



# PCTEST ENGINEERING LABORATORY, INC.

6660-B Dobbin Road, Columbia, MD 21045 USA  
Tel. +1.410.290.6652 / Fax +1.410.290.6654  
<http://www.pctestlab.com>



## SAR COMPLIANCE EVALUATION REPORT

**Applicant Name:**  
Samsung Electronics, Co. Ltd.  
18600 Broadwick St.  
Rancho Dominguez, CA 90220  
United States

**Date of Testing:**  
04/14/11 - 05/18/11  
**Test Site/Location:**  
PCTEST Lab, Columbia, MD, USA  
**Test Report Serial No.:**  
0Y1104120700-R2.A3L

|                   |                                      |
|-------------------|--------------------------------------|
| <b>FCC ID:</b>    | <b>A3LGTP7500</b>                    |
| <b>APPLICANT:</b> | <b>SAMSUNG ELECTRONICS, CO. LTD.</b> |

|                                |                                                                                                                                                                                                                                                                                                                    |
|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>EUT Type:</b>               | 850/1900 GPRS/EDGE/WCDMA/HSPA Tablet with Bluetooth and WLAN                                                                                                                                                                                                                                                       |
| <b>Application Type:</b>       | Certification                                                                                                                                                                                                                                                                                                      |
| <b>FCC Rule Part(s):</b>       | CFR §2.1093; FCC/OET Bulletin 65 Supplement C [June 2001]                                                                                                                                                                                                                                                          |
| <b>Model(s):</b>               | GT-P7500                                                                                                                                                                                                                                                                                                           |
| <b>Tx Frequency:</b>           | 824.20 - 848.80 MHz (GSM 850) / 1850.20 - 1909.80 MHz (GSM 1900)<br>826.40 - 846.60 MHz (UMTS V) / 1852.4 - 1907.6 MHz (UMTS II)<br>5180 - 5240 MHz (IEEE 802.11a/n) / 5260 - 5320 MHz (IEEE 802.11a/n)<br>5500 - 5700 MHz (IEEE 802.11a/n) 5745 - 5825 MHz (IEEE 802.11a/n)<br>2412 - 2462 MHz (IEEE 802.11b/g/n) |
| <b>Conducted Power:</b>        | 32.50 dBm GSM 850 / 28.65 dBm GSM 1900<br>22.88 dBm UMTS V / 21.17 dBm UMTS II<br>12.40 dBm 5.2 GHz WLAN / 12.30 dBm 5.3 GHz WLAN<br>12.91 dBm 5.5 GHz WLAN / 12.84 dBm 5.8 GHz WLAN<br>13.86 dBm 2.4 GHz WLAN                                                                                                     |
| <b>Max. SAR Measurement:</b>   | 0.46 W/kg GSM 850 Body SAR / 1.15 W/kg GSM 1900 Body SAR<br>0.41 W/kg UMTS V Body SAR / 1.18 W/kg UMTS II Body SAR<br>0.59 W/kg 5.2 GHz WLAN Body SAR / 0.63 W/kg 5.3 GHz WLAN Body SAR<br>0.69 W/kg 5.5 GHz WLAN Body SAR / 0.67 W/kg 5.8 GHz WLAN Body SAR<br>0.62 W/kg 2.4 GHz WLAN Body SAR                    |
| <b>Test Device Serial No.:</b> | Pre-Production [S/N: 357750040001041, 357750040001058]                                                                                                                                                                                                                                                             |

**Note:** This revised Test Report (S/N: 0Y1104120700-R2.A3L) supersedes and replaces the previously issued test report on the same subject EUT for the same type of testing as indicated. Please discard or destroy the previously issued test report and dispose of it accordingly.

This wireless portable device has been shown to be capable of compliance for localized specific absorption rate (SAR) for uncontrolled environment/general population exposure limits specified in ANSI/IEEE C95.1-1992 and has been tested in accordance with the measurement procedures specified in FCC/OET Bulletin 65 Supplement C (2001), IEEE 1528-2003 and in applicable Industry Canada Radio Standards Specifications (RSS); for North American frequency bands only.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them. Test results reported herein relate only to the item(s) tested.

*PCTEST certifies that no party to this application has been subject to a denial of Federal benefits that includes FCC benefits pursuant to Section 5301 of the Anti-Drug Abuse Act of 1988, 21 U.S.C. 862.*

  
\_\_\_\_\_  
Randy Ortanez  
President



|                                  |                                    |                                                                           |  |                                 |
|----------------------------------|------------------------------------|---------------------------------------------------------------------------|--|---------------------------------|
| FCC ID: A3LGTP7500               |                                    | SAR COMPLIANCE REPORT                                                     |  | Reviewed by:<br>Quality Manager |
| Filename:<br>0Y1104120700-R2.A3L | Test Dates:<br>04/14/11 - 05/18/11 | EUT Type:<br>850/1900 GPRS/EDGE/WCDMA/HSPA Tablet with Bluetooth and WLAN |  | Page 1 of 53                    |

## T A B L E   O F   C O N T E N T S

---

|    |                                                      |    |
|----|------------------------------------------------------|----|
| 1  | INTRODUCTION .....                                   | 3  |
| 2  | TEST SITE LOCATION .....                             | 4  |
| 3  | SAR MEASUREMENT SETUP .....                          | 5  |
| 4  | DASY E-FIELD PROBE SYSTEM .....                      | 7  |
| 5  | PROBE CALIBRATION PROCESS .....                      | 8  |
| 6  | PHANTOM AND EQUIVALENT TISSUES .....                 | 9  |
| 7  | DOSIMETRIC ASSESSMENT & PHANTOM SPECS .....          | 10 |
| 8  | FCC RF EXPOSURE LIMITS .....                         | 11 |
| 9  | ANTENNA LOCATIONS AND KEY FEATURES .....             | 12 |
| 10 | SAR TESTING CONSIDERATIONS & FCC KDB INQUIRIES ..... | 14 |
| 11 | FCC 3G MEASUREMENT PROCEDURES .....                  | 26 |
| 12 | SAR TESTING WITH IEEE 802.11 TRANSMITTERS .....      | 31 |
| 13 | SYSTEM VERIFICATION .....                            | 34 |
| 14 | SAR DATA SUMMARY .....                               | 37 |
| 15 | SIMULTANEOUS TRANSMISSION ANALYSIS .....             | 41 |
| 16 | EQUIPMENT LIST .....                                 | 44 |
| 17 | MEASUREMENT UNCERTAINTIES .....                      | 45 |
| 18 | CONCLUSION .....                                     | 47 |
| 19 | REFERENCES .....                                     | 48 |
| 20 | SAR TEST SETUP PHOTOGRAPHS .....                     | 50 |

|                                  |                                                                                     |                                                                           |  |                                                                                       |                                 |
|----------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--|---------------------------------------------------------------------------------------|---------------------------------|
| FCC ID: A3LGTP7500               |  | SAR COMPLIANCE REPORT                                                     |  |  | Reviewed by:<br>Quality Manager |
| Filename:<br>0Y1104120700-R2.A3L | Test Dates:<br>04/14/11 - 05/18/11                                                  | EUT Type:<br>850/1900 GPRS/EDGE/WCDMA/HSPA Tablet with Bluetooth and WLAN |  | Page 2 of 53                                                                          |                                 |

# 1 INTRODUCTION

The FCC has adopted the guidelines for evaluating the environmental effects of radio frequency (RF) radiation in ET Docket 93-62 on Aug. 6, 1996 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices. [1]

The safety limits used for the environmental evaluation measurements are based on the criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate (SAR) in IEEE/ANSI C95.1-1992 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz [3] and Health Canada RF Exposure Guidelines Safety Code 6 [24]. The measurement procedure described in IEEE/ANSI C95.3-2002 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave [4] is used for guidance in measuring the Specific Absorption Rate (SAR) due to the RF radiation exposure from the Equipment Under Test (EUT). These criteria for SAR evaluation are similar to those recommended by the International Committee for Non-Ionizing Radiation Protection (ICNIRP) in Biological Effects and Exposure Criteria for Radiofrequency Electromagnetic Fields," Report No. Vol 74. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards.

## 1.1 SAR Definition

Specific Absorption Rate is defined as the time derivative (rate) of the incremental energy (dU) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density ( $\rho$ ). It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body (see Fig. 1-1).

$$SAR = \frac{d}{dt} \left( \frac{dU}{dm} \right) = \frac{d}{dt} \left( \frac{dU}{\rho dV} \right)$$

**Figure 1-1**  
**SAR Mathematical Equation**

**SAR is expressed in units of Watts per Kilogram (W/kg).**

$$SAR = \frac{\sigma \cdot E^2}{\rho}$$

where:

- $\sigma$  = conductivity of the tissue-simulating material (S/m)
- $\rho$  = mass density of the tissue-simulating material (kg/m<sup>3</sup>)
- E = Total RMS electric field strength (V/m)

NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relation to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane.[6]

|                                  |                                                                                     |                                                                           |  |                                                                                       |                                 |
|----------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--|---------------------------------------------------------------------------------------|---------------------------------|
| FCC ID: A3LGTP7500               |  | SAR COMPLIANCE REPORT                                                     |  |  | Reviewed by:<br>Quality Manager |
| Filename:<br>0Y1104120700-R2.A3L | Test Dates:<br>04/14/11 - 05/18/11                                                  | EUT Type:<br>850/1900 GPRS/EDGE/WCDMA/HSPA Tablet with Bluetooth and WLAN |  | Page 3 of 53                                                                          |                                 |

## 2 TEST SITE LOCATION

### 2.1 INTRODUCTION

The map at the right shows the location of the PCTEST LABORATORY in Columbia, Maryland. It is in proximity to the FCC Laboratory, the Baltimore-Washington International (BWI) airport, the city of Baltimore and Washington, DC.

These measurement tests were conducted at the PCTEST Engineering Laboratory, Inc. facility in New Concept Business Park, Guilford Industrial Park, Columbia, Maryland. The site address is 6660-B Dobbin Road, Columbia, MD 21045. The test site is one of the highest points in the Columbia area with an elevation of 390 feet above mean sea level. The site coordinates are 39° 11'15" N latitude and 76° 49' 38" W longitude. The facility is 1.5 miles north of the FCC laboratory, and the ambient signal and ambient signal strength are approximately equal to those of the FCC laboratory. There are no FM or TV transmitters within 15 miles of the site. The detailed description of the measurement facility was found to be in compliance with the requirements of § 2.948 according to ANSI C63.4 on January 27, 2006 and Industry Canada.

### 2.2 Test Facility / Accreditations:

Measurements were performed at an independent accredited PCTEST Engineering Lab located in Columbia, MD 21045, U.S.A.



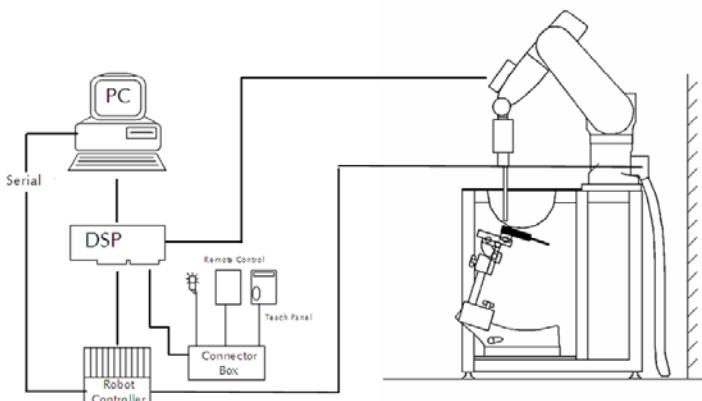
- PCTEST Lab is accredited to ISO 17025-2005 by the American Association for Laboratory Accreditation (A2LA) in Specific Absorption Rate (SAR) testing, Hearing-Aid Compatibility (HAC), Battery Safety, CTIA Test Plans, and wireless testing for FCC and Industry Canada Rules.
- PCTEST Lab is accredited to ISO 17025 by U.S. National Institute of Standards and Technology (NIST) under the National Voluntary Laboratory Accreditation Program (NVLAP Lab code: 100431-0) in EMC, FCC and Telecommunications.
- PCTEST facility is an FCC registered (PCTEST Reg. No. 90864) test facility with the site description report on file and has met all the requirements specified in Section 2.948 of the FCC Rules and Industry Canada (IC-2451).
- PCTEST Lab is a recognized U.S. Conformity Assessment Body (CAB) in EMC and R&TTE (n.b. 0982) under the U.S.-EU Mutual Recognition Agreement (MRA).
- PCTEST TCB is a Telecommunication Certification Body (TCB) accredited to ISO/IEC Guide 65 by the American National Standards Institute (ANSI) in all scopes of FCC Rules and all Industry Canada Standards (RSS).
- PCTEST facility is an IC registered (IC-2451) test laboratory with the site description on file at Industry Canada.
- PCTEST is a CTIA Authorized Test Laboratory (CATL) for AMPS and CDMA, and EvDO mobile phones.
- PCTEST is a CTIA Authorized Test Laboratory (CATL) for Over-the-Air (OTA) Antenna Performance testing for AMPS, CDMA, GSM, GPRS, EGPRS, UMTS (W-CDMA), CDMA 1xEVDO Data, CDMA 1xRTT Data



**Figure 2-1**  
Map of the Greater Baltimore and Metropolitan Washington, D.C. area

| FCC ID: A3LGTP7500               | PCTEST<br>ENGINEERING LABORATORY, INC. |  | SAR COMPLIANCE REPORT                                                     | SAMSUNG | Reviewed by:<br>Quality Manager |
|----------------------------------|----------------------------------------|--|---------------------------------------------------------------------------|---------|---------------------------------|
| Filename:<br>0Y1104120700-R2.A3L | Test Dates:<br>04/14/11 - 05/18/11     |  | EUT Type:<br>850/1900 GPRS/EDGE/WCDMA/HSPA Tablet with Bluetooth and WLAN |         | Page 4 of 53                    |

## 3 SAR MEASUREMENT SETUP


### 3.1 Robotic System

Measurements are performed using the DASY4 automated dosimetric assessment system. The DASY4 is made by Schmid & Partner Engineering AG (SPEAG) in Zurich, Switzerland and consists of a high precision robotics system (Staubli), robot controller, desktop computer, near-field probe, probe alignment sensor, and the SAM phantom containing the head or body equivalent material. The robot is a six-axis industrial robot, performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF) (see Figure 3-1).

### 3.2 System Hardware

A cell controller system contains the power supply, robot controller, teach pendant (Joystick), and a remote control used to drive the robot motors. The PC consists of the SAR Measurement Software DASY4, A/D interface card, monitor, mouse, and keyboard. The Staubli Robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit that performs the signal amplification, signal multiplexing, A/D conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal from the DAE and transfers data to the PC card.

### 3.3 System Electronics



**Figure 3-1**  
**SAR Measurement System Setup**

The DAE consists of a highly sensitive electrometer-grade auto-zeroing preamplifier, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit.

Transmission to the PC-card is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer.

|                                  |                                    |                                                                           |  |                                 |
|----------------------------------|------------------------------------|---------------------------------------------------------------------------|--|---------------------------------|
| FCC ID: A3LGTP7500               |                                    | SAR COMPLIANCE REPORT                                                     |  | Reviewed by:<br>Quality Manager |
| Filename:<br>0Y1104120700-R2.A3L | Test Dates:<br>04/14/11 - 05/18/11 | EUT Type:<br>850/1900 GPRS/EDGE/WCDMA/HSPA Tablet with Bluetooth and WLAN |  | Page 5 of 53                    |

### 3.4 Automated Test System Specifications

Test Software: SPEAG DASY4 version 4.7 Measurement Software  
Robot: Stäubli Unimation Corp. Robot RX60L  
Repeatability: 0.02 mm  
No. of Axes: 6

Data Acquisition Electronic System (DAE)

Data Converter

Features: Signal Amplifier, multiplexer, A/D converter & control logic  
Software: SEMCAD software  
Connecting Lines: Optical Downlink for data and status info  
Optical upload for commands and clock

PC Interface Card

Function: Link to DAE  
16-bit A/D converter for surface detection system  
Two Serial & Ethernet link to robotics  
Direct emergency stop output for robot

Phantom

Type: SAM Twin Phantom (V4.0)  
Shell Material: Composite  
Thickness:  $2.0 \pm 0.2$  mm



**Figure 3-2**  
**SAR Measurement System**

|                                  |                                                                                     |                                                                           |  |                                                                                       |                                 |
|----------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--|---------------------------------------------------------------------------------------|---------------------------------|
| FCC ID: A3LGTP7500               |  | SAR COMPLIANCE REPORT                                                     |  |  | Reviewed by:<br>Quality Manager |
| Filename:<br>0Y1104120700-R2.A3L | Test Dates:<br>04/14/11 - 05/18/11                                                  | EUT Type:<br>850/1900 GPRS/EDGE/WCDMA/HSPA Tablet with Bluetooth and WLAN |  | Page 6 of 53                                                                          |                                 |

#### 4.1 Probe Measurement System



**Figure 4-1  
SAR System**

The SAR measurements were conducted with the dosimetric probe designed in the classical triangular configuration (see Figure 4-3) and optimized for dosimetric evaluation [9]. The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multi-fiber line ending at the front of the probe tip. It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY4 software reads the reflection during a software approach and looks for the maximum using a 2nd order curve fitting (see Figure 5-1). The approach is stopped at reaching the maximum.

#### 4.2 Probe Specifications

|                          |                                                                                                   |
|--------------------------|---------------------------------------------------------------------------------------------------|
| <b>Model(s):</b>         | ES3DV2, ES3DV3, EX3DV4                                                                            |
| <b>Frequency Range:</b>  | 10 MHz – 6.0 GHz (EX3DV4)<br>10 MHz – 4 GHz (ES3DV3)                                              |
| <b>Calibration:</b>      | In head and body simulating tissue at Frequencies from 300 up to 6000MHz                          |
| <b>Linearity:</b>        | ± 0.2 dB (30 MHz to 6 GHz) for EX3DV4<br>± 0.2 dB (30 MHz to 4 GHz) for ES3DV3                    |
| <b>Dynamic Range:</b>    | 10 mW/kg – 100 W/kg                                                                               |
| <b>Probe Length:</b>     | 330 mm                                                                                            |
| <b>Probe Tip Length:</b> | 20 mm                                                                                             |
| <b>Body Diameter:</b>    | 12 mm                                                                                             |
| <b>Tip Diameter:</b>     | 2.5 mm (3.9mm for ES3DV3)                                                                         |
| <b>Tip-Center:</b>       | 1 mm (2.0 mm for ES3DV3)                                                                          |
| <b>Application:</b>      | SAR Dosimetry Testing<br>Compliance tests of mobile phones<br>Dosimetry in strong gradient fields |



**Figure 4-2  
Near-Field Probe**



**Figure 4-3  
Triangular Probe Configuration**

|                               |                                 |                                                                        |  |                                 |
|-------------------------------|---------------------------------|------------------------------------------------------------------------|--|---------------------------------|
| FCC ID: A3LGTP7500            |                                 | SAR COMPLIANCE REPORT                                                  |  | Reviewed by:<br>Quality Manager |
| Filename: 0Y1104120700-R2.A3L | Test Dates: 04/14/11 - 05/18/11 | EUT Type: 850/1900 GPRS/EDGE/WCDMA/HSPA Tablet with Bluetooth and WLAN |  | Page 7 of 53                    |

## 5

## PROBE CALIBRATION PROCESS

### 5.1 Dosimetric Assessment Procedure

Each E-Probe/Probe Amplifier combination has unique calibration parameters. A TEM cell calibration procedure is conducted to determine the proper amplifier settings to enter in the probe parameters. The amplifier settings are determined for a given frequency by subjecting the probe to a known E-field density (1 mW/cm<sup>2</sup>) using an RF Signal generator, TEM cell, and RF Power Meter.

### 5.2 Free Space Assessment

The free space E-field from amplified probe outputs is determined in a test chamber. This calibration can be performed in a TEM cell if the frequency is below 1 GHz and in a waveguide or other methodologies above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is rotated 360 degrees until the three channels show the maximum reading. The power density readings equates to 1 mW/cm<sup>2</sup>.

### 5.3 Temperature Assessment

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated head tissue. The E-field in the medium correlates with the temperature rise in the dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$\text{SAR} = C \frac{\Delta T}{\Delta t}$$

where:

$\Delta t$  = exposure time (30 seconds),

$C$  = heat capacity of tissue (brain or muscle),

$\Delta T$  = temperature increase due to RF exposure.

$$\text{SAR} = \frac{|\mathbf{E}|^2 \cdot \sigma}{\rho}$$

where:

$\sigma$  = simulated tissue conductivity,

$\rho$  = Tissue density (1.25 g/cm<sup>3</sup> for brain tissue)

SAR is proportional to  $\Delta T/\Delta t$ , the initial rate of tissue heating, before thermal diffusion takes place. The electric field in the simulated tissue can be used to estimate SAR by equating the thermally derived SAR to that with the E-field component.

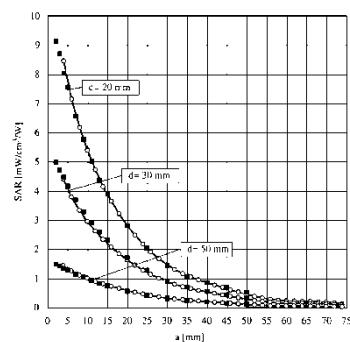



Figure 5-1 E-Field and Temperature measurements at 900MHz [9]

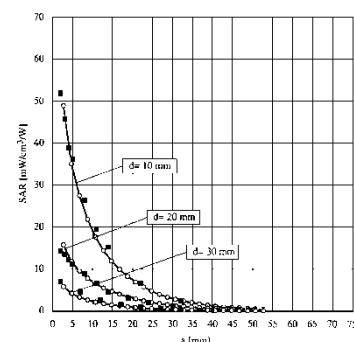



Figure 5-2 E-Field and temperature measurements at 1.9GHz [9]

|                                  |                                                                                     |                                                                           |  |                                                                                       |                                 |
|----------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--|---------------------------------------------------------------------------------------|---------------------------------|
| FCC ID: A3LGTP7500               |  | SAR COMPLIANCE REPORT                                                     |  |  | Reviewed by:<br>Quality Manager |
| Filename:<br>0Y1104120700-R2.A3L | Test Dates:<br>04/14/11 - 05/18/11                                                  | EUT Type:<br>850/1900 GPRS/EDGE/WCDMA/HSPA Tablet with Bluetooth and WLAN |  |                                                                                       | Page 8 of 53                    |

## 6.1 SAM Phantoms



Figure 6-1  
SAM Phantoms

The SAM Twin Phantom V4.0 is constructed of a fiberglass shell integrated in a table. The shape of the shell is based on data from an anatomical study designed to represent the 90<sup>th</sup> percentile of the population [12][13]. The phantom enables the dosimetric evaluation of SAR for both left and right handed handset usage, as well as body-worn usage using the flat phantom region. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot. The shell phantom has a 2mm shell thickness (except the ear region where shell thickness increases to 6 mm).

## 6.2 Tissue Simulating Mixture Characterization



Figure 6-2  
SAM Phantom with  
Simulating Tissue

The mixture is characterized to obtain proper dielectric constant (permittivity) and conductivity of the tissue of interest. The tissue dielectric parameters recommended in IEEE 1528 and IEC 62209 have been used as targets for the compositions, and are to match within 5%, per the FCC recommendations.

**Table 6-1**  
Composition of the Tissue Equivalent Matter

| Frequency (MHz)                | 835   | 1900  | 2450 | 5200-5800 |
|--------------------------------|-------|-------|------|-----------|
| Tissue                         | Body  | Body  | Body | Body      |
| Ingredients (% by weight)      |       |       |      |           |
| Bactericide                    | 0.1   |       |      |           |
| DGBE                           |       | 29.44 | 26.7 |           |
| HEC                            | 1     |       |      |           |
| NaCl                           | 0.94  | 0.39  | 0.1  |           |
| Sucrose                        | 44.9  |       |      |           |
| Triton X-100                   |       |       |      | 10.67     |
| Diethylenglycol monohexylether |       |       |      | 10.67     |
| Water                          | 53.06 | 70.17 | 73.2 | 78.66     |

|                                  |                                    |                                                                           |  |                                 |
|----------------------------------|------------------------------------|---------------------------------------------------------------------------|--|---------------------------------|
| FCC ID: A3LGTP7500               |                                    | SAR COMPLIANCE REPORT                                                     |  | Reviewed by:<br>Quality Manager |
| Filename:<br>0Y1104120700-R2.A3L | Test Dates:<br>04/14/11 - 05/18/11 | EUT Type:<br>850/1900 GPRS/EDGE/WCDMA/HSPA Tablet with Bluetooth and WLAN |  | Page 9 of 53                    |

## 7.1 Measurement Procedure

The evaluation was performed using the following procedure:

1. The SAR distribution at the exposed side of the head was measured at a distance no greater than 5.0 mm from the inner surface of the shell. The area covered the entire dimension of the head and the horizontal grid spacing was 15mm x 15mm.
2. The point SAR measurement was taken at the maximum SAR region determined from Step 1 to enable the monitoring of SAR fluctuations/drifts during testing the 1 gram cube. This fixed point was measured and used as a reference value.
3. Based on the area scan data, the area of the maximum absorption was determined by spline interpolation. Around this point, a volume of 32mm x 32mm x 30mm (fine resolution volume scan, zoom scan) was assessed by measuring 5 x 5 x 7 points. On this basis of this data set, the spatial peak SAR value was evaluated with the following procedure (see references or the DASY manual for more details):
  - a. The data was extrapolated to the surface of the outer-shell of the phantom. The combined distance extrapolated was the combined distance from the center of the dipoles 2.7mm away from the tip of the probe housing plus the 1.2 mm distance between the surface and the lowest measuring point. The extrapolation was based on a least-squares algorithm. A polynomial of the fourth order was calculated through the points in the z-axis (normal to the phantom shell).
  - b. After the maximum interpolated values were calculated between the points in the cube, the SAR was averaged over the spatial volume (1g or 10g) using a 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions). The volume was then integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were obtained through interpolation, in order to calculate the averaged SAR.
  - c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.
4. The SAR reference value, at the same location as step 2, was re-measured after the zoom scan was complete. If the value deviated by more than 5%, the evaluation was repeated.
5. For 5 GHz testing finer resolution zoom scans were preformed as specified by FCC SAR Measurement Requirements for 3 – 6 GHz, KDB pub 865664. The 5 GHz zoom scan requires a minimum volume of 24mm x 24mm x 20mm and 7 x 7 x 11 points.



**Figure 7-1**  
**Sample SAR Area Scan**

## 7.2 Specific Anthropomorphic Mannequin (SAM) Specifications

The phantom for handset SAR assessment testing is a low-loss dielectric shell, with shape and dimensions derived from the anthropometric data of the 90th percentile adult male head dimensions as tabulated by the US Army. The SAM Twin Phantom shell is bisected along the mid-sagittal plane into right and left halves (see Figure 7-2). The perimeter sidewalls of each phantom halves are extended to allow filling with liquid to a depth that is sufficient to minimize reflections from the upper surface. The liquid depth is maintained at a minimum depth of 15 cm.



**Figure 7-2**  
**SAM Twin Phantom Shell**

|                                  |                                                                                     |                                                                           |  |                                                                                       |                                 |
|----------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--|---------------------------------------------------------------------------------------|---------------------------------|
| FCC ID: A3LGTP7500               |  | SAR COMPLIANCE REPORT                                                     |  |  | Reviewed by:<br>Quality Manager |
| Filename:<br>0Y1104120700-R2.A3L | Test Dates:<br>04/14/11 - 05/18/11                                                  | EUT Type:<br>850/1900 GPRS/EDGE/WCDMA/HSPA Tablet with Bluetooth and WLAN |  |                                                                                       | Page 10 of 53                   |

## 8 FCC RF EXPOSURE LIMITS

### 8.1 Uncontrolled Environment

UNCONTROLLED ENVIRONMENTS are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

### 8.2 Controlled Environment

CONTROLLED ENVIRONMENTS are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

**Table 8-1**  
**SAR Human Exposure Specified in ANSI/IEEE C95.1-1992 and Health Canada Safety Code 6**

| HUMAN EXPOSURE LIMITS                           |                                                                           |                                                                   |
|-------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------|
|                                                 | UNCONTROLLED ENVIRONMENT<br><i>General Population</i><br>(W/kg) or (mW/g) | CONTROLLED ENVIRONMENT<br><i>Occupational</i><br>(W/kg) or (mW/g) |
| SPATIAL PEAK SAR<br>Brain                       | 1.6                                                                       | 8.0                                                               |
| SPATIAL AVERAGE SAR<br>Whole Body               | 0.08                                                                      | 0.4                                                               |
| SPATIAL PEAK SAR<br>Hands, Feet, Ankles, Wrists | 4.0                                                                       | 20                                                                |

1. The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.
2. The Spatial Average value of the SAR averaged over the whole body.
3. The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

|                                  |                                                                                     |                                                                           |  |                                                                                       |                                 |
|----------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--|---------------------------------------------------------------------------------------|---------------------------------|
| FCC ID: A3LGTP7500               |  | SAR COMPLIANCE REPORT                                                     |  |  | Reviewed by:<br>Quality Manager |
| Filename:<br>0Y1104120700-R2.A3L | Test Dates:<br>04/14/11 - 05/18/11                                                  | EUT Type:<br>850/1900 GPRS/EDGE/WCDMA/HSPA Tablet with Bluetooth and WLAN |  | Page 11 of 53                                                                         |                                 |

## 9

## ANTENNA LOCATIONS AND KEY FEATURES

### 9.1 Antenna and Key Feature Information

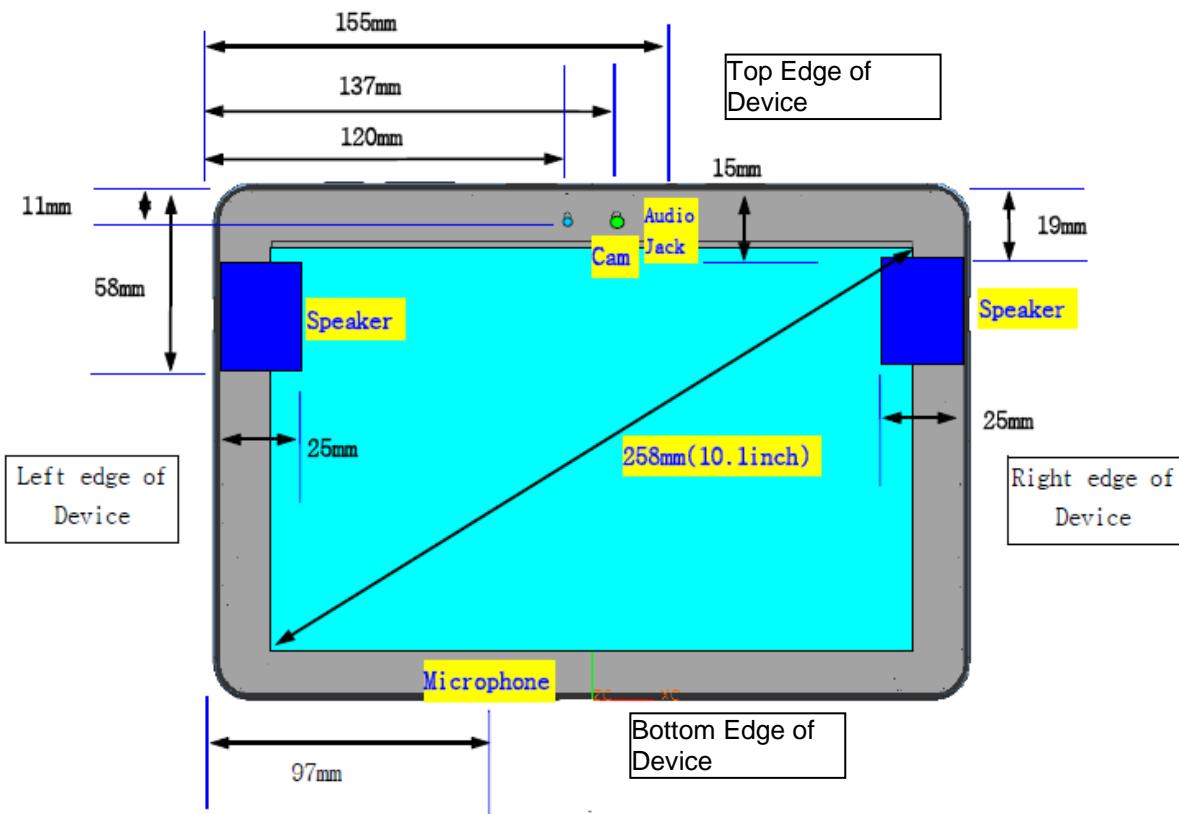
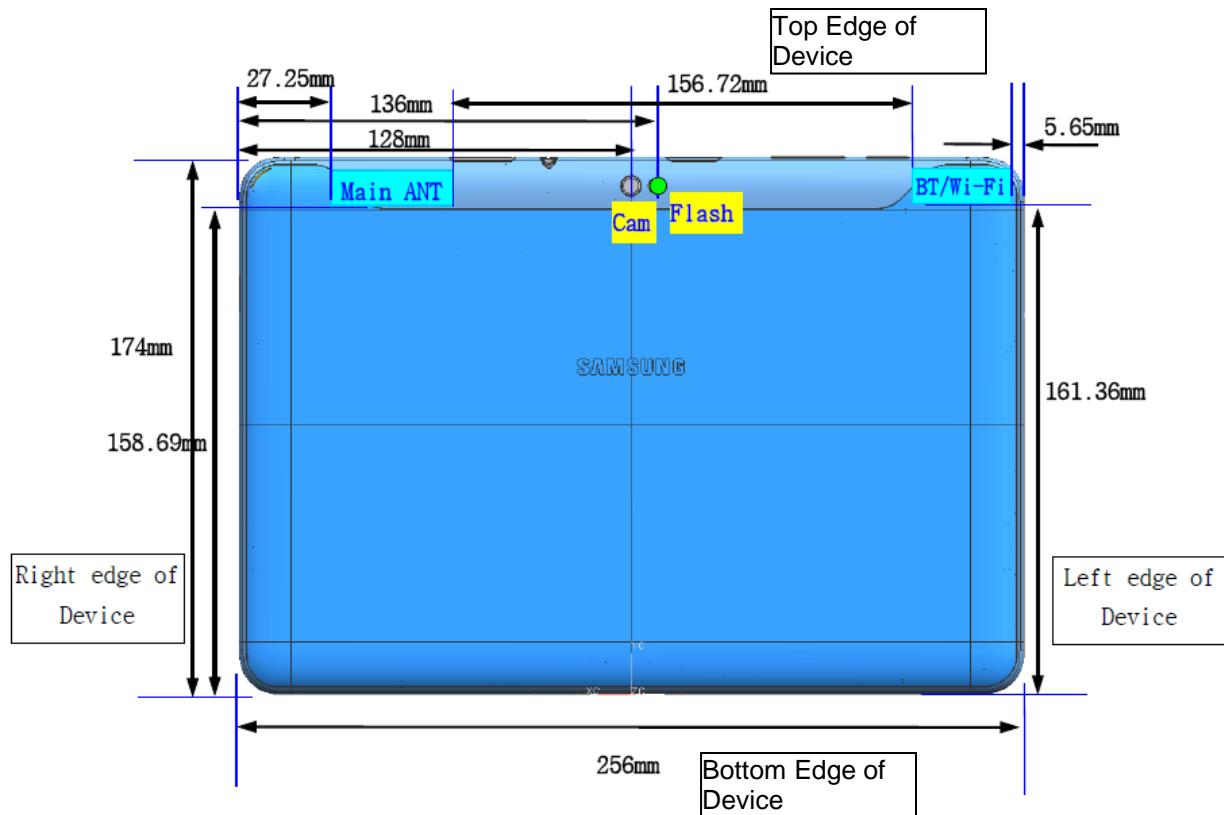




Figure 9-1  
Front View of Device

|                                  |                                    |                                                                           |  |                                 |
|----------------------------------|------------------------------------|---------------------------------------------------------------------------|--|---------------------------------|
| FCC ID: A3LGTP7500               |                                    | SAR COMPLIANCE REPORT                                                     |  | Reviewed by:<br>Quality Manager |
| Filename:<br>0Y1104120700-R2.A3L | Test Dates:<br>04/14/11 - 05/18/11 | EUT Type:<br>850/1900 GPRS/EDGE/WCDMA/HSPA Tablet with Bluetooth and WLAN |  | Page 12 of 53                   |



**Figure 9-2**  
**Back View of Device**

The operational description contains information about designs including sensor size and location.

Note: Rear camera is not for video calls but for standard digital functions.

## 9.2 Proximity Sensor Information

The sensor pad is located near the upper half of the device to cover exposure conditions to the main antenna. The technical description contains information about sensor size and location. Power reduction levels are provided in Section 11.

## 9.3 Display Orientations Capabilities

This device is capable of multiple display orientations supporting both portrait and landscape positions. Therefore per KDB 447498 4) b) ii) (2), SAR testing applies for the tablet edges with antennas located within 5 cm of each tablet edge closest to the user (with KDB 616217 applied to edges with antennas located  $\geq 5$  cm from the user). According to KDB 447498 4) b) ii) (2), for each antenna, SAR is only required for the edge with the most conservative exposure condition.

|                                  |                                    |                                                                           |  |               |                                 |
|----------------------------------|------------------------------------|---------------------------------------------------------------------------|--|---------------|---------------------------------|
| FCC ID: A3LGTP7500               |                                    | SAR COMPLIANCE REPORT                                                     |  |               | Reviewed by:<br>Quality Manager |
| Filename:<br>0Y1104120700-R2.A3L | Test Dates:<br>04/14/11 - 05/18/11 | EUT Type:<br>850/1900 GPRS/EDGE/WCDMA/HSPA Tablet with Bluetooth and WLAN |  | Page 13 of 53 |                                 |

### 10.1 Tablet testing for SAR

Lap-touching devices that have transmitting antennas located less than 20 cm from the lap of the user require routine SAR evaluation. Such devices are considered portable, and are capable of being held to the body. Devices are to be setup according to KDB 447498 requirements and are configured with maximum output power during SAR assessment for a worst-case SAR evaluation.

### 10.2 HSPA Test Considerations for SAR Testing

Since the SAR test setup for HSPA is typically problematic due to static ETFCI and AG requirements for the duration of the SAR test, as long as the maximum average output power for WCDMA and HSPA are similar, testing in WCDMA mode is performed, which also facilitates the exclusion of HSPA testing. HSPA testing was excluded based on the conducted power measurement and SAR results according to KDB 941225 Publication. HSPA+ operations are in the downlink only.

### 10.3 SAR Testing for Tablet per KDB 447498 Section 4

Per KDB 448498 4) b) i) the bottom face (back of the device) is required to be tested touching the flat phantom.

Per KDB 447498 4) b) ii) (2), SAR testing applies for the tablet edges with antennas located within 5 cm of each tablet edge closest to the user (with KDB 616217 applied to edges with antennas located  $\geq 5$  cm from the user). According to KDB 447498 4) b) ii) (2), for each antenna, SAR is only required for the edge with the most conservative exposure condition..

**Table 10-1 SAR Requirement Table per KDB pub 616217 D01**

| Antenna Output Power (mW)          | $\leq 60/f_{(GHz)}$                                                                                                                                                                                                                                                                        | $> 60/f_{(GHz)}$                                                                                                                                                                                                        |
|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Individual Transmitter or Antenna  | SAR not required                                                                                                                                                                                                                                                                           | Antenna-to-user distance –<br>$\geq (5 + \frac{1}{2} \cdot n)$ cm: <a href="#">test SAR on highest output channel only</a><br>$< (5 + \frac{1}{2} \cdot n)$ cm: <a href="#">test SAR according to normal procedures</a> |
| Simultaneous Transmitting Antennas | <a href="#">SAR not required</a> : antenna-to-antenna or antenna-to-person distance $\geq 5$ cm                                                                                                                                                                                            | <a href="#">SAR not required</a> : antenna-to-antenna $\geq (5 + \frac{1}{2} \cdot n_x + \frac{1}{2} \cdot n_y)$ and antenna-to-person $\geq (5 + \frac{1}{2} \cdot n_x)$ cm                                            |
|                                    | <a href="#">SAR not required</a> : when $\sum (SAR_{1g}) < SAR$ limit, antenna-to-antenna distances $> 5$ cm and antenna-to-user distance $> 5$ cm if output $> 60/f$<br>otherwise, <a href="#">test antenna(s) using highest SAR configuration</a> for the individual transmitter/antenna |                                                                                                                                                                                                                         |

|                                  |                                                                                     |                                                                           |                                                                                       |                                 |
|----------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------|
| FCC ID: A3LGTP7500               |  | SAR COMPLIANCE REPORT                                                     |  | Reviewed by:<br>Quality Manager |
| Filename:<br>0Y1104120700-R2.A3L | Test Dates:<br>04/14/11 - 05/18/11                                                  | EUT Type:<br>850/1900 GPRS/EDGE/WCDMA/HSPA Tablet with Bluetooth and WLAN |                                                                                       | Page 14 of 53                   |

**Table 10-2**  
**Distance Thresholds calculations KDB 616217 Publication**

| Mode     | Freq (GHz) | Power (mW) | 60/f  | n={P/(60/f)}-1 | distance threshold (5+1/2n) (cm) |
|----------|------------|------------|-------|----------------|----------------------------------|
| GPRS850  | 0.835      | 236.0      | 71.86 | 2.28           | 6.1                              |
| UMTS850  | 0.835      | 194.1      | 71.86 | 1.70           | 5.9                              |
| GPRS1900 | 1.88       | 101.2      | 31.91 | 2.17           | 6.1                              |
| UMTS1900 | 1.9        | 130.9      | 31.58 | 3.15           | 6.6                              |
| WIFI b   | 2.437      | 24.3       | 24.62 | -0.01          | 5.0                              |
| WIFI a   | 5.2        | 17.4       | 11.54 | 0.51           | 5.3                              |
|          | 5.3        | 17.0       | 11.32 | 0.50           | 5.3                              |
|          | 5.5        | 19.5       | 10.91 | 0.79           | 5.4                              |
|          | 5.8        | 19.2       | 10.34 | 0.86           | 5.4                              |

Note: GSM Modes represent highest frame-averaged power

According to KDB 616217 publication and the antenna distances from the user to the edges of the device, the main WWAN antenna is required to be tested for SAR at the top and right edges and back of the device for all technologies. The WLAN antenna is required to be tested for SAR at the back, top and left edges of the device.

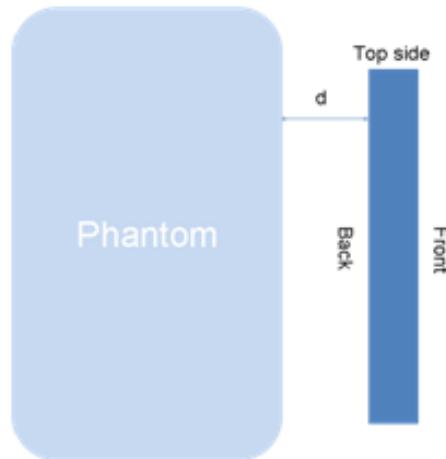
Per KDB 447498 4) b) since the output power of the antenna is  $\leq 60/f$  (GHz), Bluetooth SAR is not required for both back side and edge exposure conditions.

#### 10.4 Additional SAR Testing for the Back and Top of the Device

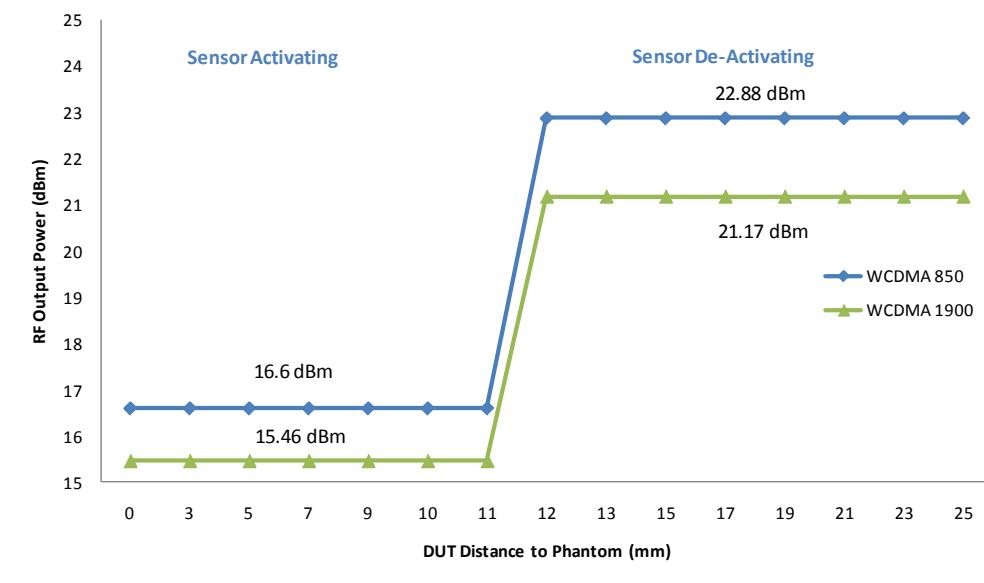
Based on the type and implementation of the sensor, April 2011 FCC-TCB conference notes requires sensor information regarding: (1) additional SAR evaluation at a conservative distance from the device where power back-off is de-activated, and (2) reliability sensor activation data. Reliability sensor activation data is provided for both the back and top edge of the tablet at  $0^\circ$  to cover direct usage and also at  $45^\circ$  to cover angled usage (See Table 10-3, Table 10-4 and Table 10-5).

Since the back-off sensor activation distance at  $45^\circ$  was greater than 6 mm for the top edge, a conservative distance of 5 mm was tested. Details about sensing mechanism and sensor pad location are included in the technical description.

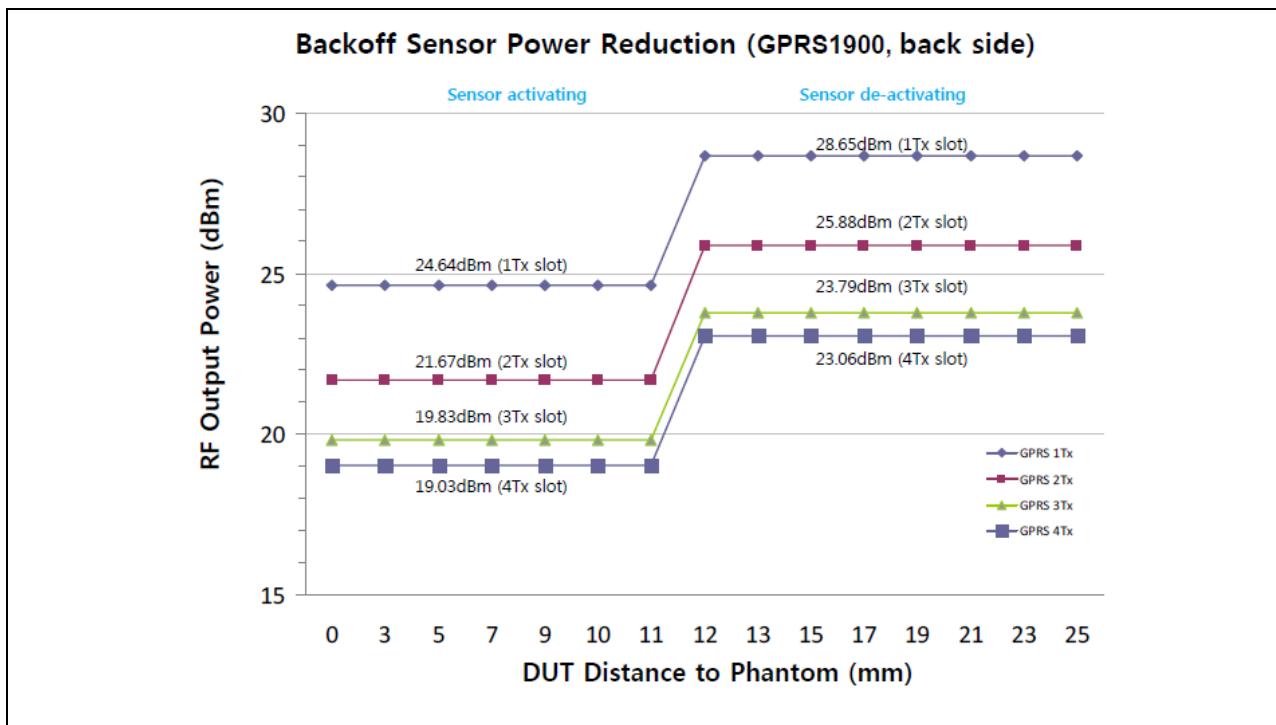
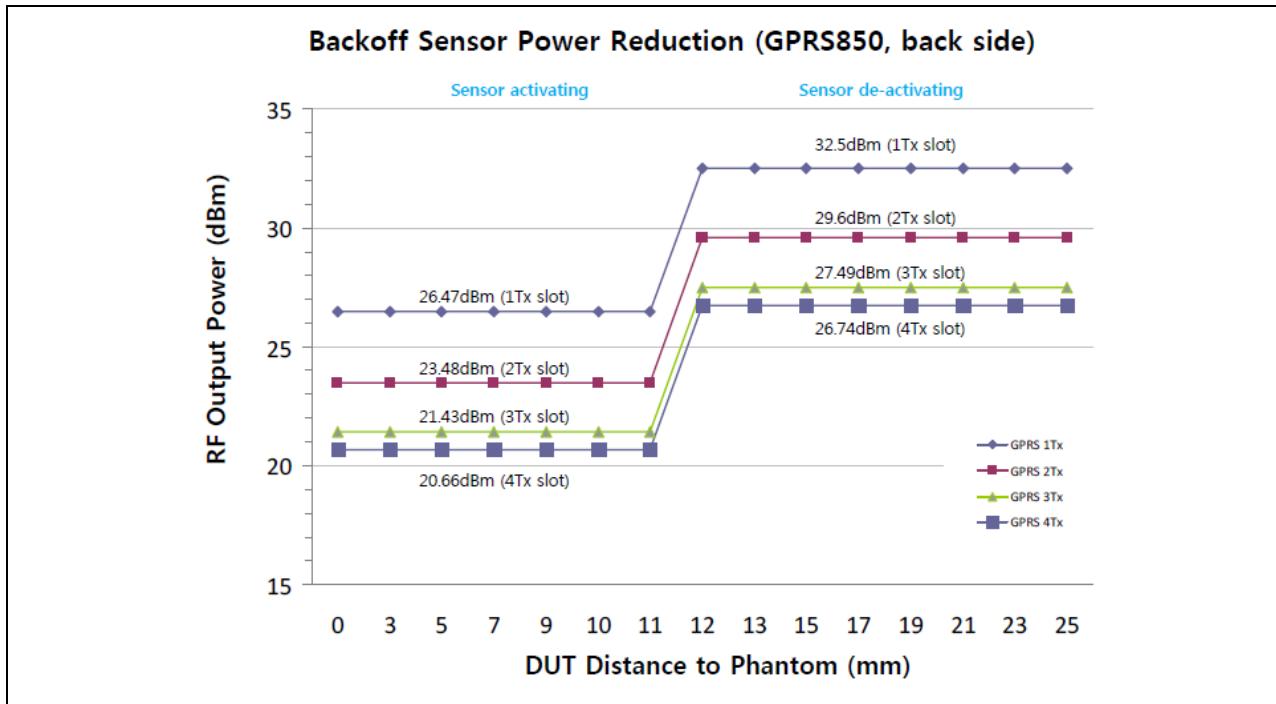
The sensor is designed to support sufficient detection range and sensitivity to cover regions of the sensor in all applicable directions.


**Table 10-3**  
**Distance from Back of Tablet**

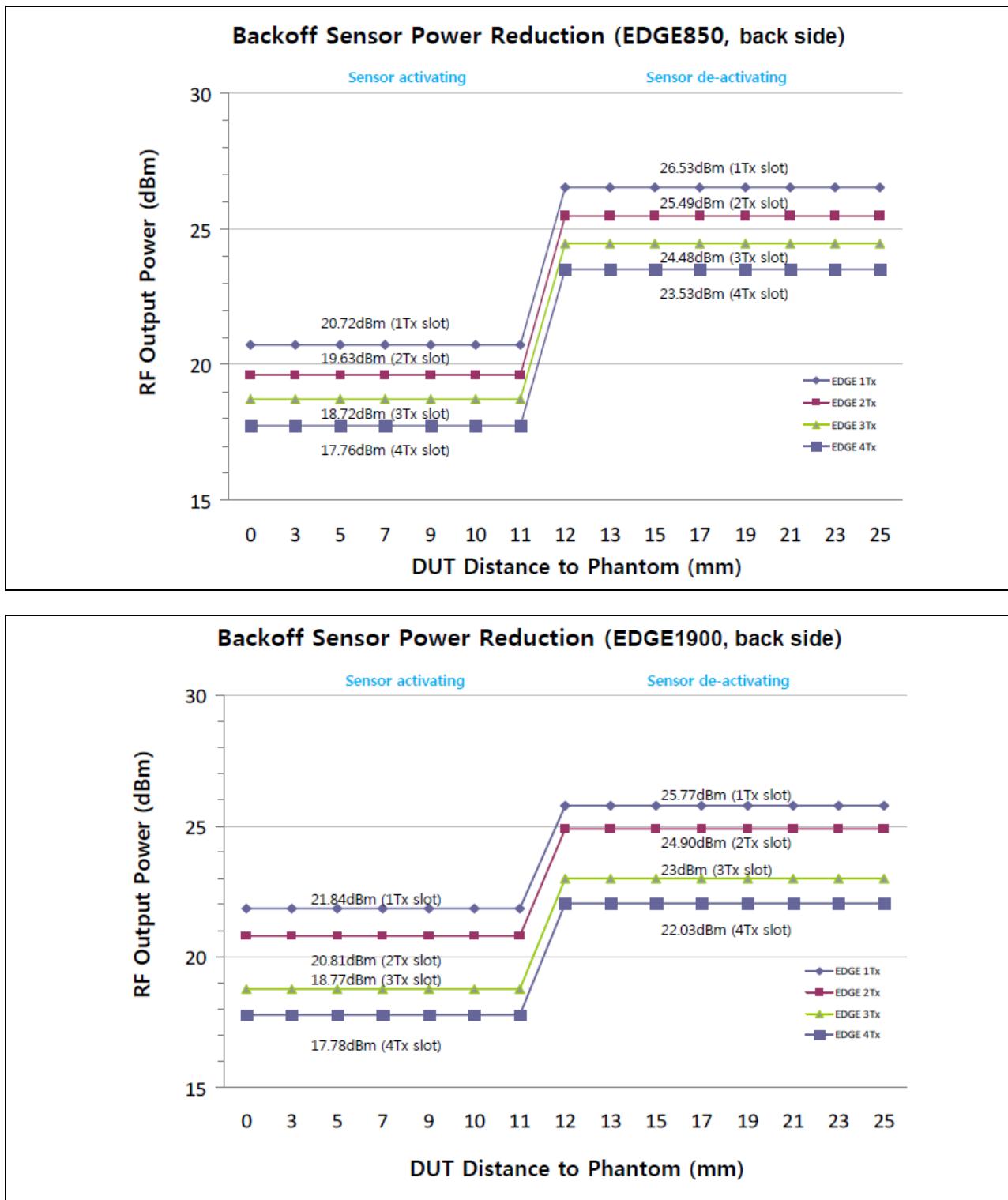
| distance in mm                                | 9  | 10 | 11 | 12  | 13  | 14  |
|-----------------------------------------------|----|----|----|-----|-----|-----|
| Condition of Sensor in the back of the device | on | on | On | off | off | off |


Please see Figure 10-1 for power vs. back-off distance plots for each mode.

|                                  |                                                                                     |                                                                           |  |  |                                                                                       |                                 |
|----------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--|--|---------------------------------------------------------------------------------------|---------------------------------|
| FCC ID: A3LGTP7500               |  | SAR COMPLIANCE REPORT                                                     |  |  |  | Reviewed by:<br>Quality Manager |
| Filename:<br>0Y1104120700-R2.A3L | Test Dates:<br>04/14/11 - 05/18/11                                                  | EUT Type:<br>850/1900 GPRS/EDGE/WCDMA/HSPA Tablet with Bluetooth and WLAN |  |  | Page 15 of 52                                                                         |                                 |



### Backoff Sensor Power Reduction (back side)




### Backoff Sensor Power Reduction (WCDMA, back side)

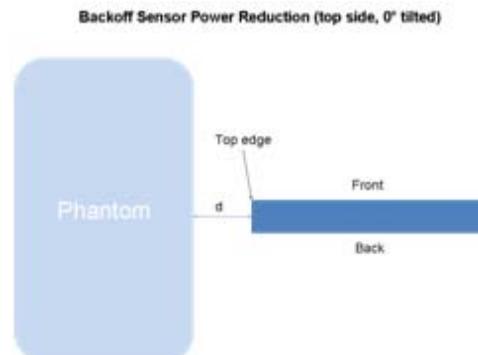


|                                  |                                    |                                                                           |  |  |                                 |
|----------------------------------|------------------------------------|---------------------------------------------------------------------------|--|--|---------------------------------|
| FCC ID: A3LGTP7500               |                                    | SAR COMPLIANCE REPORT                                                     |  |  | Reviewed by:<br>Quality Manager |
| Filename:<br>0Y1104120700-R2.A3L | Test Dates:<br>04/14/11 - 05/18/11 | EUT Type:<br>850/1900 GPRS/EDGE/WCDMA/HSPA Tablet with Bluetooth and WLAN |  |  | Page 16 of 53                   |

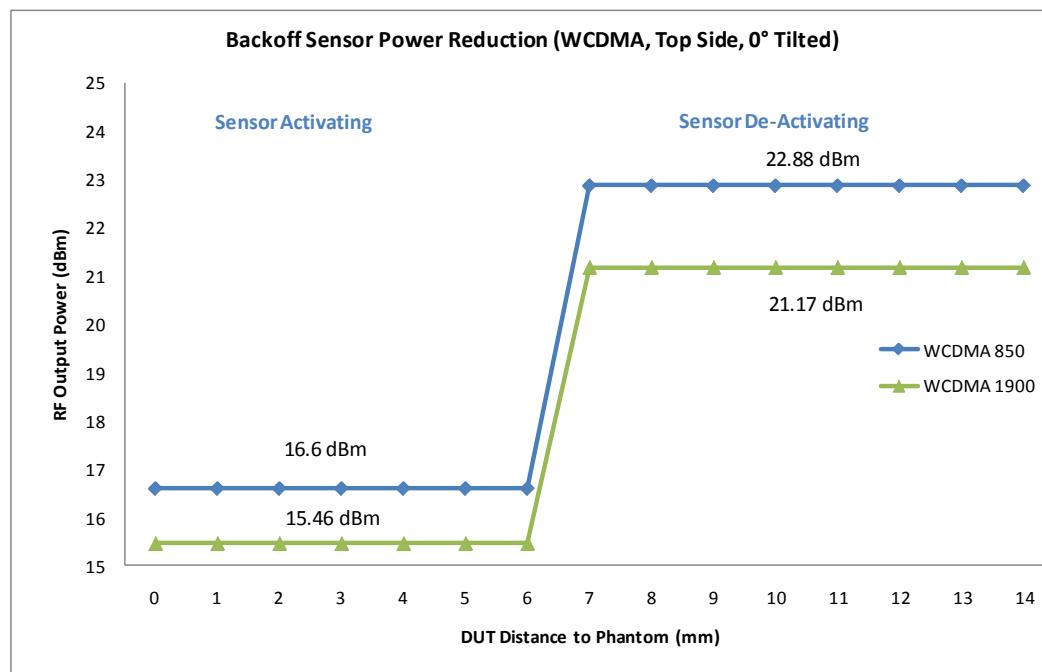


|                                  |                                    |                                                                           |  |  |                                 |
|----------------------------------|------------------------------------|---------------------------------------------------------------------------|--|--|---------------------------------|
| FCC ID: A3LGTP7500               |                                    | SAR COMPLIANCE REPORT                                                     |  |  | Reviewed by:<br>Quality Manager |
| Filename:<br>0Y1104120700-R2.A3L | Test Dates:<br>04/14/11 - 05/18/11 | EUT Type:<br>850/1900 GPRS/EDGE/WCDMA/HSPA Tablet with Bluetooth and WLAN |  |  | Page 17 of 53                   |



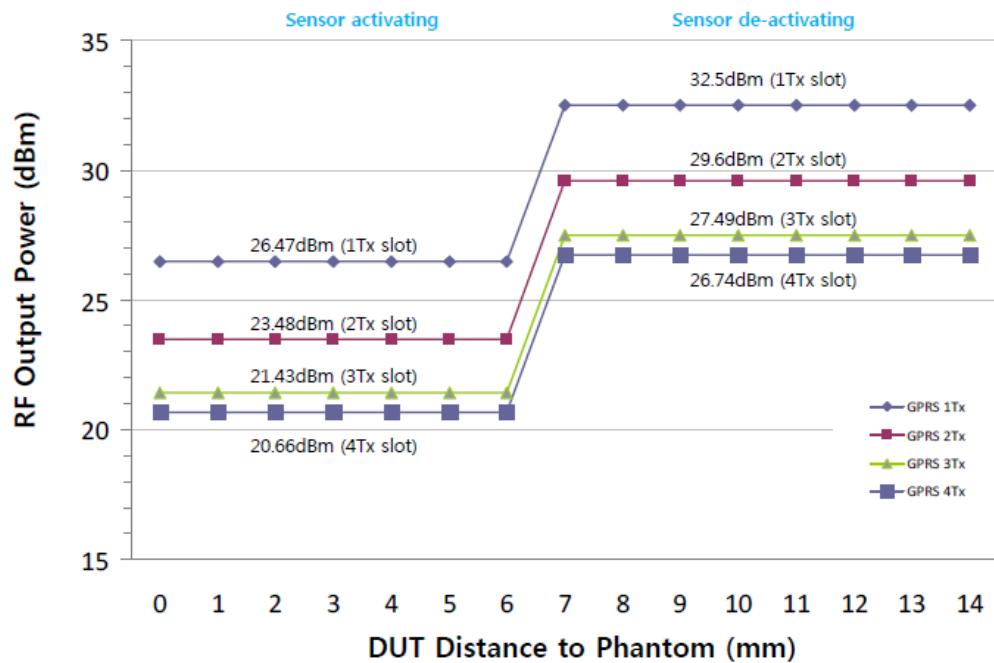

**Figure 10-1**  
**Back off Power Reduction Graph – Back at 0° Angle**

|                                  |                                    |                                                                           |  |  |                                 |
|----------------------------------|------------------------------------|---------------------------------------------------------------------------|--|--|---------------------------------|
| FCC ID: A3LGTP7500               |                                    | SAR COMPLIANCE REPORT                                                     |  |  | Reviewed by:<br>Quality Manager |
| Filename:<br>0Y1104120700-R2.A3L | Test Dates:<br>04/14/11 - 05/18/11 | EUT Type:<br>850/1900 GPRS/EDGE/WCDMA/HSPA Tablet with Bluetooth and WLAN |  |  | Page 18 of 53                   |

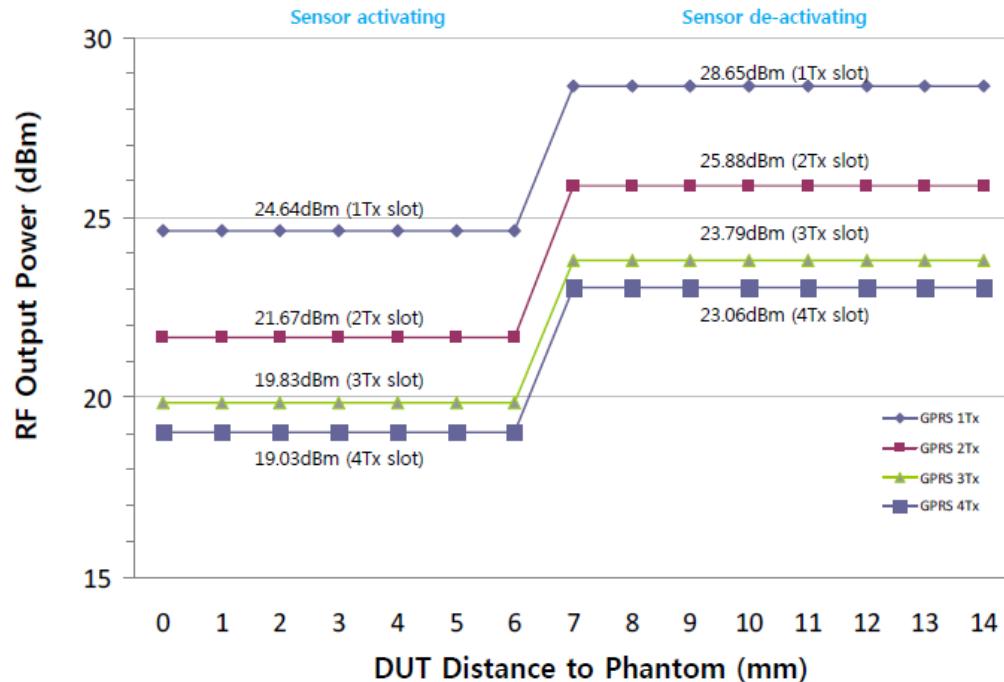

**Table 10-4**  
**Distance from Top of Tablet - 0° Angle**

| distance in mm                                | 5  | 6  | 7   | 8   | 9   | 10  |
|-----------------------------------------------|----|----|-----|-----|-----|-----|
| Condition of Sensor in the back of the device | on | on | off | off | off | off |

Please see Figure 10-2 for power vs. back-off distance plots for each mode.

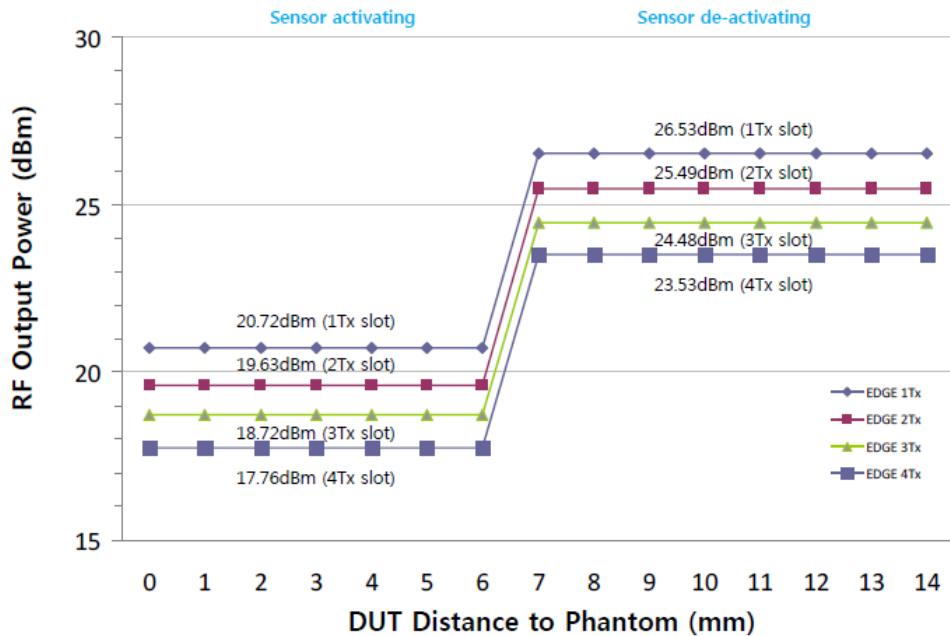



Note: Angle mentioned for top edge description is the perpendicular angle.  
Above figure represents "0 degrees"

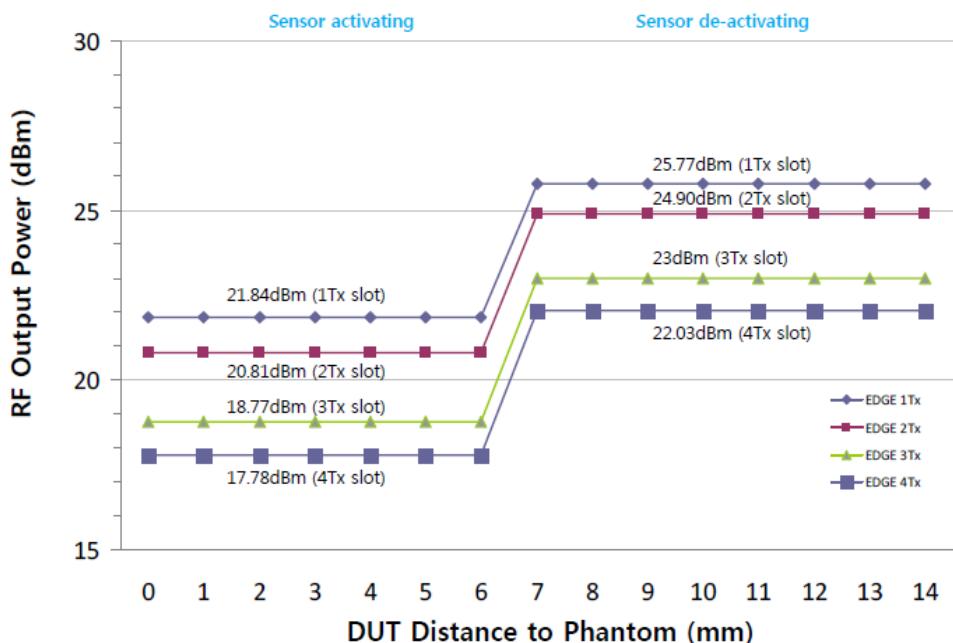



|                                  |                                    |                                                                           |  |  |                                 |
|----------------------------------|------------------------------------|---------------------------------------------------------------------------|--|--|---------------------------------|
| FCC ID: A3LGTP7500               |                                    | SAR COMPLIANCE REPORT                                                     |  |  | Reviewed by:<br>Quality Manager |
| Filename:<br>0Y1104120700-R2.A3L | Test Dates:<br>04/14/11 - 05/18/11 | EUT Type:<br>850/1900 GPRS/EDGE/WCDMA/HSPA Tablet with Bluetooth and WLAN |  |  | Page 19 of 53                   |

### Backoff Sensor Power Reduction (GPRS850, top side, 0° tilted)




### Backoff Sensor Power Reduction (GPRS1900, top side, 0° tilted)



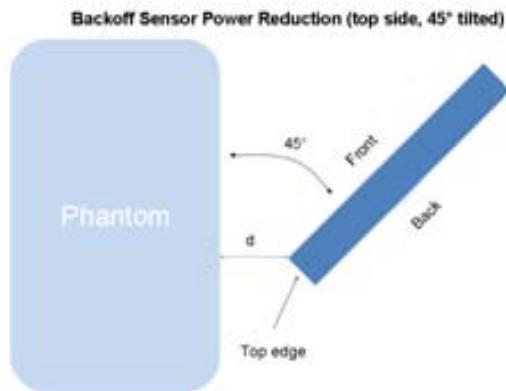

|                               |                                 |                                                                        |  |  |                                 |
|-------------------------------|---------------------------------|------------------------------------------------------------------------|--|--|---------------------------------|
| FCC ID: A3LGTP7500            |                                 | SAR COMPLIANCE REPORT                                                  |  |  | Reviewed by:<br>Quality Manager |
| Filename: 0Y1104120700-R2.A3L | Test Dates: 04/14/11 - 05/18/11 | EUT Type: 850/1900 GPRS/EDGE/WCDMA/HSPA Tablet with Bluetooth and WLAN |  |  | Page 20 of 53                   |

### Backoff Sensor Power Reduction (EDGE850, top side, 0° tilted)



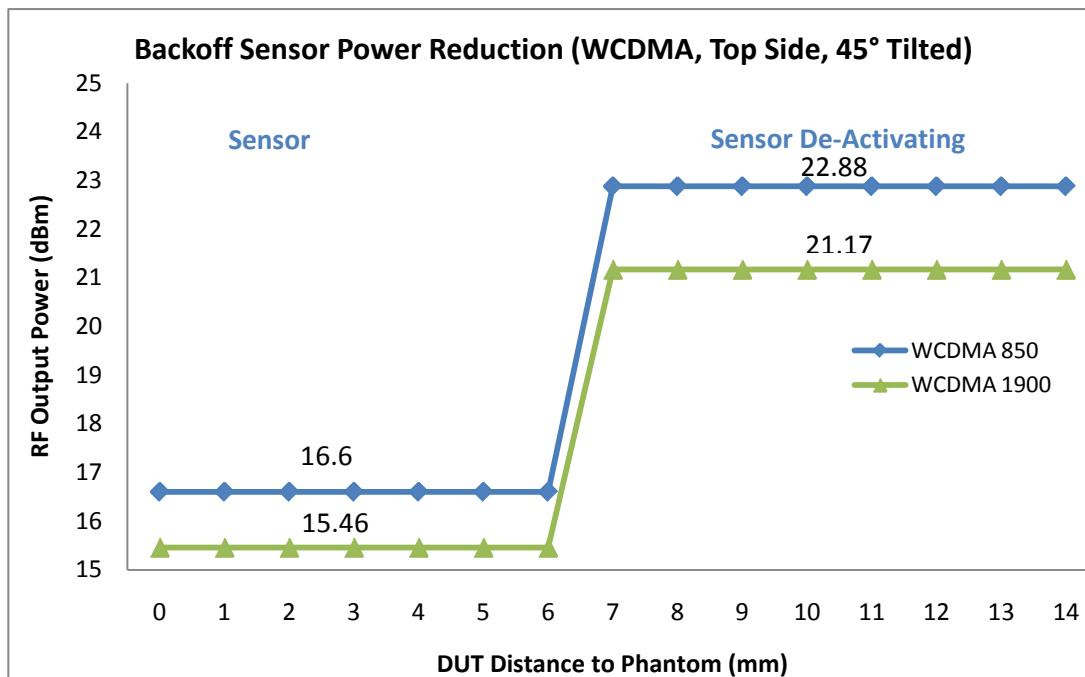
### Backoff Sensor Power Reduction (EDGE1900, top side, 0° tilted)




**Figure 10-2**  
**Back off Power Reduction Graph – Top at 0° Angle**

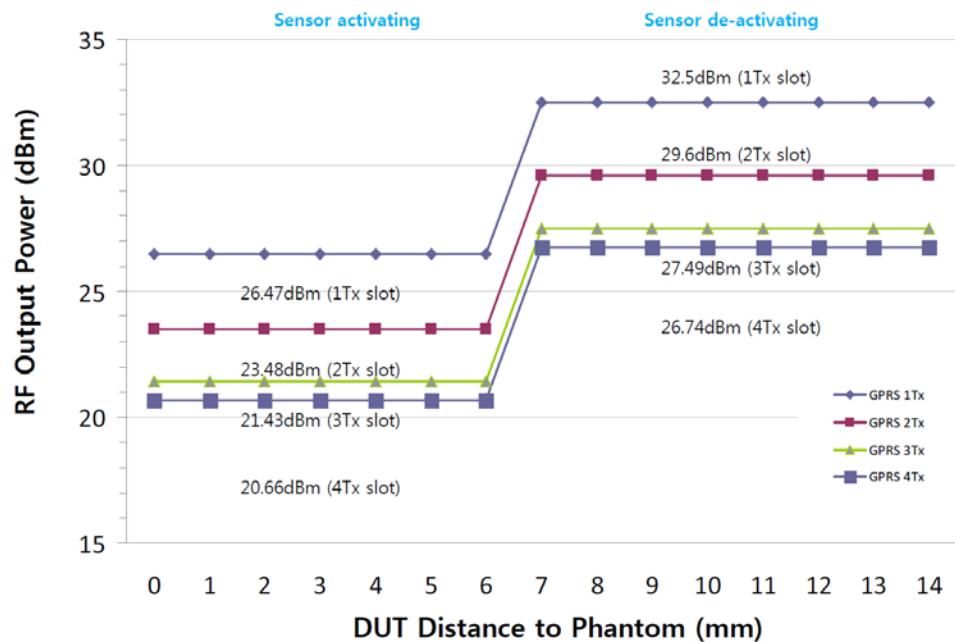
|                                  |                                    |                                                                           |  |  |                                 |
|----------------------------------|------------------------------------|---------------------------------------------------------------------------|--|--|---------------------------------|
| FCC ID: A3LGTP7500               |                                    | SAR COMPLIANCE REPORT                                                     |  |  | Reviewed by:<br>Quality Manager |
| Filename:<br>0Y1104120700-R2.A3L | Test Dates:<br>04/14/11 - 05/18/11 | EUT Type:<br>850/1900 GPRS/EDGE/WCDMA/HSPA Tablet with Bluetooth and WLAN |  |  | Page 21 of 53                   |

**Table 10-5**  
**Distance from Top of Tablet - 45° Angle**

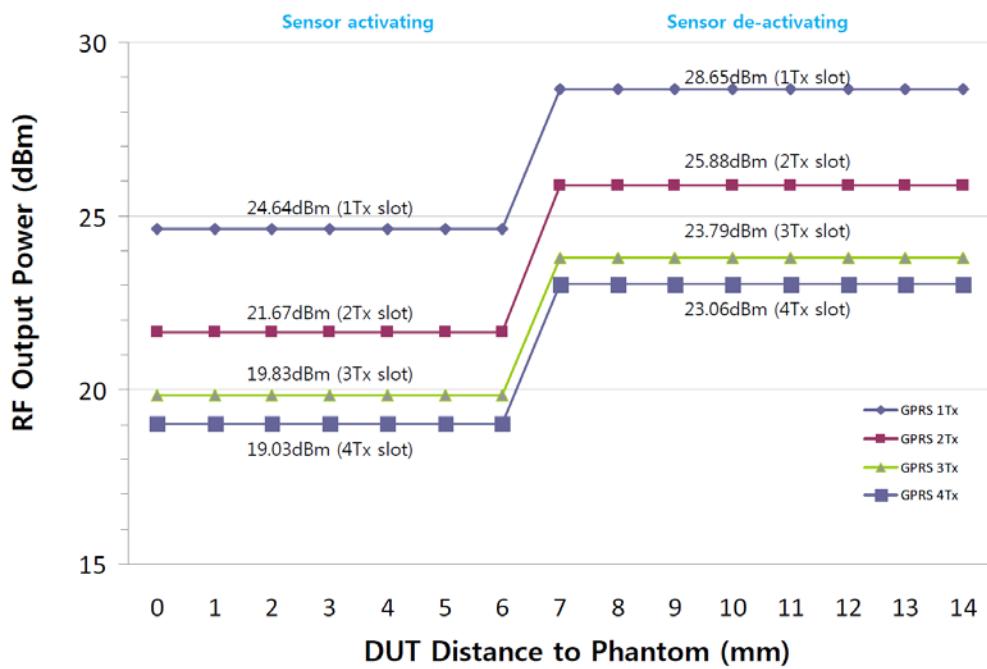

| distance in mm                                | 5  | 6  | 7   | 8   | 9   | 10  |
|-----------------------------------------------|----|----|-----|-----|-----|-----|
| Condition of Sensor in the back of the device | on | on | off | off | off | off |

Please see **Figure 10-3** for power vs. back-off distance plots for each mode.

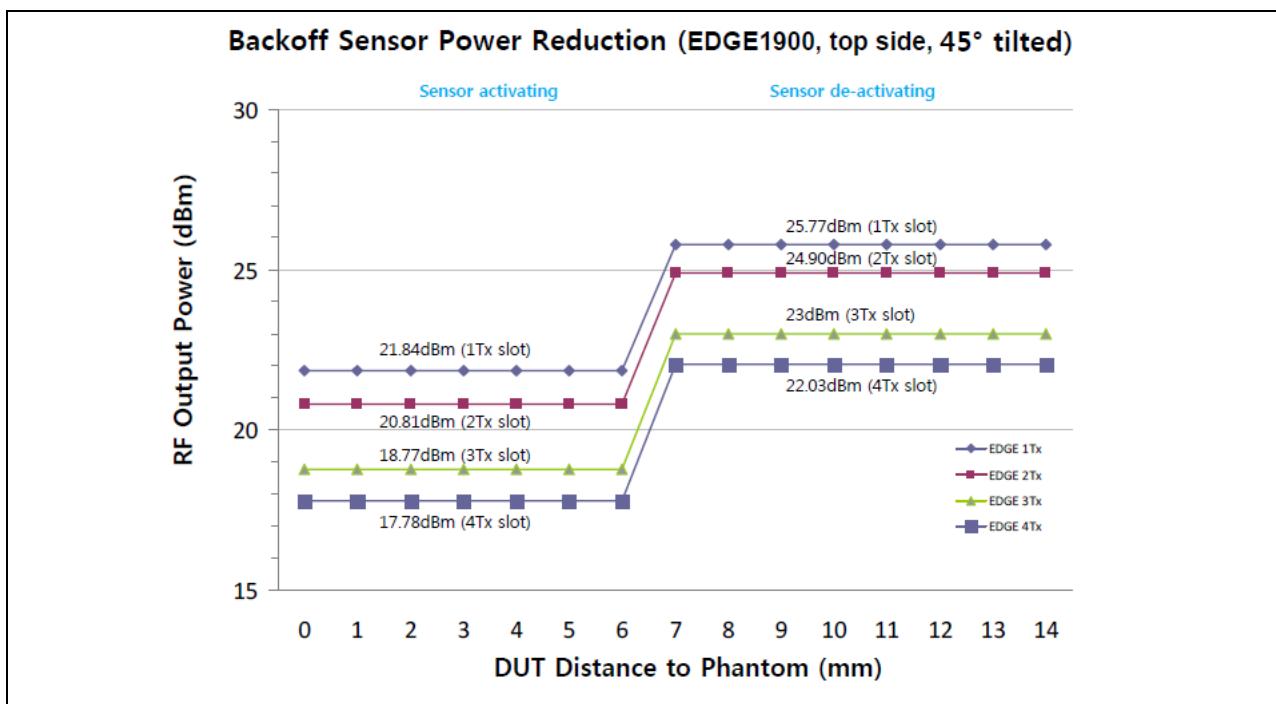
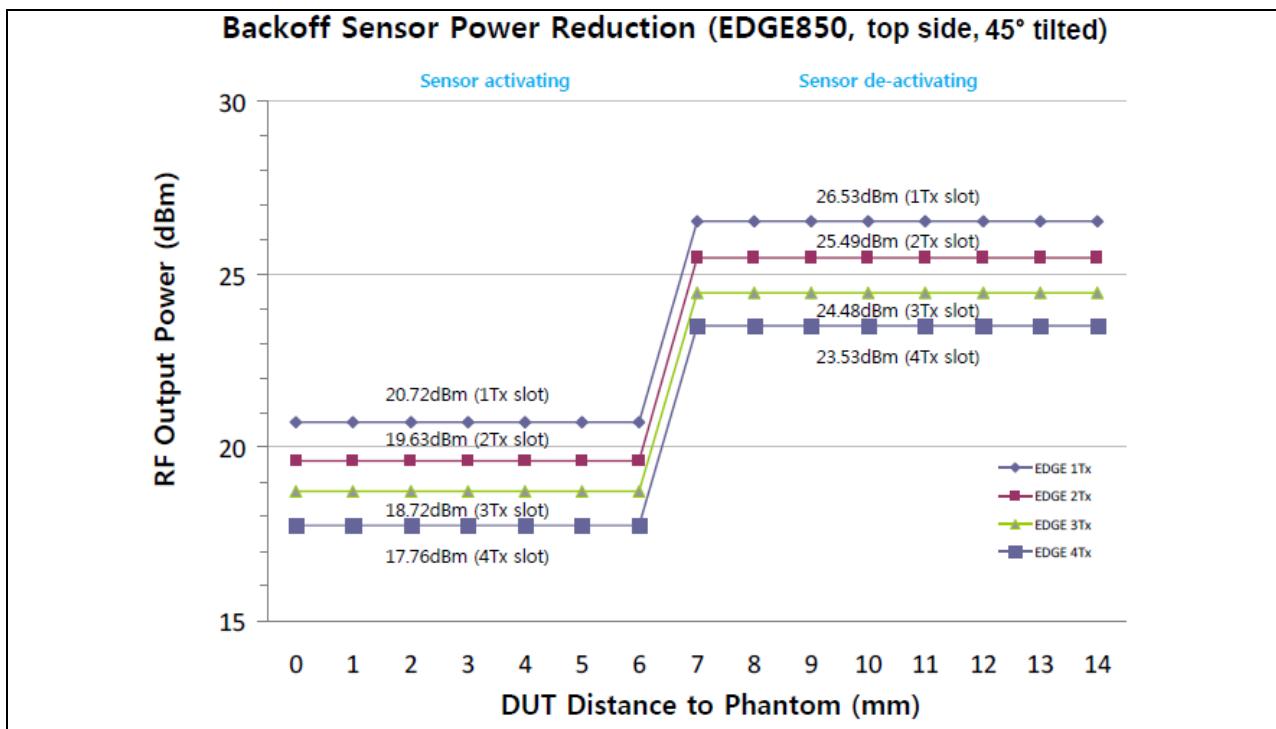



Note: Angle mentioned for top edge description is the perpendicular angle.  
Above figure represents "45 degrees" between the screen face and phantom face.

Please note that the 45 degree angle tilt has been used to identify proximity sensor coverage for the top edge, since this angle is consistent with device use conditions and sensor implementation. All relevant directions of coverage, as described in the April 2011 TCB workshop slides, have been considered in order to determine the worst case activation and deactivation test distances.




|                                  |                                    |                                                                           |  |  |                                 |
|----------------------------------|------------------------------------|---------------------------------------------------------------------------|--|--|---------------------------------|
| FCC ID: A3LGTP7500               |                                    | SAR COMPLIANCE REPORT                                                     |  |  | Reviewed by:<br>Quality Manager |
| Filename:<br>0Y1104120700-R2.A3L | Test Dates:<br>04/14/11 - 05/18/11 | EUT Type:<br>850/1900 GPRS/EDGE/WCDMA/HSPA Tablet with Bluetooth and WLAN |  |  | Page 22 of 53                   |



### Backoff Sensor Power Reduction (GPRS850, top side, 45° tilted)



### Backoff Sensor Power Reduction (GPRS1900, top side, 45° tilted)



|                                  |                                    |                                                                           |  |  |                                 |
|----------------------------------|------------------------------------|---------------------------------------------------------------------------|--|--|---------------------------------|
| FCC ID: A3LGTP7500               |                                    | SAR COMPLIANCE REPORT                                                     |  |  | Reviewed by:<br>Quality Manager |
| Filename:<br>0Y1104120700-R2.A3L | Test Dates:<br>04/14/11 - 05/18/11 | EUT Type:<br>850/1900 GPRS/EDGE/WCDMA/HSPA Tablet with Bluetooth and WLAN |  |  | Page 23 of 53                   |



**Figure 10-3**  
**Back off Power Reduction Graph – Back at 45° Angle**

|                                  |                                    |                                                                           |  |  |                                 |
|----------------------------------|------------------------------------|---------------------------------------------------------------------------|--|--|---------------------------------|
| FCC ID: A3LGTP7500               |                                    | SAR COMPLIANCE REPORT                                                     |  |  | Reviewed by:<br>Quality Manager |
| Filename:<br>0Y1104120700-R2.A3L | Test Dates:<br>04/14/11 - 05/18/11 | EUT Type:<br>850/1900 GPRS/EDGE/WCDMA/HSPA Tablet with Bluetooth and WLAN |  |  | Page 24 of 53                   |

## 10.5 Method of SAR Measurement with Power Reduction

Based on the power-reduction activation vs. distance results for the sensors, the device was tested at 0mm distance from the phantom with the sensor activated and additionally at a conservative 10 mm distance with the sensor de-activated (max power, no power reduction) from the back side; and 5 mm from the top edge.

To test SAR with power back-off sensor active while touching, the device was placed in maximum power transmit mode with a base station simulator. The device was then positioned to touching position under the tissue equivalent liquid-filled flat phantom, to activate the proximity sensors.

For the additional SAR measurements with the sensors de-activated when the device is positioned away from the user, SAR is needed to be evaluated without power back-off at 10 mm (from the back) and 5mm (from the edge). Since the device sensor detection mechanism may be active at these distances, the sensor had to be disabled via manufacturer test software for SAR test purposes. The device was then placed in maximum power transmit mode with a base station simulator under the tissue equivalent liquid-filled flat phantom at a distance of 10 mm for the back and 5 mm for the top edge with the sensor deactivated (via manufacturer test software) and then tested at maximum power.

|                                  |                                                                                     |                                                                           |  |                                                                                       |                                 |
|----------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--|---------------------------------------------------------------------------------------|---------------------------------|
| FCC ID: A3LGTP7500               |  | SAR COMPLIANCE REPORT                                                     |  |  | Reviewed by:<br>Quality Manager |
| Filename:<br>0Y1104120700-R2.A3L | Test Dates:<br>04/14/11 - 05/18/11                                                  | EUT Type:<br>850/1900 GPRS/EDGE/WCDMA/HSPA Tablet with Bluetooth and WLAN |  |                                                                                       | Page 25 of 53                   |

## 11 FCC 3G MEASUREMENT PROCEDURES

Power measurements were performed using a base station simulator under digital average power.

### 11.1 Procedures Used to Establish RF Signal for SAR

The device was placed into a simulated call using a base station simulator in a shielded chamber. Such test signals offer a consistent means for testing SAR and are recommended for evaluating SAR [4]. SAR measurements were taken with a fully charged battery. In order to verify that the device was tested and maintained at full power, it was configured with the base station simulator. The SAR measurement software calculates a reference point at the start and end of the test to check for power drifts. If SAR deviations of more than 5% occurred, the tests were repeated.

### 11.2 Procedures Used to Establish RF Signal for SAR HSPA Devices

The following procedures are applicable to HSDPA data devices operating under 3GPP Release 5. Body exposure conditions are typically applicable to these devices, including handsets and data modems operating in various electronic devices. HSDPA operates in conjunction with WCDMA and requires an active DPCCH. The default test configuration is to measure SAR in WCDMA without HSDPA, with an established radio link between the DUT and a communication test set using a 12.2 kbps RMC configured in Test Loop Mode 1; and test HSDPA within FRC and a 12.2 kbps RMC using the highest SAR configuration in WCDMA. SAR is selectively confirmed for other physical channel configurations according to output power, exposure conditions and device operating capabilities. Maximum output power is verified according to 3GPP TS 23.121 (Release 5) and SAR must be measured according to these maximum output conditions.

### 11.3 SAR Measurement Conditions for HSPA Data Devices

#### 11.3.1 Output Power Verification

Maximum output power is verified on the High, Middle and Low channels according to the general descriptions in section 5.2 of 3GPP TS 34.121 (release 5), using the appropriate RMC with TPC (transmit power control) set to all "1s". Results for all applicable physical channel configurations (DPCCH, DPDCHn and spreading codes, HS-DPCCH) is tabulated in the test report. All configurations that are not supported by the DUT or cannot be measured due to technical or equipment limitations is identified.

#### 11.3.2 Body SAR Measurements

SAR for body exposure configurations are measured according to the 'Body SAR Measurements' procedures in the 'WCDMA Handsets' section of the FCC 3G document. In addition, body SAR is also measured for HSPA when the maximum average output of each RF channel with HSPA active is at least ¼ dB higher than that measured without HSPA using 12.2 kbps RMC or the maximum SAR for 12.2 kbps RMC is above 75% of the SAR limit. Body SAR for HSPA is measured with E-DCH Sub-test 5, using H-Set 1 and QPSK for FRC and a 12.2 kbps RMC configured in Test Loop Mode 1 with power control algorithm 2, according to the highest body SAR configuration in 12.2 kbps RMC without HSPA.

Due to inner loop power control requirements in HSPA, a commercial communication test set should be used for the output power and SAR tests. The 12.2 kbps RMC, FRC H-set 1 and EDCH configurations for HSPA should be configured according to the  $\beta$  values indicated below

|                                  |                                                                                     |                                                                           |  |                                                                                       |                                 |
|----------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--|---------------------------------------------------------------------------------------|---------------------------------|
| FCC ID: A3LGTP7500               |  | SAR COMPLIANCE REPORT                                                     |  |  | Reviewed by:<br>Quality Manager |
| Filename:<br>0Y1104120700-R2.A3L | Test Dates:<br>04/14/11 - 05/18/11                                                  | EUT Type:<br>850/1900 GPRS/EDGE/WCDMA/HSPA Tablet with Bluetooth and WLAN |  | Page 26 of 53                                                                         |                                 |

as well as other applicable procedures described in the 'WCDMA Handset' and 'Release 5 HSDPA Data Devices' sections of the FCC 3G document.

| Sub-test | $\beta_c$            | $\beta_d$            | $\beta_d$<br>(SF) | $\beta_c/\beta_d$    | $\beta_{hs}^{(1)}$ | $\beta_{ec}$ | $\beta_{ed}$                                 | $\beta_{ed}$<br>(SF) | $\beta_{ed}$<br>(codes) | CM <sup>(2)</sup><br>(dB) | MPR<br>(dB) | AG <sup>(4)</sup><br>Index | E-TFCI |
|----------|----------------------|----------------------|-------------------|----------------------|--------------------|--------------|----------------------------------------------|----------------------|-------------------------|---------------------------|-------------|----------------------------|--------|
| 1        | 11/15 <sup>(3)</sup> | 15/15 <sup>(3)</sup> | 64                | 11/15 <sup>(3)</sup> | 22/15              | 209/225      | 1039/225                                     | 4                    | 1                       | 1.0                       | 0.0         | 20                         | 75     |
| 2        | 6/15                 | 15/15                | 64                | 6/15                 | 12/15              | 12/15        | 94/75                                        | 4                    | 1                       | 3.0                       | 2.0         | 12                         | 67     |
| 3        | 15/15                | 9/15                 | 64                | 15/9                 | 30/15              | 30/15        | $\beta_{ed1}: 47/15$<br>$\beta_{ed2}: 47/15$ | 4                    | 2                       | 2.0                       | 1.0         | 15                         | 92     |
| 4        | 2/15                 | 15/15                | 64                | 2/15                 | 4/15               | 2/15         | 56/75                                        | 4                    | 1                       | 3.0                       | 2.0         | 17                         | 71     |
| 5        | 15/15 <sup>(4)</sup> | 15/15 <sup>(4)</sup> | 64                | 15/15 <sup>(4)</sup> | 30/15              | 24/15        | 134/15                                       | 4                    | 1                       | 1.0                       | 0.0         | 21                         | 81     |

Note 1:  $\Delta_{ACK}$ ,  $\Delta_{NACK}$  and  $\Delta_{CQI} = 8 \Leftrightarrow A_{hs} = \beta_{hs}/\beta_c = 30/15 \Leftrightarrow \beta_{hs} = 30/15 * \beta_c$ .

Note 2: CM = 1 for  $\beta_c/\beta_d = 12/15$ ,  $\beta_{hs}/\beta_c = 24/15$ . For all other combinations of DPDCH, DPCCH, HS-DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference.

Note 3: For subtest 1 the  $\beta_c/\beta_d$  ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF1) to  $\beta_c = 10/15$  and  $\beta_d = 15/15$ .

Note 4: For subtest 5 the  $\beta_c/\beta_d$  ratio of 15/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF1) to  $\beta_c = 14/15$  and  $\beta_d = 15/15$ .

Note 5: Testing UE using E-DPDCH Physical Layer category 1 Sub-test 3 is not required according to TS 25.306 Table 5.1g.

Note 6:  $\beta_{ed}$  can not be set directly; it is set by Absolute Grant Value.

|                                  |                                                                                     |                                                                           |  |  |                                                                                       |                                 |
|----------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--|--|---------------------------------------------------------------------------------------|---------------------------------|
| FCC ID: A3LGTP7500               |  | SAR COMPLIANCE REPORT                                                     |  |  |  | Reviewed by:<br>Quality Manager |
| Filename:<br>0Y1104120700-R2.A3L | Test Dates:<br>04/14/11 - 05/18/11                                                  | EUT Type:<br>850/1900 GPRS/EDGE/WCDMA/HSPA Tablet with Bluetooth and WLAN |  |  |                                                                                       | Page 27 of 53                   |

## 11.4 RF Conducted Powers

### 11.4.1 GSM Conducted Powers

**Table 11-1**  
**Maximum GSM Powers**

|          |         | Burst - Averaged Power  |                         |                         |                         |                         |                         |                         |                         |
|----------|---------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|
|          |         | GPRS/EDGE Data (GMSK)   |                         |                         |                         | EDGE Data (8PSK)        |                         |                         |                         |
| Band     | Channel | GPRS [dBm]<br>1 Tx Slot | GPRS [dBm]<br>2 Tx Slot | GPRS [dBm]<br>3 Tx Slot | GPRS [dBm]<br>4 Tx Slot | EDGE [dBm]<br>1 Tx Slot | EDGE [dBm]<br>2 Tx Slot | EDGE [dBm]<br>3 Tx Slot | EDGE [dBm]<br>4 Tx Slot |
| Cellular | 128     | 32.48                   | 29.58                   | 27.45                   | 26.67                   | 26.48                   | 25.38                   | 24.43                   | 23.49                   |
|          | 190     | 32.49                   | 29.57                   | 27.49                   | 26.69                   | 26.51                   | 25.40                   | 24.46                   | 23.52                   |
|          | 251     | 32.50                   | 29.60                   | 27.47                   | 26.74                   | 26.53                   | 25.49                   | 24.48                   | 23.53                   |
| PCS      | 512     | 28.65                   | 25.85                   | 23.77                   | 23.06                   | 25.77                   | 24.90                   | 23.00                   | 22.03                   |
|          | 661     | 28.51                   | 25.73                   | 23.79                   | 23.00                   | 25.67                   | 24.85                   | 22.87                   | 21.87                   |
|          | 810     | 28.33                   | 25.88                   | 23.60                   | 22.81                   | 25.59                   | 24.63                   | 22.76                   | 21.80                   |

|          |         | Calculated Frame-Averaged Output Power |                         |                         |                         |                         |                         |                         |                         |
|----------|---------|----------------------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|
|          |         | GPRS/EDGE Data (GMSK)                  |                         |                         |                         | EDGE Data (8PSK)        |                         |                         |                         |
| Band     | Channel | GPRS [dBm]<br>1 Tx Slot                | GPRS [dBm]<br>2 Tx Slot | GPRS [dBm]<br>3 Tx Slot | GPRS [dBm]<br>4 Tx Slot | EDGE [dBm]<br>1 Tx Slot | EDGE [dBm]<br>2 Tx Slot | EDGE [dBm]<br>3 Tx Slot | EDGE [dBm]<br>4 Tx Slot |
| Cellular | 128     | 23.45                                  | 23.56                   | 23.19                   | 23.66                   | 17.45                   | 19.36                   | 20.17                   | 20.48                   |
|          | 190     | 23.46                                  | 23.55                   | 23.23                   | 23.68                   | 17.48                   | 19.38                   | 20.20                   | 20.51                   |
|          | 251     | 23.47                                  | 23.58                   | 23.21                   | 23.73                   | 17.50                   | 19.47                   | 20.22                   | 20.52                   |
| PCS      | 512     | 19.62                                  | 19.83                   | 19.51                   | 20.05                   | 16.74                   | 18.88                   | 18.74                   | 19.02                   |
|          | 661     | 19.48                                  | 19.71                   | 19.53                   | 19.99                   | 16.64                   | 18.83                   | 18.61                   | 18.86                   |
|          | 810     | 19.30                                  | 19.86                   | 19.34                   | 19.80                   | 16.56                   | 18.61                   | 18.50                   | 18.79                   |

|                                  |                                                                                     |                                                                           |  |  |  |                                                                                       |                                 |
|----------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--|--|--|---------------------------------------------------------------------------------------|---------------------------------|
| FCC ID: A3LGTP7500               |  | SAR COMPLIANCE REPORT                                                     |  |  |  |  | Reviewed by:<br>Quality Manager |
| Filename:<br>0Y1104120700-R2.A3L | Test Dates:<br>04/14/11 - 05/18/11                                                  | EUT Type:<br>850/1900 GPRS/EDGE/WCDMA/HSPA Tablet with Bluetooth and WLAN |  |  |  |                                                                                       | Page 28 of 53                   |

**Table 11-2**  
**Reduced GSM Powers**

|          |         | Burst-Averaged Output Power |                         |                         |                         |                         |                         |                         |                         |  |
|----------|---------|-----------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|--|
|          |         | GPRS/EDGE Data (GMSK)       |                         |                         |                         |                         | EDGE Data (8PSK)        |                         |                         |  |
| Band     | Channel | GPRS [dBm]<br>1 Tx Slot     | GPRS [dBm]<br>2 Tx Slot | GPRS [dBm]<br>3 Tx Slot | GPRS [dBm]<br>4 Tx Slot | EDGE [dBm]<br>1 Tx Slot | EDGE [dBm]<br>2 Tx Slot | EDGE [dBm]<br>3 Tx Slot | EDGE [dBm]<br>4 Tx Slot |  |
| Cellular | 128     | 26.42                       | <b>23.40</b>            | 21.39                   | <b>20.60</b>            | 20.57                   | 19.52                   | 18.61                   | 17.66                   |  |
|          | 190     | 26.43                       | <b>23.42</b>            | 21.41                   | <b>20.62</b>            | 20.61                   | 19.61                   | 18.67                   | 17.71                   |  |
|          | 251     | 26.47                       | <b>23.48</b>            | 21.43                   | <b>20.66</b>            | 20.72                   | 19.63                   | 18.72                   | 17.76                   |  |
| PCS      | 512     | 24.64                       | 21.67                   | 19.83                   | <b>19.03</b>            | 21.84                   | 20.81                   | 18.77                   | 17.78                   |  |
|          | 661     | 24.52                       | 21.61                   | 19.75                   | <b>18.88</b>            | 21.70                   | 20.69                   | 18.63                   | 17.64                   |  |
|          | 810     | 24.35                       | 21.66                   | 19.60                   | <b>18.81</b>            | 21.56                   | 20.59                   | 18.57                   | 17.56                   |  |

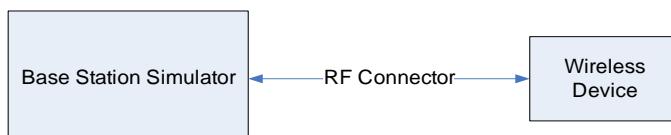
|          |         | Calculated Frame-Averaged Output Power |                         |                         |                         |                         |                         |                         |                         |  |
|----------|---------|----------------------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|--|
|          |         | GPRS/EDGE Data(GMSK)                   |                         |                         |                         |                         | EDGE Data (8PSK)        |                         |                         |  |
| Band     | Channel | GPRS [dBm]<br>1 Tx Slot                | GPRS [dBm]<br>2 Tx Slot | GPRS [dBm]<br>3 Tx Slot | GPRS [dBm]<br>4 Tx Slot | EDGE [dBm]<br>1 Tx Slot | EDGE [dBm]<br>2 Tx Slot | EDGE [dBm]<br>3 Tx Slot | EDGE [dBm]<br>4 Tx Slot |  |
| Cellular | 128     | 17.39                                  | <b>17.38</b>            | 17.13                   | <b>17.59</b>            | 11.54                   | 13.50                   | 14.35                   | 14.65                   |  |
|          | 190     | 17.40                                  | <b>17.40</b>            | 17.15                   | <b>17.61</b>            | 11.58                   | 13.59                   | 14.41                   | 14.70                   |  |
|          | 251     | 17.44                                  | <b>17.46</b>            | 17.17                   | <b>17.65</b>            | 11.69                   | 13.61                   | 14.46                   | 14.75                   |  |
| PCS      | 512     | 15.61                                  | 15.65                   | 15.57                   | <b>16.02</b>            | 12.81                   | 14.79                   | 14.51                   | 14.77                   |  |
|          | 661     | 15.49                                  | 15.59                   | 15.49                   | <b>15.87</b>            | 12.67                   | 14.67                   | 14.37                   | 14.63                   |  |
|          | 810     | 15.32                                  | 15.64                   | 15.34                   | <b>15.80</b>            | 12.53                   | 14.57                   | 14.31                   | 14.55                   |  |

Note: Frame-averaged power was calculated from the measured burst-averaged power. The bolded GPRS/EDGE modes were selected for SAR testing according to the highest frame-averaged output power table per KDB Publication 941225 D03.

**GSM Class:** C (Data Only)  
**GPRS Multislot class:** 12 (max 4 Tx Uplink slots)  
**EDGE Multislot class:** 12 (max 4Tx Uplink slots)  
**DTM Multislot Class:** N/A

|                                  |                                                                                     |                                                                           |  |  |  |                                                                                       |                                 |
|----------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--|--|--|---------------------------------------------------------------------------------------|---------------------------------|
| FCC ID: A3LGTP7500               |  | SAR COMPLIANCE REPORT                                                     |  |  |  |  | Reviewed by:<br>Quality Manager |
| Filename:<br>0Y1104120700-R2.A3L | Test Dates:<br>04/14/11 - 05/18/11                                                  | EUT Type:<br>850/1900 GPRS/EDGE/WCDMA/HSPA Tablet with Bluetooth and WLAN |  |  |  |                                                                                       | Page 29 of 53                   |

## 11.4.2 HSPA Conducted Powers


**Table 11-3**  
**Maximum WCDMA Powers**

| 3GPP Release Version | Mode  | 3GPP 34.121 Subtest | Cellular Band [dBm] |       |       | PCS Band [dBm] |       |       | $\beta_c$ | $\beta_d$ | 3GPP Recommended MPR (dB) |
|----------------------|-------|---------------------|---------------------|-------|-------|----------------|-------|-------|-----------|-----------|---------------------------|
|                      |       |                     | 4132                | 4183  | 4233  | 9262           | 9400  | 9538  |           |           |                           |
| 99                   | WCDMA | 12.2 kbps RMC       | 22.88               | 22.62 | 22.40 | 21.17          | 20.63 | 20.79 | -         | -         | -                         |
| 6                    | HSDPA | Subtest 1           | 22.21               | 21.91 | 21.76 | 19.99          | 19.54 | 19.66 | 2         | 15        | 0                         |
| 6                    |       | Subtest 2           | 22.22               | 21.94 | 21.78 | 20.02          | 19.56 | 19.75 | 11        | 15        | 0                         |
| 6                    |       | Subtest 3           | 22.26               | 21.96 | 21.80 | 20.06          | 19.57 | 19.77 | 15        | 8         | 0.5                       |
| 6                    |       | Subtest 4           | 22.21               | 21.92 | 21.76 | 20.03          | 19.56 | 19.72 | 15        | 4         | 0.5                       |
| 6                    |       | Subtest 1           | 21.69               | 21.48 | 21.08 | 18.66          | 18.34 | 18.12 | 10        | 15        | 0                         |
| 6                    | HSUPA | Subtest 2           | 20.16               | 19.95 | 19.55 | 16.56          | 16.24 | 16.00 | 6         | 15        | 2                         |
| 6                    |       | Subtest 3           | 21.01               | 20.80 | 20.39 | 17.32          | 17.34 | 16.72 | 15        | 9         | 1                         |
| 6                    |       | Subtest 4           | 20.55               | 20.14 | 19.77 | 16.84          | 16.44 | 16.17 | 2         | 15        | 2                         |
| 6                    |       | Subtest 5           | 22.19               | 21.66 | 21.51 | 19.79          | 19.30 | 19.54 | 14        | 15        | 0                         |

**Table 11-4**  
**Reduced WCDMA Powers**

| 3GPP Release Version | Mode  | 3GPP 34.121 Subtest | Cellular Band [dBm] |       |       | PCS Band [dBm] |       |       | $\beta_c$ | $\beta_d$ | 3GPP Recommended MPR (dB) |
|----------------------|-------|---------------------|---------------------|-------|-------|----------------|-------|-------|-----------|-----------|---------------------------|
|                      |       |                     | 4132                | 4183  | 4233  | 9262           | 9400  | 9538  |           |           |                           |
| 99                   | WCDMA | 12.2 kbps RMC       | 16.60               | 16.51 | 16.38 | 15.46          | 14.95 | 15.19 | -         | -         | -                         |
| 6                    | HSDPA | Subtest 1           | 15.82               | 15.70 | 15.62 | 14.76          | 14.26 | 14.51 | 2         | 15        | 0                         |
| 6                    |       | Subtest 2           | 15.78               | 15.70 | 15.65 | 14.76          | 14.28 | 14.54 | 11        | 15        | 0                         |
| 6                    |       | Subtest 3           | 15.79               | 15.69 | 15.62 | 14.75          | 14.30 | 14.53 | 15        | 8         | 0.5                       |
| 6                    |       | Subtest 4           | 15.77               | 15.68 | 15.60 | 14.64          | 14.21 | 14.48 | 15        | 4         | 0.5                       |
| 6                    |       | Subtest 1           | 16.31               | 16.23 | 16.11 | 15.21          | 14.71 | 15.00 | 10        | 15        | 0                         |
| 6                    | HSUPA | Subtest 2           | 14.26               | 14.19 | 14.07 | 13.52          | 13.74 | 13.55 | 6         | 15        | 2                         |
| 6                    |       | Subtest 3           | 15.27               | 15.21 | 15.11 | 14.03          | 13.53 | 13.81 | 15        | 9         | 1                         |
| 6                    |       | Subtest 4           | 14.81               | 14.68 | 14.59 | 15.44          | 14.97 | 13.55 | 2         | 15        | 2                         |
| 6                    |       | Subtest 5           | 15.78               | 15.70 | 15.64 | 14.53          | 14.05 | 14.27 | 14        | 15        | 0                         |

MPR is not required when the sensor is active since the power is lower than the maximum output power. Behavior in HSUPA subtests are acceptable by the applicant's operation with the chipset and sensor operation. Detailed information about the MPR implemented by the applicant is included in the operational description explaining how the MPR is applied for this model.



**Figure 11-1**  
**Power Measurement Setup**

## 11.5 Summary of Power Reduction due to Proximity Sensor

| Mode      | Level of Power |
|-----------|----------------|
| GPRS 850  | 6              |
| GPRS 1900 | 4              |
| UMTS V    | 6              |
| UMTS II   | 6              |

Note: There is no proximity sensor power reduction for WLAN modes.

|                                  |                                    |                                                                           |  |  |  |                                 |
|----------------------------------|------------------------------------|---------------------------------------------------------------------------|--|--|--|---------------------------------|
| FCC ID: A3LGTP7500               |                                    | SAR COMPLIANCE REPORT                                                     |  |  |  | Reviewed by:<br>Quality Manager |
| Filename:<br>0Y1104120700-R2.A3L | Test Dates:<br>04/14/11 - 05/18/11 | EUT Type:<br>850/1900 GPRS/EDGE/WCDMA/HSPA Tablet with Bluetooth and WLAN |  |  |  | Page 30 of 53                   |

Normal network operating configurations are not suitable for measuring the SAR of 802.11 a/b/g transmitters. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure the results are consistent and reliable.

## 12.1 General Device Setup

Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters. The test frequencies should correspond to actual channel frequencies defined for domestic use. SAR for devices with switched diversity should be measured with only one antenna transmitting at a time during each SAR measurement, according to a fixed modulation and data rate. The same data pattern should be used for all measurements.

## 12.2 Frequency Channel Configurations [27]

802.11 a/b/g and 4.9 GHz operating modes are tested independently according to the service requirements in each frequency band. 802.11 b/g modes are tested on channels 1, 6 and 11. 802.11a is tested for UNII operations on channels 36 and 48 in the 5.15-5.25 GHz band; channels 52 and 64 in the 5.25-5.35 GHz band; channels 104, 116, 124 and 136 in the 5.470-5.725 GHz band; and channels 149 and 161 in the 5.8 GHz band. When 5.8 GHz §15.247 is also available, channels 149, 157 and 165 should be tested instead of the UNII channels. 4.9 GHz is tested on channels 1, 10 and 5 or 6, whichever has the higher output power, for 5 MHz channels; channels 11, 15 and 19 for 10 MHz channels; and channels 21 and 25 for 20 MHz channels. These are referred to as the “default test channels”. 802.11g mode was evaluated only if the output power was 0.25 dB higher than the 802.11b mode.

**Table 12-1**  
**802.11 Test Channels per FCC Requirements**

| Mode            | GHz     | Channel | Turbo Channel | "Default Test Channels" |         |      |
|-----------------|---------|---------|---------------|-------------------------|---------|------|
|                 |         |         |               | §15.247                 |         | UNII |
|                 |         |         |               | 802.11b                 | 802.11g |      |
| 802.11 b/g      | 2.412   | 1       |               | ✓                       | ✗       |      |
|                 | 2.437   | 6       | 6             | ✓                       | ✗       |      |
|                 | 2.462   | 11      |               | ✓                       | ✗       |      |
|                 | 5.18    | 36      |               |                         |         | ✓    |
|                 | 5.20    | 40      | 42 (5.21 GHz) |                         |         | *    |
|                 | 5.22    | 44      |               |                         |         | *    |
|                 | 5.24    | 48      |               |                         |         | ✓    |
|                 | 5.26    | 52      |               |                         | ✓       |      |
|                 | 5.28    | 56      |               |                         |         | *    |
|                 | 5.30    | 60      |               |                         |         | *    |
| 802.11a         | 5.32    | 64      |               |                         | ✓       |      |
|                 | 5.500   | 100     |               |                         |         | *    |
|                 | 5.520   | 104     |               |                         | ✓       |      |
|                 | 5.540   | 108     |               |                         |         | *    |
|                 | 5.560   | 112     |               |                         |         | *    |
|                 | 5.580   | 116     |               |                         | ✓       |      |
|                 | 5.600   | 120     |               |                         |         | *    |
|                 | 5.620   | 124     |               |                         | ✓       |      |
|                 | 5.640   | 128     |               |                         |         | *    |
|                 | 5.660   | 132     |               |                         |         | *    |
|                 | 5.680   | 136     |               |                         | ✓       |      |
|                 | 5.700   | 140     |               |                         |         | *    |
|                 | 5.745   | 149     |               | ✓                       |         | ✓    |
|                 | 5.765   | 153     |               |                         | *       | *    |
| UNII or §15.247 | 5.785   | 157     |               | ✓                       |         | *    |
|                 | 5.805   | 161     |               |                         | *       | ✓    |
|                 | §15.247 | 5.825   |               | ✓                       |         |      |
|                 | 165     |         |               |                         |         |      |

|                                  |                                                                                     |                                                                           |  |  |                                                                                       |                                 |
|----------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--|--|---------------------------------------------------------------------------------------|---------------------------------|
| FCC ID: A3LGTP7500               |  | SAR COMPLIANCE REPORT                                                     |  |  |  | Reviewed by:<br>Quality Manager |
| Filename:<br>0Y1104120700-R2.A3L | Test Dates:<br>04/14/11 - 05/18/11                                                  | EUT Type:<br>850/1900 GPRS/EDGE/WCDMA/HSPA Tablet with Bluetooth and WLAN |  |  |                                                                                       | Page 31 of 53                   |

**Table 12-2**  
**IEEE 802.11b Average RF Power**

| Mode    | Freq<br>[MHz] | Channel | Conducted Power [dBm] |       |       |       |
|---------|---------------|---------|-----------------------|-------|-------|-------|
|         |               |         | 1                     | 2     | 5.5   | 11    |
| 802.11b | 2412          | 1       | 12.78                 | 12.83 | 12.73 | 12.76 |
| 802.11b | 2437          | 6       | 13.24                 | 13.20 | 13.11 | 13.15 |
| 802.11b | 2462          | 11      | 13.44                 | 13.38 | 13.47 | 13.41 |

**Table 12-3**  
**IEEE 802.11g Average RF Power**

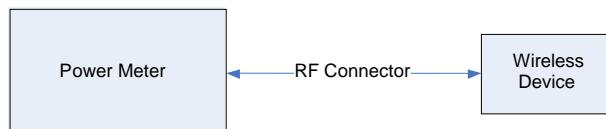
| Mode    | Freq<br>[MHz] | Channel | Conducted Power [dBm] |       |       |       |       |       |       |       |  |
|---------|---------------|---------|-----------------------|-------|-------|-------|-------|-------|-------|-------|--|
|         |               |         | 6                     | 9     | 12    | 18    | 24    | 36    | 48    | 54    |  |
| 802.11g | 2412          | 1       | 13.28                 | 13.26 | 13.25 | 13.36 | 13.24 | 13.22 | 13.21 | 13.23 |  |
| 802.11g | 2437          | 6       | 13.57                 | 13.60 | 13.58 | 13.60 | 13.56 | 13.48 | 13.57 | 13.58 |  |
| 802.11g | 2462          | 11      | 13.86                 | 13.86 | 13.80 | 13.87 | 13.82 | 13.75 | 13.83 | 13.85 |  |

**Table 12-4**  
**IEEE 802.11n Average RF Power**

| Mode    | Freq<br>[MHz] | Channel | Conducted Power [dBm] |       |       |       |       |       |       |       |  |
|---------|---------------|---------|-----------------------|-------|-------|-------|-------|-------|-------|-------|--|
|         |               |         | 6.5                   | 13    | 20    | 26    | 39    | 52    | 58    | 65    |  |
| 802.11n | 2412          | 1       | 12.20                 | 12.06 | 12.05 | 12.07 | 12.14 | 12.04 | 12.04 | 12.11 |  |
| 802.11n | 2437          | 6       | 12.54                 | 12.33 | 12.46 | 12.44 | 12.53 | 12.36 | 12.39 | 12.32 |  |
| 802.11n | 2462          | 11      | 12.76                 | 12.65 | 12.68 | 12.65 | 12.68 | 12.74 | 12.70 | 12.72 |  |

**Table 12-5**  
**IEEE 802.11a Average RF Power**

| Mode    | Freq<br>[MHz] | Channel | Conducted Power [dBm] |       |       |       |       |       |       |       |  |
|---------|---------------|---------|-----------------------|-------|-------|-------|-------|-------|-------|-------|--|
|         |               |         | 6                     | 9     | 12    | 18    | 24    | 36    | 48    | 54    |  |
| 802.11a | 5180          | 36      | 12.25                 | 12.22 | 12.16 | 12.35 | 12.27 | 12.22 | 12.30 | 12.25 |  |
| 802.11a | 5200          | 40      | 12.15                 | 12.12 | 12.21 | 12.45 | 12.40 | 12.40 | 12.38 | 12.41 |  |
| 802.11a | 5220          | 44      | 12.26                 | 12.32 | 12.30 | 12.44 | 12.45 | 12.41 | 12.50 | 12.49 |  |
| 802.11a | 5240          | 48      | 12.40                 | 12.30 | 12.31 | 12.41 | 12.37 | 12.38 | 12.45 | 12.48 |  |
| 802.11a | 5260          | 52      | 12.30                 | 12.35 | 12.31 | 12.35 | 12.32 | 12.28 | 12.45 | 12.41 |  |
| 802.11a | 5280          | 56      | 12.30                 | 12.27 | 12.24 | 12.25 | 12.40 | 12.34 | 12.41 | 12.29 |  |
| 802.11a | 5300          | 60      | 12.20                 | 12.22 | 12.21 | 12.28 | 12.31 | 12.24 | 12.37 | 12.31 |  |
| 802.11a | 5320          | 64      | 12.09                 | 12.15 | 12.20 | 12.20 | 12.30 | 12.31 | 12.31 | 12.22 |  |
| 802.11a | 5500          | 100     | 12.91                 | 12.98 | 12.85 | 12.92 | 13.00 | 12.97 | 13.10 | 13.03 |  |
| 802.11a | 5520          | 104     | 12.84                 | 12.91 | 13.00 | 12.87 | 12.81 | 12.90 | 12.91 | 12.97 |  |
| 802.11a | 5540          | 108     | 12.73                 | 12.88 | 12.79 | 12.91 | 12.81 | 12.80 | 12.91 | 12.72 |  |
| 802.11a | 5560          | 112     | 12.40                 | 12.42 | 12.31 | 12.45 | 12.40 | 12.47 | 12.51 | 12.52 |  |
| 802.11a | 5580          | 116     | 12.25                 | 12.26 | 12.22 | 12.32 | 12.33 | 12.40 | 12.51 | 12.19 |  |
| 802.11a | 5600          | 120     | 11.90                 | 11.90 | 11.83 | 11.91 | 11.85 | 11.85 | 11.82 | 11.90 |  |
| 802.11a | 5620          | 124     | 11.78                 | 11.90 | 11.82 | 11.90 | 11.83 | 11.91 | 11.80 | 11.80 |  |
| 802.11a | 5640          | 128     | 11.82                 | 12.02 | 11.98 | 11.96 | 12.00 | 12.00 | 11.99 | 12.10 |  |
| 802.11a | 5660          | 132     | 12.00                 | 12.05 | 12.11 | 12.15 | 12.10 | 12.05 | 12.07 | 12.11 |  |
| 802.11a | 5680          | 136     | 12.05                 | 12.15 | 12.27 | 12.18 | 12.12 | 12.09 | 12.22 | 12.18 |  |
| 802.11a | 5700          | 140     | 12.20                 | 12.21 | 12.15 | 12.28 | 12.20 | 12.31 | 12.35 | 12.30 |  |
| 802.11a | 5745          | 149     | 12.60                 | 12.55 | 12.59 | 12.63 | 12.57 | 12.60 | 12.65 | 12.67 |  |
| 802.11a | 5765          | 153     | 12.68                 | 12.66 | 12.68 | 12.72 | 12.67 | 12.77 | 12.70 | 12.69 |  |
| 802.11a | 5785          | 157     | 12.79                 | 12.76 | 12.80 | 12.83 | 12.85 | 12.83 | 12.92 | 12.94 |  |
| 802.11a | 5805          | 161     | 12.84                 | 12.93 | 12.86 | 12.95 | 12.94 | 12.89 | 12.95 | 12.94 |  |
| 802.11a | 5825          | 165     | 12.72                 | 12.63 | 12.61 | 12.63 | 12.56 | 12.64 | 12.66 | 12.71 |  |


|                                  |                                                                                     |                                                                           |                                                                                       |                                 |
|----------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------|
| FCC ID: A3LGTP7500               |  | SAR COMPLIANCE REPORT                                                     |  | Reviewed by:<br>Quality Manager |
| Filename:<br>0Y1104120700-R2.A3L | Test Dates:<br>04/14/11 - 05/18/11                                                  | EUT Type:<br>850/1900 GPRS/EDGE/WCDMA/HSPA Tablet with Bluetooth and WLAN |                                                                                       | Page 32 of 53                   |

**Table 12-6**  
**IEEE 802.11n Average RF Power**

| Mode    | Freq<br>[MHz] | Channel    | Conducted Power [dBm] |       |       |       |       |       |       |       |
|---------|---------------|------------|-----------------------|-------|-------|-------|-------|-------|-------|-------|
|         |               |            | Data Rate [Mbps]      |       |       |       |       |       |       |       |
|         |               |            | 6.5                   | 13    | 20    | 26    | 39    | 52    | 58    | 65    |
| 802.11n | <b>5180</b>   | <b>36</b>  | 12.01                 | 12.02 | 12.11 | 12.25 | 12.26 | 12.30 | 12.27 | 12.16 |
| 802.11n | 5200          | 40         | 12.05                 | 11.96 | 12.10 | 12.21 | 12.20 | 12.04 | 12.15 | 12.20 |
| 802.11n | 5220          | 44         | 11.96                 | 11.84 | 11.96 | 12.04 | 11.94 | 12.11 | 12.06 | 12.06 |
| 802.11n | <b>5240</b>   | <b>48</b>  | 11.80                 | 11.85 | 11.90 | 11.88 | 11.95 | 11.93 | 12.02 | 12.00 |
| 802.11n | <b>5260</b>   | <b>52</b>  | 11.70                 | 11.75 | 11.80 | 11.83 | 11.91 | 11.74 | 11.87 | 11.80 |
| 802.11n | 5280          | 56         | 11.55                 | 11.61 | 11.73 | 11.65 | 11.81 | 11.77 | 11.72 | 11.77 |
| 802.11n | 5300          | 60         | 11.50                 | 11.51 | 11.65 | 11.53 | 11.60 | 11.68 | 11.72 | 11.75 |
| 802.11n | <b>5320</b>   | <b>64</b>  | 11.30                 | 11.31 | 11.40 | 11.40 | 11.55 | 11.57 | 11.45 | 11.42 |
| 802.11n | 5500          | 100        | 12.15                 | 12.22 | 12.28 | 12.33 | 12.24 | 12.25 | 12.39 | 12.35 |
| 802.11n | <b>5520</b>   | <b>104</b> | 12.22                 | 12.15 | 12.40 | 12.38 | 12.34 | 12.40 | 12.37 | 12.42 |
| 802.11n | 5540          | 108        | 12.11                 | 12.01 | 12.20 | 12.25 | 12.35 | 12.26 | 12.23 | 12.31 |
| 802.11n | 5560          | 112        | 12.10                 | 11.98 | 12.20 | 12.25 | 12.27 | 12.16 | 12.30 | 12.22 |
| 802.11n | <b>5580</b>   | <b>116</b> | 12.00                 | 11.99 | 12.22 | 12.23 | 12.14 | 12.10 | 12.25 | 12.32 |
| 802.11n | 5600          | 120        | 12.04                 | 12.12 | 12.21 | 12.12 | 12.20 | 12.32 | 12.29 | 12.24 |
| 802.11n | <b>5620</b>   | <b>124</b> | 12.12                 | 12.00 | 12.17 | 12.14 | 12.31 | 12.26 | 12.25 | 12.24 |
| 802.11n | 5640          | 128        | 12.26                 | 12.20 | 12.32 | 12.45 | 12.38 | 12.48 | 12.50 | 12.32 |
| 802.11n | 5660          | 132        | 12.30                 | 12.28 | 12.40 | 12.45 | 12.51 | 12.45 | 12.50 | 12.64 |
| 802.11n | <b>5680</b>   | <b>136</b> | 12.39                 | 12.41 | 12.55 | 12.56 | 12.54 | 12.60 | 12.70 | 12.72 |
| 802.11n | 5700          | 140        | 12.50                 | 12.40 | 12.67 | 12.73 | 12.70 | 12.61 | 12.78 | 12.59 |
| 802.11n | <b>5745</b>   | <b>149</b> | 12.61                 | 12.45 | 12.65 | 12.60 | 12.70 | 12.60 | 12.71 | 12.75 |
| 802.11n | 5765          | 153        | 12.60                 | 12.60 | 12.72 | 12.75 | 12.72 | 12.66 | 12.68 | 12.80 |
| 802.11n | <b>5785</b>   | <b>157</b> | 12.65                 | 12.67 | 12.80 | 12.81 | 12.70 | 12.81 | 12.87 | 12.98 |
| 802.11n | <b>5805</b>   | <b>161</b> | 12.79                 | 12.70 | 12.80 | 12.88 | 12.88 | 12.89 | 12.88 | 12.86 |
| 802.11n | 5825          | 165        | 12.44                 | 12.14 | 12.13 | 12.32 | 12.23 | 12.36 | 12.41 | 12.43 |

Notes:

1. The maximum RF output power for all channels across all data rates was measured.
2. Per KDB 248227 Publication, for 5 GHZ bands with 1g SAR < 0.8 W/kg, the highest default channel per 5 GHz band across the lowest data rates were evaluated for SAR.
3. Justification for reduced test configurations for WIFI channels per KDB Publication 248227 and April 2010 FCC/TCB Meeting Notes: IEEE 802.11n for 5GHz bands and IEEE 802.11g/n for 2.4 GHz Bands and higher data rates for both bands were not investigated since the average output powers were not greater than 0.25 dB that of the corresponding channel in the lowest data rate. Bolded powers in Section 12.2 were tested for SAR.
4. WIFI has no power back-off capability in this device.



**Figure 12-1**  
**Power Measurement Setup**

|                                  |                                    |                                                                           |  |  |  |                                 |
|----------------------------------|------------------------------------|---------------------------------------------------------------------------|--|--|--|---------------------------------|
| FCC ID: A3LGTP7500               |                                    | SAR COMPLIANCE REPORT                                                     |  |  |  | Reviewed by:<br>Quality Manager |
| Filename:<br>0Y1104120700-R2.A3L | Test Dates:<br>04/14/11 - 05/18/11 | EUT Type:<br>850/1900 GPRS/EDGE/WCDMA/HSPA Tablet with Bluetooth and WLAN |  |  |  | Page 33 of 53                   |

## 13 SYSTEM VERIFICATION

### 13.1 Tissue Verification

Table 13-1  
Measured Tissue Properties

| Calibrated for Tests Performed on: | Tissue Type | Measured Frequency (MHz) | Measured Conductivity, $\sigma$ (S/m) | Measured Dielectric Constant, $\epsilon$ | TARGET Conductivity, $\sigma$ (S/m) | TARGET Dielectric Constant, $\epsilon$ | % dev $\sigma$ | % dev $\epsilon$ |
|------------------------------------|-------------|--------------------------|---------------------------------------|------------------------------------------|-------------------------------------|----------------------------------------|----------------|------------------|
| 04/20/2011                         | 835B        | 820                      | 0.953                                 | 53.35                                    | 0.969                               | 55.284                                 | -1.65%         | -3.50%           |
|                                    |             | 835                      | 0.965                                 | 53.27                                    | 0.970                               | 55.200                                 | -0.52%         | -3.50%           |
|                                    |             | 850                      | 0.974                                 | 53.05                                    | 0.988                               | 55.154                                 | -1.42%         | -3.81%           |
| 04/25/2011                         | 835B        | 820                      | 0.924                                 | 52.55                                    | 0.969                               | 55.284                                 | -4.64%         | -4.95%           |
|                                    |             | 835                      | 0.933                                 | 52.46                                    | 0.970                               | 55.200                                 | -3.81%         | -4.96%           |
|                                    |             | 850                      | 0.967                                 | 52.55                                    | 0.988                               | 55.154                                 | -2.13%         | -4.72%           |
| 04/25/2011                         | 1900B       | 1850                     | 1.482                                 | 52.83                                    | 1.520                               | 53.300                                 | -2.50%         | -0.88%           |
|                                    |             | 1880                     | 1.503                                 | 52.76                                    | 1.520                               | 53.300                                 | -1.12%         | -1.01%           |
|                                    |             | 1910                     | 1.547                                 | 52.52                                    | 1.520                               | 53.300                                 | 1.78%          | -1.46%           |
| 05/18/2011                         | 1900B       | 1850                     | 1.445                                 | 51.24                                    | 1.520                               | 53.300                                 | -4.93%         | -3.86%           |
|                                    |             | 1880                     | 1.446                                 | 50.94                                    | 1.520                               | 53.300                                 | -4.87%         | -4.43%           |
|                                    |             | 1910                     | 1.516                                 | 50.78                                    | 1.520                               | 53.300                                 | -0.26%         | -4.73%           |
| 04/18/2011                         | 2450B       | 2401                     | 1.955                                 | 50.98                                    | 1.903                               | 52.765                                 | 2.73%          | -3.38%           |
|                                    |             | 2450                     | 2.009                                 | 50.91                                    | 1.950                               | 52.700                                 | 3.03%          | -3.40%           |
|                                    |             | 2499                     | 2.064                                 | 50.50                                    | 2.019                               | 52.638                                 | 2.23%          | -4.06%           |
| 04/14/2011                         | 5200B-5800B | 5170                     | 5.303                                 | 47.44                                    | 5.264                               | 49.055                                 | 0.74%          | -3.29%           |
|                                    |             | 5210                     | 5.400                                 | 47.63                                    | 5.311                               | 49.001                                 | 1.68%          | -2.80%           |
|                                    |             | 5250                     | 5.386                                 | 47.52                                    | 5.358                               | 48.946                                 | 0.52%          | -2.91%           |
|                                    |             | 5270                     | 5.482                                 | 47.29                                    | 5.381                               | 48.919                                 | 1.88%          | -3.33%           |
|                                    |             | 5310                     | 5.555                                 | 47.39                                    | 5.428                               | 48.865                                 | 2.34%          | -3.02%           |
|                                    |             | 5350                     | 5.562                                 | 47.38                                    | 5.470                               | 48.811                                 | 1.68%          | -2.93%           |
|                                    |             | 5470                     | 5.827                                 | 46.91                                    | 5.615                               | 48.648                                 | 3.78%          | -3.57%           |
|                                    |             | 5510                     | 5.817                                 | 46.77                                    | 5.661                               | 48.594                                 | 2.76%          | -3.75%           |
|                                    |             | 5550                     | 5.937                                 | 46.68                                    | 5.708                               | 48.539                                 | 4.01%          | -3.83%           |
|                                    |             | 5570                     | 5.883                                 | 46.70                                    | 5.731                               | 48.512                                 | 2.65%          | -3.74%           |
|                                    |             | 5610                     | 6.023                                 | 46.39                                    | 5.778                               | 48.458                                 | 4.24%          | -4.27%           |
|                                    |             | 5650                     | 6.052                                 | 46.47                                    | 5.825                               | 48.404                                 | 3.90%          | -4.00%           |
|                                    |             | 5670                     | 6.047                                 | 46.54                                    | 5.848                               | 48.376                                 | 3.40%          | -3.80%           |
|                                    |             | 5710                     | 6.101                                 | 46.04                                    | 5.895                               | 48.322                                 | 3.49%          | -4.72%           |
|                                    |             | 5750                     | 6.234                                 | 46.25                                    | 5.942                               | 48.268                                 | 4.91%          | -4.18%           |
|                                    |             | 5770                     | 6.194                                 | 46.13                                    | 5.965                               | 48.241                                 | 3.84%          | -4.38%           |
|                                    |             | 5810                     | 6.271                                 | 45.88                                    | 6.012                               | 48.186                                 | 4.31%          | -4.79%           |
|                                    |             | 5850                     | 6.345                                 | 45.79                                    | 6.058                               | 48.132                                 | 4.74%          | -4.87%           |

Note: KDB Publication 450824 was ensured to be applied for probe calibration frequencies greater than or equal to 50 MHz of the DUT frequencies.

The above measured tissue parameters were used in the DASY software to perform interpolation to determine actual dielectric parameters at the test frequencies (per IEEE 1528 6.6.1.2). The SAR test plots may slightly differ from the table above since the DASY software rounds to three significant digits.

Probe calibration used within  $\pm 100$  MHz of the test frequency in either 5.725 - 5.85 or 5.47-5.725 GHz is acceptable per KDB Publication 865664 since the design of the SAR probe supports the extended frequency, provided the DASY software version recommended is used for the tests, and the expanded calibration uncertainty ( $k=2$ ) is less than or equal to 15% (See SAR probe calibration certificate for this information). The dielectric and conductivities measured are within 10% and 5% respectively of the target parameters specified in Supplement C 01-01.

|                                  |                                                                                     |                                                                           |  |  |                                                                                       |                                 |
|----------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--|--|---------------------------------------------------------------------------------------|---------------------------------|
| FCC ID: A3LGTP7500               |  | SAR COMPLIANCE REPORT                                                     |  |  |  | Reviewed by:<br>Quality Manager |
| Filename:<br>0Y1104120700-R2.A3L | Test Dates:<br>04/14/11 - 05/18/11                                                  | EUT Type:<br>850/1900 GPRS/EDGE/WCDMA/HSPA Tablet with Bluetooth and WLAN |  |  |                                                                                       | Page 34 of 53                   |

## 13.2 Measurement Procedure for Tissue verification

- 1) The network analyzer and probe system was configured and calibrated.
- 2) The probe was immersed in the sample which was placed in a nonmetallic container. Trapped air bubbles beneath the flange were minimized by placing the probe at a slight angle.
- 3) The complex admittance with respect to the probe aperture was measured
- 4) The complex relative permittivity , for example from the below equation (Pournaropoulos and Misra):

$$Y = \frac{j2\omega\epsilon_r\epsilon_0}{[\ln(b/a)]^2} \int_a^b \int_a^b \int_0^\pi \cos\phi' \frac{\exp[-j\omega r(\mu_0\epsilon_r\epsilon_0)^{1/2}]}{r} d\phi' d\rho' d\rho$$

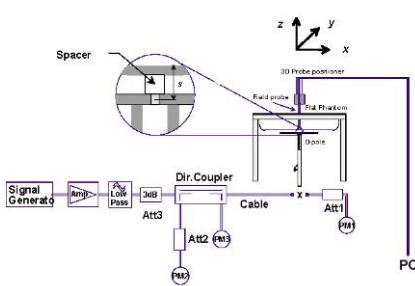
where  $Y$  is the admittance of the probe in contact with the sample, the primed and unprimed coordinates refer to source and observation points, respectively,  $r^2 = \rho^2 + \rho'^2 - 2\rho\rho'\cos\phi'$ ,  $\omega$  is the angular frequency, and  $j = \sqrt{-1}$ .

## 13.3 Justification for Extended SAR Dipole Calibrations

Usage of SAR dipoles calibrated less than 2 years ago but more than 1 year ago were confirmed in maintaining return loss (< -20 dB, within 20% of prior calibration) and impedance (within 5 ohm from prior calibration) requirements per extended calibrations in KDB Publication 450824:

| D2450V2 SN: 719     |                  |            |                        |                |                  |            |                        |                |  |
|---------------------|------------------|------------|------------------------|----------------|------------------|------------|------------------------|----------------|--|
|                     | Head             |            |                        |                | Body             |            |                        |                |  |
| Date of Measurement | Return Loss (dB) | $\Delta$ % | Impedance ( $\Omega$ ) | $\Delta\Omega$ | Return Loss (dB) | $\Delta$ % | Impedance ( $\Omega$ ) | $\Delta\Omega$ |  |
| 8/27/2009           | -28.6            |            | 53.4                   |                | -27.2            |            | 48.2                   | 0.0            |  |
| 3/2/2011            | -28.6            | 0.0%       | 52                     | -1.4           | -27.4            | 0.7%       | 49.9                   | 1.7            |  |

The above table represents RL and Impedance checks to ensure extended calibrations are still acceptable per KDB Publication 450824.


|                                  |                                                                                     |                                                                           |  |  |                                                                                       |                                 |
|----------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--|--|---------------------------------------------------------------------------------------|---------------------------------|
| FCC ID: A3LGTP7500               |  | SAR COMPLIANCE REPORT                                                     |  |  |  | Reviewed by:<br>Quality Manager |
| Filename:<br>0Y1104120700-R2.A3L | Test Dates:<br>04/14/11 - 05/18/11                                                  | EUT Type:<br>850/1900 GPRS/EDGE/WCDMA/HSPA Tablet with Bluetooth and WLAN |  |  |                                                                                       | Page 35 of 53                   |

## 13.4 Test System Verification

Prior to assessment, the system is verified to  $\pm 10\%$  of the manufacturer SAR measurement on the reference dipole at the time of calibration.

**Table 13-2**  
**System Verification Results**

| System Verification<br>TARGET & MEASURED |                |                  |                 |                        |           |             |                                   |                                     |                                         |               |
|------------------------------------------|----------------|------------------|-----------------|------------------------|-----------|-------------|-----------------------------------|-------------------------------------|-----------------------------------------|---------------|
| Date:                                    | Amb. Temp (°C) | Liquid Temp (°C) | Input Power (W) | Tissue Frequency (MHz) | Dipole SN | Tissue Type | Measured SAR <sub>1g</sub> (W/kg) | 1 W Target SAR <sub>1g</sub> (W/kg) | 1 W Normalized SAR <sub>1g</sub> (W/kg) | Deviation (%) |
| 04/20/2011                               | 24.2           | 22.5             | 0.063           | 835                    | 4d047     | Body        | 0.653                             | 9.850                               | 10.365                                  | 5.23%         |
| 04/25/2011                               | 23.8           | 22.6             | 0.063           | 835                    | 4d047     | Body        | 0.634                             | 9.850                               | 10.0635                                 | 2.17%         |
| 04/25/2011                               | 23.7           | 22.1             | 0.040           | 1900                   | 502       | Body        | 1.65                              | 41.100                              | 41.250                                  | 0.36%         |
| 04/18/2011                               | 24.1           | 23.0             | 0.0158          | 2450                   | 719       | Body        | 0.859                             | 51.400                              | 54.367                                  | 5.77%         |
| 04/14/2011                               | 24.4           | 22.8             | 0.025           | 5200                   | 1057      | Body        | 2.02                              | 77.700                              | 80.800                                  | 3.99%         |
| 04/14/2011                               | 24.6           | 22.7             | 0.025           | 5500                   | 1057      | Body        | 2.08                              | 84.400                              | 83.200                                  | -1.42%        |
| 04/14/2011                               | 24.5           | 22.8             | 0.025           | 5800                   | 1057      | Body        | 1.91                              | 75.000                              | 76.400                                  | 1.87%         |
| 05/18/2011                               | 24.1           | 22.5             | 0.040           | 1900                   | 502       | Body        | 1.6                               | 41.100                              | 40.000                                  | -2.68%        |



**Figure 13-1**  
**System Verification Setup Diagram**



**Figure 13-2**  
**System Verification Setup Photo**

|                                  |                                    |                                                                           |  |  |                                 |
|----------------------------------|------------------------------------|---------------------------------------------------------------------------|--|--|---------------------------------|
| FCC ID: A3LGTP7500               |                                    | SAR COMPLIANCE REPORT                                                     |  |  | Reviewed by:<br>Quality Manager |
| Filename:<br>0Y1104120700-R2.A3L | Test Dates:<br>04/14/11 - 05/18/11 | EUT Type:<br>850/1900 GPRS/EDGE/WCDMA/HSPA Tablet with Bluetooth and WLAN |  |  | Page 36 of 53                   |

## 14 SAR DATA SUMMARY

**Table 14-1**  
**GPRS Body SAR Results**

| MEASUREMENT RESULTS                      |     |          |         |                       |                  |                      |         |                                                 |                 |       |                    |
|------------------------------------------|-----|----------|---------|-----------------------|------------------|----------------------|---------|-------------------------------------------------|-----------------|-------|--------------------|
| FREQUENCY                                |     | Mode     | Service | Conducted Power [dBm] | Power Drift [dB] | Power Reduction [dB] | Spacing | Serial Number                                   | # of GPRS Slots | Side  | SAR (1g)<br>(W/kg) |
| MHz                                      | Ch. |          |         |                       |                  |                      |         |                                                 |                 |       |                    |
| 836.60                                   | 190 | GSM 850  | GPRS    | 23.42                 | -0.01            | 6                    | 0.0 cm  | 357750040001041                                 | 2               | back* | 0.439              |
| 836.60                                   | 190 | GSM 850  | GPRS    | 20.62                 | 0.00             | 6                    | 0.0 cm  | 357750040001041                                 | 4               | back* | 0.457              |
| 836.60                                   | 190 | GSM 850  | GPRS    | 29.57                 | 0.01             | 0                    | 1.0 cm  | 357750040001058                                 | 2               | back  | 0.315              |
| 836.60                                   | 190 | GSM 850  | GPRS    | 26.69                 | 0.01             | 0                    | 1.0 cm  | 357750040001058                                 | 4               | back  | 0.327              |
| 836.60                                   | 190 | GSM 850  | GPRS    | 20.62                 | -0.05            | 6                    | 0.0 cm  | 357750040001041                                 | 4               | top*  | 0.027              |
| 836.60                                   | 190 | GSM 850  | GPRS    | 26.69                 | -0.03            | 0                    | 0.5 cm  | 357750040001058                                 | 4               | top   | 0.247              |
| 836.60                                   | 190 | GSM 850  | GPRS    | 26.69                 | 0.00             | 0                    | 0.0 cm  | 357750040001058                                 | 4               | right | 0.305              |
| 1850.20                                  | 512 | GSM 1900 | GPRS    | 19.03                 | 0.06             | 4                    | 0.0 cm  | 357750040001041                                 | 4               | back* | 0.912              |
| 1880.00                                  | 661 | GSM 1900 | GPRS    | 18.88                 | 0.08             | 4                    | 0.0 cm  | 357750040001041                                 | 4               | back* | 0.943              |
| 1909.80                                  | 810 | GSM 1900 | GPRS    | 18.81                 | 0.06             | 4                    | 0.0 cm  | 357750040001041                                 | 4               | back* | 1.110              |
| 1850.20                                  | 512 | GSM 1900 | GPRS    | 23.06                 | -0.02            | 0                    | 1.0 cm  | 357750040001058                                 | 4               | back  | 0.963              |
| 1880.00                                  | 661 | GSM 1900 | GPRS    | 23.00                 | -0.01            | 0                    | 1.0 cm  | 357750040001058                                 | 4               | back  | 0.983              |
| 1909.80                                  | 810 | GSM 1900 | GPRS    | 22.81                 | 0.00             | 0                    | 1.0 cm  | 357750040001058                                 | 4               | back  | 1.150              |
| 1880.00                                  | 661 | GSM 1900 | GPRS    | 18.88                 | 0.01             | 4                    | 0.0 cm  | 357750040001041                                 | 4               | top*  | 0.378              |
| 1850.20                                  | 512 | GSM 1900 | GPRS    | 23.06                 | -0.02            | 0                    | 0.5 cm  | 357750040001058                                 | 4               | top   | 0.800              |
| 1880.00                                  | 661 | GSM 1900 | GPRS    | 23.00                 | 0.05             | 0                    | 0.5 cm  | 357750040001058                                 | 4               | top   | 0.817              |
| 1909.80                                  | 810 | GSM 1900 | GPRS    | 22.81                 | -0.02            | 0                    | 0.5 cm  | 357750040001058                                 | 4               | top   | 0.897              |
| 1880.00                                  | 661 | GSM 1900 | GPRS    | 23.00                 | -0.07            | 0                    | 0.0 cm  | 357750040001058                                 | 4               | right | 0.158              |
| ANSI / IEEE C95.1 1992 - SAFETY LIMIT    |     |          |         |                       |                  |                      |         | Body<br>1.6 W/kg (mW/g)<br>averaged over 1 gram |                 |       |                    |
| Spatial Peak                             |     |          |         |                       |                  |                      |         |                                                 |                 |       |                    |
| Uncontrolled Exposure/General Population |     |          |         |                       |                  |                      |         |                                                 |                 |       |                    |

Notes:

1. The test data reported are the worst-case SAR value with the position set in a typical configuration. Test procedures used were according to FCC/OET Bulletin 65, Supplement C [June 2001].
2. Per KDB 448498 4) b) i) the back side is required to be tested touching the flat phantom.
3. This device is capable of multiple display orientations supporting both portrait and landscape positions. Therefore per KDB 447498 4) b) ii) (2), SAR testing applies for the tablet edges with antennas located within 5 cm of each tablet edge closest to the user (with KDB 616217 applied to edges with antennas located  $\geq$  5 cm from the user). According to KDB 447498 4) b) ii) (2), for each antenna, SAR is only required for the edge with the most conservative exposure condition.
4. All modes of operation were investigated, and worst-case results are reported.
5. Tissue parameters and temperatures are listed on the SAR plots.
6. Batteries are fully charged for all readings.
7. Liquid tissue depth was at least 15.0 cm.
8. Device was tested using a fixed spacing.
9. Justification for reduced test configurations per KDB Publication 941225: The source-based time-averaged output power was evaluated for all multi-slot operations. In addition to the worst-case reported, all source-based time-averaged powers within 4% of the worst-case were additionally included in the evaluation.
10. Justification for reduced test configurations: Per KDB 447498 D01 1) e) i), when the SAR procedures require multiple channels to be tested and the 1-g SAR for the highest output channel is less than 0.8 W/kg, the other channels are not required.
11. Asterisk (\*) denotes power reduction activated.
12. Per lab KDB Inquiry 738936, a conservative additional test distance of 10 mm from the back and 5 mm from the top were tested for SAR at the maximum power. See Section 10.4 for more details.

|                                  |                                                                                     |                                                                           |                                                                                       |                                 |
|----------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------|
| FCC ID: A3LGTP7500               |  | SAR COMPLIANCE REPORT                                                     |  | Reviewed by:<br>Quality Manager |
| Filename:<br>0Y1104120700-R2.A3L | Test Dates:<br>04/14/11 - 05/18/11                                                  | EUT Type:<br>850/1900 GPRS/EDGE/WCDMA/HSPA Tablet with Bluetooth and WLAN |                                                                                       | Page 37 of 53                   |

**Table 14-2**  
**WCDMA Body SAR Results**

| MEASUREMENT RESULTS                      |      |         |         |                       |                  |                      |         |                      |       |          |
|------------------------------------------|------|---------|---------|-----------------------|------------------|----------------------|---------|----------------------|-------|----------|
| FREQUENCY                                |      | Mode    | Service | Conducted Power [dBm] | Power Drift [dB] | Power Reduction [dB] | Spacing | Serial Number        | Side  | SAR (1g) |
| MHz                                      | Ch.  |         |         |                       |                  |                      |         |                      |       | (W/kg)   |
| 836.60                                   | 4183 | UMTS V  | RMC     | 16.51                 | 0.02             | 6                    | 0.0 cm  | 357750040001041      | back* | 0.407    |
| 836.60                                   | 4183 | UMTS V  | RMC     | 22.62                 | -0.03            | 0                    | 1.0 cm  | 357750040001058      | back  | 0.293    |
| 836.60                                   | 4183 | UMTS V  | RMC     | 16.51                 | -0.04            | 6                    | 0.0 cm  | 357750040001041      | top*  | 0.027    |
| 836.60                                   | 4183 | UMTS V  | RMC     | 22.62                 | 0.01             | 0                    | 0.5 cm  | 357750040001058      | top   | 0.192    |
| 836.60                                   | 4183 | UMTS V  | RMC     | 22.62                 | 0.07             | 0                    | 0.0 cm  | 357750040001058      | right | 0.312    |
| 1852.40                                  | 9262 | UMTS II | RMC     | 15.46                 | -0.01            | 6                    | 0.0 cm  | 357750040001041      | back* | 0.532    |
| 1852.40                                  | 9262 | UMTS II | RMC     | 21.17                 | -0.05            | 0                    | 1.0 cm  | 357750040001058      | back  | 0.641    |
| 1852.40                                  | 9262 | UMTS II | RMC     | 15.46                 | 0.00             | 6                    | 0.0 cm  | 357750040001041      | top*  | 0.477    |
| 1852.40                                  | 9262 | UMTS II | RMC     | 21.17                 | -0.02            | 0                    | 0.5 cm  | 357750040001058      | top   | 1.160    |
| 1880.00                                  | 9400 | UMTS II | RMC     | 20.63                 | 0.00             | 0                    | 0.5 cm  | 357750040001058      | top   | 1.140    |
| 1907.60                                  | 9538 | UMTS II | RMC     | 20.79                 | -0.01            | 0                    | 0.5 cm  | 357750040001058      | top   | 1.180    |
| 1852.40                                  | 9262 | UMTS II | RMC     | 21.17                 | 0.02             | 0                    | 0.0 cm  | 357750040001058      | right | 0.227    |
| ANSI / IEEE C95.1 1992 - SAFETY LIMIT    |      |         |         |                       |                  |                      |         | Body                 |       |          |
| Spatial Peak                             |      |         |         |                       |                  |                      |         | 1.6 W/kg (mW/g)      |       |          |
| Uncontrolled Exposure/General Population |      |         |         |                       |                  |                      |         | averaged over 1 gram |       |          |

Notes:

1. The test data reported are the worst-case SAR value with the position set in a typical configuration. Test procedures used were according to FCC/OET Bulletin 65, Supplement C [June 2001].
2. Per KDB 448498 4) b) i) the back side is required to be tested touching the flat phantom.
3. This device is capable of multiple display orientations supporting both portrait and landscape positions. Therefore per KDB 447498 4) b) ii) (2), SAR testing applies for the tablet edges with antennas located within 5 cm of each tablet edge closest to the user (with KDB 616217 applied to edges with antennas located  $\geq$  5 cm from the user). According to KDB 447498 4) b) ii) (2), for each antenna, SAR is only required for the edge with the most conservative exposure condition.
4. All modes of operation were investigated, and worst-case results are reported.
5. Tissue parameters and temperatures are listed on the SAR plots.
6. Batteries are fully charged for all readings.
7. Liquid tissue depth was at least 15.0 cm.
8. Device was tested using a fixed spacing.
9. WCDMA mode in Body SAR was tested under RMC 12.2 kbps with HSPA Inactive. SAR tests with HSPA active were not required since the average output power levels of were not more than 0.25 dBm higher than the RMC levels and SAR was less than 1.2 W/kg per FCC KDB Publication 941225.
10. Per October 2010 TCB Workshop slides, since the average output power of WCDMA1900 mode deviated by more than 0.5 dB across the channels, the highest output channel was chosen as the default channel for SAR testing.
11. Justification for reduced test configurations: Per KDB 447498 D01 1) e) i), when the SAR procedures require multiple channels to be tested and the 1-g SAR for the highest output channel is less than 0.8 W/kg, the other channels are not required.
12. Asterisk (\*) denotes power reduction activated.
13. Per lab KDB Inquiry 738936, a conservative additional test distance of 10 mm from the back and 5 mm from the top were tested for SAR at the maximum power. See Section 10.4 for more details.

|                                  |                                                                                     |                                                                           |  |  |                                                                                       |                                 |
|----------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--|--|---------------------------------------------------------------------------------------|---------------------------------|
| FCC ID: A3LGTP7500               |  | SAR COMPLIANCE REPORT                                                     |  |  |  | Reviewed by:<br>Quality Manager |
| Filename:<br>0Y1104120700-R2.A3L | Test Dates:<br>04/14/11 - 05/18/11                                                  | EUT Type:<br>850/1900 GPRS/EDGE/WCDMA/HSPA Tablet with Bluetooth and WLAN |  |  |                                                                                       | Page 38 of 53                   |

**Table 14-3**  
**2.4 GHz Body SAR Results**

| MEASUREMENT RESULTS                                                                               |     |              |         |                       |                  |         |                                                 |                  |      |        |
|---------------------------------------------------------------------------------------------------|-----|--------------|---------|-----------------------|------------------|---------|-------------------------------------------------|------------------|------|--------|
| FREQUENCY                                                                                         |     | Mode         | Service | Conducted Power [dBm] | Power Drift [dB] | Spacing | Serial Number                                   | Data Rate (Mbps) | Side | SAR    |
| MHz                                                                                               | Ch. |              |         |                       |                  |         |                                                 |                  |      | (W/kg) |
| 2462                                                                                              | 11  | IEEE 802.11b | DSSS    | 13.44                 | 0.00             | 0.0 cm  | 357750040001058                                 | 1                | back | 0.623  |
| 2462                                                                                              | 11  | IEEE 802.11b | DSSS    | 13.44                 | -0.07            | 0.0 cm  | 357750040001058                                 | 1                | top  | 0.068  |
| 2462                                                                                              | 11  | IEEE 802.11b | DSSS    | 13.44                 | 0.06             | 0.0 cm  | 357750040001058                                 | 1                | left | 0.079  |
| 2462                                                                                              | 11  | IEEE 802.11g | DSSS    | 13.86                 | 0.02             | 0.0 cm  | 357750040001058                                 | 6                | back | 0.557  |
| 2462                                                                                              | 11  | IEEE 802.11g | DSSS    | 13.86                 | 0.05             | 0.0 cm  | 357750040001058                                 | 6                | top  | 0.022  |
| 2462                                                                                              | 11  | IEEE 802.11g | DSSS    | 13.86                 | -0.02            | 0.0 cm  | 357750040001058                                 | 6                | left | 0.051  |
| ANSI / IEEE C95.1 1992 - SAFETY LIMIT<br>Spatial Peak<br>Uncontrolled Exposure/General Population |     |              |         |                       |                  |         | Body<br>1.6 W/kg (mW/g)<br>averaged over 1 gram |                  |      |        |

Notes:

1. The test data reported are the worst-case SAR value with the position set in a typical configuration. Test procedures used were according to FCC/OET Bulletin 65, Supplement C [June 2001].
2. Per KDB 448498 4) b) i) the back side is required to be tested touching the flat phantom.
3. This device is capable of multiple display orientations supporting both portrait and landscape positions. Therefore per KDB 447498 4) b) ii) (2), SAR testing applies for the tablet edges with antennas located within 5 cm of each tablet edge closest to the user (with KDB 616217 applied to edges with antennas located  $\geq$  5 cm from the user). According to KDB 447498 4) b) ii) (2), for each antenna, SAR is only required for the edge with the most conservative exposure condition.
4. All modes of operation were investigated, and worst-case results are reported.
5. Batteries are fully charged for all readings.
6. Tissue parameters and temperatures are listed on the SAR plots.
7. Liquid tissue depth is was at least 15.0 cm.
8. Device was tested using a fixed spacing.
9. Justification for reduced test configurations for WIFI channels per KDB Publication 248227 and April 2010 FCC/TCB Meeting Notes: Highest average RF output power channel for the lowest data rate were selected for SAR evaluation. IEEE 802.11g was tested since the average output power of the corresponding channel used for SAR testing was more than 0.25 dB higher than IEEE 802.11b mode. Other IEEE 802.11 modes (including 802.11n and higher data rates) were not investigated since the average output powers were not greater than 0.25 dB than that of the corresponding channel in the lowest data rate IEEE 802.11b mode.
10. WLAN transmission was verified using a spectrum analyzer.
11. There is no power reduction for WIFI.
12. Per KDB 447498 4) b) since the output power of the antenna is  $\leq 60/f$  (GHz), Bluetooth SAR is not required for both back side and edge exposure conditions.

|                                  |                                                                                     |                                                                           |  |  |                                                                                       |                                 |
|----------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--|--|---------------------------------------------------------------------------------------|---------------------------------|
| FCC ID: A3LGTP7500               |  | SAR COMPLIANCE REPORT                                                     |  |  |  | Reviewed by:<br>Quality Manager |
| Filename:<br>0Y1104120700-R2.A3L | Test Dates:<br>04/14/11 - 05/18/11                                                  | EUT Type:<br>850/1900 GPRS/EDGE/WCDMA/HSPA Tablet with Bluetooth and WLAN |  |  |                                                                                       | Page 39 of 53                   |

**Table 14-4**  
**5 GHz Body SAR Results**

| MEASUREMENT RESULTS                                      |     |              |         |                       |                  |         |                                                 |                  |      |                    |
|----------------------------------------------------------|-----|--------------|---------|-----------------------|------------------|---------|-------------------------------------------------|------------------|------|--------------------|
| FREQUENCY                                                |     | Mode         | Service | Conducted Power [dBm] | Power Drift [dB] | Spacing | Serial Number                                   | Data Rate (Mbps) | Side | SAR (1g)<br>(W/kg) |
| MHz                                                      | Ch. |              |         |                       |                  |         |                                                 |                  |      |                    |
| 5240                                                     | 48  | IEEE 802.11a | OFDM    | 12.40                 | 0.08             | 0.0 cm  | 357750040001058                                 | 6                | back | 0.543              |
| 5240                                                     | 48  | IEEE 802.11a | OFDM    | 12.40                 | 0.04             | 0.0 cm  | 357750040001058                                 | 6                | top  | 0.593              |
| 5240                                                     | 48  | IEEE 802.11a | OFDM    | 12.40                 | 0.06             | 0.0 cm  | 357750040001058                                 | 6                | left | 0.121              |
| 5260                                                     | 52  | IEEE 802.11a | OFDM    | 12.30                 | 0.01             | 0.0 cm  | 357750040001058                                 | 6                | back | 0.517              |
| 5260                                                     | 52  | IEEE 802.11a | OFDM    | 12.30                 | -0.01            | 0.0 cm  | 357750040001058                                 | 6                | top  | 0.627              |
| 5260                                                     | 52  | IEEE 802.11a | OFDM    | 12.30                 | 0.06             | 0.0 cm  | 357750040001058                                 | 6                | left | 0.183              |
| 5500                                                     | 100 | IEEE 802.11a | OFDM    | 12.91                 | 0.04             | 0.0 cm  | 357750040001058                                 | 6                | back | 0.643              |
| 5500                                                     | 100 | IEEE 802.11a | OFDM    | 12.91                 | 0.06             | 0.0 cm  | 357750040001058                                 | 6                | top  | 0.689              |
| 5500                                                     | 100 | IEEE 802.11a | OFDM    | 12.91                 | 0.02             | 0.0 cm  | 357750040001058                                 | 6                | left | 0.129              |
| 5805                                                     | 161 | IEEE 802.11a | OFDM    | 12.84                 | 0.07             | 0.0 cm  | 357750040001058                                 | 6                | back | 0.666              |
| 5805                                                     | 161 | IEEE 802.11a | OFDM    | 12.84                 | 0.01             | 0.0 cm  | 357750040001058                                 | 6                | top  | 0.432              |
| 5805                                                     | 161 | IEEE 802.11a | OFDM    | 12.84                 | 0.03             | 0.0 cm  | 357750040001058                                 | 6                | left | 0.138              |
| ANSI / IEEE C95.1 1992 - SAFETY LIMIT                    |     |              |         |                       |                  |         | Body<br>1.6 W/kg (mW/g)<br>averaged over 1 gram |                  |      |                    |
| Spatial Peak<br>Uncontrolled Exposure/General Population |     |              |         |                       |                  |         |                                                 |                  |      |                    |

Notes:

1. The test data reported are the worst-case SAR value with the position set in a typical configuration. Test procedures used were according to FCC/OET Bulletin 65, Supplement C [June 2001].
2. Per KDB 448498 4) b) i) the back side is required to be tested touching the flat phantom.
3. This device is capable of multiple display orientations supporting both portrait and landscape positions. Therefore per KDB 447498 4) b) ii) (2), SAR testing applies for the tablet edges with antennas located within 5 cm of each tablet edge closest to the user (with KDB 616217 applied to edges with antennas located  $\geq$  5 cm from the user). According to KDB 447498 4) b) ii) (2), for each antenna, SAR is only required for the edge with the most conservative exposure condition.
4. All modes of operation were investigated, and worst-case results are reported.
5. Batteries are fully charged for all readings.
6. Tissue parameters and temperatures are listed on the SAR plots.
7. Liquid tissue depth is was at least 15.0 cm.
8. Device was tested using a fixed spacing.
9. Justification for reduced test configurations for WIFI channels per KDB Publication 248227 and April 2010 FCC/TCB Meeting Notes: Highest average RF output power channel for the lowest data rate were selected for SAR evaluation. Other IEEE 802.11 modes (including 802.11n and higher data) were not investigated since the average output powers were not greater than 0.25 dB than that of the corresponding channel in the lowest data rate IEEE 802.11a mode.
10. Per KDB 248227 Publication, since the SAR  $< 0.8$  W/kg, no additional channels were required.
11. WLAN transmission was verified using a spectrum analyzer.
12. There is no power reduction for WIFI.

|                                  |                                                                                     |                                                                           |  |  |                                                                                       |                                 |
|----------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--|--|---------------------------------------------------------------------------------------|---------------------------------|
| FCC ID: A3LGTP7500               |  | SAR COMPLIANCE REPORT                                                     |  |  |  | Reviewed by:<br>Quality Manager |
| Filename:<br>0Y1104120700-R2.A3L | Test Dates:<br>04/14/11 - 05/18/11                                                  | EUT Type:<br>850/1900 GPRS/EDGE/WCDMA/HSPA Tablet with Bluetooth and WLAN |  |  |                                                                                       | Page 40 of 53                   |

## 15.1 Simultaneous Transmission Information

This device contains multiple transmitters that may operate simultaneously and therefore, require a simultaneous transmission analysis according to KDB 447498 4) b) iii) procedures (See Section 10.3). The tablet procedures required by KDB 447498 generally do not require separate hotspot mode testing.

Bluetooth and WIFI cannot transmit simultaneously since it shares the same circuit path and are switched by the radio.

5GHz WIFI cannot transmit simultaneously with the 2G/3G antenna. Table 15-1 shows all possible simultaneous transmission scenarios for this device.

**Table 15-1**  
Simultaneous Transmission Scenarios

| No. | Capable Tx Configurations      | Body SAR Test Distance(s) in mm |           |            |             |          |          | Note                          |
|-----|--------------------------------|---------------------------------|-----------|------------|-------------|----------|----------|-------------------------------|
|     |                                | Back                            | Left Edge | Right Edge | Bottom Edge | Top Edge | Hot Spot |                               |
| 1   | GPRS/EDGE 850 MHz              | 0*                              | x         | 0          | x           | 0*       | -        | Standalone GPRS/EDGE          |
| 2   | GPRS/EDGE 1900 MHz             | 0*                              | x         | 0          | x           | 0*       | -        | Standalone GPRS/EDGE          |
| 3   | WCDMA/HSPA 850 MHz             | 0*                              | x         | 0          | x           | 0*       | -        | Standalone WCDMA/HSPA         |
| 4   | WCDMA/HSPA 1900 MHz            | 0*                              | x         | 0          | x           | 0*       | -        | Standalone WCDMA/HSPA         |
| 5   | 2.4 GHz WIFI                   | 0                               | 0         | x          | x           | 0        | -        | Standalone WIFI               |
| 6   | 5 GHz WIFI                     | 0                               | 0         | x          | x           | 0        | -        | Standalone WIFI               |
| 7   | GPRS/EDGE 850 + 2.4 GHz WIFI   | 0*                              | 0         | 0          | x           | 0*       | yes      | GPRS/EDGE 850 WIFI Hotspot    |
| 8   | GPRS/EDGE 1900 + 2.4 GHz WIFI  | 0*                              | 0         | 0          | x           | 0*       | yes      | GPRS/EDGE 1900 WIFI Hotspot   |
| 9   | WCDMA/HSPA 850 + 2.4 GHz WIFI  | 0*                              | 0         | 0          | x           | 0*       | yes      | WCDMA/HSPA 850 WIFI Hotspot   |
| 10  | WCDMA/HSPA 1900 + 2.4 GHz WIFI | 0*                              | 0         | 0          | x           | 0*       | yes      | WCDMA/HSPA 1900 WIFI Hotspot  |
| 11  | GPRS/EDGE + 5 GHz WIFI         | N/A                             | N/A       | N/A        | N/A         | N/A      | N/A      | Not supported. Disabled by SW |
| 12  | WCDMA/HSPA + 5 GHz WIFI        | N/A                             | N/A       | N/A        | N/A         | N/A      | N/A      | Not supported. Disabled by SW |

Note: 1. Asterisk(\*) denotes power back off activated.

2. X=SAR Testing not required per KDB 447498

| No. | Capable Tx Configurations      | Body SAR Test Distance(s) in mm |           |            |             |          |          | Note                         |
|-----|--------------------------------|---------------------------------|-----------|------------|-------------|----------|----------|------------------------------|
|     |                                | Back                            | Left Edge | Right Edge | Bottom Edge | Top Edge | Hot Spot |                              |
| 1   | GPRS/EDGE 850 MHz              | 10                              | x         | x          | x           | 5        | -        | Standalone GPRS/EDGE         |
| 2   | GPRS/EDGE 1900 MHz             | 10                              | x         | x          | x           | 5        | -        | Standalone GPRS/EDGE         |
| 3   | WCDMA/HSPA 850 MHz             | 10                              | x         | x          | x           | 5        | -        | Standalone WCDMA/HSPA        |
| 4   | WCDMA/HSPA 1900 MHz            | 10                              | x         | x          | x           | 5        | -        | Standalone WCDMA/HSPA        |
| 5   | GPRS/EDGE 850 + 2.4 GHz WIFI   | 10                              | x         | x          | x           | 5        | yes      | GPRS/EDGE 850 WIFI Hotspot   |
| 6   | GPRS/EDGE 1900 + 2.4 GHz WIFI  | 10                              | x         | x          | x           | 5        | yes      | GPRS/EDGE 1900 WIFI Hotspot  |
| 7   | WCDMA/HSPA 850 + 2.4 GHz WIFI  | 10                              | x         | x          | x           | 5        | yes      | WCDMA/HSPA 850 WIFI Hotspot  |
| 8   | WCDMA/HSPA 1900 + 2.4 GHz WIFI | 10                              | x         | x          | x           | 5        | yes      | WCDMA/HSPA 1900 WIFI Hotspot |

Note: 1. According to the TCB workshop material in 2011 April, a conservative additional test distance of 10mm from the back was tested for SAR at the full power, with the back sensor de-activated. Also, a conservative additional test distance of 5mm from the top edge was chosen to test SAR at full power with the top sensor de-activated.

2. X=SAR Testing not required because sensor is not applicable.

3. Sensors are de-activated for full power SAR test.

4. The chosen conservative test distance of 10mm from the back side is based on the de-activation proximity sensor distance based on the reliability data. The data shows that the proximity sensor is guaranteed to activate at a distance of 10mm. Please see operational description for further details.

5. The chosen conservative test distance of 5mm from the top edge is based on the de-activation proximity sensor distance based on the reliability data. The data shows that the proximity sensor is guaranteed to activate at a distance of 5mm. Please see operational description for further details.

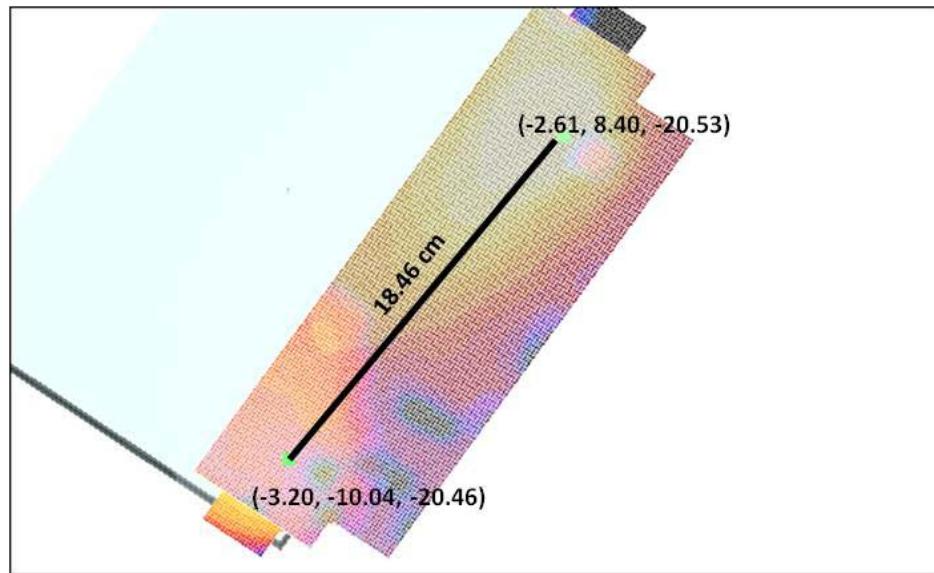
|                                  |                                                                                     |                                                                           |  |  |  |                                                                                       |                                 |
|----------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--|--|--|---------------------------------------------------------------------------------------|---------------------------------|
| FCC ID: A3LGTP7500               |  | SAR COMPLIANCE REPORT                                                     |  |  |  |  | Reviewed by:<br>Quality Manager |
| Filename:<br>0Y1104120700-R2.A3L | Test Dates:<br>04/14/11 - 05/18/11                                                  | EUT Type:<br>850/1900 GPRS/EDGE/WCDMA/HSPA Tablet with Bluetooth and WLAN |  |  |  |                                                                                       | Page 41 of 53                   |

## 15.1 Simultaneous Transmission Analysis

**Table 15-2**  
**Simultaneous Transmission Scenarios**

| Simult Tx | Configuration | GPRS 850 SAR (W/kg)  | 2.4 GHz WIFI SAR (W/kg) | $\Sigma$ SAR (W/kg) |                                  |
|-----------|---------------|----------------------|-------------------------|---------------------|----------------------------------|
| Body SAR  | Back          | 0.457                | 0.623                   | <b>1.080</b>        |                                  |
|           | Top           | 0.247                | 0.068                   | <b>0.315</b>        |                                  |
|           | Bottom        | -                    | -                       | <b>0.000</b>        |                                  |
|           | Right         | 0.305                | -                       | <b>0.305</b>        |                                  |
|           | Left          | -                    | 0.079                   | <b>0.079</b>        |                                  |
| Simult Tx | Configuration | UMTS V SAR (W/kg)    | 2.4 GHz WIFI SAR (W/kg) | $\Sigma$ SAR (W/kg) |                                  |
| Body SAR  | Back          | 0.407                | 0.623                   | <b>1.030</b>        |                                  |
|           | Top           | 0.192                | 0.068                   | <b>0.260</b>        |                                  |
|           | Bottom        | -                    | -                       | <b>0.000</b>        |                                  |
|           | Right         | 0.312                | -                       | <b>0.312</b>        |                                  |
|           | Left          | -                    | 0.079                   | <b>0.079</b>        |                                  |
| Simult Tx | Configuration | UMTS II SAR (W/kg)   | 2.4 GHz WIFI SAR (W/kg) | $\Sigma$ SAR (W/kg) |                                  |
| Body SAR  | Back          | 0.641                | 0.623                   | <b>1.264</b>        |                                  |
|           | Top           | 1.180                | 0.068                   | <b>1.248</b>        |                                  |
|           | Bottom        | -                    | -                       | <b>0.000</b>        |                                  |
|           | Right         | 0.227                | -                       | <b>0.227</b>        |                                  |
|           | Left          | -                    | 0.079                   | <b>0.079</b>        |                                  |
| Simult Tx | Configuration | GPRS 1900 SAR (W/kg) | 2.4 GHz WIFI SAR (W/kg) | $\Sigma$ SAR (W/kg) | SAR sum to peak separation ratio |
| Body SAR  | Back          | 1.150                | 0.623                   | 1.15+0.623=1.77     | <b>0.096</b>                     |
|           | Top           | 0.897                | 0.068                   | <b>0.965</b>        | N/A                              |
|           | Bottom        | -                    | -                       | <b>0.000</b>        | N/A                              |
|           | Right         | 0.158                | -                       | <b>0.158</b>        | N/A                              |
|           | Left          | -                    | 0.079                   | <b>0.079</b>        | N/A                              |

Note: “-” SAR results shown in the tables are zero for summation purposes. SAR was not required to be measured due to exclusions mentioned in Section 10.3.


The standalone SAR results were used to analyze simultaneous transmission SAR exclusion according to procedures in KDB 648474. Although the summation of the 1900 GPRS and 2.4 GHz WLAN body SAR for the back side was  $1.15 \text{ W/kg} + 0.623 \text{ W/kg} = 1.773 \text{ W/kg}$ , which is greater than 1.6 W/kg, the SAR sum to peak separation ratio was less than 0.3.

The distance between the peak licensed transmitter body SAR zoom scan and WLAN body SAR zoom scan was 18.46 cm (See Figure 15-1). The ratio of the summed max SAR and the distance between the SAR zoom scan peaks was  $1.773 / 18.46 = 0.096$ , which is less than 0.3.

$$Ratio = \frac{\text{Sum}}{\text{Distance}} = \frac{1.773}{18.46} = 0.096 < 0.3$$

Therefore, a multi-band volumetric simultaneous SAR evaluation is not required for GPRS 1900 and 2.4 GHz WLAN transmission in body tissue.

|                                  |                                                                                     |                                                                           |  |  |                                                                                       |                                 |
|----------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--|--|---------------------------------------------------------------------------------------|---------------------------------|
| FCC ID: A3LGTP7500               |  | SAR COMPLIANCE REPORT                                                     |  |  |  | Reviewed by:<br>Quality Manager |
| Filename:<br>0Y1104120700-R2.A3L | Test Dates:<br>04/14/11 - 05/18/11                                                  | EUT Type:<br>850/1900 GPRS/EDGE/WCDMA/HSPA Tablet with Bluetooth and WLAN |  |  |                                                                                       | Page 42 of 53                   |



$$dist = \sqrt{(-2.61 + 3.20)^2 + (8.40 + 10.04)^2 + (-20.53 + 20.46)^2} = 18.46\text{cm}$$

**Figure 15-1**  
**Simultaneous Transmission Ratio Analysis for GPRS 1900 and 2.4 GHz WLAN**

## 15.2 Simultaneous Transmission Conclusion

Therefore Per KDB 447498 4) b) iii) and simultaneous transmission procedures in KDB 648474, aggregate volumetric simultaneous transmission is not required.

| FCC ID: A3LGTP7500            | SAR COMPLIANCE REPORT           |                                                                        |  | Reviewed by:<br>Quality Manager |
|-------------------------------|---------------------------------|------------------------------------------------------------------------|--|---------------------------------|
| Filename: 0Y1104120700-R2.A3L | Test Dates: 04/14/11 - 05/18/11 | EUT Type: 850/1900 GPRS/EDGE/WCDMA/HSPA Tablet with Bluetooth and WLAN |  | Page 43 of 53                   |

## 16 EQUIPMENT LIST

| Manufacturer       | Model       | Description                                   | Cal Date   | Cal Interval | Cal Due    | Serial Number |
|--------------------|-------------|-----------------------------------------------|------------|--------------|------------|---------------|
| Agilent            | 85070B      | Dielectric Probe Kit                          | 8/22/2010  | Annual       | 8/22/2011  | US33020316    |
| Agilent            | 8648D       | (9kHz-4GHz) Signal Generator                  | 10/13/2010 | Annual       | 10/13/2011 | 3613A00315    |
| Agilent            | 8753E       | (30kHz-6GHz) Network Analyzer                 | 4/21/2011  | Annual       | 4/21/2012  | JP38020182    |
| Agilent            | E5515C      | Wireless Communications Test Set              | 10/11/2010 | Annual       | 10/11/2011 | GB46110872    |
| Agilent            | E5515C      | Wireless Communications Test Set              | 10/8/2010  | Annual       | 10/8/2011  | GB46310798    |
| Agilent            | E5515C      | Wireless Communications Test Set              | 8/13/2010  | Annual       | 8/13/2011  | GB41450275    |
| Agilent            | E8257D      | (250kHz-20GHz) Signal Generator               | 4/8/2011   | Annual       | 4/8/2012   | MY45470194    |
| Gigatronics        | 80701A      | (0.05-18GHz) Power Sensor                     | 10/11/2010 | Annual       | 10/11/2011 | 1833460       |
| Gigatronics        | 8651A       | Universal Power Meter                         | 10/11/2010 | Annual       | 10/11/2011 | 8650319       |
| Index SAR          | IXTL-010    | Dielectric Measurement Kit                    | N/A        |              | N/A        | N/A           |
| Index SAR          | IXTL-030    | 30MM TEM line for 6 GHz                       | N/A        |              | N/A        | N/A           |
| Pasternack         | PE2208-6    | Bidirectional Coupler                         | N/A        |              | N/A        | N/A           |
| Pasternack         | PE2209-10   | Bidirectional Coupler                         | N/A        |              | N/A        | N/A           |
| Rohde & Schwarz    | CMU200      | Base Station Simulator                        | 11/11/2010 | Annual       | 11/11/2011 | 836371/0079   |
| Rohde & Schwarz    | CMU200      | Base Station Simulator                        | 6/21/2010  | Annual       | 6/21/2011  | 833855/0010   |
| Rohde & Schwarz    | NRVD        | Dual Channel Power Meter                      | 4/8/2011   | Biennial     | 4/8/2013   | 101695        |
| SPEAG              | D1450V2     | 1450 MHz SAR Dipole                           | 5/20/2009  | Biennial     | 5/20/2011  | 1025          |
| SPEAG              | D1765V2     | 1765 MHz SAR Dipole                           | 5/19/2009  | Biennial     | 5/19/2011  | 1008          |
| SPEAG              | D1900V2     | 1900 MHz SAR Dipole                           | 2/17/2011  | Annual       | 2/17/2012  | 502           |
| SPEAG              | D1900V2     | 1900 MHz SAR Dipole                           | 8/18/2009  | Biennial     | 8/18/2011  | 5d080         |
| SPEAG              | D2450V2     | 2450 MHz SAR Dipole                           | 8/27/2009  | Biennial     | 8/27/2011  | 719           |
| SPEAG              | D2450V2     | 2450 MHz SAR Dipole                           | 2/8/2011   | Annual       | 2/8/2012   | 797           |
| SPEAG              | D2600V2     | 2600 MHz SAR Dipole                           | 4/15/2011  | Biennial     | 4/15/2013  | 1004          |
| SPEAG              | D5GHzV2     | 5 GHz SAR Dipole                              | 8/19/2009  | Biennial     | 8/19/2011  | 1007          |
| SPEAG              | D5GHzV2     | 5 GHz SAR Dipole                              | 2/11/2011  | Annual       | 2/11/2012  | 1057          |
| SPEAG              | D835V2      | 835 MHz SAR Dipole                            | 2/9/2011   | Annual       | 2/9/2012   | 4d047         |
| SPEAG              | D835V2      | 835 MHz SAR Dipole                            | 8/24/2009  | Biennial     | 8/24/2011  | 4d026         |
| SPEAG              | DAE3        | Dasy Data Acquisition Electronics             | 11/18/2010 | Annual       | 11/18/2011 | 455           |
| SPEAG              | DAE4        | Dasy Data Acquisition Electronics             | 3/17/2011  | Annual       | 3/17/2012  | 704           |
| SPEAG              | DAE4        | Dasy Data Acquisition Electronics             | 4/20/2011  | Annual       | 4/20/2012  | 665           |
| SPEAG              | DAE4        | Dasy Data Acquisition Electronics             | 2/21/2011  | Annual       | 2/21/2012  | 649           |
| SPEAG              | ES3DV2      | SAR Probe                                     | 9/21/2010  | Annual       | 9/21/2011  | 3022          |
| SPEAG              | EX3DV4      | SAR Probe                                     | 8/19/2010  | Annual       | 8/19/2011  | 3561          |
| SPEAG              | EX3DV4      | SAR Probe                                     | 2/14/2011  | Annual       | 2/14/2012  | 3550          |
| SPEAG              | DAE4        | Dasy Data Acquisition Electronics             | 7/8/2010   | Annual       | 7/8/2011   | 859           |
| SPEAG              | D750V3      | 750 MHz Dipole                                | 2/14/2011  | Annual       | 2/14/2012  | 1003          |
| SPEAG              | ES3DV3      | SAR Probe                                     | 3/24/2011  | Annual       | 3/24/2012  | 3213          |
| SPEAG              | ES3DV3      | SAR Probe                                     | 4/18/2011  | Annual       | 4/18/2012  | 3209          |
| Rohde & Schwarz    | SMIQ03B     | Signal Generator                              | 4/6/2011   | Annual       | 4/6/2012   | DE27259       |
| SPEAG              | D1640V2     | 1640 MHz Dipole                               | 8/17/2010  | Biennial     | 8/17/2012  | 321           |
| Rohde & Schwarz    | CMW500      | LTE Radio Communication Tester                | 8/30/2010  | Annual       | 8/30/2011  | 100976        |
| Anritsu            | MA2481A     | Power Sensor                                  | 2/7/2011   | Annual       | 2/7/2012   | 5318          |
| Anritsu            | MA2481A     | Power Sensor                                  | 2/7/2011   | Annual       | 2/7/2012   | 5442          |
| Anritsu            | ML2438A     | Power Meter                                   | 2/7/2011   | Annual       | 2/7/2012   | 1190013       |
| Anritsu            | ML2438A     | Power Meter                                   | 2/7/2011   | Annual       | 2/7/2012   | 98150041      |
| Agilent            | 8648D       | Signal Generator                              | 4/5/2011   | Annual       | 4/5/2012   | 3629U00687    |
| Anritsu            | ML2438A     | Power Meter                                   | 2/7/2011   | Annual       | 2/7/2012   | 1070030       |
| Anritsu            | MA2481A     | Power Sensor                                  | 2/7/2011   | Annual       | 2/7/2012   | 5821          |
| Anritsu            | MA2481A     | Power Sensor                                  | 2/7/2011   | Annual       | 2/7/2012   | 8013          |
| Anritsu            | MA2481A     | Power Sensor                                  | 2/7/2011   | Annual       | 2/7/2012   | 2400          |
| Aprei              | ALS-PR-DIEL | Dielectric Probe Kit                          | N/A        |              | N/A        | 260-00959     |
| Agilent            | E5515C      | Wireless Communications Test Set              | 8/13/2010  | Annual       | 8/13/2011  | GB43304447    |
| Agilent            | E5515C      | Wireless Communications Tester                | 4/21/2011  | Annual       | 4/21/2012  | US41140256    |
| Amplifier Research | SS1G4       | 5W, 800MHz-4.2GHz                             | N/A        |              |            | 17042         |
| Mini-Circuits      | BW-N20W5+   | DC to 18 GHz Precision Fixed 20 dB Attenuator | N/A        |              |            | N/A           |
| Agilent            | E5515C      | Wireless Communications Test Set              | 2/8/2011   | Annual       | 2/8/2012   | GB45360985    |
| Speag              | D3700V2     | 3700 MHz SAR Dipole                           | 2/16/2011  | Annual       | 2/16/2012  | 1002          |
| Rohde & Schwarz    | CMW500      | LTE Radio Communication Tester                | 3/11/2011  | Annual       | 3/11/2012  | 103962        |
| Control Company    | 61220-416   | Long-Stem Thermometer                         | 2/15/2011  | Biennial     | 2/15/2013  | 111331322     |
| Control Company    | 61220-416   | Long-Stem Thermometer                         | 2/15/2011  | Biennial     | 2/15/2013  | 111331323     |
| Control Company    | 61220-416   | Long-Stem Thermometer                         | 2/15/2011  | Biennial     | 2/15/2013  | 111331330     |
| Control Company    | 61220-416   | Long-Stem Thermometer                         | 2/15/2011  | Biennial     | 2/15/2013  | 111331332     |
| Control Company    | 61220-416   | Long-Stem Thermometer                         | 3/16/2011  | Biennial     | 3/16/2013  | 111391601     |
| Speag              | iSAR        | Immediate SAR Measurement System              | 4/7/2011   | Annual       | 4/7/2012   | 1084          |

Justification for 2-year calibration cycle for SAR dipoles is found in Section 13.3.

| FCC ID: A3LGTP7500  | PCTEST®<br>ENGINEERING LABORATORY, INC. |                                                              |               | SAMSUNG | Reviewed by:<br>Quality Manager |
|---------------------|-----------------------------------------|--------------------------------------------------------------|---------------|---------|---------------------------------|
| Filename:           | Test Dates:                             | EUT Type:                                                    |               |         |                                 |
| 0Y1104120700-R2.A3L | 04/14/11 - 05/18/11                     | 850/1900 GPRS/EDGE/WCDMA/HSPA Tablet with Bluetooth and WLAN | Page 44 of 53 |         |                                 |

## 17 MEASUREMENT UNCERTAINTIES

Applicable for 800 – 3000 MHz.

| a                                                                             | b              | c          | d           | e= f(d,k) | f                     | g                        | h = c x f/e                    | i = c x g/e                      | k              |
|-------------------------------------------------------------------------------|----------------|------------|-------------|-----------|-----------------------|--------------------------|--------------------------------|----------------------------------|----------------|
| Uncertainty Component                                                         | IEEE 1528 Sec. | Tol. (± %) | Prob. Dist. | Div.      | c <sub>i</sub><br>1gm | c <sub>i</sub><br>10 gms | 1gm<br>u <sub>i</sub><br>(± %) | 10gms<br>u <sub>i</sub><br>(± %) | v <sub>i</sub> |
| <b>Measurement System</b>                                                     |                |            |             |           |                       |                          |                                |                                  |                |
| Probe Calibration                                                             | E.2.1          | 5.5        | N           | 1         | 1.0                   | 1.0                      | 5.5                            | 5.5                              | ∞              |
| Axial Isotropy                                                                | E.2.2          | 0.25       | N           | 1         | 0.7                   | 0.7                      | 0.2                            | 0.2                              | ∞              |
| Hemispherical Isotropy                                                        | E.2.2          | 1.3        | N           | 1         | 1.0                   | 1.0                      | 1.3                            | 1.3                              | ∞              |
| Boundary Effect                                                               | E.2.3          | 0.4        | N           | 1         | 1.0                   | 1.0                      | 0.4                            | 0.4                              | ∞              |
| Linearity                                                                     | E.2.4          | 0.3        | N           | 1         | 1.0                   | 1.0                      | 0.3                            | 0.3                              | ∞              |
| System Detection Limits                                                       | E.2.5          | 5.1        | N           | 1         | 1.0                   | 1.0                      | 5.1                            | 5.1                              | ∞              |
| Readout Electronics                                                           | E.2.6          | 1.0        | N           | 1         | 1.0                   | 1.0                      | 1.0                            | 1.0                              | ∞              |
| Response Time                                                                 | E.2.7          | 0.8        | R           | 1.73      | 1.0                   | 1.0                      | 0.5                            | 0.5                              | ∞              |
| Integration Time                                                              | E.2.8          | 2.6        | R           | 1.73      | 1.0                   | 1.0                      | 1.5                            | 1.5                              | ∞              |
| RF Ambient Conditions                                                         | E.6.1          | 3.0        | R           | 1.73      | 1.0                   | 1.0                      | 1.7                            | 1.7                              | ∞              |
| Probe Positioner Mechanical Tolerance                                         | E.6.2          | 0.4        | R           | 1.73      | 1.0                   | 1.0                      | 0.2                            | 0.2                              | ∞              |
| Probe Positioning w/ respect to Phantom                                       | E.6.3          | 2.9        | R           | 1.73      | 1.0                   | 1.0                      | 1.7                            | 1.7                              | ∞              |
| Extrapolation, Interpolation & Integration algorithms for Max. SAR Evaluation | E.5            | 1.0        | R           | 1.73      | 1.0                   | 1.0                      | 0.6                            | 0.6                              | ∞              |
| <b>Test Sample Related</b>                                                    |                |            |             |           |                       |                          |                                |                                  |                |
| Test Sample Positioning                                                       | E.4.2          | 6.0        | N           | 1         | 1.0                   | 1.0                      | 6.0                            | 6.0                              | 287            |
| Device Holder Uncertainty                                                     | E.4.1          | 3.32       | R           | 1.73      | 1.0                   | 1.0                      | 1.9                            | 1.9                              | ∞              |
| Output Power Variation - SAR drift measurement                                | 6.6.2          | 5.0        | R           | 1.73      | 1.0                   | 1.0                      | 2.9                            | 2.9                              | ∞              |
| <b>Phantom &amp; Tissue Parameters</b>                                        |                |            |             |           |                       |                          |                                |                                  |                |
| Phantom Uncertainty (Shape & Thickness tolerances)                            | E.3.1          | 4.0        | R           | 1.73      | 1.0                   | 1.0                      | 2.3                            | 2.3                              | ∞              |
| Liquid Conductivity - deviation from target values                            | E.3.2          | 5.0        | R           | 1.73      | 0.64                  | 0.43                     | 1.8                            | 1.2                              | ∞              |
| Liquid Conductivity - measurement uncertainty                                 | E.3.3          | 3.8        | N           | 1         | 0.64                  | 0.43                     | 2.4                            | 1.6                              | 6              |
| Liquid Permittivity - deviation from target values                            | E.3.2          | 5.0        | R           | 1.73      | 0.60                  | 0.49                     | 1.7                            | 1.4                              | ∞              |
| Liquid Permittivity - measurement uncertainty                                 | E.3.3          | 4.5        | N           | 1         | 0.60                  | 0.49                     | 2.7                            | 2.2                              | 6              |
| <b>Combined Standard Uncertainty (k=1)</b>                                    | RSS            |            |             |           |                       |                          | 11.8                           | 11.5                             | 299            |
| <b>Expanded Uncertainty</b><br>(95% CONFIDENCE LEVEL)                         | k=2            |            |             |           |                       |                          | 23.7                           | 23.0                             |                |

The above measurement uncertainties are according to IEEE Std. 1528-2003

|                                  |                                                                                     |                                                                           |  |  |  |                                                                                       |                                 |
|----------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--|--|--|---------------------------------------------------------------------------------------|---------------------------------|
| FCC ID: A3LGTP7500               |  | SAR COMPLIANCE REPORT                                                     |  |  |  |  | Reviewed by:<br>Quality Manager |
| Filename:<br>0Y1104120700-R2.A3L | Test Dates:<br>04/14/11 - 05/18/11                                                  | EUT Type:<br>850/1900 GPRS/EDGE/WCDMA/HSPA Tablet with Bluetooth and WLAN |  |  |  |                                                                                       | Page 45 of 53                   |

Applicable for 5 GHz:

| a                                                                             | b              | c          | d           | e= f(d,k) | f                  | g                     | h = c x f/e              | i = c x g/e                | k              |
|-------------------------------------------------------------------------------|----------------|------------|-------------|-----------|--------------------|-----------------------|--------------------------|----------------------------|----------------|
| Uncertainty Component                                                         | IEEE 1528 Sec. | Tol. (± %) | Prob. Dist. | Div.      | c <sub>l</sub> 1gm | c <sub>l</sub> 10 gms | 1gm u <sub>l</sub> (± %) | 10gms u <sub>l</sub> (± %) | v <sub>l</sub> |
| <b>Measurement System</b>                                                     |                |            |             |           |                    |                       |                          |                            |                |
| Probe Calibration                                                             | E.2.1          | 6.55       | N           | 1         | 1.0                | 1.0                   | 6.6                      | 6.6                        | ∞              |
| Axial Isotropy                                                                | E.2.2          | 0.25       | N           | 1         | 0.7                | 0.7                   | 0.2                      | 0.2                        | ∞              |
| Hemispherical Isotropy                                                        | E.2.2          | 1.3        | N           | 1         | 1.0                | 1.0                   | 1.3                      | 1.3                        | ∞              |
| Boundary Effect                                                               | E.2.3          | 0.4        | N           | 1         | 1.0                | 1.0                   | 0.4                      | 0.4                        | ∞              |
| Linearity                                                                     | E.2.4          | 0.3        | N           | 1         | 1.0                | 1.0                   | 0.3                      | 0.3                        | ∞              |
| System Detection Limits                                                       | E.2.5          | 5.1        | N           | 1         | 1.0                | 1.0                   | 5.1                      | 5.1                        | ∞              |
| Readout Electronics                                                           | E.2.6          | 1.0        | N           | 1         | 1.0                | 1.0                   | 1.0                      | 1.0                        | ∞              |
| Response Time                                                                 | E.2.7          | 0.8        | R           | 1.73      | 1.0                | 1.0                   | 0.5                      | 0.5                        | ∞              |
| Integration Time                                                              | E.2.8          | 2.6        | R           | 1.73      | 1.0                | 1.0                   | 1.5                      | 1.5                        | ∞              |
| RF Ambient Conditions                                                         | E.6.1          | 3.0        | R           | 1.73      | 1.0                | 1.0                   | 1.7                      | 1.7                        | ∞              |
| Probe Positioner Mechanical Tolerance                                         | E.6.2          | 0.4        | R           | 1.73      | 1.0                | 1.0                   | 0.2                      | 0.2                        | ∞              |
| Probe Positioning w/ respect to Phantom                                       | E.6.3          | 2.9        | R           | 1.73      | 1.0                | 1.0                   | 1.7                      | 1.7                        | ∞              |
| Extrapolation, Interpolation & Integration algorithms for Max. SAR Evaluation | E.5            | 1.0        | R           | 1.73      | 1.0                | 1.0                   | 0.6                      | 0.6                        | ∞              |
| <b>Test Sample Related</b>                                                    |                |            |             |           |                    |                       |                          |                            |                |
| Test Sample Positioning                                                       | E.4.2          | 6.0        | N           | 1         | 1.0                | 1.0                   | 6.0                      | 6.0                        | 287            |
| Device Holder Uncertainty                                                     | E.4.1          | 3.32       | R           | 1.73      | 1.0                | 1.0                   | 1.9                      | 1.9                        | ∞              |
| Output Power Variation - SAR drift measurement                                | 6.6.2          | 5.0        | R           | 1.73      | 1.0                | 1.0                   | 2.9                      | 2.9                        | ∞              |
| <b>Phantom &amp; Tissue Parameters</b>                                        |                |            |             |           |                    |                       |                          |                            |                |
| Phantom Uncertainty (Shape & Thickness tolerances)                            | E.3.1          | 4.0        | R           | 1.73      | 1.0                | 1.0                   | 2.3                      | 2.3                        | ∞              |
| Liquid Conductivity - deviation from target values                            | E.3.2          | 5.0        | R           | 1.73      | 0.64               | 0.43                  | 1.8                      | 1.2                        | ∞              |
| Liquid Conductivity - measurement uncertainty                                 | E.3.3          | 3.8        | N           | 1         | 0.64               | 0.43                  | 2.4                      | 1.6                        | 6              |
| Liquid Permittivity - deviation from target values                            | E.3.2          | 5.0        | R           | 1.73      | 0.60               | 0.49                  | 1.7                      | 1.4                        | ∞              |
| Liquid Permittivity - measurement uncertainty                                 | E.3.3          | 4.5        | N           | 1         | 0.60               | 0.49                  | 2.7                      | 2.2                        | 6              |
| <b>Combined Standard Uncertainty (k=1)</b>                                    |                |            |             |           |                    |                       | 12.4                     | 12.0                       | 299            |
| <b>Expanded Uncertainty (95% CONFIDENCE LEVEL)</b>                            |                |            |             |           |                    |                       | 24.7                     | 24.0                       |                |

The above measurement uncertainties are according to IEEE Std. 1528-2003

|                                  |                                                                                     |                                                                           |  |  |  |                                                                                       |                                 |
|----------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--|--|--|---------------------------------------------------------------------------------------|---------------------------------|
| FCC ID: A3LGTP7500               |  | SAR COMPLIANCE REPORT                                                     |  |  |  |  | Reviewed by:<br>Quality Manager |
| Filename:<br>0Y1104120700-R2.A3L | Test Dates:<br>04/14/11 - 05/18/11                                                  | EUT Type:<br>850/1900 GPRS/EDGE/WCDMA/HSPA Tablet with Bluetooth and WLAN |  |  |  |                                                                                       | Page 46 of 53                   |

## 18 CONCLUSION

### 18.1 Measurement Conclusion

The SAR evaluation indicates that the EUT complies with the RF radiation exposure limits of the FCC and Industry Canada, with respect to all parameters subject to this test. These measurements were taken to simulate the RF effects of RF exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The results and statements relate only to the item(s) tested.

Please note that the absorption and distribution of electromagnetic energy in the body are very complex phenomena that depend on the mass, shape, and size of the body, the orientation of the body with respect to the field vectors, and the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because various factors may interact with one another to vary the specific biological outcome of an exposure to electromagnetic fields, any protection guide should consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables. [3]

|                                  |                                                                                     |                                                                           |                                                                                       |                                 |
|----------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------|
| FCC ID: A3LGTP7500               |  | SAR COMPLIANCE REPORT                                                     |  | Reviewed by:<br>Quality Manager |
| Filename:<br>0Y1104120700-R2.A3L | Test Dates:<br>04/14/11 - 05/18/11                                                  | EUT Type:<br>850/1900 GPRS/EDGE/WCDMA/HSPA Tablet with Bluetooth and WLAN |                                                                                       | Page 47 of 53                   |

## 19 REFERENCES

- [1] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radiofrequency Radiation, Aug. 1996.
- [2] ANSI/IEEE C95.1-2005, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 300kHz to 100GHz, New York: IEEE, 2006.
- [3] ANSI/IEEE C95.1-1992, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 300kHz to 100GHz, New York: IEEE, Sept. 1992.
- [4] ANSI/IEEE C95.3-2002, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave, New York: IEEE, December 2002.
- [5] Federal Communications Commission, OET Bulletin 65 (Edition 97-01), Supplement C (Edition 01-01), Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields, June 2001.
- [6] IEEE Standards Coordinating Committee 34 – IEEE Std. 1528-2003, Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices.
- [7] NCRP, National Council on Radiation Protection and Measurements, Biological Effects and Exposure Criteria for RadioFrequency Electromagnetic Fields, NCRP Report No. 86, 1986. Reprinted Feb. 1995.
- [8] T. Schmid, O. Egger, N. Kuster, Automated E-field scanning system for dosimetric assessments, IEEE Transaction on Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113.
- [9] K. Pokovic, T. Schmid, N. Kuster, Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies, ICECOM97, Oct. 1997, pp. 120-124.
- [10] K. Pokovic, T. Schmid, and N. Kuster, E-field Probe with improved isotropy in brain simulating liquids, Proceedings of the ELMAR, Zadar, Croatia, June 23-25, 1996, pp. 172-175.
- [11] Schmid & Partner Engineering AG, Application Note: Data Storage and Evaluation, June 1998, p2.
- [12] V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, N. Kuster, The Dependence of EM Energy Absorption upon Human Head Modeling at 900 MHz, IEEE Transaction on Microwave Theory and Techniques, vol. 44 no. 10, Oct. 1996, pp. 1865-1873.
- [13] N. Kuster and Q. Balzano, Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300MHz, IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.
- [14] G. Hartsgrove, A. Kraszewski, A. Surowiec, Simulated Biological Materials for Electromagnetic Radiation Absorption Studies, University of Ottawa, Bioelectromagnetics, Canada: 1987, pp. 29-36.
- [15] Q. Balzano, O. Garay, T. Manning Jr., Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995.
- [16] W. Gander, Computermathematick, Birkhaeuser, Basel, 1992.
- [17] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in C, The Art of Scientific Computing, Second edition, Cambridge University Press, 1992.

|                                  |                                                                                     |                                                                           |                                                                                       |                                 |
|----------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------|
| FCC ID: A3LGTP7500               |  | SAR COMPLIANCE REPORT                                                     |  | Reviewed by:<br>Quality Manager |
| Filename:<br>0Y1104120700-R2.A3L | Test Dates:<br>04/14/11 - 05/18/11                                                  | EUT Type:<br>850/1900 GPRS/EDGE/WCDMA/HSPA Tablet with Bluetooth and WLAN |                                                                                       | Page 48 of 53                   |

- [18] Federal Communications Commission, OET Bulletin 65, Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields. Supplement C, Dec. 1997.
- [19] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652.
- [20] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic Fields High-frequency: 10kHz-300GHz, Jan. 1995.
- [21] Prof. Dr. Niels Kuster, ETH, Eidgenössische Technische Hochschule Zürich, Dosimetric Evaluation of the Cellular Phone.
- [22] IEC 62209-1, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Human models, instrumentation, and procedures - Part 1: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz), Feb. 2005.
- [23] Industry Canada RSS-102 Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands) Issue 4, March 2010.
- [24] Health Canada Safety Code 6 Limits of Human Exposure to Radio Frequency Electromagnetic Fields in the Frequency Range from 3 kHz – 300 GHz, 2009
- [25] FCC Public Notice DA-02-1438. Office of Engineering and Technology Announces a Transition Period for the Phantom Requirements of Supplement C to OET Bulletin 65, June 19, 2002
- [26] FCC SAR Measurement Procedures for 3G Devices KDB Publication 941225
- [27] SAR Measurement procedures for IEEE 802.11a/b/g KDB Publication 248227
- [28] FCC SAR Considerations for Handsets with Multiple Transmitters and Antennas, KDB Publication 648474
- [29] FCC Application Note for SAR Probe Calibration and System Verification Consideration for Measurements at 150 MHz – 3 GHz, KDB Publication 450824
- [30] FCC SAR Evaluation Considerations for Laptop Computers with Antennas Built-in on Display Screens, KDB Publication 616217
- [31] FCC SAR Measurement Requirements for 3 – 6 GHz, KDB Publication 865664
- [32] FCC Mobile Portable RF Exposure Procedure, KDB Publication 447498
- [33] FCC SAR Procedures for Dongle Transmitters, KDB Publication 447498
- [34] Anexo à Resolução No. 533, de 10 de Setembro de 2009.
- [35] FCC SAR Test Considerations for LTE Handsets and Data Modems, KDB Publication 941225.
- [36] IEC 62209-2, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Human models, instrumentation, and procedures - Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz), Mar. 2010.
- [37] FCC D06 Hot Spot SAR v01, KDB Publication 941225.

|                                  |                                                                                                                  |                                                                           |                                                                                       |                                 |
|----------------------------------|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------|
| FCC ID: A3LGTP7500               |  <b>SAR COMPLIANCE REPORT</b> |                                                                           |  | Reviewed by:<br>Quality Manager |
| Filename:<br>0Y1104120700-R2.A3L | Test Dates:<br>04/14/11 - 05/18/11                                                                               | EUT Type:<br>850/1900 GPRS/EDGE/WCDMA/HSPA Tablet with Bluetooth and WLAN | Page 49 of 53                                                                         |                                 |

## **APPENDIX A: SAR TEST DATA**

# PCTEST ENGINEERING LABORATORY, INC.

**DUT: A3LGTP7500; Type: 850/1900 GPRS/EDGE/HSPA Tablet  
with Bluetooth and WLAN; Serial: 357750040001041**

Communication System: GSM850 GPRS; 4 Tx slots; Frequency: 836.6 MHz; Duty Cycle: 1:2.076

Medium: 835 Body Medium parameters used (interpolated):

$f = 836.6$  MHz;  $\sigma = 0.966$  mho/m;  $\epsilon_r = 53.2$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section; Space: 0.0 cm

Test Date: 04-20-2011; Ambient Temp: 24.2°C; Tissue Temp: 22.5°C

Probe: EX3DV4 - SN3561; ConvF(8.09, 8.09, 8.09); Calibrated: 8/19/2010

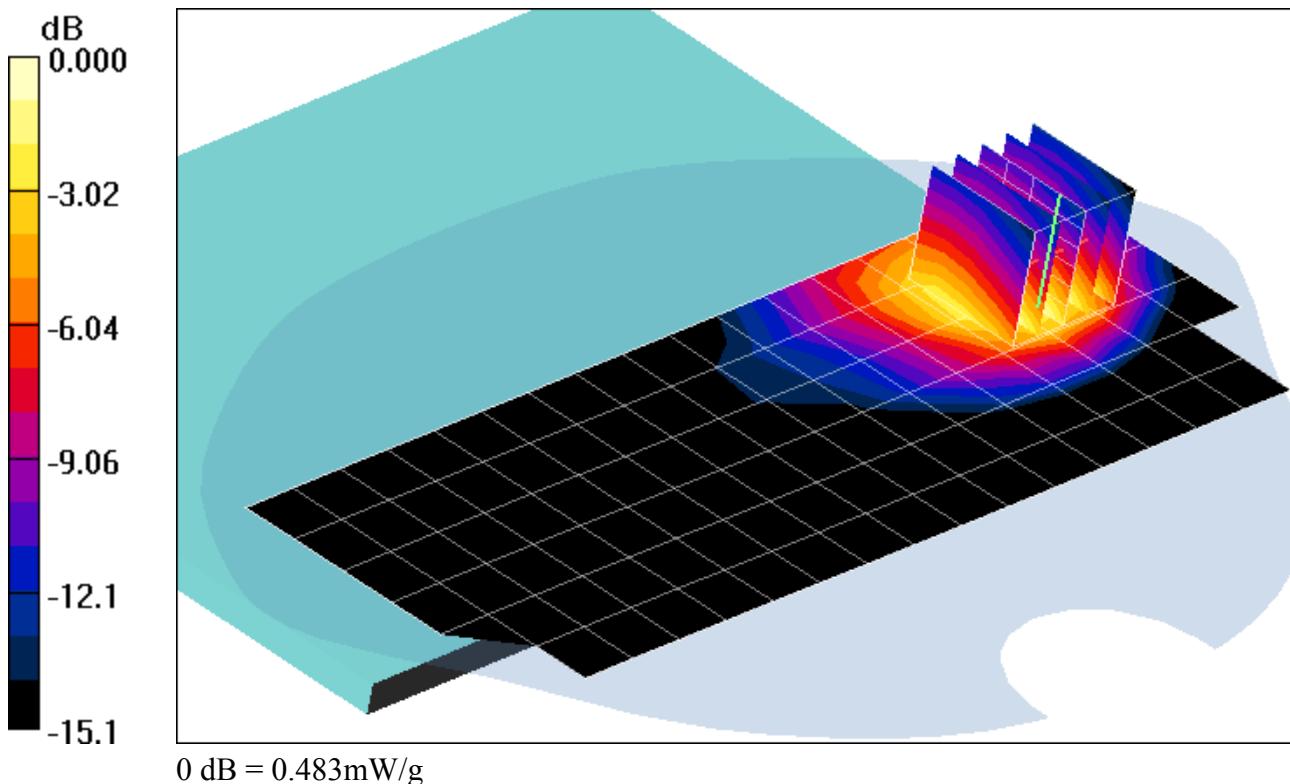
Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn649; Calibrated: 2/21/2011

Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1406

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

**Mode: GPRS 850, Body SAR, Back side, Mid.ch, 4 Tx Slots**


**Area Scan (7x18x1):** Measurement grid: dx=15mm, dy=15mm

**Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 22.2 V/m

Peak SAR (extrapolated) = 0.797 W/kg

**SAR(1 g) = 0.457 mW/g; SAR(10 g) = 0.268 mW/g**



# PCTEST ENGINEERING LABORATORY, INC.

**DUT: A3LGTP7500; Type: 850/1900 GPRS/EDGE/HSPA Tablet  
with Bluetooth and WLAN; Serial: 357750040001041**

Communication System: GSM850 GPRS; 4 Tx slots; Frequency: 836.6 MHz; Duty Cycle: 1:2.076

Medium: 835 Body Medium parameters used (interpolated):

$f = 836.6$  MHz;  $\sigma = 0.966$  mho/m;  $\epsilon_r = 53.2$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section; Space: 0.0 cm

Test Date: 04-20-2011; Ambient Temp: 24.2°C; Tissue Temp: 22.5°C

Probe: EX3DV4 - SN3561; ConvF(8.09, 8.09, 8.09); Calibrated: 8/19/2010

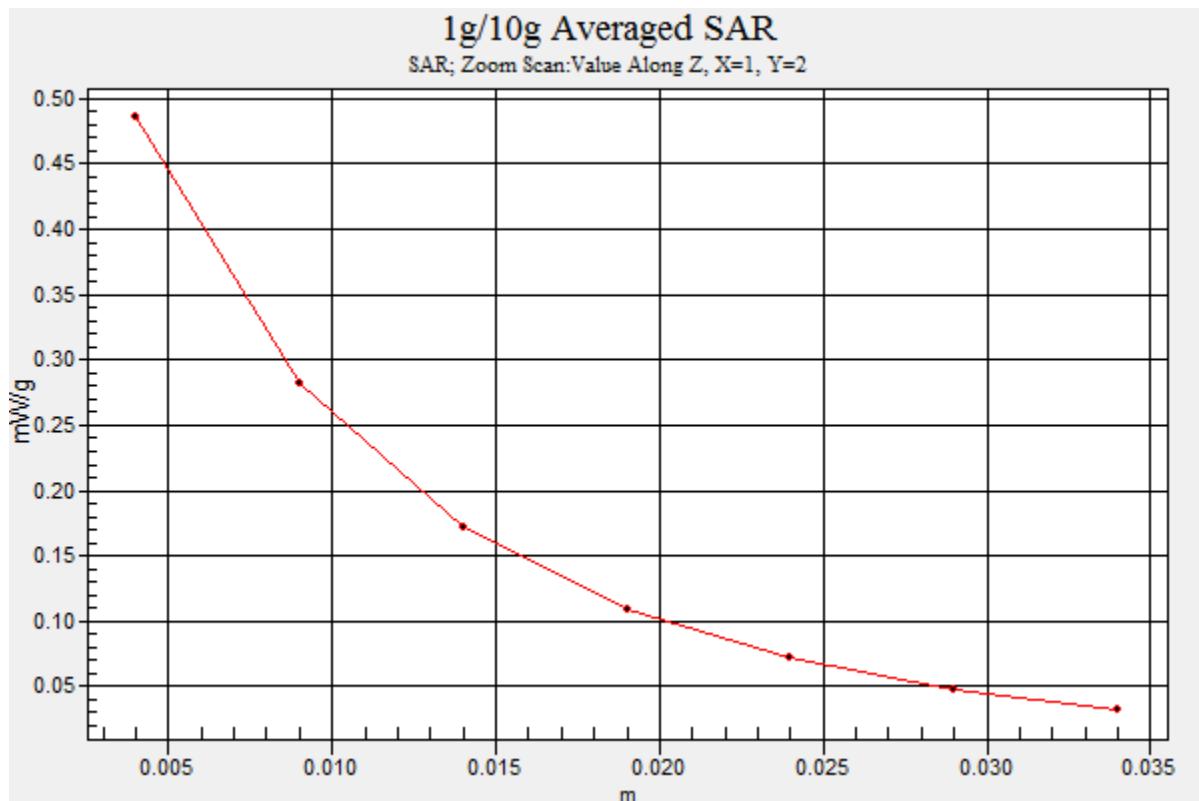
Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn649; Calibrated: 2/21/2011

Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1406

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

## **Mode: GPRS 850, Body SAR, Back side, Mid.ch, 4 Tx Slots**


**Area Scan (7x18x1):** Measurement grid: dx=15mm, dy=15mm

**Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 22.2 V/m

Peak SAR (extrapolated) = 0.797 W/kg

**SAR(1 g) = 0.457 mW/g; SAR(10 g) = 0.268 mW/g**

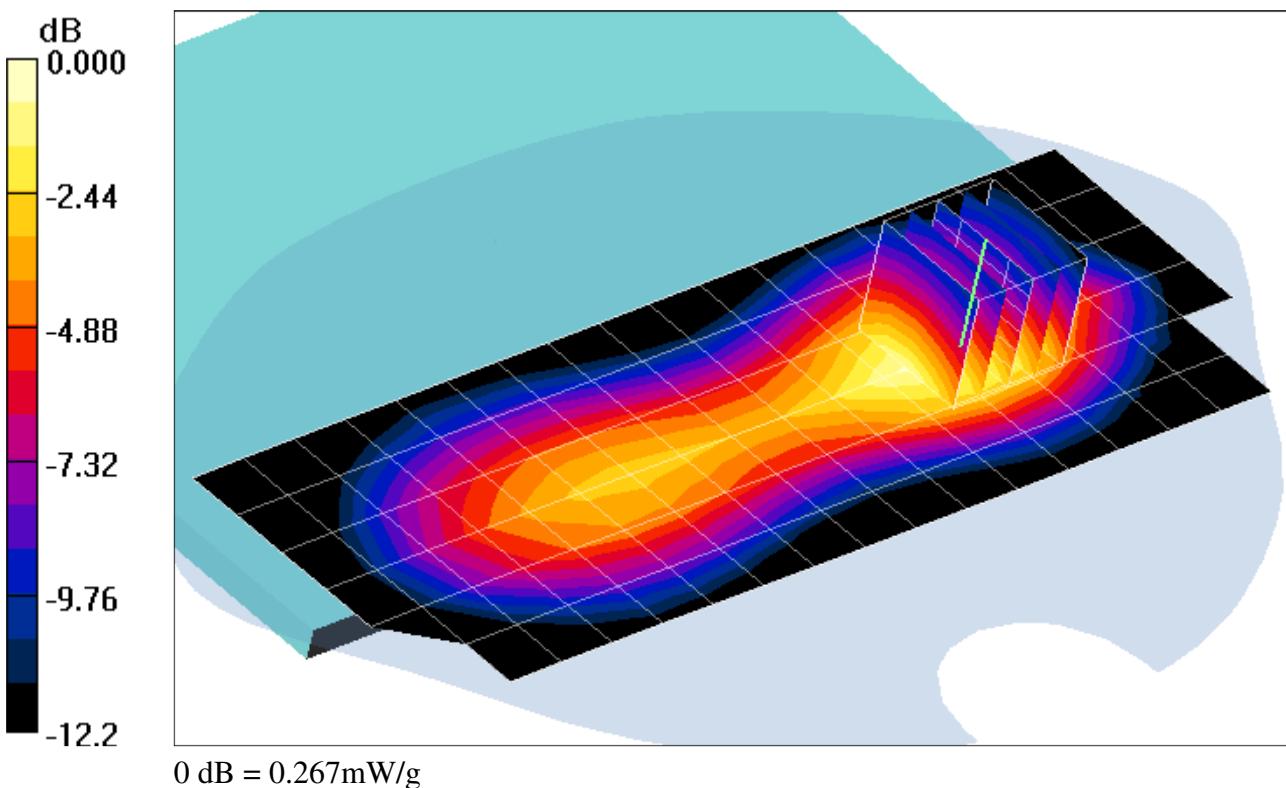


# PCTEST ENGINEERING LABORATORY, INC.

**DUT: A3LGTP7500; Type: 850/1900 GPRS/EDGE/HSPA Tablet  
with Bluetooth and WLAN; Serial: 357750040001058**

Communication System: GSM850 GPRS; 4 Tx slots; Frequency: 836.6 MHz; Duty Cycle: 1:2.076  
Medium: 835 Body Medium parameters used (interpolated):  
 $f = 836.6 \text{ MHz}$ ;  $\sigma = 0.966 \text{ mho/m}$ ;  $\epsilon_r = 53.2$ ;  $\rho = 1000 \text{ kg/m}^3$   
Phantom section: Flat Section; Space: 0.5 cm

Test Date: 04-20-2011; Ambient Temp: 24.2°C; Tissue Temp: 22.5°C


Probe: EX3DV4 - SN3561; ConvF(8.09, 8.09, 8.09); Calibrated: 8/19/2010  
Sensor-Surface: 4mm (Mechanical Surface Detection)  
Electronics: DAE4 Sn649; Calibrated: 2/21/2011  
Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1406

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

**Mode: GPRS 850, Body SAR, Top side, Mid.ch, 4 Tx Slots**

**Area Scan (7x18x1):** Measurement grid:  $dx=15\text{mm}$ ,  $dy=15\text{mm}$

**Zoom Scan (5x5x7)/Cube 0:** Measurement grid:  $dx=8\text{mm}$ ,  $dy=8\text{mm}$ ,  $dz=5\text{mm}$   
Reference Value = 16.4 V/m  
Peak SAR (extrapolated) = 0.376 W/kg  
**SAR(1 g) = 0.247 mW/g; SAR(10 g) = 0.157 mW/g**



# PCTEST ENGINEERING LABORATORY, INC.

**DUT: A3LGTP7500; Type: 850/1900 GPRS/EDGE/HSPA Tablet  
with Bluetooth and WLAN; Serial: 357750040001058**

Communication System: GSM850 GPRS; 4 Tx slots; Frequency: 836.6 MHz; Duty Cycle: 1:2.076

Medium: 835 Body Medium parameters used (interpolated):

$f = 836.6$  MHz;  $\sigma = 0.966$  mho/m;  $\epsilon_r = 53.2$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section; Space: 0.0 cm

Test Date: 04-20-2011; Ambient Temp: 24.2°C; Tissue Temp: 22.5°C

Probe: EX3DV4 - SN3561; ConvF(8.09, 8.09, 8.09); Calibrated: 8/19/2010

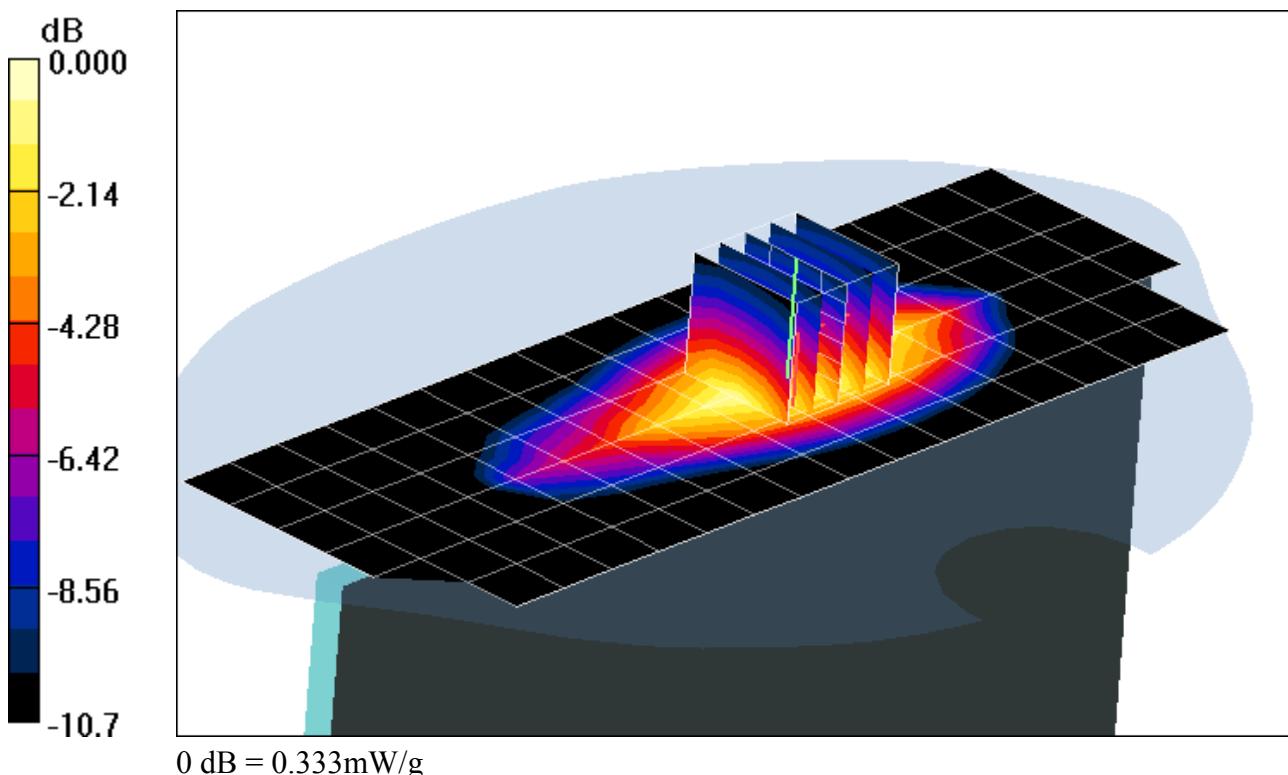
Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn649; Calibrated: 2/21/2011

Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1406

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

**Mode: GPRS 850, Body SAR, Right side, Mid.ch, 4 Tx Slots**


**Area Scan (7x18x1):** Measurement grid: dx=15mm, dy=15mm

**Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 18.4 V/m

Peak SAR (extrapolated) = 0.484 W/kg

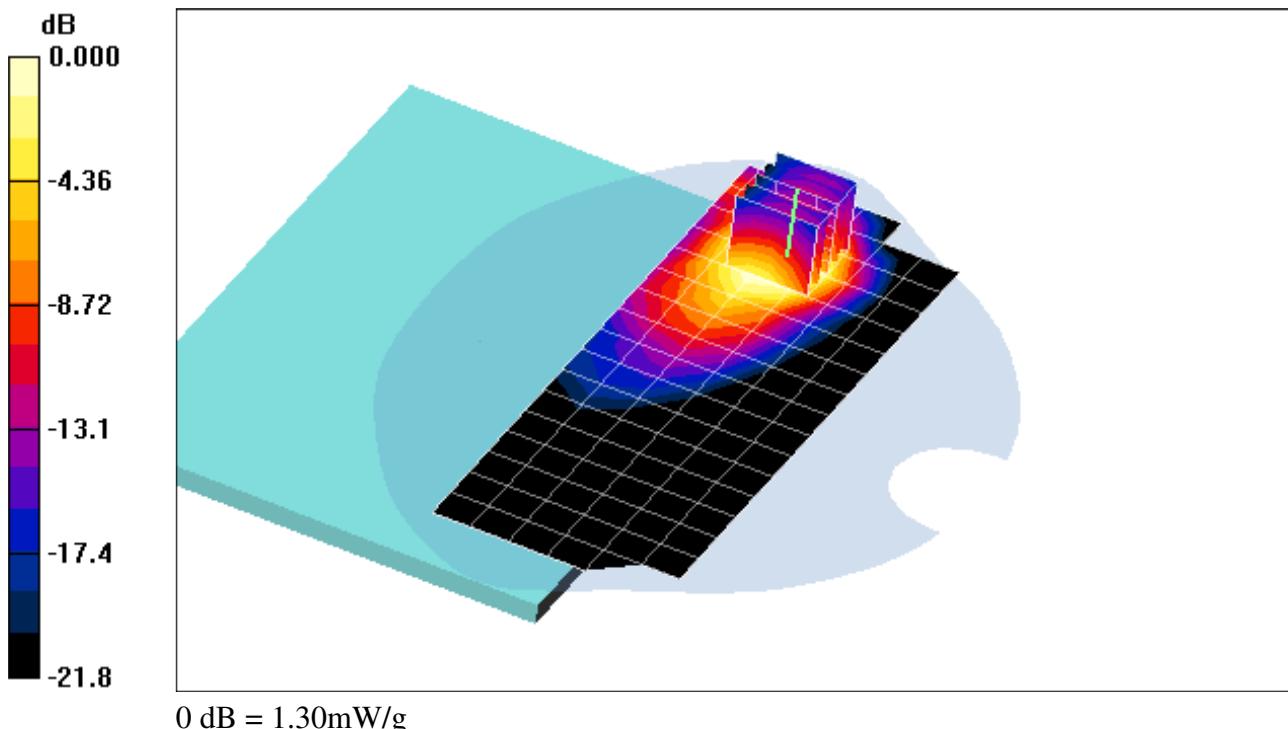
SAR(1 g) = 0.305 mW/g; SAR(10 g) = 0.195 mW/g



# PCTEST ENGINEERING LABORATORY, INC.

**DUT: A3LGTP7500; Type: 850/1900 GPRS/EDGE/HSPA Tablet  
with Bluetooth and WLAN; Serial: 57997226222327:**

Communication System: GSM1900 GPRS; 4 Tx slots; Frequency: 1909.8 MHz; Duty Cycle: 1:2.076  
Medium: 1900 Body Medium parameters used:  
 $f = 1910 \text{ MHz}$ ;  $\sigma = 1.516 \text{ mho/m}$ ;  $\epsilon_r = 50.8$ ;  $\rho = 1000 \text{ kg/m}^3$   
Phantom section: Flat Section; Space: 1.0 cm


Test Date: 05-18-2011; Ambient Temp: 24.1°C; Tissue Temp: 22.5°C

Probe: EX3DV4 - SN3561; ConvF(6.59, 6.59, 6.59); Calibrated: 8/19/2010  
Sensor-Surface: 4mm (Mechanical Surface Detection)  
Electronics: DAE4 Sn649; Calibrated: 2/21/2011  
Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1406  
Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

**Mode: GPRS 1900, Body SAR, Back side, High.ch, 4 Tx Slots**

**Area Scan (7x18x1):** Measurement grid:  $dx=15\text{mm}$ ,  $dy=15\text{mm}$

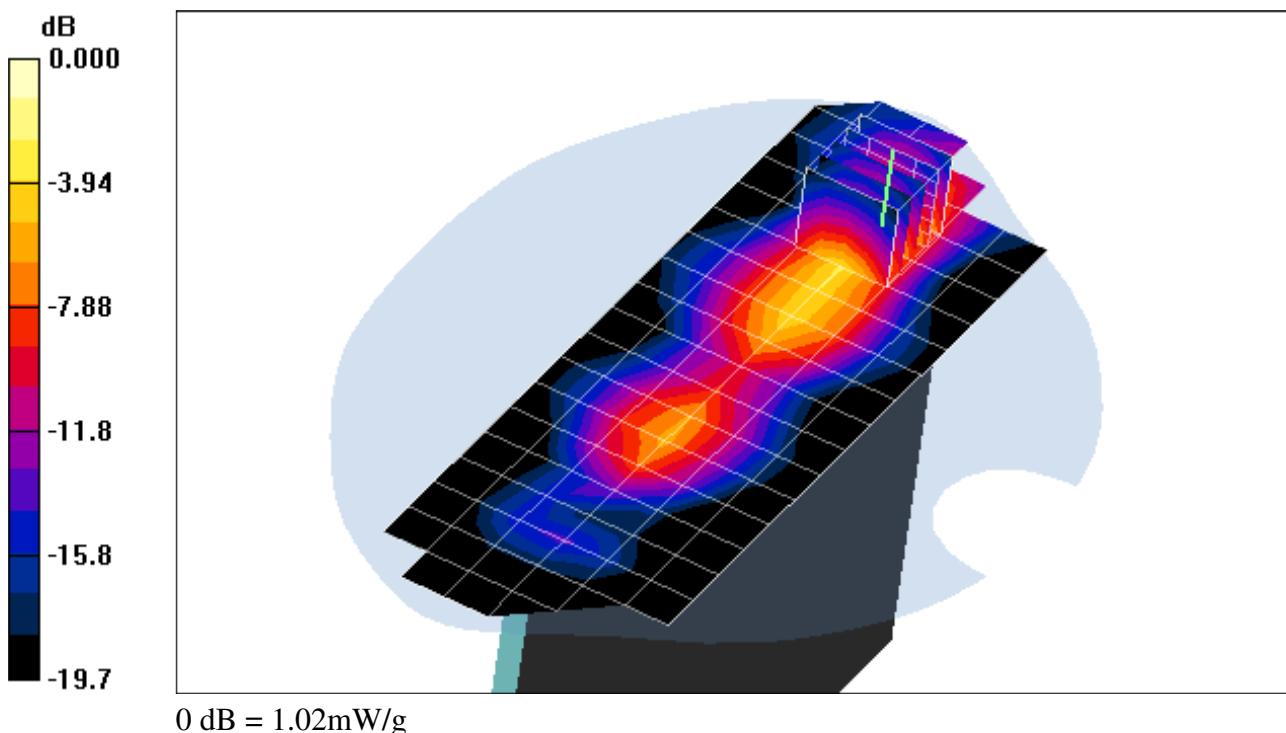
**Zoom Scan (5x5x7)/Cube 0:** Measurement grid:  $dx=8\text{mm}$ ,  $dy=8\text{mm}$ ,  $dz=5\text{mm}$   
Reference Value = 29.1 V/m  
Peak SAR (extrapolated) = 2.32 W/kg  
 $\text{SAR}(1 \text{ g}) = 1.15 \text{ mW/g}$ ;  $\text{SAR}(10 \text{ g}) = 0.533 \text{ mW/g}$



# PCTEST ENGINEERING LABORATORY, INC.

**DUT: A3LGTP7500; Type: 850/1900 GPRS/EDGE/HSPA Tablet  
with Bluetooth and WLAN; Serial: 357750040001058**

Communication System: GSM1900 GPRS; 4 Tx slots; Frequency: 1909.8 MHz; Duty Cycle: 1:2.076  
Medium: 1900 Body Medium parameters used:  
 $f = 1910 \text{ MHz}$ ;  $\sigma = 1.516 \text{ mho/m}$ ;  $\epsilon_r = 50.8$ ;  $\rho = 1000 \text{ kg/m}^3$   
Phantom section: Flat Section; Space: 0.5 cm


Test Date: 05-18-2011; Ambient Temp: 24.1°C; Tissue Temp: 22.5°C

Probe: EX3DV4 - SN3561; ConvF(6.59, 6.59, 6.59); Calibrated: 8/19/2010  
Sensor-Surface: 4mm (Mechanical Surface Detection)  
Electronics: DAE4 Sn649; Calibrated: 2/21/2011  
Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1406  
Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

**Mode: GPRS 1900, Body SAR, Top Side, High.ch, 4 Tx Slots**

**Area Scan (7x20x1):** Measurement grid:  $dx=15\text{mm}$ ,  $dy=15\text{mm}$

**Zoom Scan (5x5x7)/Cube 0:** Measurement grid:  $dx=8\text{mm}$ ,  $dy=8\text{mm}$ ,  $dz=5\text{mm}$   
Reference Value = 24.6 V/m  
Peak SAR (extrapolated) = 1.76 W/kg  
**SAR(1 g) = 0.897 mW/g; SAR(10 g) = 0.420 mW/g**



# PCTEST ENGINEERING LABORATORY, INC.

**DUT: A3LGTP7500; Type: 850/1900 GPRS/EDGE/HSPA Tablet  
with Bluetooth and WLAN; Serial: 357750040001058**

Communication System: GSM1900 GPRS; 4 Tx slots; Frequency: 1880 MHz; Duty Cycle: 1:2.076

Medium: 1900 Body Medium parameters used:

$f = 1880 \text{ MHz}$ ;  $\sigma = 1.45 \text{ mho/m}$ ;  $\epsilon_r = 50.9$ ;  $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section; Space: 0.0 cm

Test Date: 05-18-2011; Ambient Temp: 24.1°C; Tissue Temp: 22.5°C

Probe: EX3DV4 - SN3561; ConvF(6.59, 6.59, 6.59); Calibrated: 8/19/2010

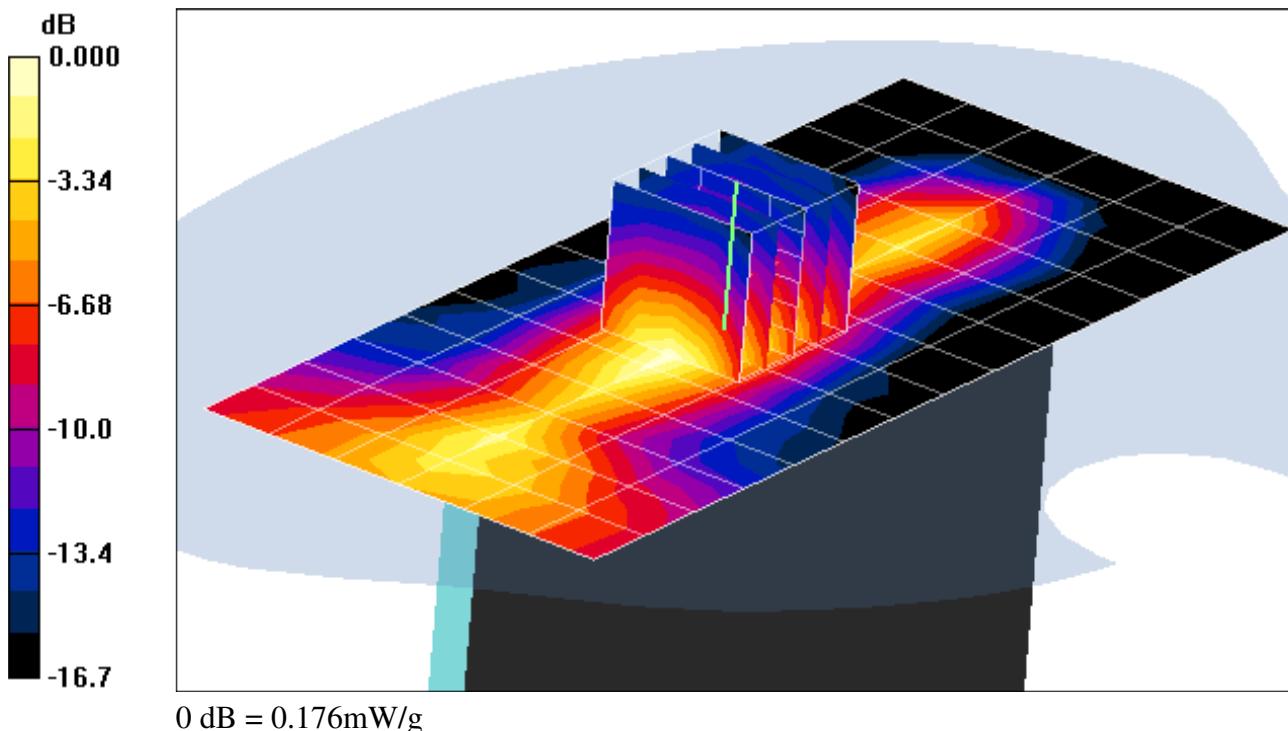
Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn649; Calibrated: 2/21/2011

Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1406

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

**Mode: GPRS 1900, Body SAR, Right side, Mid.ch, 4 Tx Slots**


**Area Scan (7x15x1):** Measurement grid:  $dx=15\text{mm}$ ,  $dy=15\text{mm}$

**Zoom Scan (5x5x7)/Cube 0:** Measurement grid:  $dx=8\text{mm}$ ,  $dy=8\text{mm}$ ,  $dz=5\text{mm}$

Reference Value = 11.1 V/m

Peak SAR (extrapolated) = 0.300 W/kg

**SAR(1 g) = 0.158 mW/g; SAR(10 g) = 0.083 mW/g**



# PCTEST ENGINEERING LABORATORY, INC.

**DUT: A3LGTP7500; Type: 850/1900 GPRS/EDGE/HSPA Tablet  
with Bluetooth and WLAN; Serial: 357750040001041**

Communication System: WCDMA850; Frequency: 836.6 MHz; Duty Cycle: 1:1

Medium: 835 Body Medium parameters used (interpolated):

$f = 836.6$  MHz;  $\sigma = 0.937$  mho/m;  $\epsilon_r = 52.5$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section; Space: 0.0 cm

Test Date: 04-25-2011; Ambient Temp: 23.8°C; Tissue Temp: 22.6°C

Probe: EX3DV4 - SN3561; ConvF(8.09, 8.09, 8.09); Calibrated: 8/19/2010

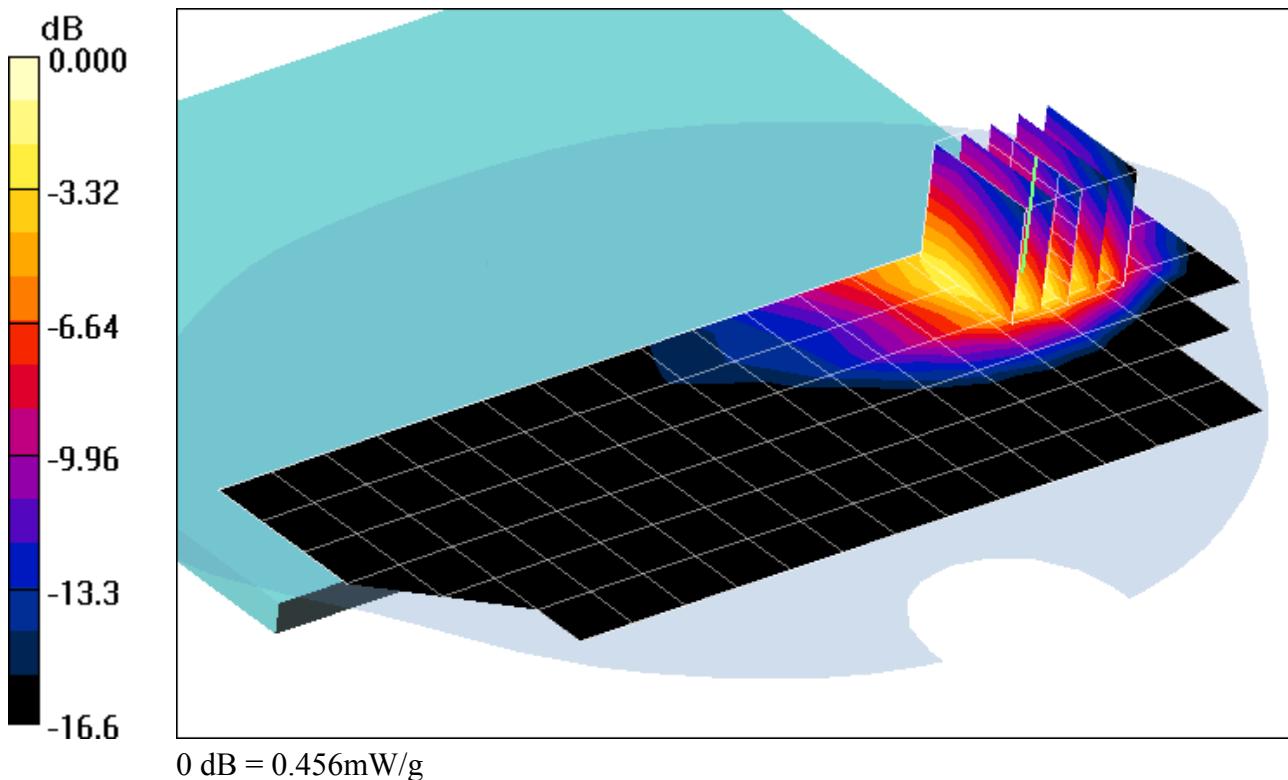
Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn649; Calibrated: 2/21/2011

Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1406

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

**Mode: WCDMA 850, Body SAR, Back side, Mid.ch**


**Area Scan (7x18x1):** Measurement grid: dx=15mm, dy=15mm

**Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 20.8 V/m

Peak SAR (extrapolated) = 0.690 W/kg

**SAR(1 g) = 0.407 mW/g; SAR(10 g) = 0.232 mW/g**



# PCTEST ENGINEERING LABORATORY, INC.

**DUT: A3LGTP7510; Type: 850/1900 GPRS/EDGE/HSPA Tablet  
with Bluetooth and WLAN; Serial: 357750040001058**

Communication System: WCDMA850; Frequency: 836.6 MHz; Duty Cycle: 1:1

Medium: 835 Body Medium parameters used (interpolated):

$f = 836.6$  MHz;  $\sigma = 0.966$  mho/m;  $\epsilon_r = 53.2$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section; Space: 0.5 cm

Test Date: 04-20-2011; Ambient Temp: 24.2°C; Tissue Temp: 22.5°C

Probe: EX3DV4 - SN3561; ConvF(8.09, 8.09, 8.09); Calibrated: 8/19/2010

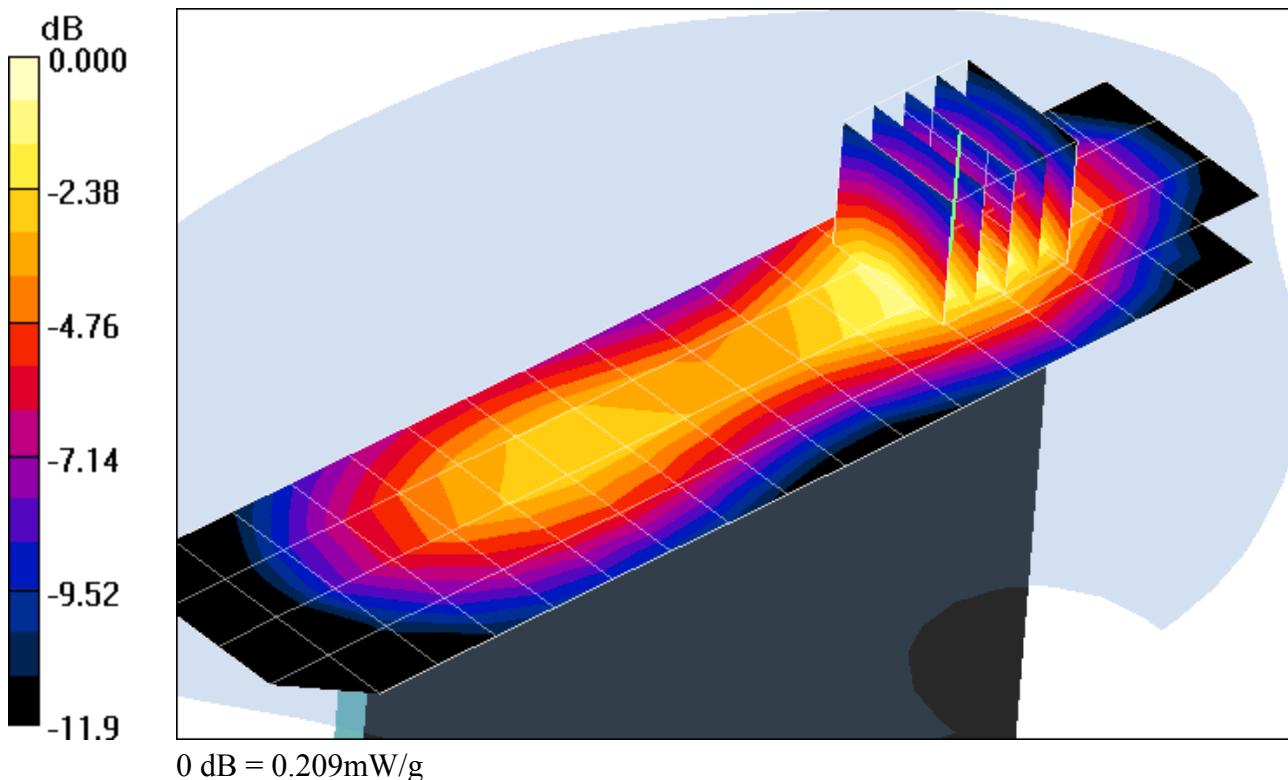
Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn649; Calibrated: 2/21/2011

Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1406

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

**Mode: WCDMA 850, Body SAR, Top side, Mid.ch**


**Area Scan (5x18x1):** Measurement grid: dx=15mm, dy=15mm

**Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 14.0 V/m

Peak SAR (extrapolated) = 0.288 W/kg

SAR(1 g) = 0.192 mW/g; SAR(10 g) = 0.124 mW/g



# PCTEST ENGINEERING LABORATORY, INC.

**DUT: A3LGTP7510; Type: 850/1900 GPRS/EDGE/HSPA Tablet with Bluetooth and WLAN; Serial: 357750040001058**

Communication System: WCDMA850; Frequency: 836.6 MHz; Duty Cycle: 1:1

Medium: 835 Body Medium parameters used (interpolated):

$f = 836.6$  MHz;  $\sigma = 0.966$  mho/m;  $\epsilon_r = 53.2$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section; Space: 0.0 cm

Test Date: 04-20-2011; Ambient Temp: 24.2°C; Tissue Temp: 22.5°C

Probe: EX3DV4 - SN3561; ConvF(8.09, 8.09, 8.09); Calibrated: 8/19/2010

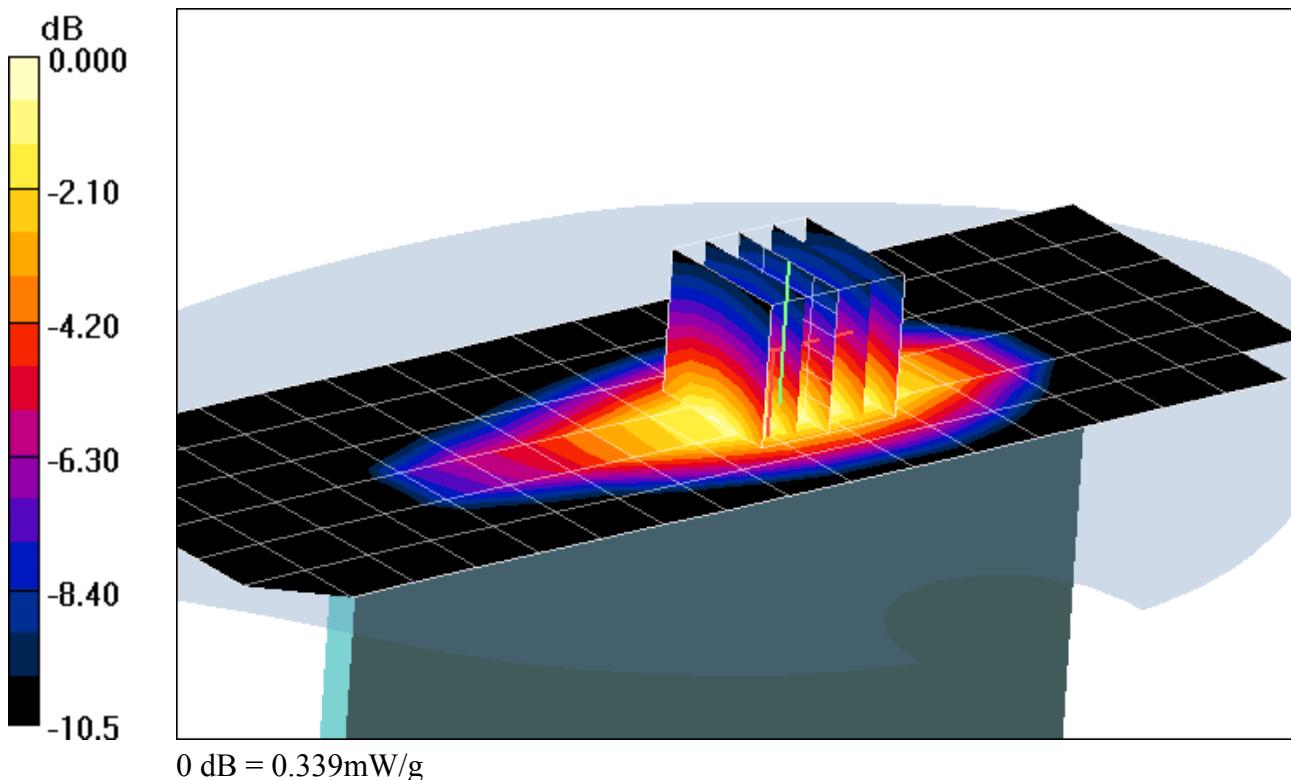
Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn649; Calibrated: 2/21/2011

Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1406

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

**Mode: WCDMA 850, Body SAR, Right side, Mid.ch**


**Area Scan (7x18x1):** Measurement grid: dx=15mm, dy=15mm

**Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 17.4 V/m

Peak SAR (extrapolated) = 0.487 W/kg

**SAR(1 g) = 0.312 mW/g; SAR(10 g) = 0.202 mW/g**



# PCTEST ENGINEERING LABORATORY, INC.

**DUT: A3LGTP7500; Type: 850/1900 GPRS/EDGE/HSPA Tablet  
with Bluetooth and WLAN; Serial: 357750040001058**

Communication System: WCDMA1900; Frequency: 1852.4 MHz; Duty Cycle: 1:1

Medium: 1900 Body Medium parameters used (interpolated):

$f = 1852.4$  MHz;  $\sigma = 1.482$  mho/m;  $\epsilon_r = 52.8$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 04-25-2011; Ambient Temp: 23.7°C; Tissue Temp: 22.1°C

Probe: EX3DV4 - SN3561; ConvF(6.59, 6.59, 6.59); Calibrated: 8/19/2010

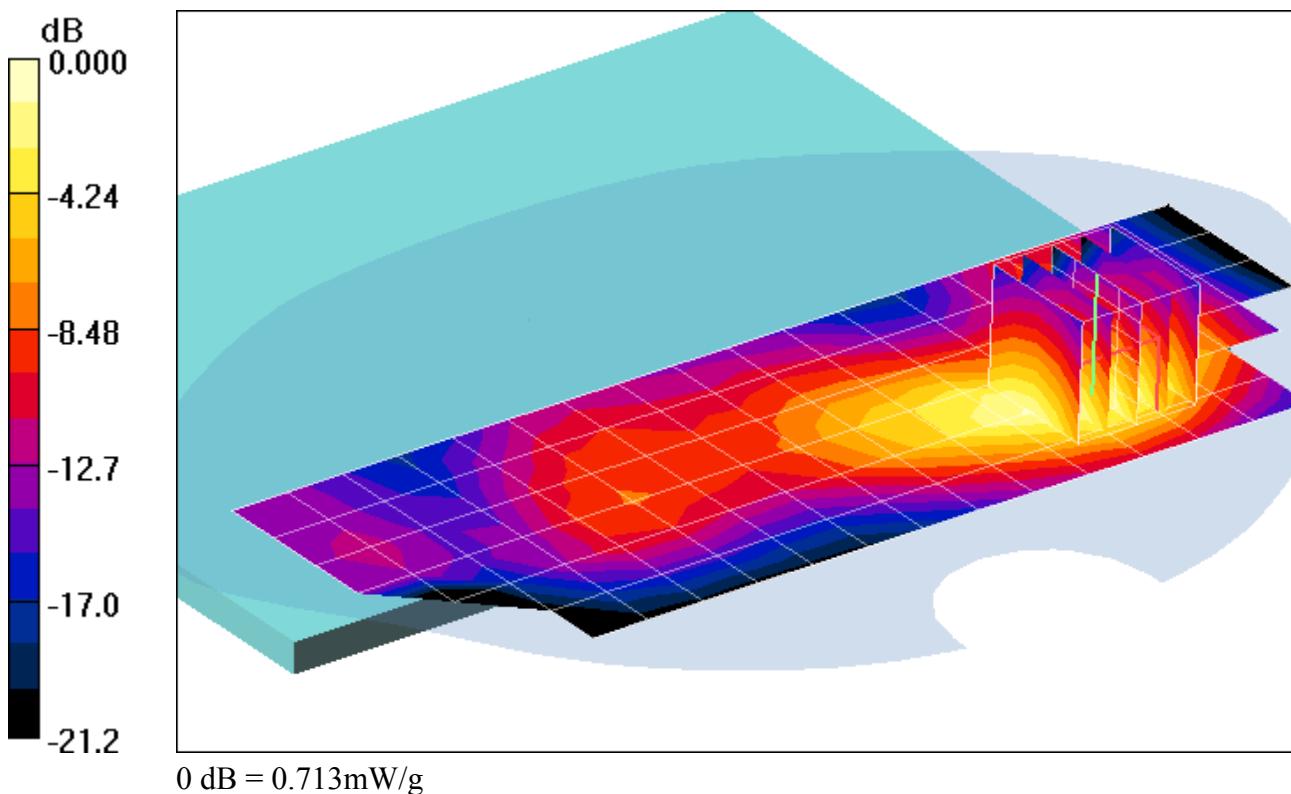
Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn649; Calibrated: 2/21/2011

Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1403

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

**Mode: WCDMA 1900, Body SAR, Back side, Nqy 'ch**


**Area Scan (7x18x1):** Measurement grid: dx=15mm, dy=15mm

**Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 21.3 V/m

Peak SAR (extrapolated) = 1.13 W/kg

**SAR(1 g) = 0.641 mW/g; SAR(10 g) = 0.343 mW/g**



# PCTEST ENGINEERING LABORATORY, INC.

**DUT: A3LGTP7500; Type: 850/1900 GPRS/EDGE/HSPA Tablet with Bluetooth and WLAN; Serial: 357750040001058**

Communication System: WCDMA1900; Frequency: 1907.6 MHz; Duty Cycle: 1:1

Medium: 1900 Body Medium parameters used (interpolated):

$f = 1907.6$  MHz;  $\sigma = 1.54$  mho/m;  $\epsilon_r = 52.54$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section; Space: 0.5 cm

Test Date: 04-25-2011; Ambient Temp: 23.7°C; Tissue Temp: 22.1°C

Probe: EX3DV4 - SN3561; ConvF(6.59, 6.59, 6.59); Calibrated: 8/19/2010

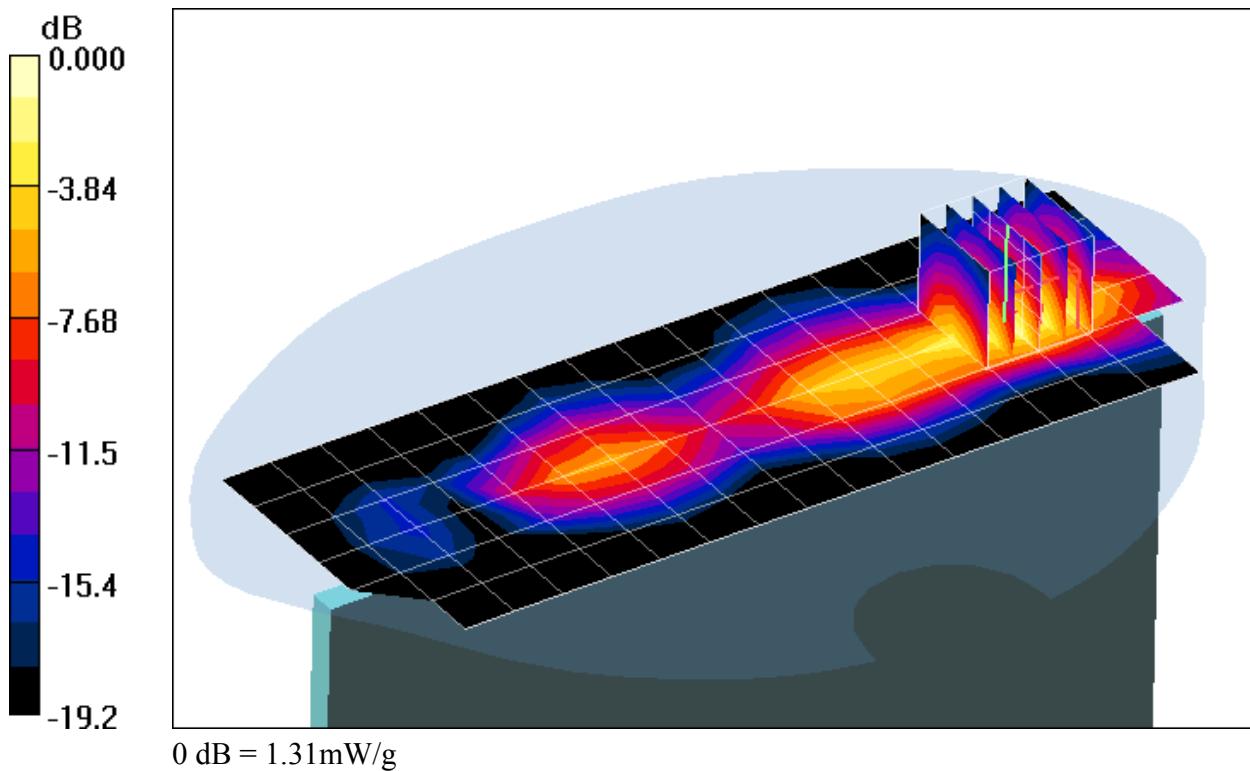
Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn649; Calibrated: 2/21/2011

Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1403

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

**Mode: WCDMA 1900, Body SAR, Top side, High.ch**


**Area Scan (7x18x1):** Measurement grid: dx=15mm, dy=15mm

**Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 29.3 V/m

Peak SAR (extrapolated) = 2.18 W/kg

SAR(1 g) = 1.18 mW/g; SAR(10 g) = 0.583 mW/g



# PCTEST ENGINEERING LABORATORY, INC.

**DUT: A3LGTP7500; Type: 850/1900 GPRS/EDGE/HSPA Tablet  
with Bluetooth and WLAN; Serial: 357750040001058**

Communication System: WCDMA1900; Frequency: 1907.6 MHz; Duty Cycle: 1:1

Medium: 1900 Body Medium parameters used (interpolated):

$$f = 1907.6 \text{ MHz}; \sigma = 1.54 \text{ mho/m}; \epsilon_r = 52.54; \rho = 1000 \text{ kg/m}^3$$

Phantom section: Flat Section; Space: 0.5 cm

Test Date: 04-25-2011; Ambient Temp: 23.7°C; Tissue Temp: 22.1°C

Probe: EX3DV4 - SN3561; ConvF(6.59, 6.59, 6.59); Calibrated: 8/19/2010

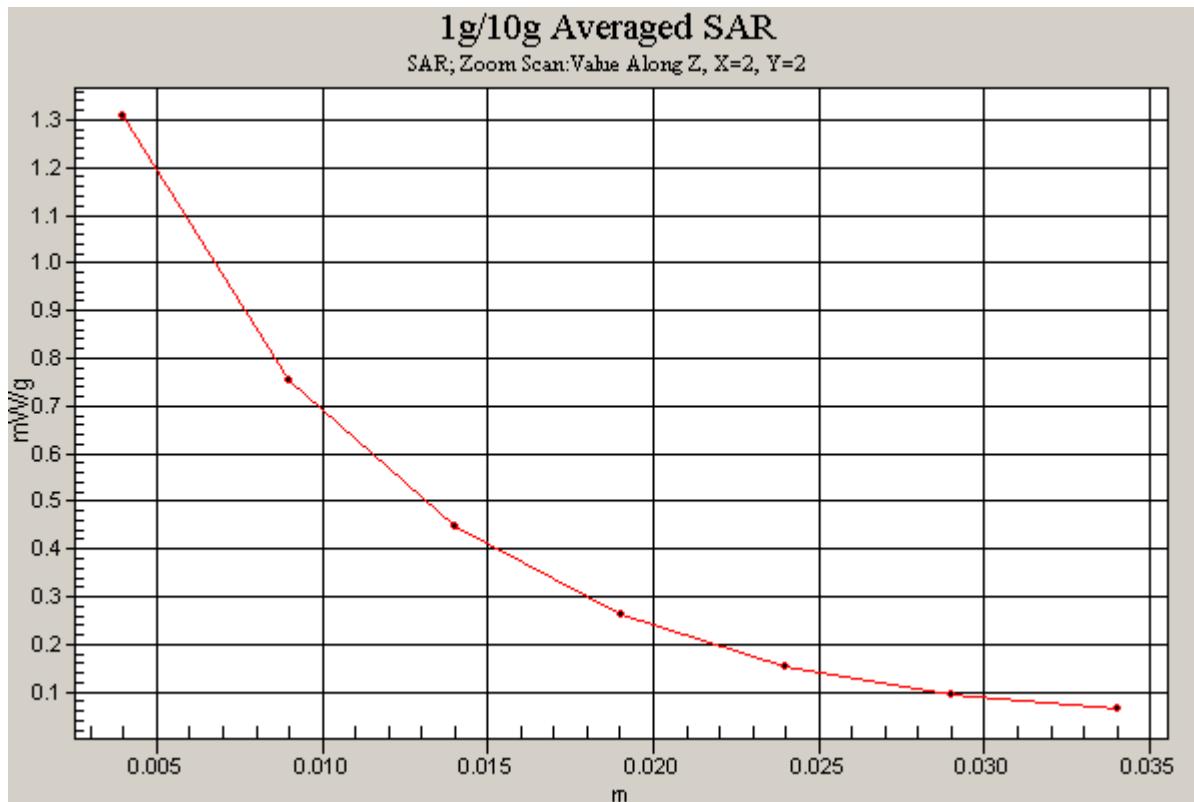
Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn649; Calibrated: 2/21/2011

Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1403

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

## **Mode: WCDMA 1900, Body SAR, Top side, High.ch**


**Area Scan (7x18x1):** Measurement grid: dx=15mm, dy=15mm

**Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 29.3 V/m

Peak SAR (extrapolated) = 2.18 W/kg

**SAR(1 g) = 1.18 mW/g; SAR(10 g) = 0.583 mW/g**



# PCTEST ENGINEERING LABORATORY, INC.

**DUT: A3LGTP7500; Type: 850/1900 GPRS/EDGE/HSPA Tablet  
with Bluetooth and WLAN; Serial: 357750040001058**

Communication System: WCDMA1900; Frequency: 1852.4 MHz; Duty Cycle: 1:1

Medium: 1900 Body Medium parameters used (interpolated):

$f = 1852.4$  MHz;  $\sigma = 1.482$  mho/m;  $\epsilon_r = 52.8$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section; Space: 0.0 cm

Test Date: 04-25-2011; Ambient Temp: 23.7°C; Tissue Temp: 22.1°C

Probe: EX3DV4 - SN3561; ConvF(6.59, 6.59, 6.59); Calibrated: 8/19/2010

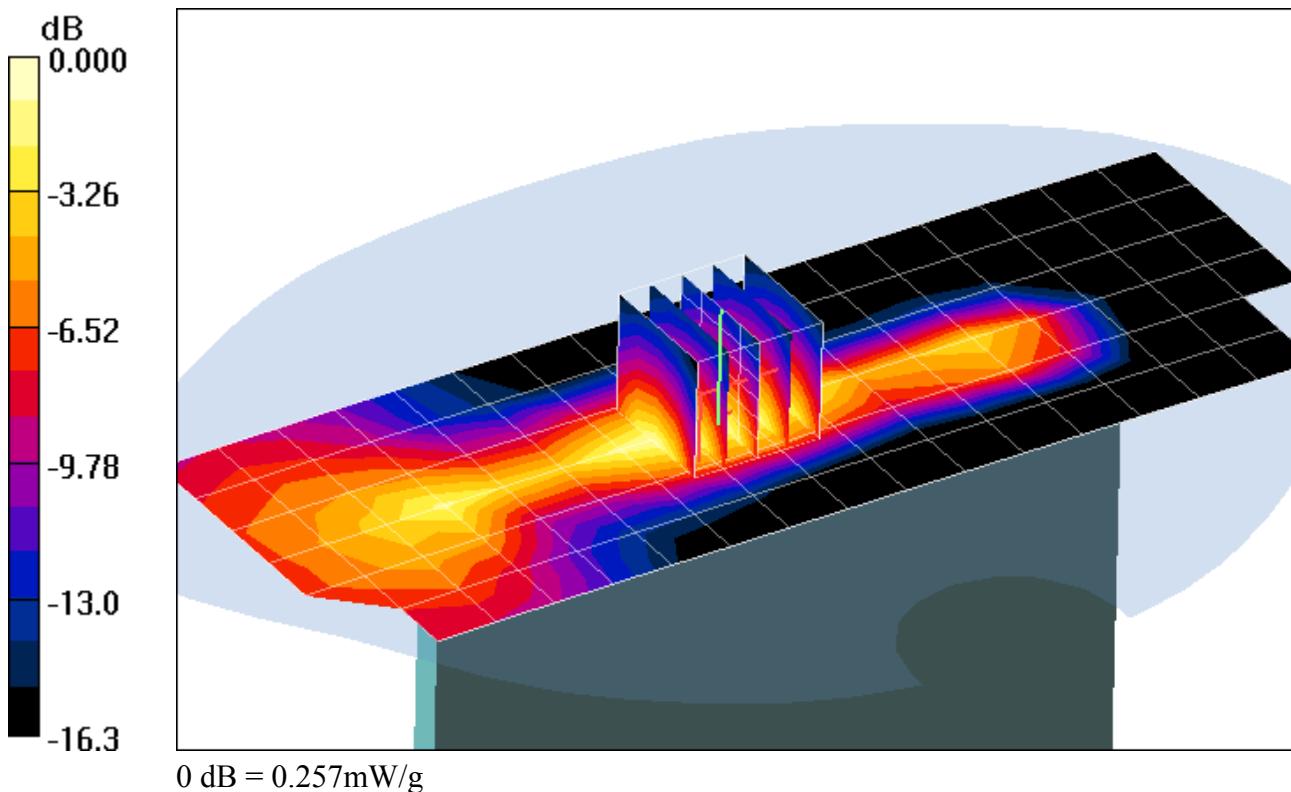
Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn649; Calibrated: 2/21/2011

Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1403

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

**Mode: WCDMA 1900, Body SAR, Right side, Nqy 'ch**


**Area Scan (7x18x1):** Measurement grid: dx=15mm, dy=15mm

**Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 12.7 V/m

Peak SAR (extrapolated) = 0.420 W/kg

**SAR(1 g) = 0.227 mW/g; SAR(10 g) = 0.119 mW/g**



# PCTEST ENGINEERING LABORATORY, INC.

**DUT: A3LGTP7500; Type: 850/1900 GPRS/EDGE/HSPA Tablet  
with Bluetooth and WLAN; Serial: 357750040001058**

Communication System: IEEE 802.11b; Frequency: 2462 MHz; Duty Cycle: 1:1

Medium: 2450 Body Medium parameters used (interpolated):

$f = 2462 \text{ MHz}$ ;  $\sigma = 2.02 \text{ mho/m}$ ;  $\epsilon_r = 50.8$ ;  $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section; Space: 0.0 cm

Test Date: 04-18-2011; Ambient Temp: 24.1 °C; Tissue Temp: 23.0 °C

Probe: ES3DV2 - SN3022; ConvF(4.06, 4.06, 4.06); Calibrated: 9/21/2010

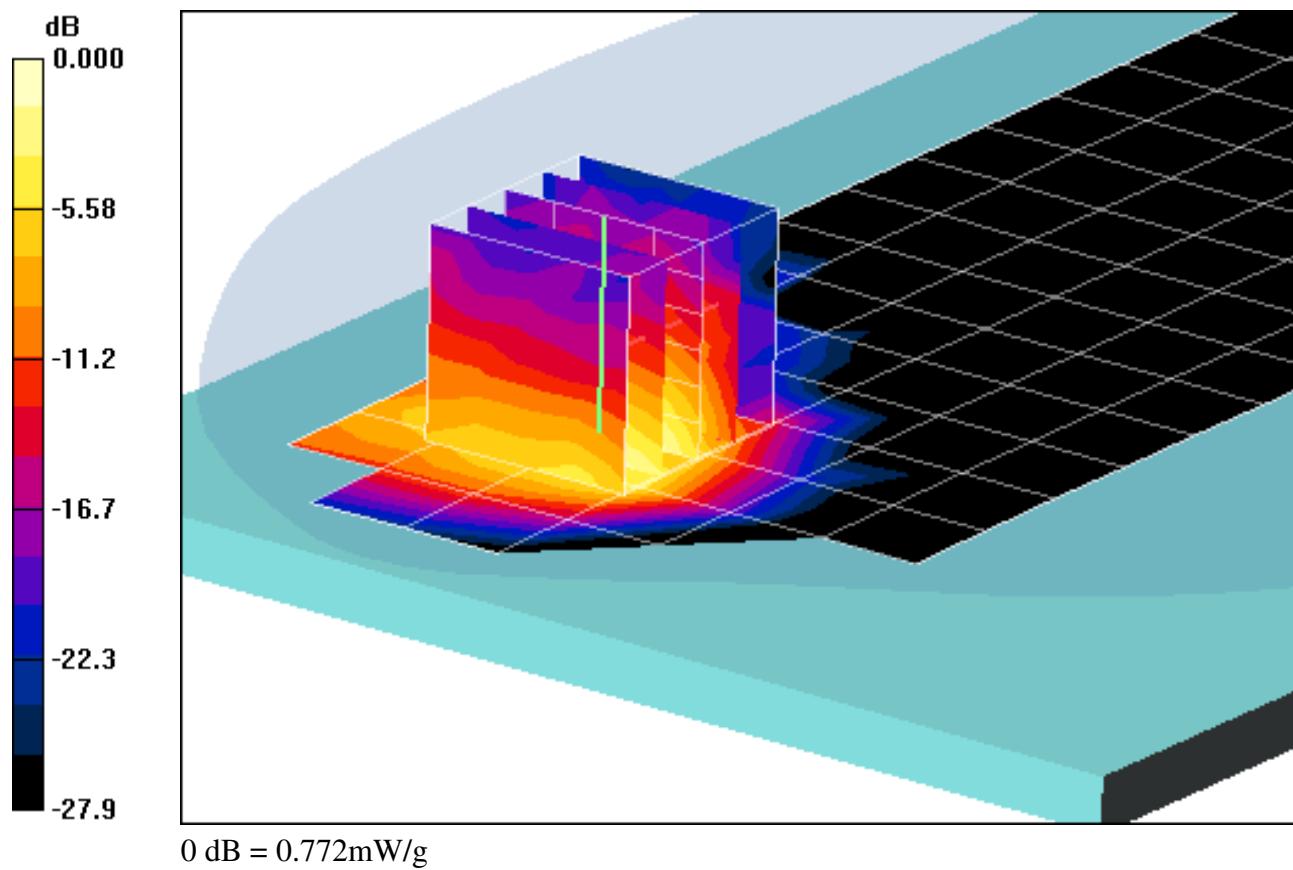
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn704; Calibrated: 3/17/2011

Phantom: SAM with CRP; Type: SAM; Serial: TP1375

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

**Mode: IEEE 802.11b, Body SAR, Ch.11, 1Mbps, Back Side**


**Area Scan (7x20x1):** Measurement grid: dx=15mm, dy=15mm

**Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 18.4 V/m

Peak SAR (extrapolated) = 1.51 W/kg

**SAR(1 g) = 0.623 mW/g; SAR(10 g) = 0.261 mW/g**



# PCTEST ENGINEERING LABORATORY, INC.

**DUT: A3LGTP7500; Type: 850/1900 GPRS/EDGE/HSPA Tablet with Bluetooth and WLAN; Serial: 357750040001058**

Communication System: IEEE 802.11b; Frequency: 2462 MHz; Duty Cycle: 1:1

Medium: 2450 Body Medium parameters used (interpolated):

$f = 2462 \text{ MHz}$ ;  $\sigma = 2.02 \text{ mho/m}$ ;  $\epsilon_r = 50.8$ ;  $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section; Space: 0.0 cm

Test Date: 04-18-2011; Ambient Temp: 24.1 °C; Tissue Temp: 23.0 °C

Probe: ES3DV2 - SN3022; ConvF(4.06, 4.06, 4.06); Calibrated: 9/21/2010

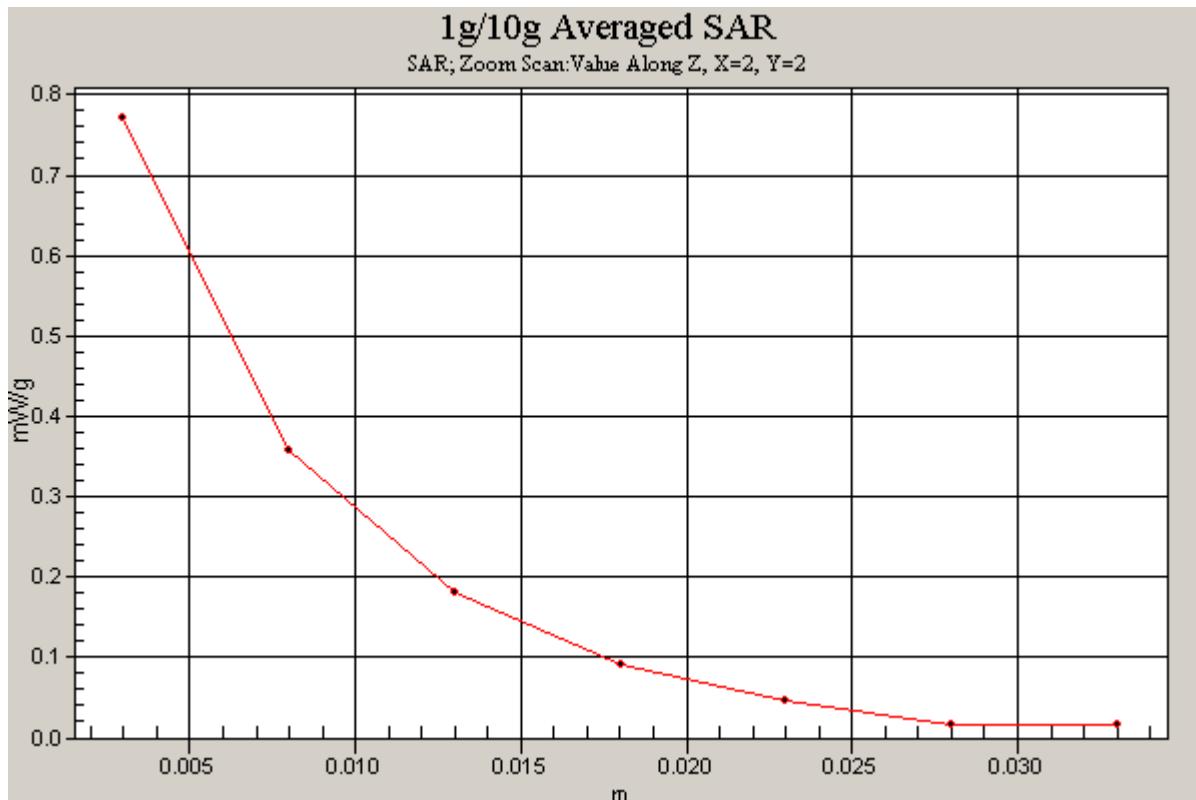
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn704; Calibrated: 3/17/2011

Phantom: SAM with CRP; Type: SAM; Serial: TP1375

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

**Mode: IEEE 802.11b, Body SAR, Ch.11, 1Mbps, Back Side**


**Area Scan (7x20x1):** Measurement grid: dx=15mm, dy=15mm

**Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 18.4 V/m

Peak SAR (extrapolated) = 1.51 W/kg

**SAR(1 g) = 0.623 mW/g; SAR(10 g) = 0.261 mW/g**



# PCTEST ENGINEERING LABORATORY, INC.

**DUT: A3LGTP7500; Type: 850/1900 GPRS/EDGE/HSPA Tablet with Bluetooth and WLAN; Serial: 357750040001058**

Communication System: IEEE 802.11b; Frequency: 2462 MHz; Duty Cycle: 1:1

Medium: 2450 Body Medium parameters used (interpolated):

$f = 2462 \text{ MHz}$ ;  $\sigma = 2.02 \text{ mho/m}$ ;  $\epsilon_r = 50.8$ ;  $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section; Space: 0.0 cm

Test Date: 04-18-2011; Ambient Temp: 24.1 °C; Tissue Temp: 23.0 °C

Probe: ES3DV2 - SN3022; ConvF(4.06, 4.06, 4.06); Calibrated: 9/21/2010

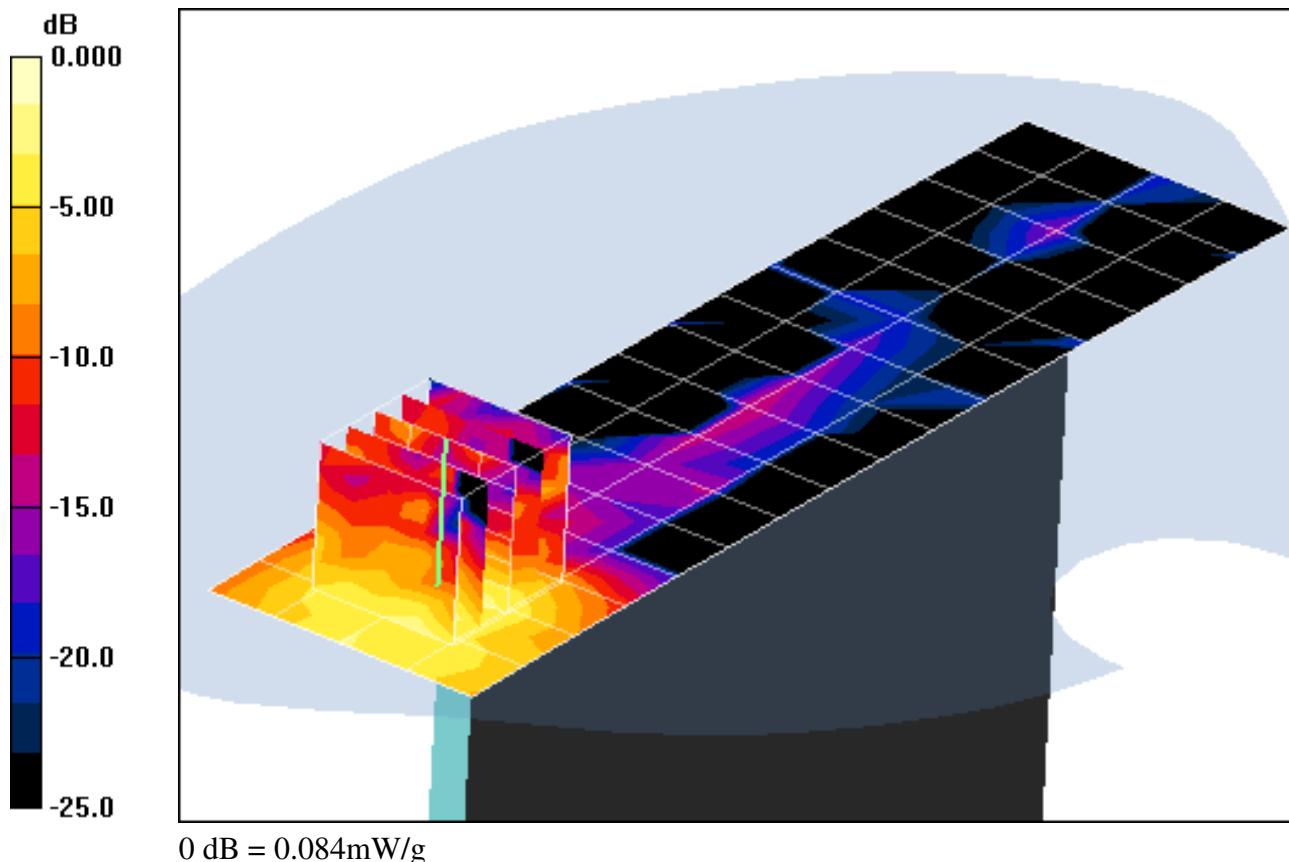
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn704; Calibrated: 3/17/2011

Phantom: SAM with CRP; Type: SAM; Serial: TP1375

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

**Mode: IEEE 802.11b, Body SAR, Ch.11, 1Mbps, Top Side**


**Area Scan (5x17x1):** Measurement grid:  $dx=15\text{mm}$ ,  $dy=15\text{mm}$

**Zoom Scan (5x5x7)/Cube 0:** Measurement grid:  $dx=8\text{mm}$ ,  $dy=8\text{mm}$ ,  $dz=5\text{mm}$

Reference Value = 4.34 V/m

Peak SAR (extrapolated) = 0.155 W/kg

**SAR(1 g) = 0.068 mW/g; SAR(10 g) = 0.029 mW/g**



# PCTEST ENGINEERING LABORATORY, INC.

**DUT: A3LGTP7500; Type: 850/1900 GPRS/EDGE/HSPA Tablet with Bluetooth and WLAN; Serial: 357750040001058**

Communication System: IEEE 802.11b; Frequency: 2462 MHz; Duty Cycle: 1:1

Medium: 2450 Body Medium parameters used (interpolated):

$f = 2462 \text{ MHz}$ ;  $\sigma = 2.02 \text{ mho/m}$ ;  $\epsilon_r = 50.8$ ;  $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section; Space: 0.0 cm

Test Date: 04-18-2011; Ambient Temp: 24.1 °C; Tissue Temp: 23.0 °C

Probe: ES3DV2 - SN3022; ConvF(4.06, 4.06, 4.06); Calibrated: 9/21/2010

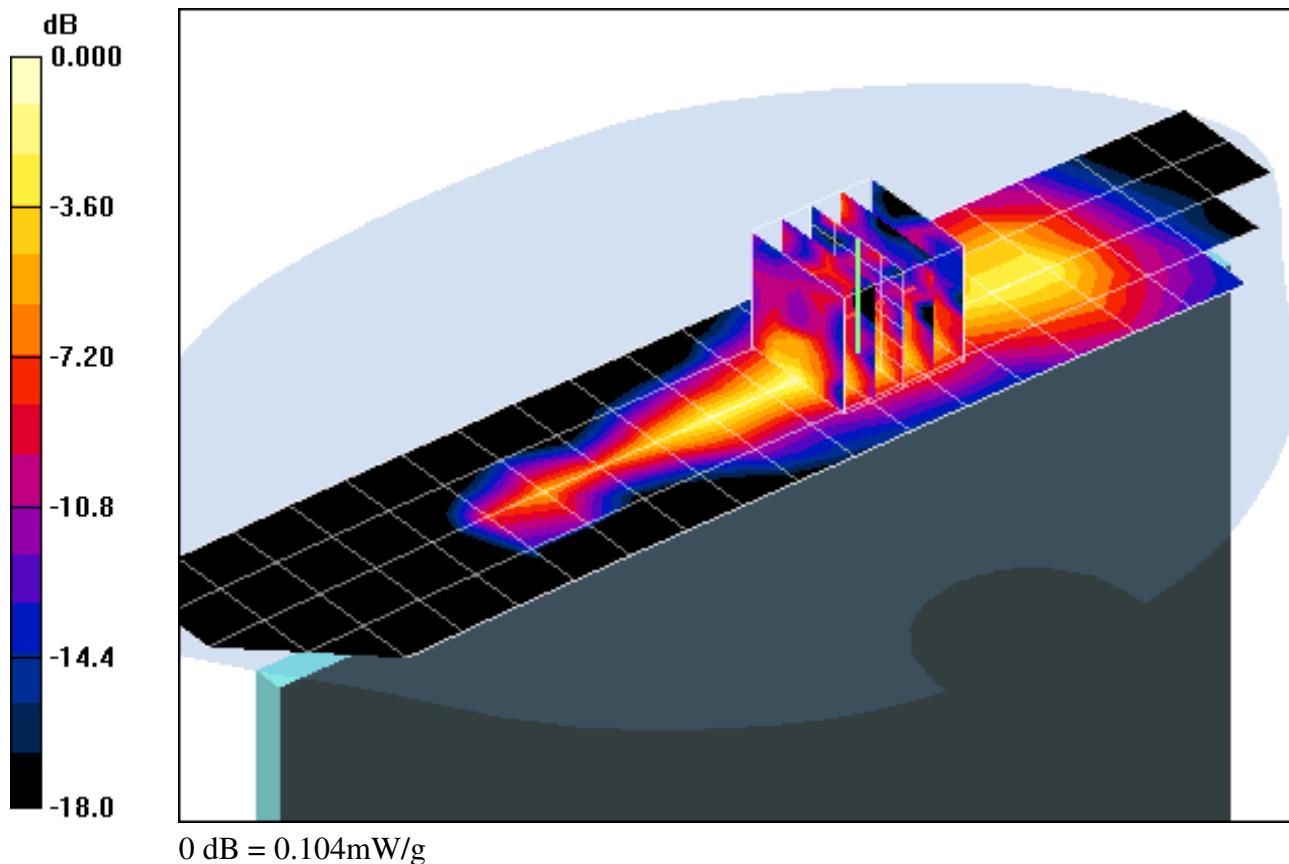
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn704; Calibrated: 3/17/2011

Phantom: SAM with CRP; Type: SAM; Serial: TP1375

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

**Mode: IEEE 802.11b, Body SAR, Ch.11, 1Mbps, Left Side**


**Area Scan (5x20x1):** Measurement grid:  $dx=15\text{mm}$ ,  $dy=15\text{mm}$

**Zoom Scan (5x5x7)/Cube 0:** Measurement grid:  $dx=8\text{mm}$ ,  $dy=8\text{mm}$ ,  $dz=5\text{mm}$

Reference Value = 6.44 V/m

Peak SAR (extrapolated) = 0.142 W/kg

**SAR(1 g) = 0.079 mW/g; SAR(10 g) = 0.037 mW/g**



# PCTEST ENGINEERING LABORATORY, INC.

**DUT: A3LGTP7500; Type: 850/1900 GPRS/EDGE/HSPA Tablet with Bluetooth and WLAN; Serial: 357750040001058**

Communication System: IEEE 802.11a 5.2-5.8 GHz Band; Frequency: 5240 MHz; Duty Cycle: 1:1

Medium: 5 GHz Medium parameters used (interpolated):

$f = 5240$  MHz;  $\sigma = 5.39$  mho/m;  $\epsilon_r = 47.5$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section; Space: 0.0 cm

Test Date: 04-14-2011; Ambient Temp: 24.4°C; Tissue Temp: 22.8°C

Probe: EX3DV4 - SN3550; ConvF(3.58, 3.58, 3.58); Calibrated: 2/14/2011

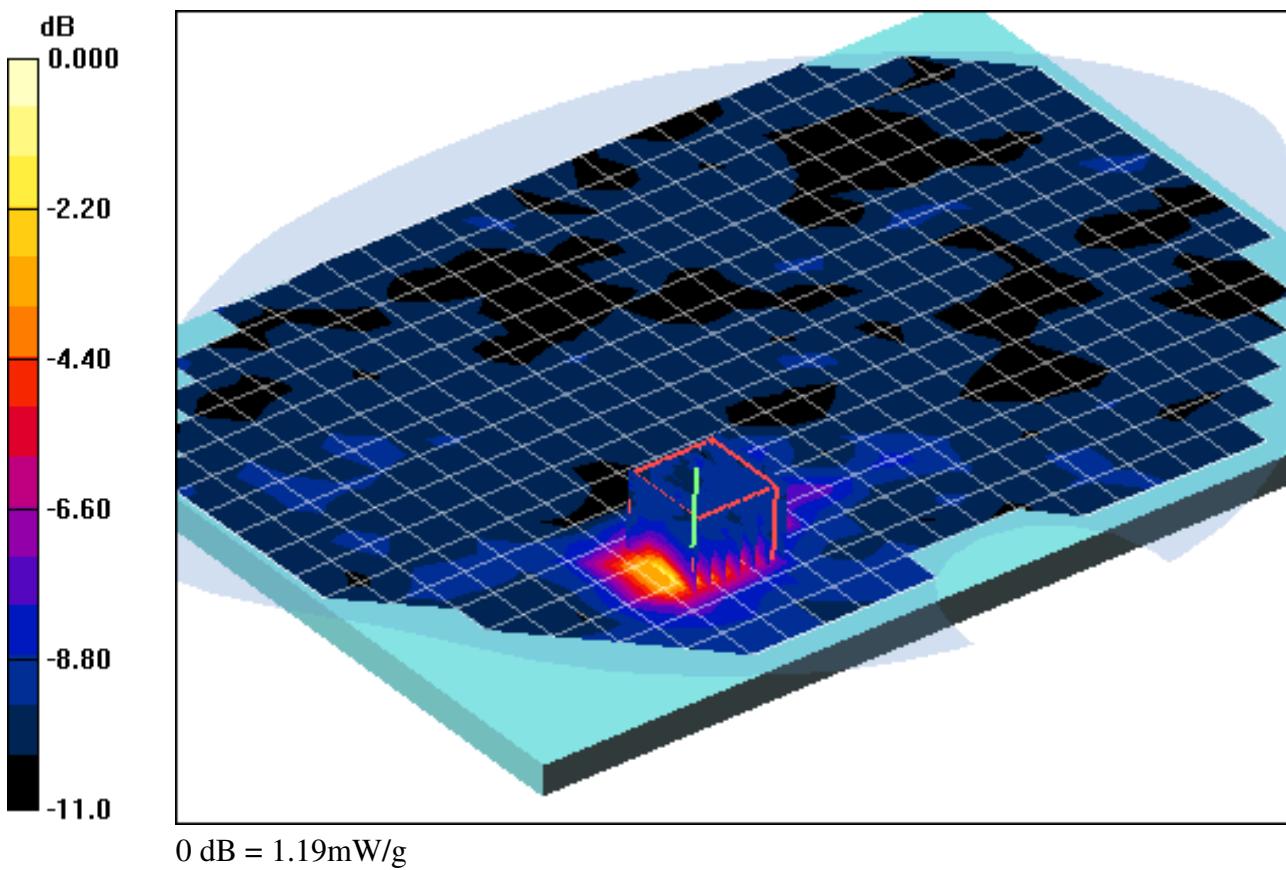
Sensor-Surface: 2mm (Mechanical Surface Detection)

Electronics: DAE4 Sn859; Calibrated: 7/8/2010

Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1357

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

**Mode: IEEE 802.11a 5.2 GHz, Back Side, Ch 48, 6Mbps**


**Area Scan (18x26x1):** Measurement grid: dx=10mm, dy=10mm

**Zoom Scan (7x7x11)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 12.2 V/m

Peak SAR (extrapolated) = 1.84 W/kg

**SAR(1 g) = 0.543 mW/g; SAR(10 g) = 0.235 mW/g**



# PCTEST ENGINEERING LABORATORY, INC.

**DUT: A3LGTP7500; Type: 850/1900 GPRS/EDGE/HSPA Tablet  
with Bluetooth and WLAN; Serial: 357750040001058**

Communication System: IEEE 802.11a 5.2-5.8 GHz Band; Frequency: 5240 MHz; Duty Cycle: 1:1

Medium: 5 GHz Medium parameters used (interpolated):

$f = 5240 \text{ MHz}$ ;  $\sigma = 5.39 \text{ mho/m}$ ;  $\epsilon_r = 47.5$ ;  $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section; Space: 0.0 cm

Test Date: 04-14-2011; Ambient Temp: 24.4°C; Tissue Temp: 22.8°C

Probe: EX3DV4 - SN3550; ConvF(3.58, 3.58, 3.58); Calibrated: 2/14/2011

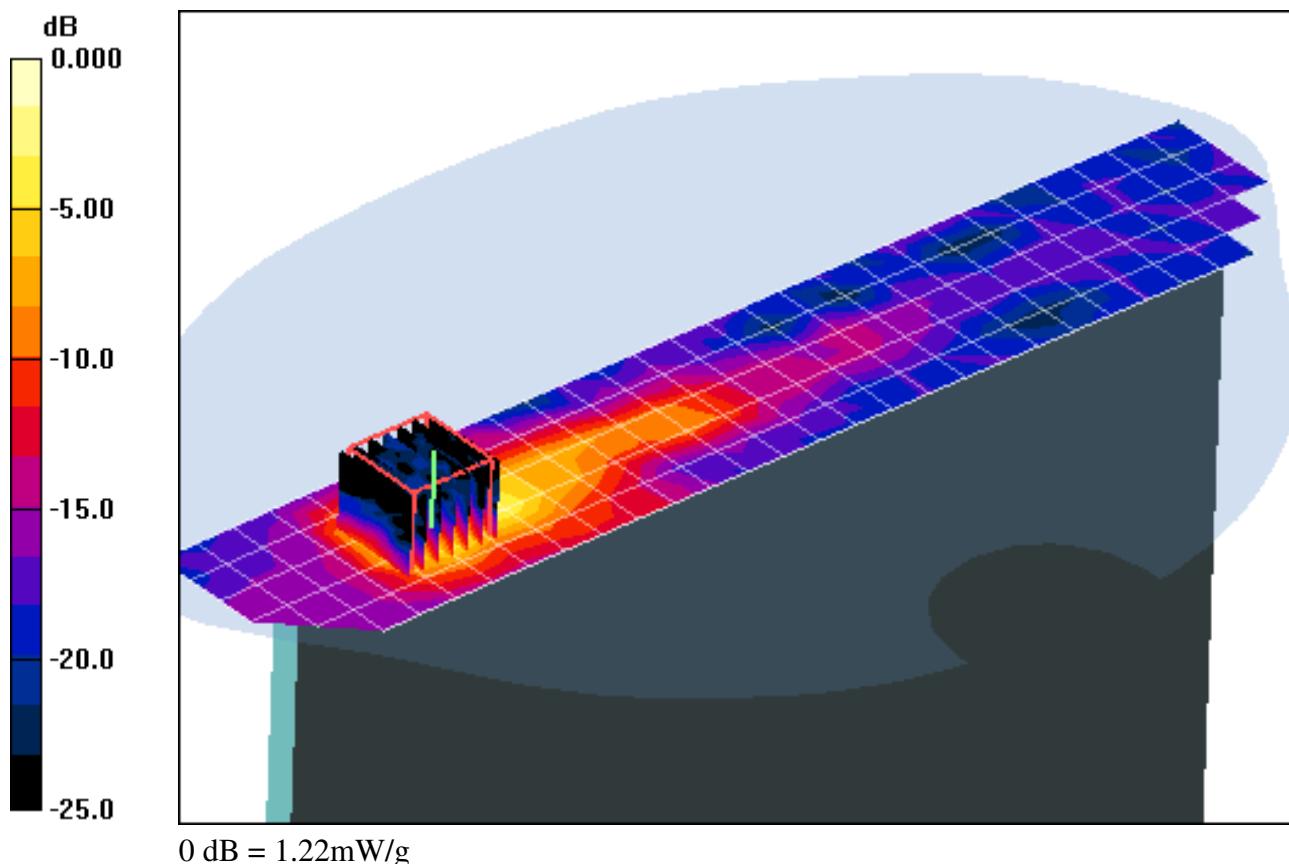
Sensor-Surface: 2mm (Mechanical Surface Detection)

Electronics: DAE4 Sn859; Calibrated: 7/8/2010

Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1357

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

**Mode: IEEE 802.11a 5.2 GHz, Top Side, Ch 48, 6Mbps**


**Area Scan (6x29x1):** Measurement grid:  $dx=10\text{mm}$ ,  $dy=10\text{mm}$

**Zoom Scan (7x7x11)/Cube 0:** Measurement grid:  $dx=4\text{mm}$ ,  $dy=4\text{mm}$ ,  $dz=2\text{mm}$

Reference Value = 13.3 V/m

Peak SAR (extrapolated) = 2.37 W/kg

$SAR(1 \text{ g}) = 0.593 \text{ mW/g}$ ;  $SAR(10 \text{ g}) = 0.153 \text{ mW/g}$



# PCTEST ENGINEERING LABORATORY, INC.

**DUT: A3LGTP7500; Type: 850/1900 GPRS/EDGE/HSPA Tablet  
with Bluetooth and WLAN; Serial: 357750040001058**

Communication System: IEEE 802.11a 5.2-5.8 GHz Band; Frequency: 5240 MHz; Duty Cycle: 1:1

Medium: 5 GHz Medium parameters used (interpolated):

$f = 5240 \text{ MHz}$ ;  $\sigma = 5.39 \text{ mho/m}$ ;  $\epsilon_r = 47.5$ ;  $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section; Space: 0.0 cm

Test Date: 04-14-2011; Ambient Temp: 24.4°C; Tissue Temp: 22.8°C

Probe: EX3DV4 - SN3550; ConvF(3.58, 3.58, 3.58); Calibrated: 2/14/2011

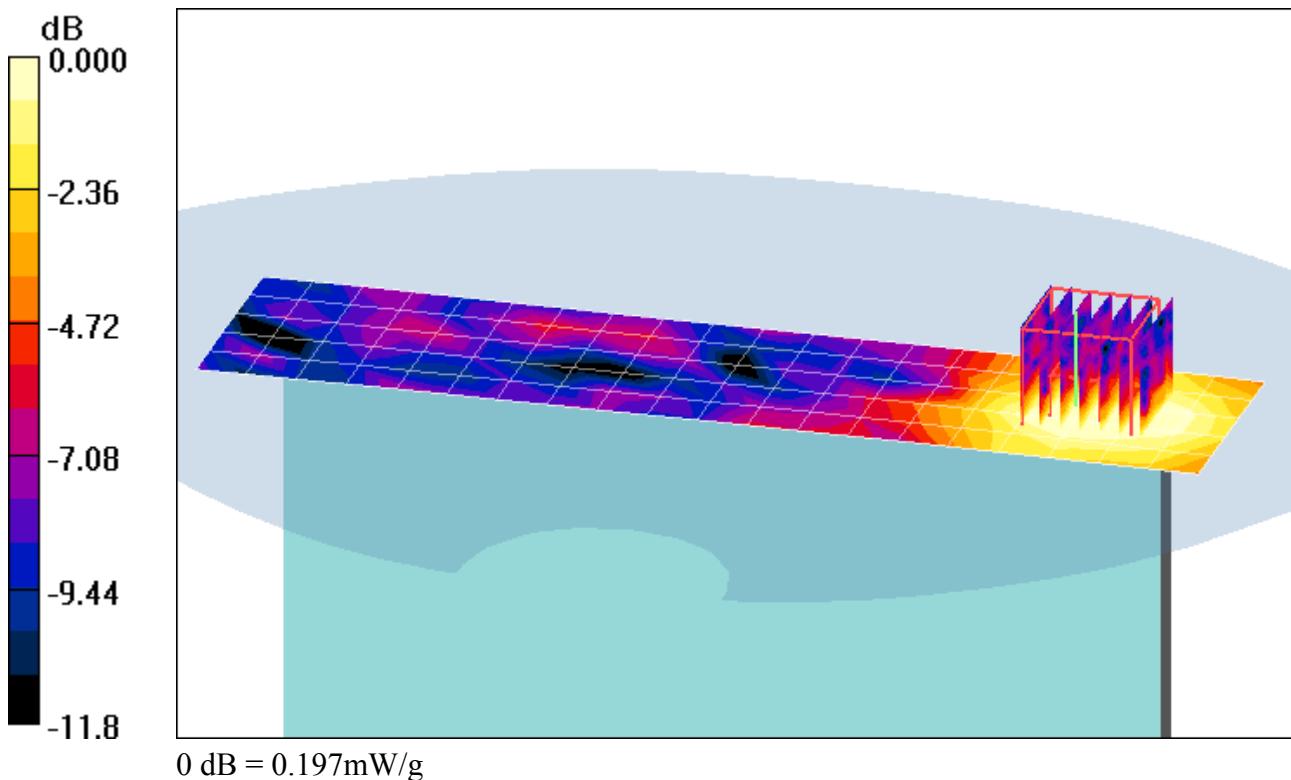
Sensor-Surface: 2mm (Mechanical Surface Detection)

Electronics: DAE4 Sn859; Calibrated: 7/8/2010

Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1357

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

**Mode: IEEE 802.11a 5.2 GHz, Left Side, Ch 48, 6Mbps**


**Area Scan (6x21x1):** Measurement grid:  $dx=10\text{mm}$ ,  $dy=10\text{mm}$

**Zoom Scan (7x7x1)/Cube 0:** Measurement grid:  $dx=4\text{mm}$ ,  $dy=4\text{mm}$ ,  $dz=2\text{mm}$

Reference Value = 5.46 V/m

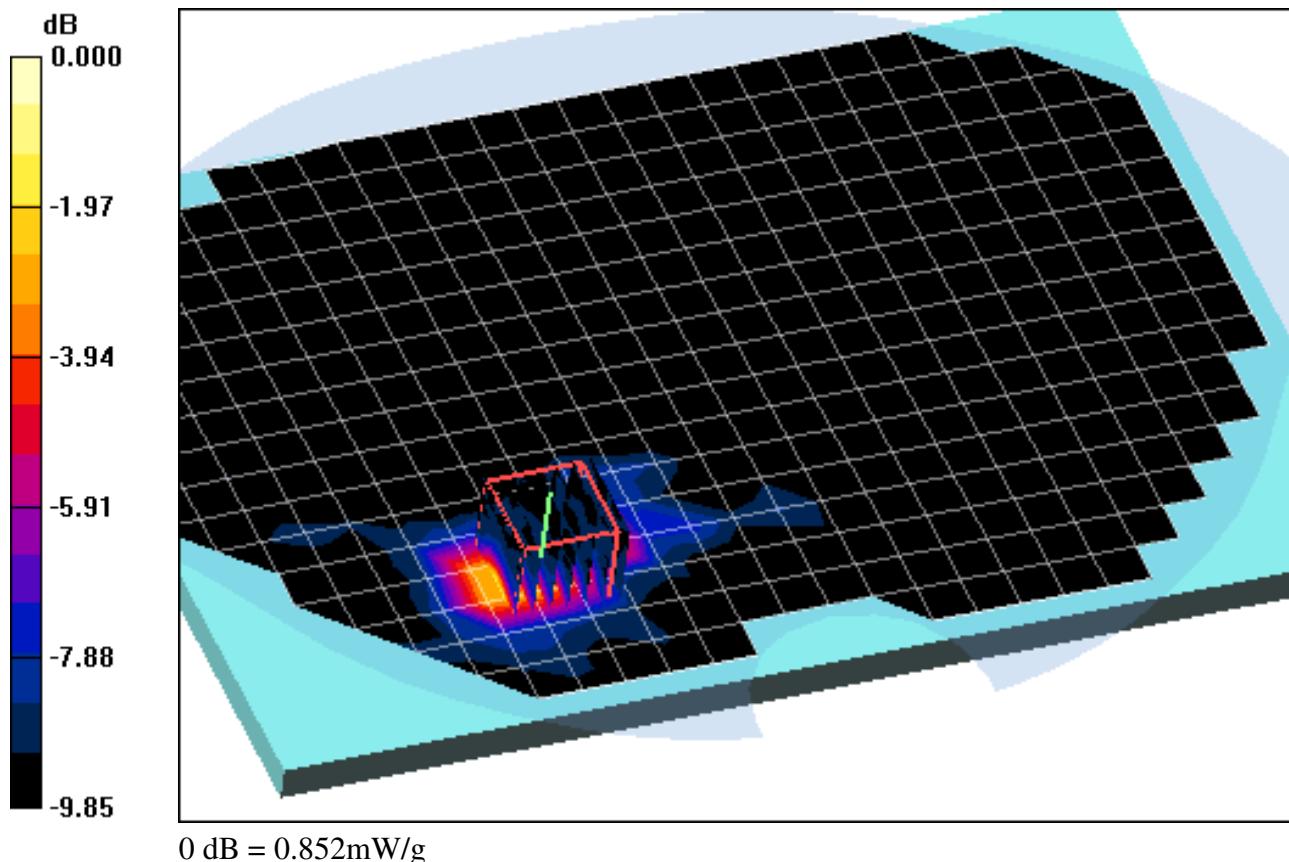
Peak SAR (extrapolated) = 0.369 W/kg

**SAR(1 g) = 0.121 mW/g; SAR(10 g) = 0.070 mW/g**



# PCTEST ENGINEERING LABORATORY, INC.

**DUT: A3LGTP7500; Type: 850/1900 GPRS/EDGE/HSPA Tablet  
with Bluetooth and WLAN; Serial: 357750040001058**


Communication System: IEEE 802.11a 5.2-5.8 GHz Band; Frequency: 5260 MHz; Duty Cycle: 1:1  
Medium: 5 GHz Medium parameters used (interpolated):  
 $f = 5260 \text{ MHz}$ ;  $\sigma = 5.43 \text{ mho/m}$ ;  $\epsilon_r = 47.4$ ;  $\rho = 1000 \text{ kg/m}^3$   
Phantom section: Flat Section; Space: 0.0 cm

Test Date: 04-14-2011; Ambient Temp: 24.4°C; Tissue Temp: 22.8°C

Probe: EX3DV4 - SN3550; ConvF(3.31, 3.31, 3.31); Calibrated: 2/14/2011  
Sensor-Surface: 2mm (Mechanical Surface Detection)  
Electronics: DAE4 Sn859; Calibrated: 7/8/2010  
Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1357  
Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

**Mode: IEEE 802.11a 5.3 GHz, Back Side, Ch 52, 6Mbps**

**Area Scan (18x26x1):** Measurement grid:  $dx=10\text{mm}$ ,  $dy=10\text{mm}$   
**Zoom Scan (7x7x11)/Cube 0:** Measurement grid:  $dx=4\text{mm}$ ,  $dy=4\text{mm}$ ,  $dz=2\text{mm}$   
Reference Value = 12.0 V/m  
Peak SAR (extrapolated) = 1.58 W/kg  
 $\text{SAR}(1 \text{ g}) = 0.517 \text{ mW/g}$ ;  $\text{SAR}(10 \text{ g}) = 0.233 \text{ mW/g}$



# PCTEST ENGINEERING LABORATORY, INC.

**DUT: A3LGTP7500; Type: 850/1900 GPRS/EDGE/HSPA Tablet with Bluetooth and WLAN; Serial: 357750040001058**

Communication System: IEEE 802.11a 5.2-5.8 GHz Band; Frequency: 5260 MHz; Duty Cycle: 1:1

Medium: 5 GHz Medium parameters used (interpolated):

$f = 5260 \text{ MHz}$ ;  $\sigma = 5.43 \text{ mho/m}$ ;  $\epsilon_r = 47.4$ ;  $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section; Space: 0.0 cm

Test Date: 04-14-2011; Ambient Temp: 24.4°C; Tissue Temp: 22.8°C

Probe: EX3DV4 - SN3550; ConvF(3.31, 3.31, 3.31); Calibrated: 2/14/2011

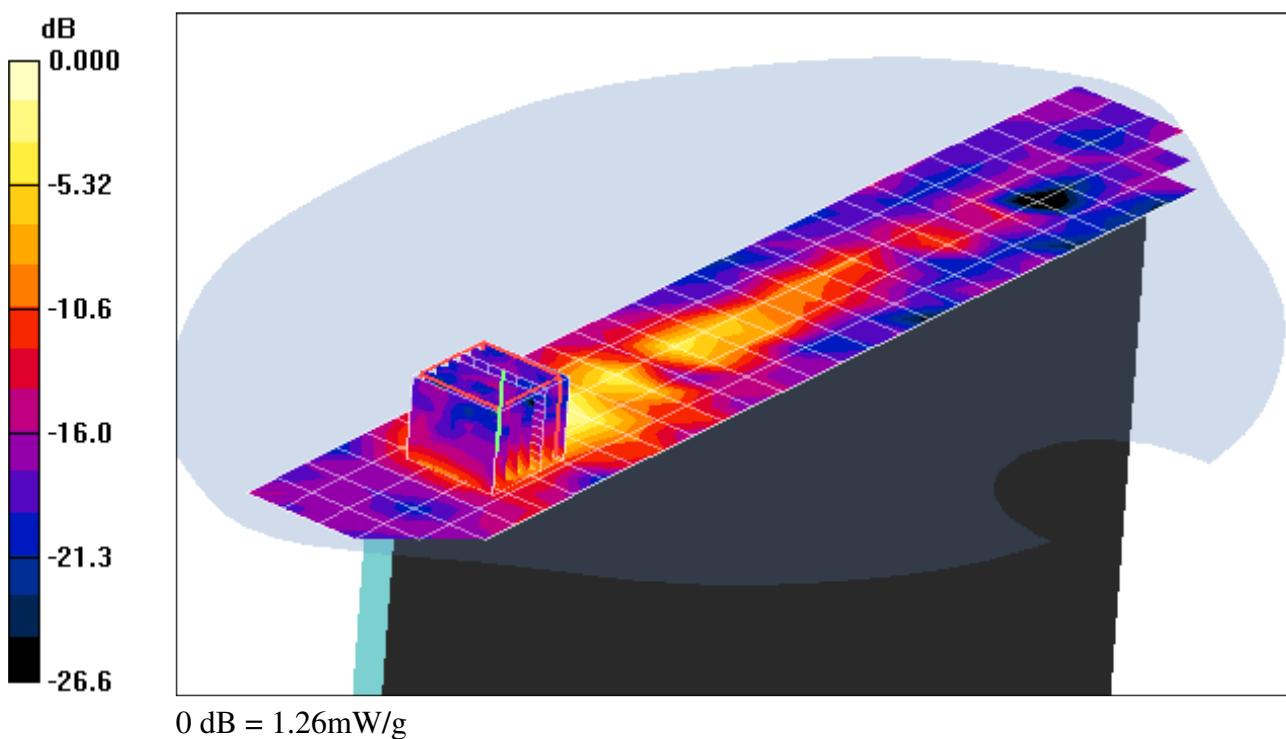
Sensor-Surface: 2mm (Mechanical Surface Detection)

Electronics: DAE4 Sn859; Calibrated: 7/8/2010

Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1357

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

**Mode: IEEE 802.11a 5.3 GHz, Top Edge, Ch 52, 6Mbps**


**Area Scan (6x29x1):** Measurement grid:  $dx=10\text{mm}$ ,  $dy=10\text{mm}$

**Zoom Scan (7x7x11)/Cube 0:** Measurement grid:  $dx=4\text{mm}$ ,  $dy=4\text{mm}$ ,  $dz=2\text{mm}$

Reference Value = 13.7 V/m

Peak SAR (extrapolated) = 2.43 W/kg

**SAR(1 g) = 0.627 mW/g; SAR(10 g) = 0.172 mW/g**



# PCTEST ENGINEERING LABORATORY, INC.

**DUT: A3LGTP7500; Type: 850/1900 GPRS/EDGE/HSPA Tablet  
with Bluetooth and WLAN; Serial: 357750040001058**

Communication System: IEEE 802.11a 5.2-5.8 GHz Band; Frequency: 5260 MHz; Duty Cycle: 1:1

Medium: 5 GHz Medium parameters used (interpolated):

$f = 5260 \text{ MHz}$ ;  $\sigma = 5.43 \text{ mho/m}$ ;  $\epsilon_r = 47.4$ ;  $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section; Space: 0.0 cm

Test Date: 04-14-2011; Ambient Temp: 24.4°C; Tissue Temp: 22.8°C

Probe: EX3DV4 - SN3550; ConvF(3.31, 3.31, 3.31); Calibrated: 2/14/2011

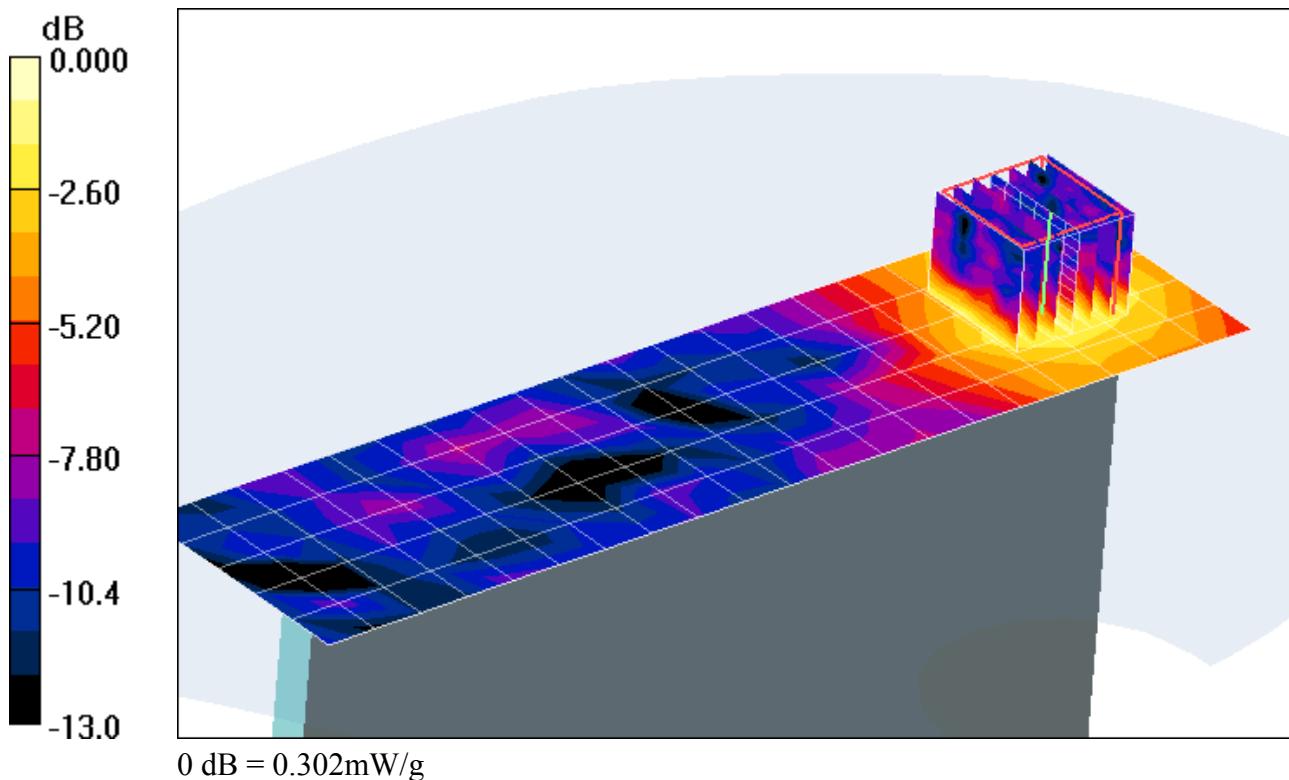
Sensor-Surface: 2mm (Mechanical Surface Detection)

Electronics: DAE4 Sn859; Calibrated: 7/8/2010

Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1357

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

**Mode: IEEE 802.11a 5.3 GHz, Left Side, Ch 52, 6Mbps**


**Area Scan (6x21x1):** Measurement grid:  $dx=10\text{mm}$ ,  $dy=10\text{mm}$

**Zoom Scan (7x7x1)/Cube 0:** Measurement grid:  $dx=4\text{mm}$ ,  $dy=4\text{mm}$ ,  $dz=2\text{mm}$

Reference Value = 6.81 V/m

Peak SAR (extrapolated) = 0.567 W/kg

**SAR(1 g) = 0.183 mW/g; SAR(10 g) = 0.101 mW/g**



# PCTEST ENGINEERING LABORATORY, INC.

**DUT: A3LGTP7500; Type: 850/1900 GPRS/EDGE/HSPA Tablet with Bluetooth and WLAN; Serial: 357750040001058**

Communication System: IEEE 802.11a 5.2-5.8 GHz Band; Frequency: 5500 MHz; Duty Cycle: 1:1

Medium: 5 GHz Medium parameters used (interpolated):

$f = 5500$  MHz;  $\sigma = 5.82$  mho/m;  $\epsilon_r = 46.8$ ;  $\rho = 1000$  kg/m<sup>3</sup>

Phantom section: Flat Section; Space: 0.0 cm

Test Date: 04-14-2011; Ambient Temp: 24.6°C; Tissue Temp: 22.7°C

Probe: EX3DV4 - SN3550; ConvF(3.21, 3.21, 3.21); Calibrated: 2/14/2011

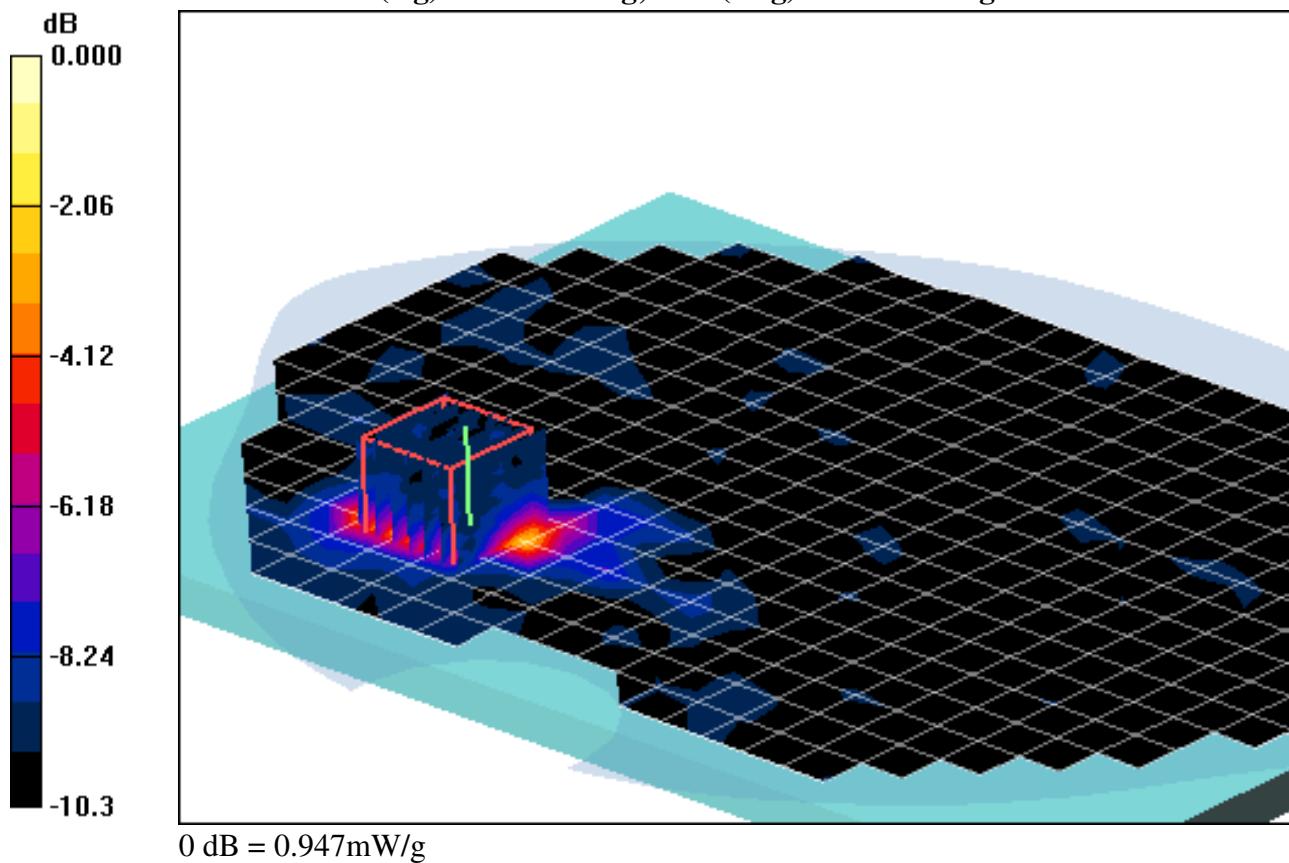
Sensor-Surface: 2mm (Mechanical Surface Detection)

Electronics: DAE4 Sn859; Calibrated: 7/8/2010

Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1357

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

**Mode: IEEE 802.11a 5.5 GHz, Back Side, Ch 100, 6Mbps**


**Area Scan (18x26x1):** Measurement grid: dx=10mm, dy=10mm

**Zoom Scan (7x7x11)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 13.0 V/m

Peak SAR (extrapolated) = 2.43 W/kg

**SAR(1 g) = 0.643 mW/g; SAR(10 g) = 0.272 mW/g**



# PCTEST ENGINEERING LABORATORY, INC.

**DUT: A3LGTP7500; Type: 850/1900 GPRS/EDGE/HSPA Tablet with Bluetooth and WLAN; Serial: 357750040001058**

Communication System: IEEE 802.11a 5.2-5.8 GHz Band; Frequency: 5500 MHz; Duty Cycle: 1:1

Medium: 5 GHz Medium parameters used (interpolated):

$f = 5500 \text{ MHz}$ ;  $\sigma = 5.82 \text{ mho/m}$ ;  $\epsilon_r = 46.8$ ;  $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section; Space: 0.0 cm

Test Date: 04-14-2011; Ambient Temp: 24.6°C; Tissue Temp: 22.7°C

Probe: EX3DV4 - SN3550; ConvF(3.21, 3.21, 3.21); Calibrated: 2/14/2011

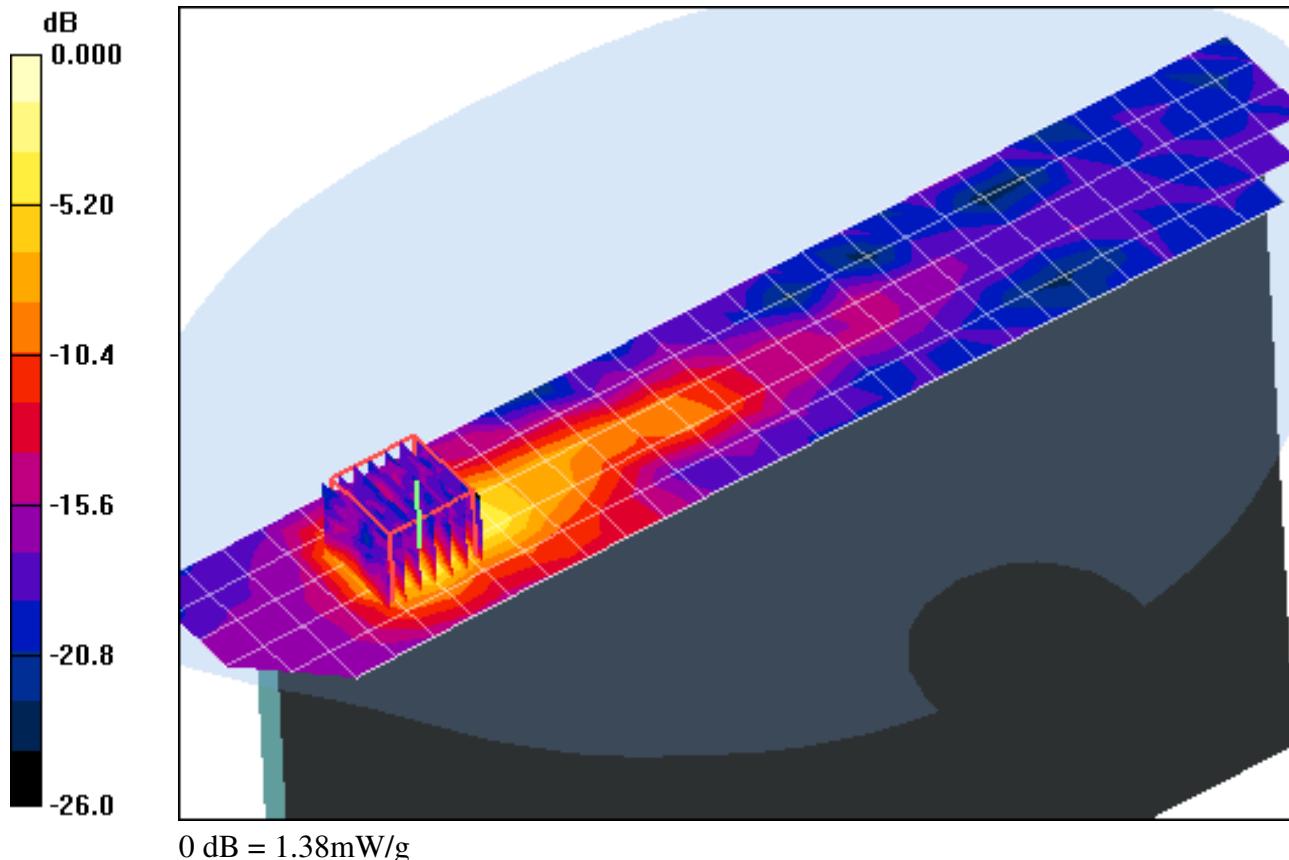
Sensor-Surface: 2mm (Mechanical Surface Detection)

Electronics: DAE4 Sn859; Calibrated: 7/8/2010

Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1357

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

**Mode: IEEE 802.11a 5.5 GHz, Top Side, Ch 100, 6Mbps**


**Area Scan (6x29x1):** Measurement grid:  $dx=10\text{mm}$ ,  $dy=10\text{mm}$

**Zoom Scan (7x7x11)/Cube 0:** Measurement grid:  $dx=4\text{mm}$ ,  $dy=4\text{mm}$ ,  $dz=2\text{mm}$

Reference Value = 13.7 V/m

Peak SAR (extrapolated) = 3.04 W/kg

**SAR(1 g) = 0.689 mW/g; SAR(10 g) = 0.194 mW/g**



# PCTEST ENGINEERING LABORATORY, INC.

**DUT: A3LGTP7500; Type: 850/1900 GPRS/EDGE/HSPA Tablet  
with Bluetooth and WLAN; Serial: 357750040001058**

Communication System: IEEE 802.11a 5.2-5.8 GHz Band; Frequency: 5500 MHz; Duty Cycle: 1:1

Medium: 5 GHz Medium parameters used (interpolated):

$f = 5500 \text{ MHz}$ ;  $\sigma = 5.82 \text{ mho/m}$ ;  $\epsilon_r = 46.8$ ;  $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section; Space: 0.0 cm

Test Date: 04-14-2011; Ambient Temp: 24.6°C; Tissue Temp: 22.7°C

Probe: EX3DV4 - SN3550; ConvF(3.21, 3.21, 3.21); Calibrated: 2/14/2011

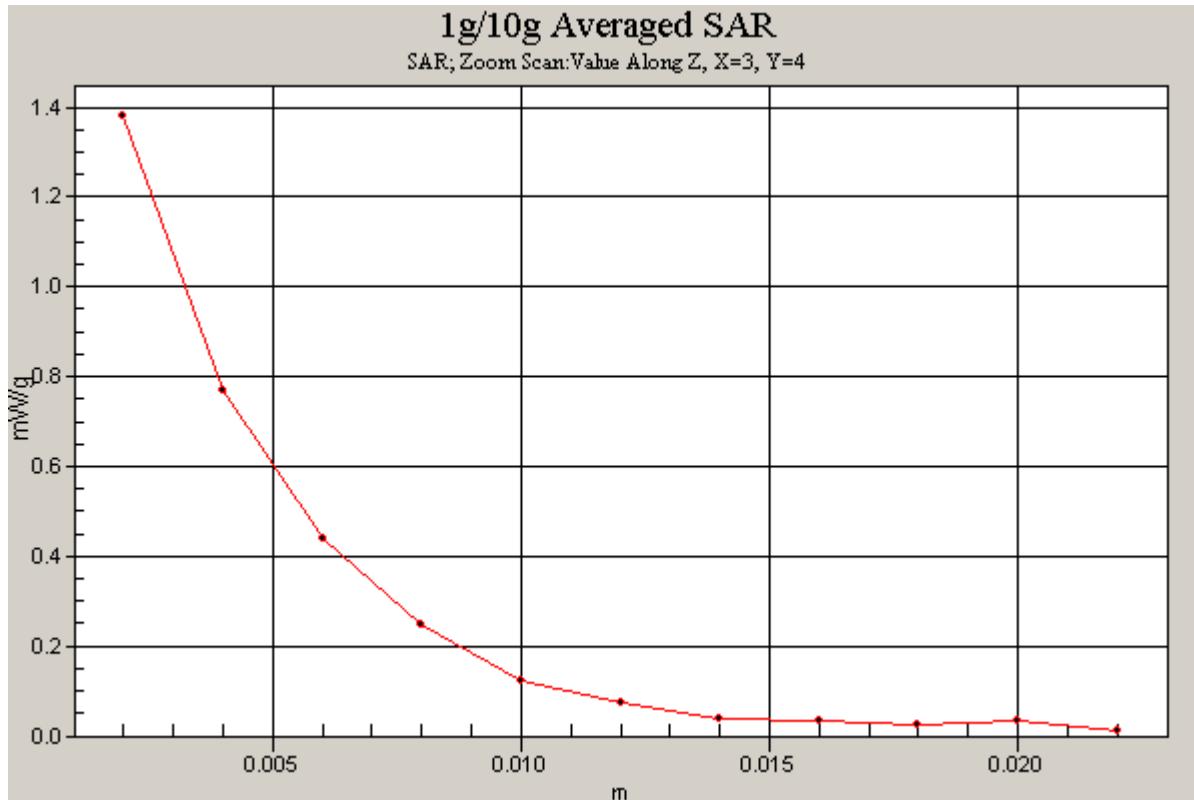
Sensor-Surface: 2mm (Mechanical Surface Detection)

Electronics: DAE4 Sn859; Calibrated: 7/8/2010

Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1357

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

**Mode: IEEE 802.11a 5.5 GHz, Top Side, Ch 100, 6Mbps**


**Area Scan (6x29x1):** Measurement grid:  $dx=10\text{mm}$ ,  $dy=10\text{mm}$

**Zoom Scan (7x7x11)/Cube 0:** Measurement grid:  $dx=4\text{mm}$ ,  $dy=4\text{mm}$ ,  $dz=2\text{mm}$

Reference Value = 13.7 V/m

Peak SAR (extrapolated) = 3.04 W/kg

**SAR(1 g) = 0.689 mW/g; SAR(10 g) = 0.194 mW/g**



# PCTEST ENGINEERING LABORATORY, INC.

**DUT: A3LGTP7500; Type: 850/1900 GPRS/EDGE/HSPA Tablet  
with Bluetooth and WLAN; Serial: 357750040001058**

Communication System: IEEE 802.11a 5.2-5.8 GHz Band; Frequency: 5500 MHz; Duty Cycle: 1:1

Medium: 5 GHz Medium parameters used (interpolated):

$f = 5500 \text{ MHz}$ ;  $\sigma = 5.82 \text{ mho/m}$ ;  $\epsilon_r = 46.8$ ;  $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section; Space: 0.0 cm

Test Date: 04-14-2011; Ambient Temp: 24.6°C; Tissue Temp: 22.7°C

Probe: EX3DV4 - SN3550; ConvF(3.21, 3.21, 3.21); Calibrated: 2/14/2011

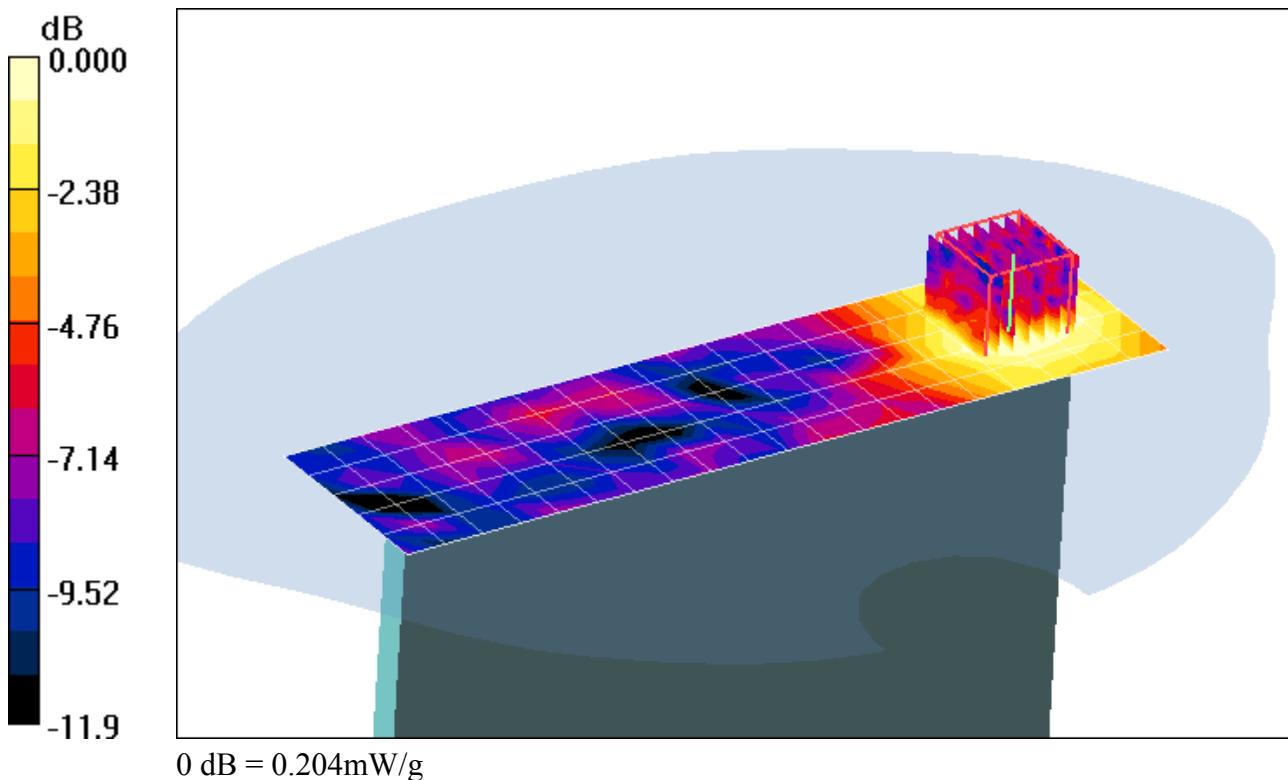
Sensor-Surface: 2mm (Mechanical Surface Detection)

Electronics: DAE4 Sn859; Calibrated: 7/8/2010

Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1357

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

**Mode: IEEE 802.11a 5.5 GHz, Left Side, Ch 100, 6Mbps**


**Area Scan (6x21x1):** Measurement grid:  $dx=10\text{mm}$ ,  $dy=10\text{mm}$

**Zoom Scan (7x7x1)/Cube 0:** Measurement grid:  $dx=4\text{mm}$ ,  $dy=4\text{mm}$ ,  $dz=2\text{mm}$

Reference Value = 5.45 V/m

Peak SAR (extrapolated) = 0.427 W/kg

**SAR(1 g) = 0.129 mW/g; SAR(10 g) = 0.078 mW/g**



# PCTEST ENGINEERING LABORATORY, INC.

**DUT: A3LGTP7500; Type: 850/1900 GPRS/EDGE/HSPA Tablet with Bluetooth and WLAN; Serial: 357750040001058**

Communication System: IEEE 802.11a 5.2-5.8 GHz Band; Frequency: 5805 MHz; Duty Cycle: 1:1  
Medium: 5 GHz Medium parameters used (interpolated):

$$f = 5805 \text{ MHz}; \sigma = 6.26 \text{ mho/m}; \epsilon_r = 45.9; \rho = 1000 \text{ kg/m}^3$$

Phantom section: Flat Section; Space: 0.0 cm

Test Date: 04-14-2011; Ambient Temp: 24.5°C; Tissue Temp: 22.8°C

Probe: EX3DV4 - SN3550; ConvF(3.29, 3.29, 3.29); Calibrated: 2/14/2011

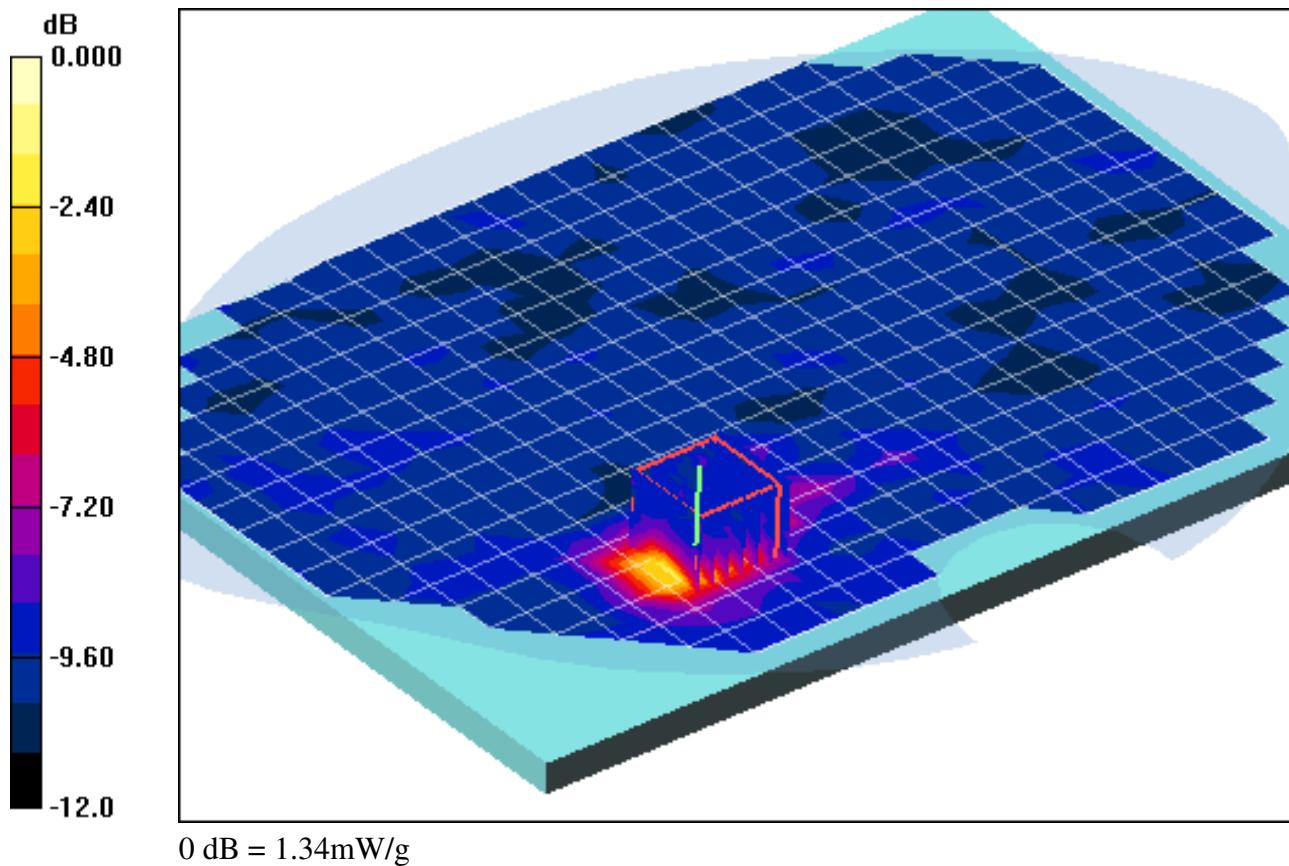
Sensor-Surface: 2mm (Mechanical Surface Detection)

Electronics: DAE4 Sn859; Calibrated: 7/8/2010

Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1357

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

**Mode: IEEE 802.11a 5.8 GHz, Back Side, Ch 161, 6Mbps**


**Area Scan (18x26x1):** Measurement grid: dx=10mm, dy=10mm

**Zoom Scan (7x7x1)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 12.0 V/m

Peak SAR (extrapolated) = 6.48 W/kg

**SAR(1 g) = 0.666 mW/g; SAR(10 g) = 0.318 mW/g**



# PCTEST ENGINEERING LABORATORY, INC.

**DUT: A3LGTP7500; Type: 850/1900 GPRS/EDGE/HSPA Tablet  
with Bluetooth and WLAN; Serial: 357750040001058**

Communication System: IEEE 802.11a 5.2-5.8 GHz Band; Frequency: 5805 MHz; Duty Cycle: 1:1

Medium: 5 GHz Medium parameters used (interpolated):

$f = 5805 \text{ MHz}$ ;  $\sigma = 6.26 \text{ mho/m}$ ;  $\epsilon_r = 45.9$ ;  $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Test Date: 04-14-2011; Ambient Temp: 24.5°C; Tissue Temp: 22.8°C

Probe: EX3DV4 - SN3550; ConvF(3.29, 3.29, 3.29); Calibrated: 2/14/2011

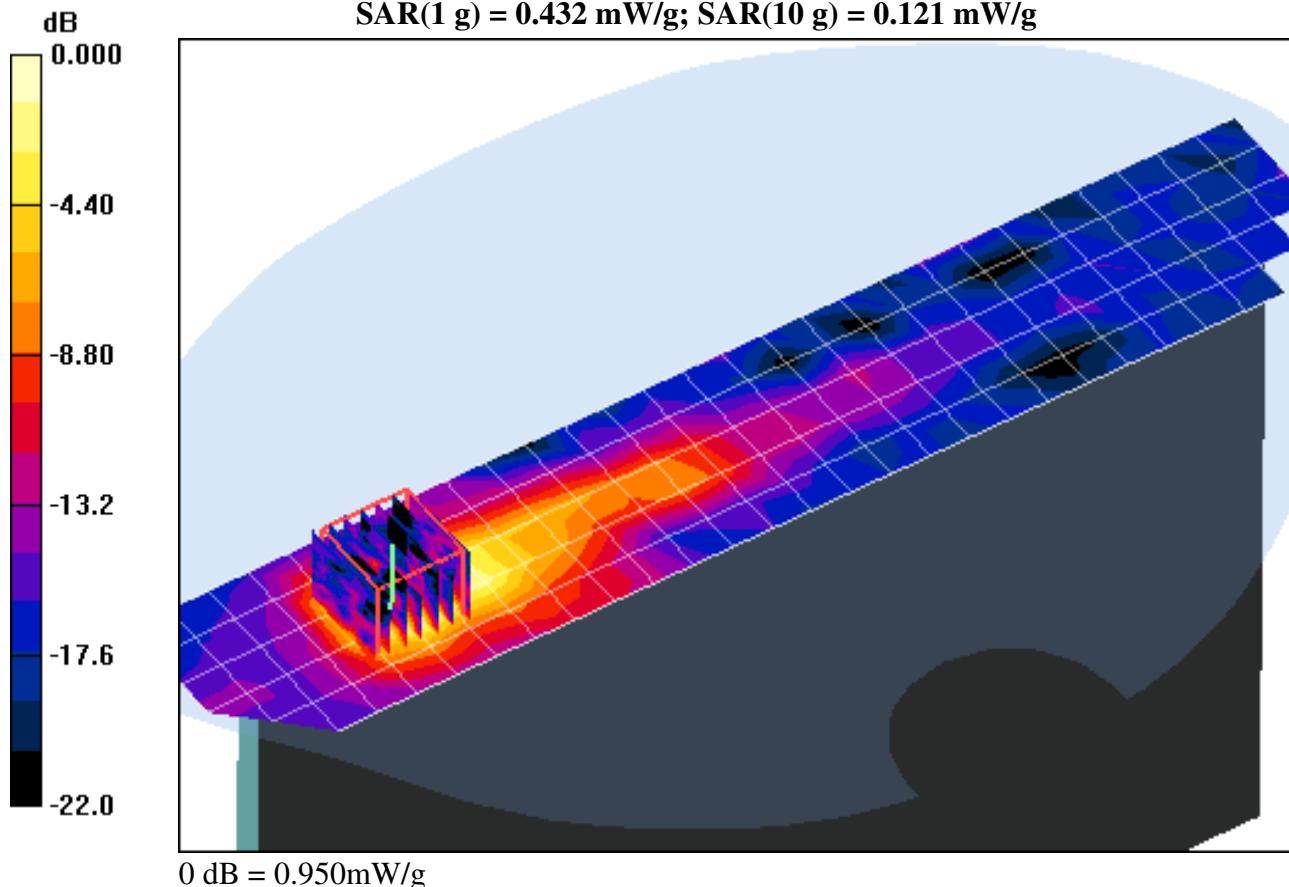
Sensor-Surface: 2mm (Mechanical Surface Detection)

Electronics: DAE4 Sn859; Calibrated: 7/8/2010

Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1357

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

**Mode: IEEE 802.11a 5.8 GHz, Top Side, Ch 161, 6Mbps**


**Area Scan (6x29x1):** Measurement grid:  $dx=10\text{mm}$ ,  $dy=10\text{mm}$

**Zoom Scan (7x7x11)/Cube 0:** Measurement grid:  $dx=4\text{mm}$ ,  $dy=4\text{mm}$ ,  $dz=2\text{mm}$

Reference Value = 11.1 V/m

Peak SAR (extrapolated) = 1.78 W/kg

$SAR(1 \text{ g}) = 0.432 \text{ mW/g}$ ;  $SAR(10 \text{ g}) = 0.121 \text{ mW/g}$



# PCTEST ENGINEERING LABORATORY, INC.

**DUT: A3LGTP7500; Type: 850/1900 GPRS/EDGE/HSPA Tablet  
with Bluetooth and WLAN; Serial: 357750040001058**

Communication System: IEEE 802.11a 5.2-5.8 GHz Band; Frequency: 5805 MHz; Duty Cycle: 1:1

Medium: 5 GHz Medium parameters used (interpolated):

$f = 5805 \text{ MHz}$ ;  $\sigma = 6.26 \text{ mho/m}$ ;  $\epsilon_r = 45.9$ ;  $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section; Space: 0.0 cm

Test Date: 04-14-2011; Ambient Temp: 24.5°C; Tissue Temp: 22.8°C

Probe: EX3DV4 - SN3550; ConvF(3.29, 3.29, 3.29); Calibrated: 2/14/2011

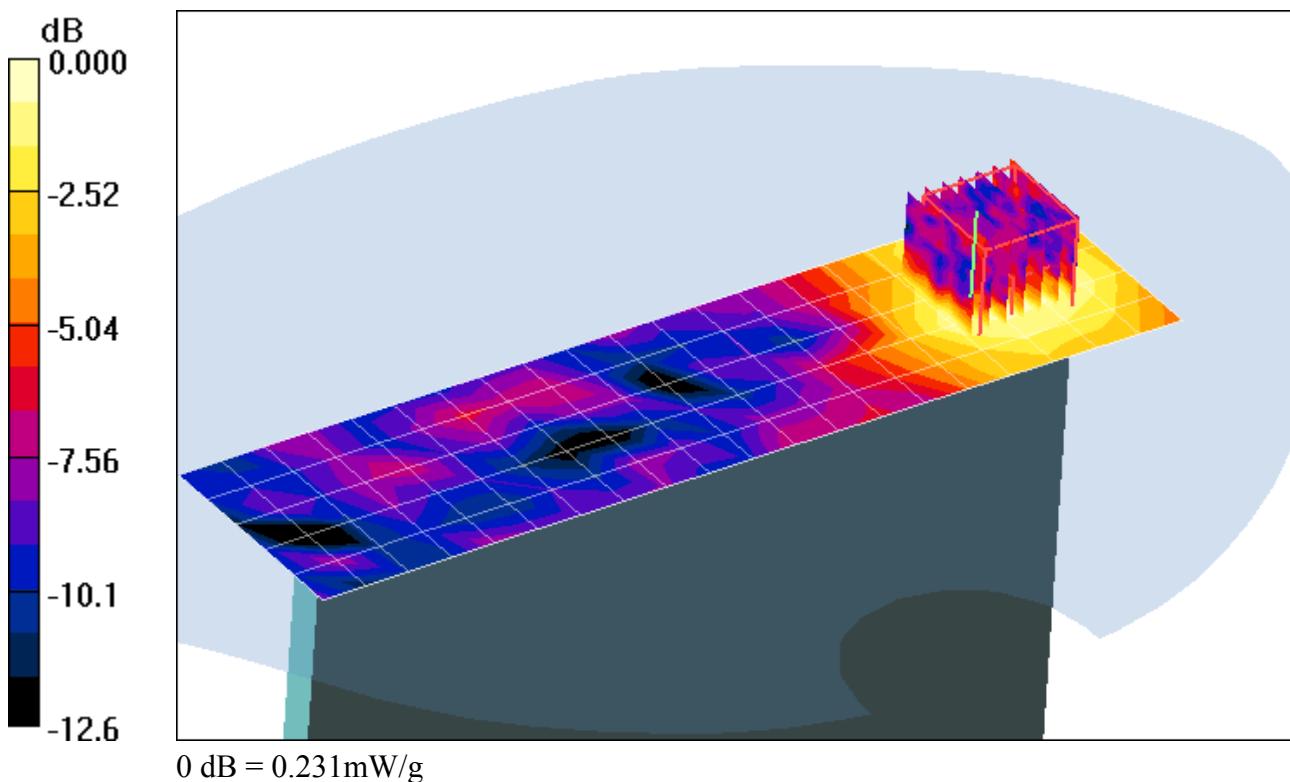
Sensor-Surface: 2mm (Mechanical Surface Detection)

Electronics: DAE4 Sn859; Calibrated: 7/8/2010

Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1357

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

**Mode: IEEE 802.11a 5.8 GHz, Left Side, Ch 161, 6Mbps**


**Area Scan (6x21x1):** Measurement grid:  $dx=10\text{mm}$ ,  $dy=10\text{mm}$

**Zoom Scan (7x7x1)/Cube 0:** Measurement grid:  $dx=4\text{mm}$ ,  $dy=4\text{mm}$ ,  $dz=2\text{mm}$

Reference Value = 5.66 V/m

Peak SAR (extrapolated) = 0.530 W/kg

**SAR(1 g) = 0.138 mW/g; SAR(10 g) = 0.082 mW/g**



## **APPENDIX B: DIPOLE VALIDATION**

# PCTEST ENGINEERING LABORATORY, INC.

**DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d047**

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: 835 Body Medium parameters used:

$f = 835 \text{ MHz}$ ;  $\sigma = 0.965 \text{ mho/m}$ ;  $\epsilon_r = 53.3$ ;  $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section; Space: 1.5 cm

Test Date: 04-20-2011; Ambient Temp: 24.2°C; Tissue Temp: 22.5°C

Probe: EX3DV4 - SN3561; ConvF(8.09, 8.09, 8.09); Calibrated: 8/19/2010

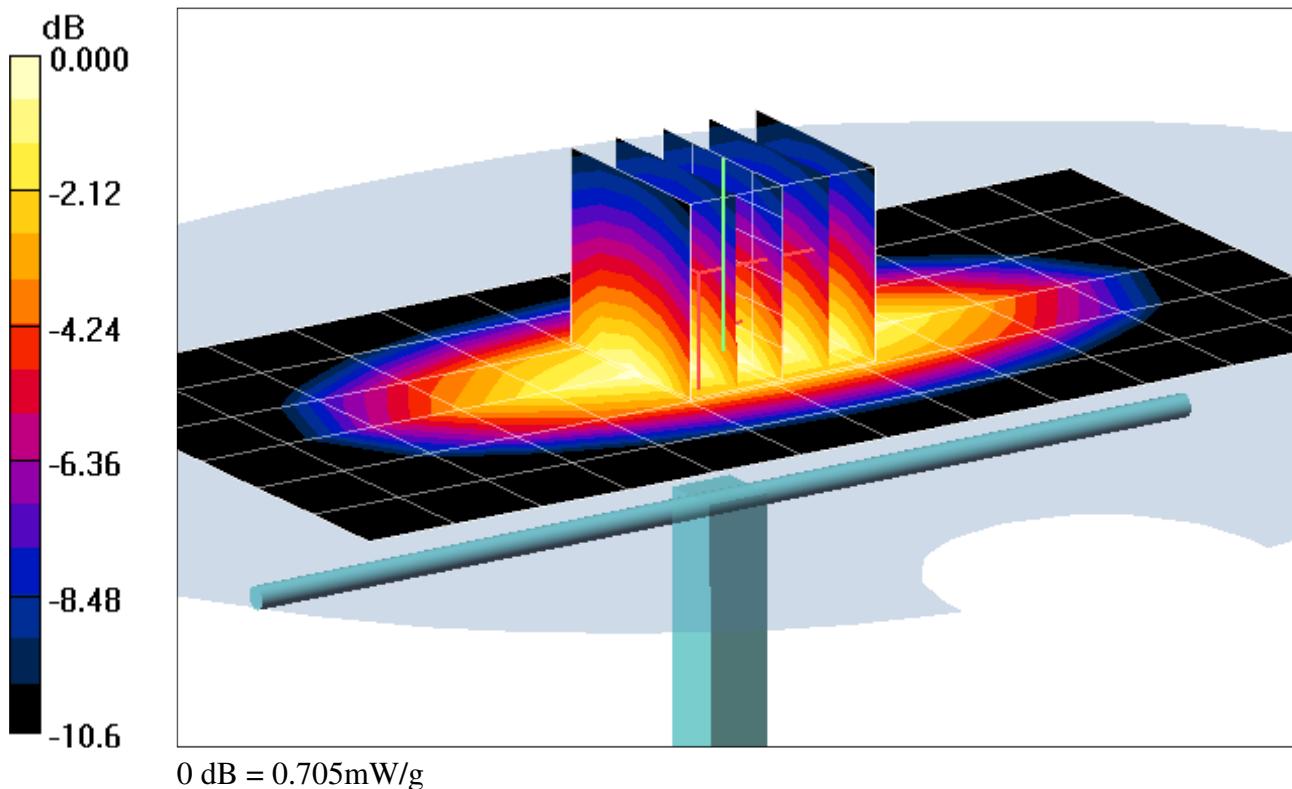
Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn649; Calibrated: 2/21/2011

Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1406

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

## 835MHz System Verification


**Area Scan (7x13x1):** Measurement grid:  $dx=15\text{mm}$ ,  $dy=15\text{mm}$

**Zoom Scan (5x5x7)/Cube 0:** Measurement grid:  $dx=8\text{mm}$ ,  $dy=8\text{mm}$ ,  $dz=5\text{mm}$

Input Power = 18.0 dBm (63.0 mW)

**SAR(1 g) = 0.653 mW/g; SAR(10 g) = 0.428 mW/g**

Deviation = 5.23 %



# PCTEST ENGINEERING LABORATORY, INC.

**DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d047**

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: 835 Body Medium parameters used:

$f = 835 \text{ MHz}$ ;  $\sigma = 0.933 \text{ mho/m}$ ;  $\epsilon_r = 52.46$ ;  $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section; Space: 1.5 cm

Test Date: 04-25-2011; Ambient Temp: 23.8°C; Tissue Temp: 22.6°C

Probe: EX3DV4 - SN3561; ConvF(8.09, 8.09, 8.09); Calibrated: 8/19/2010

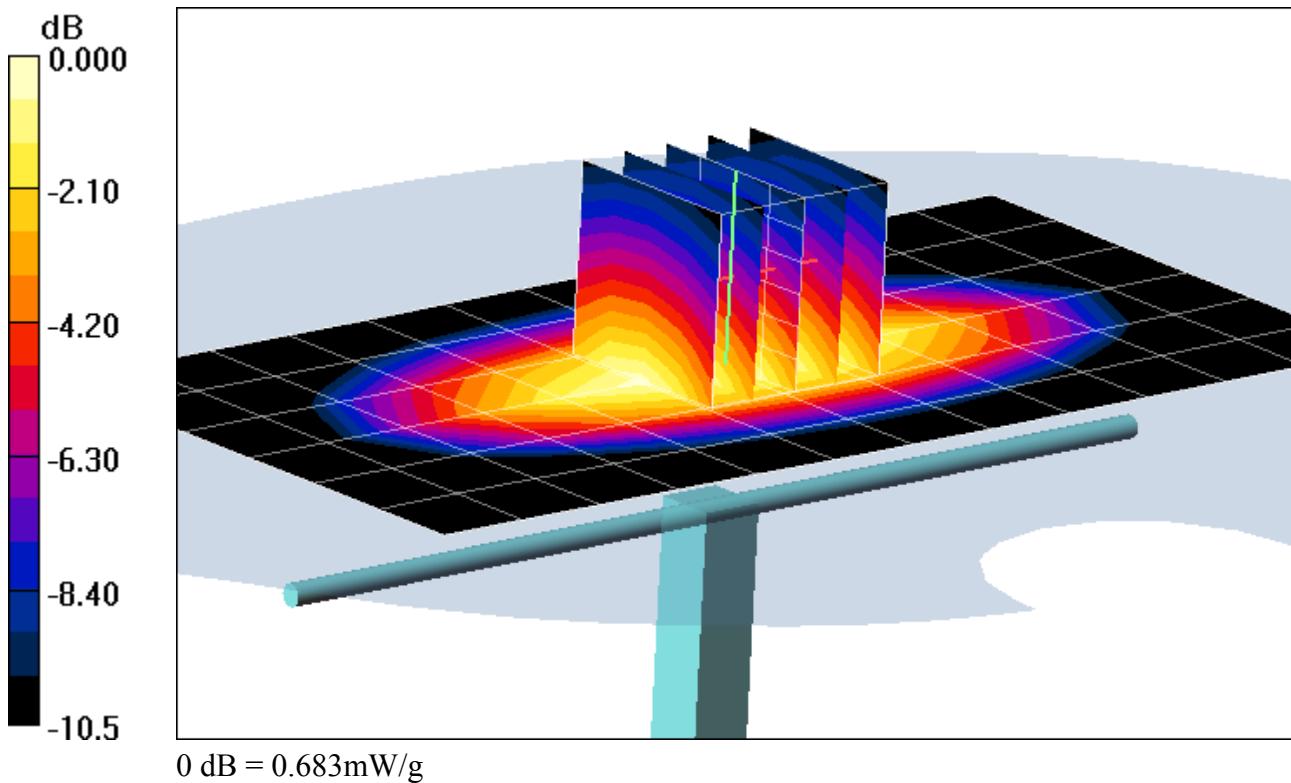
Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn649; Calibrated: 2/21/2011

Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1406

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

## 835MHz System Verification


**Area Scan (7x13x1):** Measurement grid:  $dx=15\text{mm}$ ,  $dy=15\text{mm}$

**Zoom Scan (5x5x7)/Cube 0:** Measurement grid:  $dx=8\text{mm}$ ,  $dy=8\text{mm}$ ,  $dz=5\text{mm}$

Input Power = 18.0 dBm (63.0 mW)

**SAR(1 g) = 0.634 mW/g; SAR(10 g) = 0.415 mW/g**

Deviation = 2.17%



# PCTEST ENGINEERING LABORATORY, INC.

**DUT: SAR Dipole 1900 MHz; Type: D1900V2; Serial: 502**

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: 1900 Body Medium parameters used (interpolated):

$f = 1900 \text{ MHz}$ ;  $\sigma = 1.53 \text{ mho/m}$ ;  $\epsilon_r = 52.6$ ;  $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 04-25-2011; Ambient Temp: 23.7°C; Tissue Temp: 22.1°C

Probe: EX3DV4 - SN3561; ConvF(6.59, 6.59, 6.59); Calibrated: 8/19/2010

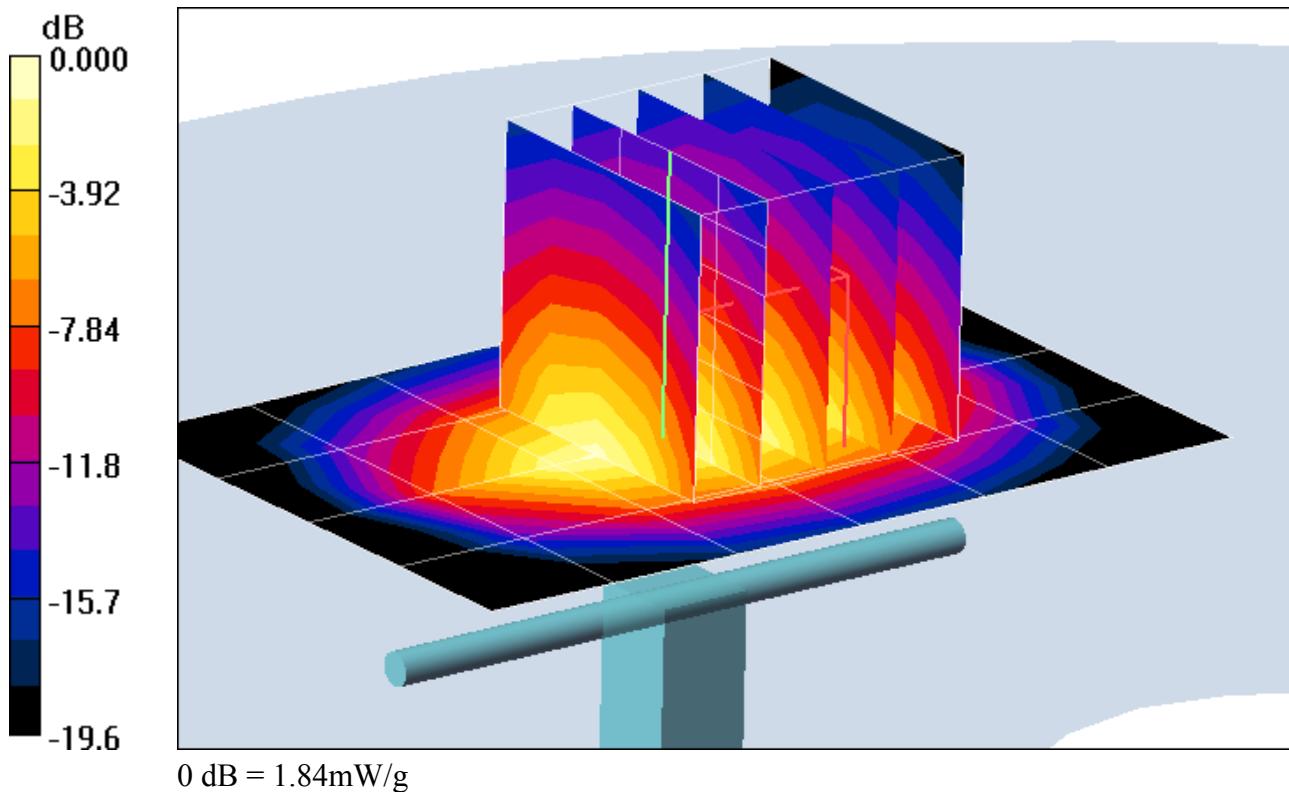
Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn649; Calibrated: 2/21/2011

Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1406

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

## 1900MHz System Verification


**Area Scan (5x7x1):** Measurement grid:  $dx=15\text{mm}$ ,  $dy=15\text{mm}$

**Zoom Scan (5x5x7)/Cube 0:** Measurement grid:  $dx=8\text{mm}$ ,  $dy=8\text{mm}$ ,  $dz=5\text{mm}$

Input Power = 16.0 dBm (40.0 mW)

**SAR(1 g) = 1.65 mW/g; SAR(10 g) = 0.844 mW/g**

Deviation = 0.36%



# PCTEST ENGINEERING LABORATORY, INC.

**DUT: SAR Dipole 1900 MHz; Type: D1900V2; Serial: 502**

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: 1900 Body Medium parameters used (interpolated):

$$f = 1900 \text{ MHz}; \sigma = 1.49 \text{ mho/m}; \epsilon_r = 50.8; \rho = 1000 \text{ kg/m}^3$$

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 05-18-2011; Ambient Temp: 24.1°C; Tissue Temp: 22.5°C

Probe: EX3DV4 - SN3561; ConvF(6.59, 6.59, 6.59); Calibrated: 8/19/2010

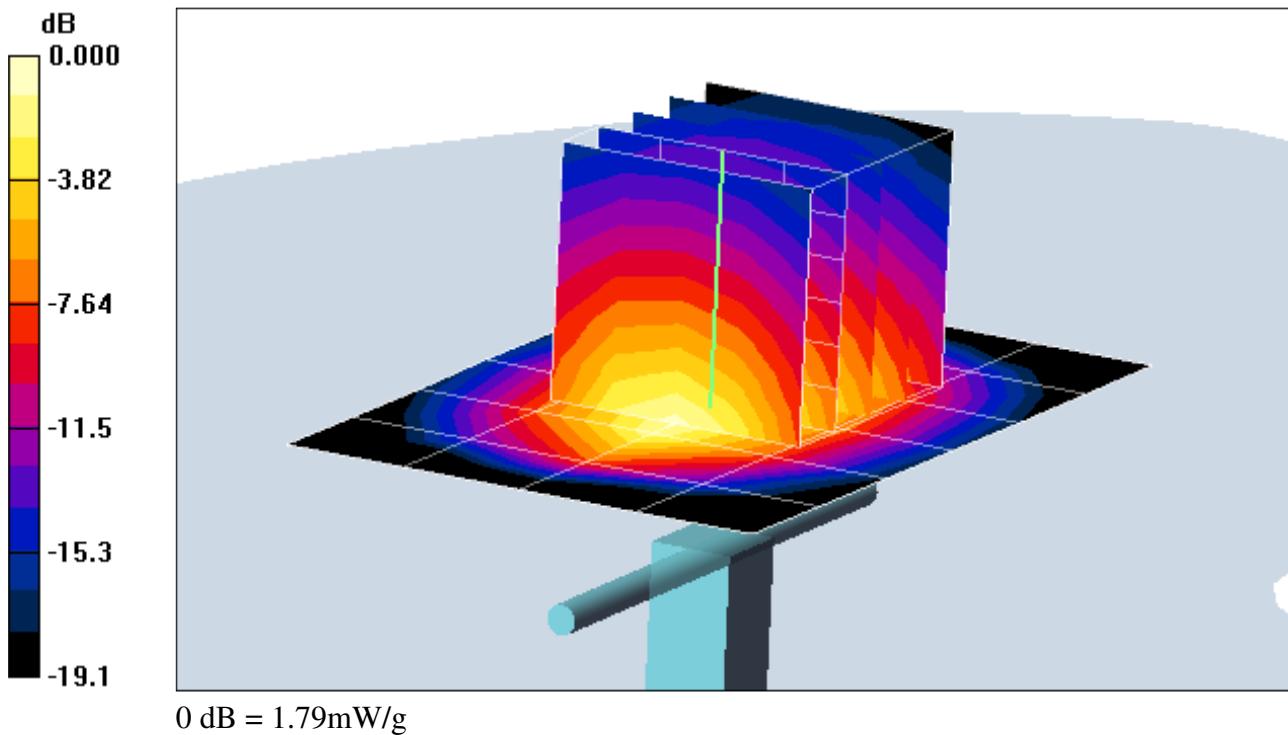
Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn649; Calibrated: 2/21/2011

Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1406

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

## 1900MHz System Verification


**Area Scan (5x7x1):** Measurement grid: dx=15mm, dy=15mm

**Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm

Input Power = 16.0 dBm (40 mW)

**SAR(1 g) = 1.6 mW/g; SAR(10 g) = 0.821 mW/g**

Deviation = -2.68%



# PCTEST ENGINEERING LABORATORY, INC.

**DUT: SAR Dipole 2450 MHz; Type: D2450V2; Serial: 719**

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: 2450 Body Medium parameters used:

$f = 2450 \text{ MHz}$ ;  $\sigma = 2.01 \text{ mho/m}$ ;  $\epsilon_r = 50.9$ ;  $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 04-18-2011; Ambient Temp: 24.1 °C; Tissue Temp: 23.0 °C

Probe: ES3DV2 - SN3022; ConvF(4.06, 4.06, 4.06); Calibrated: 9/21/2010

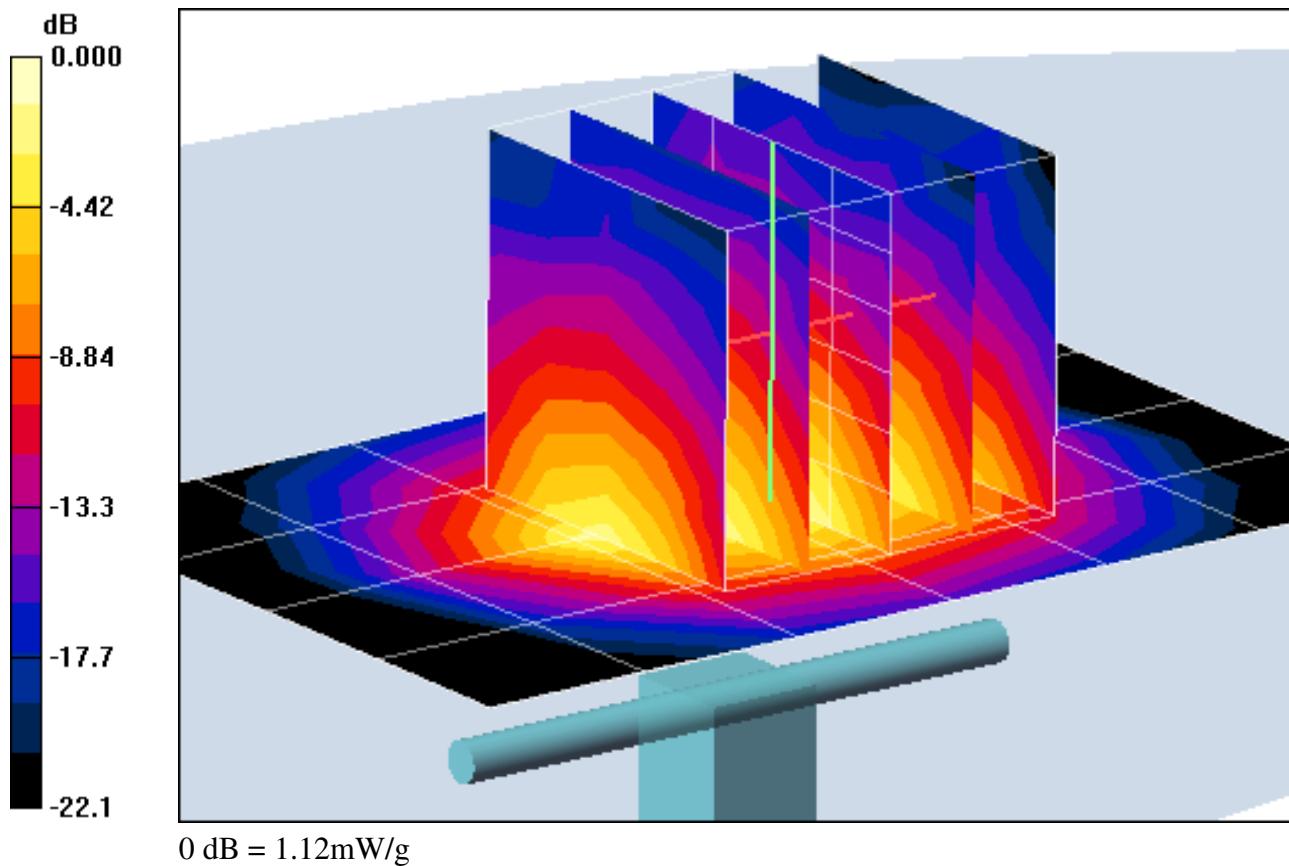
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn704; Calibrated: 3/17/2011

Phantom: SAM with CRP; Type: SAM; Serial: TP1375

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

## 2450MHz System Verification


**Area Scan (5x7x1):** Measurement grid:  $dx=15\text{mm}$ ,  $dy=15\text{mm}$

**Zoom Scan (5x5x7)/Cube 0:** Measurement grid:  $dx=8\text{mm}$ ,  $dy=8\text{mm}$ ,  $dz=5\text{mm}$

Input Power = 12.0 dBm (15.8 mW)

**SAR(1 g) = 0.859 mW/g; SAR(10 g) = 0.390 mW/g**

Deviation = 5.77%



# PCTEST ENGINEERING LABORATORY, INC.

**DUT: Dipole 5200 MHz; Type: D5GHzV2; Serial: 1057**

Communication System: CW; Frequency: 5200 MHz; Duty Cycle: 1:1

Medium: 5 GHz Medium parameters used (interpolated):

$f = 5200 \text{ MHz}$ ;  $\sigma = 5.38 \text{ mho/m}$ ;  $\epsilon_r = 47.6$ ;  $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 04-14-2011; Ambient Temp: 24.4°C; Tissue Temp: 22.8°C

Probe: EX3DV4 - SN3550; ConvF(3.58, 3.58, 3.58); Calibrated: 2/14/2011

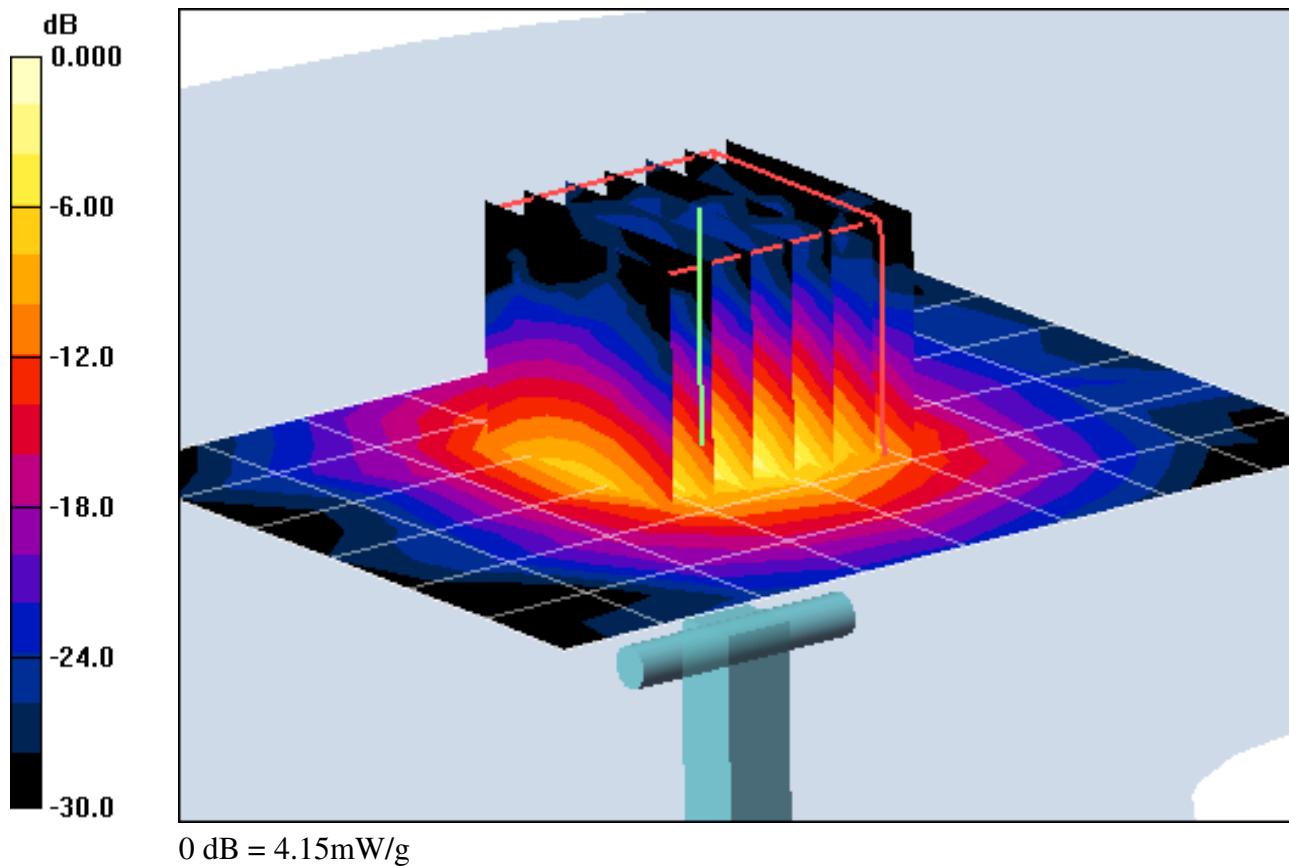
Sensor-Surface: 2mm (Mechanical Surface Detection)

Electronics: DAE4 Sn859; Calibrated: 7/8/2010

Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1357

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

## 5200MHz System Verification


**Area Scan (7x9x1):** Measurement grid:  $dx=10\text{mm}$ ,  $dy=10\text{mm}$

**Zoom Scan (7x7x11)/Cube 0:** Measurement grid:  $dx=4\text{mm}$ ,  $dy=4\text{mm}$ ,  $dz=2\text{mm}$

Input Power = 14.0 dBm (25.0 mW)

**SAR(1 g) = 2.02 mW/g; SAR(10 g) = 0.561 mW/g**

Deviation = 3.99 %



# PCTEST ENGINEERING LABORATORY, INC.

**DUT: Dipole 5500 MHz; Type: D5GHzV2; Serial: 1057**

Communication System: CW; Frequency: 5500 MHz; Duty Cycle: 1:1

Medium: 5 GHz Medium parameters used (interpolated):

$f = 5500 \text{ MHz}$ ;  $\sigma = 5.82 \text{ mho/m}$ ;  $\epsilon_r = 46.8$ ;  $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 04-14-2011; Ambient Temp: 24.6°C; Tissue Temp: 22.7°C

Probe: EX3DV4 - SN3550; ConvF(3.21, 3.21, 3.21); Calibrated: 2/14/2011

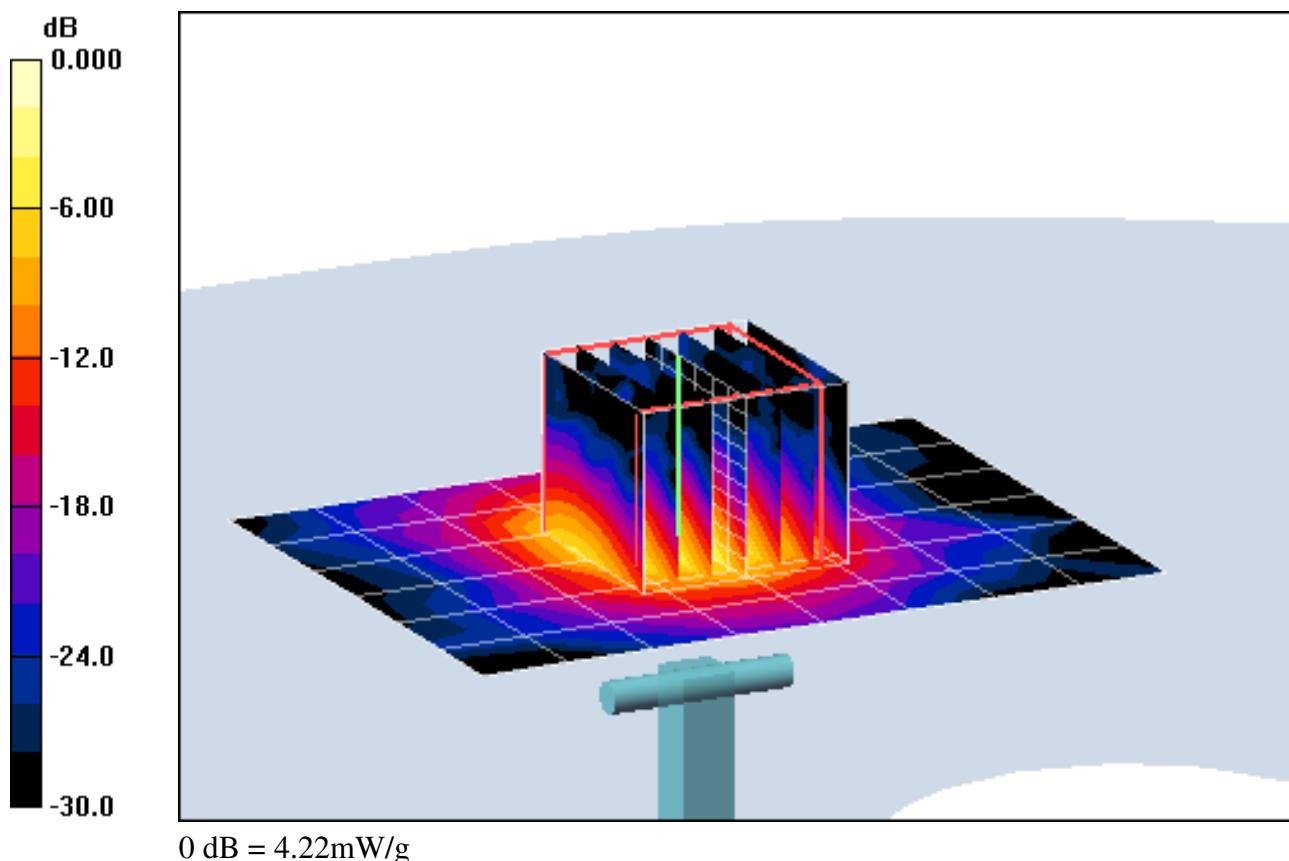
Sensor-Surface: 2mm (Mechanical Surface Detection)

Electronics: DAE4 Sn859; Calibrated: 7/8/2010

Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1357

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

## 5500MHz System Verification


**Area Scan (7x9x1):** Measurement grid:  $dx=10\text{mm}$ ,  $dy=10\text{mm}$

**Zoom Scan (7x7x11)/Cube 0:** Measurement grid:  $dx=4\text{mm}$ ,  $dy=4\text{mm}$ ,  $dz=2\text{mm}$

Input Power = 14.0 dBm (25.0 mW)

**SAR(1 g) = 2.08 mW/g; SAR(10 g) = 0.555 mW/g**

Deviation = -1.42 %



# PCTEST ENGINEERING LABORATORY, INC.

**DUT: Dipole 5800 MHz; Type: D5GHzV2; Serial: 1057**

Communication System: CW; Frequency: 5800 MHz; Duty Cycle: 1:1

Medium: 5 GHz Medium parameters used (interpolated):

$f = 5800 \text{ MHz}$ ;  $\sigma = 6.25 \text{ mho/m}$ ;  $\epsilon_r = 45.9$ ;  $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 4-14-2011; Ambient Temp: 24.5°C; Tissue Temp: 22.8°C

Probe: EX3DV4 - SN3550; ConvF(3.29, 3.29, 3.29); Calibrated: 2/14/2011

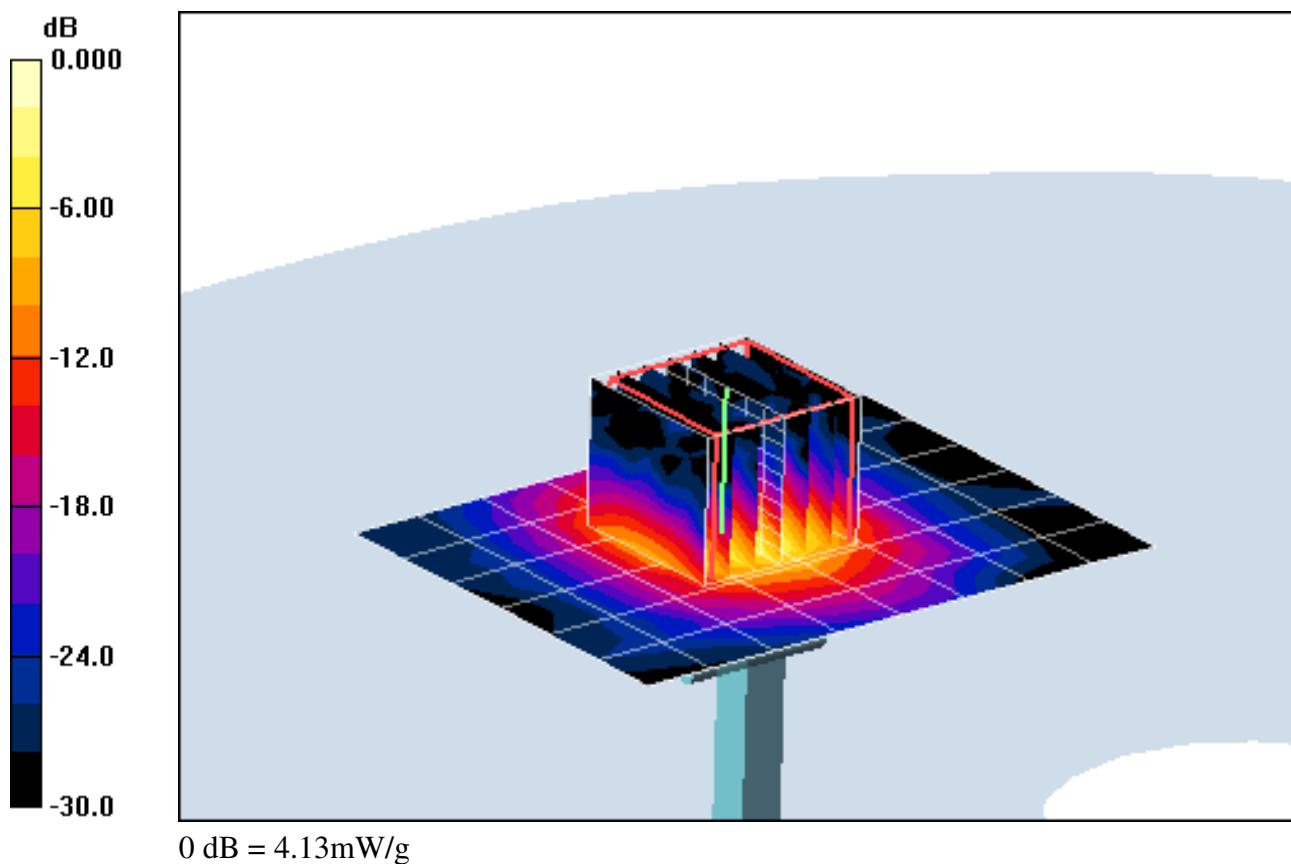
Sensor-Surface: 2mm (Mechanical Surface Detection)

Electronics: DAE4 Sn859; Calibrated: 7/8/2010

Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1357

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

## 5800MHz System Verification


**Area Scan (7x9x1):** Measurement grid:  $dx=10\text{mm}$ ,  $dy=10\text{mm}$

**Zoom Scan (7x7x11)/Cube 0:** Measurement grid:  $dx=4\text{mm}$ ,  $dy=4\text{mm}$ ,  $dz=2\text{mm}$

Input Power = 14.0 dBm (25.0 mW)

**SAR(1 g) = 1.91 mW/g; SAR(10 g) = 0.517 mW/g**

Deviation = 1.87 %

