

Test Report No.: NK-21-E-0514

FCC Certification

Nemko Korea Co., Ltd.

155, 153 and 159, Osan-ro, Mohyeon-eup, Cheoin-gu, Yongin-si, Gyeonggi-do 16885 Republic of Korea TEL : + 82 31 330 1700 FAX : + 82 31 322 2332

FCC PART 18 Class II Permissive Change

Applicant :

Samsung Electronics Co., Ltd. Kitchen solution Business Team , 129, Samsung-ro Yeongtong-gu, Suwon-si, Gyeonggi-do, 443-742 Korea, Republic of Attn : Mr. Gilryeong Koh Dates of Issue : July 07, 2021 Test Report No. : NK-21-E-0514 Test Site : Nemko Korea Co., Ltd. EMC site, Korea

FCC ID

Trade Mark

Contact Person

A3LME6000A

SAMSUNG

Samsung Electronics Co., Ltd. Kitchen solution Business Team , 129, Samsung-ro Yeongtong-gu, Suwon-si, Gyeonggi-do, 443-742 Korea, Republic of Mr.Gilryeong Koh Telephone No. : + 82 31 200 6849

Applied Standard : Classification : EUT Type : FCC Part 18 & Part 2 Consumer ISM equipment Microwave ovens

The device bearing the Trade Mark and FCC ID specified above has been shown to comply with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in MP-5:1986.

I attest to the accuracy of data and all measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

220 July 07, 2021

Tested By : Jeamin Kim Engineer

July 07, 2021

Reviewed By : Taegyun Kim Technical Manager

NKQF-27-23 (Rev. 0)

Samsung Electronics Co., Ltd. FCC ID: A3LME6000A

Page 1 of 69

ACCREDITATION AND LISTING EUT INFORMATION Radiation Hazard7 Input Power Measurement......7 Frequency Measurements7 Radiated Emissions 9 Radiation Hazard10 Input Power Measurement......10 Frequency measurements11 Radiated Emissions (150 ktz to 30 Mtz)16 APPENDIX B – PHOTOGRAPHS OF TEST SET-UP

SCOPE

Measurement and determination of electromagnetic emissions (EME) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission under FCC part 18.

Responsible Party : Contact Person :	Samsung Electronics Co., Ltd. Mr. Gilryeong Koh Tel No.: + 82 31 200 6849
Manufacturer :	Samsung Electronics Co., Ltd. Kitchen solution Business Team , 129, Samsung-ro Yeongtong-gu, Suwon-si, Gyeonggi-do, 443-742 Korea, Republic of

FCC ID: A3LME6000A

٠	Model:	ME11A7710DS
٠	Trade Mark:	SAMSUNG
•	EUT Type:	Microwave ovens
•	Applied Standard:	FCC Part 18 & Part 2
•	Test Procedure(s):	MP-5:1986
•	Dates of Test:	June 16, 2021 to June 22, 2021
٠	Place of Tests:	Nemko Korea Co., Ltd. EMC Site
٠	Test Report No .:	NK-21-E-0514

The measurement procedure described in MP5:1986 for Methods of Measurement of radiated, powerline conducted radio noise, frequency and power output was used in determining emissions emanating from **Samsung Electronics Co., Ltd.** FCC ID : **A3LME6000A, Microwave ovens.**

These measurement tests were conducted at *Nemko Korea Co., Ltd. EMC Laboratory*. The site address is 155, 153 and 159, Osan-ro, Mohyeon-eup, Cheoin-gu, Yongin-si, Gyeonggido 16885 Republic of Korea

The area of Nemko Korea Corporation Ltd. EMC Test Site is located in a mountain area at 80 kilometers (48 miles) southeast and Incheon International Airport (Incheon Airport), 30 kilometers (18 miles) south-southeast from central Seoul.

The Nemko Korea Co., Ltd. has been accredited as a Conformity Assessment Body (CAB).

Nemko Korea Co., Ltd. 155, 153 and 159, Osan-ro, Mohyeoneup, Cheoin-gu, Yongin-si, Gyeonggi-do 16885 Republic of Korea Tel) + 82 31 330 1700 Fax) + 82 31 322 2332

Fig. 1. The map above shows the Seoul in Korea vicinity area. The map also shows Nemko Korea Corporation Ltd. EMC Lab and Incheon Airport.

ACCREDITATION AND LISTING

	Accreditation type	Accreditation number		
F©	CAB Accreditation for DOC	Designation No. KR0026		
KOLAS TOTALORY ADDREDUTED	KOLAS Accredited Lab. (Korea Laboratory Accreditation Scheme)	Registration No. KT155		
Industry Canada	Canada IC Registered site	Site No. 2040E		
VEI	VCCI registration site(RE/CE/Telecom CE)	Member No. 2118		
	EMC CBTL	TL124		
	KCC(RRL)Designated Lab.	Registration No. KR0026		

EUT Information

Intended use	Household
Type of appliance	Microwave ovens
Model	ME11A7710DS
Rated voltage & frequency	a.c. 120 V, 60 Hz Single Phase
Rated power output	1 100 W
Rated power consumption(MW)	1 650 W
Magnetron	2M303J, manufactured by Toshiba

Component List

Item	em Model		Serial Number	
MAGNETRON	2M303J	Toshiba	N/A	
H.V TRANS	SHV-U1870E	DPC	N/A	
H.V CAPACITOR	CH85-21095	Bicai	N/A	
FAN MOTOR	SMF-U2070C	Ohsung	N/A	
INTERLOCK SWITCH	GSM-V1603A2	Gersung	N/A	
PCB	B ME6000A_MAIN		N/A	

Description of the Changes according to FCC part 2.1043

Report No.	Difference
N/A	N/A

Radiation Hazard

A 700 ml water load was placed in the center of the oven.The power setting was set to maximum power.While the oven was operating, the Microwave Survey Meter probe was moved slowly around the door seams to check for leakage.

Input Power Measurement

A 700 mℓ water load was placed in the center of the oven and the oven set to maximum power. A 700 mℓ water load was chosen for its compatibility. Input power and current were measured using a Power Analyzer. Manufacturers to determine their input ratings commonly use this procedure.

Output Power Measurement

The Caloric Method was used to determine maximum output power. The initial temperature of a 1 000 $m\ell$ water load was measured. The water load was placed in the center of the oven. The oven was operated at maximum output power for 47 seconds. Then the temperature of the water re-measured.

Frequency Measurements

Following the above test, after operating the oven long enough to assure that stable operating temperature were obtained, the operating frequency was monitored as the input voltage was varied between 80 percent to 125 percent of the nominal rating. And the load quantity was reduced by evaporation to approximately 20 % of the original quantity with nominal rating.

Conducted Emissions

The Line conducted emission test facility is located inside a $4 \times 7 \times 2.5$ m shielded enclosure.

It is manufactured by EM engineering. The shielding effectiveness of the shielded room is in accordance with MIL-STD-285 or NSA 65-6.

A 1 m x 1.5 m wooden table 0.8 m height is placed 0.4 m away from the vertical wall and 0.5 m away from the side of wall of the shielded room Rohde & Schwarz (ESH2-Z5) of the 50 ohm / 50 uH Line Impedance Stabilization Network(LISN) are bonded to the shielded room.

The EUT is powered from the Rohde & Schwarz (ESH2-Z5) LISN.

Power to the LISN s are filtered by high-current high insertion loss power line filters.

The purpose of filter is to attenuate ambient signal interference and this filter is also bonded to shielded enclosure. All electrical cables are shielded by tinned copper zipper tubing with inner diameter of $1/2^{\circ}$.

If d.c. power device, power will be derived from the source power supply it normally will be powered from and this supply lines will be connected to the LISNs,

All interconnecting cables more than 1 m were shortened by non-inductive bundling (serpentine fashion) to a 1 m length.

Sufficient time for EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the spectrum analyzer to determine the frequency producing the maximum EME from the EUT. The spectrum was scanned from 150 klz to 30 Mlz with 15 s sweep time.

The frequency producing the maximum level was re-examined using the EMI test receiver. (Rohde & Schwarz ESCI).

The detector functions were set to quasi-peak mode & CISPR average mode.

The bandwidth of receiver was set to 9 kb. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each EME emission.

Each emission was maximized by; switching power lines; varying the mode of operation or resolution; clock or data exchange speed; scrolling H pattern to the EUT and of support equipment, and powering the monitor from the floor mounted outlet box and computer aux a.c. outlet, if applicable; whichever determined the worst case emission.

Each EME reported was calibrated using the R&S signal generator.

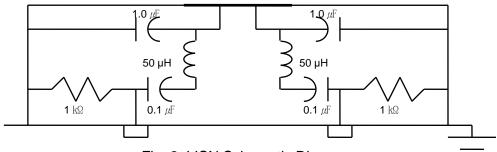


Fig. 2. LISN Schematic Diagram

Radiated Emissions

Measurement were made indoors at 10 m & 3 m using antenna, signal conditioning unit and EMI test receiver to determine the frequency producing the maximum EME.

Appropriate precaution was taken to ensure that all EME from the EUT were maximized and investigated. The Technology configuration, clock speed, mode of operation or video resolution, turntable azimuth with respect to the antenna was note for each frequency found.

The spectrum was scanned from 0.15 Mz to 30 Mz using Loop Antenna

(ROHDE & SCHWARZ/HFH2-Z2) and from 30 Mt to 1 000 Mt using TRILOG Broadband Test Antenna (Schwarzbeck, VULB 9163). 1 GHz to 6 GHz and 6 GHz to 18 GHz, Double Ridged Broadband Horn Antennas (Schwarzbeck, HF907) was used. 18 GHz to 26.5 GHz, Horn Antenna (Q-par Angus, QMS-00238) was used.

The test equipment was placed on a Styrofoam table.

Final Measurements were made indoors at 3 m using Loop Antenna

(ROHDE & SCHWARZ/HFH2-Z2) for measurement from 0.15 to 30 Mb with RBW 9 kb and made indoor at 10 m using TRILOG Broadband Test Antenna (Schwarzbeck, VULB 9163) for measurement from 30 Mb to 1 000 Mb with RBW 120 kb and made indoors at 3 m using Double Ridged Broadband Horn Antenna (Schwarzbeck, HF907) Horn Antenna (Q-par Angus, QMS-00238) for measurement from 1 Gb to 26.5 Gb with RBW 1 Mb.

The detector function were set to quasi peak mode and the bandwidth of the receiver were set to 9 kHz, 120 kHz and peak mode 1 MHz depending on the frequency or type of signal.

The Double Ridged Broadband Horn antenna was tuned to the frequency found during preliminary radiated measurements.

The EUT support equipment and interconnecting cables were re-configured to the setup producing the maximum emission for the frequency and were placed on top of a 0.8 m high non- metallic 1.0 X 1.5 meter table.

The EUT, support equipment and interconnecting cables were re-arranged and manipulated to maximize each EME emission.

The EUT is rotated about its vertical axis on the turntable, and the polarization and height of the receiving antenna are varied to obtain the highest field strength on the particular frequency under observation.

Each EME reported was calibrated using the R/S signal generator.

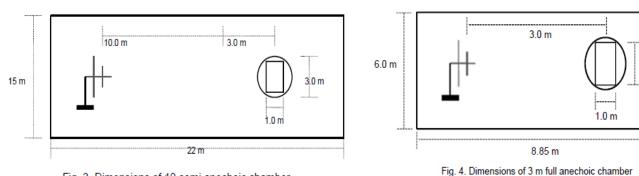


Fig. 3. Dimensions of 10 semi anechoic chamber

Samsung Electronics Co., Ltd. FCC ID: A3LME6000A 1.5 m

Radiation Hazard

Probe Location	Maximum Leakage [mW/Cm2]	Limit [mW/Cm2]
Α	0.10	1.00
В	0.05	1.00
С	0.05	1.00
D	0.05	1.00
E	0.10	1.00
F	0.05	1.00

Input Power Measurement

Operation mode	P rated (W)	P (W)	dP (%)	Required dP (%)	
Power Input	Power Input 1 650		1.78	+ 15 %	

Output Power Measurement

Quantity of	Mass of the	Ambient	Ambient Initial Fina		Heating	Power
Water	container	temperature	temperature temperature		time	output
[ml]	[g]	[°C]	[°C]	[°C]	[s]	[W]
1 000	400	19.4	10.0	20.1	38	1 117

Formula :

$$P = \frac{4.187 \text{ x } \text{m}_{\text{w}} \text{ x } (\text{T}_{1} - \text{T}_{0}) + 0.55 \text{ x } \text{m}_{\text{c}} \text{ x } (\text{T}_{1} - \text{T}_{\text{A}})}{t}$$

NOTE :

- *P* is the microwave power output (W)
- m_w is the mass of the water (g)
- *m*_c is the mass of the container (g)
- T_A is the ambient temperature (°C)
- T_0 is the initial temperature of the water (°C)
- T_1 is the final temperature of the water (°C)
- *t* is the heating time (s), excluding the magnetron filament heating-up time.

김지민

Tested by : Jeamin Kim

Samsung Electronics Co., Ltd. FCC ID: A3LME6000A

Frequency measurements

Frequency vs Line Voltage Variation Test

			emperature : 25.7 ± 1.0 C
Line Voltage Variation (a.c. V)	*Pole [Mb]		Allowed Tolerance for the ISM Band
	Н	Lower : 2 402.1	
	Н	Upper : 2 468.5	
96 (80 %)	V	Lower : 2 419.6	
	V	Upper : 2 467.1	
	Н	Lower : 2 407.6	
	Н	Upper : 2 471.6	
108 (90 %)	V	Lower : 2 406.3	
	V	Upper : 2 473.6	_
	Н	Lower : 2 404.8	
120 (100 %)	Н	Upper : 2 469.7	Lower : 2 400 Mb
120 (100 %)	V	Lower : 2 409.2	Upper : 2 500 Mb
	V	Upper : 2 471.1	
	Н	Lower : 2 414.6	_
132 (110 %)	Н	Upper : 2 466.0	
152 (110 /0)	V	Lower : 2 408.1	_
	V	Upper : 2 470.9	_
	Н	Lower : 2 414.9	
150 (125 %)	Н	Upper : 2 464.8	
	V	Lower : 2 411.0	
	V	Upper : 2 470.4	

[Room Temperature : 25.7 ± 1.0 °C]

NOTE :

1. *Pol. H = Horizontal V = Vertical

2. Initial load : 1 000 $m\ell$ of water in the beaker.

3. Line voltage varied from 80 % to 125 %.

4. ISM Frequency : 2 450 Mb, Tolerance : ± 50 Mb

RESULT : Pass

101

Tested by : Jeamin Kim

[Room Temperature : 25.7 ± 1.0 °C]

Volume of water (nl)	(mℓ) *)Pole [Mb]		Allowed Tolerance for the ISM Band
	н	Lower : 2 401.3	
	н	Upper : 2 472.0	
200	V	Lower : 2 406.1	
	V	Upper : 2 469.2	
	н	Lower : 2 400.4	
400	н	Upper : 2 472.2	
400	V	Lower : 2 411.5	
	V	Upper : 2 469.0	
	н	Lower : 2 401.2	
COD	н	Upper : 2 471.7	Lower : 2 400 Mb
600	V	Lower : 2 412.3	Upper : 2 500 Mb
	V	Upper : 2 469.7	
	н	Lower : 2 401.7	
	н	Upper : 2 492.8	
800	V	Lower : 2 412.2	
	V	Upper : 2 468.5	
	н	Lower : 2 406.9	
1 000	н	Upper : 2 491.9	
1 000	V	Lower : 2 409.7	
	V	Upper : 2 468.0	

NOTE :

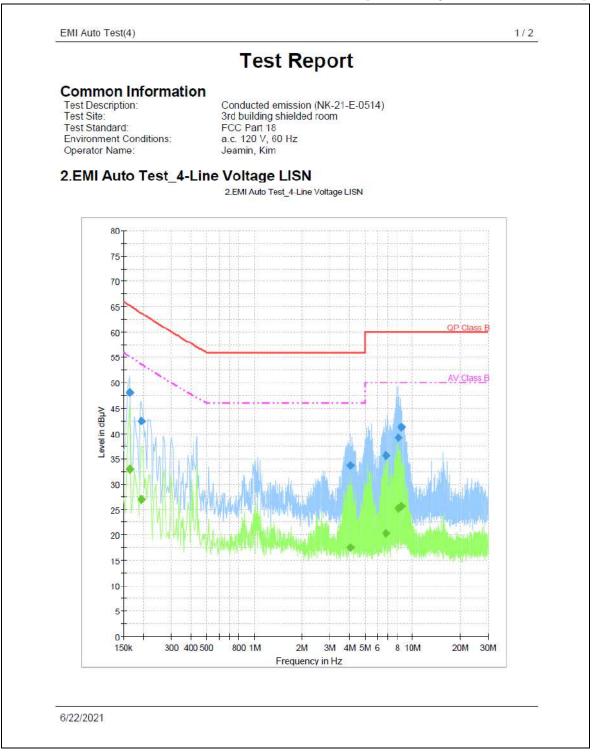
1. *Pol. H = Horizontal, V = Vertical

2. The water load was varied between 200 $\,{\rm m}\ell\,$ to 1 000 $\,{\rm m}\ell.$

3. Frequency was measured by using nominal voltage (a.c. 120 V).

4. ISM Frequency : 2 450 Mz, Tolerance : ± 50 Mz

RESULT : Pass


Tested by : Jeamin Kim

Conducted Emissions

FCC ID : A3LME6000A

[Room Temperature : 21.6 ± 1.0 °C]

Final Result 1

Frequency	QuasiPeak	Meas.	Bandwidth	PE	Line	Corr.	Margin	Limit	Comment
(MHz)	(dBµV)	Time	(kHz)			(dB)	(dB)	(dBµV)	
		(ms)							
0.164925	48.1	15000.0	9.000	GND	L1	10.7	17.0	65.2	
0.194775	42.4	15000.0	9.000	GND	L1	10.7	21.3	63.7	
4.060350	33.7	15000.0	9.000	GND	N	10.9	22.3	56.0	
6.772969	35.7	15000.0	9.000	GND	L1	10.9	24.3	60.0	
8.175919	39.2	15000.0	9.000	GND	L1	10.9	20.8	60.0	
8.470688	41.3	15000.0	9.000	GND	L1	10.9	18.7	60.0	

Final Result 2

Frequency	CAverage	Meas.	Bandwidth	PE	Line	Corr.	Margin	Limit	Comment
(MHz)	(dBµV)	Time	(kHz)			(dB)	(dB)	(dBµV)	
		(ms)							
0.164925	33.0	15000.0	9.000	GND	N	10.8	22.2	55.1	
0.194775	27.0	15000.0	9.000	GND	N	10.8	26.6	53.7	
4.060350	17.5	15000.0	9.000	GND	N	10.9	28.5	46.0	
6.772969	20.3	15000.0	9.000	GND	L1	10.9	29.7	50.0	
8.175919	25.3	15000.0	9.000	GND	L1	10.9	24.7	50.0	
8.470688	25.6	15000.0	9.000	GND	L1	10.9	24.4	50.0	

6/22/2021

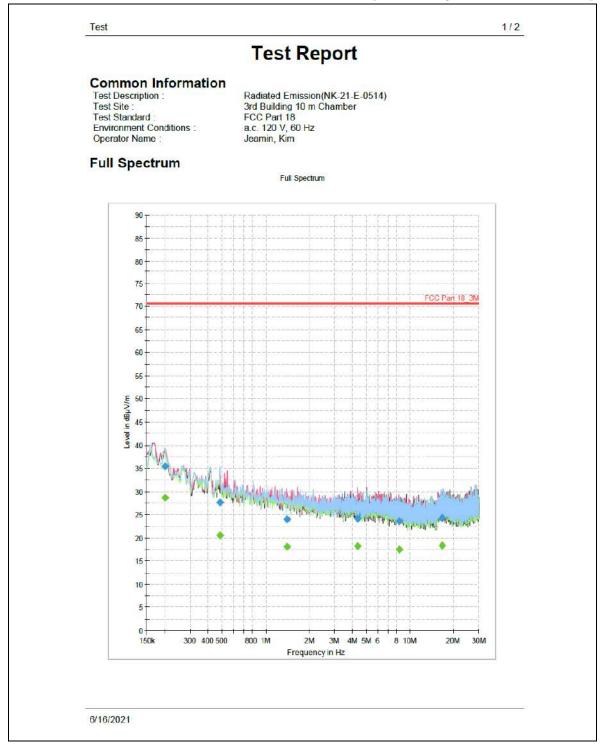
2/2

NOTES:

- 1. Measurements using quasi-peak mode & average mode.
- 2. If no frequencies are specified in the tables, no measurement for quasi-peak or average was necessary.
- 3. Line : L = Line , N = Neutral
- 4. The limit for consumer device is on the FCC Part section 18.307(b).

20

Tested by : Jeamin Kim


Samsung Electronics Co., Ltd. FCC ID: A3LME6000A

Radiated Emissions (150 kt to 30 Mz)

FCC ID : A3LME6000A

[Room Temperature : 25.2 ± 1.0 °C]

Samsung Electronics Co., Ltd. FCC ID: A3LME6000A

Test

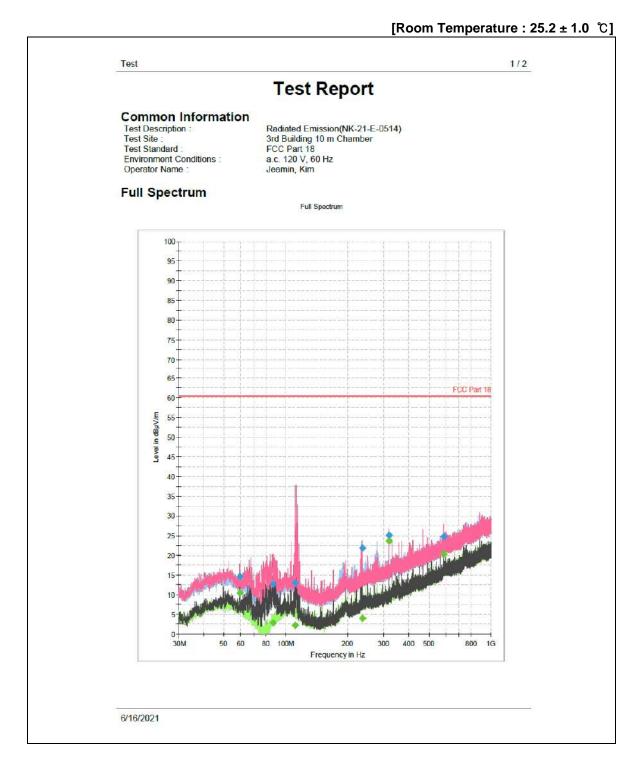
2/2

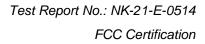
0.200745 35.41 71.45 36.04 15000.0 9.000 0.0 H 0.200745 28.71 71.45 42.74 15000.0 9.000 0.0 H 0.481335 20.49 71.45 42.74 15000.0 9.000 0.0 H 0.481335 20.49 71.45 43.85 15000.0 9.000 0.0 H 0.481335 27.60 71.45 43.85 15000.0 9.000 0.0 H 1.406685 18.14 71.45 53.31 15000.0 9.000 0.0 V 4.323030 24.19 71.45 53.25 15000.0 9.000 0.0 V 4.323030 17.58 71.45 53.25 15000.0 9.000 0.0 V 8.427405 23.55 71.45 47.90 15000.0 9.000 0.0 V 8.427405		QuasiPeak			Limit	Margin	Meas. Time	Bandwidth	Height	Pol
0.200745 28.71 71.45 42.74 15000.0 9.000 0.0 H 0.481335 20.49 71.45 50.96 15000.0 9.000 0.0 H 0.481335 27.60 71.45 43.85 15000.0 9.000 0.0 H 1.406685 18.14 71.45 53.31 15000.0 9.000 0.0 V 1.406685 24.04 71.45 47.41 15000.0 9.000 0.0 V 4.323030 24.19 71.45 53.25 15000.0 9.000 0.0 V 4.323030 17.58 71.45 53.25 15000.0 9.000 0.0 V 8.427405 23.55 71.45 53.02 15000.0 9.000 0.0 V 16.794360 24.38 71.45 53.02 15000.0 9.000 0.0 H 16.794360	0.200745	(dBµV/m)			(dBµV/m)	(dB)	(ms)	(kHz)	(cm)	
0.481335 20.49 71.45 50.96 15000.0 9.000 0.0 H 0.481335 27.60 71.45 43.85 15000.0 9.000 0.0 H 1.406685 18.14 71.45 53.31 15000.0 9.000 0.0 V 1.406685 24.04 71.45 47.41 15000.0 9.000 0.0 V 4.323030 24.19 71.45 47.41 15000.0 9.000 0.0 V 4.323030 24.19 71.45 47.41 15000.0 9.000 0.0 V 4.323030 18.20 71.45 53.25 15000.0 9.000 0.0 V 8.427405 23.55 71.45 47.90 15000.0 9.000 0.0 V 16.794360 24.38 71.45 47.07 15000.0 9.000 0.0 H 16.794360 18.43 71.45 53.02 15000.0 9.000 0.0H										
0.481335 27.60 71.45 43.85 15000.0 9.000 0.0 H 1.406685 18.14 71.45 53.31 15000.0 9.000 0.0 V 1.406685 24.04 71.45 47.41 15000.0 9.000 0.0 V 4.323030 24.19 71.45 47.26 15000.0 9.000 0.0 V 4.323030 18.20 71.45 53.25 15000.0 9.000 0.0 V 4.323030 17.158 71.45 47.90 15000.0 9.000 0.0 V 8.427405 23.55 71.45 47.07 15000.0 9.000 0.0 H 16.794360 18.43 71.45 53.02 15000.0 9.000 0.0 H continuation of the "Final_Result" table from column 14) <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
1.406685 18.14 71.45 53.31 15000.0 9.000 0.0 V 1.406685 24.04 71.45 47.41 15000.0 9.000 0.0 V 4.323030 24.19 71.45 47.41 15000.0 9.000 0.0 V 4.323030 18.20 71.45 53.25 15000.0 9.000 0.0 V 4.323030 17.58 71.45 53.87 15000.0 9.000 0.0 V 8.427405 23.55 71.45 47.90 15000.0 9.000 0.0 V 8.427405 23.55 71.45 47.90 15000.0 9.000 0.0 V 8.427405 18.0 24.38 71.45 47.90 15000.0 9.000 0.0 H continuation of the "Final_Result" table from column 14) 16.794360 22.8 <td></td> <td></td> <td></td> <td>0.45</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>				0.45						
1.406685 24.04 71.45 47.41 15000.0 9.000 0.0 V 4.323030 24.19 71.45 47.26 15000.0 9.000 0.0 V 4.323030 18.20 71.45 53.25 15000.0 9.000 0.0 V 8.427405 17.58 71.45 53.25 15000.0 9.000 0.0 V 8.427405 23.55 71.45 47.90 15000.0 9.000 0.0 V 8.427405 23.55 71.45 47.90 15000.0 9.000 0.0 V 16.794360 24.38 71.45 53.02 15000.0 9.000 0.0 H 16.794360 18.43 71.45 53.02 15000.0 9.000 0.0 H 16.794360 18.43 71.45 53.02 15000.0 9.000 0.0 H 16.0 -22.8 14.06685 172.0 -22.7				0 1 4						
4.323030 24.19 71.45 47.26 15000.0 9.000 0.0 V 4.323030 18.20 71.45 53.25 15000.0 9.000 0.0 V 8.427405 17.58 71.45 53.87 15000.0 9.000 0.0 V 8.427405 23.55 71.45 47.90 15000.0 9.000 0.0 V 16.794360 24.38 71.45 47.90 15000.0 9.000 0.0 H 16.794360 18.43 71.45 53.02 15000.0 9.000 0.0 H 16.794360 18.43 71.45 53.02 15000.0 9.000 0.0 H iontinuation of the "Final_Result" table from column 14) Image: state st										
4.323030 18.20 71.45 53.25 15000.0 9.000 0.0 V 8.427405 17.58 71.45 53.87 15000.0 9.000 0.0 V 8.427405 23.55 71.45 53.87 15000.0 9.000 0.0 V 8.427405 23.55 71.45 47.90 15000.0 9.000 0.0 V 16.794360 24.38 71.45 47.07 15000.0 9.000 0.0 H 16.794360 18.43 71.45 53.02 15000.0 9.000 0.0 H continuation of the "Final_Result" table from column 14) 7.145 1500.0 9.000 0.0 H 0.200745 180.0 -22.8										
8.427405 17.58 71.45 53.87 15000.0 9.000 0.0 V 8.427405 23.55 71.45 47.90 15000.0 9.000 0.0 V 16.794360 24.38 71.45 47.07 15000.0 9.000 0.0 H 16.794360 18.43 71.45 53.02 15000.0 9.000 0.0 H icontinuation of the "Final_Result" table from column 14) 14) Frequency Azimuth (dg/m) Corr. (dB/m) Comment (dB/m) 0.200745 180.0 -22.8 -										
8.427405 23.55 71.45 47.90 15000.0 9.000 0.0 V 16.794360 24.38 71.45 47.07 15000.0 9.000 0.0 H 16.794360 18.43 71.45 53.02 15000.0 9.000 0.0 H ontinuation of the "Final_Result" table from column 14) 18.00 -22.8										
16.794360 24.38 71.45 47.07 15000.0 9.000 0.0 H 16.794360 18.43 71.45 53.02 15000.0 9.000 0.0 H icontinuation of the "Final_Result" table from column 14) Frequency Azimuth (deg) Corr. (dB/m) Comment (dB/m) Comment (dB/m) Accord and a and										
16.794360 18.43 71.45 53.02 15000.0 9.000 0.0 H continuation of the "Final_Result" table from column 14) Frequency (MHz) Azimuth (deg) Corr. (dB/m) Comment (dB/m) Corr. Comment (dB/m) <										
Frequency Azimuth Corr. Comment (dB/m) 0.200745 180.0 -22.8 0.200745 180.0 -22.8 0.481335 16.0 -23.0 0.481335 16.0 -22.7 1.406685 172.0 -22.7 4.323030 18.0 -22.3 8.427405 152.0 -22.2 16.794360 103.0 -21.7										
(MHz) (deg) (dB/m) 0.200745 180.0 -22.8 0.200745 180.0 -22.8 0.481335 16.0 -23.0 0.481335 16.0 -23.0 1.406685 172.0 -22.7 1.406685 172.0 -22.7 4.323030 18.0 -22.3 8.427405 152.0 -22.2 8.427405 152.0 -22.2 16.794360 103.0 -21.7	ontinuation of	he "Final_Re	sult" tak	le fro			·			
0.200745 180.0 -22.8 0.200745 180.0 -22.8 0.481335 16.0 -23.0 0.481335 16.0 -23.0 1.406685 172.0 -22.7 1.406685 172.0 -22.3 4.323030 18.0 -22.3 4.323030 18.0 -22.2 8.427405 152.0 -22.2 16.794360 103.0 -21.7				Col	mment					
0.200745 180.0 -22.8 0.481335 16.0 -23.0 0.481335 16.0 -23.0 1.406685 172.0 -22.7 1.406685 172.0 -22.3 4.323030 18.0 -22.3 8.427405 152.0 -22.2 16.794360 103.0 -21.7										
0.481335 16.0 -23.0 0.481335 16.0 -23.0 1.406685 172.0 -22.7 1.406685 172.0 -22.7 4.323030 18.0 -22.3 4.323030 18.0 -22.3 8.427405 152.0 -22.2 16.794360 103.0 -21.7										
0.481335 16.0 -23.0 1.406685 172.0 -22.7 1.406685 172.0 -22.7 4.323030 18.0 -22.3 4.323030 18.0 -22.3 8.427405 152.0 -22.2 8.427405 152.0 -22.2 16.794360 103.0 -21.7										
1.406685 172.0 -22.7 1.406685 172.0 -22.7 4.323030 18.0 -22.3 4.323030 18.0 -22.3 8.427405 152.0 -22.2 8.427405 152.0 -22.2 16.794360 103.0 -21.7										
1.406685 172.0 -22.7 4.323030 18.0 -22.3 4.323030 18.0 -22.3 8.427405 152.0 -22.2 8.427405 152.0 -22.2 16.794360 103.0 -21.7										
4.323030 18.0 -22.3 4.323030 18.0 -22.3 8.427405 152.0 -22.2 8.427405 152.0 -22.2 16.794360 103.0 -21.7										
4.323030 18.0 -22.3 8.427405 182.0 -22.2 8.427405 152.0 -22.2 16.794360 103.0 -21.7										
8.427405 152.0 -22.2 8.427405 152.0 -22.2 16.794360 103.0 -21.7										
16.794360 103.0 -21.7	8.427405		-22.2							
	8.427405	152.0	-22.2							
	16.794360	103.0	-21.7							

<Radiated Measurements at 3 meters >

NOTES:

- 1. *Pol. H = Horizontal V = Vertical
- 2. **AF + CL + Amp. = Antenna Factor + Cable Loss + Amplifier.
- 3. Distance Correction factor : 20 * log (300 / 3) = 40 dBuV/m
- 4. The limit at 300 meters is 20 * log (25 * SQRT (RF Power / 500))
- 5. All other emissions were measured while a 700 $\ m\ell$ load was placed in the center of the oven.
- 6. The limit for consumer device is on the FCC Part section 18.305.


Tested by : Jeamin Kim


Samsung Electronics Co., Ltd. FCC ID: A3LME6000A

Radiated Emissions (30 Mb to 1 Gb)

FCC ID : A3LME6000A

Test

2/2

Final_Res	ult							
Frequency	QuasiPeak	CAverage	Limit	Margin	Meas. Time	Bandwidth	Height	Pol
(MHz)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)	(ms)	(kHz)	(cm)	
59.633500		10.51	60.99	50.48	15000.0	120.000	300.0	V
59.633500	14.56		60.99	46.43	15000.0	120.000	300.0	V
86.502500		2.83	60.99	58.16	15000.0	120.000	200.0	V
86.502500	12.66		60.99	48.33	15000.0	120.000	200.0	V
110.704000	13.08		60.99	47.91	15000.0	120.000	100.0	V
110.704000		2.28	60.99	58.71	15000.0	120.000	100.0	V
235.979500		4.01	60.99	56.98	15000.0	120.000	100.0	V
235.979500	21.94		60.99	39.05	15000.0	120.000	100.0	V
319.108500		23.57	60.99	37.42	15000.0	120.000	300.0	V
319.108500	25.14		60.99	35.85	15000.0	120.000	300.0	V
589.059500		20.26	60.99	40.73	15000.0	120.000	400.0	V
589,059500	24.76		60.99	36.23	15000.0	120.000	400.0	V

(continuation of the "Final_Result" table from column 14 ...)

Frequency	Azimuth	Corr.	Comment
(MHz)	(deg)	(dB/m)	
59.633500	298.0	-21.3	
59.633500	298.0	-21.3	
86.502500	273.0	-24.7	
86.502500	273.0	-24.7	
110.704000	116.0	-21.7	
110.704000	116.0	-21.7	
235.979500	99.0	-18.8	
235.979500	99.0	-18.8	
319.108500	239.0	-15.9	
319.108500	239.0	-15.9	
589.059500	155.0	-7.1	
589.059500	155.0	-7.1	

6/16/2021

<Radiated Measurements at 10 meters>

NOTES:

- 1. *Pol. H = Horizontal V = Vertical
- 2. **AF + CL + Amp. = Antenna Factor + Cable Loss + Amplifier.
- 3. Distance Correction factor : 20 * log (300/10) \doteqdot 29.5 dB μ /m
- 4. The limit at 300 meters is 20 * log (25 * SQRT (RF Power/500))
- 5. All other emissions were measured while a 700 ml load was placed in the center of the oven.
- 6. The limit for consumer device is on the FCC Part section 18.305.

200 Tested by : Jeamin Kim

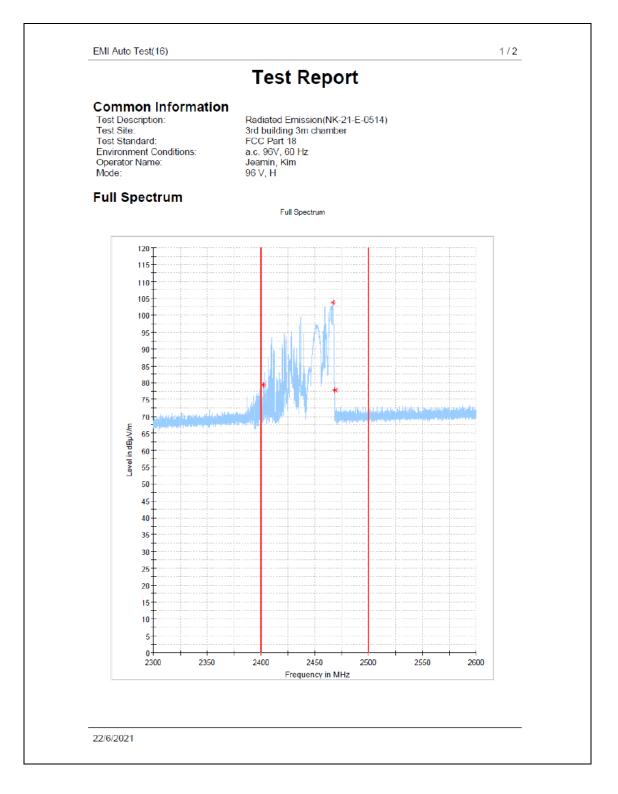
Samsung Electronics Co., Ltd. FCC ID: A3LME6000A

Radiated Emissions (Above 1 础)

FCC ID : A3LME6000A

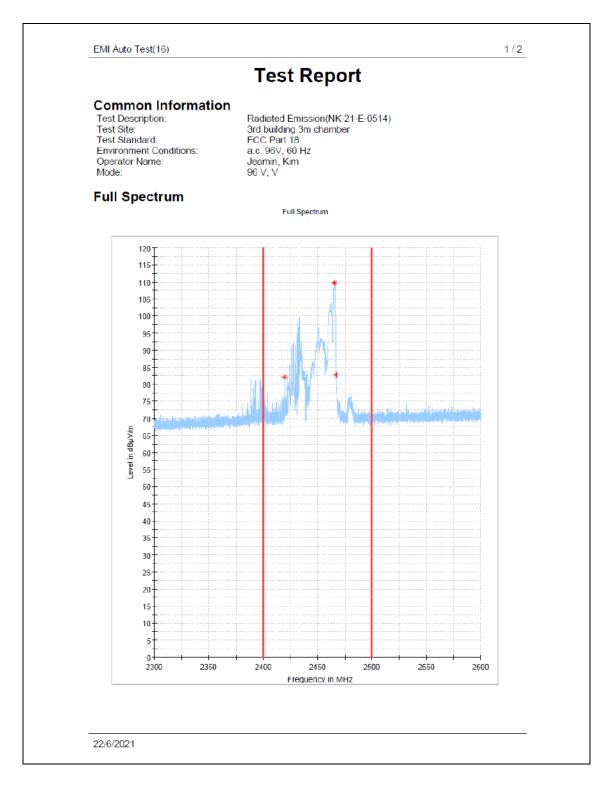
Frequency	Pol*	Antenna Heights	Turntable Angles	Reading Level	Total Loss**	Result	tat 3 m	к	Results at 300 m	Limits at 300 m
(MHz)	(H/V)	(cm)	Ů	(dBµV)	(dB)	(dBµV/m)	(µV/m)		(µV/m)	(µV/m)
2173	н	100	120	65.78	-8.5	57.28	731.14	0.0055	4.02	37.37
2766	v	200	0	67.79	-6.2	61.59	1200.88	0.0070	8.46	37.37
4952	н	100	0	61.68	2.3	63.98	1581.25	0.0100	15.81	37.37
7415	Н	400	270	55.27	5.6	60.87	1105.35	0.0100	11.05	37.37
8626	V	400	0	29.23	6.3	35.53	59.77	0.0100	0.60	37.37
9872	Н	400	270	29.22	6.9	36.12	63.97	0.0100	0.64	37.37
12330	v	200	210	43.65	8.4	52.05	400.41	0.0100	4.00	37.37
14802	н	400	270	44.21	12.3	56.51	669.11	0.0100	6.69	37.37
17268	v	200	210	31.19	14.6	45.79	194.76	0.0100	1.95	37.37

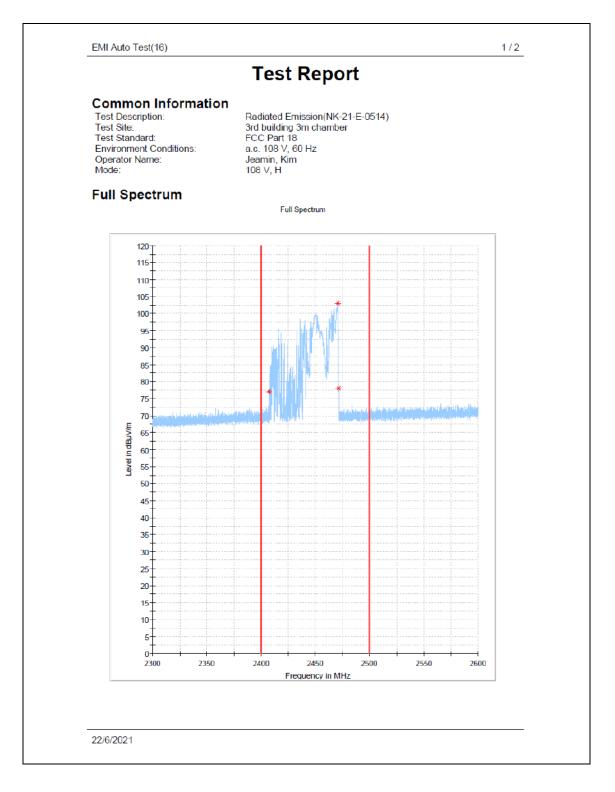
[Room Temperature : 22.1 ± 1.6 ℃]

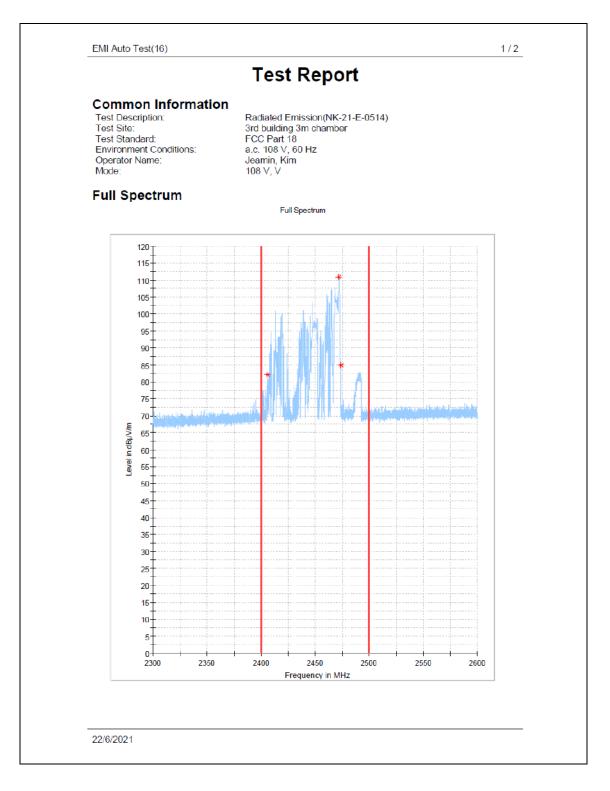

<Radiated Measurements at 3 meters>

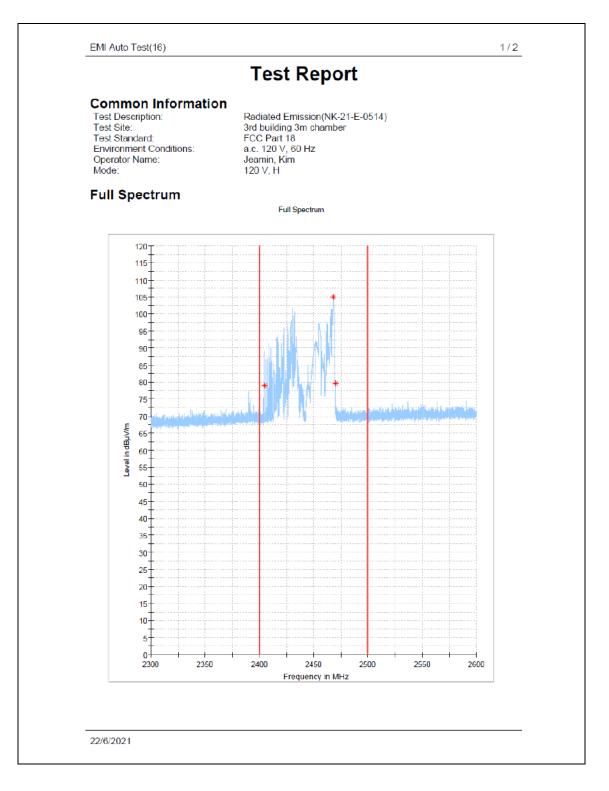
NOTES:

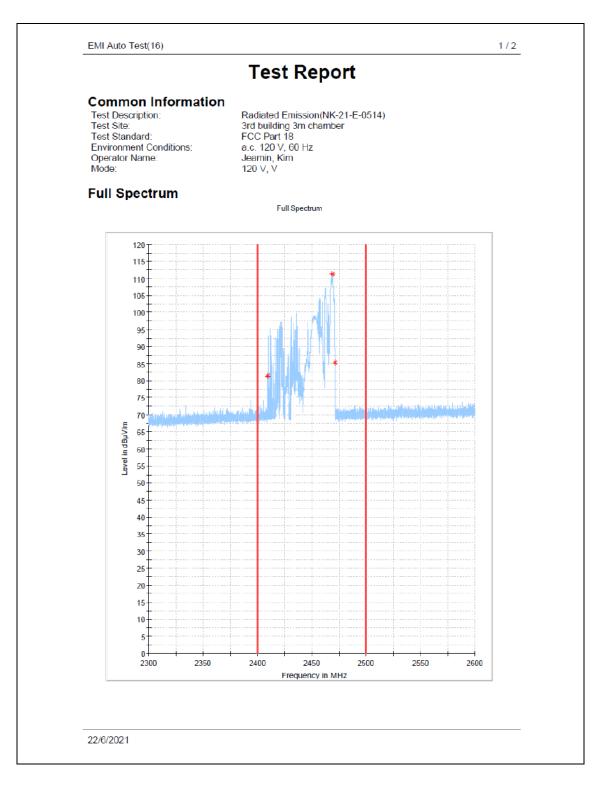
- 1. * Pol. H =Horizontal V=Vertical
- 2. ** Total Loss = Antenna Factor + Cables Loss + Amplifier + HPF (High Pass Filter)
- 3. Field Strength (at 300 m) $(uV/m) = K * 10^{[Fieldstrength at 3 m (dBuV/m)/20]}$
- 4. The limit at 300 meters is 25 * SQRT (RF Power/500)
- 5. Load for measurement of radiation on second and third harmonic : Two loads, one of 700 *ml* and the other of 300 *ml*, of water were used. Each load was tested both with the beaker located in the center of the oven and with it in the corner.
- 6. The test was performed at peak detector mode with average.
- 7. The limit for consumer device is on the FCC Part section 18.305.

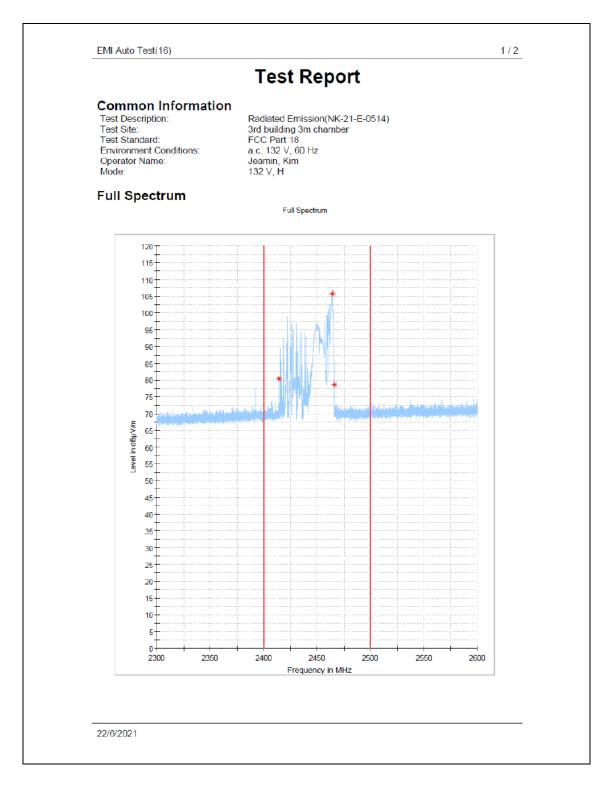

Tested by : Jeamin Kim


Horizontal (96 V, 1 000 ml)


Vertical (96 V, 1 000 ml)


Horizontal (108 V, 1 000 ml)

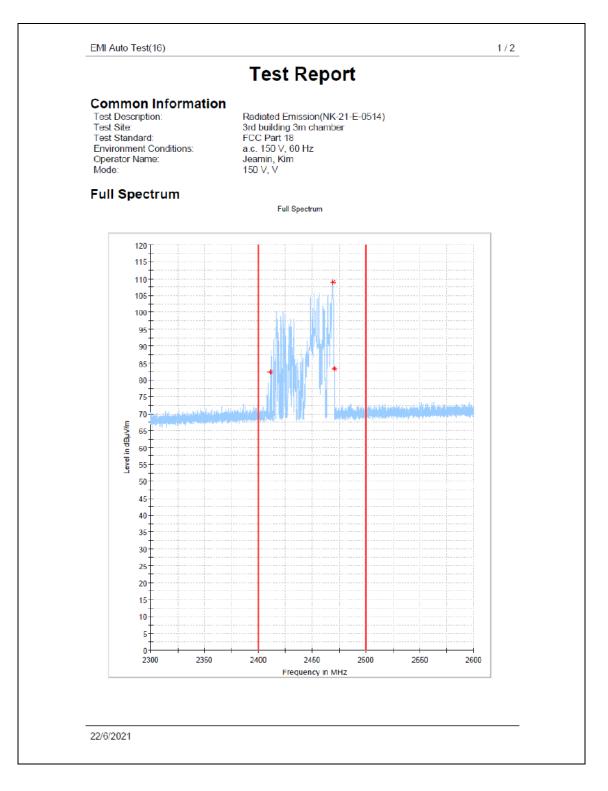

Vertical (108 V, 1 000 ml)


Horizontal (120 V, 1 000 ml)

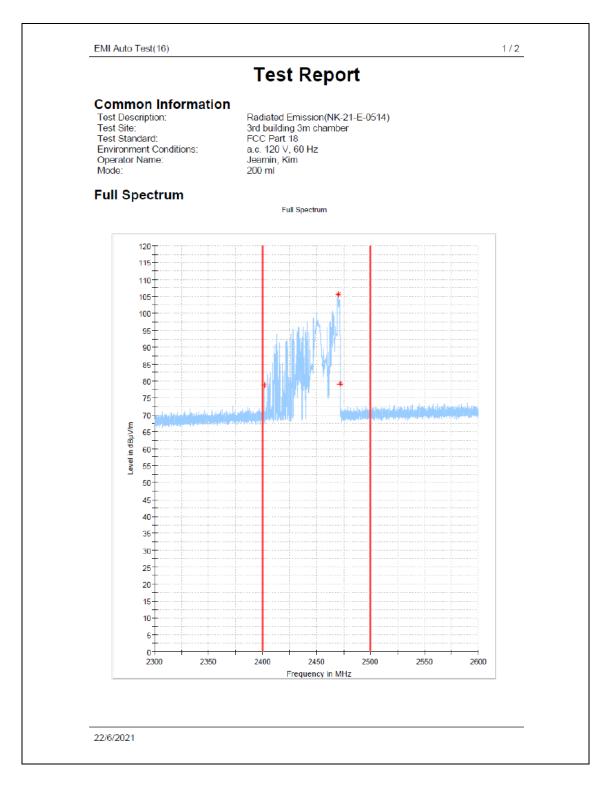
Vertical (120 V, 1 000 ml)

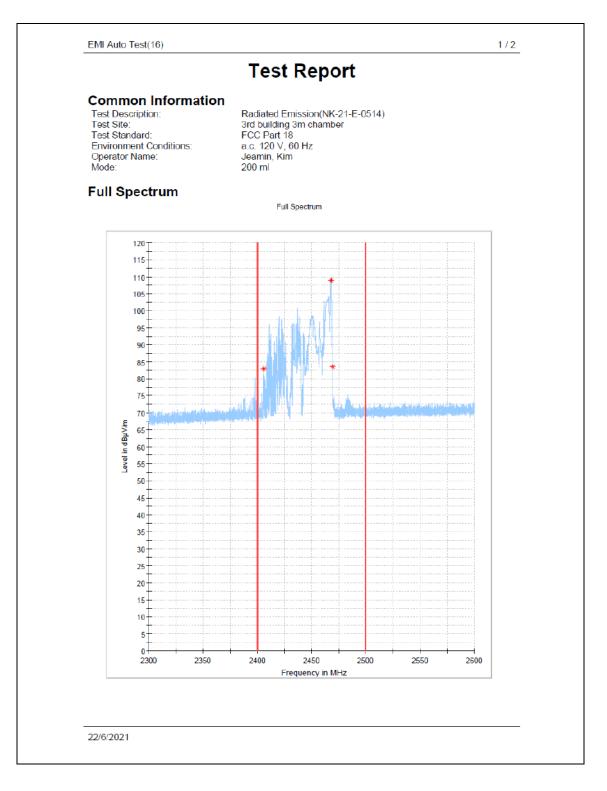
Horizontal (132 V, 1 000 ml)

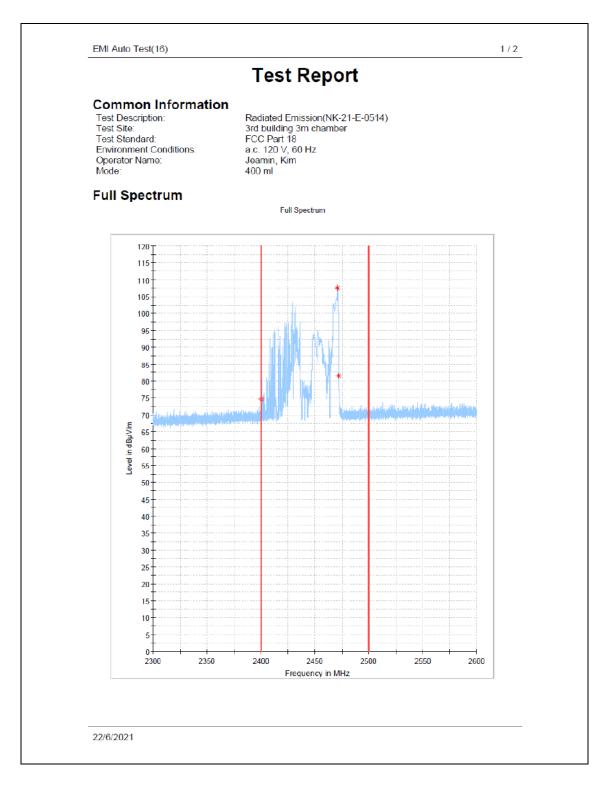
Common Information Test Description: Radiated Emission(NK-21-E-0514). Test Standard: PCC Part 18 Environment Conditions: A.C. 32 V. V Full Spectrum Tell Spectrum Tell Spectrum	Test Report	
Full Spectrum	Fest Description: Radiated Emission(NK-21-E-0514) Fest Site: 3rd building 3m chamber Fest Standard: FCC Part 18 Environment Conditions: a.c. 132 V, 60 Hz Operator Name: Jeamin, Kim	
115 110 95 90 85 80 75 70 75 55 50		
115 100 95 90 95 90 85 80 75 70 75 70 75 55 50 50 50 50 50 50 50 50 5		
40	115 110 105 100 95 90 85 80 75 70 65 60 65 55 50 45	
	10 5 0 2300 2350 2400 2450 2500 2550 2	H 500

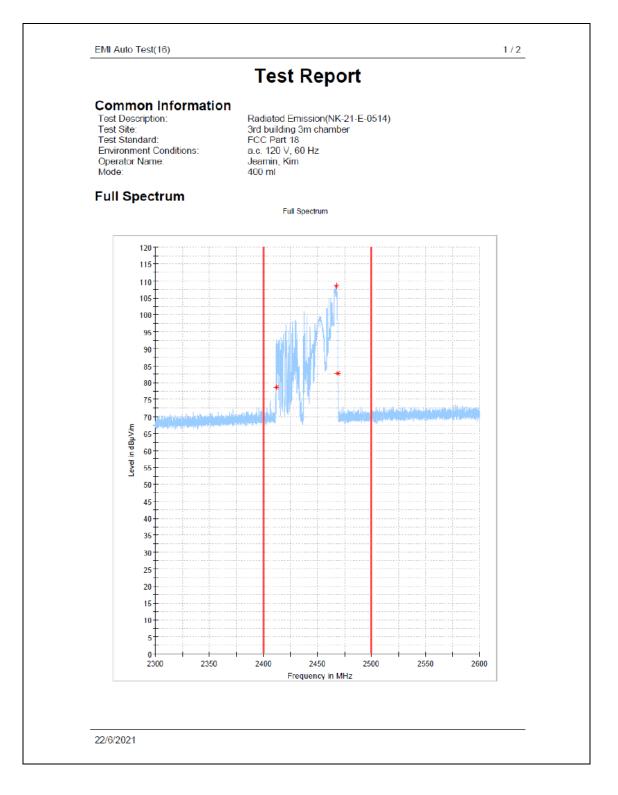

Vertical (132 V, 1 000 ml)

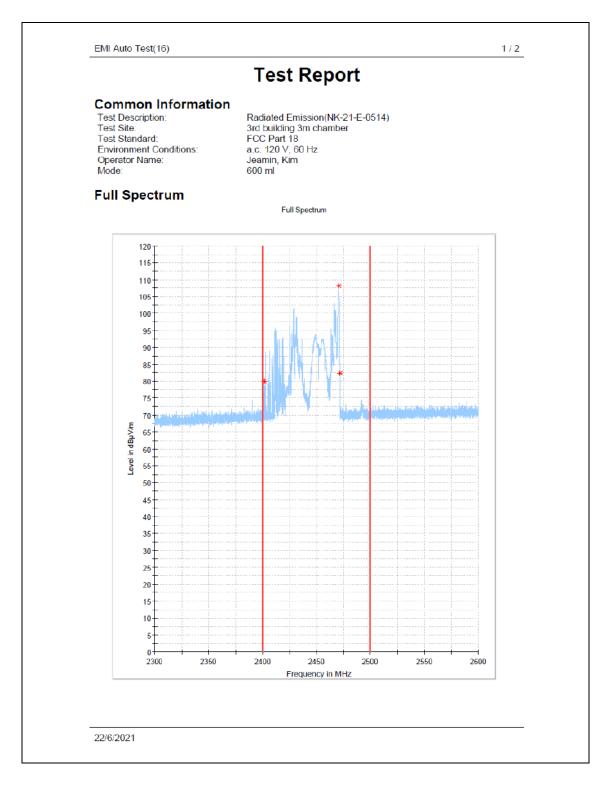
		Tes	st Repo	ort		
ommon Info est Description: est Site: est Standard: wironment Condi perator Name: ode:		Radiated 3rd build FCC Par	V, 60 Hz Kim	21-E-0514) er		
ll Spectrui	m		Full Spectrum			
120						
115						
110			*			
105-						
100						
95						
90						
85						
80		*	*			
75						
70-1116	والألبون الأر	A Mark Start Start		internet products		
 _5						
e 60						
50						
45						
40					• • • • • • • • • • • • • • • • • • • •	
35						
30						
25						
20						
15						
10						
5						
0						
2300	2350	2400	2450 Frequency in M	2500 Hz	2550	2600
			Trequency in M	112		

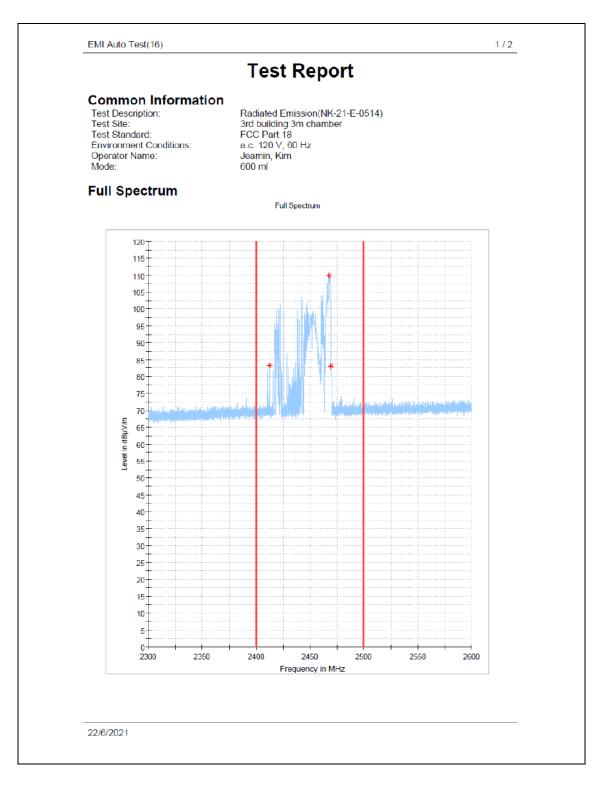

Horizontal (150 V, 1 000 ml)

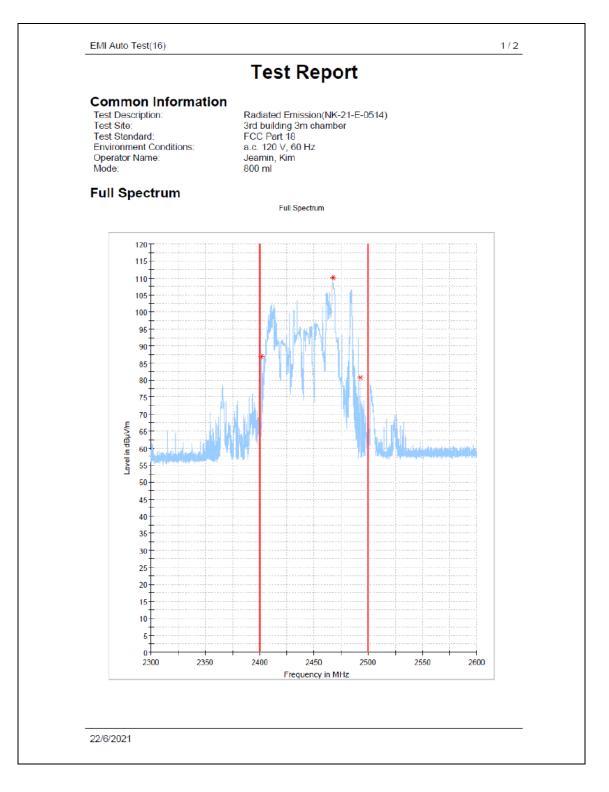

Vertical (150 V, 1 000 ml)

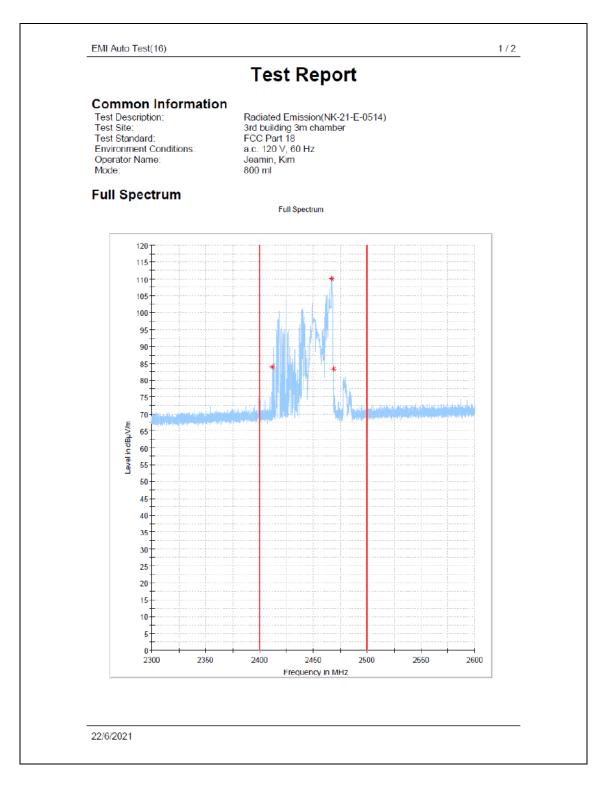

Horizontal (120 V, 200 ml)

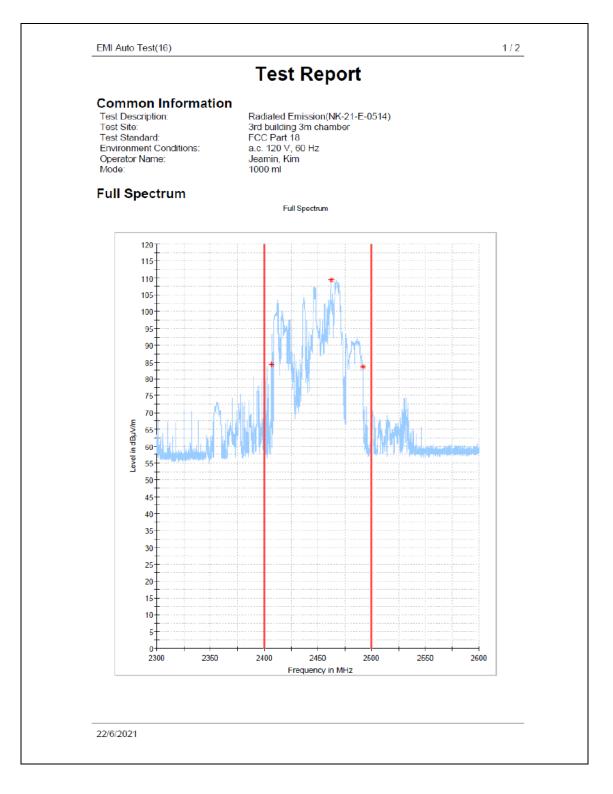

Vertical (120 V, 200 ml)

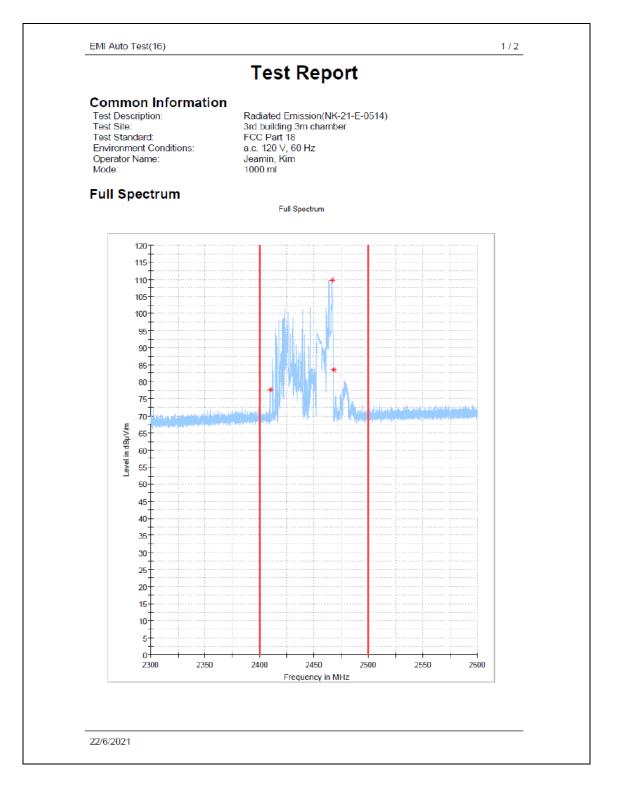

Horizontal (120 V, 400 ml)


Vertical (120 V, 400 ml)


Horizontal (120 V, 600 ml)


Vertical (120 V, 600 ml)

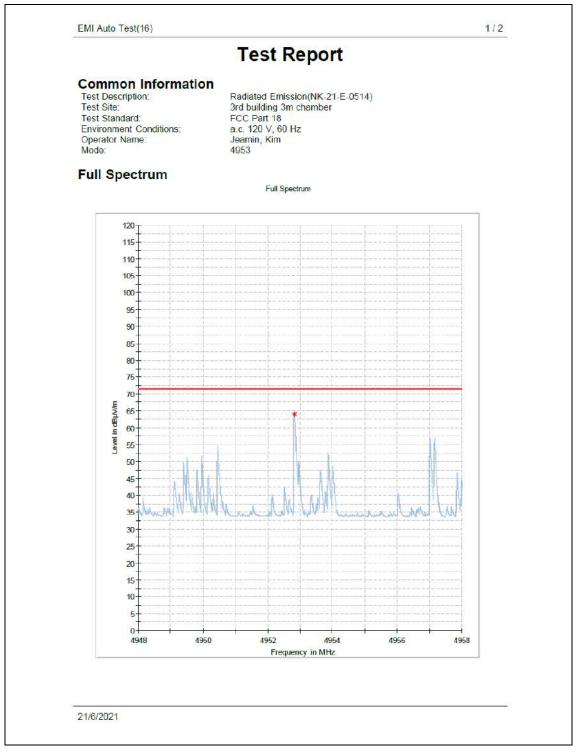

Horizontal (120 V, 800 ml)


Vertical (120 V, 800 ml)

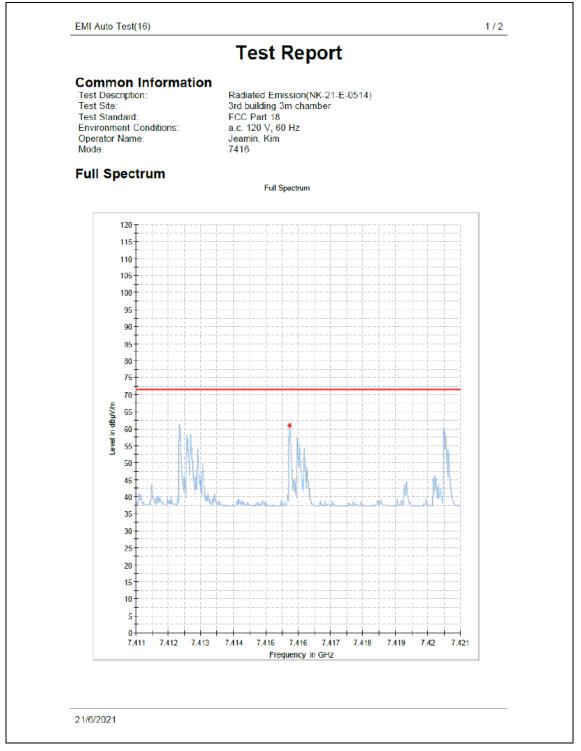
Horizontal (120 V, 1 000 ml)

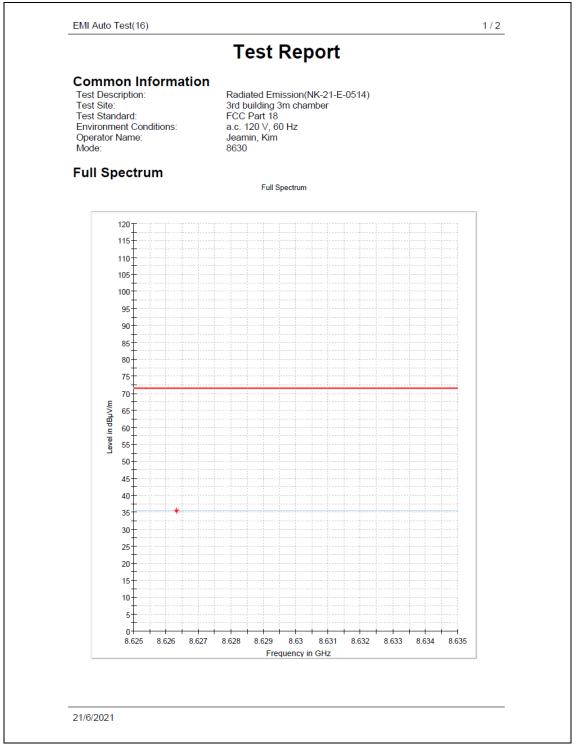
Vertical (120 V, 1 000 ml)

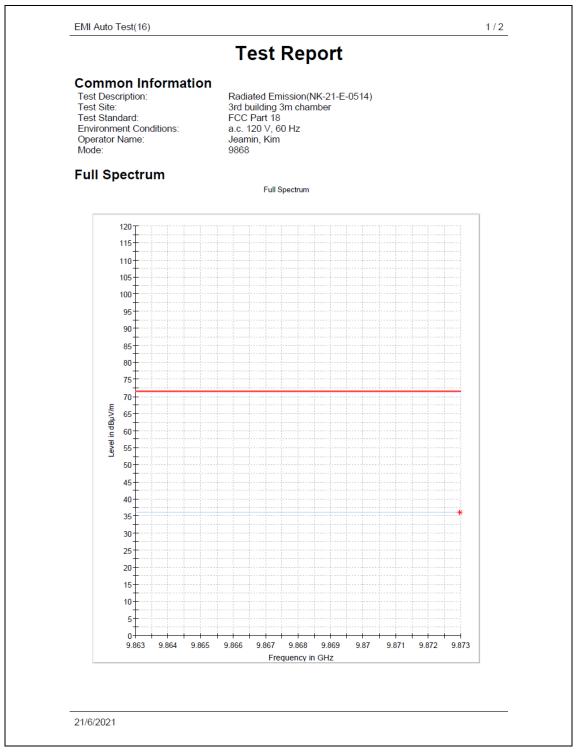
				est Re	eport			
est Descri est Site: est Standa	ard: nt Conditior		Rad 3rd FCC a.c.	liated Emissic building 3m c C Part 18 120 V, 60 Hz min, Kim 9	hamber	9514)		
ull Spe	ectrum			Full Spectr	um			
1:	20 T							
1	15							
1	10							
10	05							
1(00							
	95							
	90							
8	85							
8	80							
1	75							
	70							
<u>لا</u> م	65							
ų de l	60							
	55						*	
	50							
	+							
	45							1
4	40							
:	35							
:	30							
:	25							
	20							
	15							
	-							
	10							
	5							
	0+	216	6	2168	2170	2172	2174	
	2104	210	0		cy in MHz	2112	2114	

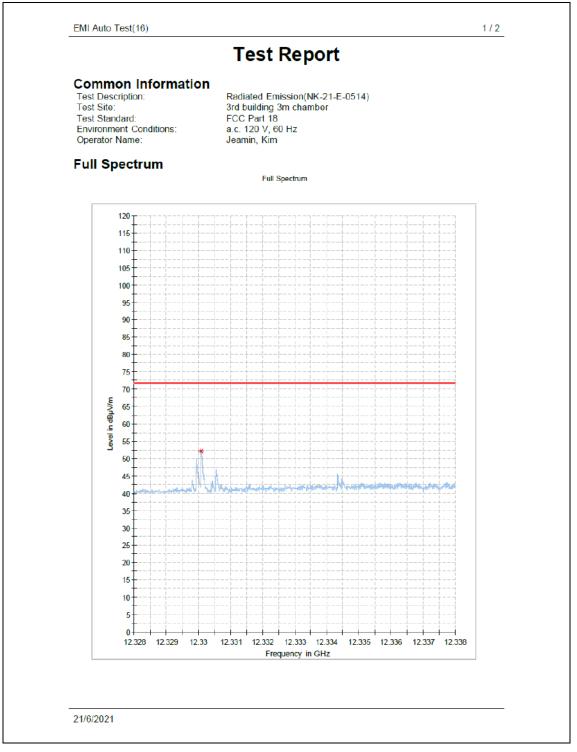

2 173.66 MHz

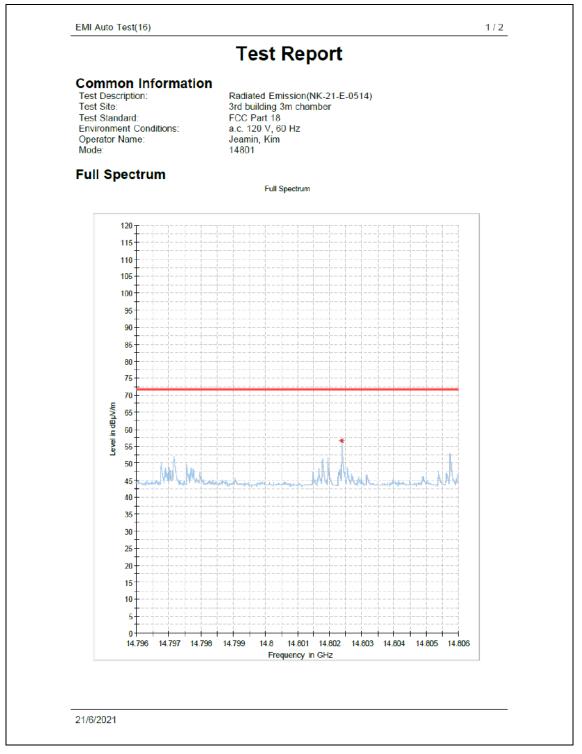
			Т	est R	lepor	t		
est Desc est Site: est Stan	riptior dard: ent Co	onditions:	Radi 3rd b FCC a.c. 1	uilding 3m Part 18 120 V, 60 I nin, Kim		-E-0514)		
ull Sp	ecti	rum		Full Spe	ctrum			
	120 T							
	115							
	110							
	105							
	100							
	+							
	95							
	90							
	85							
	80-							
	75							
	70							
m/	65							
dBµ'	+ -	*						
Level in dBµV/m	60							
Lev	55							
	50							
	45							
	40							
	35							
	30							
	+							
	25							
	20							
	15							
	10							
	5	·····						
	+							
	0+ 2765	2766	2768		2770	2772	2774 2775	5
				Frequ	ency in MHz			


2 766.04 MHz


4 952.82 MHz


7 415.74 MHz


8 626.32 MHz


9 872.98 MHz

12 330.10 MHz

14 802.38 MHz

						T	es	st	R	ep	00	rt						
Commo Test Desc Test Site: Test Stand Environme Operator M Mode:	ription lard: ent Co	n: ondit		ation	R 3i Fi a. Je	rd b CC .c. 1	uildi Par 20 1in, 1	Em ing 3 t 18 V, 6 Kim	3m (chai	NK-2 mbe	21-E r	-05	14)				
Full Sp	ect	run	n				I	Full S	Spec	trum								
	120 T			Г <u>т</u>	r			1			1			7		1		7
	115																	
	110			⊢+ ⊢+				 	 	†	1		<u>+</u>	1				
	105-									 		· ·			└ └ · ↓ ·			
	100												<u>+</u>					
	+																	
	95												+					
	90									+								
	85-																	
	80	+-		+														
	75			⊨+				i		† : 	i		<u>+</u>	1		i		
	70-			<u></u>											L			
Ę	+									i								
Levelin dBµV/m	65+																	
-in-	60			⊨∔ +	-i				 	+ +			+	-i		-i -i		
eve	55												<u> </u>					
	50-																	
	45			*										1				
	40-			L						i		L	i		L		L	
	+			+														
	35+			+								F==:						
	30+	+-		⊢∔ ⊢+		+		 	 	+			+		⊢ ÷			
	25-			L+						+			<u>+</u>					
	20-																	
	15			r+ r+	-i			 		† 	1		÷	-i -i				
	10-			└ ↓ ┝ ↓				 	L	 			<u> </u>		L		L	
	+												+					
	5+]	i]	[]	[<u></u> []		
				i	- i	i	-	I	 	-	-	-		+	H			
	0+	7	17 268	17.269	17	27	17	271	17	272	17	272	17	274	17 275	17	276	17.277

17 268.66 MHz

The Measurement Uncertainties stated were calculated in accordance with the requirements of measurement uncertainty contained in CISPR 16-4-2 with the confidence level of 95 %

1. Conducted Uncertainty Calculation

Source of Uncertainty	Xi	Uncerta	ainty of <i>Xi</i>	Coverage factor	u(Xi)	Ci	Ci u(Xi)
		Value (dB)	Probability Distribution	k	(dB)		(dB)
Receiver reading	Rs	± 0.31	normal 1	1.00	0.31	1	0.31
AMN Voltage division factor	Lamn	± 0.15	normal 2	2.00	0.08	1	0.08
Sine wave voltage	dVsw	± 0.17	normal 2	2.00	0.09	1	0.09
Pulse amplitude response	dVра	± 0.39	normal 2	2.00	0.20	1	0.20
Pulse repetition rate response	dVPR	± 0.39	normal 2	2.00	0.20	1	0.20
Noise floor proximity	dVnf	± 0.00	rectangular	$\sqrt{3}$	0.00	1	0.00
AMN VDF frequency interpolation	dVri	± 0.10	rectangular	√3	0.06	1	0.06
AMN Impedance	dz	+ 2.60 - 2.70	Triangular	$\sqrt{6}$	1.10	1	1.10
Mismatch : AMN- Receiver	М	± 0.07	U-Shaped	$\sqrt{2}$	0.05	1	0.05
Remark			Using 50 Ω	/ 50 uH AMN	1		
Combined Standard Uncertainty		Normal			<i>uc</i> = 1.7	18 dB	
Expended Uncertainty U		Normal (k =	: 2)	U	/= 2.4 dB (0	CL is 95	5 %)

2. Radiation Uncertainty Calculation (Below 1 (#z)

		Uncerta	ainty of <i>Xi</i>	Coverage			
Source of Uncertainty	Xi	Value (^{dB})	Probability Distribution	factor	<i>u(Xi)</i> (dB)	Ci	<i>Ci u(Xi)</i> (^{dB})
Receiver reading	Ri	± 0.41	normal 1	1.00	0.41	1	0.41
Sine wave voltage	dVsw	± 0.17	normal 2	2.00	0.09	1	0.09
Pulse amplitude response	dVpa	± 0.54	normal 2	2.00	0.27	1	0.27
Pulse repetition rate response	dVpr	± 0.54	normal 2	2.00	0.27	1	0.27
Noise floor proximity	dVnf	± 0.50	normal 2	2.00	0.29	1	0.29
Antenna Factor Calibration	AF	± 1.30	rectangular	2.00	0.65	1	0.65
Antenna Directivity	A _D	± 0.50	rectangular	$\sqrt{3}$	0.29	1	0.29
Antenna Factor Height Dependence	Aн	± 0.50	rectangular	$\sqrt{3}$	0.29	1	0.29
Antenna Phase Centre Variation	A _P	± 0.20	rectangular	√3	0.12	1	0.12
Antenna Factor Frequency Interpolation	Ai	± 0.3	rectangular	$\sqrt{3}$	0.17	1	0.17
Site Imperfections	Si	± 4.00	triangular	$\sqrt{6}$	1.63	1	1.63
Measurement Distance Variation	Dv	± 0.60	rectangular	$\sqrt{3}$	0.35	1	0.35
Antenna Balance	Dbal	± 1.00	rectangular	$\sqrt{3}$	0.58	1	0.58
Cross Polarization	DCross	± 0.90	rectangular	$\sqrt{3}$	0.52	1	0.52
Mismatch	М	+ 0.89 - 1.00	U-Shaped	$\sqrt{2}$	0.70	1	0.70
EUT Volume Diameter	Vd	0.33	normal 1	1.00	0.33	1	0.33
Combined Standard Uncertainty		Normal			uc = 2.2	24 dB	
Expended Uncertainty U		Normal (k =	: 2)	U:	= 4.48 dB (CL is 9	95 %)

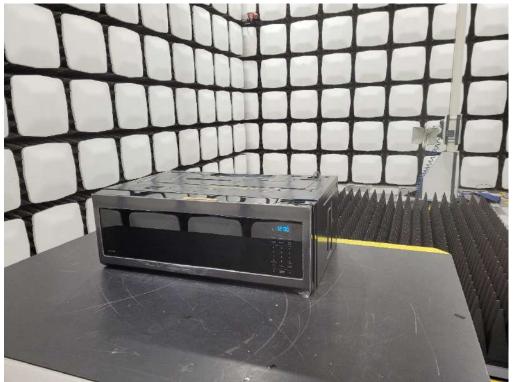
3. Radiation Uncertainty Calculation (Above 1 @)

		Uncerta	ainty of <i>Xi</i>	Coverage			
Source of Uncertainty	Xi	Value (^{dB})	Probability Distribution	factor <i>k</i>	<i>u(Xi)</i> (dB)	Ci	Ci u(Xi) (^{dB})
Receiver reading	Ri	0.25	normal 1	1.00	0.25	1	0.25
Preamplifier gain	Gp	± 0.23	normal 2	2	0.12	1	0.12
Receiver Sine Wave	dVsw	± 0.27	normal 2	2	0.14	1	0.14
Instability of preamp gain	dGpw	± 1.2	rectangular	$\sqrt{3}$	0.70	1	0.70
Noise Floor Proximity	dVnf	± 0.70	rectangular	$\sqrt{3}$	0.40	1	0.40
Antenna Factor Calibration	AF	± 1.40	normal 2	2	0.70	1	0.70
Directivity difference	A _D	± 3.00	rectangular	$\sqrt{3}$	0.87	1	0.87
Phase Centre location	AP	± 0.30	rectangular	$\sqrt{3}$	0.17	1	0.17
Antenna Factor Frequency Interpolation	Ai	± 0.30	rectangular	√3	0.17	1	0.17
Site Imperfections	Si	± 3.00	triangular	$\sqrt{6}$	1.22	1	1.22
Effect of setup table material	d ANT	± 1.50	rectangular	$\sqrt{3}$	0.87	1	0.87
Separation distance	d⊳	± 0.30	rectangular	$\sqrt{3}$	0.17	1	0.17
Cross Polarization	D _{Cross}	± 0.90	rectangular	$\sqrt{3}$	0.52	1	0.52
Mismatch (antenna-Preamplifier)	М	+ 0.89 - 1.00	U-Shaped	$\sqrt{2}$	0.70	1	0.70
Mismatch (preamplifier-receiver)	М	+ 1.32 - 1.56	U-Shaped	$\sqrt{2}$	1.10	1	1.10
Combined Standard Uncertainty		Normal			uc = 2.8	51 dB	
Expended Uncertainty U		Normal (k =	2)	U =	= 5.02 dB ((CL is 9	95 %)

No.	Instrument	Manufacturer	Model	Serial No.	Due to Calibration	Calibration Interval
1	Microwave survey meter	ETS Lindgren	1501	0003549	2021.01.15	2 years
2	EMI Test Receiver	Rohde & Schwarz	ESCI	101041	2021.04.05	1 year
3	Software	Rohde & Schwarz	EMC32	Version 8.53.0	-	-
4	TWO-LINE VNETWORK	Rohde & Schwarz	ENV216	101156	2021.04.05	1 year
5	LOOP ANTENNA	ROHDE & SCHWARZ	HFH2-Z2	100279	2021.02.25	1 year
6	EMI TEST RECEIVER	Rohde & Schwarz	ESU 40	100202	2021.04.05	1 year
7	EMI TEST RECEIVER	Rohde & Schwarz	ESW8	100994	2021.04.06	1 year
8	Software	Rohde & Schwarz	EMC32	EMC32V10.60.15	-	-
9	Signal Conditioning Unit	Rohde & Schwarz	SCU 01	10030	2021.04.06	1 year
10	TRILOG Broadband Test Antenna	SCHWARZBECK	VULB 9163	9163-01027	2021.05.03	2 years
11	ATTENUATOR	FAIRVIEW	SA3N5W-06	N/A	2021.01.11	1 year
12	CONTROLLER	innco systems GmbH	CO2000-G	CO2000/562/ 23890210/L	-	-
13	OPEN SWITCH AND CONTROL UNIT	Rohde & Schwarz	OSP-120	100015	-	-
14	ANTENNA MAST (LEFT)	innco systems GmbH	MA4000-EP	N/A	-	-
15	Turn Table	innco systems GmbH	DT3000-3T	N/A	-	-
16	Signal Conditioning Unit	Rohde & Schwarz	SCU 18	10065	2021.04.06	1 year
17	DOUBLE RIDGED HORN ANTENNA	Rohde & Schwarz	HF907	102585	2020.07.16	1 year
18	OPEN SWITCH AND CONTROL UNIT	Rohde & Schwarz	OSP-120	101766	-	-
19	TILT ANTENNA MAST	innco systems GmbH	MA4640-XP- EP	N/A	-	-
20	CONTROLLER	innco systems GmbH	CO3000	CO3000/937/383 30516/L	-	-
21	Turntable	innco systems GmbH	DT2000-2t	N/A	-	-
22	WiFi Filter Bank	ROHDE & SCHWARZ	U082	N/A	-	-
23	Signal Conditioning Unit	ROHDE & SCHWARZ	SCU-26D	1984522	2021.04.06	1 year
24	Horn Antenna	Q-par Angus	QMS-00225	17637	2020.09.22	1 year

Labeling Requirements

The sample label shown shall be *permanently affixed* at a conspicuous location on the device and be readily visible to the user at the time of purchase.


SAMSUNG	HOUSE	HOLD MICROWAVE OVEN	120 Vac	60Hz	
MANUFACTURED APRIL-2021		SERIAL No. 0BQL7WZN400001Z	1.65 kW MICR	OWAVE	VERIFIDE LISTED
MADE IN MALAYSIA	SEMA	FCC ID : A3LME6000A			E70049
			THIS PRODUCT CO	IMPLIES WITH	DHHS RULES 21 CFR SUBCHAPTER J. DE688-03721A-04

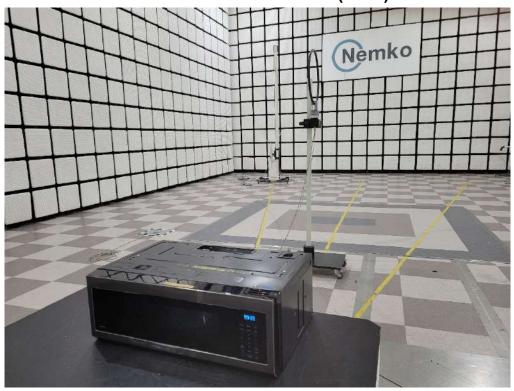
The **Conducted Test Picture** and **Radiated Test Picture** and show the worst-case configuration and cable placement.

- Radiation hazard Test Picture

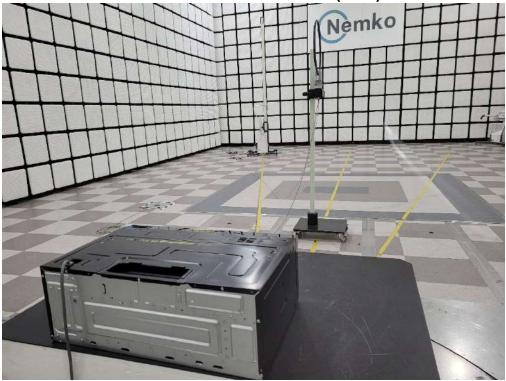


Samsung Electronics Co., Ltd. FCC ID: A3LME6000A Page 57 of 69

• Conducted Test Picture (Front)



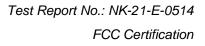
• Conducted Test Picture (Side)

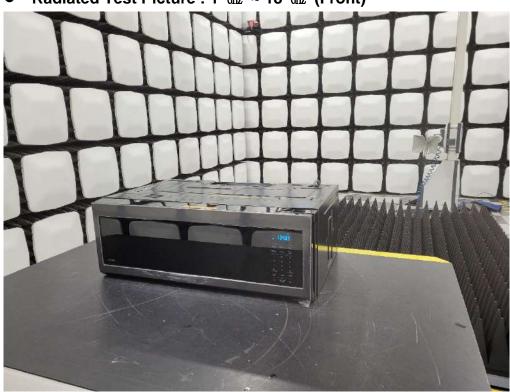


0

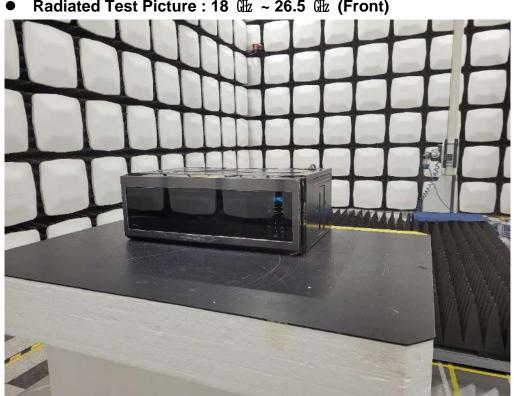
Radiated Test Picture : 0.15 Mb ~ 30 Mb (Front)

■ Radiated Test Picture : 0.15 Mb ~ 30 Mb (Rear)




Radiated Test Picture : 30 Mz ~ 1 Gz (Front)

■ Radiated Test Picture : 30 Mb ~ 1 Gb (Rear)



Radiated Test Picture : 1 🕀 ~ 18 🕀 (Front)

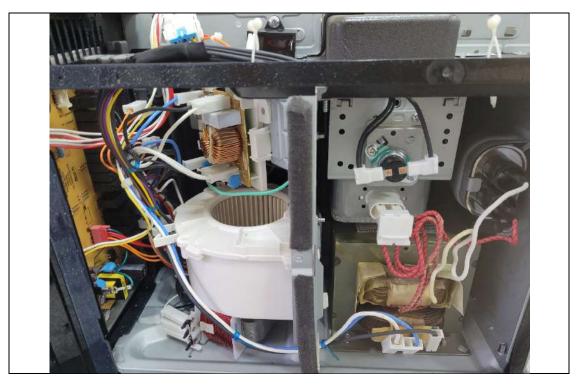
Radiated Test Picture : 18 @ ~ 26.5 @ (Front)

Radiated Test Picture : 18 G ~ 26.5 G (Rear)

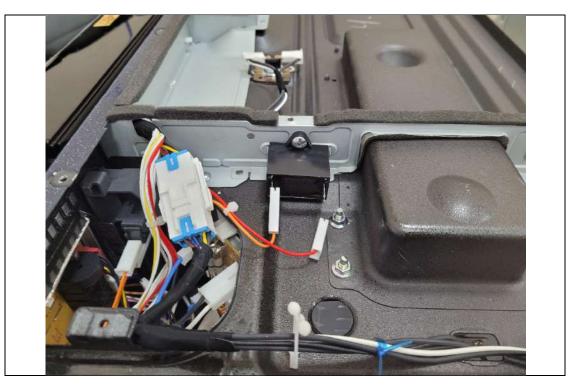
Front View of EUT

Rear View of EUT

Left View of EUT



Right View of EUT



Inside View of EUT 1



Inside View of EUT 2

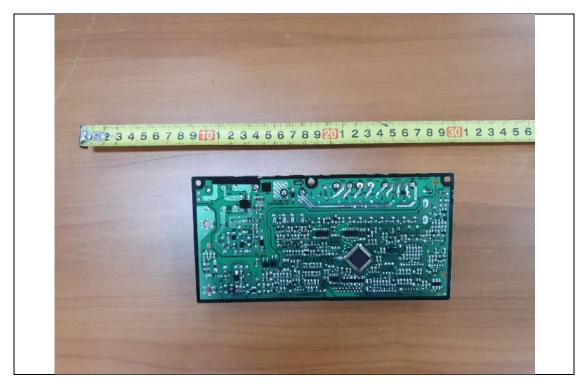
View of MAGNETRON

View of H.V TRANS

View of H.V CAPACITOR

View of FAN MOTOR

View of INTERLOCK SWITCH



Front View of PCB

Rear View of PCB

