

6660-B Dobbin Road, Columbia, MD 21045 USA Tel. +1.410.290.6652 / Fax +1.410.290.6554 http://www.pctestlab.com

SAR COMPLIANCE EVALUATION REPORT

Applicant Name:

Samsung Electronics, Co. Ltd. 18600 Broadwick St. Rancho Dominguez, CA 90220

United States

Date of Testing: 05/12/11 - 05/16/11 **Test Site/Location:**

PCTEST Lab, Columbia, MD, USA

Test Report Serial No.: 0Y1105040842-R1.A3L

FCC ID: A3LGTP7310

APPLICANT: SAMSUNG ELECTRONICS, CO. LTD.

EUT Type: Tablet with Bluetooth and WLAN

Application Type: Certification

FCC Rule Part(s): CFR §2.1093; FCC/OET Bulletin 65 Supplement C [June 2001]

Model(s): GT-P7310

Tx Frequency: 2412 - 2462 MHz (WLAN 802.11b/g/n)

5180 - 5240 MHz (WLAN 802.11a/n) / 5260 - 5320 MHz (WLAN 802.11a/n) 5500 - 5700 MHz (WLAN 802.11a/n) / 5745 - 5825 MHz (WLAN 802.11a/n)

Conducted Power: 12.60 dBm 2.4 GHz WLAN

12.22 dBm 5.2 GHz WLAN / 12.20 dBm 5.3 GHz WLAN 12.31 dBm 5.5 GHz WLAN / 11.50 dBm 5.8 GHz WLAN

Max. SAR Measurement: 1.01 W/kg 2.4 GHz WLAN Body SAR

0.89 W/kg 5.2 GHz WLAN Body SAR 0.86 W/kg 5.3 GHz WLAN Body SAR 0.89 W/kg 5.5 GHz WLAN Body SAR 0.74 W/kg 5.8 GHz WLAN Body SAR

Test Device Serial No.: Pre-Production [S/N: FI-110-B]

Note: This revised Test Report (S/N: 0Y1105040842-R1.A3L) supersedes and replaces the previously issued test report on the same subject EUT for the same type of testing as indicated. Please discard or destroy the previously issued test report and dispose of it accordingly.

This wireless portable device has been shown to be capable of compliance for localized specific absorption rate (SAR) for uncontrolled environment/general population exposure limits specified in ANSI/IEEE C95.1-1992 and has been tested in accordance with the measurement procedures specified in FCC/OET Bulletin 65 Supplement C (2001), IEEE 1528-2003 and in applicable Industry Canada Radio Standards Specifications (RSS); for North American frequency bands only.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them. Test results reported herein relate only to the item(s) tested.

PCTEST certifies that no party to this application has been subject to a denial of Federal benefits that includes FCC benefits pursuant to Section 5301 of the Anti-Drug Abuse Act of 1988, 21 U.S.C. 862.

FCC ID: A3LGTP7310	PCTEST*	SAR COMPLIANCE REPORT	ISUNG	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:		Dog 1 of 20
0Y1105040842-R1.A3L	05/12/11 - 05/16/11	Tablet with Bluetooth and WLAN		Page 1 of 30

TABLE OF CONTENTS

1	INTRODUCTION	3
2	TEST SITE LOCATION	4
3	SAR MEASUREMENT SETUP	5
4	DASY E-FIELD PROBE SYSTEM	7
5	PROBE CALIBRATION PROCESS	8
6	PHANTOM AND EQUIVALENT TISSUES	9
7	DOSIMETRIC ASSESSMENT & PHANTOM SPECS	10
8	FCC RF EXPOSURE LIMITS	11
9	ANTENNA LOCATIONS AND KEY FEATURES	12
10	SAR TESTING CONSIDERATIONS & FCC KDB INQUIRIES	14
11	SAR TESTING WITH IEEE 802.11 TRANSMITTERS	15
12	SYSTEM VERIFICATION	18
13	SAR DATA SUMMARY	20
14	EQUIPMENT LIST	22
15	MEASUREMENT UNCERTAINTIES	23
16	CONCLUSION	
17	REFERENCES	26
18	SAR TEST SETUP PHOTOGRAPHS	28

FCC ID: A3LGTP7310	PCTEST"	SAR COMPLIANCE REPORT	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:	Do as 2 of 20
0Y1105040842-R1.A3L	05/12/11 - 05/16/11	Tablet with Bluetooth and WLAN	Page 2 of 30

INTRODUCTION

The FCC has adopted the guidelines for evaluating the environmental effects of radio frequency (RF) radiation in ET Docket 93-62 on Aug. 6, 1996 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices. [1]

The safety limits used for the environmental evaluation measurements are based on the criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate (SAR) in IEEE/ANSI C95.1-1992 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz [3] and Health Canada RF Exposure Guidelines Safety Code 6 [24]. The measurement procedure described in IEEE/ANSI C95.3-2002 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave [4] is used for guidance in measuring the Specific Absorption Rate (SAR) due to the RF radiation exposure from the Equipment Under Test (EUT). These criteria for SAR evaluation are similar to those recommended by the International Committee for Non-Ionizing Radiation Protection (ICNIRP) in Biological Effects and Exposure Criteria for Radiofrequency Electromagnetic Fields," Report No. Vol 74. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards.

1.1 SAR Definition

Specific Absorption Rate is defined as the time derivative (rate) of the incremental energy (dU) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ). It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body (see Fig. 1-1).

$$SAR = \frac{d}{dt} \left(\frac{dU}{dm} \right) = \frac{d}{dt} \left(\frac{dU}{\rho dv} \right)$$

Figure 1-1 SAR Mathematical Equation

SAR is expressed in units of Watts per Kilogram (W/kg).

$$SAR = \frac{\sigma \cdot E^2}{\rho}$$

where:

 σ = conductivity of the tissue-simulating material (S/m) ρ = mass density of the tissue-simulating material (kg/m³)

E = Total RMS electric field strength (V/m)

NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relation to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane.[6]

FCC ID: A3LGTP7310	PCTEST:	SAR COMPLIANCE REPORT	SAMSUNG	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:		Dogo 2 of 20
0Y1105040842-R1.A3L	05/12/11 - 05/16/11	Tablet with Bluetooth and WLAN		Page 3 of 30
© COMA POTEOT Familia a dia a Labarataria II.				

2.1 INTRODUCTION

The map at the right shows the location of the PCTEST LABORATORY in Columbia, Maryland. It is in proximity to the FCC Laboratory, the Baltimore-Washington International (BWI) airport, the city of Baltimore and Washington, DC.

These measurement tests were conducted at the PCTEST Engineering Laboratory, Inc. facility in New Concept Business Park, Guilford Industrial Park, Columbia. Maryland. The site address is 6660-B Dobbin Road, Columbia, MD 21045. The test site is one of the highest points in the Columbia area with an elevation of 390 feet above mean sea level. The site coordinates are 39° 11'15" N latitude and 76° 49' 38" W longitude. The facility is 1.5 miles north of the FCC laboratory, and the ambient signal and ambient signal strength are approximately equal to those of the FCC laboratory. There are no FM or TV

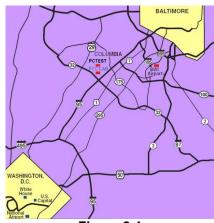


Figure 2-1 Map of the Greater Baltimore and Metropolitan Washington, D.C. area

transmitters within 15 miles of the site. The detailed description of the measurement facility was found to be in compliance with the requirements of § 2.948 according to ANSI C63.4 on January 27, 2006 and Industry Canada.

2.2 **Test Facility / Accreditations:**

Measurements were performed at an independent accredited PCTEST Engineering Lab located in Columbia, MD 21045, U.S.A.

(1)

- PCTEST Lab is accredited to ISO 17025-2005 by the American Association for Laboratory Accreditation (A2LA) in Specific Absorption Rate (SAR) testing, Hearing-Aid Compatibility (HAC), Battery Safety, CTIA Test Plans, and wireless testing for FCC and Industry Canada Rules.
- PCTEST Lab is accredited to ISO 17025 by U.S. National Institute of Standards and Technology (NIST) under the National Voluntary Laboratory Accreditation Program (NVLAP Lab code: 100431-0) in EMC, FCC and Telecommunications.
- PCTEST facility is an FCC registered (PCTEST Reg. No. 90864) test facility with the site description report on file and has met all the requirements specified in Section 2.948 of the FCC Rules and Industry Canada (IC-2451).
- PCTEST Lab is a recognized U.S. Conformity Assessment Body (CAB) in EMC and R&TTE (n.b. 0982) under the U.S.-EU Mutual Recognition Agreement (MRA).
- PCTEST TCB is a Telecommunication Certification Body (TCB) accredited to ISO/IEC Guide 65 by the American National Standards Institute (ANSI) in all scopes of FCC Rules and all Industry Canada Standards (RSS).
- PCTEST facility is an IC registered (IC-2451) test laboratory with the site description on file at Industry Canada.
- PCTEST is a CTIA Authorized Test Laboratory (CATL) for AMPS and CDMA, and EvDO mobile phones.
- PCTEST is a CTIA Authorized Test Laboratory (CATL) for Over-the-Air (OTA) Antenna Performance testing for AMPS, CDMA, GSM, GPRS, EGPRS, UMTS (W-CDMA), CDMA 1xEVDO Data, CDMA 1xRTT Data

FCC ID: A3LGTP7310	PCTEST SEGMENTAL LAUVATHY, INC.	SAR COMPLIANCE REPORT	SAMSUNG	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:		Dogo 4 of 20
0Y1105040842-R1.A3L	05/12/11 - 05/16/11	Tablet with Bluetooth and WLAN		Page 4 of 30
© 2011 PCTEST Engineering Laboratory, Inc.				DE\/ 9 0 1M

3.1 Robotic System

Measurements are performed using the DASY4 automated dosimetric assessment system. The DASY4 is made by Schmid & Partner Engineering AG (SPEAG) in Zurich, Switzerland and consists of a high precision robotics system (Staubli), robot controller, desktop computer, near-field probe, probe alignment sensor, and the SAM phantom containing the head or body equivalent material. The robot is a six-axis industrial robot, performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF) (see Figure 3-1).

3.2 System Hardware

A cell controller system contains the power supply, robot controller, teach pendant (Joystick), and a remote control used to drive the robot motors. The PC consists of the SAR Measurement Software DASY4, A/D interface card, monitor, mouse, and keyboard. The Staubli Robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit that performs the signal amplification, signal multiplexing, A/D conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal from the DAE and transfers data to the PC card.

3.3 System Electronics

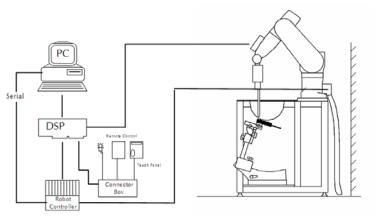


Figure 3-1 SAR Measurement System Setup

The DAE consists of a highly sensitive electrometer-grade auto-zeroing preamplifier, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the PC-card is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer.

FCC ID: A3LGTP7310	PCTEST*	SAR COMPLIANCE REPORT	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:	Dogo F of 20
0Y1105040842-R1.A3L	05/12/11 - 05/16/11	Tablet with Bluetooth and WLAN	Page 5 of 30

3.4 Automated Test System Specifications

Test Software: SPEAG DASY4 version 4.7 Measurement Software

Robot: Stäubli Unimation Corp. Robot RX60L

Repeatability: 0.02 mm

No. of Axes: 6

Data Acquisition Electronic System (DAE)

Data Converter

Features: Signal Amplifier, multiplexer, A/D converter & control logic

Software: SEMCAD software

Connecting Lines: Optical Downlink for data and status info

Optical upload for commands and clock

PC Interface Card

Function: Link to DAE

16-bit A/D converter for surface detection system

Two Serial & Ethernet link to robotics Direct emergency stop output for robot

Phantom

Type: SAM Twin Phantom (V4.0)

Shell Material: Composite Thickness: 2.0 ± 0.2 mm

Figure 3-2 SAR Measurement System

FCC ID: A3LGTP7310	PCTEST*	SAR COMPLIANCE REPORT	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:	Dogo 6 of 20
0Y1105040842-R1.A3L	05/12/11 - 05/16/11	Tablet with Bluetooth and WLAN	Page 6 of 30

4 DASY E-FIELD PROBE SYSTEM

4.1 Probe Measurement System

Figure 4-1 SAR System

The SAR measurements were conducted with the dosimetric probe designed in the classical triangular configuration (see Figure 4-3) and optimized for dosimetric evaluation [9]. The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multifiber line ending at the front of the probe tip. It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY4 software reads the reflection during a software approach and looks for the

maximum using a 2nd order curve fitting (see Figure 5-1). The approach is stopped at reaching the maximum.

4.2 Probe Specifications

 Model(s):
 ES3DV2, ES3DV3, EX3DV4

 Frequency
 10 MHz - 6.0 GHz (EX3DV4)

 Range:
 10 MHz - 4 GHz (ES3DV3)

Calibration:

In head and body simulating tissue at Frequencies from 300 up to 6000MHz

± 0.2 dB (30 MHz to 6 GHz) for EX3DV4

± 0.2 dB (30 MHz to 4 GHz) for ES3DV3

10 mW/kg – 100 W/kg

Dynamic Range: 10 mW/kg – 7 **Probe Length:** 330 mm

Probe Tip

Length: 20 mm

Body Diameter: 12 mm

Tip Diameter: 2.5 mm (3.9mm for ES3DV3)
Tip-Center: 1 mm (2.0 mm for ES3DV3)
Application: SAR Dosimetry Testing

Compliance tests of mobile phones Dosimetry in strong gradient fields

Figure 4-2 Near-Field Probe

Figure 4-3
Triangular Probe
Configuration

FCC ID: A3LGTP7310	PCTEST** INDICATES LADVATORY, INC.	SAR COMPLIANCE REPORT	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:	Dogo 7 of 20
0Y1105040842-R1.A3L	05/12/11 - 05/16/11	Tablet with Bluetooth and WLAN	Page 7 of 30

5.1 **Dosimetric Assessment Procedure**

Each E-Probe/Probe Amplifier combination has unique calibration parameters. A TEM cell calibration procedure is conducted to determine the proper amplifier settings to enter in the probe parameters. The amplifier settings are determined for a given frequency by subjecting the probe to a known E-field density (1 mW/cm²) using an RF Signal generator, TEM cell, and RF Power Meter.

5.2 Free Space Assessment

The free space E-field from amplified probe outputs is determined in a test chamber. This calibration can be performed in a TEM cell if the frequency is below 1 GHz and in a waveguide or other methodologies above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is rotated 360 degrees until the three channels show the maximum reading. The power density readings equates to 1 mW/cm².

5.3 **Temperature Assessment**

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated head tissue. The E-field in the medium correlates with the temperature rise in the dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$SAR = C \frac{\Delta T}{\Delta t}$$

where:

 $\Delta t = \text{exposure time (30 seconds)},$

= heat capacity of tissue (brain or muscle),

 ΔT = temperature increase due to RF exposure.

SAR is proportional to $\Delta T/\Delta t$, the initial rate of tissue heating, before thermal diffusion takes place. The electric field in the simulated tissue can be used to estimate SAR by equating the thermally derived SAR to that with the E- field component.

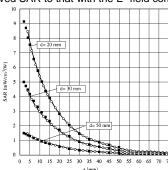


Figure 5-1 E-Field and Temperature measurements at 900MHz [9]

$$SAR = \frac{\left| E \right|^2 \cdot \sigma}{\rho}$$

where:

= simulated tissue conductivity,

= Tissue density (1.25 g/cm³ for brain tissue)

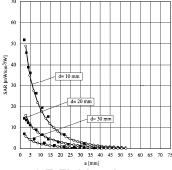


Figure 5-2 E-Field and temperature measurements at 1.9GHz [9]

FCC ID: A3LGTP7310	PCTEST NO. INC. INC. INC. INC.	SAR COMPLIANCE REPORT	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:	Dogo 9 of 20
0Y1105040842-R1.A3L	05/12/11 - 05/16/11	Tablet with Bluetooth and WLAN	Page 8 of 30
© 2014 PCTCCT Facinessian Laboratory, Inc.			

6.1 SAM Phantoms

Figure 6-1 SAM Phantoms

The SAM Twin Phantom V4.0 is constructed of a fiberglass shell integrated in a table. The shape of the shell is based on data from an anatomical study designed to represent the 90th percentile of the population [12][13]. The phantom enables the dosimetric evaluation of SAR for both left and right handed handset usage, as well as bodyworn usage using the flat phantom region. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot. The shell phantom has a 2mm shell thickness (except the ear region where shell thickness increases to 6 mm).

6.2 Tissue Simulating Mixture Characterization

Figure 6-2 SAM Phantom with Simulating Tissue

The mixture is characterized to obtain proper dielectric constant (permittivity) and conductivity of the tissue of interest. The tissue dielectric parameters recommended in IEEE 1528 and IEC 62209 have been used as targets for the compositions, and are to match within 5%, per the FCC recommendations.

Table 6-1Composition of the Tissue Equivalent Matter

Frequency (MHz)	2450	5200-5800
Tissue	Body	Body
Ingredients (% by weight)		
DGBE	26.7	
NaCl	0.1	
Triton X-100		10.67
Diethylenglycol monohexylether		10.67
Water	73.2	78.66

FCC ID: A3LGTP7310	PCTEST*	SAR COMPLIANCE REPORT	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:	Dogo 0 of 20
0Y1105040842-R1.A3L	05/12/11 - 05/16/11	Tablet with Bluetooth and WLAN	Page 9 of 30

7.1 **Measurement Procedure**

The evaluation was performed using the following procedure:

- 1. The SAR distribution at the exposed side of the head was measured at a distance no greater than 5.0 mm from the inner surface of the shell. The area covered the entire dimension of the head and the horizontal grid spacing was 15mm x 15mm.
- 2. The point SAR measurement was taken at the maximum SAR region determined from Step 1 to enable the monitoring of SAR fluctuations/drifts during testing the 1 gram cube. This fixed point was measured and used as a reference value.
- 3. Based on the area scan data, the area of the maximum absorption was determined by spline interpolation. Around this point, a volume of 32mm x 32mm x 30mm (fine resolution volume scan, zoom scan) was assessed by measuring 5 x 5 x 7 points. On this basis of this

Figure 7-1 Sample SAR Area Scan

data set, the spatial peak SAR value was evaluated with the following procedure (see references or the DASY manual for more details):

- The data was extrapolated to the surface of the outer-shell of the phantom. The combined distance extrapolated was the combined distance from the center of the dipoles 2.7mm away from the tip of the probe housing plus the 1.2 mm distance between the surface and the lowest measuring point. The extrapolation was based on a leastsquares algorithm. A polynomial of the fourth order was calculated through the points in the z-axis (normal to the phantom shell).
- After the maximum interpolated values were calculated between the points in the cube, b. the SAR was averaged over the spatial volume (1g or 10g) using a 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions). The volume was then integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were obtained through interpolation, in order to calculate the averaged SAR.
- All neighboring volumes were evaluated until no neighboring volume with a higher C. average value was found.
- The SAR reference value, at the same location as step 2, was re-measured after the zoom scan 4. was complete. If the value deviated by more than 5%, the evaluation was repeated.
- 5. For 5 GHz testing finer resolution zoom scans were preformed as specified by FCC SAR Measurement Requirements for 3 - 6 GHz, KDB pub 865664. The 5 GHz zoom scan requires a minimum volume of 24mm x 24mm x 20mm and 7 x 7 x 11 points.

7.2 Specific Anthropomorphic Mannequin (SAM) Specifications

The phantom for handset SAR assessment testing is a low-loss dielectric shell, with shape and dimensions derived from the anthropometric data of the 90th percentile adult male head dimensions as tabulated by the US Army. The SAM Twin Phantom shell is bisected along the mid-sagittal plane into right and left halves (see Figure 7-2). The perimeter sidewalls of each phantom halves are extended to allow filling with liquid to a depth that is sufficient to minimize reflections from the upper surface. The liquid depth is maintained at a minimum depth of 15 cm.

Figure 7-2 **SAM Twin Phantom Shell**

FCC ID: A3LGTP7310	PCTEST.	SAR COMPLIANCE REPORT	MSUNG	Reviewed by: Quality Manager	
Filename:	Test Dates:	EUT Type:		Dogg 10 of 20	
0Y1105040842-R1.A3L	05/12/11 - 05/16/11	Tablet with Bluetooth and WLAN		Page 10 of 30	
© 2014 DCTEST Engineering Loberston, Inc.				DE\/ 0.0.1M	

8.1 Uncontrolled Environment

UNCONTROLLED ENVIRONMENTS are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

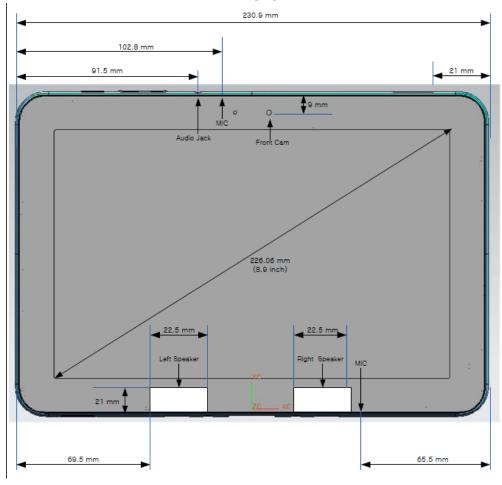
8.2 **Controlled Environment**

CONTROLLED ENVIRONMENTS are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

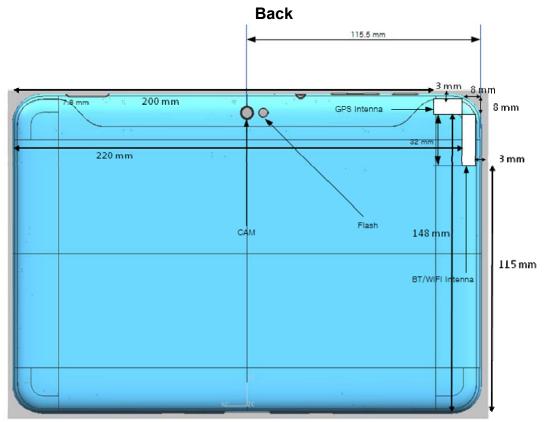
Table 8-1 SAR Human Exposure Specified in ANSI/IEEE C95.1-1992 and Health Canada Safety Code 6

HUMAN EXPOSURE LIMITS							
	UNCONTROLLED ENVIRONMENT General Population (W/kg) or (mW/g)	CONTROLLED ENVIRONMENT Occupational (W/kg) or (mW/g)					
SPATIAL PEAK SAR Brain	1.6	8.0					
SPATIAL AVERAGE SAR Whole Body	0.08	0.4					
SPATIAL PEAK SAR Hands, Feet, Ankles, Wrists	4.0	20					

^{1.} The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.


FCC ID: A3LGTP7310	PCTEST:	SAR COMPLIANCE REPORT	6	Reviewed by: Quality Manager	
Filename:	Test Dates:	EUT Type:		Page 11 of 30	
0Y1105040842-R1.A3L	05/12/11 - 05/16/11	Tablet with Bluetooth and WLAN		rage 11 01 30	
@ 2011 DOTECT Engineering Labor		DEV/ 0.0 4M			

^{2.} The Spatial Average value of the SAR averaged over the whole body.


^{3.} The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

9.1 Antenna and Key feature Information

Front

FCC ID: A3LGTP7310	PCTEST INCIDENTAL LADVATORY, INC.	SAR COMPLIANCE REPORT	SAMSUNG	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:		Dogo 12 of 20
0Y1105040842-R1.A3L	05/12/11 - 05/16/11	Tablet with Bluetooth and WLAN		Page 12 of 30

Note: Rear camera is not for video calls but for standard digital functions.

9.2 Display Orientations Capabilities

This device is capable of multiple display orientations supporting both portrait and landscape positions. Therefore per KDB 447498 4) b) ii) (2), SAR testing applies for the tablet edges with antennas located within 5 cm of each tablet edge closest to the user (with KDB 616217 applied to edges with antennas located 5 cm from the user). According to KDB 447498 4) b) ii) (2), for each antenna, SAR is only required for the edge with the most conservative exposure condition. Display auto-rotates.

FCC ID: A3LGTP7310	PCTEST SUBLINIS LADVATORY, INC.	SAR COMPLIANCE REPORT	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:	Dogg 12 of 20
0Y1105040842-R1.A3L	05/12/11 - 05/16/11	Tablet with Bluetooth and WLAN	Page 13 of 30

10.1 Tablet testing for SAR

Lap-touching devices that have transmitting antennas located less than 20 cm from the lap of the user require routine SAR evaluation. Such devices are considered portable, and are capable of being held to the body. Devices are to be setup according to KDB 447498 requirements and are configured with maximum output power during SAR assessment for a worst-case SAR evaluation.

10.2 SAR Testing for Tablet per KDB 447498 Section 4

Per KDB 448498 4) b) i) the bottom face (back of the device) is required to be tested touching the flat phantom.

Per KDB 447498 4) b) ii) (2), SAR testing applies for the tablet edges with antennas located within 5 cm of each tablet edge closest to the user (with KDB 616217 applied to edges with antennas located \geq 5 cm from the user). According to KDB 447498 4) b) ii) (2), for each antenna, SAR is only required for the edge with the most conservative exposure condition.

Antenna Output Power (mW)	≤ 60/f _(GHz)	> 60/f _(GHz)					
Individual Transmitter or Antenna	SAR not required	Antenna-to-user distance – ≥ (5 + ½·n) cm: test SAR on highest output channel only < (5 + ½·n) cm: test SAR according to normal procedures					
Simultaneous	SAR not required: antenna-to-antenna or antenna-to-person distance ≥ 5 cm	SAR not required: antenna-to-antenna $\ge (+\frac{1}{2} \cdot n_x + \frac{1}{2} \cdot n_y)$ and antenna-to-person $\ge (+\frac{1}{2} \cdot n_x)$ cm					
Transmitting Antennas	SAR not required: when \sum (SAR _{1g}) < SAR limit, antenna-to-antenna distances > 5 cm and antenna-to-user distance > 5 cm if output > $60/f$						
	otherwise, test antenna(s) using highest SAR configuration for the individual transmitter/antenna						

Table 10-1 SAR Requirement Table per KDB pub 616217 D01

Table 10-2 Distance Thresholds per KDB 616217 Publication

Mode	Freq (GHz)	Power (mW)	60/f	n={P/(60/f)}-1	distance threshold (5+1/2n) (cm)
WIFIb	2.437	18.2	24.62	-0.26	4.9
	5.2	16.7	11.54	0.44	5.2
WIFLa	5.3	16.6	11.32	0.47	5.2
WIFIA	5.5	17.0	10.91	0.56	5.3
	5.8	14.1	10.34	0.37	5.2

According to KDB 616217 publication and the antenna distances from the user to the edges of the device, the WLAN antenna is required to be tested for SAR at the back, top and left edges of the device.

The RF output power of Bluetooth was 10.666 mW, which is less than the threshold power (60/f). Therefore, SAR is not required for the Bluetooth transmitter per KDB publication 616217.

10.3 Simultaneous SAR Considerations

There are no modes that can transmit simultaneously.

FCC ID: A3LGTP7310	PCTEST*	SAR COMPLIANCE REPORT	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:	Page 14 of 30
0Y1105040842-R1.A3L	05/12/11 - 05/16/11	Tablet with Bluetooth and WLAN	Fage 14 01 30

11 SAR TESTING WITH IEEE 802.11 TRANSMITTERS

Normal network operating configurations are not suitable for measuring the SAR of 802.11 a/b/g transmitters. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure the results are consistent and reliable.

11.1 **General Device Setup**

Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters. The test frequencies should correspond to actual channel frequencies defined for domestic use. SAR for devices with switched diversity should be measured with only one antenna transmitting at a time during each SAR measurement, according to a fixed modulation and data rate. The same data pattern should be used for all measurements.

11.2 Frequency Channel Configurations [27]

802.11 a/b/g and 4.9 GHz operating modes are tested independently according to the service requirements in each frequency band. 802.11 b/g modes are tested on channels 1, 6 and 11. 802.11a is tested for UNII operations on channels 36 and 48 in the 5.15-5.25 GHz band; channels 52 and 64 in the 5.25-5.35 GHz band; channels 104, 116, 124 and 136 in the 5.470-5.725 GHz band; and channels 149 and 161 in the 5.8 GHz band. When 5.8 GHz §15.247 is also available, channels 149, 157 and 165 should be tested instead of the UNII channels. 4.9 GHz is tested on channels 1, 10 and 5 or 6, whichever has the higher output power, for 5 MHz channels; channels 11, 15 and 19 for 10 MHz channels; and channels 21 and 25 for 20 MHz channels. These are referred to as the "default test channels". 802.11g mode was evaluated only if the output power was 0.25 dB higher than the 802.11b mode.

> **Table 11-1** 802.11 Test Channels per FCC Requirements

				Turbo	"Default Test C		Channels"	
Mo	de	GHz	Channel	Channel	§15.		UN	m
				Channer	802.11b	802.11g	0.1	
		2.412	1		√	∇		
802.1	l b/g	2.437	6	6	√	∇		
		2.462	11		√	∇		
		5.18	36				-√	
		5.20	40	42 (5.21 GHz)				
		5.22	44	42 (3.21 GH2)				
		5.24	48	50 (5.25 GHz)			- √	
		5.26	52	30 (3.23 GHZ)			- √	
		5.28	56	58 (5.29 GHz)				*
	UNII	5.30	60	36 (3.23 GHZ)				
		5.32	64				- √	
		5.500	100					*
		5.520	104				- √	
		5.540	108					
802.11a		5.560	112					*
002.11a		5.580	116				- √	
		5.600	120	Unknown				*
		5.620	124				7	
		5.640	128					*
		5.660	132					*
		5.680	136				- √	
		5.700	140					*
	UNII	5.745	149		√		-√	
	or	5.765	153	152 (5.76 GHz)		*		*
	§15.247	5.785	157		√			*
	320.247	5.805	161	160 (5.80 GHz)		*	1	
	§15.247	5.825	165		- √			

Note that the ✓ indicates a default test channel and * indicates a possible channel.

FCC ID: A3LGTP7310	PCTEST*	SAR COMPLIANCE REPORT	Reviewed by: Quality Manager			
Filename:	Test Dates:	EUT Type:	Dogg 15 of 20			
0Y1105040842-R1.A3L	05/12/11 - 05/16/11	Tablet with Bluetooth and WLAN	Page 15 of 30			
© 2011 PCTEST Engineering Laboratory, Inc.						

Table 11-2 IEEE 802.11b Average RF Power

:=== 00=:::::::::::::::::::::::::::::::									
Freq	Channel	C	Conducted Power [dBm]						
rieq	Charine	Data Rate [Mbps]							
[MHz]		1	2	5.5	11				
2412	1	9.00	9.05	9.00	8.95				
2437	6	9.20	9.15	9.20	9.20				
2462	11	9.28	9.20	9.25	9.25				

Table 11-3 IEEE 802.11g Average RF Power

Frea	Channel		Conducted Power [dBm] Data Rate [Mbps]						
Freq	Charmer								
[MHz]		6	9	12	18	24	36	48	54
2412	1	12.40	12.45	12.45	12.40	12.40	12.41	12.30	12.32
2437	6	12.57	12.55	12.54	12.60	12.55	12.45	12.42	12.50
2462	11	12.60	12.58	12.55	12.70	12.62	12.60	12.55	12.60

Table 11-4
IEEE 802.11n Average RF Power

Frea	Channel	Conducted Power [dBm]							
rieq	Chamer		Data Rate [Mbps]						
[MHz]		6.5	13	20	26	39	52	58	65
2412	1	12.31	12.22	12.21	12.25	12.30	12.31	12.30	12.29
2437	6	12.50	12.37	12.40	12.40	12.55	12.42	12.40	12.31
2462	11	12.25	12.20	12.20	12.23	12.25	12.22	12.35	12.30

Table 11-5 IEEE 802.11a Average RF Power

Mode	Freq	Channel			C	Conducted I	Power [dBn	n]		
Mode	rieq	Charmer				Data Rat	te [Mbps]			
	[MHz]		6	9	12	18	24	36	48	54
802.11a	5180	36	12.22	12.27	12.21	12.22	12.28	12.30	12.40	12.47
802.11a	5200	40	12.20	12.15	12.25	12.30	12.31	12.35	12.42	12.32
802.11a	5220	44	12.15	12.15	12.20	12.25	12.23	12.22	12.27	12.32
802.11a	5240	48	12.20	12.15	12.18	12.20	12.12	12.25	12.40	12.33
802.11a	5260	52	12.20	12.10	12.15	12.20	12.10	12.15	12.30	12.22
802.11a	5280	56	12.05	12.11	12.05	12.18	12.16	12.25	12.22	12.15
802.11a	5300	60	12.20	12.05	12.10	12.22	12.12	12.20	12.25	12.15
802.11a	5320	64	12.15	12.20	12.19	12.15	12.14	12.05	12.10	12.20
802.11a	5500	100	12.02	12.01	12.10	12.15	12.01	12.02	12.15	12.15
802.11a	5520	104	12.05	12.10	11.96	12.05	12.15	12.03	12.15	12.20
802.11a	5540	108	12.10	12.12	11.98	12.20	12.12	12.00	12.12	12.14
802.11a	5560	112	12.05	12.15	12.05	12.25	12.15	12.11	12.25	12.22
802.11a	5580	116	12.09	12.20	12.07	12.13	12.05	12.15	12.15	12.18
802.11a	5600	120	12.05	11.95	12.05	12.11	12.30	12.15	12.22	12.15
802.11a	5620	124	12.15	12.11	12.16	12.31	12.15	12.28	12.27	12.26
802.11a	5640	128	12.15	12.22	12.15	12.15	12.25	12.20	12.39	12.40
802.11a	5660	132	12.25	12.11	12.25	12.28	12.30	12.25	12.30	12.15
802.11a	5680	136	12.31	12.35	12.31	12.35	12.30	12.20	12.28	12.35
802.11a	5700	140	12.15	12.20	12.25	12.35	12.31	12.30	12.30	12.39
802.11a	5745	149	11.25	11.40	11.31	11.40	11.35	11.30	11.40	11.34
802.11a	5765	153	11.25	11.20	11.15	11.31	11.36	11.40	11.50	11.50
802.11a	5785	157	11.35	11.30	11.40	11.50	11.45	11.30	11.45	11.45
802.11a	5805	161	11.50	11.48	11.35	11.45	11.50	11.50	11.40	11.48
802.11a	5825	165	11.25	11.02	10.95	10.90	11.01	11.01	10.95	10.91

FCC ID: A3LGTP7310	PCTEST*	SAR COMPLIANCE REPORT	Reviewed by: Quality Manager	
Filename:	Test Dates:	EUT Type:	Dog 16 of 20	
0Y1105040842-R1.A3L	05/12/11 - 05/16/11	Tablet with Bluetooth and WLAN	Page 16 of 30	

Table 11-6
IEEE 802.11n Average RF Power

Mode	Freq	Channel			C	Conducted I	Power [dBn	ո]		
Mode	rieq	Charmer				Data Rat	te [Mbps]			
	[MHz]		6.5	13	20	26	39	52	58	65
802.11n	5180	36	12.06	12.20	12.18	12.05	12.20	12.30	12.30	12.41
802.11n	5200	40	12.15	12.02	12.25	12.24	12.20	12.25	12.30	12.40
802.11n	5220	44	12.10	12.02	12.15	12.15	12.30	12.40	12.45	12.30
802.11n	5240	48	12.20	12.07	12.20	12.11	12.24	12.20	12.22	12.26
802.11n	5260	52	12.10	12.00	12.30	12.29	12.20	12.22	12.20	12.26
802.11n	5280	56	12.00	11.95	12.06	12.20	12.20	12.22	12.20	12.20
802.11n	5300	60	12.00	12.00	12.10	12.10	12.15	12.28	12.30	12.25
802.11n	5320	64	12.00	11.90	12.01	12.01	12.25	12.30	12.20	12.20
802.11n	5500	100	11.95	12.00	12.07	12.12	12.11	12.20	12.15	12.03
802.11n	5520	104	11.97	11.82	12.05	12.10	12.20	12.15	12.10	12.20
802.11n	5540	108	11.90	11.96	12.15	12.09	12.17	12.10	12.15	12.10
802.11n	5560	112	12.00	11.94	12.12	12.11	12.15	12.14	12.25	12.25
802.11n	5580	116	12.10	12.05	12.20	12.15	12.25	12.20	12.15	12.18
802.11n	5600	120	12.20	11.98	12.10	12.15	12.30	12.31	12.21	12.30
802.11n	5620	124	12.07	12.05	12.11	12.05	12.20	12.32	12.29	12.35
802.11n	5640	128	12.05	12.01	12.12	12.22	12.25	12.25	12.35	12.40
802.11n	5660	132	12.20	12.15	12.32	12.30	12.30	12.22	12.29	12.35
802.11n	5680	136	12.15	12.22	12.20	12.27	12.35	12.31	12.40	12.24
802.11n	5700	140	12.17	12.20	12.38	12.38	12.30	12.29	12.30	12.40
802.11n	5745	149	11.07	11.16	11.10	11.12	11.35	11.32	11.29	11.31
802.11n	5765	153	11.10	11.20	11.12	11.20	11.26	11.34	11.42	11.40
802.11n	5785	157	11.01	11.26	11.23	11.25	11.40	11.26	11.31	11.26
802.11n	5805	161	11.20	11.22	11.26	11.33	11.42	11.45	11.40	11.50
802.11n	5825	165	10.86	10.80	10.83	10.88	11.00	11.00	10.81	10.85

Notes:

- 1. The maximum RF output power for all channels across all data rates was measured.
- 2. Per KDB 248227 Publication, for 5 GHZ bands with 1g SAR < 0.8 W/kg, the highest default channel per 5 GHz band across the lowest data rates were evaluated for SAR.
- 3. Justification for reduced test configurations for WIFI channels per KDB Publication 248227 and April 2010 FCC/TCB Meeting Notes: IEEE 802.11n for 5GHz bands and IEEE 802.11g/n for 2.4 GHz Bands and higher data rates for both bands were not investigated since the average output powers were not greater than 0.25 dB that of the corresponding channel in the lowest data rate. Bolded powers in Section 12.2 were tested for SAR.

Figure 11-1
Power Measurement Setup

FCC ID: A3LGTP7310	PCTEST"	SAR COMPLIANCE REPORT	Reviewed by: Quality Manager	
Filename:	Test Dates:	EUT Type:	Dogo 17 of 20	
0Y1105040842-R1.A3L	05/12/11 - 05/16/11	Tablet with Bluetooth and WLAN	Page 17 of 30	

12.1 Tissue Verification

Table 12-1
Measured Tissue Properties

Calibrated for Tests Performed on:	Tissue Type	Measured Frequency (MHz)	Measured Conductivity, σ (S/m)	Measured Dielectric Constant, ε	TARGET Conductivity, σ (S/m)	TARGET Dielectric Constant, ε	% dev σ	% dev ε
		2401	1.944	51.02	1.90	52.77	2.15%	-3.31%
05/16/2011	2450B	2450	2.012	50.89	1.95	52.70	3.18%	-3.43%
		2499	2.074	50.73	2.02	52.64	2.72%	-3.62%
		5170	5.399	48.50	5.26	49.06	2.56%	-1.13%
		5210	5.466	48.20	5.31	49.00	2.92%	-1.63%
		5250	5.481	48.22	5.36	48.95	2.30%	-1.48%
		5270	5.523	48.32	5.38	48.92	2.64%	-1.22%
		5310	5.618	47.97	5.43	48.87	3.50%	-1.83%
		5350	5.697	48.06	5.47	48.81	4.15%	-1.54%
		5470	5.831	47.70	5.62	48.65	3.85%	-1.95%
		5510	5.923	47.69	5.66	48.59	4.63%	-1.86%
05/12/2011	5200B-5800B	5550	5.940	47.55	5.71	48.54	4.06%	-2.04%
03/12/2011	3200B-3800B	5570	5.984	47.46	5.73	48.51	4.41%	-2.17%
		5610	6.029	47.46	5.78	48.46	4.34%	-2.06%
		5650	6.090	47.23	5.83	48.40	4.55%	-2.43%
		5670	6.117	47.35	5.85	48.38	4.60%	-2.12%
		5710	6.143	47.29	5.90	48.32	4.21%	-2.14%
		5750	6.219	47.15	5.94	48.27	4.66%	-2.32%
		5770	6.234	47.28	5.97	48.24	4.51%	-1.99%
		5810	6.292	47.10	6.01	48.19	4.66%	-2.25%
		5850	6.347	46.97	6.06	48.13	4.77%	-2.41%

Note: KDB Publication 450824 was ensured to be applied for probe calibration frequencies greater than or equal to 50 MHz of the DUT frequencies.

The above measured tissue parameters were used in the DASY software to perform interpolation to determine actual dielectric parameters at the test frequencies (per IEEE 1528 6.6.1.2). The SAR test plots may slightly differ from the table above since the DASY software rounds to three significant digits.

Probe calibration used within ± 100 MHz of the test frequency in either 5.725 - 5.85 or 5.47-5.725 GHz is acceptable per KDB Publication 865664 since the design of the SAR probe supports the extended frequency, provided the DASY software version recommended is used for the tests, and the expanded calibration uncertainty (k=2) is less than or equal to 15% (See SAR probe calibration certificate for this information). The dielectric and conductivities measured are within 10% and 5% respectively of the target parameters specified in Supplement C 01-01.

FCC ID: A3LGTP7310	PCTEST SUBLINIS LADVATOR, INC.	SAR COMPLIANCE REPORT	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:	Dogo 19 of 20
0Y1105040842-R1.A3L	05/12/11 - 05/16/11	Tablet with Bluetooth and WLAN	Page 18 of 30

12.2 Measurement Procedure for Tissue verification

- 1) The network analyzer and probe system was configured and calibrated.
- 2) The probe was immersed in the sample which was placed in a nonmetallic container. Trapped air bubbles beneath the flange were minimized by placing the probe at a slight angle.
- 3) The complex admittance with respect to the probe aperture was measured
- The complex relative permittivity, for example from the below equation (Pournaropoulos and Misra):

$$Y = \frac{j2\omega\varepsilon_{r}\varepsilon_{0}}{\left[\ln(b/a)\right]^{2}} \int_{a}^{b} \int_{a}^{b} \int_{0}^{\pi} \cos\phi' \frac{\exp\left[-j\omega r(\mu_{0}\varepsilon_{r}\varepsilon_{0})^{1/2}\right]}{r} d\phi' d\rho' d\rho$$

where Y is the admittance of the probe in contact with the sample, the primed and unprimed coordinates refer to source and observation points, respectively, $r^2 = \rho^2 + {\rho'}^2 - 2\rho\rho'\cos\phi'$, ω is the angular frequency, and $j = \sqrt{-1}$.

12.3 Test System Verification

Prior to assessment, the system is verified to ±10% of the manufacturer SAR measurement on the reference dipole at the time of calibration.

Table 12-2 System Verification Results

	System Verification TARGET & MEASURED										
Date: Amb. Liquid Temp (°C) (°C) (W) Tissue SN Tissue SN Type SAR _{1g} (W/kg) (W/kg) CW/kg) Dipole SN Tissue SAR _{1g} (W/kg) Dipole SN CW/kg) Di							Deviation (%)				
05/16/2011	24.8	22.9	0.0158	2450	797	Body	0.774	52.300	48.987	-6.33%	
05/12/2011	24.3	22.7	0.025	5200	1057	Body	1.99	77.700	79.600	2.45%	
05/12/2011	24.5	22.7	0.025	5500	1057	Body	2.1	84.400	84.000	-0.47%	
05/12/2011	24.4	22.6	0.025	5800	1057	Body	1.93	75.000	77.200	2.93%	

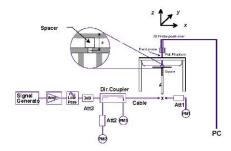


Figure 12-1
System Verification Setup Diagram

Figure 12-2
System Verification Setup Photo

FCC ID: A3LGTP7310	PCTEST	SAR COMPLIANCE REPORT	Reviewed by: Quality Manager	
Filename:	ne: Test Dates: EUT Type:			
0Y1105040842-R1.A3L		Tablet with Bluetooth and WLAN	Page 19 of 30	

Table 13-1 2.4 GHz Body SAR Results

				REMENT					
FREQU	ENCY	Mode	Service	Conducted Power	Power	Spacing	Data Rate	Side	SAR
MHz	Ch.			[dBm]	Drift [dB]		(Mbps)		(W/kg)
2462	11	IEEE 802.11b	DSSS	9.28	-0.06	0.0 cm	1	back	0.464
2462	11	IEEE 802.11b	DSSS	9.28	0.03	0.0 cm	1	top	0.142
2462	11	IEEE 802.11b	DSSS	9.28	0.07	0.0 cm	1	left	0.035
2412	1	IEEE 802.11b	DSSS	0.00	0.00	0.0 cm	6	back	0.803
2437	6	IEEE 802.11b	DSSS	0.00	0.02	0.0 cm	6	back	0.919
2462	11	IEEE 802.11g	DSSS	12.60	-0.08	0.0 cm	6	back	1.010
2462	11	IEEE 802.11g	DSSS	12.60	0.01	0.0 cm	6	top	0.377
2462	11	IEEE 802.11g	DSSS	12.60	0.03	0.0 cm	6	left	0.086
2412	1	IEEE 802.11n	DSSS	12.31	0.06	0.0 cm	6.5	back	0.764
2437	6	IEEE 802.11n	DSSS	12.50	0.09	0.0 cm	6.5	back	0.955
2462	11	IEEE 802.11n	DSSS	12.25	0.05	0.0 cm	6.5	back	0.929
2437	6	IEEE 802.11n	DSSS	12.50	0.00	0.0 cm	6.5	top	0.324
2437	6	IEEE 802.11n	DSSS	12.50	0.08	0.0 cm	6.5	left	0.081
	ANSI	/ IEEE C95.1 19	992 - SAF	ETY LIMIT		Body			
Spatial Peak							1.6 W/kg		
	Uncont	trolled Exposul	re/Genera	l Populatio	n	av	eraged o	ver 1 gra	m

Notes:

- 1. The test data reported are the worst-case SAR value with the position set in a typical configuration. Test procedures used were according to FCC/OET Bulletin 65, Supplement C [June 2001].
- 2. Per KDB 448498 4) b) i) the back side is required to be tested touching the flat phantom.
- 3. This device is capable of multiple display orientations supporting both portrait and landscape positions. Therefore per KDB 447498 4) b) ii) (2), SAR testing applies for the tablet edges with antennas located within 5 cm of each tablet edge closest to the user (with KDB 616217 applied to edges with antennas located ≥ 5 cm from the user). According to KDB 447498 4) b) ii) (2), for each antenna, SAR is only required for the edge with the most conservative exposure condition.
- 4. All modes of operation were investigated, and worst-case results are reported.
- 5. Batteries are fully charged for all readings.
- 6. Tissue parameters and temperatures are listed on the SAR plots.
- 7. Liquid tissue depth is was at least 15.0 cm.
- 8. Device was tested using a fixed spacing.
- 9. Justification for reduced test configurations for WIFI channels per KDB Publication 248227 and April 2010 FCC/TCB Meeting Notes: Highest average RF output power channel for the lowest data rate were selected for SAR evaluation. Additional channels were tested for back side since the SAR was greater than 0.8 W/kg. Higher Data rates were not investigated since the average output powers were not greater than 0.25 dB than that of the corresponding channel in the lowest data rate. IEEE 802.11g/n were tested since the average output power of the corresponding channel used for SAR testing was more than 0.25 dB higher than IEEE 802.11b mode.
- 10. Based on the output power and the distance of antenna to edge only the back side and top and left edges were required for SAR Testing. See section 10 for more details.
- 11. Per KDB 447498 4) b) since the output power of the antenna is ≤ 60/f (GHz), Bluetooth SAR is not required for both back side and edge exposure conditions.

FCC ID: A3LGTP7310	PCTEST*	SAR COMPLIANCE REPORT	Reviewed by: Quality Manager	
Filename:	Test Dates:	EUT Type:	Dogg 20 of 20	
0Y1105040842-R1.A3L 05/12/11 - 05/16/11		Tablet with Bluetooth and WLAN	Page 20 of 30	

Table 13-2 5 GHz Body SAR Results

		M	EASUR	EMENT F	RESULT	s					
FREQUE		Mode	Service	Conducted Power	Power Drift [dB]	Spacing	Data Rate	Side	SAR (1g)		
MHz	Ch.			[dBm]			(Mbps)		(W/kg)		
5180	36	IEEE 802.11a	OFDM	12.22	-0.04	0.0 cm	6	back	0.887		
5240	48	IEEE 802.11a	OFDM	12.20	0.02	0.0 cm	6	back	0.826		
5180	36	IEEE 802.11a	OFDM	12.22	0.00	0.0 cm	6	top	0.115		
5180	36	IEEE 802.11a	OFDM	12.22	0.07	0.0 cm	6	left	0.610		
5260	52	IEEE 802.11a	OFDM	12.20	0.02	0.0 cm	6	back	0.862		
5300	60	IEEE 802.11a	OFDM	12.20	-0.03	0.0 cm	6	back	0.809		
5260	52	IEEE 802.11a	OFDM	12.20	-0.05	0.0 cm	6	top	0.108		
5260	52	IEEE 802.11a	OFDM	12.20	0.05	0.0 cm	6	left	0.612		
5540	108	IEEE 802.11a	OFDM	12.10	0.05	0.0 cm	6	back	0.873		
5580	116	IEEE 802.11a	OFDM	12.09	0.07	0.0 cm	6	back	0.798		
5620	124	IEEE 802.11a	OFDM	12.15	0.02	0.0 cm	6	back	0.824		
5680	136	IEEE 802.11a	OFDM	12.31	0.08	0.0 cm	6	back	0.894		
5680	136	IEEE 802.11a	OFDM	12.31	0.07	0.0 cm	6	top	0.085		
5680	136	IEEE 802.11a	OFDM	12.31	-0.05	0.0 cm	6	left	0.598		
5805	161	IEEE 802.11a	OFDM	11.50	0.06	0.0 cm	6	back	0.741		
5805	161	IEEE 802.11a	OFDM	11.50	0.05	0.0 cm	6	top	0.069		
5805	161	IEEE 802.11a	OFDM	11.50	-0.05	0.0 cm	6	left	0.480		
ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population						av	1.6 W/kg	g (mW/g)	Body 1.6 W/kg (mW/g) averaged over 1 gram		

Notes:

- 1. The test data reported are the worst-case SAR value with the position set in a typical configuration. Test procedures used were according to FCC/OET Bulletin 65, Supplement C [June 2001].
- 2. Per KDB 448498 4) b) i) the back side is required to be tested touching the flat phantom.
- 3. This device is capable of multiple display orientations supporting both portrait and landscape positions. Therefore per KDB 447498 4) b) ii) (2), SAR testing applies for the tablet edges with antennas located within 5 cm of each tablet edge closest to the user (with KDB 616217 applied to edges with antennas located ≥ 5 cm from the user). According to KDB 447498 4) b) ii) (2), for each antenna, SAR is only required for the edge with the most conservative exposure condition.
- 4. All modes of operation were investigated, and worst-case results are reported.
- 5. Batteries are fully charged for all readings.
- 6. Tissue parameters and temperatures are listed on the SAR plots.
- 7. Liquid tissue depth is was at least 15.0 cm.
- 8. Device was tested using a fixed spacing.
- 9. Justification for reduced test configurations for WIFI channels per KDB Publication 248227 and April 2010 FCC/TCB Meeting Notes: Highest average RF output power channel for the lowest data rate were selected for SAR evaluation. When the SAR was greater than 0.8 W/kg either the default or corresponding possible test channels were additionally tested, see Section 11.2 for more details. Higher data rates for 802.11a were not investigated since the average output powers were not greater than 0.25 dB than the power of the corresponding channel in the lowest data rate IEEE 802.11a mode.
- 10. Justification for reduced test configurations for WIFI Modes per KDB Publication 248227 and April 2010 FCC/TCB Meeting Notes: IEEE 802.11n was not investigated since the average output powers of the lowest data rate were not greater than 0.25 dB than that of the corresponding channel in the lowest data rate IEEE 802.11a mode.
- 11. Based on the output power and the distance of antenna to edge the back side, and top and left edges were required for SAR Testing. See section 10 for more details.

FCC ID: A3LGTP7310	PCTEST*	SAR COMPLIANCE REPORT	Reviewed by: Quality Manager	
Filename:	Test Dates:	EUT Type:	Page 21 of 30	
0Y1105040842-R1.A3L	05/12/11 - 05/16/11	Tablet with Bluetooth and WLAN		

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	85070B	Dielectric Probe Kit	8/22/2010	Annual	8/22/2011	US33020316
Agilent	8648D	(9kHz-4GHz) Signal Generator	10/13/2010	Annual	10/13/2011	3613A00315
Agilent	8753E	(30kHz-6GHz) Network Analyzer	4/21/2011	Annual	4/21/2012	JP38020182
Agilent	E5515C	Wireless Communications Test Set	10/11/2010	Annual	10/11/2011	GB46110872
Agilent	E5515C	Wireless Communications Test Set	10/8/2010	Annual	10/8/2011	GB46310798
Agilent	E5515C	Wireless Communications Test Set	8/13/2010	Annual	8/13/2011	GB41450275
Agilent	E8257D	(250kHz-20GHz) Signal Generator	4/8/2011	Annual	4/8/2012	MY45470194
Gigatronics	80701A	(0.05-18GHz) Power Sensor	10/11/2010	Annual	10/11/2011	1833460
Gigatronics	8651A	Universal Power Meter	10/11/2010	Annual	10/11/2011	8650319
Index SAR	IXTL-010	Dielectric Measurement Kit	N/A		N/A	N/A
Index SAR	IXTL-030	30MM TEM line for 6 GHz	N/A		N/A	N/A
Pasternack	PE2208-6	Bidirectional Coupler	N/A		N/A	N/A
Pasternack	PE2209-10	Bidirectional Coupler	N/A		N/A	N/A
Rohde & Schwarz	CMU200	Base Station Simulator	11/11/2010	Annual	11/11/2011	836371/0079
Rohde & Schwarz	CMU200	Base Station Simulator	6/21/2010	Annual	6/21/2011	833855/0010
Rohde & Schwarz	NRVD	Dual Channel Power Meter	4/8/2011	Biennial	4/8/2013	101695
SPEAG	D1450V2	1450 MHz SAR Dipole	5/20/2009	Biennial	5/20/2011	1025
SPEAG	D1765V2	1765 MHz SAR Dipole	5/19/2009	Biennial	5/19/2011	1008
SPEAG	D1900V2	1900 MHz SAR Dipole	2/17/2011	Annual	2/17/2012	502
SPEAG	D1900V2	1900 MHz SAR Dipole	8/18/2009	Biennial	8/18/2011	5d080
SPEAG	D2450V2	2450 MHz SAR Dipole	8/27/2009	Biennial	8/27/2011	719
SPEAG	D2450V2 D2450V2	2450 MHz SAR Dipole 2450 MHz SAR Dipole	2/8/2011	Annual	2/8/2012	719
SPEAG	D2430V2 D2600V2	2600 MHz SAR Dipole	4/15/2011	Biennial	4/15/2013	1004
SPEAG	D5GHzV2	5 GHz SAR Dipole	8/19/2009	Biennial	8/19/2011	1004
SPEAG	D5GHzV2	5 GHz SAR Dipole	2/11/2011	Annual	2/11/2012	1007
SPEAG	D835V2	835 MHz SAR Dipole	2/9/2011	Annual	2/9/2012	4d047
SPEAG	D835V2	·	8/24/2009	Biennial		4d047 4d026
		835 MHz SAR Dipole Dasy Data Acquisition Electronics			8/24/2011	
SPEAG SPEAG	DAE3		11/18/2010	Annual	11/18/2011	455
	DAE4	Dasy Data Acquisition Electronics	3/17/2011	Annual	3/17/2012	704
SPEAG	DAE4	Dasy Data Acquisition Electronics	4/20/2011	Annual	4/20/2012	665
SPEAG	DAE4	Dasy Data Acquisition Electronics	2/21/2011	Annual	2/21/2012	649
SPEAG SPEAG	ES3DV2	SAR Probe	9/21/2010	Annual	9/21/2011	3022 3561
	EX3DV4	SAR Probe	8/19/2010	Annual	8/19/2011	
SPEAG	EX3DV4	SAR Probe	2/14/2011	Annual	2/14/2012	3550
SPEAG	DAE4	Dasy Data Acquisition Electronics	7/8/2010	Annual	7/8/2011	859
SPEAG	D750V3	750 MHz Dipole	2/14/2011	Annual	2/14/2012	1003
SPEAG	ES3DV3	SAR Probe	3/24/2011	Annual	3/24/2012	3213
SPEAG	ES3DV3	SAR Probe	4/18/2011	Annual	4/18/2012	3209
Rohde & Schwarz	SMIQ03B	Signal Generator	4/6/2011	Annual	4/6/2012	DE27259
SPEAG	D1640V2	1640 MHz Dipole	8/17/2010	Biennial	8/17/2012	321
Rohde & Schwarz	CMW500	LTE Radio Communication Tester	8/30/2010	Annual	8/30/2011	100976
Anritsu	MA2481A	Power Sensor	2/7/2011	Annual	2/7/2012	5318
Anritsu	MA2481A	Power Sensor	2/7/2011	Annual	2/7/2012	5442
Anritsu	ML2438A	Power Meter	2/7/2011	Annual	2/7/2012	1190013
Anritsu	ML2438A	Power Meter	2/7/2011	Annual	2/7/2012	98150041
Agilent	8648D	Signal Generator	4/5/2011	Annual	4/5/2012	3629U00687
Anritsu	ML2438A	Power Meter	2/7/2011	Annual	2/7/2012	1070030
Anritsu	MA2481A	Power Sensor	2/7/2011	Annual	2/7/2012	5821
Anritsu	MA2481A	Power Sensor	2/7/2011	Annual	2/7/2012	8013
Anritsu	MA2481A	Power Sensor	2/7/2011	Annual	2/7/2012	2400
Aprel	ALS-PR-DIEL	Dielectric Probe Kit	N/A	A	N/A	260-00959 CD43304447
Agilent	E5515C	Wireless Communications Test Set	8/13/2010	Annual	8/13/2011	GB43304447
Agilent	E5515C	Wireless Communications Tester	4/21/2011	Annual	4/21/2012	US41140256
Amplifier Research	5S1G4	5W, 800MHz-4.2GHz	N/A			17042
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	N/A	A	2/0/2042	N/A
Agilent	E5515C	Wireless Communications Test Set	2/8/2011	Annual	2/8/2012	GB45360985
Speag	D3700V2	3700 MHz SAR Dipole	2/16/2011	Annual	2/16/2012	1002
Rohde & Schwarz	CMW500	LTE Radio Communication Tester	3/11/2011	Annual	3/11/2012	103962
Control Company	61220-416	Long-Stem Thermometer	2/15/2011	Biennial	2/15/2013	111331322
Control Company	61220-416	Long-Stem Thermometer	2/15/2011	Biennial	2/15/2013	111331323
Control Company	61220-416	Long-Stem Thermometer	2/15/2011	Biennial	2/15/2013	111331330
Control Company	61220-416	Long-Stem Thermometer	2/15/2011	Biennial	2/15/2013	111331332
Control Company	61220-416	Long-Stem Thermometer	3/16/2011	Biennial	3/16/2013	111391601
Speag	iSAR	Immediate SAR Measurement System	4/7/2011	Annual	4/7/2012	1084

FCC ID: A3LGTP7310	PCTEST*	SAR COMPLIANCE REPORT	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:	Page 22 of 30
0Y1105040842-R1.A3L	05/12/11 - 05/16/11	Tablet with Bluetooth and WLAN	Fage 22 01 30

15 MEASUREMENT UNCERTAINTIES

Applicable for 800 - 3000 MHz.

а	b	С	d	e=	f	g	h =	i =	k
				f(d,k)			c x f/e	c x g/e	
Uncertainty	IEEE	Tol.	Prob.		C _i	C _i	1gm	10gms	
Component	1528 Sec.	(± %)	Dist.	Div.	1gm	10 gms	u _i	u _i	V _i
P. C.	360.	(,			3		(± %)	(± %)	
Measurement System									
Probe Calibration	E.2.1	5.5	N	1	1.0	1.0	5.5	5.5	∞
Axial Isotropy	E.2.2	0.25	N	1	0.7	0.7	0.2	0.2	oc
Hemishperical Isotropy	E.2.2	1.3	N	1	1.0	1.0	1.3	1.3	∞
Boundary Effect	E.2.3	0.4	N	1	1.0	1.0	0.4	0.4	∞
Linearity	E.2.4	0.3	N	1	1.0	1.0	0.3	0.3	∞
System Detection Limits	E.2.5	5.1	N	1	1.0	1.0	5.1	5.1	∞
Readout Electronics	E.2.6	1.0	N	1	1.0	1.0	1.0	1.0	∞
Response Time	E.2.7	0.8	R	1.73	1.0	1.0	0.5	0.5	∞
Integration Time	E.2.8	2.6	R	1.73	1.0	1.0	1.5	1.5	∞
RF Ambient Conditions	E.6.1	3.0	R	1.73	1.0	1.0	1.7	1.7	∞
Probe Positioner Mechanical Tolerance	E.6.2	0.4	R	1.73	1.0	1.0	0.2	0.2	∞
Probe Positioning w/ respect to Phantom	E.6.3	2.9	R	1.73	1.0	1.0	1.7	1.7	∞
Extrapolation, Interpolation & Integration algorithms for Max. SAR Evaluation	E.5	1.0	R	1.73	1.0	1.0	0.6	0.6	8
Test Sample Related									
Test Sample Positioning	E.4.2	6.0	N	1	1.0	1.0	6.0	6.0	287
Device Holder Uncertainty	E.4.1	3.32	R	1.73	1.0	1.0	1.9	1.9	∞
Output Power Variation - SAR drift measurement	6.6.2	5.0	R	1.73	1.0	1.0	2.9	2.9	∞
Phantom & Tissue Parameters									
Phantom Uncertainty (Shape & Thickness tolerances)	E.3.1	4.0	R	1.73	1.0	1.0	2.3	2.3	∞
Liquid Conductivity - deviation from target values	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	∞
Liquid Conductivity - measurement uncertainty	E.3.3	3.8	N	1	0.64	0.43	2.4	1.6	6
Liquid Permittivity - deviation from target values	E.3.2	5.0	R	1.73	0.60	0.49	1.7	1.4	∞
Liquid Permittivity - measurement uncertainty	E.3.3	4.5	N	1	0.60	0.49	2.7	2.2	6
Combined Standard Uncertainty (k=1) RSS						-	11.8	11.5	299
Expanded Uncertainty			k=2				23.7	23.0	
(95% CONFIDENCE LEVEL)									

The above measurement uncertainties are according to IEEE Std. 1528-2003

FCC ID: A3LGTP7310	PCTEST*	SAR COMPLIANCE REPORT	Reviewed by: Quality Manager	
Filename: Test Dates:		EUT Type:	Do as 22 of 20	
0Y1105040842-R1.A3L	05/12/11 - 05/16/11	Tablet with Bluetooth and WLAN	Page 23 of 30	

Applicable for 5200 – 5800 MHz.

а	b	С	d	e=	f	g	h =	i=	k
a 	"		ľ		'	9			, N
				f(d,k)			c x f/e	c x g/e	
Uncertainty	1528	Tol.	Prob.		Ci	Ci	1gm	10gms	
Component	Sec.	(± %)	Dist.	Div.	1gm	10 gms	u _i	u _i	V _i
							(± %)	(± %)	
Measurement System									
Probe Calibration	E.2.1	6.55	N	1	1.0	1.0	6.6	6.6	∞
Axial Isotropy	E.2.2	0.25	N	1	0.7	0.7	0.2	0.2	∞
Hemishperical Isotropy	E.2.2	1.3	N	1	1.0	1.0	1.3	1.3	∞
Boundary Effect	E.2.3	0.4	N	1	1.0	1.0	0.4	0.4	∞
Linearity	E.2.4	0.3	N	1	1.0	1.0	0.3	0.3	∞
System Detection Limits	E.2.5	5.1	N	1	1.0	1.0	5.1	5.1	∞
Readout Electronics	E.2.6	1.0	N	1	1.0	1.0	1.0	1.0	∞
Response Time	E.2.7	0.8	R	1.73	1.0	1.0	0.5	0.5	∞
Integration Time	E.2.8	2.6	R	1.73	1.0	1.0	1.5	1.5	∞
RF Ambient Conditions	E.6.1	3.0	R	1.73	1.0	1.0	1.7	1.7	8
Probe Positioner Mechanical Tolerance	E.6.2	0.4	R	1.73	1.0	1.0	0.2	0.2	8
Probe Positioning w/ respect to Phantom	E.6.3	2.9	R	1.73	1.0	1.0	1.7	1.7	∞
Extrapolation, Interpolation & Integration algorithms for Max. SAR Evaluation	E.5	1.0	R	1.73	1.0	1.0	0.6	0.6	∞
Test Sample Related									
Test Sample Positioning	E.4.2	6.0	N	1	1.0	1.0	6.0	6.0	287
Device Holder Uncertainty	E.4.1	3.32	R	1.73	1.0	1.0	1.9	1.9	∞
Output Power Variation - SAR drift measurement	6.6.2	5.0	R	1.73	1.0	1.0	2.9	2.9	∞
Phantom & Tissue Parameters									
Phantom Uncertainty (Shape & Thickness tolerances)	E.3.1	4.0	R	1.73	1.0	1.0	2.3	2.3	∞
Liquid Conductivity - deviation from target values	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	∞
Liquid Conductivity - measurement uncertainty	E.3.3	3.8	N	1	0.64	0.43	2.4	1.6	6
Liquid Permittivity - deviation from target values	E.3.2	5.0	R	1.73	0.60	0.49	1.7	1.4	∞
Liquid Permittivity - measurement uncertainty	E.3.3	4.5	N	1	0.60	0.49	2.7	2.2	6
Combined Standard Uncertainty (k=1)	-	-	RSS			-	12.4	12.0	299
Expanded Uncertainty			k=2				24.7	24.0	
(95% CONFIDENCE LEVEL)									

The above measurement uncertainties are according to IEEE Std. 1528-2003

FCC ID: A3LGTP7310	PCTEST"	SAR COMPLIANCE REPORT	Reviewed by: Quality Manager
Filename:	ame: Test Dates: EUT Type:		Dogo 24 of 20
0Y1105040842-R1.A3L	05/12/11 - 05/16/11	Tablet with Bluetooth and WLAN	Page 24 of 30

16

CONCLUSION

16.1 Measurement Conclusion

The SAR evaluation indicates that the EUT complies with the RF radiation exposure limits of the FCC and Industry Canada, with respect to all parameters subject to this test. These measurements were taken to simulate the RF effects of RF exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The results and statements relate only to the item(s) tested.

Please note that the absorption and distribution of electromagnetic energy in the body are very complex phenomena that depend on the mass, shape, and size of the body, the orientation of the body with respect to the field vectors, and the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because various factors may interact with one another to vary the specific biological outcome of an exposure to electromagnetic fields, any protection guide should consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables. [3]

FCC ID: A3LGTP7310	PCTEST"	SAR COMPLIANCE REPORT	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:	Dogo 25 of 20
0Y1105040842-R1.A3L	05/12/11 - 05/16/11	Tablet with Bluetooth and WLAN	Page 25 of 30

17 REFERENCES

- [1] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radiofrequency Radiation, Aug. 1996.
- [2] ANSI/IEEE C95.1-2005, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 300kHz to 100GHz, New York: IEEE, 2006.
- [3] ANSI/IEEE C95.1-1992, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 300kHz to 100GHz, New York: IEEE, Sept. 1992.
- ANSI/IEEE C95.3-2002, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave, New York: IEEE, December 2002.
- Federal Communications Commission, OET Bulletin 65 (Edition 97-01), Supplement C (Edition 01-01), Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields, June 2001.
- [6] IEEE Standards Coordinating Committee 34 IEEE Std. 1528-2003, Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices.
- [7] NCRP, National Council on Radiation Protection and Measurements, Biological Effects and Exposure Criteria for RadioFrequency Electromagnetic Fields, NCRP Report No. 86, 1986. Reprinted Feb. 1995.
- [8] T. Schmid, O. Egger, N. Kuster, Automated E-field scanning system for dosimetric assessments, IEEE Transaction on Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113.
- K. Pokovic, T. Schmid, N. Kuster, Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies, ICECOM97, Oct. 1997, pp. 120-124.
- [10] K. Pokovic, T. Schmid, and N. Kuster, E-field Probe with improved isotropy in brain simulating liquids, Proceedings of the ELMAR, Zadar, Croatia, June 23-25, 1996, pp. 172-175.
- [11] Schmid & Partner Engineering AG, Application Note: Data Storage and Evaluation, June 1998, p2.
- [12] V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, N. Kuster, The Dependence of EM Energy Absorption upon Human Head Modeling at 900 MHz, IEEE Transaction on Microwave Theory and Techniques, vol. 44 no. 10, Oct. 1996, pp. 1865-1873.
- [13] N. Kuster and Q. Balzano, Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300MHz, IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.
- [14] G. Hartsgrove, A. Kraszewski, A. Surowiec, Simulated Biological Materials for Electromagnetic Radiation Absorption Studies, University of Ottawa, Bioelectromagnetics, Canada: 1987, pp. 29-36.
- [15] Q. Balzano, O. Garay, T. Manning Jr., Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995.
- [16] W. Gander, Computermathematick, Birkhaeuser, Basel, 1992.
- [17] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recepies in C, The Art of Scientific Computing, Second edition, Cambridge University Press, 1992.

FCC ID: A3LGTP7310	PCTEST*	SAR COMPLIANCE REPORT	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:	Dogg 26 of 20
0Y1105040842-R1.A3L	05/12/11 - 05/16/11	Tablet with Bluetooth and WLAN	Page 26 of 30

- [18] Federal Communications Commission, OET Bulletin 65, Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields. Supplement C, Dec. 1997.
- [19] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652.
- [20] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic Fields High-frequency: 10kHz-300GHz, Jan. 1995.
- [21] Prof. Dr. Niels Kuster, ETH, Eidgenössische Technische Hoschschule Zürich, Dosimetric Evaluation of the Cellular Phone.
- [22] IEC 62209-1, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Human models, instrumentation, and procedures - Part 1: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz), Feb. 2005.
- [23] Industry Canada RSS-102 Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands) Issue 4, March 2010.
- [24] Health Canada Safety Code 6 Limits of Human Exposure to Radio Frequency Electromagnetic Fields in the Frequency Range from 3 kHz - 300 GHz, 2009
- [25] FCC Public Notice DA-02-1438. Office of Engineering and Technology Announces a Transition Period for the Phantom Requirements of Supplement C to OET Bulletin 65, June 19, 2002
- [26] FCC SAR Measurement Procedures for 3G Devices KDB Publication 941225
- [27] SAR Measurement procedures for IEEE 802.11a/b/g KDB Publication 248227
- [28] FCC SAR Considerations for Handsets with Multiple Transmitters and Antennas, KDB Publication 648474
- [29] FCC Application Note for SAR Probe Calibration and System Verification Consideration for Measurements at 150 MHz - 3 GHz, KDB Publication 450824
- [30] FCC SAR Evaluation Considerations for Laptop Computers with Antennas Built-in on Display Screens, KDB Publication 616217
- [31] FCC SAR Measurement Requirements for 3 6 GHz, KDB Publication 865664
- [32] FCC Mobile Portable RF Exposure Procedure, KDB Publication 447498
- [33] FCC SAR Procedures for Dongle Transmitters, KDB Publication 447498
- [34] Anexo à Resolução No. 533, de 10 de Septembro de 2009.
- [35] FCC SAR Test Considerations for LTE Handsets and Data Modems, KDB Publication 941225.
- [36] IEC 62209-2, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Human models, instrumentation, and procedures - Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz), Mar. 2010.
- [37] FCC D06 Hot Spot SAR v01, KDB Publication 941225.

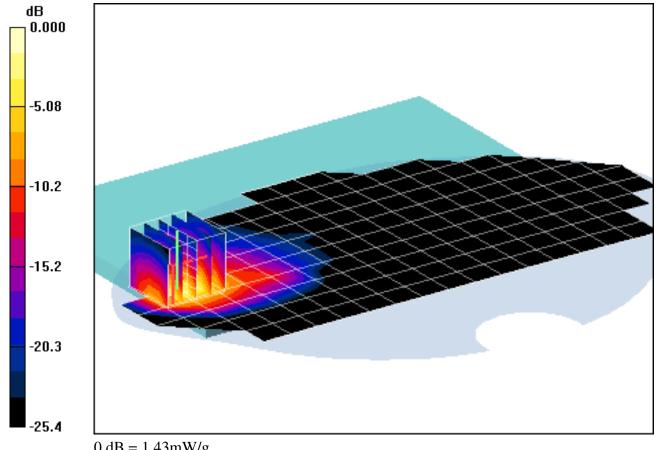
FCC ID: A3LGTP7310	PCTEST INDIVIDUAL DESCRIPTION OF THE PERSON	SAR COMPLIANCE REPORT	SAMSUNG	Reviewed by: Quality Manager	
Filename:	Test Dates:	EUT Type:		Dogg 27 of 20	
0Y1105040842-R1.A3L	05/12/11 - 05/16/11 Tablet with Bluetooth and WLAN			Page 27 of 30	
© 2014 DOTECT Facine aviage Laboratory, Inc.					

APPENDIX A: SAR TEST DATA

DUT: A3LGTP7310; Type: Tablet with WLAN and Bluetooth; Serial: FI-110-B

Communication System: IEEE 802.11b; Frequency: 2462 MHz; Duty Cycle: 1:1 Medium: 2450 Body Medium parameters used (interpolated): f = 2462 MHz; σ = 2.03 mho/m; ε_r = 50.9; ρ = 1000 kg/m³ Phantom section: Flat Section; Space: 0.0 cm

Test Date: 05-16-2011; Ambient Temp: 24.8°C; Tissue Temp: 22.9°C


Probe: ES3DV2 - SN3022; ConvF(4.06, 4.06, 4.06); Calibrated: 9/21/2010 Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn704; Calibrated: 3/17/2011

Phantom: SAM with CRP; Type: SAM; Serial: TP1375

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: IEEE 802.11g, Body SAR, Ch.11, 6Mbps, Back Side

Area Scan (11x20x1): Measurement grid: dx=15mm, dy=15mm **Zoom Scan (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 24.4 V/mPeak SAR (extrapolated) = 2.61 W/kgSAR(1 g) = 1.01 mW/g; SAR(10 g) = 0.402 mW/g

0 dB = 1.43 mW/g

DUT: A3LGTP7310; Type: Tablet with WLAN and Bluetooth; Serial: FI-110-B

Communication System: IEEE 802.11b; Frequency: 2462 MHz;Duty Cycle: 1:1 Medium: 2450 Body Medium parameters used (interpolated): $f = 2462 \text{ MHz}; \ \sigma = 2.03 \text{ mho/m}; \ \epsilon_r = 50.9; \ \rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section; Space: 0.0 cm

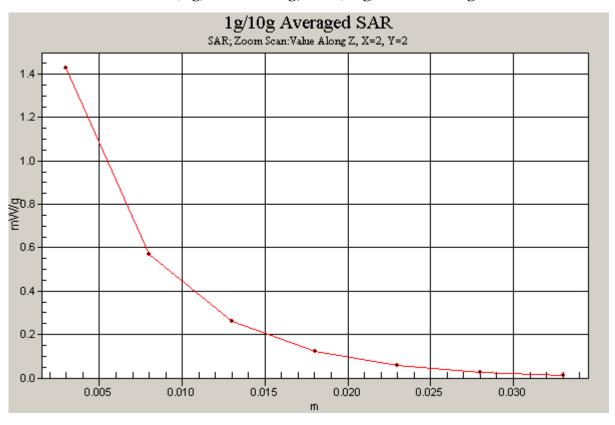
Test Date: 05-16-2011; Ambient Temp: 24.8°C; Tissue Temp: 22.9°C

Probe: ES3DV2 - SN3022; ConvF(4.06, 4.06, 4.06); Calibrated: 9/21/2010

Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn704; Calibrated: 3/17/2011 Phantom: SAM with CRP; Type: SAM; Serial: TP1375

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: IEEE 802.11g, Body SAR, Ch.11, 6Mbps, Back Side


Area Scan (11x20x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 24.4 V/m

Peak SAR (extrapolated) = 2.61 W/kg

SAR(1 g) = 1.01 mW/g; SAR(10 g) = 0.402 mW/g

DUT: A3LGTP7310; Type: Tablet with Dnwgwqqyj 'cpf 'Y NCP; Serial: FI-110-B

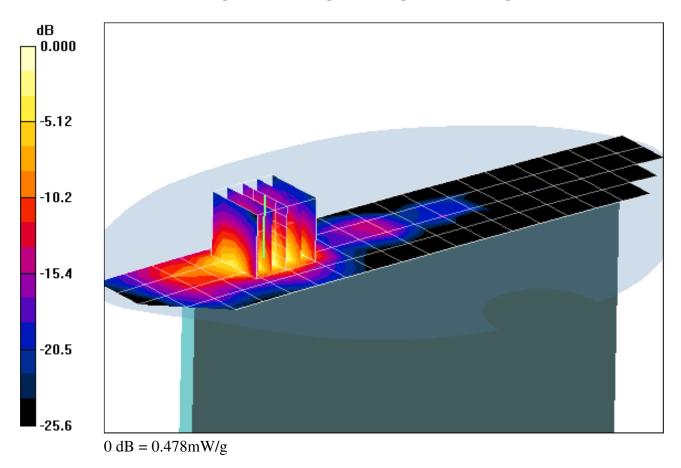
Communication System: IEEE 802.11g; Frequency: 2462 MHz; Duty Cycle: 1:1 Medium: 2450 Body Medium parameters used (interpolated): $f = 2462 \text{ MHz}; \ \sigma = 2.03 \text{ mho/m}; \ \epsilon_r = 50.9; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 0.0 cm

Test Date: 05-16-2011; Ambient Temp: 24.8°C; Tissue Temp: 22.9°C

Probe: ES3DV2 - SN3022; ConvF(4.06, 4.06, 4.06); Calibrated: 9/21/2010 Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn704; Calibrated: 3/17/2011 Phantom: SAM with CRP; Type: SAM; Serial: TP1375

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: IEEE 802.11g, Body SAR, Ch.11, 6 Mbps, Top Edge


Area Scan (5x20x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 12.6 V/m

Peak SAR (extrapolated) = 0.761 W/kg

SAR(1 g) = 0.377 mW/g; SAR(10 g) = 0.173 mW/g

DUT: A3LGTP7310; Type: Tablet with Dnwgwqqyj 'cpf 'Y NCP; Serial: FI-110-B

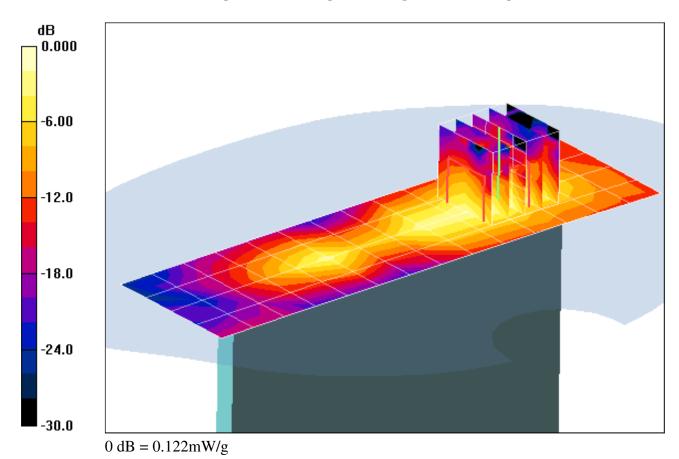
Communication System: IEEE 802.11g; Frequency: 2462 MHz; Duty Cycle: 1:1 Medium: 2450 Body Medium parameters used (interpolated): $f = 2462 \text{ MHz}; \ \sigma = 2.03 \text{ mho/m}; \ \epsilon_r = 50.9; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 0.0 cm

Test Date: 05-16-2011; Ambient Temp: 24.8°C; Tissue Temp: 22.9°C

Probe: ES3DV2 - SN3022; ConvF(4.06, 4.06, 4.06); Calibrated: 9/21/2010 Sensor-Surface: 3mm (Mechanical Surface Detection) Electronics: DAE4 Sn704; Calibrated: 3/17/2011 Phantom: SAM with CRP; Type: SAM; Serial: TP1375

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: IEEE 802.11g, Body SAR, Ch.11, 6Mbps, Left Edge


Area Scan (5x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.86 V/m

Peak SAR (extrapolated) = 0.204 W/kg

SAR(1 g) = 0.086 mW/g; SAR(10 g) = 0.038 mW/g

DUT: A3LGTP7310; Type: Tablet with Dnwgwqqyj 'cpf 'Y NCP; Serial: FI-110-B

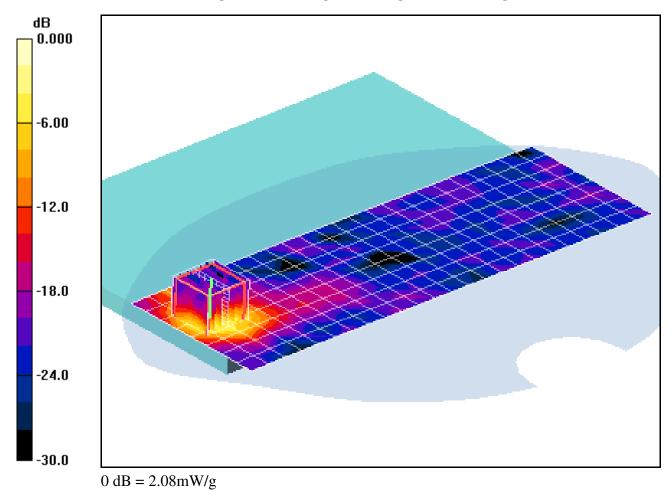
Communication System: IEEE 802.11a 5.2-5.8 GHz Band; Frequency: 5180 MHz; Duty Cycle: 1:1 Medium: 5 GHz Body Medium parameters used (interpolated):

f = 5180 MHz; σ = 5.42 mho/m; ε_r = 48.4; ρ = 1000 kg/m³

Phantom section: Flat Section; Space: 0.0 cm

Test Date: 05-12-2011; Ambient Temp: 24.3°C; Tissue Temp: 22.7°C

Probe: EX3DV4 - SN3550; ConvF(3.58, 3.58, 3.58); Calibrated: 2/14/2011


Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn665; Calibrated: 4/20/2011

Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1114

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: IEEE 802.11a 5.2 GHz, Ch 36, 6 Mbps, Back Side

Area Scan (9x25x1): Measurement grid: dx=10mm, dy=10mm **Zoom Scan (7x7x11)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 16.9 V/m Peak SAR (extrapolated) = 4.28 W/kgSAR(1 g) = 0.887 mW/g; SAR(10 g) = 0.297 mW/g

DUT: A3LGTP7310; Type: Tablet with Dnwgwqqyj 'cpf 'Y NCP; Serial: FI-110-B

Communication System: IEEE 802.11a 5.2-5.8 GHz Band; Frequency: 5180 MHz;Duty Cycle: 1:1 Medium: 5 GHz Body Medium parameters used (interpolated):

f = 5180 MHz; σ = 5.42 mho/m; ε_r = 48.4; ρ = 1000 kg/m³

Phantom section: Flat Section; Space: 0.0 cm

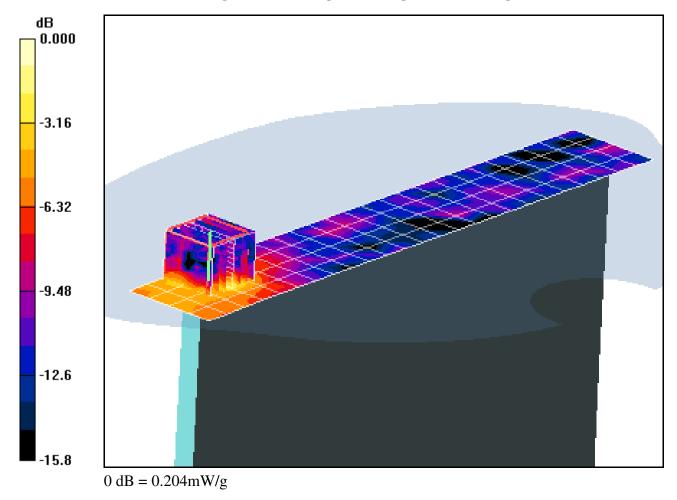
Test Date: 05-12-2011; Ambient Temp: 24.3°C; Tissue Temp: 22.7°C

Probe: EX3DV4 - SN3550; ConvF(3.58, 3.58, 3.58); Calibrated: 2/14/2011

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn665; Calibrated: 4/20/2011 Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1114

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: IEEE 802.11a 5.2 GHz, Ch 36, 6 Mbps, Top Side


Area Scan (5x26x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (7x7x11)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 5.03 V/m

Peak SAR (extrapolated) = 0.473 W/kg

SAR(1 g) = 0.115 mW/g; SAR(10 g) = 0.045 mW/g

DUT: A3LGTP7310; Type: Tablet with Dnwgwqqyj 'cpf 'Y NCP; Serial: FI-110-B

Communication System: IEEE 802.11a 5.2-5.8 GHz Band; Frequency: 5180 MHz;Duty Cycle: 1:1 Medium: 5 GHz Body Medium parameters used (interpolated):

f = 5180 MHz; σ = 5.42 mho/m; ε_r = 48.4; ρ = 1000 kg/m³

Phantom section: Flat Section; Space: 0.0 cm

Test Date: 05-12-2011; Ambient Temp: 24.3°C; Tissue Temp: 22.7°C

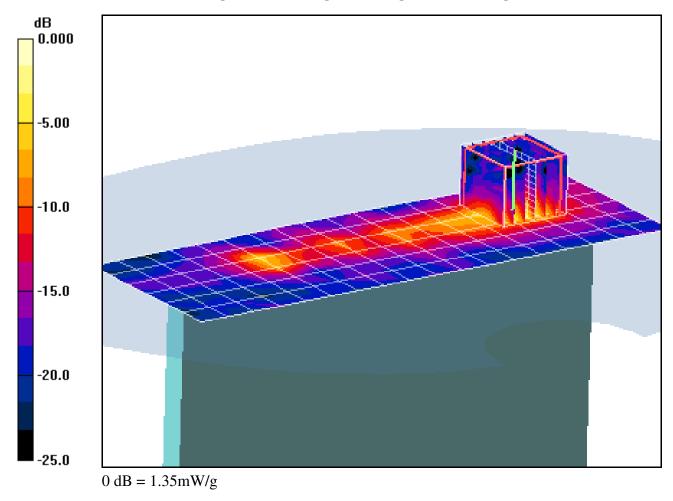
Probe: EX3DV4 - SN3550; ConvF(3.58, 3.58, 3.58); Calibrated: 2/14/2011

Sensor-Surface: 2mm (Mechanical Surface Detection)
Electronics: DAE4 Sn665; Calibrated: 4/20/2011

Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1114

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: IEEE 802.11a 5.2 GHz, Ch 36, 6 Mbps, Left Side


Area Scan (7x19x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (7x7x11)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 11.1 V/m

Peak SAR (extrapolated) = 2.99 W/kg

SAR(1 g) = 0.610 mW/g; SAR(10 g) = 0.153 mW/g

DUT: A3LGTP7310; Type: Tablet with Dnwgwqqvj 'cpf 'Y NCP; Serial: FI-110-B

Communication System: IEEE 802.11a 5.2-5.8 GHz Band; Frequency: 5260 MHz; Duty Cycle: 1:1 Medium: 5 GHz Body Medium parameters used (interpolated): f = 5260 MHz; $\sigma = 5.5 \text{ mho/m}$; $\epsilon_r = 48.3$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section; Space: 0.0 cm

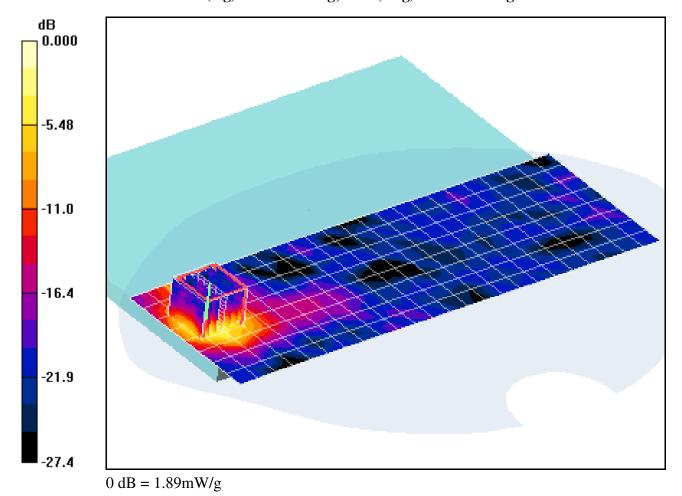
Test Date: 05-12-2011; Ambient Temp: 24.3°C; Tissue Temp: 22.7°C

Probe: EX3DV4 - SN3550; ConvF(3.31, 3.31, 3.31); Calibrated: 2/14/2011

Sensor-Surface: 2mm (Mechanical Surface Detection)
Electronics: DAE4 Sn665; Calibrated: 4/20/2011
Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1114

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: IEEE 802.11a 5.3 GHz, Ch 52, 6 Mbps, Back Side


Area Scan (9x25x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (7x7x11)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 16.3 V/m

Peak SAR (extrapolated) = 4.15 W/kg

SAR(1 g) = 0.862 mW/g; SAR(10 g) = 0.282 mW/g

DUT: A3LGTP7310; Type: Tablet with Dnwgwqqyj 'cpf 'Y NCP; Serial: FI-110-B

Communication System: IEEE 802.11a 5.2-5.8 GHz Band; Frequency: 5260 MHz;Duty Cycle: 1:1 Medium: 5 GHz Body Medium parameters used (interpolated):

f = 5260 MHz; σ = 5.5 mho/m; $ε_r$ = 48.3; ρ = 1000 kg/m³

Phantom section: Flat Section; Space: 0.0 cm

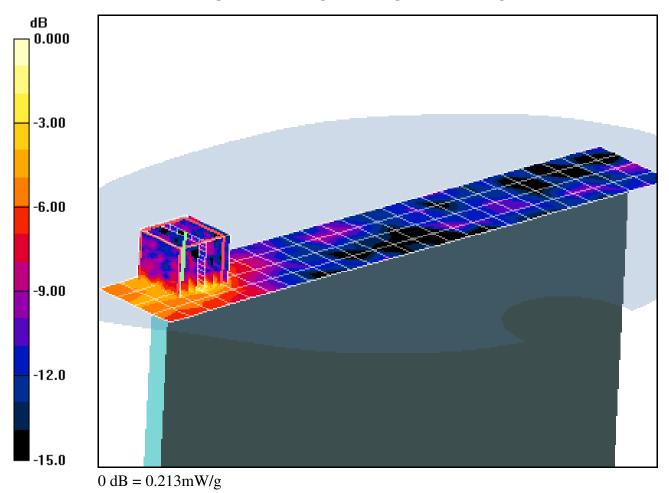
Test Date: 05-12-2011; Ambient Temp: 24.3°C; Tissue Temp: 22.7°C

Probe: EX3DV4 - SN3550; ConvF(3.31, 3.31, 3.31); Calibrated: 2/14/2011

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn665; Calibrated: 4/20/2011 Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1114

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: IEEE 802.11a 5.3 GHz, Ch 52, 6 Mbps, Top Side


Area Scan (5x26x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (7x7x11)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 5.50 V/m

Peak SAR (extrapolated) = 0.388 W/kg

SAR(1 g) = 0.108 mW/g; SAR(10 g) = 0.045 mW/g

DUT: A3LGTP7310; Type: Tablet with Bluetooth and WLAN; Serial: FI-110-B

Communication System: IEEE 802.11a 5.2-5.8 GHz Band; Frequency: 5260 MHz; Duty Cycle: 1:1 Medium: 5 GHz Body Medium parameters used (interpolated): $f = 5260 \text{ MHz}; \ \sigma = 5.5 \text{ mho/m}; \ \epsilon_r = 48.3; \ \rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section; Space: 0.0 cm

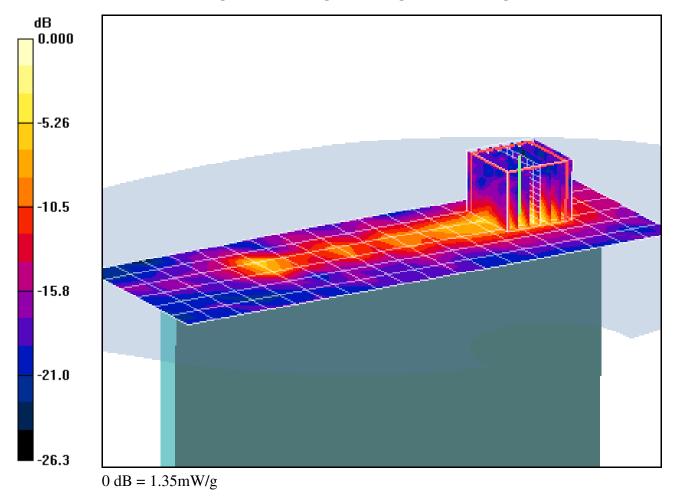
Test Date: 05-12-2011; Ambient Temp: 24.3°C; Tissue Temp: 22.7°C

Probe: EX3DV4 - SN3550; ConvF(3.31, 3.31, 3.31); Calibrated: 2/14/2011

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn665; Calibrated: 4/20/2011 Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1114

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: IEEE 802.11a 5.3 GHz, Ch 52, 6 Mbps, Left Side


Area Scan (7x19x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (7x7x11)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 14.2 V/m

Peak SAR (extrapolated) = 3.04 W/kg

SAR(1 g) = 0.612 mW/g; SAR(10 g) = 0.155 mW/g

DUT: A3LGTP7310; Type: Tablet with Bluetooth and WLAN; Serial: FI-110-B

Communication System: IEEE 802.11a 5.2-5.8 GHz Band; Frequency: 5680 MHz; Duty Cycle: 1:1 Medium: 5 GHz Body Medium parameters used (interpolated): $f = 5680 \text{ MHz}; \ \sigma = 6.12 \text{ mho/m}; \ \epsilon_r = 47.3; \ \rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section; Space: 0.0 cm

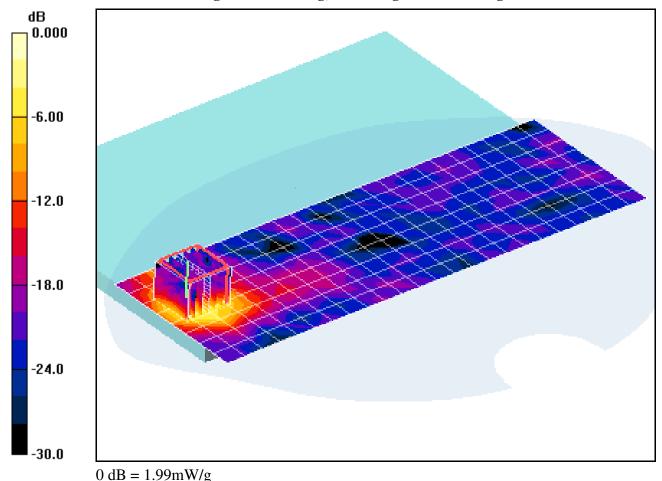
Test Date: 05-12-2011; Ambient Temp: 24.5°C; Tissue Temp: 22.7°C

Probe: EX3DV4 - SN3550; ConvF(3.19, 3.19, 3.19); Calibrated: 2/14/2011 Sensor-Surface: 2mm (Mechanical Surface Detection)

Electronics: DAE4 Sn665; Calibrated: 4/20/2011 Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1114

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: IEEE 802.11a 5.5 GHz, Ch 136, 6 Mbps, Back Side


Area Scan (9x25x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (7x7x11)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 15.1 V/m

Peak SAR (extrapolated) = 4.64 W/kg

SAR(1 g) = 0.894 mW/g; SAR(10 g) = 0.264 mW/g

DUT: A3LGTP7310; Type: Tablet with Bluetooth and WLAN; Serial: FI-110-B

Communication System: IEEE 802.11a 5.2-5.8 GHz Band; Frequency: 5680 MHz;Duty Cycle: 1:1 Medium: 5 GHz Body Medium parameters used (interpolated):

f = 5680 MHz; σ = 6.12 mho/m; ε_r = 47.3; ρ = 1000 kg/m³

Phantom section: Flat Section; Space: 0.0 cm

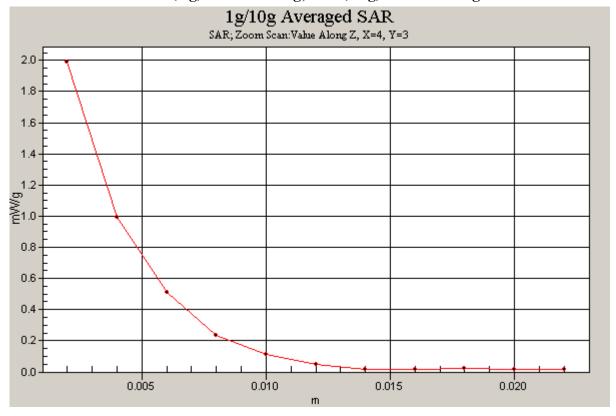
Test Date: 05-12-2011; Ambient Temp: 24.5°C; Tissue Temp: 22.7°C

Probe: EX3DV4 - SN3550; ConvF(3.19, 3.19, 3.19); Calibrated: 2/14/2011

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn665; Calibrated: 4/20/2011 Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1114

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: IEEE 802.11a 5.5 GHz, Ch 136, 6 Mbps, Back Side


Area Scan (9x25x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (7x7x11)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 15.1 V/m

Peak SAR (extrapolated) = 4.64 W/kg

SAR(1 g) = 0.894 mW/g; SAR(10 g) = 0.264 mW/g

DUT: A3LGTP7310; Type: Tablet with Bluetooth and WLAN; Serial: FI-110-B

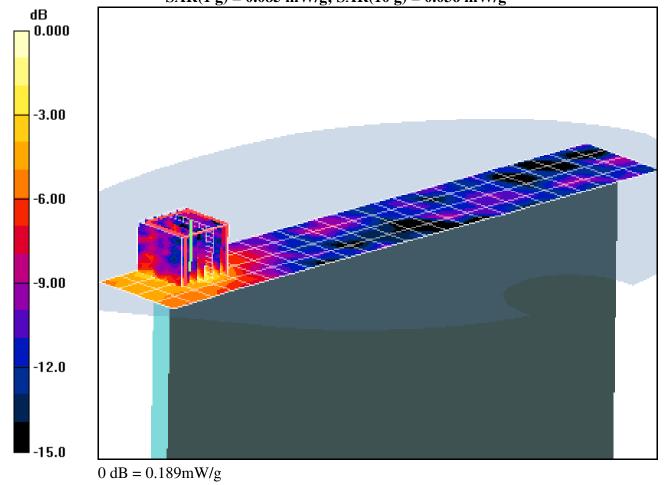
Communication System: IEEE 802.11a 5.2-5.8 GHz Band; Frequency: 5680 MHz;Duty Cycle: 1:1 Medium: 5 GHz Body Medium parameters used (interpolated):

f = 5680 MHz; σ = 6.12 mho/m; $ε_r$ = 47.3; ρ = 1000 kg/m³

Phantom section: Flat Section; Space: 0.0 cm

Test Date: 05-12-2011; Ambient Temp: 24.5°C; Tissue Temp: 22.7°C

Probe: EX3DV4 - SN3550; ConvF(3.19, 3.19, 3.19); Calibrated: 2/14/2011


Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn665; Calibrated: 4/20/2011 Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1114

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: IEEE 802.11a 5.5 GHz, Ch 136, 6 Mbps, Top Side

Area Scan (5x26x1): Measurement grid: dx=10mm, dy=10mm Zoom Scan (7x7x11)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 4.43 V/m
Peak SAR (extrapolated) = 0.330 W/kg
SAR(1 g) = 0.085 mW/g; SAR(10 g) = 0.036 mW/g

DUT: A3LGTP7310; Type: Tablet with Bluetooth and WLAN; Serial: FI-110-B

Communication System: IEEE 802.11a 5.2-5.8 GHz Band; Frequency: 5680 MHz;Duty Cycle: 1:1 Medium: 5 GHz Body Medium parameters used (interpolated):

f = 5680 MHz; σ = 6.12 mho/m; $ε_r$ = 47.3; ρ = 1000 kg/m³

Phantom section: Flat Section; Space: 0.0 cm

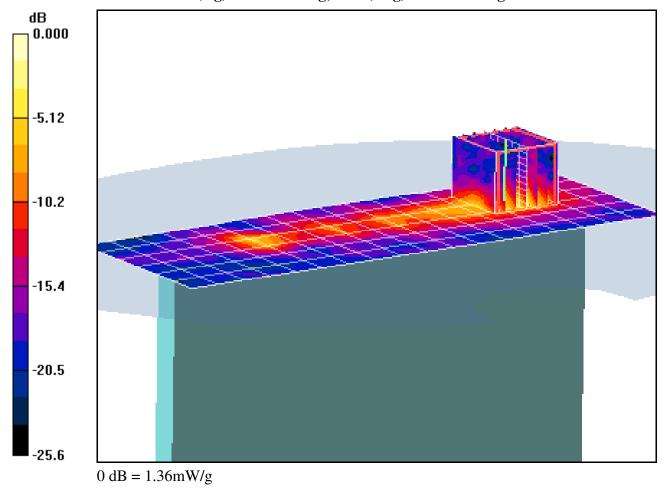
Test Date: 05-12-2011; Ambient Temp: 24.5°C; Tissue Temp: 22.7°C

Probe: EX3DV4 - SN3550; ConvF(3.19, 3.19, 3.19); Calibrated: 2/14/2011

Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn665; Calibrated: 4/20/2011 Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1114

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: IEEE 802.11a 5.5 GHz, Ch 136, 6 Mbps, Left Side


Area Scan (7x19x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (7x7x11)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 12.9 V/m

Peak SAR (extrapolated) = 3.42 W/kg

SAR(1 g) = 0.598 mW/g; SAR(10 g) = 0.151 mW/g

DUT: A3LGTP7310; Type: Tablet with Bluetooth and WLAN; Serial: FI-110-B

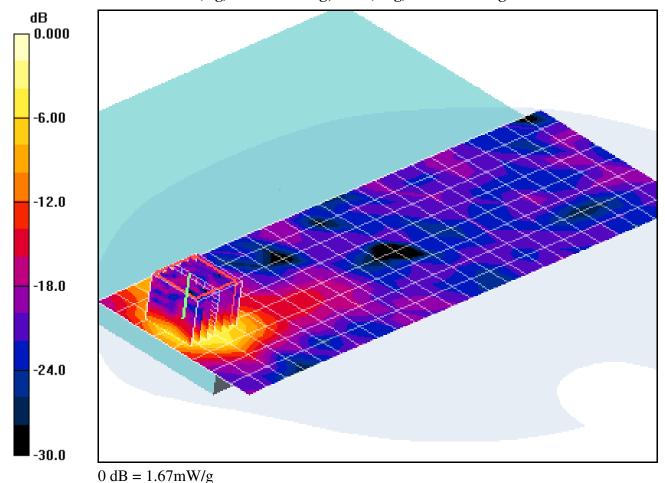
Communication System: IEEE 802.11a 5.2-5.8 GHz Band; Frequency: 5: 25 MHz; Duty Cycle: 1:1 Medium: 5 GHz Body Medium parameters used (interpolated): $f = 5: 25 \text{ MHz}; \ \sigma = 6.2: 7 \text{ mho/m}; \ \epsilon_{\text{lt}} = 47.32; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 0.0 cm

Test Date: 05-12-2011; Ambient Temp: 24.4°C; Tissue Temp: 22.6°C

Probe: EX3DV4 - SN3550; ConvF(3.29, 3.29, 3.29); Calibrated: 2/14/2011 Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn665; Calibrated: 4/20/2011 Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1114

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: IEEE 802.11a 5.8 GHz, Ch 183, 6 Mbps, Back Side


Area Scan (9x25x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (7x7x11)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 13.8 V/m

Peak SAR (extrapolated) = 4.05 W/kg

SAR(1 g) = 0.741 mW/g; SAR(10 g) = 0.213 mW/g

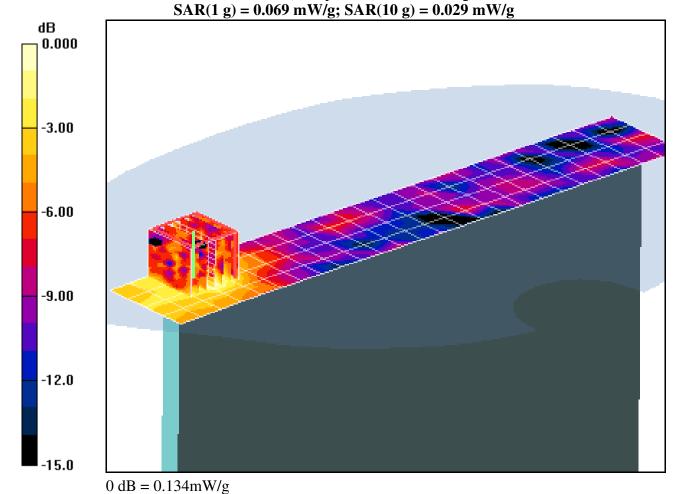
DUT: A3LGTP7310; Type: Tablet with Bluetooth and WLAN; Serial: FI-110-B

Communication System: IEEE 802.11a 5.2-5.8 GHz Band; Frequency: 5: 25 MHz; Duty Cycle: 1:1 Medium: 5 GHz Body Medium parameters used (interpolated): $f = 5: 25 \text{ MHz}; \ \sigma = 6.2: 7 \text{ mho/m}; \ \epsilon_{t_t} = 47.32; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 0.0 cm

Test Date: 05-12-2011; Ambient Temp: 24.4°C; Tissue Temp: 22.6°C

Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1114

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186


Mode: IEEE 802.11a 5.8 GHz, Ch 183, 6 Mbps, Top Side

Area Scan (5x26x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (7x7x11)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 3.52 V/m

Peak SAR (extrapolated) = 0.497 W/kg

DUT: A3LGTP7310; Type: Tablet with Bluetooth and WLAN; Serial: FI-110-B

Communication System: IEEE 802.11a 5.2-5.8 GHz Band; Frequency: 5: 25 MHz; Duty Cycle: 1:1 Medium: 5 GHz Body Medium parameters used (interpolated): $f = 5: 25 \text{ MHz}; \ \sigma = 6.2: 7 \text{ mho/m}; \ \epsilon_r = 47.12; \ \rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section; Space: 0.0 cm

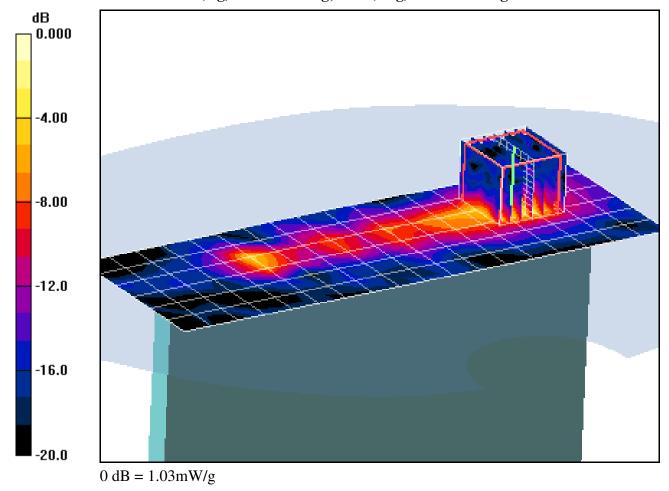
Test Date: 05-12-2011; Ambient Temp: 24.4°C; Tissue Temp: 22.6°C

Probe: EX3DV4 - SN3550; ConvF(3.29, 3.29, 3.29); Calibrated: 2/14/2011 Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn665; Calibrated: 4/20/2011

Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1114

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: IEEE 802.11a 5.8 GHz, Ch 161, 6 Mbps, Left Side


Area Scan (7x19x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (7x7x11)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 11.4 V/m

Peak SAR (extrapolated) = 2.70 W/kg

SAR(1 g) = 0.480 mW/g; SAR(10 g) = 0.127 mW/g

APPENDIX B: DIPOLE VALIDATION

DUT: SAR Dipole 2450 MHz; Type: D2450V2; Serial: 797

Communication System: CW; Frequency: 2450 MHz;Duty Cycle: 1:1 Medium: 2450 Body Medium parameters used:

f = 2450 MHz; σ = 2.01 mho/m; ε_r = 50.9; ρ = 1000 kg/m³

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 05-16-2011; Ambient Temp: 24.8°C; Tissue Temp: 22.9°C

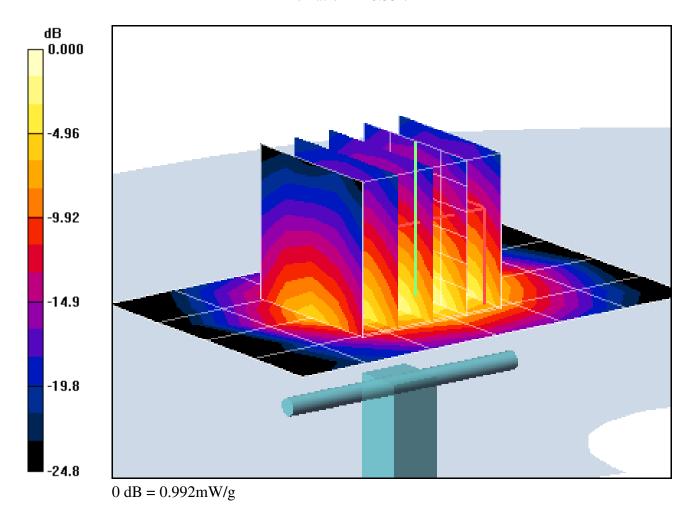
Probe: ES3DV2 - SN3022; ConvF(4.06, 4.06, 4.06); Calibrated: 9/21/2010

Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn704; Calibrated: 3/17/2011
Phantoms SAM with CRPs Tyras SAM Social TP1375

Phantom: SAM with CRP; Type: SAM; Serial: TP1375

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

2450MHz System Verification


Area Scan (5x7x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Input Power = 12 dBm (15.8 mW)

SAR(1 g) = 0.774 mW/g; SAR(10 g) = 0.358 mW/g

Deviation = -6.33 %

DUT: Dipole 5200 MHz; Type: D5GHzV2; Serial: 1057

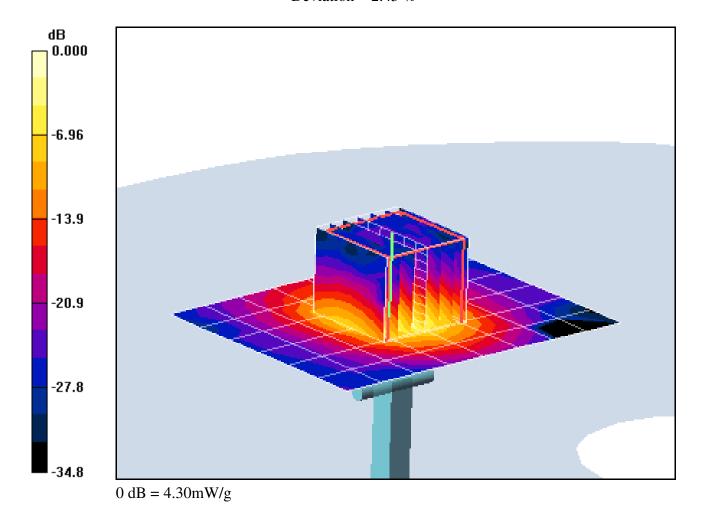
Communication System: CW; Frequency: 5200 MHz; Duty Cycle: 1:1 Medium: 5 GHz Body Medium parameters used (interpolated): $f = 5200 \text{ MHz}; \ \sigma = 5.45 \text{ mho/m}; \ \epsilon_r = 48.3; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 05-12-2011; Ambient Temp: 24.3°C; Tissue Temp: 22.7°C

Probe: EX3DV4 - SN3550; ConvF(3.58, 3.58, 3.58); Calibrated: 2/14/2011 Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn665; Calibrated: 4/20/2011 Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1114

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

5200MHz System Verification


Area Scan (7x9x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (7x7x11)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Input Power = 14 dBm (25 mW)

SAR(1 g) = 1.99 mW/g; SAR(10 g) = 0.554 mW/g

Deviation = 2.45 %

DUT: Dipole 5500 MHz; Type: D5GHzV2; Serial: 1057

Communication System: CW; Frequency: 5500 MHz; Duty Cycle: 1:1 Medium: 5 GHz Body Medium parameters used (interpolated): $f = 5500 \text{ MHz}; \ \sigma = 5.9 \text{ mho/m}; \ \epsilon_r = 47.7; \ \rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section; Space: 1.0 cm

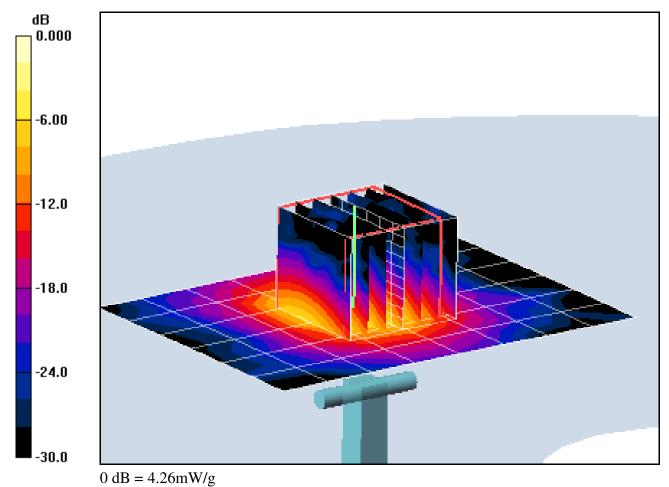
Test Date: 05-12-2011; Ambient Temp: 24.5°C; Tissue Temp: 22.7°C

Probe: EX3DV4 - SN3550; ConvF(3.21, 3.21, 3.21); Calibrated: 2/14/2011 Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn665; Calibrated: 4/20/2011

Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1114

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

5500MHz System Verification


Area Scan (7x9x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (7x7x11)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Input Power = 14 dBm (25 mW)

SAR(1 g) = 2.1 mW/g; SAR(10 g) = 0.560 mW/g

Deviation = -0.47 %

DUT: Dipole 5800 MHz; Type: D5GHzV2; Serial: 1057

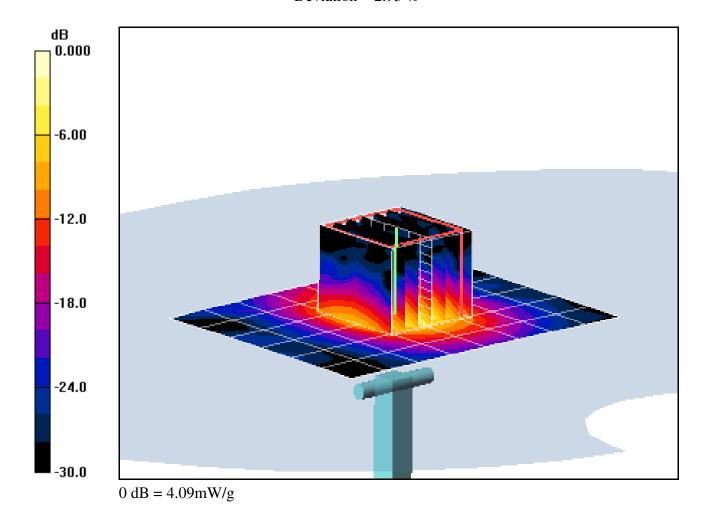
Communication System: CW; Frequency: 5800 MHz; Duty Cycle: 1:1 Medium: 5 GHz Body Medium parameters used (interpolated): $f = 5800 \text{ MHz}; \ \sigma = 6.28 \text{ mho/m}; \ \epsilon_r = 47.1; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 05-12-2011; Ambient Temp: 24.4°C; Tissue Temp: 22.6°C

Probe: EX3DV4 - SN3550; ConvF(3.29, 3.29, 3.29); Calibrated: 2/14/2011 Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE4 Sn665; Calibrated: 4/20/2011 Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1114

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

5800MHz System Verification


Area Scan (7x9x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (7x7x11)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Input Power = 14 dBm (25 mW)

SAR(1 g) = 1.93 mW/g; SAR(10 g) = 0.530 mW/g

Deviation = 2.93 %

APPENDIX C: PROBE CALIBRATION

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

S

C

S

Client

PC Test

Certificate No: ES3-3022_Sep10

CALIBRATION CERTIFICATE

Object ES3DV2 - SN:3022

Calibration procedure(s) QA CAL-01.v6, QA CAL-23.v3 and QA CAL-25.v2

Calibration procedure for dosimetric E-field probes

Calibration date: September 21, 2010

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

ID#	Cal Date (Certificate No.)	Scheduled Calibration
GB41293874	1-Apr-10 (No. 217-01136)	Apr-11
MY41495277	1-Apr-10 (No. 217-01136)	Apr-11
MY41498087	1-Apr-10 (No. 217-01136)	Apr-11
SN: S5054 (3c)	30-Mar-10 (No. 217-01159)	Mar-11
SN: S5086 (20b)	30-Mar-10 (No. 217-01161)	Mar-11
SN: S5129 (30b)	30-Mar-10 (No. 217-01160)	Mar-11
SN: 3013	30-Dec-09 (No. ES3-3013_Dec09)	Dec-10
SN: 660	20-Apr-10 (No. DAE4-660_Apr10)	Apr-11
ID#	Check Date (in house)	Scheduled Check
US3642U01700	4-Aug-99 (in house check Oct-09)	In house check: Oct-11
US37390585	18-Oct-01 (in house check Oct-09)	In house check: Oct10
Name	Function	Signature
Jeton Kastrati	Laboratory Technician	SAC
Kalja Pokovic	Technical Manager	120 W
	GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 660 ID # US3642U01700 US37390585 Name Jeton Kastrati	GB41293874 1-Apr-10 (No. 217-01136) MY41495277 1-Apr-10 (No. 217-01136) MY41498087 1-Apr-10 (No. 217-01136) SN: S5054 (3c) 30-Mar-10 (No. 217-01159) SN: S5086 (20b) 30-Mar-10 (No. 217-01161) SN: S5129 (30b) 30-Mar-10 (No. 217-01160) SN: 3013 30-Dec-09 (No. ES3-3013_Dec09) SN: 660 20-Apr-10 (No. DAE4-660_Apr10) ID # Check Date (in house) US3642U01700 4-Aug-99 (in house check Oct-09) US37390585 18-Oct-01 (in house check Oct-09) Name Function Jeton Kastrati Laboratory Technician

Issued: September 22, 2010

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: ES3-3022_Sep10 Page 1 of 11

Calibration Laboratory of Schmid & Partner

Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A, B, C modulation dependent linearization parameters

Polarization φ φ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

 a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- Ax,y,z; Bx,y,z; Cx,y,z, VRx,y,z: A, B, C are numerical linearization parameters assessed based on the data of
 power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the
 maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ES3-3022_Sep10 Page 2 of 11

Probe ES3DV2

SN:3022

Manufactured:

April 15, 2003

Last calibrated:

September 18, 2009

Recalibrated:

September 21, 2010

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

DASY/EASY - Parameters of Probe: ES3DV2 SN:3022

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (μV/(V/m) ²) ^A	1.01	1.05	1.01	± 10.1%
DCP (mV) ^B	92.8	92.5	89.7	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dBuV	С	VR mV	Unc ^E (k=2)
10000	cw	0.00	Х	0.00	0.00	1.00	300.0	± 1.5%
			Υ	0.00	0.00	1.00	300.0	
		1 2 1011	Z	0.00	0.00	1.00	300.0	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

⁸ Numerical linearization parameter: uncertainty not required.

E Uncertainty is determined using the maximum deviation from linear response applying recatangular distribution and is expressed for the square of the field value.

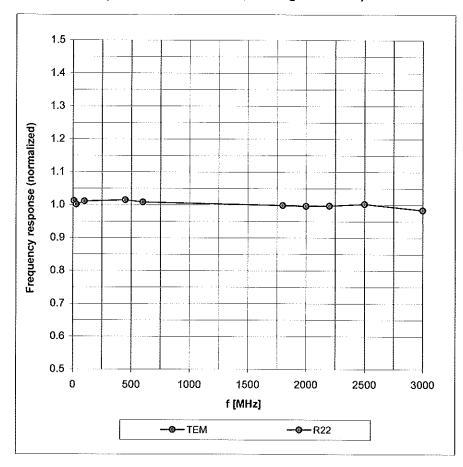
DASY/EASY - Parameters of Probe: ES3DV2 SN:3022

Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz]	Validity [MHz] ^C	Permittivity	Conductivity	ConvF X Co	nvFY C	onvF Z	Alpha	Depth Unc (k=2)
750	± 50 / ± 100	41.9 ± 5%	0.89 ± 5%	6.32	6.32	6.32	0.87	1.01 ± 11.0%
835	± 50 / ± 100	41.5 ± 5%	0.90 ± 5%	6.02	6.02	6.02	0.62	1.20 ± 11.0%
1750	± 50 / ± 100	40.1 ± 5%	1.37 ± 5%	5.01	5.01	5.01	0.27	2.23 ± 11.0%
1900	± 50 / ± 100	$40.0 \pm 5\%$	1.40 ± 5%	4.83	4.83	4.83	0.25	2.29 ± 11.0%
2450	± 50 / ± 100	39.2 ± 5%	1.80 ± 5%	4.21	4.21	4.21	0.25	2.62 ± 11.0%
2600	± 50 / ± 100	39.0 ± 5%	1.96 ± 5%	4.14	4.14	4.14	0.25	2.64 ± 11.0%

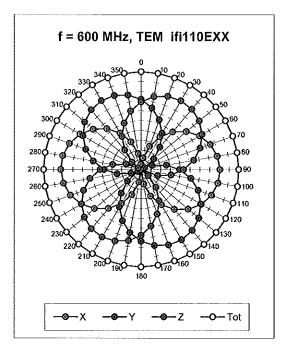
^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

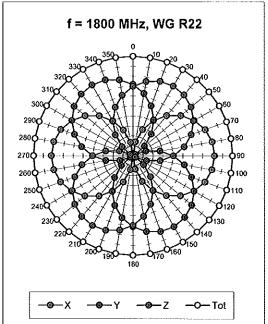
DASY/EASY - Parameters of Probe: ES3DV2 SN:3022

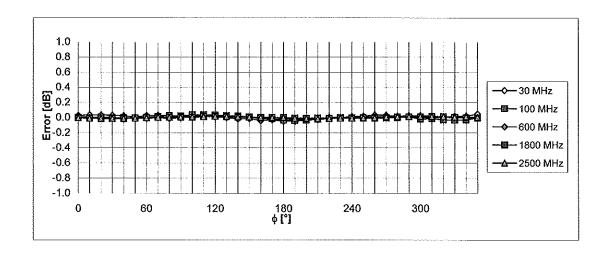

Calibration Parameter Determined in Body Tissue Simulating Media

f [MHz]	Validity [MHz] ^C	Permittivity	Conductivity	ConvF X Co	nvF Y	ConvF Z	Alpha	Depth Unc (k=2)
750	± 50 / ± 100	55.5 ± 5%	0.96 ± 5%	6.09	6.09	6.09	0.68	1.20 ± 11.0%
835	± 50 / ± 100	55.2 ± 5%	0.97 ± 5%	5.89	5.89	5.89	0.65	1.20 ± 11.0%
1750	± 50 / ± 100	53.4 ± 5%	1.49 ± 5%	4.59	4.59	4.59	0.23	2.83 ± 11.0%
1900	± 50 / ± 100	53.3 ± 5%	1.52 ± 5%	4.34	4.34	4.34	0.22	3.71 ± 11.0%
2450	± 50 / ± 100	52.7 ± 5%	1.95 ± 5%	4.06	4.06	4.06	0.41	1.42 ± 11.0%
2600	± 50 / ± 100	52.5 ± 5%	2.16 ± 5%	4.06	4.06	4.06	0.53	1.23 ± 11.0%

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

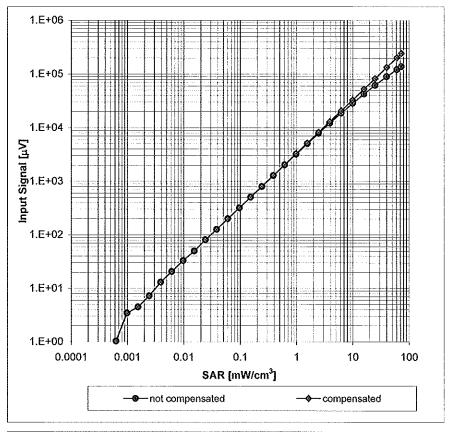

Frequency Response of E-Field


(TEM-Cell:ifi110 EXX, Waveguide: R22)



Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

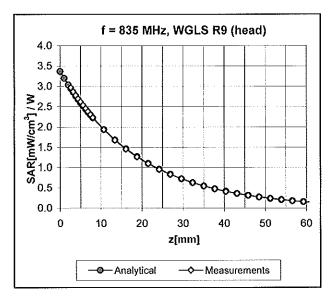
Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

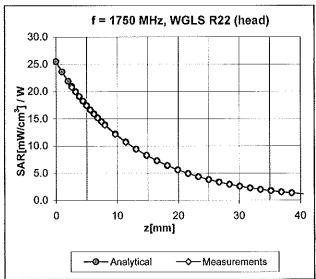


Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Dynamic Range f(SAR_{head})

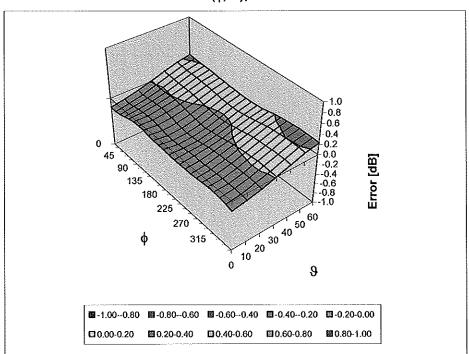
(Waveguide R22, f = 1800 MHz)





Uncertainty of Linearity Assessment: ± 0.6% (k=2)

September 21, 2010


Conversion Factor Assessment

Deviation from Isotropy in HSL

Error (ϕ, ϑ) , f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

September 21, 2010

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	Not applicable
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	4.0 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kallbrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client

PC Test

Certificate No: EX-3550_Feb11

Accreditation No.: SCS 108

S

C

S

CALIBRATION CERTIFICATE

Object

EX3DV4 - SN:3550

Calibration procedure(s)

QA CAL-01.v7, QA CAL-14.v3, QA CAL-23.v4, QA CAL-25.v3

Calibration procedure for dosimetric E-field probes

Calibration date:

February 14, 2011

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID .	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	01-Apr-10 (No. 217-01136)	Apr-11
Power sensor E4412A	MY41495277	01-Apr-10 (No. 217-01136)	Apr-11
Power sensor E4412A	MY41498087	01-Apr-10 (No. 217-01136)	Apr-11
Reference 3 dB Attenuator	SN: S5054 (3c)	30-Mar-10 (No. 217-01159)	Mar-11
Reference 20 dB Altenuator	SN: S5086 (20b)	30-Mar-10 (No. 217-01161)	Mar-11
Reference 30 dB Attenuator	SN: S5129 (30b)	30-Mar-10 (No. 217-01160)	Mar-11
Reference Probe ES3DV2	SN: 3013	29-Dec-10 (No. ES3-3013_Dec10)	Dec-11
DAE4	SN: 654	23-Apr-10 (No. DAE4-654_Apr10)	Apr-11
Secondary Standards	1D	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Oct-09)	In house check: Oct-11
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-10)	In house check: Oct-11

Calibrated by:

Katja Pokovic
Technical Manager

Approved by:

Niels Kuster
Quality Manager

Issued: February 14, 2011

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A, B, C modulation dependent linearization parameters

Polarization (6) or rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

 a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

 ib) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z are numerical linearization parameters in dB assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media.
- VR: VR is the validity range of the calibration related to the average diode voltage or DAE voltage in mV.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: EX-3550_Feb11 Page 2 of 11

February 14, 2011 EX3DV4 - SN:3550

Probe EX3DV4

SN:3550

Manufactured:

May 19, 2004

Calibrated:

February 14, 2011

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: EX-3550_Feb11 Page 3 of 11

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3550

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (μV/(V/m) ²) ^A	0.52	0.45	0.50	± 10.1 %
DCP (mV) ⁸	100.3	98.8	99.0	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dB	C dB	VR mV	Unc ^E (k=2)
10000	CW	0.00	X 00.0		0.00	1.00	110.7	±2.2 %
			Y	0.00	0.00	1.00	145.7	
			Z	0.00	0.00	1.00	148.8	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Page 4 of 11

A The uncertainties of NormX,Y,Z do not affect the E2-field uncertainty inside TSL (see Pages 5 and 6).

Numerical linearization parameter: uncertainty not required.

Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3550

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
750	41.9	0.89	8.42	8.42	8.42	0.48	0.69	± 12.0 %
835	41.5	0.90	8.04	8.04	8.04	0.33	0.84	± 12.0 %
1750	40.1	1.37	7.33	7.33	7.33	0.46	0.65	± 12.0 %
1900	40.0	1.40	7.01	7.01	7.01	0.42	0.72	± 12.0 %
2450	39.2	1.80	6.29	6.29	6.29	0.13	1.57	± 12.0 %
2600	39.0	1.96	6.13	6.13	6.13	0.20	1.32	± 12.0 %
4950	36.3	4.40	4.37	4.37	4.37	0.35	1.80	± 13.1 %
5200	36.0	4.66	4.06	4.06	4.06	0.35	1.80	± 13.1 %
5300	35.9	4.76	3.92	3.92	3.92	0.35	1.80	± 13.1 %
5500	35.6	4.96	3.77	3.77	3.77	0.35	1.80	± 13.1 %
5600	35.5	5.07	3.50	3.50	3.50	0.40	1.80	± 13.1 %
5800	35.3	5.27	3.64	3.64	3.64	0.40	1.80	± 13.1 %

^C Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

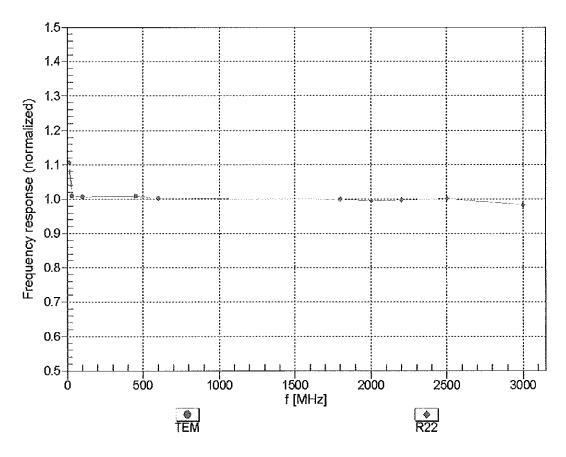
F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to

^{&#}x27; At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

DASY/EASY - Parameters of Probe: EX3DV4- SN:3550

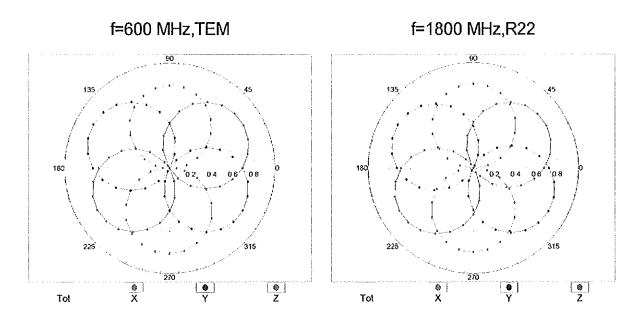
Calibration Parameter Determined in Body Tissue Simulating Media

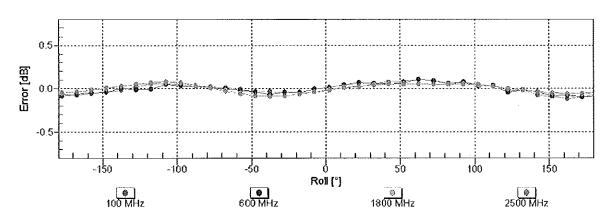
f (MHz) ^c	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
750	55.5	0.96	8.18	8.18	8.18	0.23	1.09	± 12.0 %
835	55.2	0.97	8.11	8.11	8.11	0.25	1.05	± 12.0 %
1750	53.4	1.49	7.21	7.21	7.21	0.42	0.89	± 12.0 %
1900	53.3	1.52	6.77	6.77	6.77	0.35	0.84	± 12.0 %
2450	52.7	1.95	6.25	6.25	6.25	0.30	0.86	± 12.0 %
2600	52.5	2.16	5.98	5.98	5.98	0.21	1.03	± 12.0 %
3700	51.0	3.55	5.42	5.42	5.42	0.20	1.95	± 13.1 %
4950	49.4	5.01	3.72	3.72	3.72	0.45	1.90	± 13.1 %
5200	49.0	5.30	3.58	3.58	3.58	0.45	1.90	± 13.1 %
5300	48.9	5.42	3.31	3.31	3.31	0.48	1.90	± 13.1 %
5500	48.6	5.65	3.21	3.21	3.21	0.47	1.90	± 13.1 %
5600	48.5	5.77	3.19	3.19	3.19	0.45	1.90	± 13.1 %
5800	48.2	6.00	3.29	3.29	3.29	0.50	1.90	± 13.1 %


^c Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

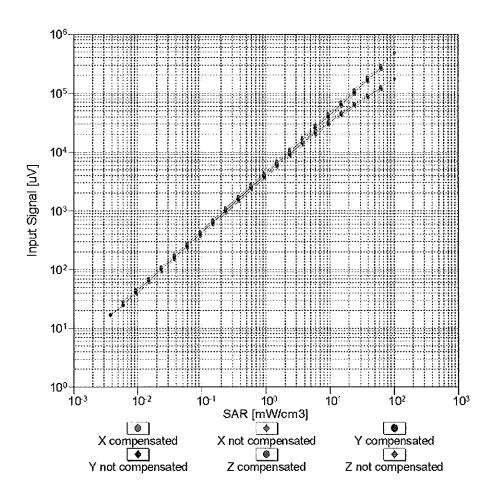
F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to

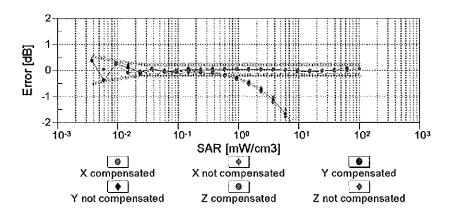
Certificate No: EX-3550_Feb11 Page 6 of 11


At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

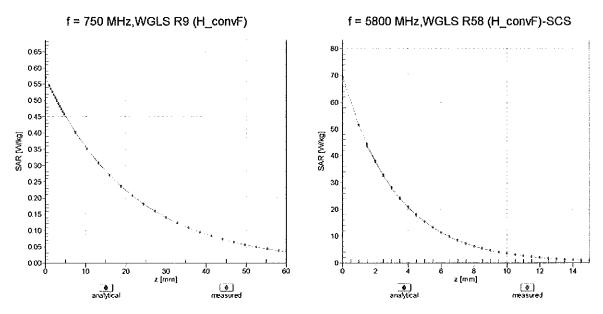

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

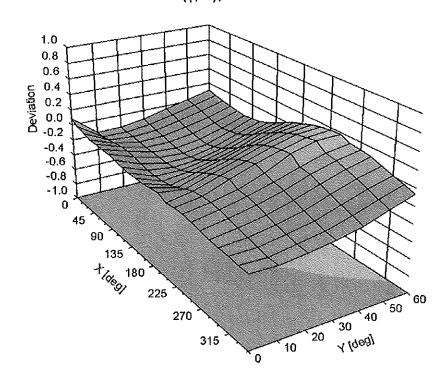
Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

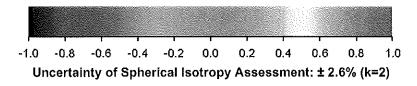

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$



Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)


Dynamic Range f(SAR_{head}) (TEM cell , f = 900 MHz)




Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

Deviation from Isotropy in Air Error (φ, θ), f = 900 MHz

EX3DV4- SN:3550 February 14, 2011

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3550

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	Not applicable
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	3 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	2 mm
	I

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service sulsse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

S

C

S

Client

PC Test

Certificate No: D2450V2-797_Feb11

CALIBRATION CERTIFICATE

Object D2450V2 - SN: 797

Calibration procedure(s) QA CAL-05.v8

Calibration procedure for dipole validation kits

Calibration date:

February 08, 2011

1/24/11

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	1D #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	06-Oct-10 (No. 217-01266)	Oct-11
Power sensor HP 8481A	US37292783	06-Oct-10 (No. 217-01266)	Oct-11
Reference 20 dB Attenuator	SN: 5086 (20g)	30-Mar-10 (No. 217-01158)	Mar-11
Type-N mismatch combination	SN: 5047.2 / 06327	30-Mar-10 (No. 217-01162)	Mar-11
Reference Probe ES3DV3	SN: 3205	30-Apr-10 (No. ES3-3205_Apr10)	Apr-11
DAE4	SN: 601	10-Jun-10 (No. DAE4-601_Jun10)	Jun-11
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-09)	In house check: Oct-11
RF generator R&S SMT-06	100005	4-Aug-99 (in house check Oct-09)	In house check: Oct-11
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-10)	In house check: Oct-11
	Name	Function	Signature
Calibrated by:	Dimce Illev	Laboratory Technician	D'Xiw
Approved by:	Katja Pokovic	Technical Manager	ICU.

Issued: February 8, 2011

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurlch, Switzerland

S Schweizerlscher Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S wiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D2450V2-797_Feb11

Page 2 of 9

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.6
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	, and the same of
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	*****

Head TSL parameters

The following parameters and calculations were applied.

The state of the s	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.1 ± 6 %	1.73 mho/m ± 6 %
Head TSL temperature during test	(21.0 ± 0.2) °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.1 mW / g
SAR normalized	normalized to 1W	52.4 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	53.3 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.14 mW / g
SAR normalized	normalized to 1W	24.6 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	24.7 mW /g ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.2 ± 6 %	1.94 mho/m ± 6 %
Body TSL temperature during test	(21.0 ± 0.2) °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	**************************************
SAR measured	250 mW input power	13.1 mW / g
SAR normalized	normalized to 1W	52.4 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	52.3 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	AMMARAN.
SAR measured	250 mW input power	6.05 mW / g
SAR normalized	normalized to 1W	24.2 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	24.2 mW / g ± 16.5 % (k=2)

Certificate No: D2450V2-797_Feb11

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$53.9 \Omega + 3.9 j\Omega$
Return Loss	- 25.5 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	49.0 Ω + 5.2 jΩ
Return Loss	- 25.5 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.151 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	January 24, 2006

DASY5 Validation Report for Head TSL

Date/Time: 07.02.2011 13:51:58

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:797

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: HSL U12 BB

Medium parameters used: f = 2450 MHz; $\sigma = 1.74 \text{ mho/m}$; $\varepsilon_r = 39.3$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.53, 4.53, 4.53); Calibrated: 30.04.2010

• Sensor-Surface: 3mm (Mechanical Surface Detection)

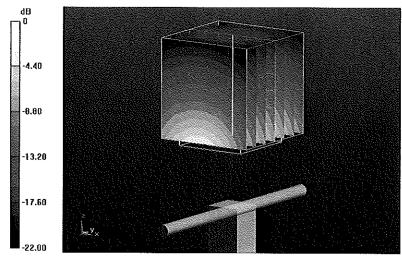
• Electronics: DAE4 Sn601; Calibrated: 10.06,2010

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

Measurement SW: DASY52, V52.6.1 Build (408)

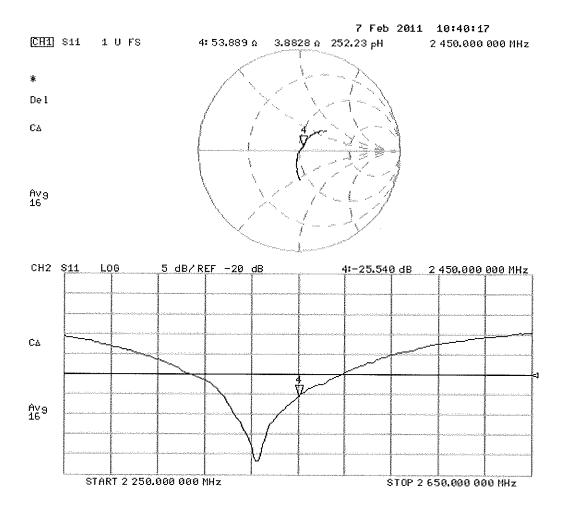
Postprocessing SW: SEMCAD X, V14.4.2 Build (2595)

Pin=250 mW /d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement


grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 101.6 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 26.650 W/kg


SAR(1 g) = 13.1 mW/g; SAR(10 g) = 6.14 mW/g

Maximum value of SAR (measured) = 16.664 mW/g

0 dB = 16.660 mW/g

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date/Time: 08.02.2011 13:24:09

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:797

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: MSL U12 BB

Medium parameters used: f = 2450 MHz; $\sigma = 1.95 \text{ mho/m}$; $\varepsilon_r = 52.4$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.31, 4.31, 4.31); Calibrated: 30.04.2010

Sensor-Surface: 3mm (Mechanical Surface Detection)

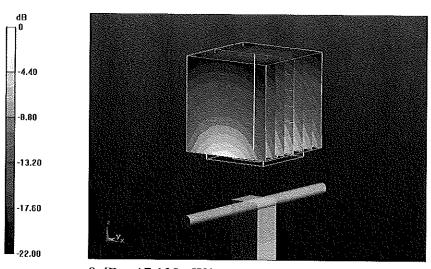
• Electronics: DAE4 Sn601; Calibrated: 10.06,2010

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

Measurement SW: DASY52, V52.6.1 Build (408)

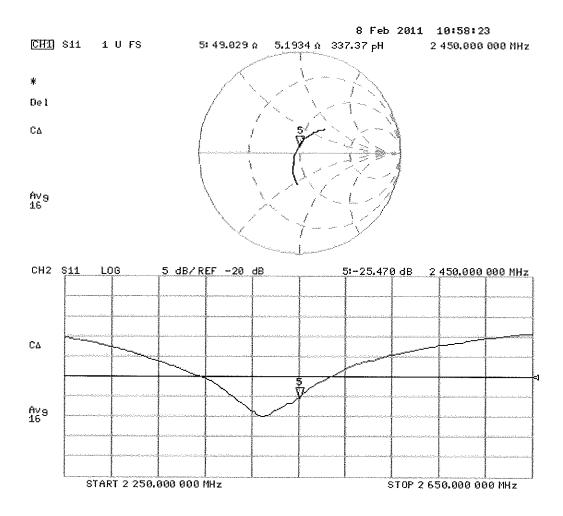
Postprocessing SW: SEMCAD X, V14.4.2 Build (2595)

Pin=250 mW /d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement


grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 96.699 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 27.483 W/kg


SAR(1 g) = 13.1 mW/g; SAR(10 g) = 6.05 mW/g

Maximum value of SAR (measured) = 17.122 mW/g

0 dB = 17.120 mW/g

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client

PC Test

Certificate No: D5GHzV2-1057_Feb11/2

CALIBRATION (CERTIFICATI	E (Replacement of No: D5	GHzV2-1057_Feb11)
Object	D5GHzV2 - SN:	1057	
Calibration procedure(s)	QA CAL-22.v1 Calibration proce	dure for dipole validation kits be	tween 3-6 GHz
Calibration date:	February 11, 20		YOY MIN
		ional standards, which realize the physical u robability are given on the following pages a	
All calibrations have been conduc	cted in the closed laborato	ry facility: environment temperature (22 \pm 3)°	°C and humidity < 70%.
Calibration Equipment used (M&	TE oritical for calibration)		
	TE CHICALIOI CANDIANON)		
Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
		Cal Date (Certificate No.) 06-Oct-10 (No. 217-01266)	Scheduled Calibration Oct-11
Power meter EPM-442A	ID#	06-Oct-10 (No. 217-01266)	
Power meter EPM-442A Power sensor HP 8481A	ID # GB37480704		Oct-11
Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination	ID # GB37480704 US37292783	06-Oct-10 (No. 217-01266) 06-Oct-10 (No. 217-01266)	Oct-11 Oct-11

Calibrated by:

Secondary Standards

Power sensor HP 8481A

RF generator R&S SMT-06

Network Analyzer HP 8753E

DAE4

Name Jeton Kastrati

MY41092317

US37390585 S4206

SN: 601

100005

Laboratory Technician

10-Jun-10 (No. DAE4-601_Jun10)

18-Oct-02 (in house check Oct-09)

4-Aug-99 (in house check Oct-09)

18-Oct-01 (in house check Oct-10)

Function

Check Date (in house)

Signature

Jun-11

Scheduled Check

In house check: Oct-11

In house check: Oct-11

In house check: Oct-11

Approved by:

Katja Pokovic

Technical Manager

Issued: February 23, 2011

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S wiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC 62209-2, "Evaluation of Human Exposure to Radio Frequency Fields from Handheld and Body-Mounted Wireless Communication Devices in the Frequency Range of 30 MHz to 6 GHz: Human models, Instrumentation, and Procedures"; Part 2: "Procedure to determine the Specific Absorption Rate (SAR) for including accessories and multiple transmitters", March 2010
- b) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

c) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D5GHzV2-1057_Feb11/2 Page 2 of 14

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.6
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Area Scan resolution	dx, dy = 10 mm	
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 2.0 mm	
Frequency	5200 MHz ± 1 MHz 5500 MHz ± 1 MHz 5800 MHz ± 1 MHz	

Head TSL parameters at 5200 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	36.0	4.66 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	36.5 ± 6 %	4.56 mho/m ± 6 %
Head TSL temperature during test	(22.1 ± 0.2) °C		

SAR result with Head TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	condition	
SAR measured	100 mW input power	8.29 mW / g
SAR normalized	normalized to 1W	82.9 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	83.1 mW / g ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.35 mW / g
SAR normalized	normalized to 1W	23.5 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	23.5 mW / g ± 19.5 % (k=2)

Certificate No: D5GHzV2-1057_Feb11/2

Head TSL parameters at 5500 MHz
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.6	4.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	36.0 ± 6 %	4.86 mho/m ± 6 %
Head TSL temperature during test	(22.1 ± 0.2) °C		

SAR result with Head TSL at 5500 MHz

SAR averaged over 1 cm³ (1 g) of Head TSL	condition	
SAR measured	100 mW input power	9.00 mW / g
SAR normalized	normalized to 1W	90.0 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	90.1 mW / g ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	20.00
SAR measured	100 mW input power	2.53 mW / g
SAR normalized	normalized to 1W	25.3 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	25.3 mW / g ± 19.5 % (k=2)

Head TSL parameters at 5800 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.3	5.27 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.6 ± 6 %	5.17 mho/m ± 6 %
Head TSL temperature during test	(22.1 ± 0.2) °C		

SAR result with Head TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	condition	
SAR measured	100 mW input power	8.28 mW / g
SAR normalized	normalized to 1W	82.8 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	82.9 mW / g ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.33 mW / g
SAR normalized	normalized to 1W	23.3 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	23.3 mW / g ± 19.5 % (k=2)

Certificate No: D5GHzV2-1057_Feb11/2

Body TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	49.0	5.30 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.2 ± 6 %	5.37 mho/m ± 6 %
Body TSL temperature during test	(22.0 ± 0.2) °C		

SAR result with Body TSL at 5200 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	condition	
SAR measured	100 mW input power	7.83 mW / g
SAR normalized	normalized to 1W	78.3 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	77.7 mW / g ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.17 mW / g
SAR normalized	normalized to 1W	21.7 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	21.5 mW / g ± 19.5 % (k=2)

Body TSL parameters at 5500 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.6	5.65 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.6 ± 6 %	5.75 mho/m ± 6 %
Body TSL temperature during test	(22.0 ± 0.2) °C		

SAR result with Body TSL at 5500 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	condition	
SAR measured	100 mW input power	8.51 mW / g
SAR normalized	normalized to 1W	85.1 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	84.4 mW / g ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.34 mW / g
SAR normalized	normalized to 1W	23.4 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	23.2 mW / g ± 19.5 % (k=2)

Certificate No: D5GHzV2-1057_Feb11/2 Page 5 of 14

Body TSL parameters at 5800 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.2	6.00 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.1 ± 6 %	6.14 mho/m ± 6 %
Body TSL temperature during test	(21.5 ± 0.2) °C		

SAR result with Body TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	condition	
SAR measured	100 mW input power	7.56 mW / g
SAR normalized	normalized to 1W	75.6 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	75.0 mW / g ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.07 mW / g
SAR normalized	normalized to 1W	20.7 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	20.5 mW / g ± 19.5 % (k=2)

Certificate No: D5GHzV2-1057_Feb11/2

Appendix

Antenna Parameters with Head TSL at 5200 MHz

Impedance, transformed to feed point	50.2 Ω - 8.0 jΩ
Return Loss	-22.0 dB

Antenna Parameters with Head TSL at 5500 MHz

Impedance, transformed to feed point	50.3 Ω - 4.9 jΩ
Return Loss	-26.3 dB

Antenna Parameters with Head TSL at 5800 MHz

Impedance, transformed to feed point	51.9 Ω - 2.0 jΩ
Return Loss	-31.2 dB

Antenna Parameters with Body TSL at 5200 MHz

Impedance, transformed to feed point	50.9 Ω - 6.6 jΩ
Return Loss	-23.7 dB

Antenna Parameters with Body TSL at 5500 MHz

Impedance, transformed to feed point	50.5 Ω - 3.9 jΩ
Return Loss	-28,2 dB

Antenna Parameters with Body TSL at 5800 MHz

Impedance, transformed to feed point	52.0 Ω - 1.1 jΩ
Return Loss	-33.0 dB

Certificate No: D5GHzV2-1057_Feb11/2 Page 7 of 14

General Antenna Parameters and Design

Electrical Delay (one direction) 1.204 ns

After long term use with 40 W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	November 27, 2006

Certificate No: D5GHzV2-1057_Feb11/2 Page 8 of 14

DASY5 Validation Report for Head TSL

Date/Time: 11.02.2011 14:44:40

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 5GHz; Type: D5GHz; Serial: D5GHzV2 - SN:1057

Communication System: CW; Frequency: 5200 MHz, Frequency: 5500 MHz, Frequency: 5800 MHz; Duty

Cycle: 1:1

Medium: HSL 5000

Medium parameters used: f = 5200 MHz; $\sigma = 4.56$ mho/m; $\epsilon_r = 36.5$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5500 MHz; $\sigma = 4.86$ mho/m; $\epsilon_r = 36$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5800 MHz;

 $\sigma = 5.17 \text{ mho/m}; \, \varepsilon_r = 35.6; \, \rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: EX3DV4 - SN3503; ConvF(5.36, 5.36, 5.36), ConvF(4.85, 4.85, 4.85), ConvF(4.74, 4.74, 4.74); Calibrated: 05.03.2010

- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 10.06.2010
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- Measurement SW: DASY52, V52.6.1 Build (408)
- Postprocessing SW: SEMCAD X, V14.4.2 Build (2595)

Pin=100mW/d=10mm, f=5200 MHz/Zoom Scan (4x4x2mm), dist=2mm (8x8x6)/Cube 0:

Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 65.700 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 31.538 W/kg

SAR(1 g) = 8.29 mW/g; SAR(10 g) = 2.35 mW/g

Maximum value of SAR (measured) = 16.059 mW/g

Pin=100mW/d=10mm, f=5500 MHz/Zoom Scan (4x4x2mm), dist=2mm (8x8x6)/Cube 0:

Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 67.167 V/m; Power Drift = 0.05 dB

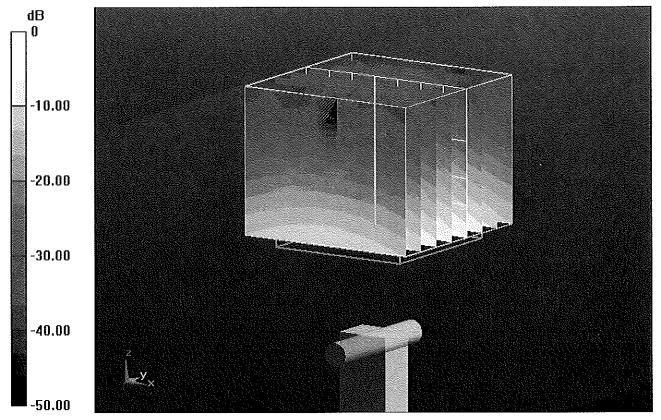
Peak SAR (extrapolated) = 36.356 W/kg

SAR(1 g) = 9 mW/g; SAR(10 g) = 2.53 mW/g

Maximum value of SAR (measured) = 17.641 mW/g

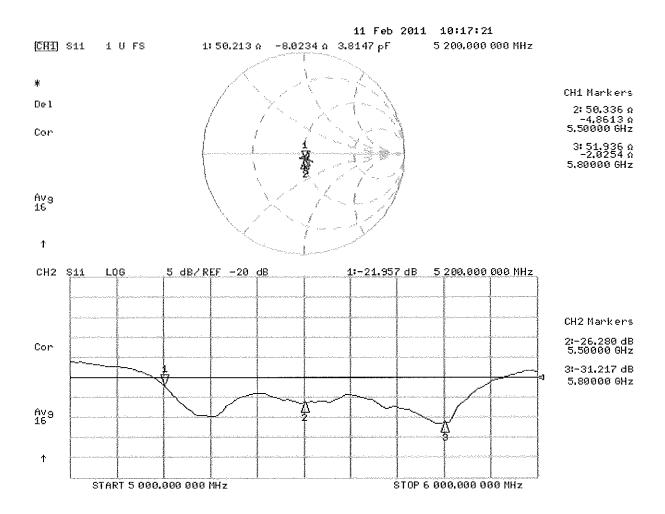
Pin=100mW/d=10mm, f=5800 MHz/Zoom Scan (4x4x2mm), dist=2mm (8x8x6)/Cube 0:

Measurement grid: dx=4mm, dy=4mm, dz=2mm


Reference Value = 62.634 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 34.882 W/kg

SAR(1 g) = 8.28 mW/g; SAR(10 g) = 2.33 mW/g


Maximum value of SAR (measured) = 16.490 mW/g

Certificate No: D5GHzV2-1057_Feb11/2 Page 9 of 14

 $\frac{-}{0 \text{ dB}} = 16.490 \text{mW/g}$

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date/Time: 10.02.2011 17:14:02

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 5GHz; Type: D5GHz; Serial: D5GHzV2 - SN:1057

Communication System: CW; Frequency: 5200 MHz, Frequency: 5500 MHz, Frequency: 5800 MHz; Duty

Cycle: 1:1

Medium: MSL 5000 MHz

Medium parameters used: f = 5200 MHz; $\sigma = 5.37 \text{ mho/m}$; $\epsilon r = 47.2$; $\rho = 1000 \text{ kg/m}3$, Medium

parameters used: f = 5500 MHz; $\sigma = 5.75 \text{ mho/m}$; $\epsilon r = 46.6$; $\rho = 1000 \text{ kg/m}3$, Medium parameters used: f = 5500 MHz; $\sigma = 5.75 \text{ mho/m}$; $\epsilon r = 46.6$; $\epsilon r = 1000 \text{ kg/m}3$, Medium parameters used: $\epsilon r = 1000 \text{ kg/m}3$

= 5800 MHz; σ = 6.16 mho/m; ϵ r = 46.2; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: EX3DV4 - SN3503; ConvF(4.88, 4.88, 4.88), ConvF(4.37, 4.37, 4.37), ConvF(4.57, 4.57, 4.57); Calibrated: 05.03.2010

• Sensor-Surface: 2mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 10.06.2010

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

Measurement SW: DASY52, V52.6.1 Build (408)

Postprocessing SW: SEMCAD X, V14.4.2 Build (2595)

Pin=100mW/d=10mm, f=5200 MHz 2/Zoom Scan (4x4x2mm), dist=2mm (8x8x6)/Cube 0:

Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 60.106 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 30.996 W/kg

SAR(1 g) = 7.83 mW/g; SAR(10 g) = 2.17 mW/g

Maximum value of SAR (measured) = 15.137 mW/g

Pin=100mW/d=10mm, f=5500 MHz/Zoom Scan (4x4x2mm), dist=2mm (8x8x6)/Cube 0:

Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 60.894 V/m; Power Drift = -0.04 dB

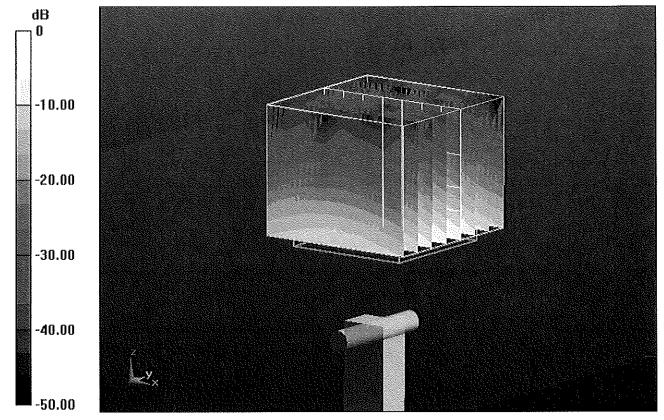
Peak SAR (extrapolated) = 35.975 W/kg

SAR(1 g) = 8.51 mW/g; SAR(10 g) = 2.34 mW/g

Maximum value of SAR (measured) = 16.704 mW/g

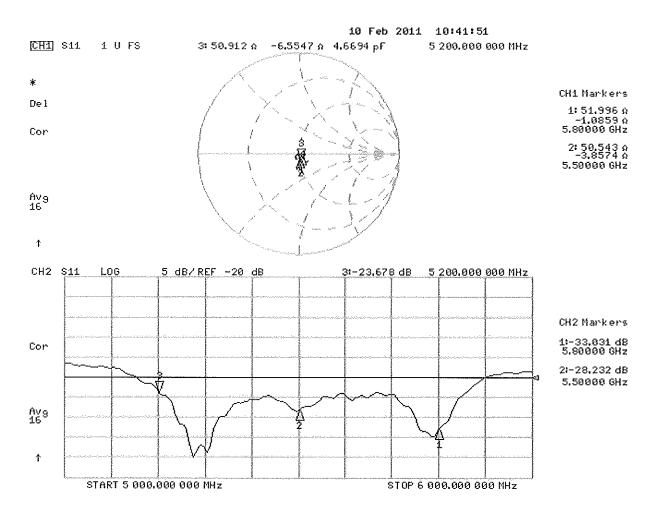
Pin=100mW/d=10mm, f=5800 MHz/Zoom Scan (4x4x2mm), dist=2mm (8x8x6)/Cube 0:

Measurement grid: dx=4mm, dy=4mm, dz=2mm


Reference Value = 56.118 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 33.913 W/kg

SAR(1 g) = 7.56 mW/g; SAR(10 g) = 2.07 mW/g


Maximum value of SAR (measured) = 15.043 mW/g

Certificate No: D5GHzV2-1057_Feb11/2 Page 12 of 14

 $\frac{-}{0 \text{ dB}} = 15.040 \text{mW/g}$

Impedance Measurement Plot for Body TSL

s p e a g

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com

REPLACEMENT FOR

	Probe calibration certificate(s)
	Probe configuration file(s)
V	Dipole calibration certificate(s)
	DAE calibration certificate(s)
	DAE configuration file(s)

Dear Customer,

Enclosed please find the replacement document (and diskette if applicable) for the marked item(s).

All those customers receiving a probe(s) or DAE(s) replacement configuration file(s) must replace their current configuration file(s) with the new one(s). In addition, please send back to us, destroy or declare obsolete the old probe(s) or DAE(s) certificates at your earliest convenience.

All those customers receiving a <u>replacement dipole certificate(s)</u> are kindly asked to send back to us, destroy or declare obsolete the old dipole certificate at your earliest convenience.

We would like to greatly apologize for this situation and all circumstances you may have been caused. We will continuously improve our internal quality assurance to avoid reoccurrence of similar difficulties in the future.

Best regards

s p e a g

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com

Schmid & Partner Engineering AG

Technical Note 14.04.05-1