

DIGITAL EMC CO., LTD.
 683-3, Yubang-Dong, Yongin-Si, Kyunggi-Do, Korea. 449-080
 Tel: +82-31-321-2664 Fax: +82-31-321-1664
<http://www.digitalemc.com>

CERTIFICATION OF COMPLIANCE

Samsung Electronics Co Ltd

18600 Broadwick St. Rancho Dominguez, California, 90220,
 United States

Dates of Tests: January 14 ~ 18, 2010
 February 3~5, 2010

Test Report S/N: DR5011001G-rev.1
 Test Site : DIGITAL EMC CO., LTD.

FCC ID

A3LKS-R-MX028

APPLICANT

Samsung Electronics Co Ltd

Purpose	: Original Grant
FCC Equipment Class	: Low Power Communication Device Transmitter(DXX)
Device name	: FM Transmitter
Manufacturer	: Kwang sung Electronics H.K Co.Ltd
FCC ID	: A3LKS-R-MX028
Model name	: KSR-MX028
Test Device Serial number	: Identical prototype
FCC Rule Part(s)	: FCC Part 15.239 Subpart C ANSI C-63.4-2003
Frequency Range	: 88.1 ~ 107.9 MHz
Data of issue	: February 5, 2009

The Test results relate only to the tested sample. It is not allowed to copy this report even partly without the allowance of DIGITAL EMC CO., LTD.

TABLE OF CONTENTS

1. GENERAL INFORMATION -----	3
2. EQUIPMENT INFORMATION -----	4
2.1 EQUIPMENT DESCRIPTION -----	4
2.2 ANCILLARY EQUIPMENT -----	4
3. INFORMATION ABOUT TEST ITEMS -----	5
3.1 TESTED FREQUENCY -----	5
3.2 TESTED ENVIRONMENT -----	5
3.3 AXUILIARY EQUIPMENT -----	5
3.4 EMI SUPPRESSION DEVICE(S)/MODIFICATION -----	5
4. TEST REPORT -----	6
4.1 SUMMARY OF TESTS -----	6
4.2 FIELD STRENGTH OF FUNDAMENTAL AND EMISSIONS WITHIN PERMITTED BAND ---	7
4.3 RADIATED EMISSIONS -----	8
4.4 OCCUPIED CHANNEL BANDWIDTH -----	12
4.5 AC CONDUCTED EMISSIONS -----	15
4.6 ANTENNA REQUIREMENTS -----	18
APPENDIX TEST EQUIPMENT USED FOR TESTS -----	19

1. General information

This report contains the result of tests performed by:

DIGITAL EMC CO., LTD.

Address: 683-3, Yubang-Dong, Yongin-Si, Kyunggi-Do, Korea. 449-080

<http://www.digitalemc.com> E-mail: harveysung@digitalemc.com

Tel: +82-31-321-2664 Fax: +82-31-321-1664

Quality control in the testing laboratory is implemented as per ISO/IEC 17025 which is the “General requirements for the competent of calibration and testing laboratory”.

Tested by: *Engineer*

February 5, 2009 Sun-Kyu Ryu

Date	Name	Signature
------	------	-----------

Reviewed by: *Manager*

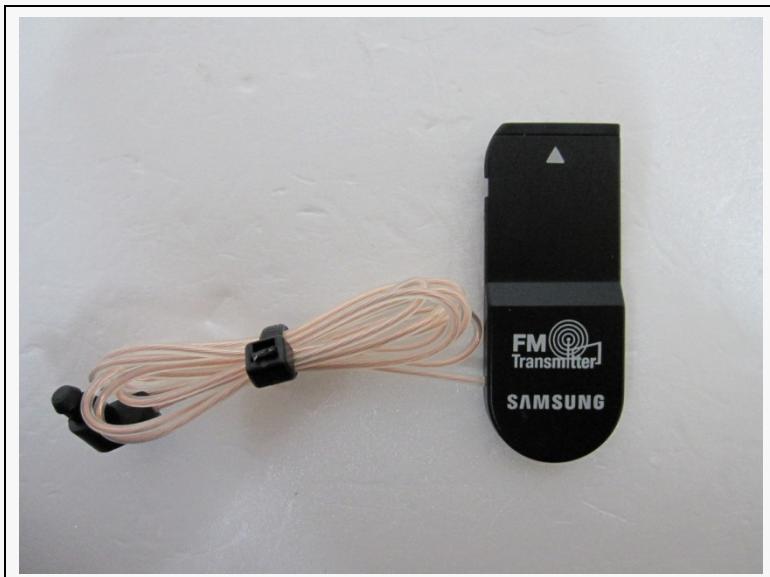
February 5, 2009 Won-Jung, Lee

Date	Name	Signature
------	------	-----------

Applicant:

Company name : Samsung Electronics Co Ltd

Address : 18600 Broadwick St. Rancho Dominguez, California, 90220, United States


Date of order : December 23, 2009

2. Equipment information

A3LKS-R-MX028

2.1 Equipment description

Equipment model no.	KSR-MX028
Equipment serial no.	Identical prototype
Type of equipment	FM Transmitter
Frequency band	88.1 ~ 107.9 MHz
Channel spacing	100kHz
Type of Modulation	FM
Power	DC 3.3V
Type of antenna	Wire Antenna

2.2 Ancillary equipment

Equipment	Model No.	Serial No.	Manufacturer	Note
-	-	-	-	-
-	-	-	-	-

3. Information about test items

A3LKS-R-MX028

3.1 Tested frequency

Frequency	TX	RX
Lowest frequency	88.1MHz	-
Middle frequency	98.0MHz	-
Highest frequency	107.9MHz	-

3.2 Tested environment

Temperature	: 15 ~ 35 (°C)
Relative humidity content	: 20 ~ 75 %
Air pressure	: 86 ~ 103 kPa
Details of power supply	: AC 120V 60Hz

3.3 Auxiliary equipment

Equipment	Model No.	Serial No.	Manufacturer	Note
MP3 Player	COWON D2+ DMB	N/A	SHIN-OH ELECTRONICS CO.,LTD.	DoC
Jig Board	MKTEST-JIG4	N/A	-	-
Jig Board Adapter	3A-161WP09	N/A	SILICON LABORATORIES	-

3.4 EMI Suppression Device(s)/Modifications

EMI suppression device(s) added and/or modifications made during testing

→ None

4. Test Report

4.1 Summary of tests

FCC Part Section(s)	Parameter	Limit	Test Condition	Status Note 1
I. Test Items				
15.239	Field Strength of Fundamental and Emissions within permitted band	< 250 uV/m @ 3m	Radiated	C
15.209	Radiated Emission	< FCC 15.209 limits		C
15.239	Occupied channel bandwidth	< 200kHz		C
15.207	AC Conducted Emissions	EN 55022		NA
15.203	Antenna Requirements	FCC 15.203	-	C

Note 1: **C**=Comply **NC**=Not Comply **NT**=Not Tested **NA**=Not Applicable

The sample was tested according to the following specification:

FCC Parts 15.239; ANSI C-63.4-2003

4.2 Field Strength of Fundamental and Emissions within permitted band.

Procedure:

The field strength of emissions from intentional radiators operated within the bands 88.1 ~ 107.9MHz was measured in accordance with FCC Part §15.239. The test set-up was made according to ANSI C 63.4:2003.

The EUT was placed on a 0.8m high wooden table inside a shielded semi-anechoic chamber.

An antenna was placed at 3m distance from EUT and measurements of frequencies and amplitudes of field strengths were recorded.

Type of Test : Low Power Communication Device Transmitter
 FCC ID : A3LKS-R-MX028
 Operating Condition : Transmit the rock song

Measurement Data: Complies

Frequency [MHz]	Detector Mode	Pol	Reading Level [dBuV]	Ant Factor [dB/m]	Cable Loss [dB]	Preamp Gain [dB]	Level [dBuV/m]	Limit [dBuV/m]	Margin [dB]
88.1	PK	V	56.8	8.6	1.3	22.7	44.0	68.0	24.0
88.1	AV	V	-	-	-	-	-	48.0	-
98.0	PK	V	51.6	10.2	1.4	22.7	40.5	68.0	27.5
98.0	AV	V	-	-	-	-	-	48.0	-
107.9	PK	V	55.6	11.1	1.5	22.7	45.5	68.0	22.5
107.9	AV	V	-	-	-	-	-	48.0	-

Note 1: Field Strength Calculation

Level = Read Level + ANT Factor + Cable Loss – Preamp gain

Margin = Limit – Level

Note 2: PK results were meet AV limit. Therefore AV measurements were omitted.

Minimum Standard:

The maximum Field Strength authorized within 200kHz is 250 uV/m@3m

4.3 Radiated Emissions

Procedure:

The field strength of emissions from intentional radiators operated within the bands 88.1 ~107.9MHz was measured in accordance with FCC Part §15.239. The test set-up was made according to ANSI C 63.4:2003.

The EUT was placed on a 0.8m high wooden table inside a shielded semi-anechoic chamber.

An antenna was placed at 3m distance from EUT and measurements of frequencies and amplitudes of field strengths were recorded.

The spectrum analyzer is set to:

Frequency Range = 30 MHz ~ 10th harmonic.

RBW = 120 kHz (30MHz ~ 1 GHz)

$$\mathbf{VBW} \geq \mathbf{RBW}$$

= 1 MHz (1 GHz \sim 10th harmonic)

Trace = max hold

Detector function = Peak/Average (>1GHz)

Sweep = auto

Receiver Detector = Quasi-Peak($\leq 1\text{GHz}$)

Operating Condition: Transmit the rock song.

Measurement Data: Complies

- Refer to the next page.

Minimum Standard: FCC Part 15.209(a)

Frequency (MHz)	Limit (uV/m) @ 3m
30 ~ 88	100 **
88 ~ 216	150 **
216 ~ 960	200 **
Above 960	500

** Except as provided in 15.209(g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88MHz, 174-216MHz or 470-806MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g. 15.231 and 15.241.

Measurement Data:

Operating Frequency : **88.1 MHz**
Measurement Distance : **3 Meters**

Note 1: Field Strength Calculation

Level = Read Level + ANT Factor + Cable Loss – Preamp Gain

Margin = Limit - Level

Note 2: Up to the 10th harmonics of fundamental were investigated according to 15.239 and the worst-case emissions are reported.

Note 3: No other spurious and harmonic were detected at level greater than 10dB below limit.

Measurement Data:

Operating Frequency : **98.0 MHz**
Measurement Distance : **3 Meters**

Note 1: Field Strength Calculation

Level = Read Level + ANT Factor + Cable Loss – Preamp Gain

Margin = Limit - Level

Note 2: Up to the 10th harmonics of fundamental were investigated according to 15.239 and the worst-case emissions are reported.

Note 3: No other spurious and harmonic were detected at level greater than 10dB below limit.

Measurement Data:

Operating Frequency : **107.9 MHz**
Measurement Distance : **3 Meters**

Note 1: Field Strength Calculation

Level = Read Level + ANT Factor + Cable Loss – Preamp Gain

Margin = Limit - Level

Note 2: Up to the 10th harmonics of fundamental were investigated according to 15.239 and the worst-case emissions are reported.

Note 3: No other spurious and harmonic were detected at level greater than 10dB below limit.

4.4 Occupied channel bandwidth

Procedure:

The occupied channel Bandwidth is defined as the minimum declared bandwidth within which the transmitter's necessary bandwidth can be contained. The transmitter was adjusted to work at the selected channels. The occupied channel BW was measured at an amplitude level reduced from the reference level by the 26dB.

The plot is taken at 30kHz/division frequency span, 10kHz resolution bandwidth and 10dB/division amplitude logarithmic display from a spectrum analyzer.

The spectrum analyzer is set to:

Center Frequency = The highest, middle and the lowest channels

RBW = 10 kHz

VBW \geq RBW

Trace = max hold

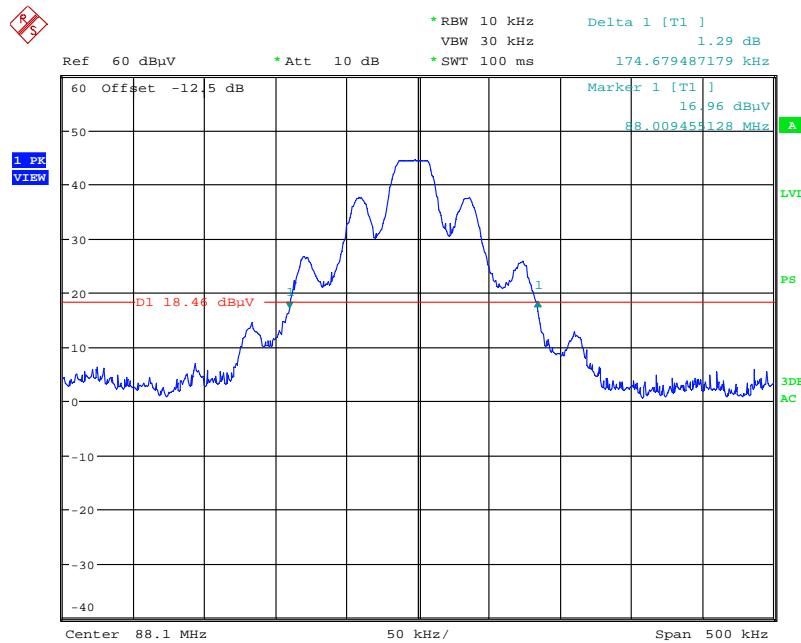
Detector function = Peak

Sweep = auto

Span = 500 kHz

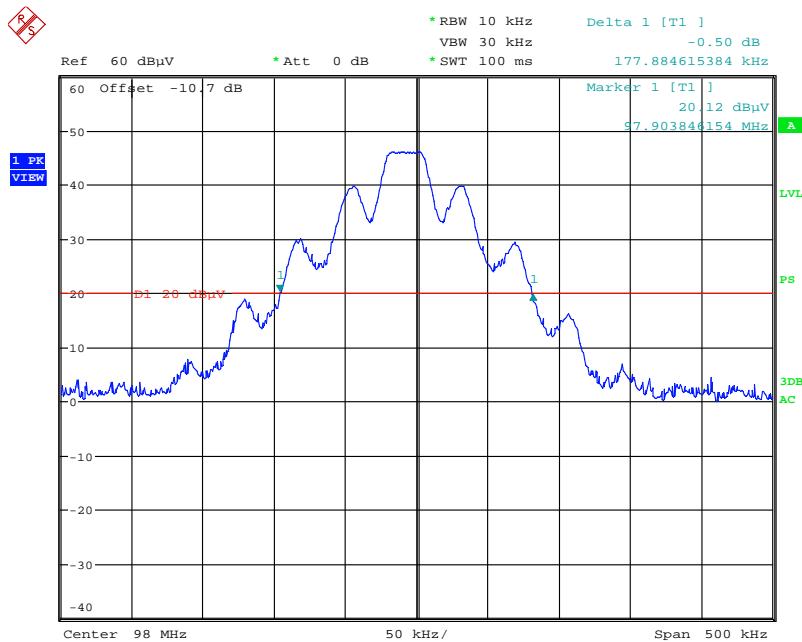
Operating Condition: Transmit the rock song.

Measurement Data:

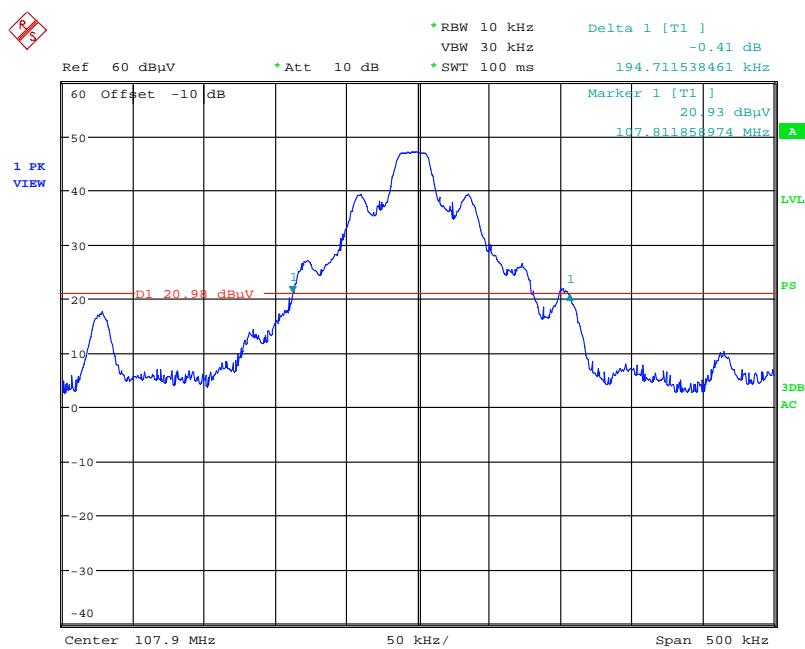

Frequency [MHz]	Test Results	
	Measured Bandwidth [kHz]	Result
88.1	174.68	Comply
98.0	177.88	Comply
107.9	194.71	Comply

- See next pages for actual measured spectrum plots.

Minimum Standard:


Occupied Bandwidth < 200kHz.

Occupied Channel Bandwidth plot (88.1 MHz)


Date: 14.JAN.2010 11:16:16

Occupied Channel Bandwidth plot (98.0 MHz)

Date: 14.JAN.2010 10:46:31

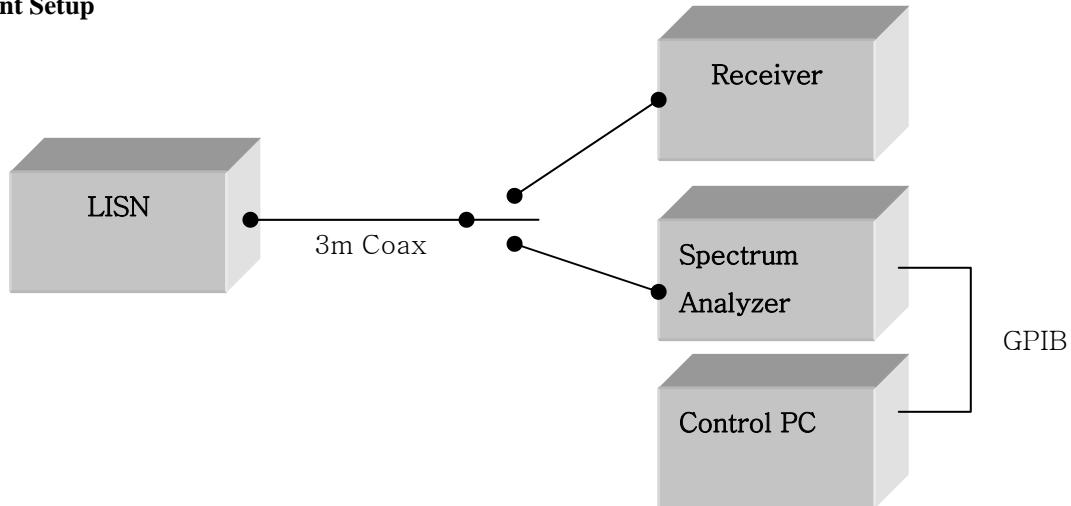
Occupied Channel Bandwidth plot (107.9 MHz)

Date: 14.JAN.2010 10:07:37

4.5 AC Conducted Emissions

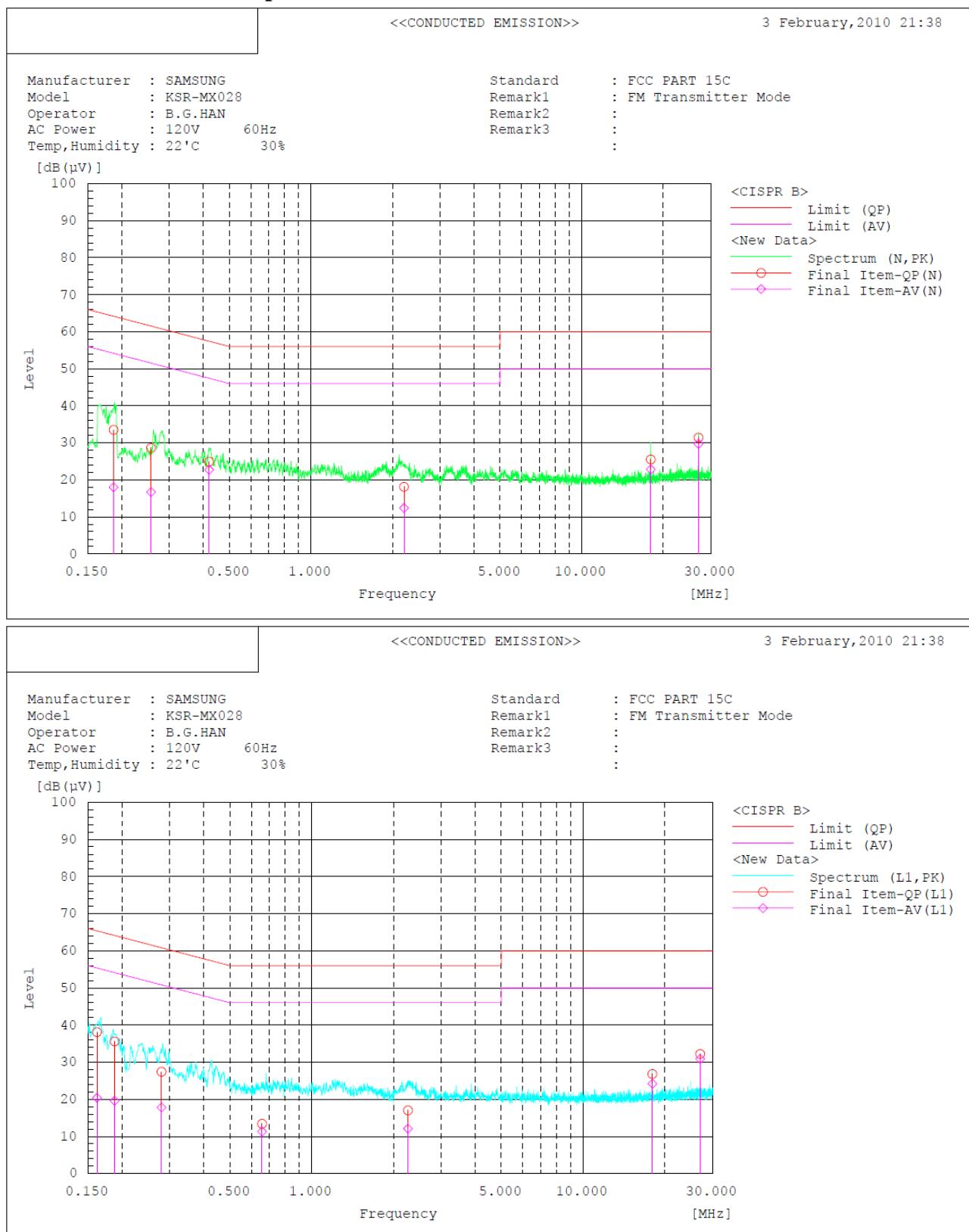
Procedure:

The conducted emissions are measured in the shielded room with a spectrum analyzer in peak hold. While the measurement, EUT had its normal operating function. Emissions closest to the limit are measured in the quasi-peak mode (QP) with the tuned receiver using a bandwidth of 9 kHz. The emissions are maximized further by cable manipulation and Exerciser operation. The highest emissions relative to the limit are listed.


Measurement Data: Comply

Minimum Standard: FCC Part 15.207(a)/EN 55022

Frequency Range (MHz)	Conducted Limit (dBuV)	
	Quasi-Peak	Average
0.15 ~ 0.5	66 to 56 *	56 to 46 *
0.5 ~ 5	56	46
5 ~ 30	60	50


* Decreases with the logarithm of the frequency

Measurement Setup

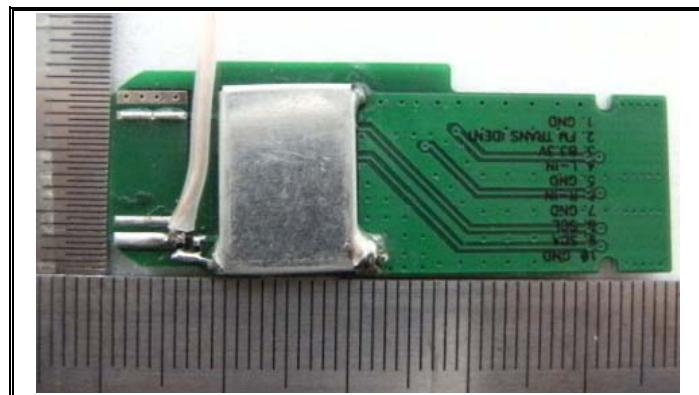
Measurement setup for AC Conducted Emission

Conducted Emission Graph

Conducted Emission List

***** <<CONDUCTED EMISSION>> *****												
<<CONDUCTED EMISSION>>												3 February, 2010 21:38
Standard	:	FCC PART 15C										
Manufacturer	:	SAMSUNG										
Model	:	KSR-MX028										
Operator	:	B.G.HAN										
AC Power	:	120V 60Hz										
Temp, Humidity	:	22°C 30%										
Remark1	:	FM Transmitter Mode										
Remark2	:											
Remark3	:											

Final Result												
--- N Phase ---												
No.	Frequency	Reading QP	Reading AV	c.f	Result QP	Result AV	Limit QP	Limit AV	Margin QP	Margin AV	Remark	
	[MHz]	[dB(µV)]	[dB(µV)]	[dB]	[dB(µV)]	[dB(µV)]	[dB(µV)]	[dB(µV)]	[dB]	[dB]		
1	0.187	33.4	17.9	0.1	33.5	18.0	64.2	54.2	30.7	36.2		
2	0.257	28.5	16.6	0.1	28.6	16.7	61.5	51.5	32.9	34.8		
3	0.421	24.7	22.5	0.2	24.9	22.7	57.4	47.4	32.5	24.7		
4	2.208	17.9	12.2	0.2	18.1	12.4	56.0	46.0	37.9	33.6		
5	18.000	24.4	21.7	1.1	25.6	22.8	60.0	50.0	34.5	27.2		
6	27.000	29.7	28.0	1.7	31.4	29.7	60.0	50.0	28.6	20.3		
--- L1 Phase ---												
No.	Frequency	Reading QP	Reading AV	c.f	Result QP	Result AV	Limit QP	Limit AV	Margin QP	Margin AV	Remark	
	[MHz]	[dB(µV)]	[dB(µV)]	[dB]	[dB(µV)]	[dB(µV)]	[dB(µV)]	[dB(µV)]	[dB]	[dB]		
1	0.162	37.9	20.2	0.2	38.1	20.4	65.4	55.4	27.3	35.0		
2	0.188	35.3	19.3	0.3	35.6	19.6	64.1	54.1	28.5	34.5		
3	0.280	27.0	17.4	0.4	27.4	17.8	60.8	50.8	33.4	33.0		
4	0.657	12.9	10.8	0.5	13.4	11.3	56.0	46.0	42.6	34.7		
5	2.265	16.4	11.5	0.6	17.0	12.1	56.0	46.0	39.0	33.9		
6	18.000	25.4	22.8	1.4	26.8	24.2	60.0	50.0	33.2	25.8		
7	27.000	30.2	28.9	2.0	32.2	30.9	60.0	50.0	27.8	19.1		


4.6 Antenna Requirements

- Procedure:

Describe how the EUT complies with the requirement that either its antenna is permanently attached, or that it employs a unique antenna connector, for every antenna proposed for use with the EUT.

- Conclusion: Comply

The antenna of this device is permanently attached with soldering.

- Minimum Standard:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions.

APPENDIX

TEST EQUIPMENT FOR TESTS

To facilitate inclusion on each page of the test equipment used for related tests, each item of test equipment.

	Type	Manufacturer	Model	Cal.Due.Date (dd/mm/yy)	Next.Due.Date (dd/mm/yy)	S/N
<input type="checkbox"/>	Spectrum Analyzer	Agilent	E4440A	25/09/09	25/09/10	MY45304199
<input type="checkbox"/>	Spectrum Analyzer	Rohde Schwarz	FSQ26	05/06/09	05/06/10	200445
<input type="checkbox"/>	Spectrum Analyzer(RE)	H.P	8563E	13/10/09	13/10/10	3551A04634
<input type="checkbox"/>	Power Meter	H.P	EMP-442A	02/07/09	02/07/10	GB37170413
<input type="checkbox"/>	Power Sensor	H.P	8481A	02/07/09	02/07/10	3318A96332
<input type="checkbox"/>	Power Divider	Agilent	11636B	13/10/09	13/10/10	56471
<input type="checkbox"/>	Power Splitter	Anritsu	K241B	13/10/09	13/10/10	20611
<input type="checkbox"/>	Power Splitter	Anritsu	K241B	02/07/09	02/07/10	017060
<input type="checkbox"/>	Frequency Counter	H.P	5342A	13/07/09	13/07/10	2119A04450
<input type="checkbox"/>	TEMP & HUMIDITY Chamber	JISCO	KR-100/J-RHC2	10/10/09	10/10/10	30604493/021031
<input type="checkbox"/>	Digital Multimeter	H.P	34401A	13/03/09	13/03/10	3146A13475, US36122178
<input type="checkbox"/>	Multifunction Synthesizer	HP	8904A	06/10/09	06/10/10	3633A08404
<input type="checkbox"/>	Signal Generator	Rohde Schwarz	SMR20	13/03/09	13/03/10	101251
<input type="checkbox"/>	Signal Generator	H.P	ESG-3000A	02/07/09	02/07/10	US37230529
<input type="checkbox"/>	Vector Signal Generator	Rohde Schwarz	SMJ100A	02/02/09	02/02/10	100148
<input type="checkbox"/>	Audio Analyzer	H.P	8903B	02/07/09	02/07/10	3011A09448
<input type="checkbox"/>	Modulation Analyzer	H.P	8901B	02/07/09	02/07/10	3028A03029
<input type="checkbox"/>	8960 Series 10 Wireless Comms. Test Set	Agilent	E5515C	02/07/09	02/07/10	GB43461134
<input type="checkbox"/>	Universal Radio communication Tester	Rohde Schwarz	CMU 200	19/05/09	19/05/10	106760
<input type="checkbox"/>	Bluetooth Tester	TESCOM	TC-3000B	02/07/09	02/07/10	3000B000268
<input type="checkbox"/>	Thermo hygrometer	BODYCOM	BJ5478	06/02/09	06/02/10	090205-3
<input type="checkbox"/>	Thermo hygrometer	BODYCOM	BJ5478	06/02/09	06/02/10	090205-2
<input type="checkbox"/>	Thermo hygrometer	BODYCOM	BJ5478	06/02/09	06/02/10	090205-4
<input type="checkbox"/>	AC Power supply	DAEKWANG	5KVA	13/03/09	13/03/10	20060321-1
<input type="checkbox"/>	DC Power Supply	HP	6622A	13/03/09	13/03/10	3448A03760
<input checked="" type="checkbox"/>	DC Power Supply	HP	6633A	13/03/09	13/03/10	3524A06634
<input type="checkbox"/>	BAND Reject Filter	Microwave Circuits	N0308372	06/10/09	06/10/10	3125-01DC0352
<input type="checkbox"/>	BAND Reject Filter	Wainwright	WRCG1750	06/10/09	06/10/10	2
<input type="checkbox"/>	High-Pass Filter	ANRITSU	MP526D	06/10/09	06/10/10	M27756
<input type="checkbox"/>	High-pass filter	Wainwright	WHKX2.1	N/A	N/A	1
<input type="checkbox"/>	High-Pass Filter	Wainwright	WHKX3.0	N/A	N/A	9
<input type="checkbox"/>	Tunable Notch Filter	Wainwright	WRCT800.0 /960.0-0.2/40-8SSK	N/A	N/A	10
<input type="checkbox"/>	Tunable Notch Filter	Wainwright	WRCD1700.0 /2000.0-0.2/40-10SSK	N/A	N/A	27
<input type="checkbox"/>	Tunable Notch Filter	Wainwright	WRCT1900.0/ 2200.0-5/40-10SSK	N/A	N/A	7
<input type="checkbox"/>	HORN ANT	ETS	3115	17/06/09	17/06/10	6419
<input type="checkbox"/>	HORN ANT	ETS	3115	23/09/09	23/09/10	21097
<input type="checkbox"/>	HORN ANT	A.H.Systems	SAS-574	10/06/09	10/06/10	154
<input type="checkbox"/>	HORN ANT	A.H.Systems	SAS-574	10/06/09	10/06/10	155

	Type	Manufacturer	Model	Cal.Due.Date (dd/mm/yy)	Next.Due.Date (dd/mm/yy)	S/N
<input type="checkbox"/>	Dipole Antenna	Schwarzbeck	VHA9103	06/10/09	06/10/10	2116
<input type="checkbox"/>	Dipole Antenna	Schwarzbeck	VHA9103	06/10/09	06/10/10	2117
<input type="checkbox"/>	Dipole Antenna	Schwarzbeck	UHA9105	05/10/09	05/10/10	2261
<input type="checkbox"/>	Dipole Antenna	Schwarzbeck	UHA9105	05/10/09	05/10/10	2262
<input type="checkbox"/>	LOOP Antenna	ETS	6502	14/09/09	14/09/10	3471
<input type="checkbox"/>	Coaxial Fixed Attenuators	Agilent	8491B	02/07/09	02/07/10	MY39260700
<input type="checkbox"/>	Attenuator (3dB)	WEINSCHEL	56-3	16/12/09	16/12/10	Y2342
<input type="checkbox"/>	Attenuator (3dB)	WEINSCHEL	56-3	16/12/09	16/12/10	Y2370
<input type="checkbox"/>	Attenuator (10dB)	WEINSCHEL	23-10-34	01/10/09	01/10/10	BP4386
<input type="checkbox"/>	Attenuator (10dB)	WEINSCHEL	23-10-34	19/01/09	19/01/10	BP4387
<input type="checkbox"/>	Attenuator (20dB)	WEINSCHEL	86-20-11	06/10/09	06/10/10	432
<input type="checkbox"/>	Attenuator (10dB)	WEINSCHEL	31696	06/10/09	06/10/10	446
<input type="checkbox"/>	Attenuator (10dB)	WEINSCHEL	31696	06/10/09	06/10/10	408
<input type="checkbox"/>	Attenuator (40dB)	WEINSCHEL	57-40-33	01/10/09	01/10/10	NN837
<input type="checkbox"/>	Attenuator (30dB)	JFW	50FH-030-300	13/03/09	13/03/10	060320-1
<input type="checkbox"/>	Type N Coaxial CIRCULATOR	NOVA MICROWAVE	0088CAN	02/07/09	02/07/10	788
<input type="checkbox"/>	Type N Coaxial CIRCULATOR	NOVA MICROWAVE	0185CAN	02/07/09	02/07/10	790
<input type="checkbox"/>	Type N Coaxial CIRCULATOR	NOVA MICROWAVE	0215CAN	02/07/09	02/07/10	112
<input type="checkbox"/>	Amplifier (30dB)	Agilent	8449B	10/10/09	10/10/10	3008A01590
<input type="checkbox"/>	Amplifier	EMPOWER	BBS3Q7ELU	02/02/09	02/02/10	1020
<input type="checkbox"/>	RF Power Amplifier	OPHIRRF	5069F	02/07/09	02/07/10	1006
<input checked="" type="checkbox"/>	EMI TEST RECEIVER	R&S	ESU	02/02/09	02/02/10	100014
<input checked="" type="checkbox"/>	BILOG ANTENNA	SCHAFFNER	CBL6112B	02/06/09	02/06/10	2737
<input checked="" type="checkbox"/>	Amplifier (22dB)	H.P	8447E	05/02/09	05/02/10	2945A02865
<input type="checkbox"/>	EMI TEST RECEIVER	R&S	ESCI	12/05/09	12/05/10	100364
<input type="checkbox"/>	LOG-PERIODIC ANT.	Schwarzbeck	UHALP9108A	30/05/09	30/05/10	590
<input type="checkbox"/>	BICONICAL ANT.	Schwarzbeck	VHA 9103	02/06/09	02/06/10	2233
<input type="checkbox"/>	LOG-PERIODIC ANT.	Schwarzbeck	UHALP9108A1	07/10/09	07/10/10	1098
<input type="checkbox"/>	BICONICAL ANT.	Schwarzbeck	VHA 9103	06/10/09	06/10/10	91031946
<input type="checkbox"/>	Low Noise Pre Amplifier	TSJ	MLA-100K01-B01-2	13/03/09	13/03/10	1252741
<input type="checkbox"/>	Amplifier (25dB)	Agilent	8447D	12/05/09	12/05/10	2944A10144
<input type="checkbox"/>	Amplifier (25dB)	Agilent	8447D	03/07/09	03/07/10	2648A04922
<input type="checkbox"/>	Spectrum Analyzer(CE)	H.P	8591E	26/04/09	26/04/10	3649A05889
<input type="checkbox"/>	LISN	Kyoritsu	KNW-407	03/07/09	03/07/10	8-317-8
<input type="checkbox"/>	LISN	Kyoritsu	KNW-242	13/10/09	13/10/10	8-654-15
<input type="checkbox"/>	CVCF	NF Electronic	4420	13/03/09	13/03/10	304935/337980
<input type="checkbox"/>	DC BLOCK	Hyuplip	KEL-007	N/A	N/A	7-1581-5
<input type="checkbox"/>	50 ohm Terminator	HME	CT-01	22/01/09	22/01/10	N/A
<input type="checkbox"/>	RFI/FIELD Intensity Meter	Kyoritsu	KNM-2402	03/07/09	03/07/10	4N-170-3