 MHz to 3980 MHz                                                                                                                                             |  |  |  |  |
| Supported Modulation                                     | QPSK, 16QAM, 64QAM, 256QAM                                                                                                                                                                 |  |  |  |  |
| Supported Number of Carriers and Channel Bandwidth       | 40, 60, 80 and 100MHz bandwidth for 5G NR n77 with up to 2CC aggregated of Max. Bandwidth 200 MHz                                                                                          |  |  |  |  |
| Maximum Output Power                                     | 1CC: 40 MHz: 3.75W/path, 60W/unit<br>1CC: 60, 80, 100 MHz: 5.625W/path, 90W/unit<br>2CC: 100 MHz + 40 MHz, 100 MHz + 60 MHz, 100 MHz + 80 MHz, 100 MHz + 100<br>MHz: 5.625W/path, 90W/unit |  |  |  |  |
| Instantaneous Bandwidth (IBW) / Occupied Bandwidth (OBW) | 200 MHz / 200 MHz                                                                                                                                                                          |  |  |  |  |
| Number of Antenna ports                                  | 16T16R                                                                                                                                                                                     |  |  |  |  |
| Supported Configurations                                 | Single carrier, Multi-carrier                                                                                                                                                              |  |  |  |  |
| Input Voltage:                                           | -48 VDC                                                                                                                                                                                    |  |  |  |  |
| Maximum antenna gain                                     | Max 20.7 dBi (20.2 dBi ± 0.5 dB tolerance) Antenna gain declared by the manufacturer.                                                                                                      |  |  |  |  |

| FCC ID: A3LMT1602D-48A | element                 | MEASUREMENT REPORT (CERTIFICATION) | Approved by:<br>Technical Manager |
|------------------------|-------------------------|------------------------------------|-----------------------------------|
| Test Report S/N:       | Test Dates:             | EUT Type:                          | Dogg C of OO                      |
| 8K23041001-00-R2.A3L   | 04/21/2023 - 05/24/2023 | MMU(MT1602d)                       | Page 6 of 90                      |



# 3.3 Test Configuration

The setup is as follows:

- a) The EUT ("MMU(MT1602d)") and a Data Unit (DU) are each powered by -48V DC power supply.
- b) The DU is connected to a test laptop via an ethernet cable acting as backhaul.
- c) DU connects to the EUT through a fiber optic cable.
- d) An RF cable connects the signal analyzer and the EUT Ports for respective measurement.

The EUT was tested per the guidance of ANSI C63.26-2015 and KDB 971168 D01 v03r01. See Section 8.0 of this test report for a description of the radiated and antenna port conducted emissions tests.

The following information is about configurations of carrier frequency and output power per port declared by the manufacturer.

#### \* Abbreviations:

- 1C: 1 carrier configuration
- 2C: Contiguous 2 carriers configuration in multi-carrier operation

| Single and Multi      | Total<br>No. of Carrier |                         | Carrier F | Rated<br>Power                    |         |          |
|-----------------------|-------------------------|-------------------------|-----------|-----------------------------------|---------|----------|
| Carrier Configuration | Carriers                | arriers Bandwidth (MHz) | Lowest    | Middle                            | Highest | (W/path) |
| n77_1C_40M            | 1                       | 40                      | 3720.0    | 3840.0                            | 3960.0  | 3.75     |
| n77_1C_60M            | 1                       | 60                      | 3730.0    | 3840.0                            | 3950.0  | 5.625    |
| n77_1C_80M            | 1                       | 80                      | 3740.0    | 3840.0                            | 3940.0  | 5.625    |
| n77_1C_100M           | 1                       | 100                     | 3750.0    | 3840.0                            | 3930.0  | 5.625    |
| n77_2C_100+40M        | 2                       | 140<br>(100+40)         |           | 3750.0 + 3820.0 <sup>(Note1</sup> | )       | 5.625    |
| n77_2C_100+100M       | 2                       | 200<br>(100+100)        | ;         | 3750.0 + 3850.0 <sup>(Note1</sup> | )       | 5.625    |

Note1: All measurements were performed on the fixed channels because the EUT operates on the fixed channels in the multi carrier operation.

# 3.4 EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and no modifications were made during testing.

| FCC ID: A3LMT1602D-48A | element                 | MEASUREMENT REPORT (CERTIFICATION) | Approved by:<br>Technical Manager |
|------------------------|-------------------------|------------------------------------|-----------------------------------|
| Test Report S/N:       | Test Dates:             | EUT Type:                          | Dogo 7 of 00                      |
| 8K23041001-00-R2.A3L   | 04/21/2023 - 05/24/2023 | MMU(MT1602d)                       | Page 7 of 90                      |



# 4.0 DESCRIPTION OF TESTS

# 4.1 Measurement Procedure

The measurement procedures described in the document titled "American National Standard for Compliance Testing of Transmitter Used in Licensed Radio Service" (ANSI C63.26-2015) and the guidance provided in KDB 842590 D01 v01r01 were used in the measurement of the EUT.

#### Occupied Bandwidth:

KDB 971168 D01 v03r01 – Section 4.3 ANSI C63.26-2015 – Section 5.4.4

# Conducted Power Measurement and EIRP and PSD

KDB 971168 D01 v03r01 - Section 5.3

KDB 971168 D01 v03r01 - Section 5.4

KDB 662911 D01 v02r01 - Section E)1) In-Band Power Measurements

KDB 662911 D01 v02r01 - Section E)2) In-Band Power Spectral Density (PSD) Measurements

ANSI C63.26-2015 - Section 5.2.5

ANSI C63.26-2015 - Section 5.2.4

#### Peak-to-Average Power Ratio:

KDB 971168 D01 v03r01 – Section 5.7 ANSI C63.26-2015 – Section 5.2.3.4

#### Band Edge Emissions at Antenna Terminal

KDB 971168 D01 v03r01 - Section 6

KDB 662911 D01 v02r01 - Section E)3) Out-of-Band and Spurious Emission Measurements

a) Absolute Emission Limits

ii) Measure and sum spectral maxima across the outputs

ANSI C63.26-2015 - Section 5.7

# Spurious and Harmonic Emissions at Antenna Terminal

KDB 971168 D01 v03r01 - Section 6

KDB 662911 D01 v02r01 - Section E)3) Out-of-Band and Spurious Emission Measurements

a) Absolute Emission Limits

ii) Measure and sum spectral maxima across the outputs

ANSI C63.26-2015 - Section 5.7

#### Radiated unwanted emission

KDB 971168 D01 v03r01 - Section 7

ANSI C63.26-2015 - Section 5.8

# Frequency Stability / Temperature Variation

KDB 971168 D01 v03r01 - Section 9

ANSI C63.26-2015 - Section 5.6

| FCC ID: A3LMT1602D-48A | element                 | MEASUREMENT REPORT (CERTIFICATION) | Approved by:<br>Technical Manager |
|------------------------|-------------------------|------------------------------------|-----------------------------------|
| Test Report S/N:       | Test Dates:             | EUT Type:                          | Dage 0 of 00                      |
| 8K23041001-00-R2.A3L   | 04/21/2023 - 05/24/2023 | MMU(MT1602d)                       | Page 8 of 90                      |



#### 4.2 Radiated Emissions

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi- anechoic chamber which is shielded from any ambient interference.

For all measurements, the spectrum was scanned through all EUT azimuths and from 1 to 4 meter receive antenna height using a broadband antenna from 30MHz up to tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower. For frequencies above 1GHz, linearly polarized Vivaldi antennas were used. When exploratory measurements were necessary, they were performed at 1 meter test distance inside the semi-anechoic chamber using broadband antennas, broadband amplifiers, and spectrum analyzers to determine the frequencies and modes producing the maximum emissions. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Appropriate precaution was taken to ensure that all emissions from the EUT were maximized and investigated. The system configuration, mode of operation, turntable azimuth, and receive antenna height was noted for each frequency found.

Final measurements were made in the semi-anechoic chamber using calibrated, linearly polarized broadband and Vivaldi antennas. The test setup was configured to the setup that produced the worst case emissions. The spectrum analyzer was set to investigate all frequencies required for testing to compare the highest radiated disturbances with respect to the specified limits. The turntable containing the EUT was rotated through 360 degrees and the height of the receive antenna was varied 1 to 4 meters and stopped at the azimuth and height producing the maximum emission. Each emission was maximized by changing the polarity of the receive antenna to produce the worst-case emissions

#### 4.3 Measurement Software

| Test item             | Name              | Version |
|-----------------------|-------------------|---------|
| Conducted Measurement | Node B automation | 1.0     |

#### 4.4 Environmental Conditions

The temperature is controlled within the range of 15°C to 35°C. The relative humidity is controlled within the range of 10% to 75%. The atmospheric pressure is monitored within the range 86-106kPa (860-1060mbar).

| FCC ID: A3LMT1602D-48A | element                 | MEASUREMENT REPORT (CERTIFICATION) | Approved by: Technical Manager |
|------------------------|-------------------------|------------------------------------|--------------------------------|
| Test Report S/N:       | Test Dates:             | EUT Type:                          | Dogo 0 of 00                   |
| 8K23041001-00-R2.A3L   | 04/21/2023 - 05/24/2023 | MMU(MT1602d)                       | Page 9 of 90                   |



# 5.0 MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.4-2014. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95% level of confidence. The measurement uncertainty shown below meets or exceeds the  $U_{\text{CISPR}}$  measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

| Contribution                        | Expanded Uncertainty (±dB) |
|-------------------------------------|----------------------------|
| Conducted Bench Top<br>Measurements | 1.37                       |
| Radiated Disturbance (<1GHz)        | 3.94                       |
| Radiated Disturbance (>1GHz)        | 4.75                       |
| Radiated Disturbance (>18GHz)       | 4.84                       |

| FCC ID: A3LMT1602D-48A | element                 | MEASUREMENT REPORT (CERTIFICATION) | Approved by:<br>Technical Manager |
|------------------------|-------------------------|------------------------------------|-----------------------------------|
| Test Report S/N:       | Test Dates:             | EUT Type:                          | Dogo 10 of 00                     |
| 8K23041001-00-R2.A3L   | 04/21/2023 - 05/24/2023 | MMU(MT1602d)                       | Page 10 of 90                     |



# 6.0 TEST EQUIPMENT CALIBRATION DATA

Test Equipment Calibration is traceable to the National Institute of Standards and Technology (NIST). Measurement antennas used during testing were calibrated in accordance to the requirements of ANSI C63.5-2017.

| Manufacture          | Model                              | Description                      | Cal Date   | Cal interval | Cal Due    | Serial Number              |
|----------------------|------------------------------------|----------------------------------|------------|--------------|------------|----------------------------|
| SUKSAN<br>TECHNOLOGY | SE-CT-10                           | Temperature<br>Chamber           | 07/05/2022 | Annual       | 07/04/2023 | 191021                     |
| Rohde &<br>Schwarz   | FSW43                              | Signal &<br>Spectrum<br>Analyzer | 04/06/2023 | Annual       | 04/05/2024 | 101250                     |
| Rohde &<br>Schwarz   | ESW                                | EMI Test<br>Receiver             | 07/04/2022 | Annual       | 07/03/2023 | 101761                     |
| Rohde &<br>Schwarz   | TS-SFUNIT-Rx                       | Shielded Filter<br>Unit          | 01/13/2023 | Annual       | 01/12/2024 | 102151                     |
| Schwarzbeck          | VULB9162                           | Broadband<br>TRILOG<br>Antenna   | 07/13/2021 | Biennial     | 07/12/2023 | 9162-217                   |
| Sunol sciences       | DRH-118                            | Horn Antenna                     | 01/26/2023 | Biennial     | 01/25/2025 | A060215                    |
| NARDA                | 180-442A-KF                        | Horn Antenna                     | 11/23/2022 | Biennial     | 11/22/2024 | T058701-0                  |
| Keysight             | N9030B                             | PXA Signal<br>Analyzer           | 04/06/2023 | Annual       | 04/05/2024 | MY57142018                 |
| K&L<br>Microwave     | D.C 1527                           | High Pass<br>Filter              | 07/05/2022 | Annual       | 07/04/2023 | 2                          |
| WAINWRIGHT           | WHW-13000-<br>18000-40000-<br>40CC | High Pass<br>Filter              | 04/06/2023 | Annual       | 04/05/2024 | 2                          |
| Reachline            | RL50W40GKF<br>-20                  | Attenuator                       | 04/06/2023 | Annual       | 04/05/2024 | PK00408                    |
| Centric RF           | C411-20                            | Attenuator                       | 01/12/2023 | Annual       | 01/11/2024 | 0003                       |
| RF One               | RFHB1810SC10                       | Attenuator                       | 07/28/2022 | Annual       | 07/27/2023 | RFHB0001<br>to<br>RFHB0016 |

Table 6-1. Test Equipment

## Notes:

- 1. For equipment listed above that has a calibration date or calibration due date that falls within the test date range, care was taken to ensure that this equipment was used after the calibration date and before the calibration due date.
- 2. All testing was performed before the calibration due date.

| FCC ID: A3LMT1602D-48A | element                 | MEASUREMENT REPORT (CERTIFICATION) | Approved by:<br>Technical Manager |
|------------------------|-------------------------|------------------------------------|-----------------------------------|
| Test Report S/N:       | Test Dates:             | EUT Type:                          | Dags 44 of 00                     |
| 8K23041001-00-R2.A3L   | 04/21/2023 - 05/24/2023 | MMU(MT1602d)                       | Page 11 of 90                     |



# 7.0 SAMPLE CALCULATIONS

# **Emission Designator**

#### **QPSK Modulation**

# **Emission Designator = 38M1G7D**

Occupied Bandwidth = 38.11 MHz

G = Phase Modulation

7 = Quantized/Digital Info

D = Data transmission, telemetry, telecommand

# **QAM Modulation**

# Emission Designator = 38M1W7D

Occupied Bandwidth = 38.13 MHz

W = Amplitude/Angle Modulated

7 = Quantized/Digital Info

D = Data transmission, telemetry, telecommand

| FCC ID: A3LMT1602D-48A | element                 | MEASUREMENT REPORT (CERTIFICATION) | Approved by:<br>Technical Manager |
|------------------------|-------------------------|------------------------------------|-----------------------------------|
| Test Report S/N:       | Test Dates:             | EUT Type:                          | Dogo 12 of 00                     |
| 8K23041001-00-R2.A3L   | 04/21/2023 - 05/24/2023 | MMU(MT1602d)                       | Page 12 of 90                     |



# 8.0 TEST RESULTS

# 8.1 Summary

Company Name: <u>SAMSUNG Electronics Co., Ltd.</u>

FCC ID: <u>A3LMT1602D-48A</u>

FCC Classification: <u>Licensed Non-Broadcast Station Transmitter</u>

Mode(s): <u>5G NR</u>

| FCC Part<br>Section(s)     | Test Description                                                   | Limit                                                                   | Test<br>Condition | Test Result | Reference   |
|----------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------|-------------|-------------|
| § 2.1046                   | Conducted Average Output<br>Power                                  | N/A                                                                     |                   | PASS        | Annex 1     |
| § 2.1049                   | Occupied Bandwidth                                                 | N/A                                                                     |                   | PASS        | Section 8.2 |
| § 2.1046,<br>§ 27.50(j)(2) | Equivalent Isotropic Radiated<br>Power (Power Spectral<br>Density) | ≤ 1640 W/MHz                                                            |                   | PASS        | Section 8.3 |
| § 2.1046,<br>§ 27.50(I)(4) | Peak-to-average ratio                                              | ≤ 13 dB                                                                 | CONDUCTED         | PASS        | Section 8.4 |
| § 2.1051,<br>§ 27.53(I)(1) | Band Edge Emissions at<br>Antenna Terminal                         | < 43 + log10(P[Watts]) at Band                                          |                   | PASS        | Section 8.5 |
| § 2.1051,<br>§ 27.53(I)(1) | Spurious and Harmonic<br>Emissions at Antenna Terminal             | Edge and all out-of-band emissions                                      |                   | PASS        | Section 8.6 |
| § 2.1055<br>§ 27.54        | Frequency Stability                                                | Fundamental emissions stay<br>within authorized frequency<br>block      |                   | PASS        | Section 8.7 |
| § 2.1055,<br>§ 27.53(I)(1) | Radiated unwanted emission                                         | < 43 + log10(P[Watts]) at Band<br>Edge and all out-of-band<br>emissions | RADIATED          | PASS        | Section 8.8 |

# Table 8-1. Summary of Test Results

# Notes:

- 1) All modes of operation and data rates were investigated. The test results shown in the following sections represent the worst case emissions.
- 2) The analyzer plots were all taken with a correction table loaded into the analyzer.
- 3) All antenna port conducted emissions testing was performed on a test bench with the antenna port of the EUT connected to the spectrum analyzer through calibrated cables and attenuators.

| FCC ID: A3LMT1602D-48A | element                 | MEASUREMENT REPORT (CERTIFICATION) | Approved by:<br>Technical Manager |
|------------------------|-------------------------|------------------------------------|-----------------------------------|
| Test Report S/N:       | Test Dates:             | EUT Type:                          | Page 13 of 90                     |
| 8K23041001-00-R2.A3L   | 04/21/2023 - 05/24/2023 | MMU(MT1602d)                       | rage 13 01 90                     |



# 8.2 Occupied Bandwidth

#### **Test Overview**

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured. All modes of operation were investigated and the worst case configuration results are reported in this section.

## **Test Procedures Used**

KDB 971168 D01 v03r01 – Section 4.3 ANSI C63.26-2015 – Section 5.4.4

### **Test Setting**

The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The spectrum analyzer settings were as follows:

- 1. The signal analyzer's automatic bandwidth measurement capability was used to perform the 99% occupied bandwidth and the 26dB bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = 1 5% of the expected OBW
- 3. VBW ≥ 3 x RBW
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep = auto couple
- 7. The trace was allowed to stabilize
- 8. If necessary, steps 2-7 were repeated after changing the RBW such that it would be within 1-5% of the 99% occupied bandwidth observed in Step 7

#### **Test Setup**

The EUT and measurement equipment were set up as shown in the diagram below.

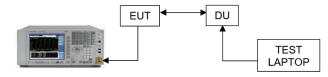



Figure 8-1. Test Instrument & Measurement Setup

#### **Test Notes**

None

| FCC ID: A3LMT1602D-48A | element                 | MEASUREMENT REPORT (CERTIFICATION) | Approved by:<br>Technical Manager |
|------------------------|-------------------------|------------------------------------|-----------------------------------|
| Test Report S/N:       | Test Dates:             | EUT Type:                          | Dogg 14 of 00                     |
| 8K23041001-00-R2.A3L   | 04/21/2023 - 05/24/2023 | MMU(MT1602d)                       | Page 14 of 90                     |



| Channel | OBW (MHz) |       |       |        |  |
|---------|-----------|-------|-------|--------|--|
| Channel | QPSK      | 16QAM | 64QAM | 256QAM |  |
| Low     | 38.11     | 38.11 | 38.13 | 38.06  |  |
| Middle  | 38.09     | 38.01 | 38.08 | 38.02  |  |
| High    | 38.07     | 38.06 | 38.06 | 38.02  |  |

Table 8-2. Occupied Bandwidth Summary Data (n77\_1C\_40M)

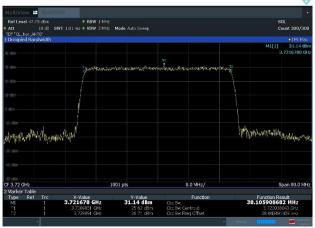
| Channel | OBW (MHz) |       |       |        |  |
|---------|-----------|-------|-------|--------|--|
| Charnel | QPSK      | 16QAM | 64QAM | 256QAM |  |
| Low     | 58.49     | 58.45 | 58.38 | 58.42  |  |
| Middle  | 58.42     | 58.40 | 58.47 | 58.34  |  |
| High    | 58.30     | 58.32 | 58.36 | 58.43  |  |

Table 8-3. Occupied Bandwidth Summary Data (n77\_1C\_60M)

| Channel | OBW (MHz) |       |       |        |  |
|---------|-----------|-------|-------|--------|--|
| Channel | QPSK      | 16QAM | 64QAM | 256QAM |  |
| Low     | 77.83     | 77.74 | 77.77 | 77.73  |  |
| Middle  | 77.92     | 77.84 | 77.98 | 77.75  |  |
| High    | 77.64     | 77.73 | 77.75 | 77.79  |  |

Table 8-4. Occupied Bandwidth Summary Data (n77\_1C\_80M)

| Channel | OBW (MHz) |       |       |        |  |
|---------|-----------|-------|-------|--------|--|
| Channel | QPSK      | 16QAM | 64QAM | 256QAM |  |
| Low     | 97.74     | 97.62 | 97.67 | 97.59  |  |
| Middle  | 97.56     | 97.61 | 97.70 | 97.69  |  |
| High    | 97.51     | 97.51 | 97.47 | 97.62  |  |


Table 8-5. Occupied Bandwidth Summary Data (n77\_1C\_100M)

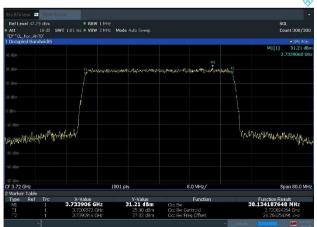
| Mode             | OBW (MHz) |        |
|------------------|-----------|--------|
| Mode             | QPSK      | 16QAM  |
| n77_2C_100M+40M  | 136.92    | 137.00 |
| n77_2C_100M+100M | 196.07    | 196.17 |


Table 8-6. Occupied Bandwidth Summary Data (n77\_Multi-carrier)

| FCC ID: A3LMT1602D-48A | element                 | MEASUREMENT REPORT (CERTIFICATION) | Approved by:<br>Technical Manager |
|------------------------|-------------------------|------------------------------------|-----------------------------------|
| Test Report S/N:       | Test Dates:             | EUT Type:                          | Dogo 15 of 00                     |
| 8K23041001-00-R2.A3L   | 04/21/2023 - 05/24/2023 | MMU(MT1602d)                       | Page 15 of 90                     |







Plot 8-1. Occupied Bandwidth Plot (n77\_1C\_40M\_QPSK - Low Channel)



Plot 8-3. Occupied Bandwidth Plot (n77\_1C\_60M\_QPSK - Low Channel)



Plot 8-5. Occupied Bandwidth Plot (n77\_1C\_80M\_QPSK - Mid Channel)



Plot 8-2. Occupied Bandwidth Plot (n77\_1C\_40M\_64AM - Low Channel)

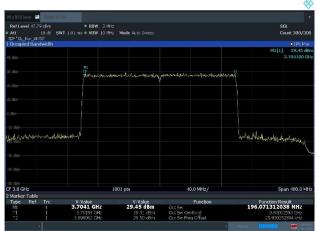


Plot 8-4. Occupied Bandwidth Plot (n77\_1C\_60M\_64QAM - Mid Channel)



Plot 8-6. Occupied Bandwidth Plot (n77\_1C\_80M\_64QAM - Mid Channel)

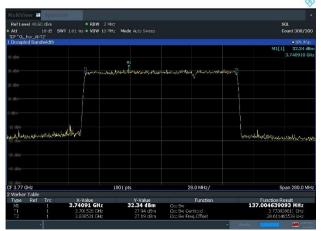
| FCC ID: A3LMT1602D-48A | element                 | MEASUREMENT REPORT (CERTIFICATION) | Approved by:<br>Technical Manager |
|------------------------|-------------------------|------------------------------------|-----------------------------------|
| Test Report S/N:       | Test Dates:             | EUT Type:                          | Page 16 of 90                     |
| 8K23041001-00-R2.A3L   | 04/21/2023 - 05/24/2023 | MMU(MT1602d)                       | rage 10 01 90                     |






Plot 8-7. Occupied Bandwidth Plot (n77\_1C\_100M\_QPSK - Low Channel)




Plot 8-9. Occupied Bandwidth Plot (n77\_2C\_100+40M\_QPSK - Mid Channel)



Plot 8-11. Occupied Bandwidth Plot (n77\_2C\_100+100M\_QPSK - Mid Channel)



Plot 8-8. Occupied Bandwidth Plot (n77\_1C\_100M\_64QAM - Mid Channel)



Plot 8-10. Occupied Bandwidth Plot (n77\_2C\_100+40M\_16QAM - Mid Channel)



Plot 8-12. Occupied Bandwidth Plot (n77\_2C\_100+100M\_16QAM - Mid Channel)

| FCC ID: A3LMT1602D-48A | element                 | MEASUREMENT REPORT (CERTIFICATION) | Approved by:<br>Technical Manager |
|------------------------|-------------------------|------------------------------------|-----------------------------------|
| Test Report S/N:       | Test Dates:             | EUT Type:                          | Page 17 of 90                     |
| 8K23041001-00-R2.A3L   | 04/21/2023 - 05/24/2023 | MMU(MT1602d)                       | Fage 17 01 90                     |



# 8.3 Equivalent Isotropic Radiated Power: FCC Part 27.50(j)

#### **Test Overview**

A transmitter port of EUT is connected to the input of a signal analyzer. All measurements are performed as RMS average measurements while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies.

# **Test Procedure Used**

KDB 971168 D01 v03r01 - Section 5.2

KDB 662911 D01 v02r01 – Section E)2) In-Band Power Spectral Density (PSD) Measurements

b) Measure and sum spectral maxima across the outputs.

ANSI C63.26-2015 - Section 5.2.4

# **Test Setting**

The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The spectrum analyzer settings were as follows:

- 1. Conducted power measurements are performed using the signal analyzer's "SA mode" measurement capability for signals with continuous operation.
- 2. Set span to  $2 \times$  to  $3 \times$  the OBW.
- 3. Set RBW = 1 MHz (the reference bandwidth)
- 4. Set VBW ≥ 3 × RBW.
- 5. Set number of measurement points in sweep ≥ 2 × span / RBW.
- 6. Sweep time:
  - a) Set ≥ auto-couple, and enable trace averaging, or
  - b) Set ≥ [10 × (number of points in sweep) × (transmission symbol period)] and enable a single sweep (automation-compatible) measurement. The sweep time should never be faster than the auto-coupled sweep time.
- 7. Detector = power averaging (rms).
- 8. The trace was allowed to stabilize
- 9. Use the peak marker function to determine the maximum amplitude level. (=P<sub>Meas</sub>)
- 10. The relevant equation for determining the maximum EIRP from the measured RF output power is given in Equation as follows:

 $EIRP = P_{Meas} + G_{T}$ 

where

GT: gain of the transmitting antenna, in dBi (EIRP).

#### **Test Setup**

The EUT and measurement equipment were set up as shown in the diagram below.

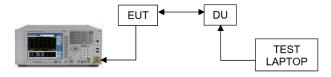



Figure 8-2. Test Instrument & Measurement Setup

| FCC ID: A3LMT1602D-48A | element                 | MEASUREMENT REPORT (CERTIFICATION) | Approved by:<br>Technical Manager |
|------------------------|-------------------------|------------------------------------|-----------------------------------|
| Test Report S/N:       | Test Dates:             | EUT Type:                          | Dogg 10 of 00                     |
| 8K23041001-00-R2.A3L   | 04/21/2023 - 05/24/2023 | MMU(MT1602d)                       | Page 18 of 90                     |



#### Limit

§ 27.50 (j) (2)

The power of each fixed or base station transmitting in the 3700-3980 MHz band and situated in any geographic location other than that described in paragraph (j)(1) of this section is limited to an EIRP of 1640 Watts/MHz. This limit applies to the aggregate power of all antenna elements in any given sector of a base station.

# **Test Notes**

- Consider the following factors for MIMO:
   The output power per each port is measured as dBm/MHz or dBm, the output powers are summed up in linear using the measure-and-sum technique defined in KDB 971168 D01 v03r01 Section E) 2).
- 2. The output power per port (dBm/MHz or dBm) is converted to a linear value (mW). A summation of linear powers for all ports gives us the total MIMO Conducted Power (mW). We convert this back to logarithmic scale for further output power calculations.
- 3. For test result, it added 10 log (1/x), where x is the duty cycle, to the measured power in order to compute the average power during the actual transmission times.
- 4. All transmit signals from different antennas are completely uncorrelated with each other. So the maximum output power shall be calculated based on the aggregate power conducted across all antennas.
- 5. Sample Calculation:

Let us assume the following numbers:

a) Total MIMO Conducted Power as 720.43 milliWatts

b)

| Factors                                  |                        | Value  | Unit    |
|------------------------------------------|------------------------|--------|---------|
| Summed MIMO Conducted Power (linear sum) |                        | 720.43 | mW/MHz  |
| Summed MIMO Conducted Power (dBm)        | = 10 * log (720.43) =  | 28.58  | dBm/MHz |
| Antenna Gain                             |                        | 21.20  | dBi     |
|                                          |                        |        |         |
|                                          |                        |        |         |
| Total e.i.r.p                            | = 28.58 + 21.20        | 49.78  | dBm/MHz |
| Limit                                    | = 10 * log (1640) + 30 | 62.15  | dBm/MHz |

| FCC ID: A3LMT1602D-48A | element                 | MEASUREMENT REPORT (CERTIFICATION) | Approved by: Technical Manager |
|------------------------|-------------------------|------------------------------------|--------------------------------|
| Test Report S/N:       | Test Dates:             | EUT Type:                          | Dogo 10 of 00                  |
| 8K23041001-00-R2.A3L   | 04/21/2023 - 05/24/2023 | MMU(MT1602d)                       | Page 19 of 90                  |



| Channal                              | Dort               | PSD Power (dBm/MHz) |         |         |         |  |
|--------------------------------------|--------------------|---------------------|---------|---------|---------|--|
| Channel                              | Port               | QPSK                | 16QAM   | 64QAM   | 256QAM  |  |
|                                      | 0                  | 20.92               | 20.67   | 20.85   | 20.65   |  |
|                                      | 1                  | 21.04               | 21.13   | 21.09   | 21.21   |  |
|                                      | 2                  | 20.90               | 20.71   | 20.97   | 20.80   |  |
|                                      | 3                  | 20.76               | 20.86   | 20.99   | 20.94   |  |
|                                      | 4                  | 20.86               | 20.76   | 20.85   | 20.78   |  |
|                                      | 5                  | 21.10               | 20.92   | 21.15   | 21.04   |  |
|                                      | 6                  | 20.83               | 20.92   | 21.06   | 20.93   |  |
|                                      | 7                  | 20.86               | 21.14   | 21.03   | 20.93   |  |
| Low                                  | 8                  | 20.84               | 20.84   | 20.87   | 20.85   |  |
|                                      | 9                  | 20.87               | 20.91   | 21.00   | 21.04   |  |
|                                      | 10                 | 20.86               | 20.87   | 21.02   | 20.84   |  |
|                                      | 11                 | 20.92               | 20.81   | 20.88   | 20.72   |  |
|                                      | 12                 | 20.71               | 20.60   | 20.66   | 20.64   |  |
|                                      | 13                 | 21.01               | 20.97   | 20.93   | 20.97   |  |
|                                      | 14                 | 20.63               | 20.61   | 20.68   | 20.70   |  |
|                                      | 15                 | 20.67               | 20.57   | 20.64   | 20.71   |  |
| Total MIMO PSD P                     | ower (mW/MHz)      | 1951.73             | 1938.67 | 1977.25 | 1951.36 |  |
| Total MIMO PSD Po                    | ower (dBm/MHz)     | 32.90               | 32.88   | 32.96   | 32.90   |  |
| Antenna Ga                           | ain (dBi)          | 20.70               | 20.70   | 20.70   | 20.70   |  |
| EIRP (dBr                            | n/MHz)             | 53.60               | 53.58   | 53.66   | 53.60   |  |
| Limit (dBm/MHz) FCC Part 27.50(j)(2) |                    | 62.15               |         |         |         |  |
| 01                                   | Dont               | PSD Power (dBm/MHz) |         |         |         |  |
| Channel                              | Port               | QPSK                | 16QAM   | 64QAM   | 256QAM  |  |
|                                      | 0                  | 20.92               | 20.83   | 20.86   | 20.94   |  |
|                                      | 1                  | 21.56               | 21.52   | 21.46   | 21.60   |  |
|                                      | 2                  | 21.18               | 21.09   | 21.11   | 21.08   |  |
|                                      | 3                  | 21.27               | 21.07   | 21.22   | 21.18   |  |
|                                      | 4                  | 20.93               | 20.95   | 20.97   | 20.98   |  |
|                                      | 5                  | 21.29               | 21.35   | 21.39   | 21.27   |  |
|                                      | 6                  | 21.05               | 21.05   | 21.04   | 21.09   |  |
| Middle                               | 7                  | 21.09               | 21.13   | 20.94   | 21.07   |  |
| Middle                               | 8                  | 20.92               | 21.01   | 20.97   | 20.96   |  |
|                                      | 9                  | 21.31               | 21.24   | 21.18   | 21.33   |  |
|                                      | 10                 | 21.06               | 21.08   | 20.98   | 20.92   |  |
|                                      | 11                 | 21.27               | 21.34   | 21.16   | 21.26   |  |
|                                      | 12                 | 20.98               | 20.88   | 20.84   | 20.86   |  |
|                                      | 13                 | 21.30               | 21.13   | 21.15   | 21.33   |  |
|                                      | 14                 | 20.92               | 20.95   | 20.89   | 20.93   |  |
|                                      | 15                 | 20.99               | 20.91   | 20.91   | 20.95   |  |
| Total MIMO PSD P                     | ower (mW/MHz)      | 2076.17             | 2060.96 | 2047.27 | 2067.80 |  |
| T                                    | ower (dBm/MHz)     | 33.17               | 33.14   | 33.11   | 33.16   |  |
| Total MIMO PSD Po                    | Antenna Gain (dBi) |                     | 20.70   | 20.70   | 20.70   |  |
|                                      | ain (dBi)          | 20.70               | 20.70   | 20.70   | 20.70   |  |
|                                      |                    | 53.87               | 53.84   | 53.81   | 53.86   |  |

| FCC ID: A3LMT1602D-48A | element                 | MEASUREMENT REPORT (CERTIFICATION) | Approved by: Technical Manager |
|------------------------|-------------------------|------------------------------------|--------------------------------|
| Test Report S/N:       | Test Dates:             | EUT Type:                          | Dogo 20 of 00                  |
| 8K23041001-00-R2.A3L   | 04/21/2023 - 05/24/2023 | MMU(MT1602d)                       | Page 20 of 90                  |



| Channel             | Port             | PSD Power (dBm/MHz) |         |         |         |  |
|---------------------|------------------|---------------------|---------|---------|---------|--|
| Channel             | Port             | QPSK                | 16QAM   | 64QAM   | 256QAM  |  |
|                     | 0                | 20.94               | 20.98   | 20.85   | 20.90   |  |
|                     | 1                | 21.23               | 21.03   | 21.01   | 21.13   |  |
|                     | 2                | 21.16               | 20.93   | 21.03   | 21.06   |  |
|                     | 3                | 21.16               | 21.14   | 21.15   | 21.03   |  |
|                     | 4                | 21.08               | 21.03   | 20.95   | 21.06   |  |
|                     | 5                | 21.21               | 21.13   | 21.22   | 21.11   |  |
|                     | 6                | 21.17               | 21.18   | 21.12   | 21.21   |  |
| Lligh               | 7                | 21.02               | 20.99   | 21.02   | 20.96   |  |
| High                | 8                | 21.02               | 21.05   | 20.86   | 20.91   |  |
|                     | 9                | 21.23               | 21.06   | 21.20   | 21.07   |  |
|                     | 10               | 21.12               | 21.12   | 20.89   | 20.92   |  |
|                     | 11               | 21.27               | 21.12   | 21.08   | 20.99   |  |
|                     | 12               | 21.00               | 20.98   | 20.89   | 20.92   |  |
|                     | 13               | 21.17               | 21.10   | 21.11   | 21.09   |  |
|                     | 14               | 21.11               | 20.89   | 20.84   | 21.09   |  |
|                     | 15               | 20.82               | 21.06   | 20.80   | 20.87   |  |
| Total MIMO PSD Por  | wer (mW/MHz)     | 2065.21             | 2037.64 | 2015.79 | 2024.07 |  |
| Total MIMO PSD Pov  | ver (dBm/MHz)    | 33.15               | 33.09   | 33.04   | 33.06   |  |
| Antenna Gai         | n (dBi)          | 20.70               | 20.70   | 20.70   | 20.70   |  |
| EIRP (dBm/          | MHz)             | 53.85               | 53.79   | 53.74   | 53.76   |  |
| Limit (dBm/MHz) FCC | Part 27.50(j)(2) |                     | 62      | .15     |         |  |

Table 8-7. Peak Power Spectral Density Table (n77\_1C\_40M)

| FCC ID: A3LMT1602D-48A | element                 | MEASUREMENT REPORT (CERTIFICATION) | Approved by:<br>Technical Manager |
|------------------------|-------------------------|------------------------------------|-----------------------------------|
| Test Report S/N:       | Test Dates:             | EUT Type:                          | Dogg 24 of 00                     |
| 8K23041001-00-R2.A3L   | 04/21/2023 - 05/24/2023 | MMU(MT1602d)                       | Page 21 of 90                     |



| Channel                              | Port                          |                     | PSD Power      | (dBm/MHz) |         |  |
|--------------------------------------|-------------------------------|---------------------|----------------|-----------|---------|--|
| Channel                              | Port                          | QPSK                | 16QAM          | 64QAM     | 256QAM  |  |
|                                      | 0                             | 20.76               | 20.93          | 20.91     | 20.94   |  |
|                                      | 1                             | 21.45               | 21.33          | 21.33     | 21.48   |  |
|                                      | 2                             | 21.09               | 21.08          | 21.05     | 21.15   |  |
|                                      | 3                             | 21.02               | 21.16          | 21.09     | 21.17   |  |
|                                      | 4                             | 21.08               | 21.04          | 21.13     | 21.13   |  |
|                                      | 5                             | 21.24               | 21.23          | 21.28     | 21.24   |  |
|                                      | 6                             | 21.25               | 21.21          | 21.34     | 21.10   |  |
|                                      | 7                             | 21.12               | 21.18          | 21.17     | 21.18   |  |
| Low                                  | 8                             | 21.11               | 21.03          | 20.97     | 20.97   |  |
|                                      | 9                             | 21.21               | 21.27          | 21.25     | 21.31   |  |
|                                      | 10                            | 21.16               | 21.17          | 21.15     | 21.03   |  |
|                                      | 11                            | 21.09               | 21.07          | 21.11     | 21.17   |  |
|                                      | 12                            | 20.89               | 20.90          | 20.82     | 20.89   |  |
|                                      | 13                            | 21.33               | 21.16          | 21.26     | 21.25   |  |
|                                      | 14                            | 20.82               | 20.84          | 20.89     | 20.82   |  |
|                                      | 15                            | 20.94               | 20.94          | 20.87     | 21.01   |  |
| Total MIMO PSD I                     | Power (mW/MHz)                | 2061.73             | 2060.44        | 2063.26   | 2069.79 |  |
| Total MIMO PSD F                     | ` ,                           | 33.14               | 33.14          | 33.15     | 33.16   |  |
| Antenna C                            |                               | 20.70               | 20.70          | 20.70     | 20.70   |  |
| EIRP (dB                             |                               | 53.84               | 53.84          | 53.85     | 53.86   |  |
| Limit (dBm/MHz) FCC Part 27.50(j)(2) |                               | 62.15               |                |           |         |  |
| •                                    |                               | PSD Power (dBm/MHz) |                |           |         |  |
| Channel                              | Port                          | QPSK                | 16QAM          | 64QAM     | 256QAM  |  |
|                                      | 0                             | 21.08               | 21.01          | 21.15     | 21.10   |  |
|                                      | 1                             | 21.62               | 21.62          | 21.65     | 21.68   |  |
|                                      | 2                             | 21.22               | 21.10          | 21.23     | 21.25   |  |
|                                      | 3                             | 21.40               | 21.21          | 21.38     | 21.39   |  |
|                                      | 4                             | 21.15               | 21.10          | 21.14     | 21.11   |  |
|                                      | 5                             | 21.44               | 21.40          | 21.47     | 21.53   |  |
|                                      | 6                             | 21.34               | 21.17          | 21.30     | 21.29   |  |
|                                      | 7                             | 21.31               | 21.16          | 21.28     | 21.24   |  |
| Middle                               | 8                             | 21.22               | 21.13          | 21.27     | 21.12   |  |
|                                      | 9                             | 21.39               | 21.39          | 21.47     | 21.46   |  |
|                                      | 10                            | 21.11               | 21.07          | 21.06     | 21.14   |  |
|                                      | 11                            | 21.58               | 21.43          | 21.61     | 21.42   |  |
|                                      | 12                            | 21.07               | 21.01          | 21.22     | 21.11   |  |
|                                      | 13                            | 21.47               | 21.32          | 21.38     | 21.49   |  |
|                                      | 14                            | 21.08               | 20.94          | 21.12     | 21.10   |  |
|                                      | 15                            | 21.13               | 21.15          | 21.26     | 21.28   |  |
|                                      |                               | 2154.23             | 2111.30        | 2165.84   | 2157.34 |  |
| Total MIMO PSD I                     | Total MIMO PSD Power (mW/MHz) |                     |                |           | 33.34   |  |
| Total MIMO PSD I                     |                               | 33.33               | 33.25          | 33.36     | 33.34   |  |
| Total MIMO PSD F                     | Power (dBm/MHz)               | 33.33<br>20.70      | 33.25<br>20.70 | 20.70     | 20.70   |  |
|                                      | Power (dBm/MHz)<br>Gain (dBi) |                     |                |           |         |  |

| FCC ID: A3LMT1602D-48A | element                 | MEASUREMENT REPORT (CERTIFICATION) | Approved by:<br>Technical Manager |
|------------------------|-------------------------|------------------------------------|-----------------------------------|
| Test Report S/N:       | Test Dates:             | EUT Type:                          | Dogg 22 of 00                     |
| 8K23041001-00-R2.A3L   | 04/21/2023 - 05/24/2023 | MMU(MT1602d)                       | Page 22 of 90                     |



| Channel             | Port             | PSD Power (dBm/MHz) |         |         |         |  |
|---------------------|------------------|---------------------|---------|---------|---------|--|
| Channel             | Port             | QPSK                | 16QAM   | 64QAM   | 256QAM  |  |
|                     | 0                | 21.25               | 21.08   | 21.18   | 21.05   |  |
|                     | 1                | 21.66               | 21.32   | 21.40   | 21.36   |  |
|                     | 2                | 21.27               | 21.30   | 21.15   | 21.26   |  |
|                     | 3                | 21.52               | 21.34   | 21.37   | 21.38   |  |
|                     | 4                | 21.40               | 21.35   | 21.26   | 21.21   |  |
|                     | 5                | 21.47               | 21.48   | 21.42   | 21.34   |  |
|                     | 6                | 21.40               | 21.27   | 21.33   | 21.34   |  |
| Lliah               | 7                | 21.23               | 21.26   | 21.31   | 21.26   |  |
| High                | 8                | 21.25               | 21.23   | 21.14   | 21.18   |  |
|                     | 9                | 21.42               | 21.40   | 21.38   | 21.41   |  |
|                     | 10               | 21.24               | 21.18   | 21.38   | 21.28   |  |
|                     | 11               | 21.36               | 21.47   | 21.43   | 21.31   |  |
|                     | 12               | 21.51               | 21.45   | 21.26   | 21.30   |  |
|                     | 13               | 21.49               | 21.38   | 21.31   | 21.38   |  |
|                     | 14               | 21.27               | 21.17   | 21.39   | 21.19   |  |
|                     | 15               | 21.25               | 21.22   | 21.08   | 21.17   |  |
| Total MIMO PSD Por  | wer (mW/MHz)     | 2196.55             | 2162.16 | 2158.68 | 2147.07 |  |
| Total MIMO PSD Pov  | wer (dBm/MHz)    | 33.42               | 33.35   | 33.34   | 33.32   |  |
| Antenna Gai         | n (dBi)          | 20.70               | 20.70   | 20.70   | 20.70   |  |
| EIRP (dBm/          | /MHz)            | 54.12               | 54.05   | 54.04   | 54.02   |  |
| Limit (dBm/MHz) FCC | Part 27.50(j)(2) |                     | 62      | .15     |         |  |

Table 8-8. Peak Power Spectral Density Table (n77\_1C\_60M)

| FCC ID: A3LMT1602D-48A | element                 | MEASUREMENT REPORT (CERTIFICATION) | Approved by:<br>Technical Manager |
|------------------------|-------------------------|------------------------------------|-----------------------------------|
| Test Report S/N:       | Test Dates:             | EUT Type:                          | Daga 22 of 00                     |
| 8K23041001-00-R2.A3L   | 04/21/2023 - 05/24/2023 | MMU(MT1602d)                       | Page 23 of 90                     |
|                        |                         |                                    |                                   |



| Channel                                              | Dort                                                              | PSD Power (dBm/MHz)                                  |                                                      |                                                      |                                                      |  |
|------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|--|
| Channel                                              | Port                                                              | QPSK                                                 | 16QAM                                                | 64QAM                                                | 256QAM                                               |  |
|                                                      | 0                                                                 | 19.75                                                | 19.68                                                | 19.65                                                | 19.67                                                |  |
|                                                      | 1                                                                 | 20.12                                                | 20.10                                                | 20.18                                                | 20.11                                                |  |
|                                                      | 2                                                                 | 19.91                                                | 19.87                                                | 19.93                                                | 19.92                                                |  |
|                                                      | 3                                                                 | 19.83                                                | 19.78                                                | 19.91                                                | 19.93                                                |  |
|                                                      | 4                                                                 | 19.90                                                | 19.79                                                | 19.90                                                | 19.82                                                |  |
|                                                      | 5                                                                 | 20.08                                                | 19.91                                                | 19.99                                                | 20.03                                                |  |
|                                                      | 6                                                                 | 19.92                                                | 19.87                                                | 19.95                                                | 19.93                                                |  |
|                                                      | 7                                                                 | 19.86                                                | 19.78                                                | 20.11                                                | 19.88                                                |  |
| Low                                                  | 8                                                                 | 19.71                                                | 19.89                                                | 20.01                                                | 19.87                                                |  |
|                                                      | 9                                                                 | 20.06                                                | 19.92                                                | 20.00                                                | 20.08                                                |  |
|                                                      | 10                                                                | 19.91                                                | 19.85                                                | 19.87                                                | 19.89                                                |  |
|                                                      | 11                                                                | 19.84                                                | 19.87                                                | 19.95                                                | 19.85                                                |  |
|                                                      | 12                                                                | 19.66                                                | 19.77                                                | 19.66                                                | 19.70                                                |  |
|                                                      | 13                                                                | 20.01                                                | 20.00                                                | 20.06                                                | 19.99                                                |  |
|                                                      | 14                                                                | 19.49                                                | 19.67                                                | 19.61                                                | 19.56                                                |  |
|                                                      | 15                                                                | 19.73                                                | 19.65                                                | 19.66                                                | 19.76                                                |  |
| Total MIMO PSD Po                                    | l .                                                               | 1550.76                                              | 1541.79                                              | 1565.63                                              | 1555.23                                              |  |
| Total MIMO PSD Por                                   | . ,                                                               | 31.91                                                | 31.88                                                | 31.95                                                | 31.92                                                |  |
| Antenna Gai                                          |                                                                   | 20.70                                                | 20.70                                                | 20.70                                                | 20.70                                                |  |
|                                                      |                                                                   | 52.61                                                | 52.58                                                | 52.65                                                | 52.62                                                |  |
| EIRP (dBm/MHz)  Limit (dBm/MHz) FCC Part 27.50(j)(2) |                                                                   | 32.01                                                | 1                                                    | .15                                                  | 32.02                                                |  |
| Elitiit (dDiti/Wii iz) i oc                          | 7 art 27.50(j)(2)                                                 | PSD Power (dBm/MHz)                                  |                                                      |                                                      |                                                      |  |
| Channel                                              | Port                                                              | QPSK                                                 | 16QAM                                                | 64QAM                                                | 256QAM                                               |  |
|                                                      | 0                                                                 | 19.82                                                | 19.93                                                | 19.72                                                | 19.72                                                |  |
|                                                      | 1                                                                 | 20.33                                                | 20.52                                                | 20.40                                                | 20.33                                                |  |
|                                                      | 2                                                                 | 20.08                                                | 20.06                                                | 19.96                                                | 19.90                                                |  |
|                                                      | 3                                                                 | 20.19                                                | 20.15                                                | 20.07                                                | 20.26                                                |  |
|                                                      | 4                                                                 | 19.86                                                | 19.94                                                | 19.98                                                | 19.96                                                |  |
|                                                      | 5                                                                 | 20.14                                                | 20.23                                                | 20.22                                                | 20.21                                                |  |
|                                                      | 6                                                                 | 19.97                                                | 20.07                                                | 19.98                                                | 20.00                                                |  |
|                                                      | 7                                                                 | 20.02                                                | 20.02                                                | 20.08                                                | 20.02                                                |  |
| Middle                                               | 8                                                                 | 19.83                                                | 19.76                                                | 19.88                                                | 19.77                                                |  |
|                                                      | 9                                                                 | 20.21                                                | 20.24                                                | 20.15                                                | 20.14                                                |  |
|                                                      | 10                                                                | 19.88                                                | 20.01                                                | 19.93                                                | 19.81                                                |  |
|                                                      |                                                                   | 20.28                                                | 20.23                                                | 20.17                                                | 20.25                                                |  |
|                                                      | 1.1                                                               |                                                      |                                                      |                                                      |                                                      |  |
|                                                      | 11                                                                | 1                                                    | +                                                    | +                                                    |                                                      |  |
|                                                      | 12                                                                | 19.84                                                | 19.94                                                | 19.85                                                | 19.81                                                |  |
|                                                      | 12<br>13                                                          | 19.84<br>20.19                                       | 19.94<br>20.24                                       | 19.85<br>20.16                                       | 19.81<br>20.21                                       |  |
|                                                      | 12<br>13<br>14                                                    | 19.84<br>20.19<br>19.95                              | 19.94<br>20.24<br>19.85                              | 19.85<br>20.16<br>19.90                              | 19.81<br>20.21<br>19.86                              |  |
| Total MIMO PSD Po                                    | 12<br>13<br>14<br>15                                              | 19.84<br>20.19<br>19.95<br>19.93                     | 19.94<br>20.24<br>19.85<br>19.95                     | 19.85<br>20.16<br>19.90<br>19.88                     | 19.81<br>20.21<br>19.86<br>20.21                     |  |
| Total MIMO PSD Po                                    | 12<br>13<br>14<br>15<br>wer (mW/MHz)                              | 19.84<br>20.19<br>19.95<br>19.93<br>1613.20          | 19.94<br>20.24<br>19.85<br>19.95<br>1627.92          | 19.85<br>20.16<br>19.90<br>19.88<br>1608.79          | 19.81<br>20.21<br>19.86<br>20.21<br>1612.26          |  |
| Total MIMO PSD Por                                   | 12<br>13<br>14<br>15<br>wer (mW/MHz)<br>wer (dBm/MHz)             | 19.84<br>20.19<br>19.95<br>19.93<br>1613.20<br>32.08 | 19.94<br>20.24<br>19.85<br>19.95<br>1627.92<br>32.12 | 19.85<br>20.16<br>19.90<br>19.88<br>1608.79<br>32.06 | 19.81<br>20.21<br>19.86<br>20.21<br>1612.26<br>32.07 |  |
|                                                      | 12<br>13<br>14<br>15<br>wer (mW/MHz)<br>wer (dBm/MHz)<br>in (dBi) | 19.84<br>20.19<br>19.95<br>19.93<br>1613.20          | 19.94<br>20.24<br>19.85<br>19.95<br>1627.92          | 19.85<br>20.16<br>19.90<br>19.88<br>1608.79          | 19.81<br>20.21<br>19.86<br>20.21<br>1612.26          |  |

| FCC ID: A3LMT1602D-48A | element                 | MEASUREMENT REPORT (CERTIFICATION) | Approved by:<br>Technical Manager |
|------------------------|-------------------------|------------------------------------|-----------------------------------|
| Test Report S/N:       | Test Dates:             | EUT Type:                          | Daga 24 of 00                     |
| 8K23041001-00-R2.A3L   | 04/21/2023 - 05/24/2023 | MMU(MT1602d)                       | Page 24 of 90                     |



| Channal             | Port             |         | PSD Power (dBm/MHz) |         |         |  |  |
|---------------------|------------------|---------|---------------------|---------|---------|--|--|
| Channel             | Poit             | QPSK    | 16QAM               | 64QAM   | 256QAM  |  |  |
|                     | 0                | 20.05   | 20.03               | 19.89   | 19.86   |  |  |
|                     | 1                | 20.35   | 20.25               | 20.22   | 20.39   |  |  |
|                     | 2                | 19.99   | 20.17               | 20.14   | 20.02   |  |  |
|                     | 3                | 20.28   | 20.18               | 20.15   | 20.15   |  |  |
|                     | 4                | 20.08   | 20.10               | 20.13   | 20.14   |  |  |
|                     | 5                | 20.23   | 20.27               | 20.26   | 20.46   |  |  |
|                     | 6                | 20.16   | 20.36               | 20.22   | 20.13   |  |  |
| High                | 7                | 19.97   | 20.13               | 19.99   | 19.99   |  |  |
| підп                | 8                | 19.98   | 20.03               | 20.02   | 19.85   |  |  |
|                     | 9                | 20.32   | 20.19               | 20.12   | 20.30   |  |  |
|                     | 10               | 20.05   | 20.03               | 20.14   | 20.14   |  |  |
|                     | 11               | 20.19   | 20.51               | 20.26   | 20.30   |  |  |
|                     | 12               | 20.02   | 20.10               | 20.16   | 20.14   |  |  |
|                     | 13               | 20.28   | 20.59               | 20.18   | 20.25   |  |  |
|                     | 14               | 19.99   | 20.12               | 19.99   | 19.99   |  |  |
|                     | 15               | 19.97   | 20.11               | 19.98   | 20.02   |  |  |
| Total MIMO PSD Por  | wer (mW/MHz)     | 1645.36 | 1675.83             | 1643.66 | 1651.08 |  |  |
| Total MIMO PSD Pov  | ver (dBm/MHz)    | 32.16   | 32.24               | 32.16   | 32.18   |  |  |
| Antenna Gai         | n (dBi)          | 20.70   | 20.70               | 20.70   | 20.70   |  |  |
| EIRP (dBm/          | MHz)             | 52.86   | 52.94               | 52.86   | 52.88   |  |  |
| Limit (dBm/MHz) FCC | Part 27.50(j)(2) |         | 62                  | .15     |         |  |  |

Table 8-9. Peak Power Spectral Density Table (n77\_1C\_80M)

| FCC ID: A3LMT1602D-48A | element                 | MEASUREMENT REPORT (CERTIFICATION) | Approved by:<br>Technical Manager |
|------------------------|-------------------------|------------------------------------|-----------------------------------|
| Test Report S/N:       | Test Dates:             | EUT Type:                          | Dage OF of OO                     |
| 8K23041001-00-R2.A3L   | 04/21/2023 - 05/24/2023 | MMU(MT1602d)                       | Page 25 of 90                     |



| Channel                              | Port                                                                                         | PSD Power (dBm/MHz)                                                                                                 |                                                                                                                     |                                                                                                                     |                                                                                                                     |  |
|--------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--|
| Channel                              | Port                                                                                         | QPSK                                                                                                                | 16QAM                                                                                                               | 64QAM                                                                                                               | 256QAM                                                                                                              |  |
|                                      | 0                                                                                            | 18.36                                                                                                               | 18.44                                                                                                               | 18.35                                                                                                               | 18.32                                                                                                               |  |
|                                      | 1                                                                                            | 18.95                                                                                                               | 18.89                                                                                                               | 18.99                                                                                                               | 19.02                                                                                                               |  |
|                                      | 2                                                                                            | 18.66                                                                                                               | 18.49                                                                                                               | 18.41                                                                                                               | 18.44                                                                                                               |  |
|                                      | 3                                                                                            | 18.67                                                                                                               | 18.59                                                                                                               | 18.55                                                                                                               | 18.55                                                                                                               |  |
|                                      | 4                                                                                            | 18.64                                                                                                               | 18.52                                                                                                               | 18.52                                                                                                               | 18.52                                                                                                               |  |
|                                      | 5                                                                                            | 19.05                                                                                                               | 18.78                                                                                                               | 18.93                                                                                                               | 18.74                                                                                                               |  |
|                                      | 6                                                                                            | 18.71                                                                                                               | 18.62                                                                                                               | 18.68                                                                                                               | 18.71                                                                                                               |  |
|                                      | 7                                                                                            | 18.71                                                                                                               | 18.52                                                                                                               | 18.66                                                                                                               | 18.68                                                                                                               |  |
| Low                                  | 8                                                                                            | 18.48                                                                                                               | 18.48                                                                                                               | 18.50                                                                                                               | 18.44                                                                                                               |  |
|                                      | 9                                                                                            | 18.78                                                                                                               | 18.72                                                                                                               | 18.81                                                                                                               | 18.69                                                                                                               |  |
|                                      | 10                                                                                           | 18.65                                                                                                               | 18.52                                                                                                               | 18.50                                                                                                               | 18.51                                                                                                               |  |
|                                      | 11                                                                                           | 18.71                                                                                                               | 18.67                                                                                                               | 18.52                                                                                                               | 18.68                                                                                                               |  |
|                                      | 12                                                                                           | 18.31                                                                                                               | 18.29                                                                                                               | 18.38                                                                                                               | 18.26                                                                                                               |  |
|                                      | 13                                                                                           | 18.65                                                                                                               | 18.76                                                                                                               | 18.73                                                                                                               | 18.68                                                                                                               |  |
|                                      | 14                                                                                           | 18.36                                                                                                               | 18.26                                                                                                               | 18.33                                                                                                               | 18.26                                                                                                               |  |
|                                      | 15                                                                                           | 18.41                                                                                                               | 18.38                                                                                                               | 18.47                                                                                                               | 18.48                                                                                                               |  |
| Total MIMO PSD P                     |                                                                                              | 1168.72                                                                                                             | 1148.86                                                                                                             | 1155.76                                                                                                             | 1149.96                                                                                                             |  |
| Total MIMO PSD P                     | , ,                                                                                          | 30.68                                                                                                               | 30.60                                                                                                               | 30.63                                                                                                               | 30.61                                                                                                               |  |
| Antenna G                            |                                                                                              | 20.70                                                                                                               | 20.70                                                                                                               | 20.70                                                                                                               | 20.70                                                                                                               |  |
| EIRP (dBr                            | ` '                                                                                          | 51.38                                                                                                               | 51.30                                                                                                               | 51.33                                                                                                               | 51.31                                                                                                               |  |
| Limit (dBm/MHz) FCC Part 27.50(j)(2) |                                                                                              |                                                                                                                     |                                                                                                                     | .15                                                                                                                 |                                                                                                                     |  |
| ,                                    |                                                                                              |                                                                                                                     |                                                                                                                     | (dBm/MHz)                                                                                                           |                                                                                                                     |  |
| Channel                              | Port                                                                                         | QPSK                                                                                                                | 16QAM                                                                                                               | 64QAM                                                                                                               | 256QAM                                                                                                              |  |
|                                      | 0                                                                                            | 18.50                                                                                                               | 18.57                                                                                                               | 18.58                                                                                                               | 18.72                                                                                                               |  |
|                                      | 1                                                                                            | 19.12                                                                                                               | 19.14                                                                                                               | 19.19                                                                                                               | 19.21                                                                                                               |  |
|                                      | 2                                                                                            | 18.66                                                                                                               | 18.70                                                                                                               | 18.74                                                                                                               | 18.65                                                                                                               |  |
|                                      | 3                                                                                            | 18.84                                                                                                               | 18.81                                                                                                               | 18.90                                                                                                               | 18.81                                                                                                               |  |
|                                      | 4                                                                                            | 40.05                                                                                                               |                                                                                                                     |                                                                                                                     | 10.01                                                                                                               |  |
|                                      |                                                                                              | 18.65                                                                                                               | 18.64                                                                                                               | 18.65                                                                                                               |                                                                                                                     |  |
|                                      |                                                                                              |                                                                                                                     |                                                                                                                     |                                                                                                                     | 18.70                                                                                                               |  |
|                                      | 5                                                                                            | 18.92                                                                                                               | 19.07                                                                                                               | 19.04                                                                                                               | 18.70<br>19.03                                                                                                      |  |
|                                      | 5                                                                                            | 18.92<br>18.68                                                                                                      | 19.07<br>18.72                                                                                                      | 19.04<br>18.77                                                                                                      | 18.70<br>19.03<br>18.82                                                                                             |  |
| Middle                               | 5<br>6<br>7                                                                                  | 18.92<br>18.68<br>18.67                                                                                             | 19.07<br>18.72<br>18.82                                                                                             | 19.04<br>18.77<br>18.83                                                                                             | 18.70<br>19.03<br>18.82<br>18.69                                                                                    |  |
| Middle                               | 5                                                                                            | 18.92<br>18.68<br>18.67<br>18.64                                                                                    | 19.07<br>18.72                                                                                                      | 19.04<br>18.77<br>18.83<br>18.68                                                                                    | 18.70<br>19.03<br>18.82<br>18.69<br>18.48                                                                           |  |
| Middle                               | 5<br>6<br>7<br>8                                                                             | 18.92<br>18.68<br>18.67<br>18.64<br>19.01                                                                           | 19.07<br>18.72<br>18.82<br>18.61<br>18.87                                                                           | 19.04<br>18.77<br>18.83<br>18.68<br>18.90                                                                           | 18.70<br>19.03<br>18.82<br>18.69<br>18.48<br>18.86                                                                  |  |
| Middle                               | 5<br>6<br>7<br>8<br>9                                                                        | 18.92<br>18.68<br>18.67<br>18.64<br>19.01<br>18.68                                                                  | 19.07<br>18.72<br>18.82<br>18.61<br>18.87<br>18.60                                                                  | 19.04<br>18.77<br>18.83<br>18.68<br>18.90<br>18.72                                                                  | 18.70<br>19.03<br>18.82<br>18.69<br>18.48                                                                           |  |
| Middle                               | 5<br>6<br>7<br>8<br>9<br>10                                                                  | 18.92<br>18.68<br>18.67<br>18.64<br>19.01<br>18.68<br>18.94                                                         | 19.07<br>18.72<br>18.82<br>18.61<br>18.87<br>18.60<br>18.92                                                         | 19.04<br>18.77<br>18.83<br>18.68<br>18.90<br>18.72<br>18.99                                                         | 18.70<br>19.03<br>18.82<br>18.69<br>18.48<br>18.86<br>18.69<br>18.87                                                |  |
| Middle                               | 5<br>6<br>7<br>8<br>9<br>10<br>11                                                            | 18.92<br>18.68<br>18.67<br>18.64<br>19.01<br>18.68<br>18.94<br>18.62                                                | 19.07<br>18.72<br>18.82<br>18.61<br>18.87<br>18.60<br>18.92<br>18.47                                                | 19.04<br>18.77<br>18.83<br>18.68<br>18.90<br>18.72<br>18.99<br>18.65                                                | 18.70<br>19.03<br>18.82<br>18.69<br>18.48<br>18.86<br>18.87<br>18.87                                                |  |
| Middle                               | 5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13                                                | 18.92<br>18.68<br>18.67<br>18.64<br>19.01<br>18.68<br>18.94<br>18.62<br>19.06                                       | 19.07<br>18.72<br>18.82<br>18.61<br>18.87<br>18.60<br>18.92<br>18.47<br>18.97                                       | 19.04<br>18.77<br>18.83<br>18.68<br>18.90<br>18.72<br>18.99<br>18.65<br>18.98                                       | 18.70<br>19.03<br>18.82<br>18.69<br>18.48<br>18.86<br>18.69<br>18.87<br>18.56<br>18.89                              |  |
| Middle                               | 5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13                                                | 18.92<br>18.68<br>18.67<br>18.64<br>19.01<br>18.68<br>18.94<br>18.62<br>19.06<br>18.53                              | 19.07<br>18.72<br>18.82<br>18.61<br>18.87<br>18.60<br>18.92<br>18.47<br>18.97<br>18.52                              | 19.04<br>18.77<br>18.83<br>18.68<br>18.90<br>18.72<br>18.99<br>18.65<br>18.98<br>18.62                              | 18.70<br>19.03<br>18.82<br>18.69<br>18.48<br>18.86<br>18.69<br>18.87<br>18.56<br>18.89<br>18.59                     |  |
|                                      | 5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14                                          | 18.92<br>18.68<br>18.67<br>18.64<br>19.01<br>18.68<br>18.94<br>18.62<br>19.06<br>18.53<br>18.57                     | 19.07<br>18.72<br>18.82<br>18.61<br>18.87<br>18.60<br>18.92<br>18.47<br>18.97<br>18.52<br>18.80                     | 19.04<br>18.77<br>18.83<br>18.68<br>18.90<br>18.72<br>18.99<br>18.65<br>18.98<br>18.62<br>18.67                     | 18.70<br>19.03<br>18.82<br>18.69<br>18.48<br>18.86<br>18.87<br>18.56<br>18.89<br>18.59<br>18.69                     |  |
| Total MIMO PSD P                     | 5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>ower (mW/MHz)                   | 18.92<br>18.68<br>18.67<br>18.64<br>19.01<br>18.68<br>18.94<br>18.62<br>19.06<br>18.53<br>18.57<br>1202.55          | 19.07<br>18.72<br>18.82<br>18.61<br>18.87<br>18.60<br>18.92<br>18.47<br>18.97<br>18.52<br>18.80<br>1204.96          | 19.04<br>18.77<br>18.83<br>18.68<br>18.90<br>18.72<br>18.99<br>18.65<br>18.98<br>18.62<br>18.67<br>1216.59          | 18.70<br>19.03<br>18.82<br>18.69<br>18.48<br>18.86<br>18.69<br>18.87<br>18.56<br>18.89<br>18.59<br>18.69<br>1205.34 |  |
| Total MIMO PSD P                     | 5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>ower (mW/MHz)                   | 18.92<br>18.68<br>18.67<br>18.64<br>19.01<br>18.68<br>18.94<br>18.62<br>19.06<br>18.53<br>18.57<br>1202.55<br>30.80 | 19.07<br>18.72<br>18.82<br>18.61<br>18.87<br>18.60<br>18.92<br>18.47<br>18.97<br>18.52<br>18.80<br>1204.96<br>30.81 | 19.04<br>18.77<br>18.83<br>18.68<br>18.90<br>18.72<br>18.99<br>18.65<br>18.98<br>18.62<br>18.67<br>1216.59<br>30.85 | 18.70 19.03 18.82 18.69 18.48 18.86 18.69 18.87 18.56 18.89 18.59 18.69 1205.34 30.81                               |  |
| Total MIMO PSD P                     | 5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>ower (mW/MHz)<br>ower (dBm/MHz) | 18.92<br>18.68<br>18.67<br>18.64<br>19.01<br>18.68<br>18.94<br>18.62<br>19.06<br>18.53<br>18.57<br>1202.55          | 19.07<br>18.72<br>18.82<br>18.61<br>18.87<br>18.60<br>18.92<br>18.47<br>18.97<br>18.52<br>18.80<br>1204.96          | 19.04<br>18.77<br>18.83<br>18.68<br>18.90<br>18.72<br>18.99<br>18.65<br>18.98<br>18.62<br>18.67<br>1216.59          | 18.70<br>19.03<br>18.82<br>18.69<br>18.48<br>18.86<br>18.69<br>18.87<br>18.56<br>18.89<br>18.59<br>18.69<br>1205.34 |  |

| FCC ID: A3LMT1602D-48A | element                 | MEASUREMENT REPORT (CERTIFICATION) | Approved by:<br>Technical Manager |
|------------------------|-------------------------|------------------------------------|-----------------------------------|
| Test Report S/N:       | Test Dates:             | EUT Type:                          | Dogg 20 of 00                     |
| 8K23041001-00-R2.A3L   | 04/21/2023 - 05/24/2023 | MMU(MT1602d)                       | Page 26 of 90                     |



| Channel             | Dort               |         | PSD Power | (dBm/MHz) |         |
|---------------------|--------------------|---------|-----------|-----------|---------|
| Channel             | Port               | QPSK    | 16QAM     | 64QAM     | 256QAM  |
|                     | 0                  | 18.91   | 18.90     | 18.82     | 18.75   |
|                     | 1                  | 19.32   | 19.38     | 19.14     | 19.15   |
|                     | 2                  | 19.06   | 19.13     | 19.11     | 18.87   |
|                     | 3                  | 19.26   | 19.19     | 19.04     | 19.03   |
|                     | 4                  | 19.02   | 18.96     | 18.92     | 18.92   |
|                     | 5                  | 19.34   | 19.24     | 19.15     | 19.17   |
|                     | 6                  | 19.28   | 19.28     | 18.95     | 19.02   |
| Lligh               | 7                  | 19.14   | 19.05     | 19.01     | 18.90   |
| High                | 8                  | 19.10   | 19.08     | 18.93     | 18.64   |
|                     | 9                  | 19.18   | 19.13     | 19.08     | 18.99   |
|                     | 10                 | 19.09   | 19.06     | 19.07     | 18.97   |
|                     | 11                 | 19.22   | 19.35     | 19.19     | 19.11   |
|                     | 12                 | 19.06   | 19.26     | 19.04     | 18.77   |
|                     | 13                 | 19.33   | 19.26     | 19.17     | 18.89   |
|                     | 14                 | 19.02   | 18.98     | 19.01     | 18.87   |
|                     | 15                 | 19.10   | 19.06     | 18.85     | 18.70   |
| Total MIMO PSD Pov  | wer (mW/MHz)       | 1316.70 | 1314.54   | 1280.13   | 1249.02 |
| Total MIMO PSD Pov  | ver (dBm/MHz)      | 31.19   | 31.19     | 31.07     | 30.97   |
| Antenna Gai         | Antenna Gain (dBi) |         | 20.70     | 20.70     | 20.70   |
| EIRP (dBm/          | EIRP (dBm/MHz)     |         | 51.89     | 51.77     | 51.67   |
| Limit (dBm/MHz) FCC | Part 27.50(j)(2)   |         | 62.       | 15        |         |

Table 8-10. Peak Power Spectral Density Table (n77\_1C\_100M)

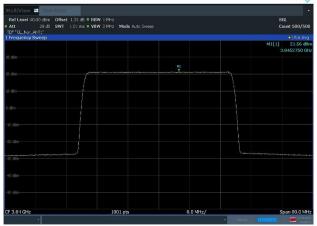
| FCC ID: A3LMT1602D-48A | element                 | MEASUREMENT REPORT (CERTIFICATION) | Approved by:<br>Technical Manager |
|------------------------|-------------------------|------------------------------------|-----------------------------------|
| Test Report S/N:       | Test Dates:             | EUT Type:                          | Dogo 27 of 00                     |
| 8K23041001-00-R2.A3L   | 04/21/2023 - 05/24/2023 | MMU(MT1602d)                       | Page 27 of 90                     |
| @ 2022 Flament         |                         |                                    | EC OD 40 00 Day 05                |



| Chamal              | Dout             | PSD Power | (dBm/MHz) |
|---------------------|------------------|-----------|-----------|
| Channel             | Port             | QPSK      | 16QAM     |
|                     | 0                | 17.11     | 17.36     |
|                     | 1                | 17.90     | 17.99     |
|                     | 2                | 17.37     | 17.49     |
|                     | 3                | 17.50     | 17.61     |
|                     | 4                | 17.44     | 17.38     |
|                     | 5                | 17.65     | 17.70     |
|                     | 6                | 17.49     | 17.62     |
| Mid                 | 7                | 17.46     | 17.53     |
| iviiu               | 8                | 17.41     | 17.31     |
|                     | 9                | 17.56     | 17.79     |
|                     | 10               | 17.37     | 17.44     |
|                     | 11               | 17.70     | 17.67     |
|                     | 12               | 17.29     | 17.26     |
|                     | 13               | 17.69     | 17.79     |
|                     | 14               | 17.28     | 17.39     |
|                     | 15               | 17.39     | 17.58     |
| Total MIMO PSD Por  | wer (mW/MHz)     | 895.54    | 912.52    |
| Total MIMO PSD Pov  | ver (dBm/MHz)    | 29.52     | 29.60     |
| Antenna Gai         | n (dBi)          | 20.70     | 20.70     |
| EIRP (dBm/          | /MHz)            | 50.22     | 50.30     |
| Limit (dBm/MHz) FCC | Part 27.50(j)(2) | 62        | .15       |

Table 8-11. Peak Power Spectral Density Table (n77\_2C\_100M+40M)

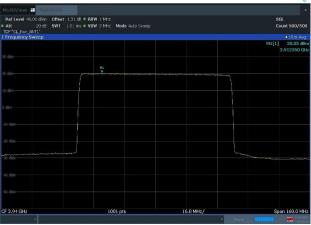
| FCC ID: A3LMT1602D-48A | element                 | MEASUREMENT REPORT (CERTIFICATION) | Approved by:<br>Technical Manager |
|------------------------|-------------------------|------------------------------------|-----------------------------------|
| Test Report S/N:       | Test Dates:             | EUT Type:                          | Dogo 20 of 00                     |
| 8K23041001-00-R2.A3L   | 04/21/2023 - 05/24/2023 | MMU(MT1602d)                       | Page 28 of 90                     |
| © 0000 FI              |                         |                                    | EO OD 40 00 D 05                  |



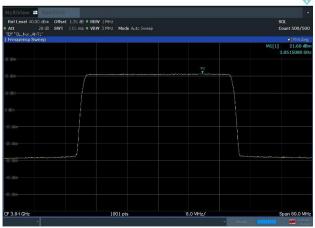

| Channel             | Dort             | PSD Power (dB | m/MHz) |
|---------------------|------------------|---------------|--------|
| Channel             | Port             | QPSK          | 16QAM  |
|                     | 0                | 15.76         | 15.60  |
|                     | 1                | 16.18         | 16.29  |
|                     | 2                | 15.78         | 15.67  |
|                     | 3                | 15.90         | 15.94  |
|                     | 4                | 15.83         | 15.86  |
|                     | 5                | 16.06         | 16.19  |
|                     | 6                | 15.88         | 15.81  |
| Mid                 | 7                | 15.85         | 15.85  |
| iviiu               | 8                | 15.81         | 15.70  |
|                     | 9                | 16.08         | 16.05  |
|                     | 10               | 15.73         | 15.72  |
|                     | 11               | 16.02         | 15.98  |
|                     | 12               | 15.86         | 15.77  |
|                     | 13               | 15.97         | 15.85  |
|                     | 14               | 15.70         | 15.53  |
|                     | 15               | 15.76         | 15.75  |
| Total MIMO PSD Po   | wer (mW/MHz)     | 620.72        | 615.64 |
| Total MIMO PSD Pov  | wer (dBm/MHz)    | 27.93         | 27.89  |
| Antenna Gai         | in (dBi)         | 20.70         | 20.70  |
| EIRP (dBm,          | /MHz)            | 48.63         | 48.59  |
| Limit (dBm/MHz) FCC | Part 27.50(j)(2) | 62.15         |        |


Table 8-12. Peak Power Spectral Density Table (n77\_2C\_100M+100M)

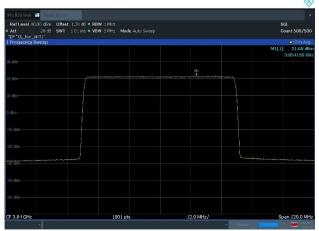
| FCC ID: A3LMT1602D-48A | element                 | MEASUREMENT REPORT (CERTIFICATION) | Approved by:<br>Technical Manager |
|------------------------|-------------------------|------------------------------------|-----------------------------------|
| Test Report S/N:       | Test Dates:             | EUT Type:                          | Daga 20 of 00                     |
| 8K23041001-00-R2.A3L   | 04/21/2023 - 05/24/2023 | MMU(MT1602d)                       | Page 29 of 90                     |
|                        |                         |                                    |                                   |



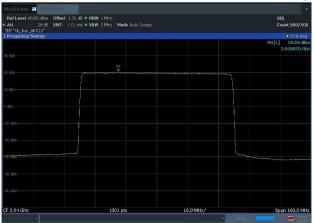




Plot 8-13. Peak Power Spectral Density Plot (n77\_1C\_40M\_QPSK - Mid Channel, Port 1)




Plot 8-15. Peak Power Spectral Density Plot (n77\_1C\_60M\_QPSK - High Channel, Port 1)

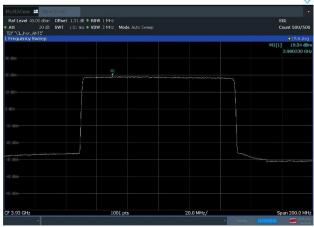



Plot 8-17. Peak Power Spectral Density Plot (n77\_1C\_80M\_QPSK - High Channel, Port 1)



Plot 8-14. Peak Power Spectral Density Plot (n77\_1C\_40M\_256QAM - Mid Channel, Port 1)




Plot 8-16. Peak Power Spectral Density Plot (n77\_1C\_60M\_256QAM - Mid Channel, Port 1)

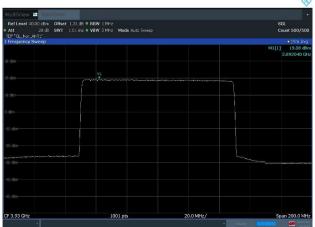


Plot 8-18. Peak Power Spectral Density Plot (n77\_1C\_80M\_16QAM - High Channel, Port 13)

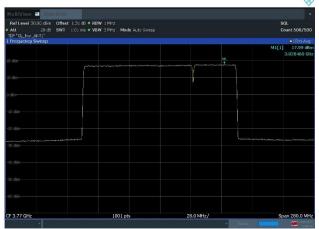
| FCC ID: A3LMT1602D-48A | element                 | MEASUREMENT REPORT (CERTIFICATION) | Approved by:<br>Technical Manager |
|------------------------|-------------------------|------------------------------------|-----------------------------------|
| Test Report S/N:       | Test Dates:             | EUT Type:                          | Page 30 of 90                     |
| 8K23041001-00-R2.A3L   | 04/21/2023 - 05/24/2023 | MMU(MT1602d)                       | rage 30 01 90                     |



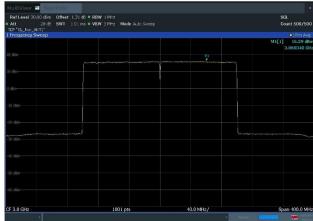




Plot 8-19. Peak Power Spectral Density Plot (n77\_1C\_100M\_QPSK - High Channel, Port 5)




Plot 8-21. Peak Power Spectral Density Plot (n77\_2C\_100M+40M\_QPSK - Mid Channel, Port 1)




Plot 8-23. Peak Power Spectral Density Plot (n77\_2C\_100M+100M\_QPSK - Mid Channel, Port 1)



Plot 8-20. Peak Power Spectral Density Plot (n77\_1C\_100M\_16QAM - High Channel, Port 1)



Plot 8-22. Peak Power Spectral Density Plot (n77\_2C\_100M+40M\_16QAM - Mid Channel, Port 1)



Plot 8-24. Peak Power Spectral Density Plot (n77\_2C\_100M+100M\_16QAM - Mid Channel, Port 1)

| FCC ID: A3LMT1602D-48A | element                 | MEASUREMENT REPORT (CERTIFICATION) | Approved by:<br>Technical Manager |
|------------------------|-------------------------|------------------------------------|-----------------------------------|
| Test Report S/N:       | Test Dates:             | EUT Type:                          | Dogo 21 of 00                     |
| 8K23041001-00-R2.A3L   | 04/21/2023 - 05/24/2023 | MMU(MT1602d)                       | Page 31 of 90                     |



# 8.4 Peak To Average Ratio

#### **Test Overview**

The peak to average ratio measurement is performed at the conducted port of the EUT. The spectrum analyzers Complementary Cumulative Distribution Function (CCDF) measurement profile is used to determine the largest deviation between the average and the peak power of the EUT in a given bandwidth. The CCDF curve shows how much time the peak waveform spends at or above a given average power level. The percent of time the signal spends at or above the level defines the probability for that particular power level.

#### **Test Procedure Used**

KDB 971168 D01 v03r01 – Section 5.7 ANSI C63.26-2015 – Section 5.2.3.4

# **Test Setting**

The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The spectrum analyzer settings were as follows:

- 1. The signal analyzer's CCDF function is enabled.
- 2. Frequency = carrier center frequency
- 3. Measurement BW ≥ OBW or specified reference bandwidth
- 4. The signal analyzer was set to collect one million samples to generate the CCDF curve
- 5. The measurement interval was set depending on the type of signal analyzed. For continuous signals (>98% duty cycle), the measurement interval was set to 1ms.

#### **Test Setup**

The EUT and measurement equipment were set up as shown in the diagram below.

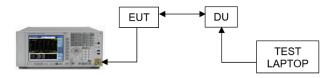



Figure 8-3. Test Instrument & Measurement Setup

#### Limit

§ 27.50 (j) (4)

Measuring transmissions in this band using an average power technique, the peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.

| FCC ID: A3LMT1602D-48A | element                 | MEASUREMENT REPORT (CERTIFICATION) | Approved by: Technical Manager |
|------------------------|-------------------------|------------------------------------|--------------------------------|
| Test Report S/N:       | Test Dates:             | EUT Type:                          | Dogo 22 of 00                  |
| 8K23041001-00-R2.A3L   | 04/21/2023 - 05/24/2023 | MMU(MT1602d)                       | Page 32 of 90                  |



| Channel |      | Limit |       |        |      |
|---------|------|-------|-------|--------|------|
| Channel | QPSK | 16QAM | 64QAM | 256QAM | (dB) |
| Low     | 8.50 | 8.32  | 8.48  | 8.50   |      |
| Middle  | 8.48 | 8.32  | 8.50  | 8.52   | ≤ 13 |
| High    | 8.50 | 8.34  | 8.48  | 8.54   |      |

Table 8-13. Peak To Average Power Ratio Summary Data (n77\_1C\_40M)

| Channel | Port |      | PAPF  | R (dB) |        | Limit |
|---------|------|------|-------|--------|--------|-------|
|         | Poli | QPSK | 16QAM | 64QAM  | 256QAM | (dB)  |
| Low     |      | 7.52 | 7.54  | 7.54   | 7.54   |       |
| Middle  |      | 7.54 | 7.56  | 7.54   | 7.56   | ≤ 13  |
| High    |      | 7.62 | 7.66  | 7.64   | 7.62   |       |

Table 8-14. Peak To Average Power Ratio Summary Data (n77\_1C\_60M)

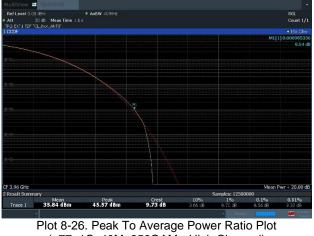
| Channel |      | Limit |       |        |      |
|---------|------|-------|-------|--------|------|
|         | QPSK | 16QAM | 64QAM | 256QAM | (dB) |
| Low     | 7.50 | 7.50  | 7.52  | 7.54   |      |
| Middle  | 7.52 | 7.50  | 7.54  | 7.54   | ≤ 13 |
| High    | 7.64 | 7.66  | 7.70  | 7.68   |      |

Table 8-15. Peak To Average Power Ratio Summary Data (n77\_1C\_80M)

| Channel | PAPR (dB) |       |       |        | Limit |
|---------|-----------|-------|-------|--------|-------|
| Channel | QPSK      | 16QAM | 64QAM | 256QAM | (dB)  |
| Low     | 7.70      | 7.72  | 7.70  | 7.72   |       |
| Middle  | 7.70      | 7.72  | 7.72  | 7.74   | ≤ 13  |
| High    | 7.78      | 7.78  | 7.78  | 7.82   |       |

Table 8-16. Peak To Average Power Ratio Summary Data (n77\_1C\_100M)

|  |         | PAPR (dB) |                                |      |               |      |
|--|---------|-----------|--------------------------------|------|---------------|------|
|  | Channel | n77_2C_1  | 7_2C_100M+40M n77_2C_100M+100M |      | Limit<br>(dB) |      |
|  |         | QPSK      | 16QAM                          | QPSK | 16QAM         | ( ,  |
|  | Middle  | 7.78      | 7.82                           | 7.90 | 7.90          | ≤ 13 |


Table 8-17. Peak To Average Power Ratio Summary Data (n77\_Multi-carrier)

| FCC ID: A3LMT1602D-48A | element                 | MEASUREMENT REPORT (CERTIFICATION) | Approved by:<br>Technical Manager |
|------------------------|-------------------------|------------------------------------|-----------------------------------|
| Test Report S/N:       | Test Dates:             | EUT Type:                          | Daga 22 of 00                     |
| 8K23041001-00-R2.A3L   | 04/21/2023 - 05/24/2023 | MMU(MT1602d)                       | Page 33 of 90                     |






Plot 8-25. Peak To Average Power Ratio Plot (n77\_1C\_40M\_QPSK - Low Channel)



(n77\_1C\_40M\_256QAM - High Channel)



Plot 8-27. Peak To Average Power Ratio Plot (n77\_1C\_60M\_QPSK - High Channel)



Plot 8-28. Peak To Average Power Ratio Plot (n77\_1C\_60M\_16QAM - High Channel)



Plot 8-29. Peak To Average Power Ratio Plot (n77\_1C\_80M\_QPSK - High Channel)



Plot 8-30. Peak To Average Power Ratio Plot (n77\_1C\_80M\_64QAM - High Channel)

| FCC ID: A3LMT1602D-48A | element                 | MEASUREMENT REPORT (CERTIFICATION) | Approved by:<br>Technical Manager |
|------------------------|-------------------------|------------------------------------|-----------------------------------|
| Test Report S/N:       | Test Dates:             | EUT Type:                          | Dogg 24 of 00                     |
| 8K23041001-00-R2.A3L   | 04/21/2023 - 05/24/2023 | MMU(MT1602d)                       | Page 34 of 90                     |





Plot 8-31. Peak To Average Power Ratio Plot (n77\_1C\_100M\_QPSK - High Channel)



Plot 8-33. Peak To Average Power Ratio Plot (n77\_2C\_100M+40M\_QPSK - Mid Channel)



Plot 8-35. Peak To Average Power Ratio Plot (n77\_2C\_100M+100M\_QPSK - Mid Channel)



Plot 8-32. Peak To Average Power Ratio Plot (n77\_1C\_100M\_256QAM - High Channel)



Plot 8-34. Peak To Average Power Ratio Plot (n77\_2C\_100M+40M\_16QAM - Mid Channel)



Plot 8-36. Peak To Average Power Ratio Plot (n77\_2C\_100M+100M\_16QAM - Mid Channel)

| FCC ID: A3LMT1602D-48A | element                 | MEASUREMENT REPORT (CERTIFICATION) | Approved by:<br>Technical Manager |
|------------------------|-------------------------|------------------------------------|-----------------------------------|
| Test Report S/N:       | Test Dates:             | EUT Type:                          | Dogo 25 of 00                     |
| 8K23041001-00-R2.A3L   | 04/21/2023 - 05/24/2023 | MMU(MT1602d)                       | Page 35 of 90                     |



# 8.5 Band Edge Emissions at Antenna Terminal

#### **Test Overview**

All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.

## **Test Procedure Used**

KDB 971168 D01 v03r01 - Section 6

KDB 662911 D01 v02r01 - Section E)3) Out-of-Band and Spurious Emission Measurements

- a) Absolute Emission Limits
- ii) Measure and sum spectral maxima across the outputs

ANSI C63.26-2015 - Section 5.7.3

# **Test Setting**

- 1. Start and stop frequency were set such that the band edge would be placed in the center of the plot
- 2. Span was set large enough so as to capture all out of band emissions near the band edge
- 3. RBW: Please see test notes below.
- 4.  $VBW \ge 3 \times RBW$
- 5. Detector = RMS
- 6. Number of sweep points ≥ 2 x Span/RBW
- 7. Trace mode = trace average
- 8. Sweep time = auto couple
- 9. The trace was allowed to stabilize

# **Limit**

§ 27.53 (I)(1)

For base station operations in the 3700-3980 MHz band, the conducted power of any emission outside the licensee's authorized bandwidth shall not exceed -13 dBm/MHz.

## **Test Setup**

The EUT and measurement equipment were set up as shown in the diagram below.

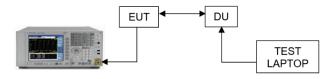



Figure 8-4. Test Instrument & Measurement Setup

| FCC ID: A3LMT1602D-48A | element                 | MEASUREMENT REPORT (CERTIFICATION) | Approved by:<br>Technical Manager |  |
|------------------------|-------------------------|------------------------------------|-----------------------------------|--|
| Test Report S/N:       | Test Dates:             | EUT Type:                          | Dogo 26 of 00                     |  |
| 8K23041001-00-R2.A3L   | 04/21/2023 - 05/24/2023 | MMU(MT1602d)                       | Page 36 of 90                     |  |



## **Test Notes**

- 1. Compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 1 megahertz or greater. However, in the 1 megahertz bands immediately outside and adjacent to the licensee's frequency block, a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.
- 2. Detect with a margin of under 1dB to limit, the integration method was performed using the spectrum analyzer's band power functions according to ANSI C63.26-2015 Section 5.7 and using the method KDB 971168 D01 v03r01 Section E) 3) ii). The integration value was set to a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter.
- 3. Consider the following factors for MIMO:

  The Band edge emissions per each port is measured as dBm/MHz or dBm, the emissions are summed up in linear using the measure-and-sum technique defined in KDB 971168 D01 v03r01 Section E) 3) ii).
- 4. The Band edge emissions per port (dBm/MHz or dBm) is converted to a linear value (mW). A summation of linear powers for all ports gives us the total MIMO Conducted emissions (mW). We convert this back to logarithmic scale for further output power calculations.
- 5. For test result, it added 10 log (1/x), where x is the duty cycle, to the measured power in order to compute the average power during the actual transmission times.
- 6. All transmit signals from different antennas are completely uncorrelated with each other. So the maximum emissions shall be calculated based on the aggregate emission conducted across all antennas.
- 7. Sample Calculation:

Let us assume the following numbers:

Total MIMO Emission power as 0.00687 milliWatts

b)

| Factors Summed MIMO Emission power (linear sum) |                                            |        | Unit |
|-------------------------------------------------|--------------------------------------------|--------|------|
|                                                 |                                            |        | mW   |
| Summed MIMO Emission power (dBm)                | = 10 * log (0.00687)                       | -21.63 | dBm  |
|                                                 |                                            |        |      |
| Limit                                           |                                            | -13    | dBm  |
| Margin                                          | = Summed MIMO Emission power (dBm) - Limit | -8.63  | dB   |

| FCC ID: A3LMT1602D-48A | element                 | MEASUREMENT REPORT (CERTIFICATION) | Approved by:<br>Technical Manager |
|------------------------|-------------------------|------------------------------------|-----------------------------------|
| Test Report S/N:       | Test Dates:             | EUT Type:                          | Daga 27 of 00                     |
| 8K23041001-00-R2.A3L   | 04/21/2023 - 05/24/2023 | MMU(MT1602d)                       | Page 37 of 90                     |



| СН   | Dowt        | Measured Range     |                  | Max. Val | lue (dBm) |        |
|------|-------------|--------------------|------------------|----------|-----------|--------|
|      | Port        | (MHz)              | QPSK             | 16QAM    | 64QAM     | 256QAM |
|      | 0           | 3699MHz to 3700MHz | -34.03           | -34.50   | -33.27    | -34.01 |
|      | 1           | 3699MHz to 3700MHz | -33.40           | -33.26   | -33.21    | -33.51 |
|      | 2           | 3699MHz to 3700MHz | -32.74           | -33.90   | -33.31    | -33.85 |
|      | 3           | 3699MHz to 3700MHz | -33.60           | -34.69   | -33.20    | -33.82 |
|      | 4           | 3699MHz to 3700MHz | -32.50           | -33.96   | -32.55    | -32.65 |
|      | 5           | 3699MHz to 3700MHz | -34.84           | -34.20   | -34.67    | -34.11 |
|      | 6           | 3699MHz to 3700MHz | -33.75           | -33.70   | -32.81    | -32.68 |
|      | 7           | 3699MHz to 3700MHz | -33.23           | -33.61   | -33.73    | -34.62 |
| Low  | 8           | 3699MHz to 3700MHz | -34.58           | -34.04   | -34.45    | -33.56 |
|      | 9           | 3699MHz to 3700MHz | -33.96           | -32.92   | -33.84    | -33.70 |
|      | 10          | 3699MHz to 3700MHz | -33.54           | -32.58   | -32.24    | -32.36 |
|      | 11          | 3699MHz to 3700MHz | -33.96           | -34.22   | -34.91    | -34.41 |
|      | 12          | 3699MHz to 3700MHz | -32.26           | -32.84   | -32.29    | -33.02 |
|      | 13          | 3699MHz to 3700MHz | -34.08           | -33.67   | -33.91    | -34.02 |
|      | 14          | 3699MHz to 3700MHz | -34.78           | -34.08   | -33.98    | -34.37 |
|      | 15          | 3699MHz to 3700MHz | -34.48           | -34.73   | -32.70    | -33.45 |
|      |             | SUM                | -21.63           | -21.72   | -21.33    | -21.54 |
|      | Limit (dBm) |                    | -13              | -13      | -13       | -13    |
|      | Margin (dB) |                    | -8.63            | -8.72    | -8.33     | -8.54  |
| СН   | Port        | Measured Range     | Max. Value (dBm) |          |           |        |
| CIT  | ron         | (MHz)              | QPSK             | 16QAM    | 64QAM     | 256QAM |
|      | 0           | 3980MHz to 3981MHz | -34.30           | -33.13   | -33.57    | -32.71 |
|      | 1           | 3980MHz to 3981MHz | -34.57           | -33.80   | -32.95    | -33.62 |
|      | 2           | 3980MHz to 3981MHz | -32.90           | -32.36   | -31.98    | -31.88 |
|      | 3           | 3980MHz to 3981MHz | -33.34           | -33.51   | -33.01    | -32.86 |
|      | 4           | 3980MHz to 3981MHz | -33.79           | -32.94   | -33.24    | -33.07 |
|      | 5           | 3980MHz to 3981MHz | -33.10           | -33.75   | -32.13    | -32.31 |
|      | 6           | 3980MHz to 3981MHz | -33.89           | -33.38   | -32.61    | -31.91 |
|      | 7           | 3980MHz to 3981MHz | -34.44           | -34.32   | -34.11    | -33.40 |
| High | 8           | 3980MHz to 3981MHz | -31.42           | -32.69   | -31.14    | -32.63 |
|      | 9           | 3980MHz to 3981MHz | -32.92           | -33.30   | -33.05    | -32.78 |
|      | 10          | 3980MHz to 3981MHz | -33.42           | -33.65   | -34.26    | -34.29 |
|      | 11          | 3980MHz to 3981MHz | -32.98           | -34.06   | -33.73    | -33.00 |
|      | 12          | 3980MHz to 3981MHz | -29.21           | -28.86   | -29.16    | -28.67 |
|      | 13          | 3980MHz to 3981MHz | -34.01           | -32.75   | -33.97    | -33.43 |
|      | 14          | 3980MHz to 3981MHz | -33.15           | -33.53   | -33.20    | -32.99 |
|      | 15          | 3980MHz to 3981MHz | -32.97           | -33.07   | -33.93    | -33.48 |
|      |             | SUM                | -20.89           | -20.82   | -20.62    | -20.44 |
|      | Li          | mit (dBm)          | -13              | -13      | -13       | -13    |
|      | М           | argin (dB)         | -7.89            | -7.82    | -7.62     | -7.44  |

Table 8-18. Band Edge Emission Summary Data (n77\_1C\_40M)

| FCC ID: A3LMT1602D-48A | element                 | MEASUREMENT REPORT (CERTIFICATION) | Approved by:<br>Technical Manager |
|------------------------|-------------------------|------------------------------------|-----------------------------------|
| Test Report S/N:       | Test Dates:             | EUT Type:                          | Daga 20 of 00                     |
| 8K23041001-00-R2.A3L   | 04/21/2023 - 05/24/2023 | MMU(MT1602d)                       | Page 38 of 90                     |
|                        |                         |                                    |                                   |



| СН          | Dowt        | Measured Range     |                  | Max. Va | lue (dBm) |        |
|-------------|-------------|--------------------|------------------|---------|-----------|--------|
| СН          | Port        | (MHz)              | QPSK             | 16QAM   | 64QAM     | 256QAM |
|             | 0           | 3699MHz to 3700MHz | -33.57           | -33.74  | -32.30    | -33.18 |
|             | 1           | 3699MHz to 3700MHz | -31.78           | -32.66  | -32.07    | -32.28 |
|             | 2           | 3699MHz to 3700MHz | -33.50           | -33.37  | -33.64    | -33.61 |
|             | 3           | 3699MHz to 3700MHz | -32.60           | -32.53  | -32.53    | -33.10 |
|             | 4           | 3699MHz to 3700MHz | -32.02           | -31.48  | -30.94    | -30.48 |
|             | 5           | 3699MHz to 3700MHz | -30.42           | -32.07  | -33.04    | -32.82 |
|             | 6           | 3699MHz to 3700MHz | -33.27           | -31.86  | -32.98    | -32.59 |
|             | 7           | 3699MHz to 3700MHz | -32.58           | -34.07  | -33.31    | -33.39 |
| Low         | 8           | 3699MHz to 3700MHz | -31.86           | -32.41  | -33.51    | -31.98 |
|             | 9           | 3699MHz to 3700MHz | -32.84           | -32.25  | -33.08    | -32.40 |
|             | 10          | 3699MHz to 3700MHz | -31.48           | -32.11  | -31.95    | -29.94 |
|             | 11          | 3699MHz to 3700MHz | -32.13           | -32.41  | -32.92    | -32.15 |
|             | 12          | 3699MHz to 3700MHz | -30.11           | -29.86  | -30.60    | -30.00 |
|             | 13          | 3699MHz to 3700MHz | -33.18           | -32.58  | -32.60    | -32.26 |
|             | 14          | 3699MHz to 3700MHz | -32.01           | -32.01  | -31.83    | -32.19 |
|             | 15          | 3699MHz to 3700MHz | -32.85           | -33.38  | -33.89    | -32.84 |
|             | SUM         |                    | -20.11           | -20.27  | -20.44    | -20.01 |
| Limit (dBm) |             | -13                | -13              | -13     | -13       |        |
|             | Margin (dB) |                    | -7.11            | -7.27   | -7.44     | -7.01  |
| CLI         | Dowt        | Measured Range     | Max. Value (dBm) |         |           |        |
| СН          | Port        | (MHz)              | QPSK             | 16QAM   | 64QAM     | 256QAM |
|             | 0           | 3980MHz to 3981MHz | -33.50           | -32.40  | -32.32    | -31.84 |
|             | 1           | 3980MHz to 3981MHz | -33.34           | -32.45  | -32.20    | -32.26 |
|             | 2           | 3980MHz to 3981MHz | -32.09           | -31.58  | -32.53    | -31.30 |
|             | 3           | 3980MHz to 3981MHz | -33.00           | -33.09  | -32.77    | -32.68 |
|             | 4           | 3980MHz to 3981MHz | -32.70           | -33.10  | -32.68    | -32.22 |
|             | 5           | 3980MHz to 3981MHz | -31.96           | -31.37  | -31.56    | -31.65 |
|             | 6           | 3980MHz to 3981MHz | -32.98           | -32.62  | -33.02    | -31.94 |
|             | 7           | 3980MHz to 3981MHz | -33.25           | -32.04  | -33.39    | -32.98 |
| High        | 8           | 3980MHz to 3981MHz | -32.56           | -32.36  | -32.33    | -32.93 |
|             | 9           | 3980MHz to 3981MHz | -33.62           | -33.29  | -33.98    | -33.80 |
|             | 10          | 3980MHz to 3981MHz | -33.44           | -34.12  | -34.08    | -34.84 |
|             | 11          | 3980MHz to 3981MHz | -32.91           | -34.10  | -33.28    | -33.25 |
|             | 12          | 3980MHz to 3981MHz | -28.57           | -28.71  | -27.78    | -28.35 |
|             | 13          | 3980MHz to 3981MHz | -34.40           | -33.89  | -34.47    | -33.19 |
|             | 14          | 3980MHz to 3981MHz | -33.16           | -32.34  | -33.14    | -32.92 |
|             | 15          | 3980MHz to 3981MHz | -33.30           | -33.99  | -33.88    | -33.84 |
|             |             | SUM                | -20.54           | -20.32  | -20.35    | -20.20 |
|             | Li          | mit (dBm)          | -13              | -13     | -13       | -13    |
|             |             | argin (dB)         | -7.54            | -7.32   | -7.35     | -7.20  |

Table 8-19. Band Edge Emission Summary Data (n77\_1C\_60M)

| FCC ID: A3LMT1602D-48A | element                 | MEASUREMENT REPORT (CERTIFICATION) | Approved by:<br>Technical Manager |
|------------------------|-------------------------|------------------------------------|-----------------------------------|
| Test Report S/N:       | Test Dates:             | EUT Type:                          | Dags 20 of 00                     |
| 8K23041001-00-R2.A3L   | 04/21/2023 - 05/24/2023 | MMU(MT1602d)                       | Page 39 of 90                     |



| СН          | Dowt        | Measured Range     |                  | Max. Va | lue (dBm) |        |
|-------------|-------------|--------------------|------------------|---------|-----------|--------|
| CH POIL     | Port        | (MHz)              | QPSK             | 16QAM   | 64QAM     | 256QAM |
|             | 0           | 3699MHz to 3700MHz | -32.12           | -32.69  | -32.66    | -32.45 |
|             | 1           | 3699MHz to 3700MHz | -31.32           | -32.61  | -31.37    | -31.73 |
|             | 2           | 3699MHz to 3700MHz | -33.55           | -33.13  | -33.22    | -33.04 |
|             | 3           | 3699MHz to 3700MHz | -32.33           | -32.79  | -32.28    | -32.12 |
|             | 4           | 3699MHz to 3700MHz | -31.48           | -29.38  | -29.17    | -31.19 |
|             | 5           | 3699MHz to 3700MHz | -33.43           | -31.69  | -32.25    | -31.57 |
|             | 6           | 3699MHz to 3700MHz | -32.91           | -32.71  | -32.42    | -32.04 |
|             | 7           | 3699MHz to 3700MHz | -32.34           | -32.60  | -32.46    | -32.21 |
| Low         | 8           | 3699MHz to 3700MHz | -32.31           | -32.18  | -32.18    | -32.46 |
|             | 9           | 3699MHz to 3700MHz | -32.79           | -31.74  | -32.34    | -32.35 |
|             | 10          | 3699MHz to 3700MHz | -31.30           | -30.16  | -31.65    | -30.84 |
|             | 11          | 3699MHz to 3700MHz | -31.90           | -31.86  | -32.16    | -31.41 |
|             | 12          | 3699MHz to 3700MHz | -29.95           | -29.89  | -30.09    | -29.66 |
|             | 13          | 3699MHz to 3700MHz | -32.26           | -32.03  | -32.38    | -32.41 |
|             | 14          | 3699MHz to 3700MHz | -32.04           | -31.97  | -31.75    | -31.99 |
|             | 15          | 3699MHz to 3700MHz | -32.83           | -33.14  | -32.74    | -32.74 |
|             | SUM         |                    | -20.05           | -19.71  | -19.78    | -19.77 |
| Limit (dBm) |             | -13                | -13              | -13     | -13       |        |
|             | Margin (dB) |                    | -7.05            | -6.71   | -6.78     | -6.77  |
| 011         |             | Measured Range     | Max. Value (dBm) |         |           |        |
| СН          | Port (MHz)  | (MHz)              | QPSK             | 16QAM   | 64QAM     | 256QAM |
|             | 0           | 3980MHz to 3981MHz | -31.85           | -31.99  | -31.95    | -31.81 |
|             | 1           | 3980MHz to 3981MHz | -31.31           | -30.75  | -30.51    | -29.98 |
|             | 2           | 3980MHz to 3981MHz | -31.17           | -31.47  | -31.55    | -32.07 |
|             | 3           | 3980MHz to 3981MHz | -32.42           | -32.69  | -32.65    | -32.46 |
|             | 4           | 3980MHz to 3981MHz | -31.64           | -31.32  | -32.37    | -31.63 |
|             | 5           | 3980MHz to 3981MHz | -30.86           | -30.62  | -30.34    | -30.90 |
|             | 6           | 3980MHz to 3981MHz | -31.68           | -31.77  | -32.67    | -32.03 |
|             | 7           | 3980MHz to 3981MHz | -31.74           | -31.90  | -32.27    | -32.25 |
| High        | 8           | 3980MHz to 3981MHz | -31.18           | -31.11  | -31.30    | -31.98 |
|             | 9           | 3980MHz to 3981MHz | -32.84           | -33.08  | -33.00    | -32.54 |
|             | 10          | 3980MHz to 3981MHz | -32.87           | -31.32  | -33.21    | -32.59 |
|             | 11          | 3980MHz to 3981MHz | -32.44           | -32.63  | -33.01    | -32.45 |
|             | 12          | 3980MHz to 3981MHz | -28.00           | -28.46  | -28.07    | -27.66 |
|             | 13          | 3980MHz to 3981MHz | -31.78           | -32.46  | -32.72    | -32.82 |
|             | 14          | 3980MHz to 3981MHz | -32.17           | -32.05  | -31.86    | -32.63 |
|             | 15          | 3980MHz to 3981MHz | -32.46           | -31.02  | -33.05    | -33.12 |
|             |             | SUM                | -19.44           | -19.36  | -19.64    | -19.53 |
|             |             | imit (dBm)         | -13              | -13     | -13       | -13    |
|             |             |                    |                  |         |           |        |

Table 8-20. Band Edge Emission Summary Data (n77\_1C\_80M)

| FCC ID: A3LMT1602D-48A | element                 | MEASUREMENT REPORT (CERTIFICATION) | Approved by:<br>Technical Manager |
|------------------------|-------------------------|------------------------------------|-----------------------------------|
| Test Report S/N:       | Test Dates:             | EUT Type:                          | Daga 40 of 00                     |
| 8K23041001-00-R2.A3L   | 04/21/2023 - 05/24/2023 | MMU(MT1602d)                       | Page 40 of 90                     |



| СН          | Dowt        | Measured Range     |                  | Max. Va | lue (dBm) |        |
|-------------|-------------|--------------------|------------------|---------|-----------|--------|
| СН          | Port        | (MHz)              | QPSK             | 16QAM   | 64QAM     | 256QAM |
|             | 0           | 3699MHz to 3700MHz | -30.80           | -30.61  | -31.34    | -30.98 |
|             | 1           | 3699MHz to 3700MHz | -29.70           | -29.95  | -30.02    | -30.24 |
|             | 2           | 3699MHz to 3700MHz | -31.38           | -30.20  | -30.98    | -31.37 |
|             | 3           | 3699MHz to 3700MHz | -30.28           | -30.36  | -29.99    | -29.97 |
|             | 4           | 3699MHz to 3700MHz | -29.50           | -28.64  | -29.82    | -29.40 |
|             | 5           | 3699MHz to 3700MHz | -30.91           | -31.13  | -30.20    | -30.34 |
|             | 6           | 3699MHz to 3700MHz | -29.88           | -29.85  | -30.37    | -29.96 |
|             | 7           | 3699MHz to 3700MHz | -30.50           | -30.70  | -29.98    | -30.37 |
| Low         | 8           | 3699MHz to 3700MHz | -30.59           | -29.93  | -30.70    | -31.05 |
|             | 9           | 3699MHz to 3700MHz | -30.82           | -30.52  | -30.41    | -30.16 |
|             | 10          | 3699MHz to 3700MHz | -30.06           | -29.15  | -29.95    | -29.43 |
|             | 11          | 3699MHz to 3700MHz | -30.58           | -30.08  | -30.52    | -29.78 |
|             | 12          | 3699MHz to 3700MHz | -28.48           | -28.17  | -28.85    | -28.95 |
|             | 13          | 3699MHz to 3700MHz | -30.65           | -30.55  | -30.05    | -30.01 |
|             | 14          | 3699MHz to 3700MHz | -30.67           | -29.24  | -30.01    | -29.83 |
|             | 15          | 3699MHz to 3700MHz | -31.08           | -30.82  | -30.45    | -30.66 |
|             | SUM         |                    | -18.27           | -17.88  | -18.15    | -18.07 |
| Limit (dBm) |             | -13                | -13              | -13     | -13       |        |
|             | Margin (dB) |                    | -5.27            | -4.88   | -5.15     | -5.07  |
| CLI         | Dowt        | Measured Range     | Max. Value (dBm) |         |           |        |
| СН          | Port        | (MHz)              | QPSK             | 16QAM   | 64QAM     | 256QAM |
|             | 0           | 3980MHz to 3981MHz | -30.01           | -28.57  | -29.93    | -30.96 |
|             | 1           | 3980MHz to 3981MHz | -30.09           | -29.63  | -29.95    | -29.22 |
|             | 2           | 3980MHz to 3981MHz | -30.05           | -29.95  | -29.98    | -29.82 |
|             | 3           | 3980MHz to 3981MHz | -30.31           | -30.69  | -30.02    | -30.47 |
|             | 4           | 3980MHz to 3981MHz | -28.05           | -29.80  | -29.84    | -29.43 |
|             | 5           | 3980MHz to 3981MHz | -29.18           | -30.00  | -29.07    | -29.32 |
|             | 6           | 3980MHz to 3981MHz | -31.03           | -30.20  | -30.30    | -30.68 |
|             | 7           | 3980MHz to 3981MHz | -28.74           | -29.87  | -30.38    | -29.05 |
| High        | 8           | 3980MHz to 3981MHz | -29.68           | -29.86  | -29.89    | -29.22 |
|             | 9           | 3980MHz to 3981MHz | -31.02           | -31.43  | -31.57    | -31.60 |
|             | 10          | 3980MHz to 3981MHz | -30.94           | -29.61  | -30.84    | -30.71 |
|             | 11          | 3980MHz to 3981MHz | -30.85           | -30.77  | -30.89    | -30.11 |
|             | 12          | 3980MHz to 3981MHz | -27.33           | -27.30  | -27.04    | -27.27 |
|             | 13          | 3980MHz to 3981MHz | -31.21           | -31.15  | -31.18    | -31.32 |
|             | 14          | 3980MHz to 3981MHz | -30.66           | -31.02  | -30.28    | -29.74 |
|             | 15          | 3980MHz to 3981MHz | -31.07           | -30.92  | -31.89    | -31.06 |
|             |             | SUM                | -17.82           | -17.88  | -18.00    | -17.82 |
|             | Li          | mit (dBm)          | -13              | -13     | -13       | -13    |
|             |             | argin (dB)         | -4.82            | -4.88   | -5.00     | -4.82  |

Table 8-21. Band Edge Emission Summary Data (n77\_1C\_100M)

| FCC ID: A3LMT1602D-48A | element                 | MEASUREMENT REPORT (CERTIFICATION) | Approved by:<br>Technical Manager |
|------------------------|-------------------------|------------------------------------|-----------------------------------|
| Test Report S/N:       | Test Dates:             | EUT Type:                          | Dogg 44 of 00                     |
| 8K23041001-00-R2.A3L   | 04/21/2023 - 05/24/2023 | MMU(MT1602d)                       | Page 41 of 90                     |



|         |             | Max. Value (dBm)                           |        |                                            |        |  |
|---------|-------------|--------------------------------------------|--------|--------------------------------------------|--------|--|
| CH Port | Port        | Measured Range (MHz)<br>3699MHz to 3700MHz |        | Measured Range (MHz)<br>3980MHz to 3981MHz |        |  |
|         |             | QPSK                                       | 16QAM  | QPSK                                       | 16QAM  |  |
|         | 0           | -30.35                                     | -30.62 | -32.50                                     | -32.94 |  |
|         | 1           | -28.69                                     | -29.64 | -31.10                                     | -32.04 |  |
|         | 2           | -30.12                                     | -30.17 | -32.88                                     | -32.10 |  |
|         | 3           | -29.17                                     | -29.58 | -30.97                                     | -31.68 |  |
|         | 4           | -27.95                                     | -27.00 | -30.78                                     | -30.44 |  |
|         | 5           | -29.43                                     | -29.82 | -31.75                                     | -31.87 |  |
|         | 6           | -29.94                                     | -30.34 | -32.25                                     | -32.51 |  |
|         | 7           | -30.19                                     | -30.07 | -31.88                                     | -32.39 |  |
| Mid     | 8           | -28.97                                     | -29.75 | -32.24                                     | -32.26 |  |
|         | 9           | -29.83                                     | -29.54 | -32.39                                     | -32.63 |  |
|         | 10          | -28.57                                     | -26.94 | -30.75                                     | -30.33 |  |
|         | 11          | -28.79                                     | -29.10 | -32.44                                     | -32.53 |  |
|         | 12          | -27.80                                     | -28.71 | -31.97                                     | -32.14 |  |
|         | 13          | -30.15                                     | -29.26 | -32.62                                     | -32.94 |  |
|         | 14          | -29.57                                     | -29.76 | -30.15                                     | -30.25 |  |
|         | 15          | -29.57                                     | -29.81 | -32.63                                     | -32.80 |  |
|         | SUM         | -17.21                                     | -17.21 | -19.71                                     | -19.86 |  |
|         | Limit (dBm) | -13                                        | -13    | -13                                        | -13    |  |
|         | Margin (dB) | -4.21                                      | -4.21  | -6.71                                      | -6.86  |  |

Table 8-22. Band Edge Emission Summary Data (n77\_2C\_100M+40M)

|         |             |        | Max. Val                 | ue (dBm)                                   |        |
|---------|-------------|--------|--------------------------|--------------------------------------------|--------|
| CH Port | Port        |        | Range (MHz)<br>o 3700MHz | Measured Range (MHz)<br>3980MHz to 3981MHz |        |
|         |             | QPSK   | 16QAM                    | QPSK                                       | 16QAM  |
|         | 0           | -29.79 | -29.89                   | -27.60                                     | -29.94 |
|         | 1           | -29.84 | -30.07                   | -27.02                                     | -30.29 |
|         | 2           | -30.53 | -30.21                   | -30.30                                     | -30.81 |
|         | 3           | -29.86 | -29.93                   | -28.72                                     | -29.88 |
|         | 4           | -28.41 | -29.34                   | -28.57                                     | -30.26 |
|         | 5           | -30.24 | -30.17                   | -28.83                                     | -30.25 |
|         | 6           | -30.00 | -29.92                   | -31.52                                     | -30.52 |
|         | 7           | -30.02 | -30.57                   | -28.29                                     | -30.40 |
| Mid     | 8           | -29.86 | -29.18                   | -29.38                                     | -30.39 |
|         | 9           | -29.96 | -30.18                   | -28.29                                     | -31.12 |
|         | 10          | -27.73 | -28.05                   | -26.88                                     | -27.86 |
|         | 11          | -29.45 | -30.00                   | -26.37                                     | -29.91 |
|         | 12          | -28.31 | -28.96                   | -27.36                                     | -29.40 |
|         | 13          | -29.30 | -29.79                   | -29.14                                     | -31.12 |
|         | 14          | -29.48 | -29.75                   | -28.98                                     | -29.20 |
|         | 15          | -29.72 | -30.27                   | -30.69                                     | -30.60 |
|         | SUM         | -17.42 | -17.68                   | -20.68                                     | -18.00 |
| •       | Limit (dBm) | -13    | -13                      | -13                                        | -13    |
|         | Margin (dB) | -4.42  | -4.68                    | -7.68                                      | -5.00  |

Table 8-23. Band Edge Emission Summary Data (n77\_2C\_100M+100M)

| FCC ID: A3LMT1602D-48A | element                 | MEASUREMENT REPORT (CERTIFICATION) | Approved by:<br>Technical Manager |
|------------------------|-------------------------|------------------------------------|-----------------------------------|
| Test Report S/N:       | Test Dates:             | EUT Type:                          | Page 42 of 90                     |
| 8K23041001-00-R2.A3L   | 04/21/2023 - 05/24/2023 | MMU(MT1602d)                       | Fage 42 01 90                     |






Plot 8-37. Band Edge Emission Plot (n77\_1C\_40M\_64QAM - Low Channel, Port 10)



Plot 8-39. Band Edge Emission Plot (n77\_1C\_60M\_16QAM - Low Channel, Port 12)



Plot 8-41. Band Edge Emission Plot (n77\_1C\_80M\_64QAM - Low Channel, Port 4)



Plot 8-38. Band Edge Emission Plot (n77\_1C\_40M\_256QAM - High Channel, Port 12)



Plot 8-40. Band Edge Emission Plot (n77\_1C\_60M\_64QAM - High Channel, Port 12)



Plot 8-42. Band Edge Emission Plot (n77\_1C\_80M\_256QAM - High Channel, Port 12)

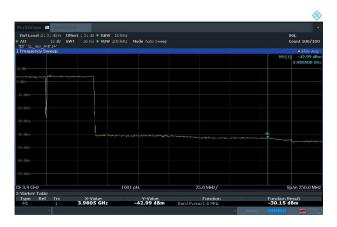
| FCC ID: A3LMT1602D-48A | element                 | MEASUREMENT REPORT (CERTIFICATION) | Approved by: Technical Manager |
|------------------------|-------------------------|------------------------------------|--------------------------------|
| Test Report S/N:       | Test Dates:             | EUT Type:                          | Page 43 of 90                  |
| 8K23041001-00-R2.A3L   | 04/21/2023 - 05/24/2023 | MMU(MT1602d)                       | raye 43 01 90                  |





Plot 8-43. Band Edge Emission Plot (n77\_1C\_100M\_16QAM - Low Channel, Port 12)




Plot 8-45. Band Edge Emission Plot (n77\_2C\_100M+40M\_16QAM - Mid Channel\_ Low Edge, Port 10)



Plot 8-47. Band Edge Emission Plot (n77\_2C\_100M+100M\_QPSK - Mid Channel\_ Low Edge, Port 10)



Plot 8-44. Band Edge Emission Plot (n77\_1C\_100M\_64QAM - High Channel, Port 12)



Plot 8-46. Band Edge Emission Plot (n77\_2C\_100M+40M\_QPSK - Mid Channel\_ High Edge, Port 14)



Plot 8-48. Band Edge Emission Plot (n77\_2C\_100M+100M\_QSPK - Mid Channel\_ High Edge, Port 11)

| FCC ID: A3LMT1602D-48A | element                 | MEASUREMENT REPORT (CERTIFICATION) | SAMSUNG | Approved by:<br>Technical Manager |
|------------------------|-------------------------|------------------------------------|---------|-----------------------------------|
| Test Report S/N:       | Test Dates:             | EUT Type:                          |         | Page 44 of 90                     |
| 8K23041001-00-R2.A3L   | 04/21/2023 - 05/24/2023 | MMU(MT1602d)                       |         | Page 44 01 90                     |
| © 2022 Element         |                         |                                    |         | ES-QP-16-09 Rev.05                |



# 8.6 Spurious and Harmonic Emissions at Antenna Terminal

## **Test Overview**

The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10<sup>th</sup> harmonic. All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.

## **Test Procedure Used**

KDB 971168 D01 v03r01 - Section 6

KDB 662911 D01 v02r01 - Section E)3) Out-of-Band and Spurious Emission Measurements

- a) Absolute Emission Limits
- ii) Measure and sum spectral maxima across the outputs

ANSI C63.26-2015 - Section 5.7

## **Test Setting**

- 1. Start frequency was set to 9 kHz and stop frequency was set to at least 10 \* the fundamental frequency excluding the frequency range of the band edge measurement.
- 2. RBW: Please see test notes below.
- 3.  $VBW > 3 \times RBW$
- 4. Detector = RMS
- 5. Number of sweep points ≥ 2 x Span/RBW
- Trace mode = trace average
- 7. Sweep time = auto couple
- 8. The trace was allowed to stabilize

## Limit

§ 27.53 (I)(1)

For base station operations in the 3700-3980 MHz band, the conducted power of any emission outside the licensee's authorized bandwidth shall not exceed -13 dBm/MHz.

| FCC ID: A3LMT1602D-48A | element                 | MEASUREMENT REPORT (CERTIFICATION) | Approved by:<br>Technical Manager |
|------------------------|-------------------------|------------------------------------|-----------------------------------|
| Test Report S/N:       | Test Dates:             | EUT Type:                          | Daga 45 of 00                     |
| 8K23041001-00-R2.A3L   | 04/21/2023 - 05/24/2023 | MMU(MT1602d)                       | Page 45 of 90                     |



## **Test Setup**

The EUT and measurement equipment were set up as shown in the diagram below.

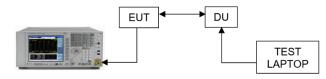



Figure 8-5. Test Instrument & Measurement Setup

## **Test Notes**

- 1. Compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 1 megahertz or greater. However, in the 1 megahertz bands immediately outside and adjacent to the licensee's frequency block, a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.
- 2. All modes of operation were investigated and the worst configuration result plots are reported in each operating frequency band.
- 3. The spurious emissions per port (dBm/MHz or dBm) is converted to a linear value (mW). A summation of linear powers for all ports gives us the total MIMO Conducted Emissions (mW). We convert this back to logarithmic scale for further emission power calculations.
- 4. When the spurious emissions performed using the method KDB 971168 D01 v03r01 Section E) 3) iii) detect with a margin of under 1dB to limit, the integration method was performed using the spectrum analyzer's band power functions according to ANSI C63.26-2015 Section 5.7 and using the method KDB 971168 D01 v03r01 Section E) 3) ii). The integration value was set to a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter.
- 5. The spurious emissions per port (dBm/MHz or dBm) is converted to a linear value (mW). A summation of linear powers for all ports gives us the total MIMO Conducted emissions (mW). We convert this back to logarithmic scale for further output power calculations.
- 6. For test result, it added 10 log (1/x), where x is the duty cycle, to the measured power in order to compute the average power during the actual transmission times.
- 7. All transmit signals from different antennas are completely uncorrelated with each other. So the maximum emissions shall be calculated based on the aggregate emission conducted across all antennas.
- 8. Consider the following factors for MIMO:
  The spurious emissions per each port is measured as dBm/MHz or dBm, the emissions are summed up in linear using the measure-and-sum technique defined in KDB 971168 D01 v03r01 Section E) 3) ii).

| FCC ID: A3LMT1602D-48A | element                 | MEASUREMENT REPORT (CERTIFICATION) | Approved by:<br>Technical Manager |
|------------------------|-------------------------|------------------------------------|-----------------------------------|
| Test Report S/N:       | Test Dates:             | EUT Type:                          | Dogo 46 of 00                     |
| 8K23041001-00-R2.A3L   | 04/21/2023 - 05/24/2023 | MMU(MT1602d)                       | Page 46 of 90                     |



9. Sample Calculation:

Let us assume the following numbers:

c) Total MIMO Emission power as 0.029 milliWatts

d)

| Fac                                     | Factors                                    |              |           |  |
|-----------------------------------------|--------------------------------------------|--------------|-----------|--|
| Summed MIMO Emission power (linear sum) | 0.029                                      | mW           |           |  |
| Summed MIMO Emission power (dBm)        | = 10 * log (0.029) =                       | -15.35       | dBm       |  |
| Limit<br>Margin                         | = Summed MIMO Emission power (dBm) - Limit | -13<br>-2.35 | dBm<br>dB |  |

- 10. Narrower RBW parameter is applied according to Section 5.7 of ANSI C63.26-2015 for some measurement ranges due to improving measurement accuracy. RBW Factor calculation as below:
  - RBW Factor =  $10*\log (0.1/0.001) = 20 \text{ dB}$
  - RBW Factor = 10\*log (0.1/0.01) = 10 dB

| Frequency range   | Basic Limit<br>(dBm/MHz) | References<br>RBW (MHz) | Measurement<br>RBW (MHz) | RBW Factor<br>(dB) | Adjusted limit (dBm) |
|-------------------|--------------------------|-------------------------|--------------------------|--------------------|----------------------|
| 9 kHz to 150 kHz  |                          |                         | 0.001                    | 30                 | -43.0                |
| 150 kHz to 30 MHz | -13.00                   | 4                       | 0.01                     | 20                 | -33.0                |
| 30 MHz to 1 GHz   | -13.00                   | l                       | 0.1                      | 10                 | -23.0                |
| 1 GHz to 40 GHz   |                          |                         | 1                        | 0                  | -13.0                |

Note: Adjusted limit (dBm/MHz) = Basic limit (dBm/1MHz) - RBW Factor

| FCC ID: A3LMT1602D-48A | element                 | MEASUREMENT REPORT (CERTIFICATION) |  | Approved by:<br>Technical Manager |
|------------------------|-------------------------|------------------------------------|--|-----------------------------------|
| Test Report S/N:       | Test Dates:             | EUT Type:                          |  | Dage 47 of 00                     |
| 8K23041001-00-R2.A3L   | 04/21/2023 - 05/24/2023 | MMU(MT1602d)                       |  | Page 47 of 90                     |



| OLL                   | Dord                         |                     |                      |                    | Le                | vel (dBm/Ml           | Hz)                   |                   |                |                 |
|-----------------------|------------------------------|---------------------|----------------------|--------------------|-------------------|-----------------------|-----------------------|-------------------|----------------|-----------------|
| СН                    | Port                         | 9 kHz to<br>150 kHz | 150 kHz to<br>30 MHz | 30 MHz to<br>1 GHz | 1 to 3.690<br>GHz | 3.690 to<br>3.699 GHz | 3.981 to<br>3.990 GHz | 3.990 to 6<br>GHz | 6 to 18<br>GHz | 18 to 40<br>GHz |
|                       | 0                            | -72.74              | -55.32               | -58.46             | -33.83            | -28.17                | -36.46                | -31.99            | -43.08         | -37.37          |
|                       | 1                            | -72.44              | -55.22               | -58.09             | -31.17            | -26.65                | -35.77                | -30.64            | -43.03         | -37.59          |
|                       | 2                            | -72.97              | -55.14               | -58.65             | -32.18            | -27.82                | -36.39                | -32.38            | -42.92         | -37.55          |
|                       | 3                            | -72.31              | -55.27               | -58.06             | -32.82            | -27.98                | -35.27                | -29.81            | -42.93         | -37.30          |
|                       | 4                            | -72.38              | -55.74               | -58.45             | -31.82            | -26.72                | -36.42                | -31.73            | -43.17         | -37.48          |
|                       | 5                            | -72.76              | -55.63               | -58.28             | -33.26            | -27.64                | -35.97                | -31.21            | -43.20         | -37.45          |
|                       | 6                            | -73.09              | -55.40               | -58.57             | -31.89            | -26.65                | -36.25                | -32.55            | -42.84         | -37.19          |
| Low                   | 7                            | -72.69              | -54.80               | -57.68             | -33.24            | -28.29                | -35.98                | -30.47            | -42.75         | -37.44          |
| Low                   | 8                            | -72.52              | -55.41               | -57.62             | -32.40            | -26.51                | -35.70                | -29.71            | -43.15         | -37.57          |
|                       | 9                            | -72.30              | -55.66               | -58.27             | -32.98            | -26.68                | -36.08                | -31.20            | -42.92         | -37.36          |
|                       | 10                           | -73.41              | -56.03               | -58.02             | -31.67            | -26.71                | -35.55                | -29.77            | -43.02         | -37.56          |
|                       | 11                           | -72.94              | -55.82               | -58.19             | -31.95            | -26.74                | -36.52                | -31.61            | -42.82         | -37.56          |
|                       | 12                           | -72.24              | -55.60               | -58.15             | -32.43            | -25.86                | -35.89                | -30.22            | -43.12         | -37.49          |
|                       | 13                           | -70.27              | -56.04               | -58.45             | -31.02            | -27.17                | -36.44                | -31.74            | -42.99         | -37.48          |
|                       | 14                           | -72.15              | -55.98               | -57.49             | -33.67            | -26.52                | -34.28                | -27.54            | -43.08         | -37.48          |
|                       | 15                           | -69.95              | -55.80               | -58.14             | -32.34            | -27.60                | -36.22                | -31.25            | -43.22         | -37.62          |
|                       | MO Conducted<br>ns (dBm/MHz) | -60.62              | -43.72               | -46.42             | -20.72            | -15.35                | -24.19                | -19.02            | -31.24         | -25.68          |
|                       | (dBm/MHz)                    | -43.00              | -33.00               | -23.00             | -13.00            | -13.00                | -13.00                | -13.00            | -13.00         | -13.00          |
|                       | Margin<br>m/MHz)             | -17.62              | -10.72               | -23.42             | -7.72             | -2.35                 | -11.19                | -6.02             | -18.24         | -12.68          |
| СН                    | Port                         | Level (dBm/MHz)     |                      |                    |                   |                       |                       |                   |                |                 |
| Cit                   | Tort                         | 9 kHz to<br>150 kHz | 150 kHz to<br>30 MHz | 30 MHz to<br>1 GHz | 1 to 3.690<br>GHz | 3.690 to<br>3.699 GHz | 3.981 to<br>3.990 GHz | 3.990 to 6<br>GHz | 6 to 18<br>GHz | 18 to 40<br>GHz |
|                       | 0                            | -73.34              | -54.75               | -58.55             | -35.19            | -34.17                | -35.61                | -31.83            | -42.94         | -37.53          |
|                       | 1                            | -73.15              | -55.41               | -58.15             | -35.93            | -33.76                | -34.83                | -30.83            | -43.14         | -37.39          |
|                       | 2                            | -73.35              | -55.60               | -58.59             | -34.92            | -33.87                | -35.71                | -32.23            | -43.05         | -37.59          |
|                       | 3                            | -73.64              | -55.13               | -58.00             | -35.35            | -33.55                | -34.87                | -29.57            | -43.01         | -37.47          |
|                       | 4                            | -72.76              | -55.61               | -58.43             | -34.94            | -33.51                | -35.41                | -31.68            | -43.04         | -37.35          |
|                       | 5                            | -72.84              | -55.52               | -58.47             | -36.00            | -33.83                | -35.57                | -31.26            | -43.03         | -37.59          |
|                       | 6                            | -72.42              | -55.10               | -58.63             | -36.03            | -33.76                | -35.75                | -32.57            | -43.05         | -37.39          |
| Mid                   | 7                            | -72.88              | -55.19               | -58.26             | -36.26            | -33.72                | -34.79                | -30.37            | -42.95         | -37.16          |
| iviid                 | 8                            | -73.03              | -55.66               | -58.18             | -35.31            | -33.24                | -35.22                | -30.35            | -42.93         | -37.66          |
|                       | 9                            | -72.59              | -55.35               | -58.34             | -35.91            | -33.65                | -35.97                | -30.93            | -42.96         | -37.55          |
|                       | 10                           | -73.34              | -55.22               | -57.85             | -34.24            | -33.29                | -34.50                | -29.48            | -43.02         | -37.43          |
|                       | 11                           | -72.63              | -55.15               | -58.32             | -35.41            | -33.63                | -35.47                | -31.47            | -42.95         | -37.46          |
|                       | 12                           | -73.34              | -55.58               | -57.86             | -36.55            | -33.57                | -35.37                | -30.39            | -42.86         | -37.54          |
|                       | 13                           | -70.43              | -55.92               | -58.16             | -35.89            | -33.79                | -36.08                | -31.72            | -43.12         | -37.51          |
|                       | 14                           | -73.07              | -55.36               | -57.53             | -36.41            | -33.27                | -34.11                | -27.07            | -42.98         | -37.27          |
|                       | 15                           | -70.08              | -55.48               | -58.36             | -36.19            | -34.03                | -35.48                | -31.08            | -43.01         | -37.27          |
| Total MIN<br>Emission | MO Conducted<br>ns (dBm/MHz) | -61.02              | -43.57               | -46.50             | -23.89            | -21.93                | -23.57                | -18.95            | -31.24         | -61.02          |
| Limit (               | (dBm/MHz)                    | -43.00              | -33.00               | -23.00             | -13.00            | -13.00                | -13.00                | -13.00            | -13.00         | -13.00          |
|                       | Margin<br>sm/MHz)            | -18.02              | -10.57               | -23.50             | -10.89            | -8.93                 | -10.57                | -5.95             | -18.24         | -48.02          |

| FCC ID: A3LMT1602D-48A | element                 | MEASUREMENT REPORT (CERTIFICATION) | Approved by:<br>Technical Manager |
|------------------------|-------------------------|------------------------------------|-----------------------------------|
| Test Report S/N:       | Test Dates:             | EUT Type:                          | Dogg 40 of 00                     |
| 8K23041001-00-R2.A3L   | 04/21/2023 - 05/24/2023 | MMU(MT1602d)                       | Page 48 of 90                     |



| 011  | 5 .                          |                     |                      |                    | Le                | vel (dBm/Ml           | Hz)                   |                   |                |                 |
|------|------------------------------|---------------------|----------------------|--------------------|-------------------|-----------------------|-----------------------|-------------------|----------------|-----------------|
| CH   | Port                         | 9 kHz to<br>150 kHz | 150 kHz to<br>30 MHz | 30 MHz to<br>1 GHz | 1 to 3.690<br>GHz | 3.690 to<br>3.699 GHz | 3.981 to<br>3.990 GHz | 3.990 to 6<br>GHz | 6 to 18<br>GHz | 18 to 40<br>GHz |
|      | 0                            | -72.64              | -55.35               | -58.55             | -35.28            | -33.63                | -26.95                | -32.06            | -43.04         | -37.54          |
|      | 1                            | -73.16              | -55.51               | -58.12             | -35.04            | -32.92                | -27.38                | -30.85            | -43.19         | -37.45          |
|      | 2                            | -73.29              | -55.13               | -58.54             | -34.91            | -33.33                | -26.76                | -32.40            | -43.06         | -37.32          |
|      | 3                            | -72.85              | -54.74               | -58.07             | -34.79            | -33.05                | -27.25                | -29.82            | -43.02         | -37.45          |
|      | 4                            | -72.77              | -55.52               | -58.18             | -34.19            | -32.34                | -27.11                | -31.35            | -43.13         | -37.37          |
|      | 5                            | -72.49              | -55.84               | -58.43             | -34.54            | -32.72                | -26.48                | -31.27            | -42.94         | -37.54          |
|      | 6                            | -72.94              | -55.51               | -58.51             | -35.37            | -33.36                | -26.77                | -32.31            | -43.14         | -37.69          |
| ∐iah | 7                            | -73.05              | -55.01               | -58.14             | -34.26            | -32.92                | -28.13                | -30.73            | -42.97         | -37.69          |
| High | 8                            | -72.40              | -55.72               | -58.02             | -34.77            | -32.94                | -26.72                | -30.12            | -43.14         | -37.42          |
|      | 9                            | -73.61              | -55.21               | -58.30             | -35.15            | -33.15                | -28.04                | -31.23            | -43.09         | -37.72          |
|      | 10                           | -72.41              | -55.50               | -57.95             | -33.23            | -32.41                | -27.50                | -29.70            | -43.11         | -37.67          |
|      | 11                           | -72.22              | -55.17               | -58.28             | -34.26            | -32.87                | -27.97                | -31.73            | -42.95         | -37.55          |
|      | 12                           | -72.87              | -55.49               | -58.06             | -35.12            | -33.27                | -23.12                | -30.38            | -43.06         | -37.56          |
|      | 13                           | -69.95              | -55.78               | -58.21             | -35.03            | -33.16                | -27.55                | -31.72            | -43.07         | -37.59          |
|      | 14                           | -73.38              | -55.53               | -57.44             | -35.04            | -32.54                | -26.35                | -27.35            | -43.02         | -37.56          |
|      | 15                           | -69.55              | -55.28               | -58.43             | -35.29            | -33.35                | -27.48                | -31.17            | -42.89         | -37.43          |
|      | MO Conducted<br>ns (dBm/MHz) | -60.83              | -43.62               | -46.46             | -23.09            | -21.28                | -14.96                | -19.06            | -31.30         | -25.77          |
|      | (dBm/MHz)                    | -43.00              | -33.00               | -23.00             | -13.00            | -13.00                | -13.00                | -13.00            | -13.00         | -13.00          |
|      | //argin<br>sm/MHz)           | -17.83              | -10.62               | -23.46             | -10.09            | -8.28                 | -1.96                 | -6.06             | -18.30         | -12.77          |

Table 8-24. Conducted Emissions Table (n77\_1C\_40M)

| 011 | <b>5</b> ,                   |                     |                      |                    | Le                | vel (dBm/Ml           | Hz)                   |                   |                |                 |
|-----|------------------------------|---------------------|----------------------|--------------------|-------------------|-----------------------|-----------------------|-------------------|----------------|-----------------|
| CH  | Port                         | 9 kHz to<br>150 kHz | 150 kHz to<br>30 MHz | 30 MHz to<br>1 GHz | 1 to 3.690<br>GHz | 3.690 to<br>3.699 GHz | 3.981 to<br>3.990 GHz | 3.990 to 6<br>GHz | 6 to 18<br>GHz | 18 to 40<br>GHz |
|     | 0                            | -71.99              | -55.55               | -58.63             | -31.65            | -27.30                | -35.51                | -32.13            | -43.02         | -37.54          |
|     | 1                            | -73.08              | -55.64               | -58.07             | -31.32            | -26.25                | -34.60                | -30.10            | -43.08         | -37.36          |
|     | 2                            | -73.45              | -56.15               | -58.39             | -32.00            | -27.71                | -35.84                | -32.28            | -43.06         | -37.56          |
|     | 3                            | -73.66              | -55.93               | -57.70             | -31.23            | -27.28                | -34.93                | -29.88            | -43.04         | -37.36          |
|     | 4                            | -72.39              | -56.31               | -58.33             | -29.94            | -25.28                | -34.25                | -31.58            | -43.05         | -37.73          |
|     | 5                            | -73.00              | -56.08               | -58.40             | -31.56            | -27.38                | -35.46                | -31.40            | -43.13         | -37.50          |
|     | 6                            | -72.84              | -56.80               | -58.70             | -30.40            | -26.50                | -35.92                | -32.50            | -43.02         | -37.54          |
| Low | 7                            | -72.75              | -56.09               | -57.88             | -32.07            | -27.54                | -35.78                | -30.41            | -42.95         | -37.40          |
| Low | 8                            | -69.20              | -55.90               | -57.93             | -30.41            | -26.29                | -35.21                | -30.36            | -42.99         | -37.56          |
|     | 9                            | -73.20              | -56.09               | -58.28             | -30.66            | -25.70                | -35.84                | -31.44            | -43.13         | -37.49          |
|     | 10                           | -72.58              | -55.77               | -57.88             | -27.94            | -25.67                | -34.37                | -29.84            | -43.08         | -37.68          |
|     | 11                           | -72.67              | -56.11               | -58.20             | -30.99            | -26.56                | -35.96                | -31.66            | -43.03         | -37.37          |
|     | 12                           | -72.78              | -55.97               | -57.90             | -29.11            | -25.57                | -35.47                | -30.38            | -42.80         | -37.45          |
|     | 13                           | -73.07              | -56.18               | -58.18             | -29.78            | -26.24                | -36.42                | -31.57            | -42.88         | -37.60          |
|     | 14                           | -73.22              | -56.19               | -57.56             | -30.62            | -26.31                | -33.67                | -27.48            | -43.09         | -37.25          |
|     | 15                           | -70.76              | -55.45               | -58.22             | -30.82            | -27.30                | -36.23                | -31.33            | -43.12         | -37.34          |
|     | MO Conducted<br>ns (dBm/MHz) | -60.71              | -44.26               | -46.41             | -19.05            | -14.79                | -23.54                | -19.05            | -31.26         | -25.72          |
|     | (dBm/MHz)                    | -43.00              | -33.00               | -23.00             | -13.00            | -13.00                | -13.00                | -13.00            | -13.00         | -13.00          |
|     | Margin<br>sm/MHz)            | -17.71              | -11.26               | -23.41             | -6.05             | -1.79                 | -10.54                | -6.05             | -18.26         | -12.72          |

| FCC ID: A3LMT1602D-48A | element                 | MEASUREMENT REPORT (CERTIFICATION) | Approved by:<br>Technical Manager |
|------------------------|-------------------------|------------------------------------|-----------------------------------|
| Test Report S/N:       | Test Dates:             | EUT Type:                          | Dags 40 of 00                     |
| 8K23041001-00-R2.A3L   | 04/21/2023 - 05/24/2023 | MMU(MT1602d)                       | Page 49 of 90                     |



| 011      | Б.,                          |                     |                      |                    | Le                | vel (dBm/MI           | Hz)                         |                   |                |                 |  |  |
|----------|------------------------------|---------------------|----------------------|--------------------|-------------------|-----------------------|-----------------------------|-------------------|----------------|-----------------|--|--|
| СН       | Port                         | 9 kHz to<br>150 kHz | 150 kHz to<br>30 MHz | 30 MHz to<br>1 GHz | 1 to 3.690<br>GHz | 3.690 to<br>3.699 GHz | 3.981 to<br>3.990 GHz       | 3.990 to 6<br>GHz | 6 to 18<br>GHz | 18 to 40<br>GHz |  |  |
|          | 0                            | -71.44              | -55.97               | -58.66             | -35.50            | -33.53                | -34.76                      | -32.08            | -42.85         | -37.40          |  |  |
|          | 1                            | -71.87              | -56.21               | -58.16             | -34.97            | -32.80                | -33.79                      | -30.55            | -43.01         | -37.43          |  |  |
|          | 2                            | -71.99              | -55.59               | -58.72             | -35.57            | -33.44                | -34.99                      | -32.27            | -43.07         | -37.52          |  |  |
|          | 3                            | -71.74              | -56.41               | -57.98             | -34.76            | -33.20                | -33.92                      | -29.23            | -42.82         | -37.31          |  |  |
|          | 4                            | -71.73              | -56.33               | -58.42             | -34.22            | -32.49                | -34.08                      | -31.74            | -42.92         | -37.46          |  |  |
|          | 5                            | -71.78              | -55.56               | -58.28             | -35.00            | -32.88                | -34.93                      | -31.14            | -42.95         | -37.64          |  |  |
|          | 6                            | -71.53              | -56.06               | -58.62             | -34.52            | -32.75                | -35.19                      | -32.48            | -42.96         | -37.49          |  |  |
| Mid      | 7                            | -71.35              | -55.59               | -58.18             | -35.95            | -33.40                | -34.09                      | -30.70            | -43.15         | -37.42          |  |  |
| Mid      | 8                            | -69.16              | -55.86               | -57.83             | -35.71            | -33.38                | -34.34                      | -30.37            | -42.97         | -37.65          |  |  |
|          | 9                            | -71.59              | -56.19               | -58.41             | -35.90            | -33.44                | -34.89                      | -31.21            | -43.18         | -37.39          |  |  |
|          | 10                           | -71.87              | -55.92               | -57.91             | -35.04            | -32.28                | -33.59                      | -29.56            | -43.17         | -37.54          |  |  |
|          | 11                           | -71.61              | -55.95               | -58.35             | -35.42            | -33.03                | -34.34                      | -31.55            | -43.10         | -37.52          |  |  |
|          | 12                           | -71.40              | -56.03               | -58.03             | -34.99            | -32.82                | -34.22                      | -30.37            | -43.07         | -37.65          |  |  |
|          | 13                           | -71.62              | -56.01               | -58.30             | -35.27            | -33.34                | -34.90                      | -31.60            | -42.94         | -37.62          |  |  |
|          | 14                           | -71.71              | -55.98               | -57.44             | -35.21            | -32.42                | -33.02                      | -27.31            | -43.10         | -37.11          |  |  |
|          | 15                           | -70.61              | -56.74               | -58.14             | -35.49            | -33.78                | -34.81                      | -31.31            | -42.97         | -37.51          |  |  |
|          | O Conducted (dBm/MHz)        | -59.65              | -44.21               | -46.49             | -23.45            | -21.32                | -22.62                      | -18.99            | -31.23         | -25.70          |  |  |
| Limit (d | dBm/MHz)                     | -43.00              | -33.00               | -23.00             | -13.00            | -13.00                | -13.00                      | -13.00            | -13.00         | -13.00          |  |  |
|          | largin<br>m/MHz)             | -16.65              | -11.21               | -23.49             | -10.45            | -8.32                 | -9.62                       | -5.99             | -18.23         | -12.70          |  |  |
| 011      | Dord                         | Level (dBm/MHz)     |                      |                    |                   |                       |                             |                   |                |                 |  |  |
| СН       | Port                         | 9 kHz to<br>150 kHz | 150 kHz to<br>30 MHz | 30 MHz to<br>1 GHz | 1 to 3.690<br>GHz | 3.690 to<br>3.699 GHz | 3.981 to<br>3.990 GHz       | 3.990 to 6<br>GHz | 6 to 18<br>GHz | 18 to 40<br>GHz |  |  |
|          | 0                            | -72.42              | -55.51               | -58.58             | -35.93            | -33.44                | -27.00                      | -32.27            | -42.96         | -37.31          |  |  |
|          | 1                            | -72.58              | -56.18               | -58.10             | -35.40            | -33.50                | -26.87                      | -30.40            | -43.03         | -37.61          |  |  |
|          | 2                            | -73.23              | -55.94               | -58.45             | -35.49            | -33.45                | -26.84                      | -32.32            | -42.94         | -37.51          |  |  |
|          | 3                            | -73.58              | -56.48               | -57.81             | -34.90            | -33.04                | -26.80                      | -29.41            | -43.14         | -37.47          |  |  |
|          | 4                            | -72.66              | -56.00               | -58.55             | -33.85            | -32.45                | -27.02                      | -31.85            | -43.03         | -37.52          |  |  |
|          | 5                            | -73.82              | -55.77               | -58.30             | -35.05            | -32.84                | -26.59                      | -31.10            | -43.00         | -37.43          |  |  |
|          | 6                            | -73.78              | -55.86               | -58.59             | -35.43            | -33.31                | -26.76                      | -32.60            | -42.92         | -37.33          |  |  |
| High     | 7                            | -73.33              | -55.75               | -58.12             | -34.76            | -32.84                | -27.66                      | -30.61            | -42.96         | -37.48          |  |  |
| i iigii  | 8                            | -69.41              | -56.16               | -58.07             | -34.95            | -33.29                | -25.91                      | -30.26            | -43.07         | -37.44          |  |  |
|          | 9                            | -73.52              | -55.83               | -58.34             | -35.46            | -33.26                | -28.16                      | -31.49            | -43.11         | -37.59          |  |  |
|          | 10                           | -72.81              | -55.58               | -57.86             | -34.55            | -32.66                | -28.62                      | -29.53            | -43.00         | -37.57          |  |  |
|          | 11                           | -73.36              | -55.54               | -58.42             | -34.73            | -32.94                | -28.15                      | -31.82            | -43.04         | -37.39          |  |  |
|          | 12                           | -73.41              | -55.96               | -58.19             | -35.48            | -33.36                | -23.90                      | -30.45            | -43.04         | -37.43          |  |  |
|          | 13                           | -73.49              | -55.51               | -58.44             | -35.00            | -33.36                | -28.06                      | -31.32            | -43.12         | -37.46          |  |  |
|          | 14                           | -72.96              | -56.02               | -57.48             | -35.56            | -32.76                | -27.47                      | -27.00            | -42.96         | -37.12          |  |  |
|          | 15                           | -70.35              | -56.13               | -58.16             | -35.65            | -33.62                | -28.48                      | -31.30            | -43.14         | -37.21          |  |  |
|          | IO Conducted<br>is (dBm/MHz) | -61.02              | -44.10               | -46.50             | -23.40            | -21.38                | -15.05                      | -18.99            | -31.26         | -25.66          |  |  |
| ,        | dBm/MHz)                     | -43.00              | -33.00               | -23.00             | -13.00            | -13.00                | -13.00                      | -13.00            | -13.00         | -13.00          |  |  |
|          | largin<br>m/MHz)             | -18.02              | -11.10               | -23.50             | -10.40            | -8.38                 | -2.05<br>ole (n <b>77 1</b> | -5.99             | -18.26         | -12.66          |  |  |

Table 8-25. Conducted Emissions Table (n77\_1C\_60M)

| FCC ID: A3LMT1602D-48A | element                 | MEASUREMENT REPORT (CERTIFICATION) | Approved by: Technical Manager |
|------------------------|-------------------------|------------------------------------|--------------------------------|
| Test Report S/N:       | Test Dates:             | EUT Type:                          | Page 50 of 90                  |
| 8K23041001-00-R2.A3L   | 04/21/2023 - 05/24/2023 | MMU(MT1602d)                       | rage 50 01 90                  |



| OH                    | Dorst                        |                     |                      |                    | Le                | vel (dBm/Ml           | Hz)                   |                   |                |                 |  |  |
|-----------------------|------------------------------|---------------------|----------------------|--------------------|-------------------|-----------------------|-----------------------|-------------------|----------------|-----------------|--|--|
| СН                    | Port                         | 9 kHz to<br>150 kHz | 150 kHz to<br>30 MHz | 30 MHz to<br>1 GHz | 1 to 3.690<br>GHz | 3.690 to<br>3.699 GHz | 3.981 to<br>3.990 GHz | 3.990 to 6<br>GHz | 6 to 18<br>GHz | 18 to 40<br>GHz |  |  |
|                       | 0                            | -72.93              | -55.78               | -58.67             | -31.91            | -29.50                | -34.66                | -32.27            | -42.78         | -37.48          |  |  |
|                       | 1                            | -74.26              | -55.91               | -57.88             | -30.33            | -27.86                | -33.42                | -30.68            | -43.11         | -37.44          |  |  |
|                       | 2                            | -72.66              | -55.81               | -58.56             | -31.47            | -29.38                | -35.11                | -31.98            | -42.99         | -37.50          |  |  |
|                       | 3                            | -73.53              | -55.67               | -58.16             | -31.48            | -28.71                | -33.90                | -29.24            | -43.02         | -37.58          |  |  |
|                       | 4                            | -73.83              | -56.36               | -58.53             | -28.86            | -26.37                | -31.92                | -31.66            | -42.90         | -37.41          |  |  |
|                       | 5                            | -74.14              | -56.20               | -58.30             | -32.01            | -29.32                | -34.21                | -31.05            | -42.89         | -37.37          |  |  |
|                       | 6                            | -73.82              | -56.12               | -58.55             | -31.04            | -28.73                | -35.18                | -32.34            | -42.89         | -37.63          |  |  |
| Low                   | 7                            | -73.72              | -55.84               | -58.11             | -32.39            | -29.43                | -35.54                | -30.65            | -43.06         | -37.58          |  |  |
| Low                   | 8                            | -69.83              | -55.78               | -58.02             | -30.95            | -28.72                | -34.60                | -30.31            | -43.15         | -37.48          |  |  |
|                       | 9                            | -74.12              | -56.63               | -58.28             | -30.30            | -28.81                | -34.95                | -31.35            | -42.80         | -37.57          |  |  |
|                       | 10                           | -74.23              | -55.65               | -57.87             | -29.55            | -27.76                | -33.55                | -29.58            | -43.00         | -37.46          |  |  |
|                       | 11                           | -73.35              | -56.27               | -58.29             | -29.64            | -28.48                | -34.34                | -31.67            | -43.04         | -37.64          |  |  |
|                       | 12                           | -73.66              | -56.19               | -58.13             | -27.75            | -26.09                | -34.73                | -30.48            | -43.20         | -37.54          |  |  |
|                       | 13                           | -73.81              | -56.41               | -58.46             | -29.99            | -28.66                | -35.60                | -31.58            | -43.09         | -37.52          |  |  |
|                       | 14                           | -73.37              | -56.16               | -57.59             | -31.74            | -27.74                | -32.91                | -27.46            | -43.08         | -37.46          |  |  |
|                       | 15                           | -71.12              | -56.17               | -57.97             | -30.73            | -28.99                | -35.41                | -31.33            | -43.14         | -37.12          |  |  |
|                       | MO Conducted<br>ns (dBm/MHz) | -61.42              | -44.29               | -46.51             | -18.82            | -16.59                | -22.50                | -19.03            | -31.22         | -25.75          |  |  |
| Limit (               | (dBm/MHz)                    | -43.00              | -33.00               | -23.00             | -13.00            | -13.00                | -13.00                | -13.00            | -13.00         | -13.00          |  |  |
|                       | /largin<br>sm/MHz)           | -18.42              | -11.29               | -23.51             | -5.82             | -3.59                 | -9.50                 | -6.03             | -18.22         | -12.75          |  |  |
| CH                    | Dowt                         |                     | Level (dBm/MHz)      |                    |                   |                       |                       |                   |                |                 |  |  |
| СН                    | Port                         | 9 kHz to<br>150 kHz | 150 kHz to<br>30 MHz | 30 MHz to<br>1 GHz | 1 to 3.690<br>GHz | 3.690 to<br>3.699 GHz | 3.981 to<br>3.990 GHz | 3.990 to 6<br>GHz | 6 to 18<br>GHz | 18 to 40<br>GHz |  |  |
|                       | 0                            | -72.45              | -56.51               | -58.32             | -34.12            | -32.99                | -33.63                | -32.22            | -43.08         | -37.48          |  |  |
|                       | 1                            | -75.08              | -55.20               | -58.27             | -34.49            | -31.88                | -32.76                | -30.73            | -43.03         | -37.43          |  |  |
|                       | 2                            | -74.86              | -55.72               | -58.66             | -34.31            | -32.32                | -34.39                | -32.44            | -43.00         | -37.54          |  |  |
|                       | 3                            | -73.82              | -56.49               | -57.91             | -32.20            | -29.25                | -32.31                | -29.82            | -43.01         | -37.51          |  |  |
|                       | 4                            | -73.08              | -56.00               | -58.51             | -31.98            | -29.65                | -30.55                | -31.58            | -42.95         | -37.48          |  |  |
|                       | 5                            | -73.64              | -56.33               | -58.20             | -34.36            | -32.24                | -34.18                | -31.16            | -42.79         | -37.67          |  |  |
|                       | 6                            | -74.28              | -56.18               | -58.68             | -34.27            | -32.56                | -34.87                | -32.29            | -43.08         | -37.59          |  |  |
| Mid                   | 7                            | -74.51              | -56.33               | -58.27             | -35.53            | -33.03                | -33.87                | -30.55            | -42.99         | -37.30          |  |  |
| iviid                 | 8                            | -70.15              | -56.15               | -58.03             | -34.92            | -33.05                | -33.88                | -30.26            | -42.83         | -37.52          |  |  |
|                       | 9                            | -73.46              | -55.72               | -58.36             | -34.95            | -32.75                | -34.60                | -31.04            | -43.12         | -37.51          |  |  |
|                       | 10                           | -74.41              | -55.84               | -57.81             | -34.09            | -30.31                | -33.51                | -29.60            | -43.12         | -37.59          |  |  |
|                       | 11                           | -73.49              | -56.09               | -58.05             | -33.94            | -32.07                | -33.95                | -31.63            | -43.15         | -37.34          |  |  |
|                       | 12                           | -72.67              | -56.22               | -58.21             | -34.95            | -32.48                | -33.49                | -30.10            | -42.95         | -37.46          |  |  |
|                       | 13                           | -73.68              | -57.12               | -58.06             | -34.18            | -32.07                | -33.59                | -31.64            | -43.12         | -37.56          |  |  |
|                       | 14                           | -73.10              | -55.71               | -57.38             | -34.69            | -32.26                | -32.64                | -27.16            | -43.02         | -37.51          |  |  |
|                       | 15                           | -70.83              | -56.17               | -58.39             | -35.20            | -33.25                | -34.83                | -31.08            | -43.11         | -37.39          |  |  |
| Total MIN<br>Emission | MO Conducted<br>ns (dBm/MHz) | -61.45              | -44.37               | -46.44             | -22.33            | -20.18                | -21.59                | -19.00            | -31.25         | -25.73          |  |  |
|                       | (dBm/MHz)                    | -43.00              | -33.00               | -23.00             | -13.00            | -13.00                | -13.00                | -13.00            | -13.00         | -13.00          |  |  |
|                       | Margin<br>sm/MHz)            | -18.45              | -11.37               | -23.44             | -9.33             | -7.18                 | -8.59                 | -6.00             | -18.25         | -12.73          |  |  |

| FCC ID: A3LMT1602D-48A | element                 | MEASUREMENT REPORT (CERTIFICATION) | Approved by:<br>Technical Manager |
|------------------------|-------------------------|------------------------------------|-----------------------------------|
| Test Report S/N:       | Test Dates:             | EUT Type:                          | Dogg 54 of 00                     |
| 8K23041001-00-R2.A3L   | 04/21/2023 - 05/24/2023 | MMU(MT1602d)                       | Page 51 of 90                     |



| OLI.  | 5 .                          |                     |                      |                    | Le                | vel (dBm/Ml           | Hz)                   |                   |                |                 |
|-------|------------------------------|---------------------|----------------------|--------------------|-------------------|-----------------------|-----------------------|-------------------|----------------|-----------------|
| CH    | Port                         | 9 kHz to<br>150 kHz | 150 kHz to<br>30 MHz | 30 MHz to<br>1 GHz | 1 to 3.690<br>GHz | 3.690 to<br>3.699 GHz | 3.981 to<br>3.990 GHz | 3.990 to 6<br>GHz | 6 to 18<br>GHz | 18 to 40<br>GHz |
|       | 0                            | -71.32              | -55.89               | -58.63             | -35.23            | -33.41                | -28.86                | -32.14            | -43.07         | -37.15          |
|       | 1                            | -73.14              | -56.30               | -58.01             | -35.36            | -33.21                | -27.92                | -30.83            | -42.87         | -37.45          |
|       | 2                            | -74.55              | -56.33               | -58.30             | -33.27            | -31.68                | -28.45                | -32.24            | -43.02         | -37.60          |
|       | 3                            | -74.26              | -56.47               | -58.08             | -34.51            | -32.68                | -28.59                | -29.45            | -42.95         | -37.49          |
|       | 4                            | -73.70              | -55.70               | -58.57             | -32.90            | -31.25                | -28.43                | -31.84            | -43.03         | -37.55          |
|       | 5                            | -73.47              | -56.29               | -58.07             | -33.19            | -31.87                | -27.51                | -31.02            | -43.06         | -37.53          |
|       | 6                            | -72.95              | -55.87               | -58.65             | -34.00            | -31.84                | -28.74                | -32.33            | -42.98         | -37.57          |
| Lliab | 7                            | -73.23              | -55.60               | -58.07             | -33.31            | -32.01                | -28.60                | -30.63            | -42.86         | -37.48          |
| High  | 8                            | -69.05              | -56.15               | -58.24             | -34.19            | -32.60                | -27.87                | -30.15            | -43.07         | -37.44          |
|       | 9                            | -73.30              | -56.27               | -58.34             | -33.39            | -31.78                | -30.00                | -31.13            | -43.02         | -37.48          |
|       | 10                           | -73.74              | -55.83               | -57.89             | -34.45            | -32.32                | -29.45                | -29.76            | -42.87         | -37.44          |
|       | 11                           | -73.34              | -55.67               | -58.36             | -34.78            | -32.63                | -29.57                | -31.82            | -43.07         | -37.51          |
|       | 12                           | -73.23              | -56.04               | -58.25             | -34.87            | -32.57                | -24.09                | -30.32            | -43.09         | -37.42          |
|       | 13                           | -73.17              | -56.38               | -58.22             | -34.21            | -32.43                | -29.81                | -31.87            | -43.05         | -37.31          |
|       | 14                           | -72.82              | -56.07               | -57.59             | -35.24            | -32.58                | -27.84                | -27.54            | -43.02         | -37.42          |
|       | 15                           | -70.30              | -55.79               | -58.40             | -34.23            | -31.61                | -29.25                | -31.09            | -43.02         | -37.40          |
|       | MO Conducted<br>ns (dBm/MHz) | -60.86              | -44.29               | -46.50             | -22.40            | -20.59                | -16.33                | -19.06            | -31.25         | -25.67          |
|       | (dBm/MHz)                    | -43.00              | -33.00               | -23.00             | -13.00            | -13.00                | -13.00                | -13.00            | -13.00         | -13.00          |
|       | Margin<br>sm/MHz)            | -17.86              | -11.29               | -23.50             | -9.40             | -7.59                 | -3.33                 | -6.06             | -18.25         | -12.67          |

Table 8-26. Conducted Emissions Table (n77\_1C\_80M)

| 011 | <b>5</b> ,                   |                     |                      |                    | Le                | vel (dBm/MI           | Hz)                   |                   |                |                 |
|-----|------------------------------|---------------------|----------------------|--------------------|-------------------|-----------------------|-----------------------|-------------------|----------------|-----------------|
| CH  | Port                         | 9 kHz to<br>150 kHz | 150 kHz to<br>30 MHz | 30 MHz to<br>1 GHz | 1 to 3.690<br>GHz | 3.690 to<br>3.699 GHz | 3.981 to<br>3.990 GHz | 3.990 to 6<br>GHz | 6 to 18<br>GHz | 18 to 40<br>GHz |
|     | 0                            | -72.56              | -55.34               | -58.52             | -32.09            | -28.13                | -33.54                | -32.24            | -43.09         | -37.48          |
|     | 1                            | -73.09              | -55.14               | -58.05             | -31.49            | -27.04                | -33.16                | -30.83            | -43.00         | -37.34          |
|     | 2                            | -73.05              | -55.23               | -58.58             | -31.36            | -27.69                | -34.50                | -32.37            | -42.74         | -37.37          |
|     | 3                            | -72.57              | -55.77               | -58.02             | -31.19            | -27.32                | -32.92                | -29.59            | -43.05         | -37.59          |
|     | 4                            | -72.28              | -55.60               | -58.25             | -30.39            | -26.70                | -32.75                | -31.68            | -43.03         | -37.57          |
|     | 5                            | -72.14              | -54.98               | -58.08             | -31.48            | -27.42                | -33.73                | -31.02            | -42.94         | -37.62          |
|     | 6                            | -73.04              | -55.50               | -58.56             | -31.71            | -27.68                | -34.39                | -32.51            | -43.06         | -37.67          |
| Low | 7                            | -71.60              | -55.34               | -57.88             | -31.95            | -27.54                | -34.89                | -30.66            | -43.01         | -37.48          |
| Low | 8                            | -70.32              | -55.35               | -58.06             | -31.20            | -26.82                | -34.28                | -30.17            | -42.97         | -37.40          |
|     | 9                            | -72.22              | -55.58               | -58.25             | -31.37            | -27.77                | -34.02                | -31.29            | -43.08         | -37.39          |
|     | 10                           | -71.77              | -55.00               | -57.64             | -29.91            | -26.90                | -31.70                | -29.88            | -42.98         | -37.35          |
|     | 11                           | -72.49              | -55.09               | -58.37             | -29.72            | -27.02                | -34.11                | -31.54            | -43.07         | -37.35          |
|     | 12                           | -73.60              | -55.25               | -58.11             | -29.69            | -26.09                | -34.42                | -30.31            | -43.08         | -37.41          |
|     | 13                           | -72.68              | -55.60               | -58.37             | -30.24            | -27.33                | -34.99                | -31.79            | -43.01         | -37.54          |
|     | 14                           | -73.05              | -55.60               | -57.47             | -31.17            | -26.96                | -32.39                | -27.44            | -42.98         | -37.50          |
|     | 15                           | -70.91              | -55.52               | -58.15             | -30.65            | -28.21                | -34.12                | -31.20            | -43.05         | -37.33          |
|     | MO Conducted<br>ns (dBm/MHz) | -60.65              | -43.61               | -46.44             | -19.31            | -15.52                | -22.01                | -19.07            | -31.25         | -25.72          |
|     | (dBm/MHz)                    | -43.00              | -33.00               | -23.00             | -13.00            | -13.00                | -13.00                | -13.00            | -13.00         | -13.00          |
|     | Margin<br>sm/MHz)            | -17.65              | -10.61               | -23.44             | -6.31             | -2.52                 | -9.01                 | -6.07             | -18.25         | -12.72          |

| FCC ID: A3LMT1602D-48A | element                 | MEASUREMENT REPORT (CERTIFICATION) | Approved by:<br>Technical Manager |
|------------------------|-------------------------|------------------------------------|-----------------------------------|
| Test Report S/N:       | Test Dates:             | EUT Type:                          | Dogo 52 of 00                     |
| 8K23041001-00-R2.A3L   | 04/21/2023 - 05/24/2023 | MMU(MT1602d)                       | Page 52 of 90                     |



| 011    | 5 .                          |                     |                      |                    | Le                | vel (dBm/Ml           | Hz)                   |                   |                |                 |  |  |  |
|--------|------------------------------|---------------------|----------------------|--------------------|-------------------|-----------------------|-----------------------|-------------------|----------------|-----------------|--|--|--|
| СН     | Port                         | 9 kHz to<br>150 kHz | 150 kHz to<br>30 MHz | 30 MHz to<br>1 GHz | 1 to 3.690<br>GHz | 3.690 to<br>3.699 GHz | 3.981 to<br>3.990 GHz | 3.990 to 6<br>GHz | 6 to 18<br>GHz | 18 to 40<br>GHz |  |  |  |
|        | 0                            | -72.76              | -55.69               | -58.60             | -33.68            | -30.57                | -31.50                | -32.05            | -43.13         | -37.22          |  |  |  |
|        | 1                            | -71.69              | -55.66               | -58.21             | -33.41            | -31.32                | -33.31                | -30.34            | -42.96         | -37.25          |  |  |  |
|        | 2                            | -72.31              | -55.70               | -58.31             | -33.83            | -31.52                | -34.14                | -32.33            | -43.05         | -37.50          |  |  |  |
|        | 3                            | -71.74              | -55.74               | -58.10             | -33.66            | -31.44                | -32.97                | -29.99            | -43.06         | -37.53          |  |  |  |
|        | 4                            | -72.93              | -55.97               | -58.61             | -33.45            | -31.22                | -33.24                | -31.63            | -43.01         | -37.36          |  |  |  |
|        | 5                            | -72.41              | -55.62               | -58.17             | -34.53            | -31.14                | -33.00                | -30.86            | -42.90         | -37.50          |  |  |  |
|        | 6                            | -72.64              | -55.08               | -58.49             | -33.99            | -31.89                | -33.90                | -32.40            | -43.03         | -37.50          |  |  |  |
| Mid    | 7                            | -72.65              | -55.13               | -58.21             | -34.06            | -32.08                | -33.35                | -30.27            | -42.84         | -37.61          |  |  |  |
| IVIIG  | 8                            | -69.52              | -55.64               | -58.07             | -34.71            | -31.72                | -33.37                | -30.18            | -43.14         | -37.41          |  |  |  |
|        | 9                            | -72.18              | -55.42               | -58.04             | -33.91            | -31.71                | -33.30                | -30.97            | -43.10         | -37.53          |  |  |  |
|        | 10                           | -72.01              | -55.84               | -57.86             | -33.36            | -30.92                | -32.65                | -29.84            | -43.14         | -37.68          |  |  |  |
|        | 11                           | -72.49              | -55.95               | -58.31             | -33.10            | -30.73                | -33.11                | -31.61            | -43.07         | -37.50          |  |  |  |
|        | 12                           | -72.37              | -55.95               | -58.24             | -34.61            | -31.73                | -33.16                | -30.29            | -43.06         | -37.35          |  |  |  |
|        | 13                           | -72.35              | -55.85               | -58.56             | -34.53            | -32.07                | -34.72                | -31.53            | -43.11         | -37.53          |  |  |  |
|        | 14                           | -72.31              | -56.14               | -57.54             | -33.77            | -31.27                | -32.09                | -27.54            | -43.03         | -37.49          |  |  |  |
|        | 15                           | -70.89              | -55.86               | -58.32             | -34.52            | -31.72                | -33.57                | -31.47            | -42.78         | -37.51          |  |  |  |
|        | MO Conducted<br>is (dBm/MHz) | -60.36              | -43.91               | -46.50             | -22.14            | -19.61                | -21.27                | -18.99            | -31.28         | -25.67          |  |  |  |
|        | dBm/MHz)                     | -43.00              | -33.00               | -23.00             | -13.00            | -13.00                | -13.00                | -13.00            | -13.00         | -13.00          |  |  |  |
|        | /largin<br>m/MHz)            | -17.36              | -10.91               | -23.50             | -9.14             | -6.61                 | -8.27                 | -5.99             | -18.28         | -12.67          |  |  |  |
| СН     | Dort                         |                     | Level (dBm/MHz)      |                    |                   |                       |                       |                   |                |                 |  |  |  |
| СП     | Port                         | 9 kHz to<br>150 kHz | 150 kHz to<br>30 MHz | 30 MHz to<br>1 GHz | 1 to 3.690<br>GHz | 3.690 to<br>3.699 GHz | 3.981 to<br>3.990 GHz | 3.990 to 6<br>GHz | 6 to 18<br>GHz | 18 to 40<br>GHz |  |  |  |
|        | 0                            | -69.00              | -55.17               | -58.59             | -34.32            | -33.05                | -28.11                | -32.04            | -43.13         | -37.57          |  |  |  |
|        | 1                            | -67.80              | -55.49               | -57.86             | -35.10            | -33.05                | -27.35                | -30.60            | -42.83         | -37.45          |  |  |  |
|        | 2                            | -67.82              | -55.97               | -58.25             | -33.85            | -32.72                | -27.66                | -32.20            | -42.85         | -37.28          |  |  |  |
|        | 3                            | -66.44              | -55.40               | -57.91             | -34.04            | -32.17                | -27.70                | -29.79            | -43.01         | -37.26          |  |  |  |
|        | 4                            | -67.02              | -55.74               | -58.18             | -33.69            | -32.33                | -27.48                | -31.64            | -42.96         | -37.34          |  |  |  |
|        | 5                            | -69.43              | -55.73               | -58.19             | -34.21            | -32.63                | -27.54                | -31.30            | -42.69         | -37.15          |  |  |  |
|        | 6                            | -66.65              | -55.97               | -58.58             | -33.79            | -31.24                | -28.06                | -32.53            | -43.21         | -37.33          |  |  |  |
| High   | 7                            | -66.79              | -55.24               | -58.23             | -33.56            | -31.62                | -26.51                | -30.76            | -43.06         | -37.38          |  |  |  |
| riigii | 8                            | -67.23              | -56.17               | -57.90             | -34.64            | -32.85                | -27.71                | -30.27            | -42.92         | -37.55          |  |  |  |
|        | 9                            | -65.05              | -56.12               | -58.19             | -34.56            | -33.23                | -28.44                | -31.19            | -43.15         | -37.44          |  |  |  |
|        | 10                           | -66.93              | -55.75               | -57.81             | -33.65            | -31.89                | -28.08                | -29.81            | -42.99         | -37.56          |  |  |  |
|        | 11                           | -66.06              | -55.28               | -58.47             | -33.89            | -32.88                | -28.16                | -31.52            | -42.88         | -37.59          |  |  |  |
|        | 12                           | -66.79              | -56.27               | -58.08             | -35.07            | -32.90                | -24.42                | -30.56            | -43.09         | -37.42          |  |  |  |
|        | 13                           | -66.51              | -55.57               | -58.27             | -34.42            | -32.44                | -28.94                | -31.56            | -43.23         | -37.58          |  |  |  |
|        | 14                           | -65.47              | -55.16               | -57.41             | -35.03            | -32.31                | -27.88                | -27.32            | -43.12         | -37.52          |  |  |  |
|        | 15                           | -65.86              | -55.75               | -58.34             | -29.92            | -28.91                | -28.67                | -31.37            | -43.11         | -37.56          |  |  |  |
|        | MO Conducted<br>as (dBm/MHz) | -55.21              | -43.85               | -46.41             | -22.51            | -20.77                | -15.71                | -19.05            | -31.25         | -25.67          |  |  |  |
| ,      | dBm/MHz)                     | -43.00              | -33.00               | -23.00             | -13.00            | -13.00                | -13.00                | -13.00            | -13.00         | -13.00          |  |  |  |
|        | /largin<br>m/MHz)            | -12.21              | -10.85               | -23.41             | -9.51             | -7.77                 | -2.71                 | -6.05             | -18.25         | -12.67          |  |  |  |

Table 8-27. Conducted Emissions Table (n77\_1C\_100M)

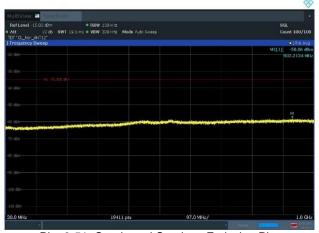
| FCC ID: A3LMT1602D-48A | element                 | MEASUREMENT REPORT (CERTIFICATION) | Approved by: Technical Manager |
|------------------------|-------------------------|------------------------------------|--------------------------------|
| Test Report S/N:       | Test Dates:             | EUT Type:                          | Dags 53 of 00                  |
| 8K23041001-00-R2.A3L   | 04/21/2023 - 05/24/2023 | MMU(MT1602d)                       | Page 53 of 90                  |



| 011 | 5 (                          |                     |                      |                    | Le                | vel (dBm/MI           | Hz)                   |                   |                |                 |
|-----|------------------------------|---------------------|----------------------|--------------------|-------------------|-----------------------|-----------------------|-------------------|----------------|-----------------|
| СН  | Port                         | 9 kHz to<br>150 kHz | 150 kHz to<br>30 MHz | 30 MHz to<br>1 GHz | 1 to 3.690<br>GHz | 3.690 to<br>3.699 GHz | 3.981 to<br>3.990 GHz | 3.990 to 6<br>GHz | 6 to 18<br>GHz | 18 to 40<br>GHz |
|     | 0                            | -72.19              | -55.63               | -58.55             | -30.43            | -28.65                | -34.49                | -32.04            | -43.03         | -37.58          |
|     | 1                            | -73.47              | -55.66               | -55.15             | -29.24            | -27.02                | -32.92                | -30.70            | -43.03         | -37.56          |
|     | 2                            | -72.77              | -56.15               | -58.60             | -29.86            | -28.46                | -32.98                | -32.55            | -43.07         | -37.43          |
|     | 3                            | -73.58              | -55.94               | -56.70             | -29.72            | -27.67                | -33.19                | -29.79            | -43.05         | -37.58          |
|     | 4                            | -73.07              | -56.27               | -58.49             | -27.95            | -27.02                | -31.40                | -31.60            | -43.10         | -37.66          |
|     | 5                            | -73.64              | -55.79               | -58.30             | -29.59            | -26.76                | -33.30                | -31.15            | -43.03         | -37.35          |
|     | 6                            | -72.85              | -56.40               | -58.30             | -29.87            | -27.73                | -33.96                | -32.63            | -43.11         | -37.70          |
| Mid | 7                            | -72.61              | -56.00               | -58.20             | -29.61            | -27.96                | -34.33                | -30.51            | -43.12         | -37.70          |
| Mid | 8                            | -68.79              | -55.62               | -58.02             | -30.02            | -27.71                | -34.30                | -30.21            | -43.10         | -37.33          |
|     | 9                            | -73.22              | -56.01               | -58.25             | -29.15            | -28.01                | -34.18                | -31.10            | -43.14         | -37.41          |
|     | 10                           | -72.54              | -55.83               | -57.85             | -27.70            | -27.24                | -31.86                | -29.75            | -43.00         | -37.50          |
|     | 11                           | -72.91              | -56.50               | -58.25             | -29.07            | -27.46                | -34.34                | -31.58            | -42.99         | -37.53          |
|     | 12                           | -72.67              | -55.90               | -58.08             | -28.12            | -26.86                | -33.74                | -30.24            | -43.05         | -37.44          |
|     | 13                           | -73.25              | -56.07               | -58.39             | -27.88            | -26.89                | -34.45                | -31.78            | -43.11         | -37.33          |
|     | 14                           | -72.36              | -56.27               | -57.30             | -30.02            | -27.30                | -32.61                | -27.40            | -43.02         | -37.56          |
|     | 15                           | -70.48              | -55.70               | -57.99             | -29.39            | -27.90                | -34.45                | -31.16            | -43.06         | -37.56          |
|     | MO Conducted<br>ns (dBm/MHz) | -60.69              | -44.22               | -46.07             | -17.56            | -15.81                | -21.79                | -19.05            | -31.30         | -25.75          |
|     | (dBm/MHz)                    | -43.00              | -33.00               | -23.00             | -13.00            | -13.00                | -13.00                | -13.00            | -13.00         | -13.00          |
|     | Margin<br>Bm/MHz)            | -17.69              | -11.22               | -23.07             | -4.56             | -2.81                 | -8.79                 | -6.05             | -18.30         | -12.75          |

Table 8-28. Conducted Emissions Table (n77\_2C\_100M+40M)

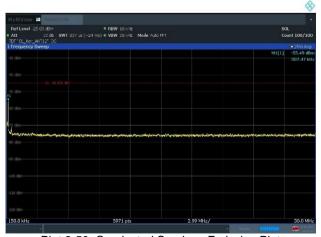
| 011   | <b>5</b> ,                   |                     |                      |                    | Le                | vel (dBm/MI           | Hz)                   |                   |                |                 |
|-------|------------------------------|---------------------|----------------------|--------------------|-------------------|-----------------------|-----------------------|-------------------|----------------|-----------------|
| СН    | Port                         | 9 kHz to<br>150 kHz | 150 kHz to<br>30 MHz | 30 MHz to<br>1 GHz | 1 to 3.690<br>GHz | 3.690 to<br>3.699 GHz | 3.981 to<br>3.990 GHz | 3.990 to 6<br>GHz | 6 to 18<br>GHz | 18 to 40<br>GHz |
|       | 0                            | -72.32              | -55.29               | -58.58             | -29.12            | -27.64                | -32.39                | -32.02            | -43.21         | -37.50          |
|       | 1                            | -73.49              | -55.44               | -57.93             | -29.81            | -26.99                | -31.64                | -30.64            | -42.98         | -37.31          |
|       | 2                            | -73.00              | -55.39               | -58.30             | -29.45            | -27.61                | -32.12                | -32.54            | -43.09         | -37.44          |
|       | 3                            | -72.97              | -55.63               | -57.99             | -29.38            | -27.97                | -32.30                | -29.83            | -43.04         | -37.69          |
|       | 4                            | -73.20              | -55.75               | -58.41             | -29.02            | -26.56                | -30.89                | -31.53            | -43.06         | -37.56          |
|       | 5                            | -73.25              | -55.56               | -57.95             | -28.77            | -27.36                | -31.02                | -31.39            | -43.04         | -37.52          |
|       | 6                            | -75.24              | -55.81               | -58.64             | -29.42            | -27.44                | -33.70                | -32.06            | -43.01         | -37.64          |
| Mid   | 7                            | -73.56              | -55.50               | -57.93             | -30.40            | -28.37                | -31.04                | -30.52            | -42.95         | -37.58          |
| IVIIG | 8                            | -69.88              | -56.21               | -58.04             | -28.73            | -27.81                | -32.54                | -30.08            | -42.90         | -37.52          |
|       | 9                            | -72.78              | -56.23               | -58.11             | -29.09            | -27.76                | -30.66                | -31.33            | -43.12         | -37.60          |
|       | 10                           | -73.57              | -55.66               | -57.82             | -27.36            | -26.71                | -31.26                | -30.06            | -43.09         | -37.31          |
|       | 11                           | -73.25              | -55.94               | -58.37             | -29.25            | -27.51                | -31.76                | -31.66            | -43.01         | -37.51          |
|       | 12                           | -72.87              | -55.89               | -58.13             | -28.78            | -26.97                | -29.38                | -30.64            | -43.18         | -37.56          |
|       | 13                           | -72.62              | -56.28               | -58.38             | -29.42            | -27.27                | -31.07                | -31.50            | -43.03         | -37.63          |
|       | 14                           | -73.15              | -55.67               | -57.63             | -29.00            | -27.06                | -30.85                | -27.63            | -43.13         | -37.39          |
|       | 15                           | -70.77              | -55.93               | -58.27             | -30.55            | -28.29                | -33.55                | -31.09            | -43.20         | -37.71          |
|       | MO Conducted<br>ns (dBm/MHz) | -61.03              | -43.95               | -46.43             | -17.47            | -15.68                | -25.17                | -19.08            | -31.30         | -25.77          |
|       | (dBm/MHz)                    | -43.00              | -33.00               | -23.00             | -13.00            | -13.00                | -13.00                | -13.00            | -13.00         | -13.00          |
|       | Margin<br>sm/MHz)            | -18.03              | -10.95               | -23.43             | -4.47             | -2.68                 | -12.17                | -6.08             | -18.30         | -12.77          |


Table 8-29. Conducted Emissions Table (n77\_2C\_100M+100M)

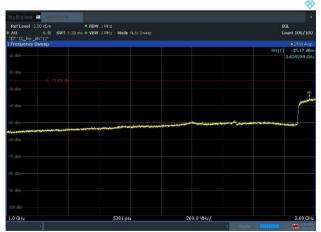
| FCC ID: A3LMT1602D-48A | element                 | MEASUREMENT REPORT (CERTIFICATION) | Approved by:<br>Technical Manager |
|------------------------|-------------------------|------------------------------------|-----------------------------------|
| Test Report S/N:       | Test Dates:             | EUT Type:                          | Dags 54 of 00                     |
| 8K23041001-00-R2.A3L   | 04/21/2023 - 05/24/2023 | MMU(MT1602d)                       | Page 54 of 90                     |



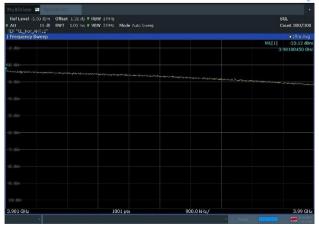



Plot 8-49. Conducted Spurious Emission Plot (9KHz to 150KHz) (n77\_1C\_40M\_256QAM - High Channel, Port 12)




Plot 8-51. Conducted Spurious Emission Plot (30MHz to 1000MHz) (n77\_1C\_40M\_256QAM - High Channel, Port 12)




Plot 8-53. Conducted Spurious Emission Plot (3690MHz to 3699MHz) (n77\_1C\_40M\_256QAM - High Channel, Port 12)



Plot 8-50. Conducted Spurious Emission Plot (150KHz to 30MHz) (n77\_1C\_40M\_256QAM - High Channel, Port 12)



Plot 8-52. Conducted Spurious Emission Plot (1000MHz to 3690MHz) (n77\_1C\_40M\_256QAM - High Channel, Port 12)

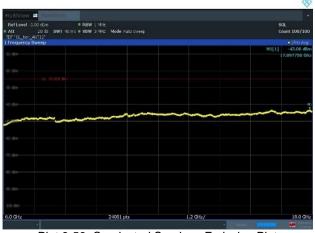


Plot 8-54. Conducted Spurious Emission Plot (3981MHz to 3990GHz) (n77\_1C\_40M\_256QAM - High Channel, Port 12)

| FCC ID: A3LMT1602D-48A | element                 | MEASUREMENT REPORT (CERTIFICATION) | Approved by:<br>Technical Manager |
|------------------------|-------------------------|------------------------------------|-----------------------------------|
| Test Report S/N:       | Test Dates:             | EUT Type:                          | Page 55 of 90                     |
| 8K23041001-00-R2.A3L   | 04/21/2023 - 05/24/2023 | MMU(MT1602d)                       | rage 55 til 90                    |



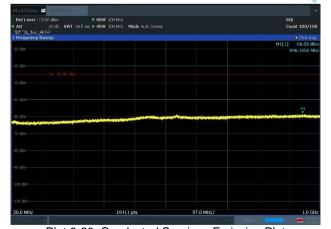



Plot 8-55. Conducted Spurious Emission Plot (3990MHz to 6GHz) (n77\_1C\_40M\_256QAM - High Channel, Port 12)



Plot 8-57. Conducted Spurious Emission Plot (18GHz to 40GHz) (n77\_1C\_40M\_256QAM - High Channel, Port 12)




Plot 8-59. Conducted Spurious Emission Plot (150KHz to 30MHz) (n77\_1C\_60M\_QPSK - Low Channel, Port 4)



Plot 8-56. Conducted Spurious Emission Plot (6GHz to 18GHz) (n77\_1C\_40M\_256QAM - High Channel, Port 12)



Plot 8-58. Conducted Spurious Emission Plot (9KHz to 150KHz) (n77\_1C\_60M\_QPSK - Low Channel, Port 4)

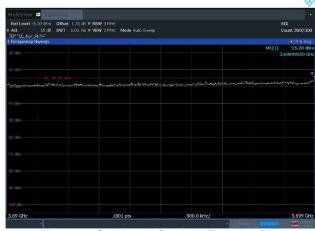


Plot 8-60. Conducted Spurious Emission Plot (30MHz to 1000MHz) (n77\_1C\_60M\_QPSK - Low Channel, Port 4)

| FCC ID: A3LMT1602D-48A | element                 | MEASUREMENT REPORT (CERTIFICATION) | Approved by:<br>Technical Manager |
|------------------------|-------------------------|------------------------------------|-----------------------------------|
| Test Report S/N:       | Test Dates:             | EUT Type:                          | Daga FC of 00                     |
| 8K23041001-00-R2.A3L   | 04/21/2023 - 05/24/2023 | MMU(MT1602d)                       | Page 56 of 90                     |






Plot 8-61. Conducted Spurious Emission Plot (1000MHz to 3690MHz) (n77\_1C\_60M\_QPSK - Low Channel, Port 4)



Plot 8-63. Conducted Spurious Emission Plot (3981MHz to 3990GHz) (n77\_1C\_60M\_QPSK - Low Channel, Port 4)



Plot 8-65. Conducted Spurious Emission Plot (6GHz to 18GHz) (n77\_1C\_60M\_QPSK - Low Channel, Port 4)



Plot 8-62. Conducted Spurious Emission Plot (3690MHz to 3699MHz) (n77\_1C\_60M\_QPSK - Low Channel, Port 4)



Plot 8-64. Conducted Spurious Emission Plot (3990MHz to 6GHz) (n77\_1C\_60M\_QPSK - Low Channel, Port 4)



Plot 8-66. Conducted Spurious Emission Plot (18GHz to 40GHz) (n77\_1C\_60M\_QPSK - Low Channel, Port 4)

| FCC ID: A3LMT1602D-48A | element                 | MEASUREMENT REPORT (CERTIFICATION) | Approved by: Technical Manager |
|------------------------|-------------------------|------------------------------------|--------------------------------|
| Test Report S/N:       | Test Dates:             | EUT Type:                          | Daga 57 of 00                  |
| 8K23041001-00-R2.A3L   | 04/21/2023 - 05/24/2023 | MMU(MT1602d)                       | Page 57 of 90                  |