

**FCC CFR47 PART 22 SUBPART H
FCC CFR47 PART 24 SUBPART E**

CERTIFICATION TEST REPORT

FOR

GSM/WCDMA Phone + Bluetooth & WLAN 2.4GHz b/g/n

MODEL NUMBER: GT-S6293T

FCC ID: A3LGTS6293T

REPORT NUMBER: 13I16645-1, Revision A

ISSUE DATE: December 17, 2013

Prepared for

**SAMSUNG ELECTRONICS CO., LTD.
416, MAETAN 3-DONG, YEONGTONG-GU
SUWON-CITY, GYEONGGI-DO 443-742, SOUTH KOREA**

Prepared by

**UL VERIFICATION SERVICES INC.
47173 BENICIA STREET
FREMONT, CA 94538, U.S.A.
TEL: (510) 771-1000
FAX: (510) 661-0888**

REPORT NO: 13I16645-1A
MODEL NUMER: GT-S6293T

DATE: 12/17/13
FCC ID: A3LGTS6293T

Revision History

Rev.	Date	Issue	Revisions	Revised By
-	12/9/13	Initial		P. Kim
A	12/17/13	Updated frequency stability setup photo		P. Kim

TABLE OF CONTENTS

1. ATTESTATION OF TEST RESULTS	5
2. TEST METHODOLOGY	6
3. FACILITIES AND ACCREDITATION	6
4. CALIBRATION AND UNCERTAINTY	6
4.1. <i>MEASURING INSTRUMENT CALIBRATION</i>	<i>6</i>
4.2. <i>SAMPLE CALCULATION</i>	<i>6</i>
4.3. <i>MEASUREMENT UNCERTAINTY</i>	<i>6</i>
5. EQUIPMENT UNDER TEST	7
5.1. <i>DESCRIPTION OF EUT</i>	<i>7</i>
5.2. <i>MAXIMUM OUTPUT POWER</i>	<i>7</i>
5.3. <i>DESCRIPTION OF AVAILABLE ANTENNAS</i>	<i>8</i>
5.4. <i>DESCRIPTION OF TEST SETUP</i>	<i>9</i>
6. TEST AND MEASUREMENT EQUIPMENT	12
7. Summary Table	13
8. RF POWER OUTPUT VERIFICATION	14
8.1. <i>GSM/GPRS/EDGE</i>	<i>14</i>
8.1.1. <i>GSM OUTPUT POWER RESULT</i>	<i>15</i>
8.2. <i>UMTS REL 99</i>	<i>16</i>
8.2.1. <i>UMTS REL 99 OUTPUT POWER RESULT</i>	<i>16</i>
8.3. <i>UMTS HSDPA</i>	<i>17</i>
8.3.1. <i>UMTS HSDPA OUTPUT POWER RESULT</i>	<i>17</i>
8.3.2. <i>UMTS HSUPA</i>	<i>18</i>
8.3.3. <i>UMTS HSUPA OUTPUT POWER RESULT</i>	<i>19</i>
9. PEAK TO AVERAGE RATIO	20
9.1. <i>CONDUCTED PEAK TO AVERAGE RESULT</i>	<i>20</i>
10. LIMITS AND CONDUCTED RESULTS	21
10.1. <i>OCCUPIED BANDWIDTH</i>	<i>21</i>
10.1.1. <i>OCCUPIED BANDWIDTH RESULTS</i>	<i>22</i>
10.1.2. <i>OCCUPIED BANDWIDTH PLOTS</i>	<i>23</i>
10.2. <i>BAND EDGE EMISSIONS</i>	<i>25</i>
10.2.1. <i>BAND EDGE PLOTS</i>	<i>26</i>
10.3. <i>OUT OF BAND EMISSIONS</i>	<i>28</i>

10.3.1. OUT OF BAND EMISSIONS RESULT	29
10.3.2. OUT OF BAND EMISSIONS PLOTS.....	30
10.4. FREQUENCY STABILITY	31
10.4.1. FREQUENCY STABILITY RESULTS.....	32
11. RADIATED TEST RESULTS.....	34
11.1. RADIATED POWER (ERP & EIRP).....	34
11.1.1. ERP/EIRP Results	35
11.1.2. ERP/EIRP PLOTS	36
11.2. FIELD STRENGTH OF SPURIOUS RADIATION.....	40
11.2.1. SPURIOUS RADIATION PLOTS.....	42
12. SETUP PHOTOS	46

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: SAMSUNG

EUT DESCRIPTION: GSM/WCDMA Phone + Bluetooth & WLAN 2.4GHz b/g/n

MODEL: GT-S6293T

SERIAL NUMBER:

DATE TESTED: December 5 – 7th, 2013

APPLICABLE STANDARDS	
STANDARD	TEST RESULTS
FCC PART 22H, 24E	PASS

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Verification Services Inc. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released
For UL Verification Services Inc. By:

Tested By:

PHILIP KIM
WiSE PROGRAM MANAGER
UL Verification Services Inc.

STEVEN TRAN
WiSE LAB TECHNICIAN
UL Verification Services Inc.

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with TIA-603-C, FCC CFR 47 Part 22, FCC CFR Part 24.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

UL Verification Services Inc. is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <http://www.ccsemc.com>.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

EIRP = PSA reading with EUT worst orientation (dBm) + Path loss (dB) – cable loss(between the SG and substitution antenna) + Substitution Antenna Factor (dBi)

ERP = PSA reading with EUT worst orientation (dBm) + Path loss (dB) – cable loss(between the SG and substitution antenna)

(Path loss = Signal generator output – PSA reading with substitution antenna)

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	3.52 dB
Radiated Disturbance, 30 to 18000 MHz	4.94 dB

Uncertainty figures are valid to a confidence level of 95%.

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is a GSM/WCDMA Phone + Bluetooth & WLAN 2.4GHz b/g/n that is manufactured by (Samsung)

5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum peak conducted and radiated ERP / EIRP output powers as follows:

FCC Part 22/2 4/27						
Band	Frequency Range(MHz)	Modulation Peak	Conducted		Radiated	
			Peak (W)	Peak(dBm)	Peak (W)	Peak (dBm)
GSM850	824~849	GMSK	1.596	32.03		
	824~849	GPRS	1.600	32.04	0.656	28.17
GSM1900	1850~1910	GMSK	0.910	29.59		
	1850~1910	GPRS	0.912	29.60	0.449	26.52
Band 5	824~849	REL99	0.171	22.32	0.078	18.93
	824~849	HSDPA	0.164	22.15	0.085	19.30
	824~849	HSUPA	0.129	21.10		

Note: Radiated test will base on the worst case GPRS mode for GSM. Rel99 and HSDPA modes for WCDMA.

5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes a PIFA antenna for the [List the bands supported] with a maximum peak gain as follow:

Frequency (MHz)	Peak Gain (dBi)
GSM850/WCDMA B5, 824~849MHz	-0.8
GSM1900, 1850~1910MHz	2.3

5.4. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

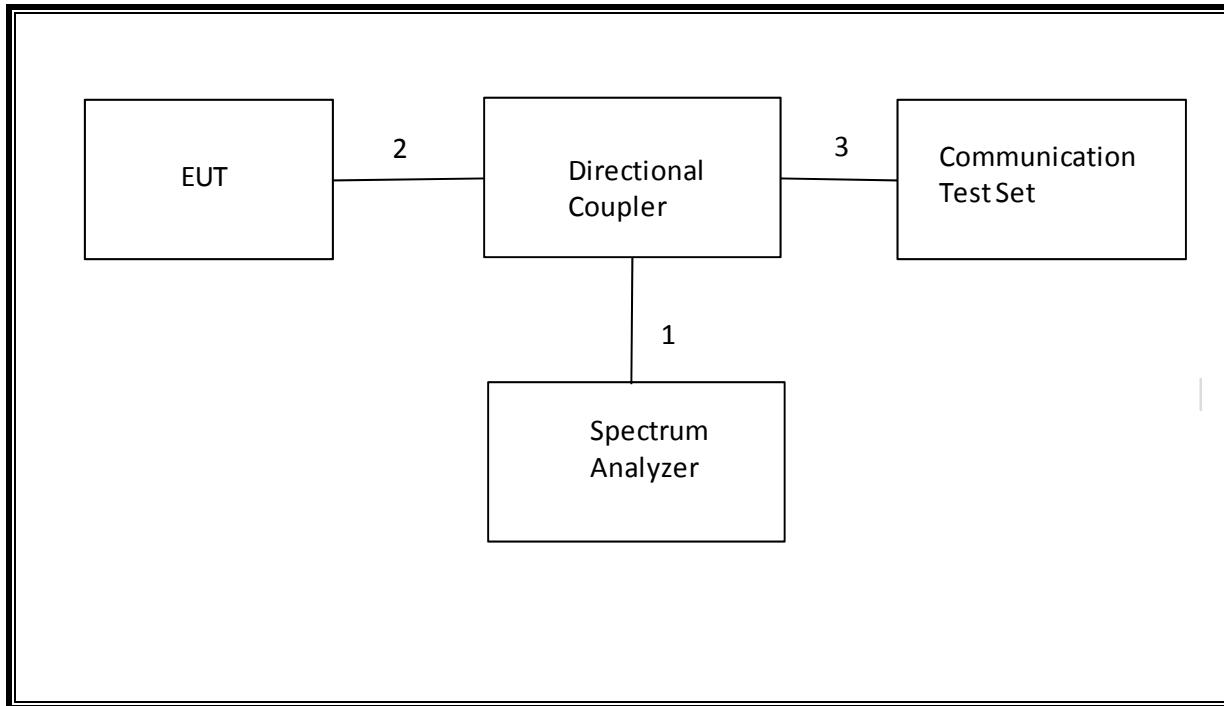
Support Equipment List				
Description	Manufacturer	Model	Serial Number	FCC ID
AC Adapter	Samsung	N/A	RT2D129	N/A
Earphone	Samsung	N/A	N/A	N/A

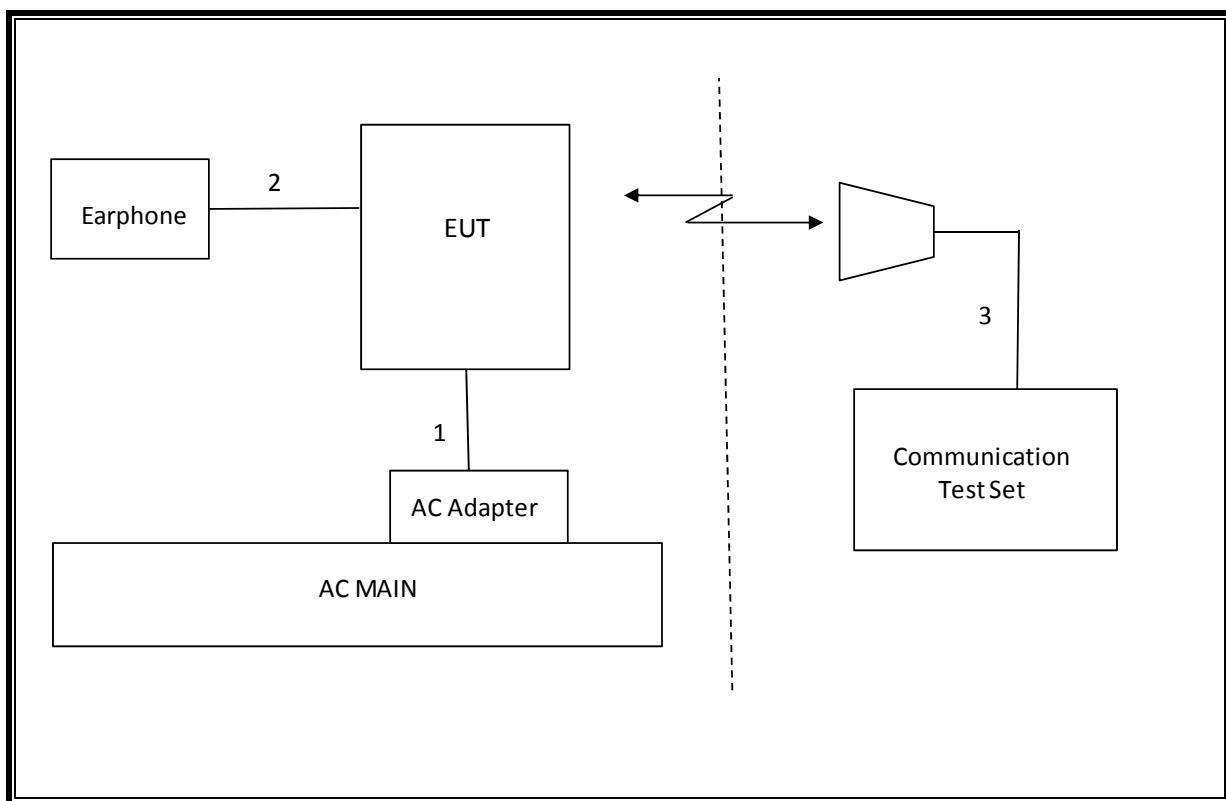
I/O CABLES (CONDUCTED SETUP)

I/O Cable List						
Cable No	Port	# of identical ports	Connector Type	Cable Type	Cable Length (m)	Remarks
1	RF Out	1	Spectrum Analyzer	Shielded	None	NA
2	Antenna Port	1	EUT	Shielded	0.1m	NA
3	RF In/Out	1	Communication Test Set	Shielded	1m	NA

I/O CABLES (RADIATED SETUP)

I/O CABLE LIST						
Cable No.	Port	# of Identical Ports	Connector Type	Cable Type	Cable Length	Remarks
1	USB	1	AC Adapter	Un-shielded	1.2m	No
2	Jack	1	Headset	Shielded	1m	No
3	RF In/out	1	Communication Test Set	Un-shielded	2m	Yes


TEST SETUP


The EUT is continuously communicated to the call box during the tests.

REPORT NO: 13I16645-1A
MODEL NUMER: GT-S6293T

DATE: 12/17/13
FCC ID: A3LGTS6293T

SETUP DIAGRAM FOR TESTS (CONDUCTED TEST SETUP)

SETUP DIAGRAM FOR TESTS (RADIATED TEST SETUP)

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

TEST EQUIPMENT LIST				
Description	Manufacturer	Model	Asset	Cal Due
Spectrum Analyzer, 44 GHz	Agilent / HP	E4446A	C01179	02/26/14
Antenna, Bilog, 2 GHz	Sunol Sciences	JB1	C01011	08/14/14
Antenna, Horn, 18 GHz	EMCO	3115	C00783	10/25/14
Highpass Filter, 2.7 GHz	Micro-Tronics	HPM13194	N02687	CNR
Highpass Filter, 1.5 GHz	Micro-Tronics	HPM13193	N02688	CNR
Temperature / Humidity Chamber	Thermotron	SE 600-10-10	C00930	01/09/14
Communications Test Set	R&S	CMW500	T159	07/02/14
DC power supply, 8 V @ 3 A or 15 V	Agilent / HP	E3610A	None	CNR
Vector signal generator, 6 GHz	Agilent / HP	E4438C	None	07/06/14
Antenna, Tuned Dipole 400~1000	ETS	3121C DB4	C00993	02/14/14
Directional Coupler	RF-Lambda	RFDC5M06G15	None	CNR

7. Summary Table

FCC Part Section	RSS Section(s)	Test Description	Test Limit	Test Condition	Test Result	Worst Case
2.1049	RSS Gen	Occupied Band width (99%)	N/A	Conducted	Pass	4.168MHz
22.917(a) 24.238(a)	RSS-132(4.5.1) RSS-133(6.5.1)	Band Edge / Conducted Spurious Emission	-13dBm		Pass	-16.14dBm
2.1046	N/A	Conducted output power	N/A		Pass	32.04dBm
22.355 24.235	RSS-132(4.3) RSS-133(6.3)	Frequency Stability	2.5PPM		Pass	0.012PPM
22.913(a)(2)	RSS-132(4.4)	Effective Radiated Power	38 dBm	Radiated	Pass	28.17dBm
24.232(c)	RSS-133(6.4)	Equivalent Isotropic Radiated Power	33dBm		Pass	26.52dBm
22.917(a) 24.238(a)	RSS-132(4.5.1) RSS-133(6.5.1)	Radiated Spurious Emission	-13dBm		Pass	-46.6dBm

8. RF POWER OUTPUT VERIFICATION

8.1. GSM/GPRS/EDGE

Function: Menu select > GSM Mobile Station > GSM 850/900/1800/1900

Press Connection control to choose the different menus

Press RESET > choose all to reset all settings

Connection Press Signal Off to turn off the signal and change settings

Network Support > GSM+GPRS or GSM+EGPRS

Main Service > Packet Data

Service selection > Test Mode A – Auto Slot Config. off

MS Signal Press Slot Config bottom on the right twice to select and change the number of time slots and power setting

> Slot configuration > Uplink/Gamma

> 33 dBm for GPRS 850/900

> 30 dBm for GPRS1800/1900

BS Signal Enter the same channel number for TCH channel (test channel) and BCCH channel

Frequency Offset > + 0 Hz

Mode > BCCH and TCH

BCCH Level > -85 dBm (May need to adjust if link is not stable)

BCCH Channel > choose desire test channel [Enter the same channel number for TCH channel (test channel) and BCCH channel]

Channel Type > Off

P0> 4 dB

Slot Config > Unchanged (if already set under MS Signal)

TCH > choose desired test channel

Hopping > Off

Main Timeslot > 3 (Default)

Network Coding Scheme > CS4 (GPRS) and MCS9 (EGPRS)

Bit Stream > 2E9-1PSR Bit Pattern

AF/RF Enter appropriate offsets for Ext. Att. Output and Ext. Att. Input

Connection Press Signal On to turn on the signal and change settings

8.1.1. GSM OUTPUT POWER RESULT

Band	Mode	Ch.	f(MHz)	1 time slot	2 time slot	3 time slot	4 time slot
				Peak (dBm)	Peak (dBm)	Peak (dBm)	Peak (dBm)
GSM850	GMSK	128	824.2	31.88			
		190	836.6	31.97			
		251	848.8	32.03			
	GPRS	128	824.2	31.89	29.27	28.27	26.24
		190	836.6	31.97	29.38	28.38	26.36
		251	848.8	32.04	29.47	28.47	26.46
GSM1900	GMSK	512	1850.2	29.51			
		661	1880	29.59			
		810	1909.8	29.56			
	GPRS	512	1850.2	29.52	27.03	25.99	24.03
		661	1880	29.60	27.15	26.12	24.17
		810	1909.8	29.56	27.09	26.07	24.12

Note: All conducted tests will base on the worst case GPRS mode since GMSK and GPRS using the same modulation method.

8.2. UMTS REL 99

TEST PROCEDURE

The following summary of these settings are illustrated below:

	Mode	Rel99
	Subtest	-
WCDMA General Settings	Loopback Mode	Test Mode 1
	Rel99 RMC	12.2kbps RMC
	HSDPA FRC	Not Applicable
	HSUPA Test	Not Applicable
	Power Control Algorithm	Algorithm2
	βc	Not Applicable
	βd	Not Applicable
	βec	Not Applicable
	βc/βd	8/15
	βhs	Not Applicable
	βed	Not Applicable

8.2.1. UMTS REL 99 OUTPUT POWER RESULT

Band	Mode	Ch.	f(MHz)	Conducted Power
				(dBm)
Band 5	REL99	4145	826.6	22.32
		4183	836.6	22.01
		4220	846.4	22.06

8.3. UMTS HSDPA

The following 4 Sub-tests were completed according to Release 5 procedures in section 5.2 of 3GPP TS34.121. A summary of these settings are illustrated below:

	Mode	Rel5 HSDPA			
	Subtest	1	2	3	4
WCDMA General Settings	Loopback Mode	Test Mode 1			
	Rel99 RMC	12.2kbps RMC			
	HSDPA FRC	H-Set1			
	Power Control Algorithm	Algorithm 2			
	β_c	2/15	12/15	15/15	15/15
	β_d	15/15	15/15	8/15	4/15
	B_d (SF)	64			
	β_c/β_d	2/15	12/15	15/8	15/4
	β_{hs}	4/15	24/15	30/15	30/15
HSDPA Specific Settings	MPR (dB)	0	0	0.5	0.5
	D_{ACK}	8			
	D_{NAK}	8			
	DCQI	8			
	Ack-Nack repetition factor	3			
	CQI Feedback (Table 5.2B.4)	4ms			
	CQI Repetition Factor (Table 5.2B.4)	2			
$A_{hs} = \beta_{hs}/\beta_c$		30/15			

8.3.1. UMTS HSDPA OUTPUT POWER RESULT

Band	Mode	Subset	Ch.	f(MHz)	Conducted Power
					(dBm)
Band 5	HSDPA	1	4145	826.6	22.15
			4183	836.6	21.70
			4220	846.4	21.87
		2	4145	826.6	21.82
			4183	836.6	21.68
			4220	846.4	21.74
		3	4145	826.6	21.50
			4183	836.6	21.44
			4220	846.4	21.52
		4	4145	826.6	21.53
			4183	836.6	21.47
			4220	846.4	21.54

8.3.2. UMTS HSUPA

TEST PROCEDURE

The following summary of these settings are illustrated below: (ETSI TS 134.121-1 Table C.11.1)

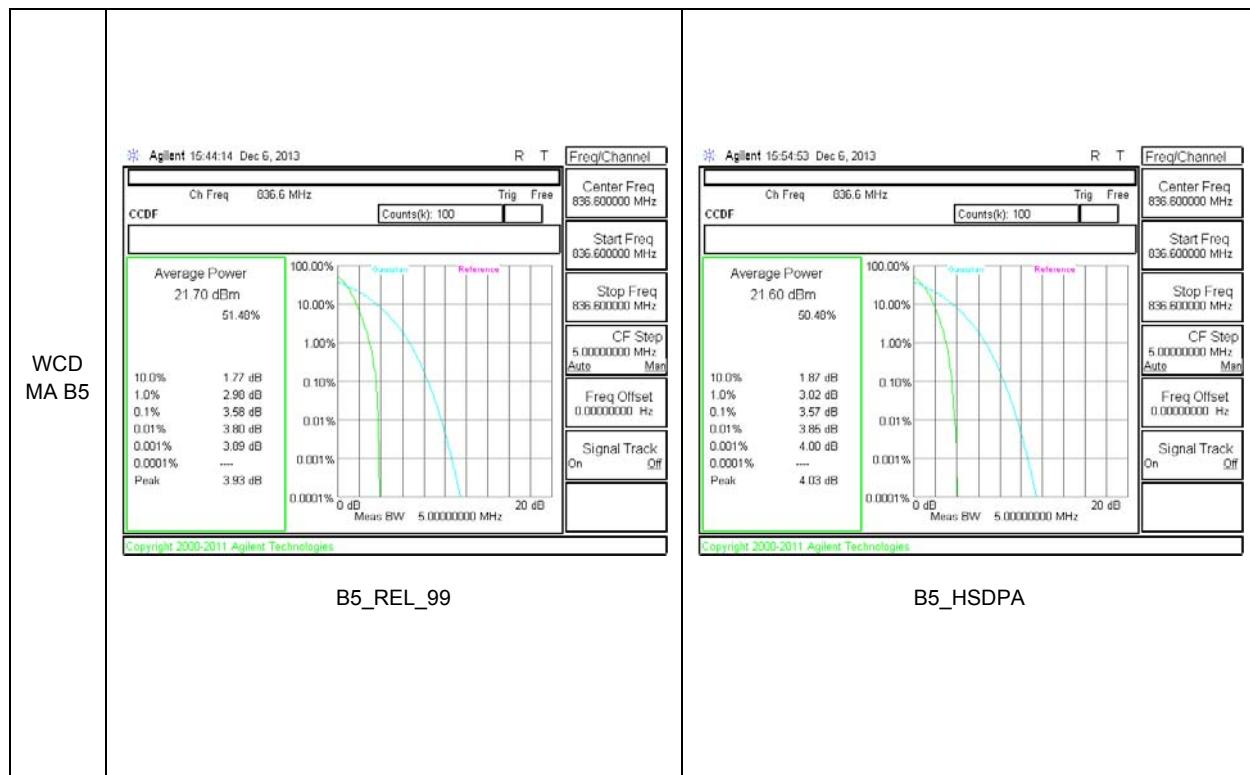
	Mode	Rel6 HSUPA	Rel6 HSUPA	Rel6 HSUPA	Rel6 HSUPA	Rel6 HSUPA
	Subtest	1	2	3	4	5
WCDMA General Settings	Loopback Mode	Test Mode 1				
	P-CPICH (dB)	-10				
	P-CCPCH (dB)	-12				
	SCH (dB)	-12				
	PICH(dB)	-15				
	DPCH (dB)	-9				
	HS-SCCH_1 (dB)	-8				
	HS-PDSCH (dB)	-3				
	Rel99 RMC	12.2kbps RMC				
	HSDPA FRC	H-Set1				
	HSUPA Test	HSUPA Loopback				
	Power Control Algorithm	Algorithm2				
	Bc	11/15	6/15	15/15	2/15	15/15
	Bd	15/15	15/15	9/15	15/15	15/15
	Bec	209/225	12/15	30/15	2/15	5/15
	β_c/β_d	11/15	6/15	15/9	2/15	15/15
	Bhs	22/15	12/15	30/15	4/15	30/15
	β_{ed} (note1)	1309/225	94/75	47/15 47/15	56/75	134/15
	MPR	0	2	1	2	0
HSDPA Specific Settings	DACK	8				
	DNAK	8				
	DCQI	8				
	Ack-Nack repetition factor	3				
	CQI Feedback (Table 5.2B.4)	4ms				
	CQI Repetition Factor (Table 5.2B.4)	2				
HSUPA Specific Settings	Ahs = β_{hs}/β_c	30/15				
	D E-DPCCH	6	8	8	5	7
	DHARQ	0	0	0	0	0
	AG Index	20	12	15	17	21
	Reference E-TFCIs	5	5	2	5	5
	ETFCI (from 34.121 Table C.11.1.3)	75	67	92	71	81
	Associated Max UL Data Rate kbps	242.1	174.9	482.8	205.8	308.9
	Reference E_TFCIs	E-TFCI 11 E-TFCI PO 4 E-TFCI 67 E-TFCI PO 18 E-TFCI 71 E-TFCI PO 23 E-TFCI 75 E-TFCI PO 26 E-TFCI 81 E-TFCI PO 27		E-TFCI 11 E-TFCI PO 4 E-TFCI 67 E-TFCI PO 18 E-TFCI 71 E-TFCI PO 23 E-TFCI 75 E-TFCI PO 26 E-TFCI 81 E-TFCI PO 27		

Note1: β_{ed} cannot be set directly, it is set by Absolute Grant Value.

8.3.3. UMTS HSUPA OUTPUT POWER RESULT

Band	Mode	Subset	Ch.	f(MHz)	Conducted Power
					(dBm)
Band 5	HSUPA	1	4145	826.6	20.52
			4183	836.6	20.31
			4220	846.4	20.41
		2	4145	826.6	20.93
			4183	836.6	20.85
			4220	846.4	20.92
		3	4145	826.6	21.10
			4183	836.6	20.78
			4220	846.4	20.87
		4	4145	826.6	20.92
			4183	836.6	20.53
			4220	846.4	20.77
		5	4145	826.6	20.90
			4183	836.6	20.64
			4220	846.4	20.75

9. PEAK TO AVERAGE RATIO


Test Procedure

Per KDB 971168 D01 Power Meas License Digital Systems v02r01

Test Spec

In addition, when the transmitter power is measured in terms of average value, the peak-to-average ratio of the power shall not exceed 13 dB.

9.1. CONDUCTED PEAK TO AVERAGE RESULT

10. LIMITS AND CONDUCTED RESULTS

10.1. OCCUPIED BANDWIDTH

RULE PART(S)

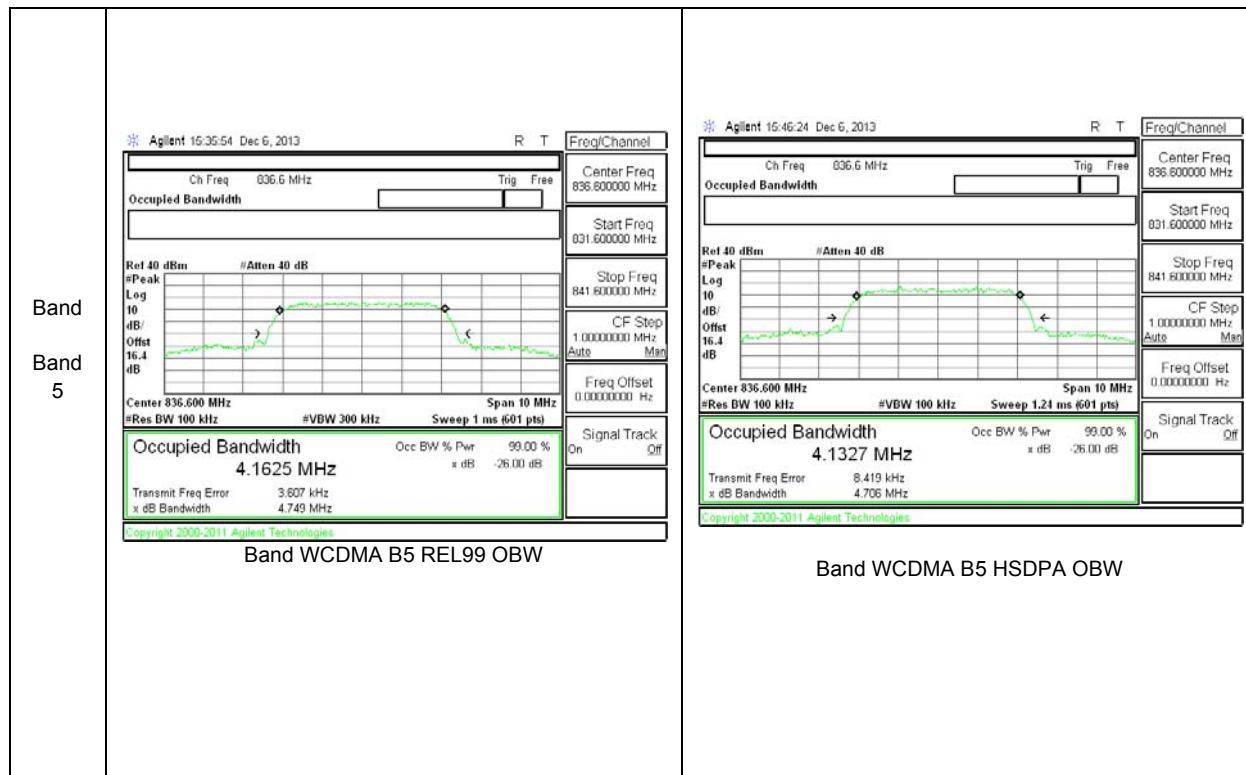
FCC: §2.1049

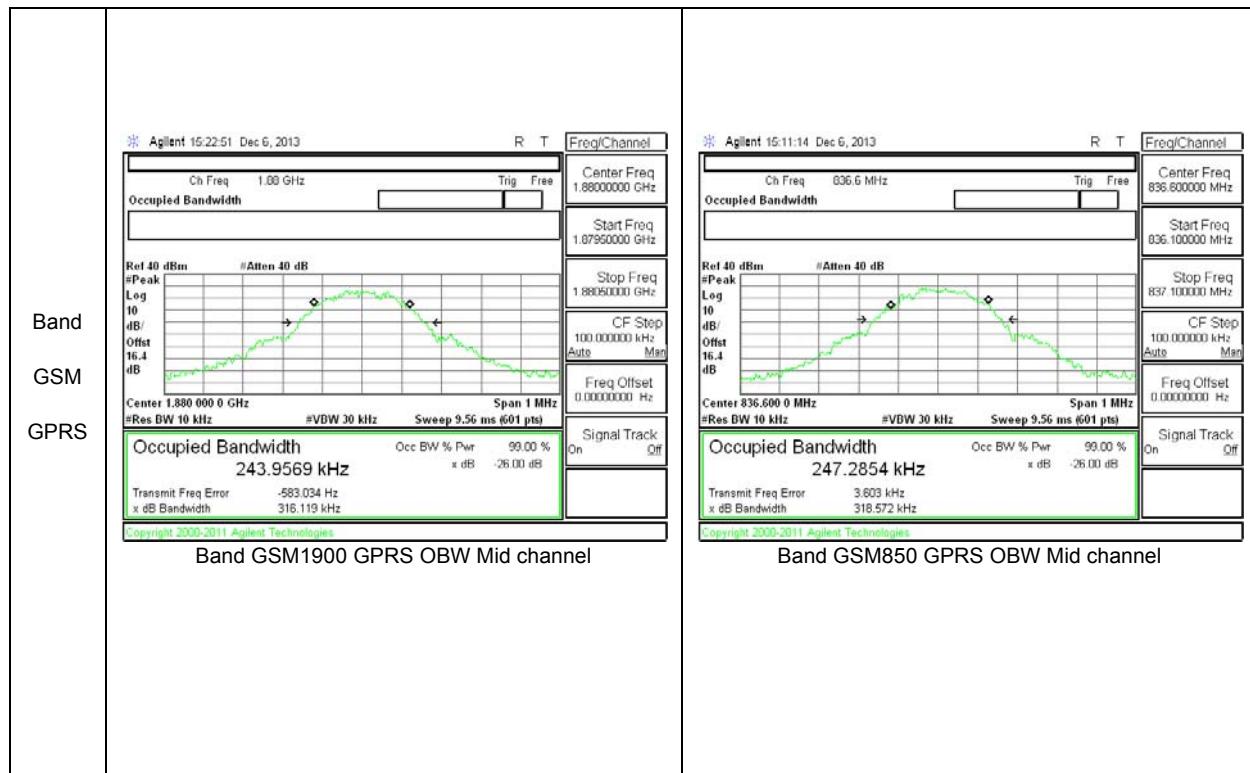
IC: RSS-132, 4.5; RSS-133, 6.5

LIMITS

For reporting purposes only

TEST PROCEDURE


The transmitter output was connected to a calibrated coaxial cable and coupler, the other end of which was connected to a spectrum analyzer. The occupied bandwidth was measured with the spectrum analyzer at the low, middle and high channel in each band. The -26dB bandwidth was also measured and recorded.


(KDB 971168 D01 Power Meas License Digital Systems v02r01 - 06/07/2013)

10.1.1. OCCUPIED BANDWIDTH RESULTS

Band	Mode	Channel	f (MHz)	99% BW (KHz)	-26dB BW (KHz)
GSM850	GPRS	128	824.2	242.6	306.5
		190	836.6	247.3	318.6
		251	848.8	235.9	296.3
GSM1900	GPRS	512	1850.2	243.0	317.3
		661	1880	244.0	316.1
		810	1909.8	244.6	311.3
Band 5	REL99	4145	826.6	4143	4747
		4183	836.6	4163	4749
		4220	846.4	4168	4726
	HSDPA	4145	826.6	4144	4717
		4183	836.6	4133	4706
		4220	846.4	4152	4747

10.1.2. OCCUPIED BANDWIDTH PLOTS

10.2. BAND EDGE EMISSIONS

RULE PART(S)

FCC: §22.359, §24.238

LIMITS

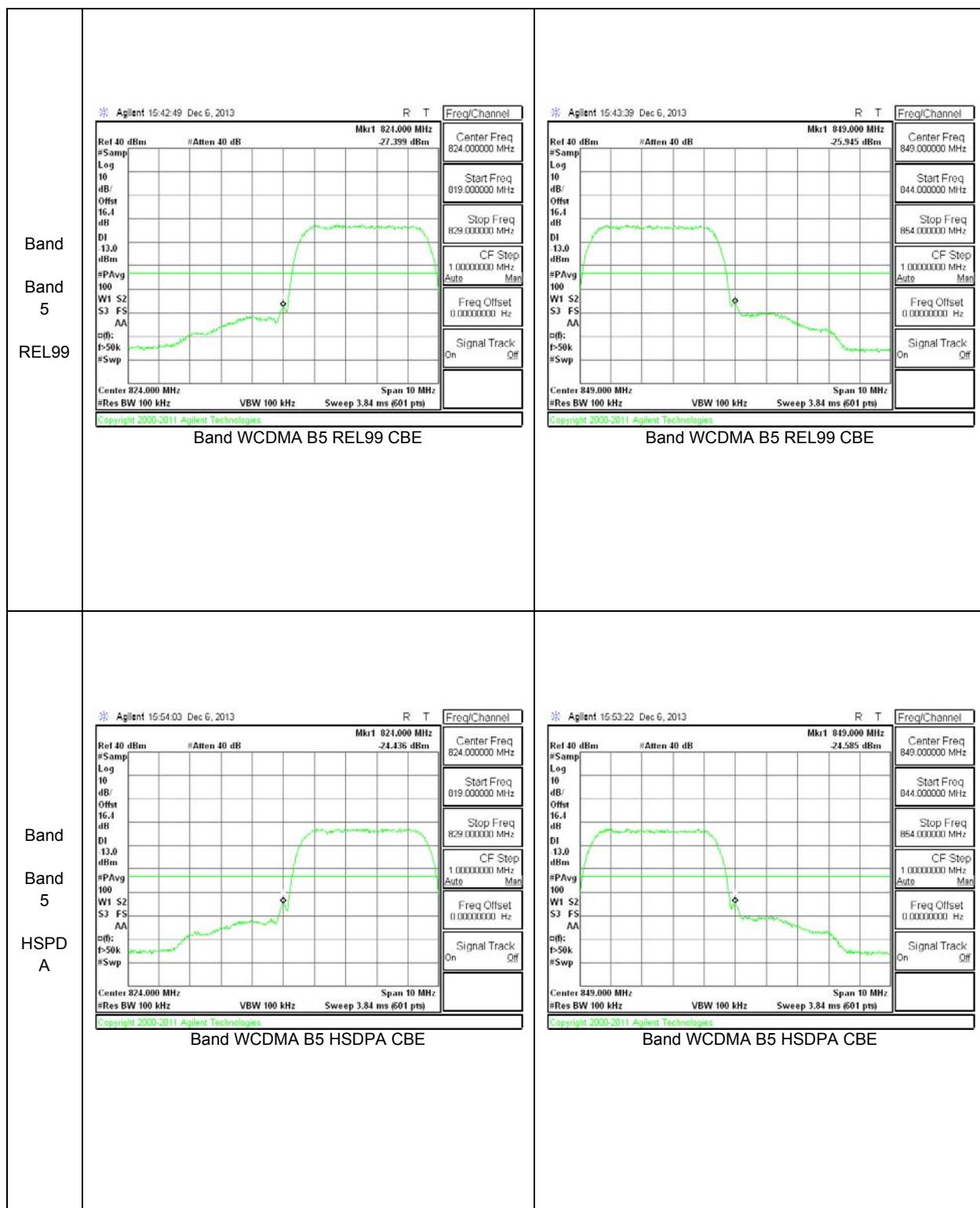
The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log (P)$ dB.

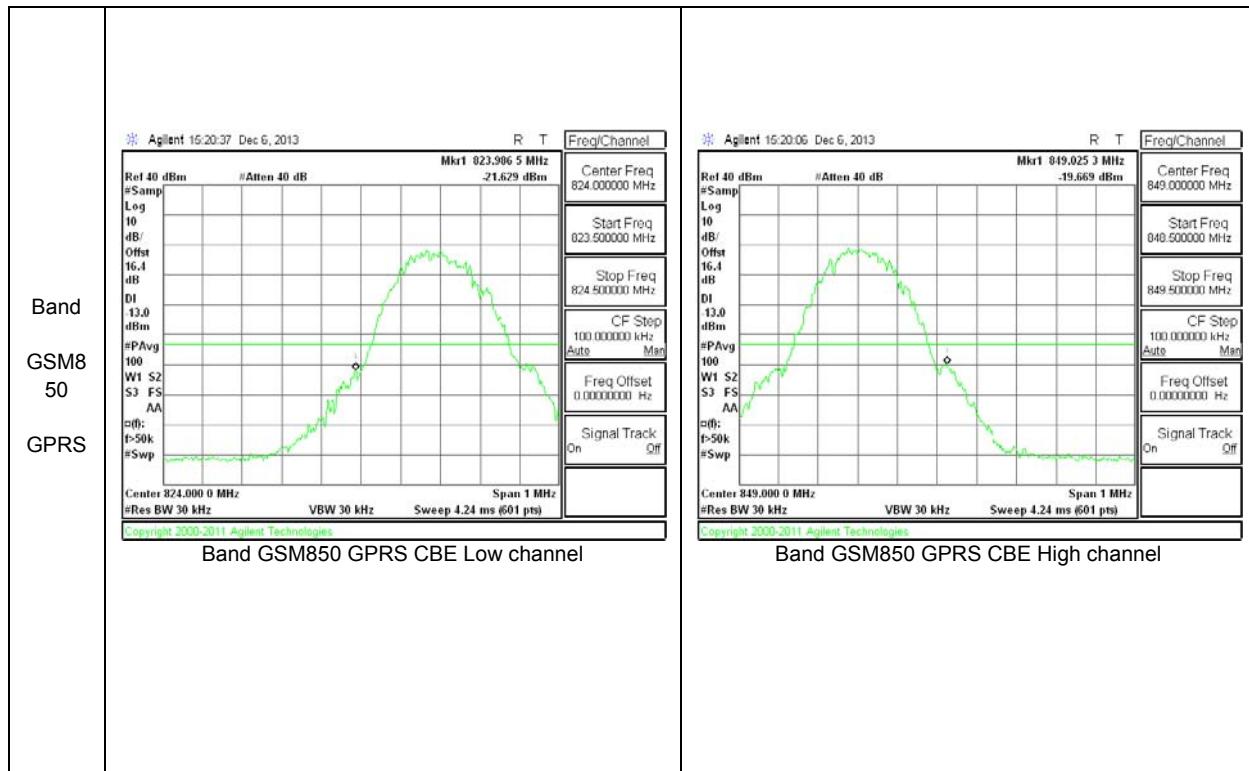
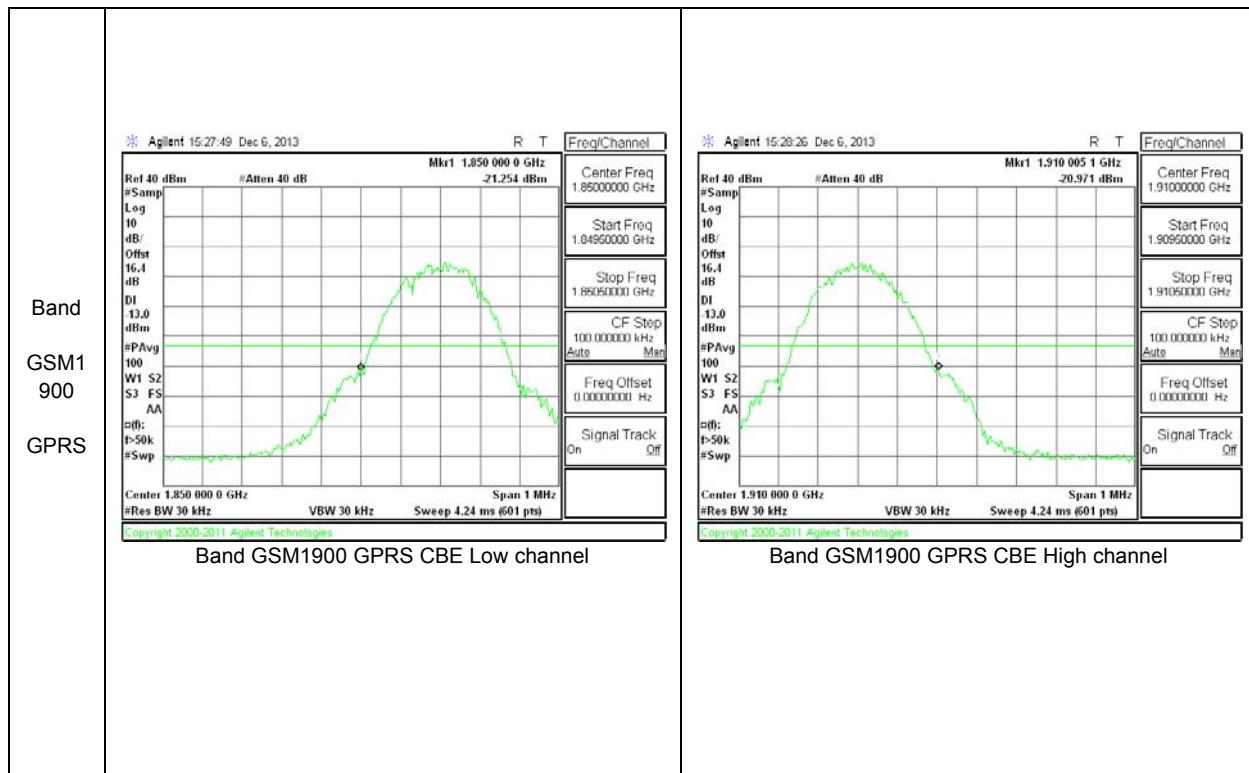
TEST PROCEDURE

Per KDB 971168 D01 Power Meas License Digital Systems v02r01

The transmitter output was connected to an Agilent 8960 or a CMW500 Test Set and configured to operate at maximum power. The band edge emissions were measured at the required operating frequencies in each band on the Spectrum Analyzer.

For each band edge measurement:


- Set the spectrum analyzer span to include the block edge frequency (824, 849, 1850, 1910 and 1915MHz)
- Set a marker to point the corresponding band edge frequency in each test case.
- Set display line at -13 dBm.
- Set resolution bandwidth to at least 1% of emission bandwidth.



MODES TESTED

GSM 850/1900 & WCDMA 850

RESULTS

10.2.1. BAND EDGE PLOTS

10.3. OUT OF BAND EMISSIONS

RULE PART(S)

FCC: §2.1051, §22.901, §22.917, §24.238

LIMITS

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log (P)$ dB.

TEST PROCEDURE

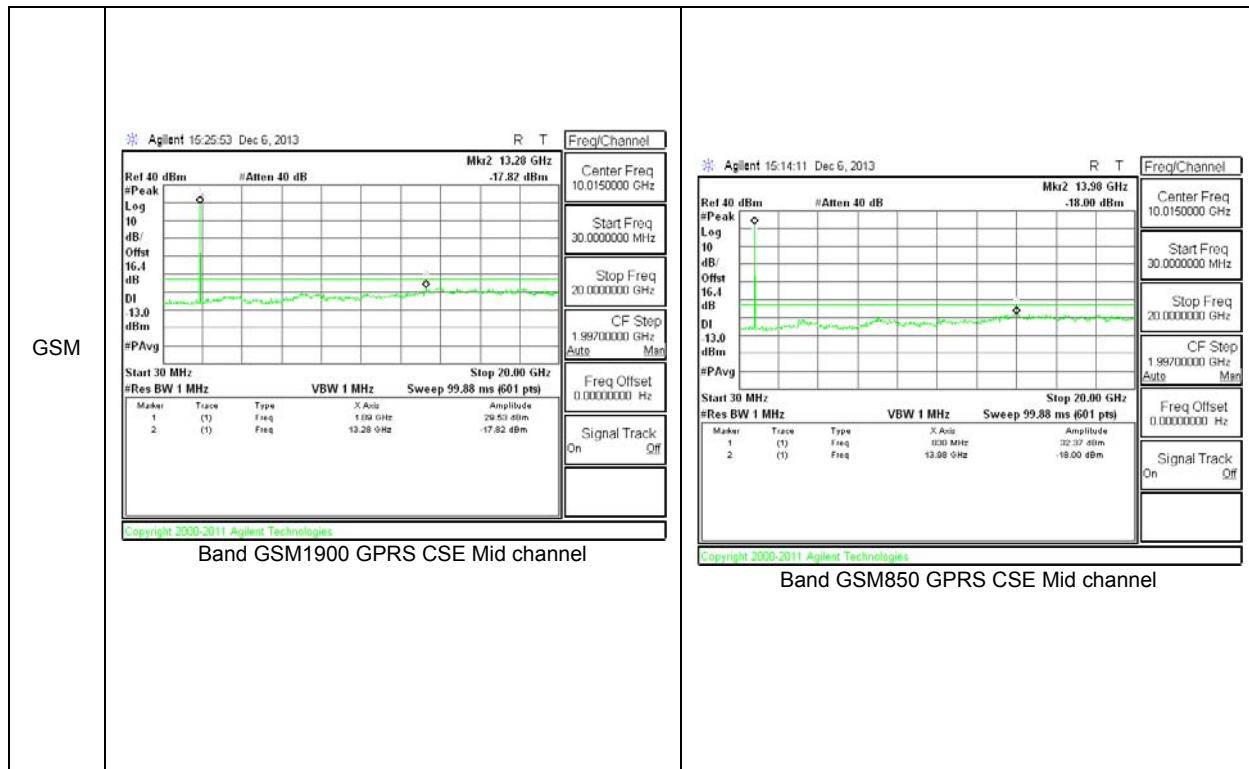
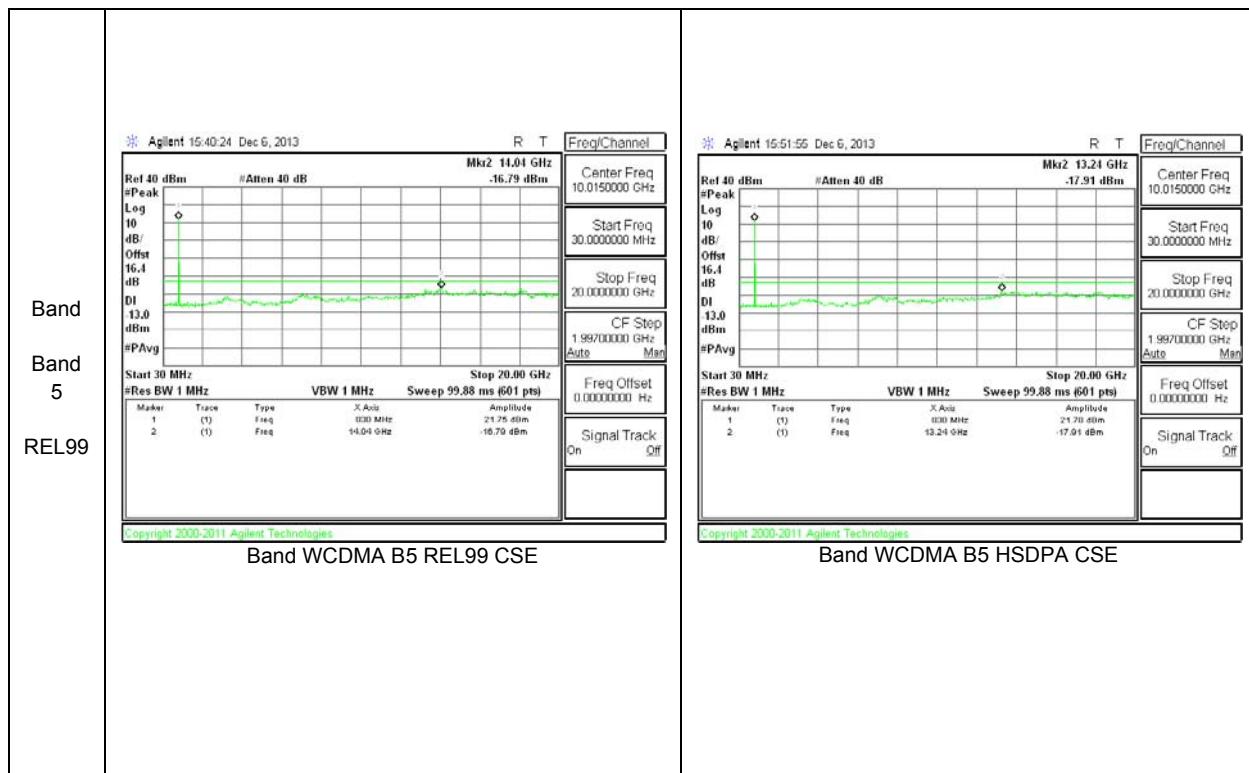
Per KDB 971168 D01 Power Meas License Digital Systems v02r01

The RF output of the transmitter was connected to a spectrum analyzer through a calibrated coaxial cable. Sufficient scans were taken to show the out-of-band Emissions, if any, up to 10th harmonic. Multiple sweeps were recorded in maximum hold mode using a peak detector to ensure that the worst-case emissions were caught.

For each out of band emissions measurement:

- Set display line at -13 dBm
- Set RBW & VBW to 100 kHz for the measurement below 1 GHz, and 1 MHz for the measurement above 1 GHz.

MODES TESTED



GSM850/1900 & WCDMA 850

RESULTS

10.3.1. OUT OF BAND EMISSIONS RESULT

Band	Mode	f (MHz)	Spur (dBm)	Spec (dBm)	Delta (dB)
GSM850	GPRS	824.2	-17.77	-13	-4.77
		836.6	-18.00	-13	-5
		848.8	-16.14	-13	-3.14
GSM1900	GPRS	1850.2	-18.00	-13	-5
		1880	-17.82	-13	-4.82
		1909.8	-17.43	-13	-4.43
Band 5	REL99	826.6	-17.58	-13	-4.58
		836.6	-16.79	-13	-3.79
		846.4	-16.95	-13	-3.95
Band 5	HSDPA	826.6	-18.56	-13	-5.56
		836.6	-17.91	-13	-4.91
		846.4	-17.67	-13	-4.67

10.3.2. OUT OF BAND EMISSIONS PLOTS

10.4. FREQUENCY STABILITY

RULE PART(S)

FCC: §2.1055, §22.355, §24.235

LIMITS

§22.355 - The carrier frequency shall not depart from the reference frequency in excess of ± 2.5 ppm for mobile stations.

§24.235 - The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

TEST PROCEDURE

Per KDB 971168 D01 Power Meas License Digital Systems v02r01

Frequency Stability vs Temperature:

The EUT is place inside a temperature chamber. The temperature is set to 20°C and allowed to stabilize. After sufficient soak time, the transmitting frequency error is measured. The temperature is increased by 10 degrees, allowed to stabilize and soak, and then the measurement is repeated. This is repeated until +50°C is reached. Reference power supply voltage for these tests is 3.7Vdc.

Frequency Stability vs Voltage:

The peak frequency error is recorded (worst-case). The test voltage ranges from 3.50 to 4.26 VDC.

MODES TESTED

GSM850/1900 & WCDMA 850

RESULTS

See the following pages.

10.4.1. FREQUENCY STABILITY RESULTS

Reference Frequency: Cellular Mid Channel 836.600027MHz @ 20°C Limit: to stay +- 2.5 ppm = 2091.500 Hz				
Power Supply (Vdc)	Environment Temperature (°C)	Frequency Deviation Measured with Time Elapse		
		(MHz)	Delta (ppm)	Limit (ppm)
3.70	50	836.599983	0.000	2.5
3.70	40	836.599977	0.007	2.5
3.70	30	836.599979	0.005	2.5
3.70	20	836.599983	0	2.5
3.70	10	836.599962	0.025	2.5
3.70	0	836.599985	-0.002	2.5
3.70	-10	836.599985	-0.002	2.5
3.70	-20	836.599982	0.001	2.5
3.70	-30	836.599936	0.056	2.5

Reference Frequency: Cellular Mid Channel 836.600027MHz @ 20°C Limit: to stay +- 2.5 ppm = 2091.500 Hz				
Power Supply (Vdc)	Environment Temperature (°C)	Frequency Deviation Measured with Time Elapse		
		(MHz)	Delta (ppm)	Limit (ppm)
3.70	20	836.599983	0	2.5
4.20	20	836.599977	0.007	2.5
3.30	20	836.599986	-0.004	2.5
End Volt(3.2)	20	836.599985	-0.002	2.5

PCS, GPRS MODULATION – MID CHANNEL

Reference Frequency: PCS Mid Channel 1880.000036MHz @ 20°C Limit: within the authorized block or +- 2.5 ppm = 4700.000 Hz				
Power Supply (Vdc)	Environment Temperature (*C)	Frequency Deviation Measured with Time Elapse		
		(MHz)	Delta (ppm)	Limit (ppm)
3.70	50	1879.999989	0.006	2.5
3.70	40	1879.999992	0.005	2.5
3.70	30	1879.999989	0.006	2.5
3.70	20	1880.000001	0	2.5
3.70	10	1879.999995	0.003	2.5
3.70	0	1879.999998	0.002	2.5
3.70	-10	1879.999992	0.005	2.5
3.70	-20	1879.999979	0.012	2.5
3.70	-30	1880.000005	-0.002	2.5

Reference Frequency: PCS Mid Channel 1880.000036MHz @ 20°C Limit: within the authorized block or +- 2.5 ppm = 4700.000 Hz				
Power Supply (Vdc)	Environment Temperature (*C)	Frequency Deviation Measured with Time Elapse		
		(MHz)	Delta (ppm)	Limit (ppm)
3.70	20	1880.000001	0.00000	2.5
4.20	20	1880.000005	-0.00213	2.5
3.30	20	1879.999995	0.00319	2.5
End Volt(3.2)	20	1879.999986	0.00798	2.5

11. RADIATED TEST RESULTS

11.1. RADIATED POWER (ERP & EIRP)

RULE PART(S)

FCC: §2.1046, §22.913, §24.232.

LIMITS

22.913(a) - The ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 Watts.

24.232(c) - Mobile/portable stations are limited to 2 watts e.i.r.p. peak power and the equipment must employ means to limit the power to the minimum necessary for successful communications.

In addition, when the transmitter power is measured in terms of average value, the peak-to-average ratio of the power shall not exceed 13dB.

TEST PROCEDURE

ANSI / TIA / EIA 603C Clause 2.2.17

MODES TESTED

GSM850/1900 & WCDMA 850

TEST RESULTS

11.1.1. ERP/EIRP Results

Band	Mode	Channel	f(MHz)	ERP / EIRP	
				dBm	mW
Band 5	REL99	4145	826.6	17.771	59.85
		4183	836.6	18.931	78.18
		4220	846.4	18.351	68.41
	HSDPA	4145	826.6	17.60	57.54
		4183	836.6	19.30	85.11
		4220	846.4	18.94	78.34

Band	Mode	Channel	f(MHz)	ERP / EIRP	
				dBm	mW
GSM1900	GPRS	512	1850.2	25.8	380.19
		661	1880	26.52	448.75
		810	1909.8	25.058	320.48

Band	Mode	Channel	f(MHz)	ERP / EIRP	
				dBm	mW
GSM850	GPRS	128	824.2	27.731	593.06
		190	836.6	27.971	626.76
		251	848.8	28.171	656.3

11.1.2. ERP/EIRP PLOTS

		<p style="text-align: center;">High Frequency Substitution Measurement Compliance Certification Services Chamber C</p> <p>Company: Samsung Project #: 13I16645 Date: 12/06/13 Test Engineer: Kiya Kedida Configuration: Y Position, EUT only Mode: WCDMA_Rel 99_850</p> <p>Test Equipment: Receiving: Sunol T185, and 3m Chamber N-type Cable (Setup this one for testing EUT) Substitution: Dipole S/N: 00022117, 4ft SMA Cable (SN # 245200 001) Warehouse.</p> <table border="1" style="width: 100%; border-collapse: collapse;"> <thead> <tr> <th style="text-align: left;">f MHz</th><th style="text-align: left;">SG reading (dBm)</th><th style="text-align: left;">Ant. Pol. (H/V)</th><th style="text-align: left;">Cable Loss (dB)</th><th style="text-align: left;">Antenna Gain (dBd)</th><th style="text-align: left;">ERP (dBm)</th><th style="text-align: left;">Limit (dBm)</th><th style="text-align: left;">Margin (dB)</th><th style="text-align: left;">Notes</th></tr> </thead> <tbody> <tr> <td colspan="9">Low Ch</td></tr> <tr> <td>826.60</td><td>10.90</td><td>V</td><td>0.9</td><td>0.0</td><td>10.00</td><td>38.5</td><td>-28.4</td><td></td></tr> <tr> <td>826.60</td><td>18.67</td><td>H</td><td>0.9</td><td>0.0</td><td>17.77</td><td>38.5</td><td>-20.7</td><td></td></tr> <tr> <td colspan="9">Mid Ch</td></tr> <tr> <td>836.60</td><td>14.70</td><td>V</td><td>0.9</td><td>0.0</td><td>13.80</td><td>38.5</td><td>-24.6</td><td></td></tr> <tr> <td>836.60</td><td>19.83</td><td>H</td><td>0.9</td><td>0.0</td><td>18.93</td><td>38.5</td><td>-19.5</td><td></td></tr> <tr> <td colspan="9">High Ch</td></tr> <tr> <td>846.40</td><td>13.40</td><td>V</td><td>0.9</td><td>0.0</td><td>12.50</td><td>38.5</td><td>-25.9</td><td></td></tr> <tr> <td>846.40</td><td>19.25</td><td>H</td><td>0.9</td><td>0.0</td><td>18.35</td><td>38.5</td><td>-20.1</td><td></td></tr> </tbody> </table> <p>Rev. 3.17.11</p>	f MHz	SG reading (dBm)	Ant. Pol. (H/V)	Cable Loss (dB)	Antenna Gain (dBd)	ERP (dBm)	Limit (dBm)	Margin (dB)	Notes	Low Ch									826.60	10.90	V	0.9	0.0	10.00	38.5	-28.4		826.60	18.67	H	0.9	0.0	17.77	38.5	-20.7		Mid Ch									836.60	14.70	V	0.9	0.0	13.80	38.5	-24.6		836.60	19.83	H	0.9	0.0	18.93	38.5	-19.5		High Ch									846.40	13.40	V	0.9	0.0	12.50	38.5	-25.9		846.40	19.25	H	0.9	0.0	18.35	38.5	-20.1	
f MHz	SG reading (dBm)	Ant. Pol. (H/V)	Cable Loss (dB)	Antenna Gain (dBd)	ERP (dBm)	Limit (dBm)	Margin (dB)	Notes																																																																																				
Low Ch																																																																																												
826.60	10.90	V	0.9	0.0	10.00	38.5	-28.4																																																																																					
826.60	18.67	H	0.9	0.0	17.77	38.5	-20.7																																																																																					
Mid Ch																																																																																												
836.60	14.70	V	0.9	0.0	13.80	38.5	-24.6																																																																																					
836.60	19.83	H	0.9	0.0	18.93	38.5	-19.5																																																																																					
High Ch																																																																																												
846.40	13.40	V	0.9	0.0	12.50	38.5	-25.9																																																																																					
846.40	19.25	H	0.9	0.0	18.35	38.5	-20.1																																																																																					

High Frequency Substitution Measurement Compliance Certification Services Chamber C									
Company:	Samsung								
Project #:	13I16645								
Date:	12/06/13								
Test Engineer:	Kiya Kedida								
Configuration:	Y Position, EUT only								
Mode:	WCDMA_HSDPA_850								
Band	Test Equipment: Receiving: Sunol T185, and 3m Chamber N-type Cable (Setup this one for testing EUT) Substitution: Dipole S/N: 00022117, 4ft SMA Cable (SN # 245200 001) Warehouse.								
Band 5									
HSDPA	f MHz	SG reading (dBm)	Ant. Pol. (H/V)	Cable Loss (dB)	Antenna Gain (dBd)	ERP (dBm)	Limit (dBm)	Margin (dB)	Notes
	Low Ch								
	826.60	10.65	V	0.9	0.0	9.75	38.5	-28.7	
	826.60	18.50	H	0.9	0.0	17.60	38.5	-20.8	
	Mid Ch								
	836.60	13.70	V	0.9	0.0	12.80	38.5	-25.6	
	836.60	20.20	H	0.9	0.0	19.30	38.5	-19.1	
	High Ch								
	846.40	13.50	V	0.9	0.0	12.60	38.5	-25.8	
	846.40	19.84	H	0.9	0.0	18.94	38.5	-19.5	
	Rev. 3.17.11								

High Frequency Fundamental Measurement Compliance Certification Services Chamber C																																																																																																		
Company: Samsung Project #: 13I16645 Date: 12/05/13 Test Engineer: Kiya Kedida Configuration: Y Position, EUT only Mode: GPRS 1900MHz																																																																																																		
Test Equipment: Receiving: Horn T119, and Chamber C SMA Cables Substitution: Horn T711 Substitution, 4ft SMA Cable (244639001) Warehouse																																																																																																		
<table border="1" style="width: 100%; border-collapse: collapse;"> <thead> <tr> <th style="text-align: left; padding: 2px;">f GHz</th><th style="text-align: left; padding: 2px;">SG reading (dBm)</th><th style="text-align: left; padding: 2px;">Ant. Pol. (H/V)</th><th style="text-align: left; padding: 2px;">Cable Loss (dB)</th><th style="text-align: left; padding: 2px;">Antenna Gain (dBi)</th><th style="text-align: left; padding: 2px;">EIRP (dBm)</th><th style="text-align: left; padding: 2px;">Limit (dBm)</th><th style="text-align: left; padding: 2px;">Delta (dB)</th><th style="text-align: left; padding: 2px;">Notes</th></tr> </thead> <tbody> <tr> <td style="text-align: left; padding: 2px;">Low Ch</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr> <tr> <td style="text-align: left; padding: 2px;">1.850</td><td style="text-align: left; padding: 2px;">21.7</td><td style="text-align: left; padding: 2px;">V</td><td style="text-align: left; padding: 2px;">0.85</td><td style="text-align: left; padding: 2px;">5.58</td><td style="text-align: left; padding: 2px;">26.40</td><td style="text-align: left; padding: 2px;">33.0</td><td style="text-align: left; padding: 2px;">-6.6</td><td></td></tr> <tr> <td style="text-align: left; padding: 2px;">1.850</td><td style="text-align: left; padding: 2px;">21.1</td><td style="text-align: left; padding: 2px;">H</td><td style="text-align: left; padding: 2px;">0.85</td><td style="text-align: left; padding: 2px;">5.58</td><td style="text-align: left; padding: 2px;">25.80</td><td style="text-align: left; padding: 2px;">33.0</td><td style="text-align: left; padding: 2px;">-7.2</td><td></td></tr> <tr> <td style="text-align: left; padding: 2px;">Mid Ch</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr> <tr> <td style="text-align: left; padding: 2px;">1.880</td><td style="text-align: left; padding: 2px;">21.4</td><td style="text-align: left; padding: 2px;">V</td><td style="text-align: left; padding: 2px;">0.85</td><td style="text-align: left; padding: 2px;">5.60</td><td style="text-align: left; padding: 2px;">26.14</td><td style="text-align: left; padding: 2px;">33.0</td><td style="text-align: left; padding: 2px;">-6.9</td><td></td></tr> <tr> <td style="text-align: left; padding: 2px;">1.880</td><td style="text-align: left; padding: 2px;">21.8</td><td style="text-align: left; padding: 2px;">H</td><td style="text-align: left; padding: 2px;">0.85</td><td style="text-align: left; padding: 2px;">5.60</td><td style="text-align: left; padding: 2px;">26.52</td><td style="text-align: left; padding: 2px;">33.0</td><td style="text-align: left; padding: 2px;">-6.5</td><td></td></tr> <tr> <td style="text-align: left; padding: 2px;">High Ch</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr> <tr> <td style="text-align: left; padding: 2px;">1.910</td><td style="text-align: left; padding: 2px;">21.4</td><td style="text-align: left; padding: 2px;">V</td><td style="text-align: left; padding: 2px;">0.85</td><td style="text-align: left; padding: 2px;">5.63</td><td style="text-align: left; padding: 2px;">26.22</td><td style="text-align: left; padding: 2px;">33.0</td><td style="text-align: left; padding: 2px;">-6.8</td><td></td></tr> <tr> <td style="text-align: left; padding: 2px;">1.910</td><td style="text-align: left; padding: 2px;">20.3</td><td style="text-align: left; padding: 2px;">H</td><td style="text-align: left; padding: 2px;">0.85</td><td style="text-align: left; padding: 2px;">5.63</td><td style="text-align: left; padding: 2px;">25.06</td><td style="text-align: left; padding: 2px;">33.0</td><td style="text-align: left; padding: 2px;">-7.9</td><td></td></tr> </tbody> </table>									f GHz	SG reading (dBm)	Ant. Pol. (H/V)	Cable Loss (dB)	Antenna Gain (dBi)	EIRP (dBm)	Limit (dBm)	Delta (dB)	Notes	Low Ch									1.850	21.7	V	0.85	5.58	26.40	33.0	-6.6		1.850	21.1	H	0.85	5.58	25.80	33.0	-7.2		Mid Ch									1.880	21.4	V	0.85	5.60	26.14	33.0	-6.9		1.880	21.8	H	0.85	5.60	26.52	33.0	-6.5		High Ch									1.910	21.4	V	0.85	5.63	26.22	33.0	-6.8		1.910	20.3	H	0.85	5.63	25.06	33.0	-7.9	
f GHz	SG reading (dBm)	Ant. Pol. (H/V)	Cable Loss (dB)	Antenna Gain (dBi)	EIRP (dBm)	Limit (dBm)	Delta (dB)	Notes																																																																																										
Low Ch																																																																																																		
1.850	21.7	V	0.85	5.58	26.40	33.0	-6.6																																																																																											
1.850	21.1	H	0.85	5.58	25.80	33.0	-7.2																																																																																											
Mid Ch																																																																																																		
1.880	21.4	V	0.85	5.60	26.14	33.0	-6.9																																																																																											
1.880	21.8	H	0.85	5.60	26.52	33.0	-6.5																																																																																											
High Ch																																																																																																		
1.910	21.4	V	0.85	5.63	26.22	33.0	-6.8																																																																																											
1.910	20.3	H	0.85	5.63	25.06	33.0	-7.9																																																																																											
Rev. 3.17.11																																																																																																		

High Frequency Substitution Measurement Compliance Certification Services Chamber C																																																																																																			
Band	Company:	Samsung																																																																																																	
GSM8	Project #:	13I16645																																																																																																	
50	Date:	12/05/13																																																																																																	
GPRS	Test Engineer:	Kiya Kedida																																																																																																	
	Configuration:	X Position, EUT only																																																																																																	
	Mode:	GRPS 850MHz																																																																																																	
<u>Test Equipment:</u>																																																																																																			
Receiving: Sunol T185, and 3m Chamber N-type Cable (Setup this one for testing EUT)																																																																																																			
Substitution: Dipole S/N: 00022117, 4ft SMA Cable (SN # 245200 001) Warehouse.																																																																																																			
<table border="1"><thead><tr><th>f MHz</th><th>SG reading (dBm)</th><th>Ant. Pol. (H/V)</th><th>Cable Loss (dB)</th><th>Antenna Gain (dBi)</th><th>ERP (dBm)</th><th>Limit (dBm)</th><th>Margin (dB)</th><th>Notes</th></tr></thead><tbody><tr><td>Low Ch</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td>824.20</td><td>21.65</td><td>V</td><td>0.9</td><td>0.0</td><td>20.75</td><td>38.5</td><td>-17.7</td><td></td></tr><tr><td>824.20</td><td>28.63</td><td>H</td><td>0.9</td><td>0.0</td><td>27.73</td><td>38.5</td><td>-10.7</td><td></td></tr><tr><td>Mid Ch</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td>836.60</td><td>22.70</td><td>V</td><td>0.9</td><td>0.0</td><td>21.80</td><td>38.5</td><td>-16.6</td><td></td></tr><tr><td>836.60</td><td>28.87</td><td>H</td><td>0.9</td><td>0.0</td><td>27.97</td><td>38.5</td><td>-10.5</td><td></td></tr><tr><td>High Ch</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><td>848.80</td><td>22.12</td><td>V</td><td>0.9</td><td>0.0</td><td>21.22</td><td>38.5</td><td>-17.2</td><td></td></tr><tr><td>848.80</td><td>29.07</td><td>H</td><td>0.9</td><td>0.0</td><td>28.17</td><td>38.5</td><td>-10.3</td><td></td></tr></tbody></table>										f MHz	SG reading (dBm)	Ant. Pol. (H/V)	Cable Loss (dB)	Antenna Gain (dBi)	ERP (dBm)	Limit (dBm)	Margin (dB)	Notes	Low Ch									824.20	21.65	V	0.9	0.0	20.75	38.5	-17.7		824.20	28.63	H	0.9	0.0	27.73	38.5	-10.7		Mid Ch									836.60	22.70	V	0.9	0.0	21.80	38.5	-16.6		836.60	28.87	H	0.9	0.0	27.97	38.5	-10.5		High Ch									848.80	22.12	V	0.9	0.0	21.22	38.5	-17.2		848.80	29.07	H	0.9	0.0	28.17	38.5	-10.3	
f MHz	SG reading (dBm)	Ant. Pol. (H/V)	Cable Loss (dB)	Antenna Gain (dBi)	ERP (dBm)	Limit (dBm)	Margin (dB)	Notes																																																																																											
Low Ch																																																																																																			
824.20	21.65	V	0.9	0.0	20.75	38.5	-17.7																																																																																												
824.20	28.63	H	0.9	0.0	27.73	38.5	-10.7																																																																																												
Mid Ch																																																																																																			
836.60	22.70	V	0.9	0.0	21.80	38.5	-16.6																																																																																												
836.60	28.87	H	0.9	0.0	27.97	38.5	-10.5																																																																																												
High Ch																																																																																																			
848.80	22.12	V	0.9	0.0	21.22	38.5	-17.2																																																																																												
848.80	29.07	H	0.9	0.0	28.17	38.5	-10.3																																																																																												
Rev. 3.17.11																																																																																																			

REPORT NO: 13I16645-1A
MODEL NUMER: GT-S6293T

DATE: 12/17/13
FCC ID: A3LGTS6293T

11.2. FIELD STRENGTH OF SPURIOUS RADIATION

RULE PART(S)

FCC: §2.1053, §22.917, §24.238

LIMIT

§22.917 (e) and §24.238 (a): Out of band emissions. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log (P)$ dB

TEST PROCEDURE

For Cellular equipment - Compliance with these rules is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz or greater. In the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy provided the measured power is integrated over the full required measurement bandwidth (i.e. 100 kHz or 1 percent of emission bandwidth, as specified). The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

For PCS equipment - Compliance with these rules is based on the use of measurement instrumentation employing a resolution bandwidth of 1 MHz or greater. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy provided the measured power is integrated over the full required measurement bandwidth (i.e. 1 MHz or 1 percent of emission bandwidth, as specified). The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

MODES TESTED

GSM850/1900 & WCDMA 850

RESULTS

11.2.1. SPURIOUS RADIATION PLOTS

Compliance Certification Services Above 1GHz High Frequency Substitution Measurement											
Band	Chamber		Pre-amplifier		Filter		Limit		Notes		
	f GHz	SG reading (dBm)	Ant. Pol. (H/V)	Distance (m)	Preamp (dB)	Filter (dB)	EIRP (dBm)	Limit (dBm)	Delta (dB)		
Low Ch, 826.40MHz											
Band 5 REL99	1.652	-14.4	V	3.0	37.4	1.0	-50.7	-13.0	-37.7		
	2.479	-26.2	V	3.0	36.4	1.0	-61.6	-13.0	-48.6		
	3.306	-25.1	V	3.0	35.8	1.0	-59.9	-13.0	-46.9		
	1.652	-15.5	H	3.0	37.4	1.0	-51.9	-13.0	-38.9		
	2.479	-25.6	H	3.0	36.4	1.0	-61.0	-13.0	-48.0		
	3.306	-25.0	H	3.0	35.8	1.0	-59.8	-13.0	-46.8		
	Mid Ch, 836.6MHz										
	1.673	-14.9	V	3.0	37.3	1.0	-51.2	-13.0	-38.2		
	2.510	-25.4	V	3.0	36.4	1.0	-60.7	-13.0	-47.7		
	3.346	-25.3	V	3.0	35.8	1.0	-60.1	-13.0	-47.1		
	1.673	-15.9	H	3.0	37.3	1.0	-52.3	-13.0	-39.3		
	2.510	-26.5	H	3.0	36.4	1.0	-61.9	-13.0	-48.9		
	3.346	-24.7	H	3.0	35.8	1.0	-59.4	-13.0	-46.4		
High Ch, 846.6MHz											
	1.683	-13.7	V	3.0	37.3	1.0	-50.1	-13.0	-37.1		
	2.519	-25.7	V	3.0	36.4	1.0	-61.0	-13.0	-48.0		
	3.356	-24.5	V	3.0	35.7	1.0	-59.2	-13.0	-46.2		
	1.683	-15.8	H	3.0	37.3	1.0	-52.1	-13.0	-39.1		
	2.519	-27.5	H	3.0	36.4	1.0	-62.8	-13.0	-49.8		
	3.356	-25.1	H	3.0	35.7	1.0	-59.9	-13.0	-46.9		
Rev. 03.03.09 Note: No other emissions were detected above the system noise floor.											

Compliance Certification Services Above 1GHz High Frequency Substitution Measurement										
Company:		Samsung 13I16645 12/06/13 Trina Noor X Position, AC Charger WCDMA_HSDPA_850								
Chamber			Pre-amplifier			Filter			Limit	
3m Chamber			T34 8449B			Filter 1			Part 24	
Band	f GHz	SG reading (dBm)	Ant. Pol.	Distance (m)	Preamp (dB)	Filter (dB)	EIRP (dBm)	Limit (dBm)	Delta (dB)	Notes
Band 5 HSDP A	<u>Low Ch, 826.40MHz</u>									
	1.652	-22.3	V	3.0	37.4	1.0	-58.7	-13.0	-45.7	
	2.479	-23.2	V	3.0	36.4	1.0	-58.6	-13.0	-45.6	
	3.306	-25.7	V	3.0	35.8	1.0	-60.5	-13.0	-47.5	
	1.652	-15.4	H	3.0	37.4	1.0	-51.8	-13.0	-38.8	
	2.479	-27.8	H	3.0	36.4	1.0	-63.2	-13.0	-50.2	
	3.306	-26.1	H	3.0	35.8	1.0	-60.9	-13.0	-47.9	
	<u>Mid Ch, 836.6MHz</u>									
	1.673	-15.2	V	3.0	37.3	1.0	-51.6	-13.0	-38.6	
	2.510	-26.1	V	3.0	36.4	1.0	-61.4	-13.0	-48.4	
Band 5 HSDP A	3.346	-24.8	V	3.0	35.8	1.0	-59.6	-13.0	-46.6	
	1.673	-10.3	H	3.0	37.3	1.0	-46.6	-13.0	-33.6	
	2.510	-26.9	H	3.0	36.4	1.0	-62.3	-13.0	-49.3	
	3.346	-25.0	H	3.0	35.8	1.0	-59.8	-13.0	-46.8	
	<u>High Ch, 846.6MHz</u>									
	1.683	-14.3	V	3.0	37.3	1.0	-50.6	-13.0	-37.6	
	2.519	-24.8	V	3.0	36.4	1.0	-60.1	-13.0	-47.1	
	3.356	-25.4	V	3.0	35.7	1.0	-60.2	-13.0	-47.2	
	1.683	-13.5	H	3.0	37.3	1.0	-49.8	-13.0	-36.8	
	2.519	-24.9	H	3.0	36.4	1.0	-60.2	-13.0	-47.2	
	3.356	-25.4	H	3.0	35.7	1.0	-60.2	-13.0	-47.2	

Rev. 03.03.09
Note: No other emissions were detected above the system noise floor.

Compliance Certification Services Above 1GHz High Frequency Substitution Measurement																			
Company:		Samsung																	
Project #:		13I16645																	
Date:		12/07/13																	
Test Engineer:		Trina Noor																	
Configuration:		Y Position, AC Charger																	
Mode:		GPRS 1900																	

Compliance Certification Services Above 1GHz High Frequency Substitution Measurement											
Company:		Samsung									
Project #:		13I16645									
Date:		12/06/13									
Test Engineer:		Trina Noor									
Configuration:		X Position, AC Charger									
Mode:		GPRS 850									
		Chamber		Pre-amplifier		Filter		Limit			
		3m Chamber		T34 8449B		Filter 1		Part 24			
		f GHz	SG reading (dBm)	Ant. Pol. (H/V)	Distance (m)	Preamp (dB)	Filter (dB)	EIRP (dBm)	Limit (dBm)	Delta (dB)	Notes
		Low Ch, 824.2MHz									
GSM8 50	1.648	-18.1	V	3.0	37.4	1.0	-54.5	-13.0	-41.5		
	2.473	-26.1	V	3.0	36.4	1.0	-61.5	-13.0	-48.5		
	3.297	-25.4	V	3.0	35.8	1.0	-60.2	-13.0	-47.2		
	1.648	-17.1	H	3.0	37.4	1.0	-53.5	-13.0	-40.5		
GPRS	2.473	-27.0	H	3.0	36.4	1.0	-62.4	-13.0	-49.4		
	3.297	-25.5	H	3.0	35.8	1.0	-60.3	-13.0	-47.3		
	Mid Ch, 836.6MHz										
	1.673	-18.0	V	3.0	37.3	1.0	-54.3	-13.0	-41.3		
	2.510	-26.5	V	3.0	36.4	1.0	-61.9	-13.0	-48.9		
	3.346	-25.4	V	3.0	35.8	1.0	-60.2	-13.0	-47.2		
	1.673	-17.1	H	3.0	37.3	1.0	-53.5	-13.0	-40.5		
	2.510	-27.8	H	3.0	36.4	1.0	-63.1	-13.0	-50.1		
	3.346	-25.2	H	3.0	35.8	1.0	-60.0	-13.0	-47.0		
	High Ch, 848.8MHz										
	1.698	-17.7	V	3.0	37.3	1.0	-54.0	-13.0	-41.0		
	2.547	-25.1	V	3.0	36.3	1.0	-60.4	-13.0	-47.4		
	3.395	-25.4	V	3.0	35.7	1.0	-60.1	-13.0	-47.1		
	1.698	-15.9	H	3.0	37.3	1.0	-52.2	-13.0	-39.2		
	2.547	-26.8	H	3.0	36.3	1.0	-62.2	-13.0	-49.2		
	3.395	-25.2	H	3.0	35.7	1.0	-59.9	-13.0	-46.9		

Rev. 03.03.09
Note: No other emissions were detected above the system noise floor.