

PCTEST ENGINEERING LABORATORY, INC.

6660-B Dobbin Road, Columbia, MD 21045 USA

Tel. 410.290.6652 / Fax 410.290.6554

<http://www.pctestlab.com>

SAR COMPLIANCE EVALUATION REPORT

Applicant Name:

Samsung Electronics, Co. Ltd.
18600 Broadwick St.
Rancho Dominguez, CA 90220
United States

Date of Testing:

08/24/10 - 10/3/2010

Test Site/Location:

PCTEST Lab, Columbia, MD, USA

Test Report Serial No.:

0Y1008191386-R5.A3L

FCC ID:

A3LGTP1000

APPLICANT:

SAMSUNG ELECTRONICS, CO. LTD.

EUT Type: 850/1900 GSM/GPRS/EDGE and 1900 WCDMA/HSPA Mini-Tablet with BT and WLAN

Application Type: Certification

FCC Rule Part(s): CFR §2.1093; FCC/OET Bulletin 65 Supplement C [June 2001]

FCC Unlicensed Transmitter National Infrastructure (UNII)

Classification: PCS Licensed Transmitter (PCB)

Digital Transmission System (DTS)

Model(s): GT-P1000

Tx Frequency: 824.20 - 848.80 MHz (GSM 850) / 1850.20 - 1909.80 MHz (GSM 1900)

1852.4 - 1907.6 MHz (UMTS II) / 5180 - 5320 MHz (WLAN)

5500 - 5825 MHz (WLAN) / 2412 - 2462 MHz (WLAN)

Conducted Power: 32.35 dBm GSM 850 / 29.22 dBm GSM 1900

21.52 dBm UMTS II / 16.47 dBm 2.4 GHz WLAN

15.19 dBm 5.2 GHz WLAN / 14.85 dBm 5.3 GHz WLAN

15.56 dBm 5.5 GHz WLAN / 14.99 dBm 5.8 GHz WLAN

Max. SAR Measurement: 0.64 W/kg GSM 850 Body SAR / 0.97 W/kg GSM 1900 Body SAR

0.99 W/kg UMTS II Body SAR / 0.40 W/kg 2.4 GHz WLAN Body SAR

0.61 W/kg 5.2 GHz WLAN Body SAR / 0.51 W/kg 5.3 GHz WLAN Body SAR

0.96 W/kg 5.5 GHz WLAN Body SAR / 0.97 W/kg 5.8 GHz WLAN Body SAR

Test Device Serial No.: Pre-Production [S/N: FCC #1, 116, 21, 118]

This wireless portable device has been shown to be capable of compliance for localized specific absorption rate (SAR) for uncontrolled environment/general population exposure limits specified in ANSI/IEEE C95.1-1992 and has been tested in accordance with the measurement procedures specified in FCC/OET Bulletin 65 Supplement C (2001), IEEE 1528-2003 and in applicable Industry Canada Radio Standards Specifications (RSS); for North American frequency bands only.

Note: This revised Test Report (S/N: 0Y1008191386-R5.A3L) supersedes and replaces the previously issued test report on the same subject EUT for the same type of testing as indicated. Please discard or destroy the previously issued test reports and dispose of it accordingly.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them. Test results reported herein relate only to the item(s) tested.

PCTEST certifies that no party to this application has been denied the FCC benefits pursuant to Section 5301 of the Anti-Drug Abuse Act of 1988, 21 U.S.C. 862.

Randy Ortanez
President

FCC ID: A3LGTP1000		SAR COMPLIANCE REPORT		Reviewed by: Quality Manager
Filename: 0Y1008191386-R5.A3L	Test Dates: 08/24/10 - 10/3/10	EUT Type: 850/1900 GSM/GPRS/EDGE and 1900 WCDMA/HSPA Mini-Tablet with BT and WLAN		Page 1 of 41

T A B L E O F C O N T E N T S

1	INTRODUCTION	3
2	TEST SITE LOCATION	4
3	SAR MEASUREMENT SETUP	5
4	DASY E-FIELD PROBE SYSTEM	7
5	PROBE CALIBRATION PROCESS	8
6	PHANTOM AND EQUIVALENT TISSUES.....	9
7	DOSIMETRIC ASSESSMENT & PHANTOM SPECS.....	10
8	RF EXPOSURE LIMITS	11
9	MEASUREMENT UNCERTAINTIES	12
10	SYSTEM VERIFICATION.....	14
11	FCC MULTI-TX AND ANTENNA SAR CONSIDERATIONS.....	17
12	SIMULTANEOUS TRANSMISSION ANALYSIS.....	18
13	RF OUTPUT POWER CONSIDERATIONS.....	19
14	SAR TESTING WITH IEEE 802.11 TRANSMITTERS	23
15	SAR TESTING CONSIDERATIONS & FCC KDB INQUIRIES	26
16	SAR DATA SUMMARY	28
17	EQUIPMENT LIST.....	33
18	CONCLUSION.....	34
19	REFERENCES	35
20	SAR TEST SETUP PHOTOGRAPHS.....	37

FCC ID: A3LGTP1000			SAR COMPLIANCE REPORT		Reviewed by: Quality Manager
Filename: 0Y1008191386-R5.A3L	Test Dates: 08/24/10 - 10/3/10	EUT Type: 850/1900 GSM/GPRS/EDGE and 1900 WCDMA/HSPA Mini-Tablet with BT and WLAN		Page 2 of 41	REV 8.5M 8/17/2010

1 INTRODUCTION

The FCC has adopted the guidelines for evaluating the environmental effects of radio frequency (RF) radiation in ET Docket 93-62 on Aug. 6, 1996 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices.[1]

The safety limits used for the environmental evaluation measurements are based on the criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate (SAR) in IEEE/ANSI C95.1-1992 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz[2] and Health Canada RF Exposure Guidelines Safety Code 6 [26]. The measurement procedure described in IEEE/ANSI C95.3-2002 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave [3] is used for guidance in measuring the Specific Absorption Rate (SAR) due to the RF radiation exposure from the Equipment Under Test (EUT). These criteria for SAR evaluation are similar to those recommended by the International Committee for Non-Ionizing Radiation Protection (ICNIRP) in Biological Effects and Exposure Criteria for Radiofrequency Electromagnetic Fields," Report No. Vol 74. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards.

1.1 SAR Definition

Specific Absorption Rate is defined as the time derivative (rate) of the incremental energy (dU) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ). It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body (see Fig. 1-1).

$$SAR = \frac{d}{d t} \left(\frac{dU}{dm} \right) = \frac{d}{d t} \left(\frac{dU}{\rho dV} \right)$$

Figure 1-1
SAR Mathematical Equation

SAR is expressed in units of Watts per Kilogram (W/kg).

$$SAR = \frac{\sigma \cdot E^2}{\rho}$$

where:

σ = conductivity of the tissue-simulating material (S/m)
 ρ = mass density of the tissue-simulating material (kg/m³)
 E = Total RMS electric field strength (V/m)

NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relation to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane.[6]

FCC ID: A3LGTP1000	PCTEST Environmental Laboratory, Inc.		SAR COMPLIANCE REPORT		Reviewed by: Quality Manager
Filename: 0Y1008191386-R5.A3L	Test Dates: 08/24/10 - 10/3/10	EUT Type: 850/1900 GSM/GPRS/EDGE and 1900 WCDMA/HSPA Mini-Tablet with BT and WLAN			Page 3 of 41

2 TEST SITE LOCATION

2.1 INTRODUCTION

The map at the right shows the location of the PCTEST LABORATORY in Columbia, Maryland. It is in proximity to the FCC Laboratory, the Baltimore-Washington International (BWI) airport, the city of Baltimore and Washington, DC (See Figure 2).

These measurement tests were conducted at the PCTEST Engineering Laboratory, Inc. facility in New Concept Business Park, Guilford Industrial Park, Columbia, Maryland. The site address is 6660-B Dobbin Road, Columbia, MD 21045. The test site is one of the highest points in the Columbia area with an elevation of 390 feet above mean sea level. The site coordinates are 39° 11'15" N latitude and 76° 49' 38" W longitude. The facility is 1.5 miles north of the FCC laboratory, and the ambient signal and ambient signal strength are approximately equal to those of the FCC laboratory. There are no FM or TV transmitters within 15 miles of the site. The detailed description of the measurement facility was found to be in compliance with the requirements of § 2.948 according to ANSI C63.4 on January 27, 2006 and Industry Canada.

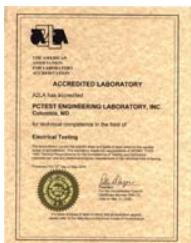


Figure 2-1

Map of the Greater Baltimore and Metropolitan Washington, D.C. area

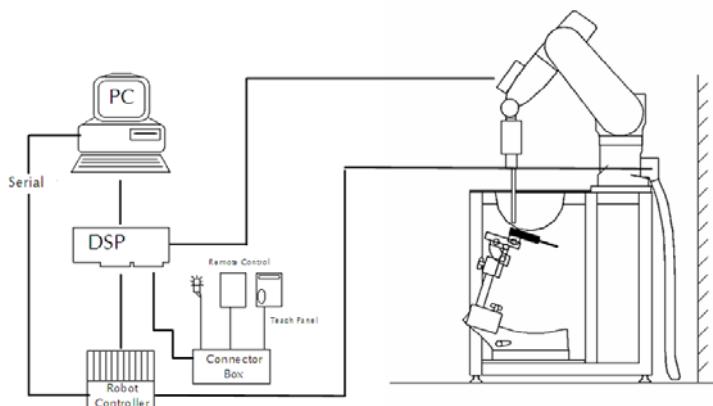
2.2 Test Facility / Accreditations:

Measurements were performed at an independent accredited PCTEST Engineering Lab located in Columbia, MD 21045, U.S.A.

- PCTEST Lab is accredited to ISO 17025-2005 by the American Association for Laboratory Accreditation (A2LA) in Specific Absorption Rate (SAR) testing, Hearing-Aid Compatibility (HAC), CTIA Test Plans, and wireless testing for FCC and Industry Canada Rules.
- PCTEST Lab is accredited to ISO 17025 by U.S. National Institute of Standards and Technology (NIST) under the National Voluntary Laboratory Accreditation Program (NVLAP Lab code: 100431-0) in EMC, FCC and Telecommunications.
- PCTEST facility is an FCC registered (PCTEST Reg. No. 90864) test facility with the site description report on file and has met all the requirements specified in Section 2.948 of the FCC Rules and Industry Canada (IC-2451).
- PCTEST Lab is a recognized U.S. Conformity Assessment Body (CAB) in EMC and R&TTE (n.b. 0982) under the U.S.-EU Mutual Recognition Agreement (MRA).
- PCTEST TCB is a Telecommunication Certification Body (TCB) accredited to ISO/IEC Guide 65 by the American National Standards Institute (ANSI) in all scopes of FCC Rules and all Industry Canada Standards (RSS).
- PCTEST facility is an IC registered (IC-2451) test laboratory with the site description on file at Industry Canada.
- PCTEST is a CTIA Authorized Test Laboratory (CATL) for AMPS and CDMA, and EVDO mobile phones.
- PCTEST is a CTIA Authorized Test Laboratory (CATL) for Over-the-Air (OTA) Antenna Performance testing for AMPS, CDMA, GSM, GPRS, EGPRS, UMTS (W-CDMA), CDMA 1xEVDO Data, CDMA 1xRTT Data

FCC ID: A3LGTP1000	PCTEST	SAR COMPLIANCE REPORT	SAMSUNG	Reviewed by: Quality Manager
Filename: 0Y1008191386-R5.A3L	Test Dates: 08/24/10 - 10/3/10	EUT Type: 850/1900 GSM/GPRS/EDGE and 1900 WCDMA/HSPA Mini-Tablet with BT and WLAN		Page 4 of 41

3 SAR MEASUREMENT SETUP


3.1 Robotic System

Measurements are performed using the DASY4 automated dosimetric assessment system. The DASY4 is made by Schmid & Partner Engineering AG (SPEAG) in Zurich, Switzerland and consists of a high precision robotics system (Staubli), robot controller, desktop computer, near-field probe, probe alignment sensor, and the SAM phantom containing the head or body equivalent material. The robot is a six-axis industrial robot, performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF) (see Figure 3-1).

3.2 System Hardware

A cell controller system contains the power supply, robot controller, teach pendant (Joystick), and a remote control used to drive the robot motors. The PC consists of the SAR Measurement Software DASY4, A/D interface card, monitor, mouse, and keyboard. The Staubli Robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit that performs the signal amplification, signal multiplexing, A/D conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal from the DAE and transfers data to the PC card.

3.3 System Electronics

Figure 3-1
SAR Measurement System Setup

The DAE consists of a highly sensitive electrometer-grade auto-zeroing preamplifier, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the PC-card is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer.

FCC ID: A3LGTP1000		SAR COMPLIANCE REPORT		Reviewed by: Quality Manager
Filename: 0Y1008191386-R5.A3L	Test Dates: 08/24/10 - 10/3/10	EUT Type: 850/1900 GSM/GPRS/EDGE and 1900 WCDMA/HSPA Mini-Tablet with BT and WLAN		Page 5 of 41

3.4 Automated Test System Specifications

<u>Test Software:</u>	SPEAG DASY4 version 4.7
Robot:	Stäubli Unimation Corp. Robot RX60L
Repeatability:	0.02 mm
No. of Axes:	6
Data Acquisition Electronic System (DAE)	
Data Converter	Features: Signal Amplifier, multiplexer, A/D converter & control logic Software: SEMCAD software Connecting Lines: Optical Downlink for data and status info Optical upload for commands and clock
<u>PC Interface Card</u>	Function: Link to DAE 16-bit A/D converter for surface detection system Two Serial & Ethernet link to robotics Direct emergency stop output for robot
<u>Phantom</u>	Type: SAM Twin Phantom (V4.0) Shell Material: Composite Thickness: 2.0 ± 0.2 mm

Figure 3-2
SAR Measurement System

FCC ID: A3LGTP1000		SAR COMPLIANCE REPORT		Reviewed by: Quality Manager
Filename: 0Y1008191386-R5.A3L	Test Dates: 08/24/10 - 10/3/10	EUT Type: 850/1900 GSM/GPRS/EDGE and 1900 WCDMA/HSPA Mini-Tablet with BT and WLAN		Page 6 of 41

4.1 Probe Measurement System

Figure 4-1
SAR System

The SAR measurements were conducted with the dosimetric probe designed in the classical triangular configuration [7] (see Figure 4-3) and optimized for dosimetric evaluation. The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical multi-fiber line ending at the front of the probe tip. It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY4 software reads the reflection during a software approach and looks for the maximum using a 2nd order curve fitting (see Figure 5-1). The approach is stopped at reaching the maximum.

4.2 Probe Specifications

Model:	ES3DV3, EX3DV4
Frequency Range:	10 MHz – 6.0 GHz (EX3DV4) 10 MHz – 4 GHz (ES3DV3)
Calibration:	In head and body simulating tissue at Frequencies from 835 up to 5800MHz
Linearity:	± 0.2 dB (30 MHz to 6 GHz) for EX3DV4 ± 0.2 dB (30 MHz to 4 GHz) for ES3DV3
Dynamic Range:	10 mW/kg – 100 W/kg
Probe Length:	330 mm
Probe Tip Length:	20 mm
Body Diameter:	12 mm
Tip Diameter:	2.5 mm (3.9mm for ES3DV3)
Tip-Center:	1 mm (2.0 mm for ES3DV3)
Application:	SAR Dosimetry Testing Compliance tests of mobile phones Dosimetry in strong gradient fields

Figure 4-2
Near-Field Probe

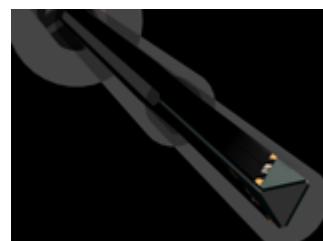


Figure 4-3
Triangular Probe Configuration

FCC ID: A3LGTP1000		SAR COMPLIANCE REPORT		Reviewed by: Quality Manager
Filename: 0Y1008191386-R5.A3L	Test Dates: 08/24/10 - 10/3/10	EUT Type: 850/1900 GSM/GPRS/EDGE and 1900 WCDMA/HSPA Mini-Tablet with BT and WLAN		Page 7 of 41

5

PROBE CALIBRATION PROCESS

5.1 Dosimetric Assessment Procedure

Each E-Probe/Probe Amplifier combination has unique calibration parameters. A TEM cell calibration procedure is conducted to determine the proper amplifier settings to enter in the probe parameters. The amplifier settings are determined for a given frequency by subjecting the probe to a known E-field density (1 mW/cm²) using an RF Signal generator, TEM cell, and RF Power Meter.

5.2 Free Space Assessment

The free space E-field from amplified probe outputs is determined in a test chamber. This calibration can be performed in a TEM cell if the frequency is below 1 GHz and in a waveguide or other methodologies above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is rotated 360 degrees until the three channels show the maximum reading. The power density readings equates to 1 mW/cm².

5.3 Temperature Assessment

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated head tissue. The E-field in the medium correlates with the temperature rise in the dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$\text{SAR} = C \frac{\Delta T}{\Delta t}$$

where:

Δt = exposure time (30 seconds),

C = heat capacity of tissue (brain or muscle),

ΔT = temperature increase due to RF exposure.

$$\text{SAR} = \frac{|E|^2 \cdot \sigma}{\rho}$$

where:

σ = simulated tissue conductivity,

ρ = Tissue density (1.25 g/cm³ for brain tissue)

SAR is proportional to $\Delta T/\Delta t$, the initial rate of tissue heating, before thermal diffusion takes place. The electric field in the simulated tissue can be used to estimate SAR by equating the thermally derived SAR to that with the E-field component.

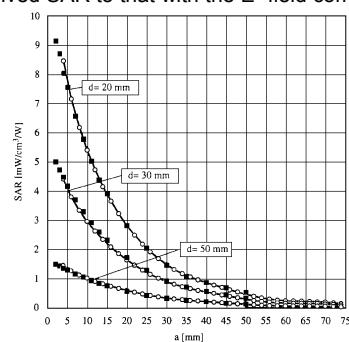


Figure 5-1 E-Field and Temperature measurements at 900MHz [7]

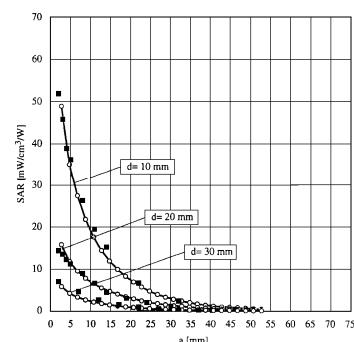


Figure 5-2 E-Field and temperature measurements at 1.9GHz [7]

FCC ID: A3LGTP1000		SAR COMPLIANCE REPORT		Reviewed by: Quality Manager
Filename: 0Y1008191386-R5.A3L	Test Dates: 08/24/10 - 10/3/10	EUT Type: 850/1900 GSM/GPRS/EDGE and 1900 WCDMA/HSPA Mini-Tablet with BT and WLAN		Page 8 of 41

6

PHANTOM AND EQUIVALENT TISSUES

6.1 SAM Phantoms

Figure 6-1
SAM Phantoms

The SAM Twin Phantom V4.0 is constructed of a fiberglass shell integrated in a table. The shape of the shell is based on data from an anatomical study designed to represent the 90th percentile of the population [11][12]. The phantom enables the dosimetric evaluation of SAR for both left and right handed handset usage, as well as body-worn usage using the flat phantom region. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot. The shell phantom has a 2mm shell thickness (except the ear region where shell thickness increases to 6 mm).

6.2 Head & Body Simulating Mixture Characterization

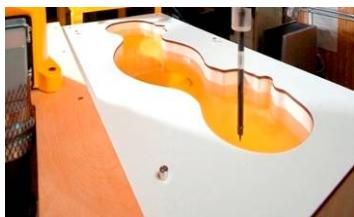
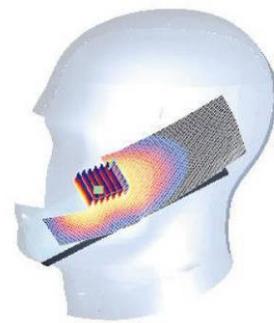


Figure 6-2
SAM Phantom with
Simulating Tissue

The mixture is characterized to obtain proper dielectric constant (permittivity) and conductivity of the tissue of interest. The head tissue dielectric parameters recommended in IEEE 1528 and IEC 62209 have been used as targets for the compositions, and are to match within 5%, per the FCC recommendations.

Table 6-1
Composition of the Head & Body Tissue Equivalent Matter


Frequency (MHz)	835	1900	2450	5200-5800
Tissue	Body	Body	Body	Body
Ingredients (% by weight)				
Bactericide	0.1			
DGBE		29.44	26.7	
HEC	1			
NaCl	0.94	0.39	0.1	
Sucrose	44.9			
Triton X-100				10.67
Diethylenglycol monohexylether				10.67
Water	53.06	70.16	73.2	78.66

FCC ID: A3LGTP1000		SAR COMPLIANCE REPORT		Reviewed by: Quality Manager
Filename: 0Y1008191386-R5.A3L	Test Dates: 08/24/10 - 10/3/10	EUT Type: 850/1900 GSM/GPRS/EDGE and 1900 WCDMA/HSPA Mini-Tablet with BT and WLAN		Page 9 of 41

7.1 Measurement Procedure

The evaluation was performed using the following procedure:

1. The SAR distribution at the exposed side of the head was measured at a distance of 3.0mm from the inner surface of the shell. The area covered the entire dimension of the head and the horizontal grid spacing was 15mm x 15mm.
2. The point SAR measurement was taken at the maximum SAR region determined from Step 1 to enable the monitoring of SAR fluctuations/drifts during testing the 1 gram cube. This fixed point was measured and used as a reference value.
3. Based on the area scan data, the area of the maximum absorption was determined by spline interpolation. Around this point, a volume of 32mm x 32mm x 30mm (fine resolution volume scan, zoom scan) was assessed by measuring 5 x 5 x 7 points. On this basis of this data set, the spatial peak SAR value was evaluated with the following procedure (see references or the DASY manual for more details):
 - a. The data was extrapolated to the surface of the outer-shell of the phantom. The combined distance extrapolated was the combined distance from the center of the dipoles 2.7mm away from the tip of the probe housing plus the 1.2 mm distance between the surface and the lowest measuring point. The extrapolation was based on a least-squares algorithm. A polynomial of the fourth order was calculated through the points in the z-axis (normal to the phantom shell).
 - b. After the maximum interpolated values were calculated between the points in the cube, the SAR was averaged over the spatial volume (1g or 10g) using a 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the “Not a knot” condition (in x, y, and z directions). The volume was then integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were obtained through interpolation, in order to calculate the averaged SAR.
 - c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.
4. The SAR reference value, at the same location as step 2, was re-measured after the zoom scan was complete. If the value deviated by more than 5%, the evaluation was repeated.

Figure 7-1
Sample SAR Area Scan

7.2 Specific Anthropomorphic Mannequin (SAM) Specifications

The phantom for SAR assessment testing is a low-loss dielectric shell, with shape and dimensions derived from the anthropometric data of the 90th percentile adult male head dimensions as tabulated by the US Army. The SAM Twin Phantom shell is bisected along the mid-sagittal plane into right and left halves (see Figure 7-2). The perimeter sidewalls of each phantom halves are extended to allow filling with liquid to a depth that is sufficient to minimize reflections from the upper surface. The liquid depth is maintained at a minimum depth of 15 cm.

Figure 7-2
SAM Twin Phantom Shell

FCC ID: A3LGTP1000		SAR COMPLIANCE REPORT		Reviewed by: Quality Manager
Filename: 0Y1008191386-R5.A3L	Test Dates: 08/24/10 - 10/3/10	EUT Type: 850/1900 GSM/GPRS/EDGE and 1900 WCDMA/HSPA Mini-Tablet with BT and WLAN		Page 10 of 41

8 RF EXPOSURE LIMITS

8.1 Uncontrolled Environment

UNCONTROLLED ENVIRONMENTS are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

8.2 Controlled Environment

CONTROLLED ENVIRONMENTS are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Table 8-1
SAR Human Exposure Specified in ANSI/IEEE C95.1-1992 and Health Canada Safety Code 6

HUMAN EXPOSURE LIMITS		
	UNCONTROLLED ENVIRONMENT <i>General Population</i> (W/kg) or (mW/g)	CONTROLLED ENVIRONMENT <i>Occupational</i> (W/kg) or (mW/g)
SPATIAL PEAK SAR Brain	1.6	8.0
SPATIAL AVERAGE SAR Whole Body	0.08	0.4
SPATIAL PEAK SAR Hands, Feet, Ankles, Wrists	4.0	20

The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

2 The Spatial Average value of the SAR averaged over the whole body.

3 The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

FCC ID: A3LGTP1000		SAR COMPLIANCE REPORT		Reviewed by: Quality Manager
Filename: 0Y1008191386-R5.A3L	Test Dates: 08/24/10 - 10/3/10	EUT Type: 850/1900 GSM/GPRS/EDGE and 1900 WCDMA/HSPA Mini-Tablet with BT and WLAN		Page 11 of 41

9 MEASUREMENT UNCERTAINTIES

Applicable for 800 -3000 MHz

a	b	c	d	e= f(d,k)	f	g	h = c x f/e	i = c x g/e	k
Uncertainty Component	IEEE 1528 Sec.	Tol. (± %)	Prob. Dist.		c_i	c_i	1gm	10gms	
Measurement System									
Probe Calibration	E.2.1	5.5	N	1	1.0	1.0	5.5	5.5	∞
Axial Isotropy	E.2.2	0.25	N	1	0.7	0.7	0.2	0.2	∞
Hemispherical Isotropy	E.2.2	1.3	N	1	1.0	1.0	1.3	1.3	∞
Boundary Effect	E.2.3	0.4	N	1	1.0	1.0	0.4	0.4	∞
Linearity	E.2.4	0.3	N	1	1.0	1.0	0.3	0.3	∞
System Detection Limits	E.2.5	5.1	N	1	1.0	1.0	5.1	5.1	∞
Readout Electronics	E.2.6	1.0	N	1	1.0	1.0	1.0	1.0	∞
Response Time	E.2.7	0.8	R	1.73	1.0	1.0	0.5	0.5	∞
Integration Time	E.2.8	2.6	R	1.73	1.0	1.0	1.5	1.5	∞
RF Ambient Conditions	E.6.1	3.0	R	1.73	1.0	1.0	1.7	1.7	∞
Probe Positioner Mechanical Tolerance	E.6.2	0.4	R	1.73	1.0	1.0	0.2	0.2	∞
Probe Positioning w/ respect to Phantom	E.6.3	2.9	R	1.73	1.0	1.0	1.7	1.7	∞
Extrapolation, Interpolation & Integration algorithms for Max. SAR Evaluation	E.5	1.0	R	1.73	1.0	1.0	0.6	0.6	∞
Test Sample Related									
Test Sample Positioning	E.4.2	6.0	N	1	1.0	1.0	6.0	6.0	287
Device Holder Uncertainty	E.4.1	3.32	R	1.73	1.0	1.0	1.9	1.9	∞
Output Power Variation - SAR drift measurement	6.6.2	5.0	R	1.73	1.0	1.0	2.9	2.9	∞
Phantom & Tissue Parameters									
Phantom Uncertainty (Shape & Thickness tolerances)	E.3.1	4.0	R	1.73	1.0	1.0	2.3	2.3	∞
Liquid Conductivity - deviation from target values	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	∞
Liquid Conductivity - measurement uncertainty	E.3.3	3.8	N	1	0.64	0.43	2.4	1.6	6
Liquid Permittivity - deviation from target values	E.3.2	5.0	R	1.73	0.60	0.49	1.7	1.4	∞
Liquid Permittivity - measurement uncertainty	E.3.3	4.5	N	1	0.60	0.49	2.7	2.2	6
Combined Standard Uncertainty (k=1)							11.8	11.5	299
Expanded Uncertainty (95% CONFIDENCE LEVEL)							23.7	23.0	

The above measurement uncertainties are according to IEEE Std. 1528-2003

FCC ID: A3LGTP1000		SAR COMPLIANCE REPORT		Reviewed by: Quality Manager
Filename: 0Y1008191386-R5.A3L	Test Dates: 08/24/10 - 10/3/10	EUT Type: 850/1900 GSM/GPRS/EDGE and 1900 WCDMA/HSPA Mini-Tablet with BT and WLAN		Page 12 of 41

Applicable for 5200 - 5800 MHz

a	b	c	d	e= f(d,k)	f	g	h = c x f/e	i = c x g/e	k
Uncertainty Component	IEEE 1528 Sec.	Tol. (± %)	Prob. Dist.		c_i	c_i	1gm	10 gms	
					1gm	10 gms	u_i	u_i	v_i
Measurement System									
Probe Calibration	E.2.1	6.55	N	1	1.0	1.0	6.6	6.6	∞
Axial Isotropy	E.2.2	0.25	N	1	0.7	0.7	0.2	0.2	∞
Hemispherical Isotropy	E.2.2	1.3	N	1	1.0	1.0	1.3	1.3	∞
Boundary Effect	E.2.3	0.4	N	1	1.0	1.0	0.4	0.4	∞
Linearity	E.2.4	0.3	N	1	1.0	1.0	0.3	0.3	∞
System Detection Limits	E.2.5	5.1	N	1	1.0	1.0	5.1	5.1	∞
Readout Electronics	E.2.6	1.0	N	1	1.0	1.0	1.0	1.0	∞
Response Time	E.2.7	0.8	R	1.73	1.0	1.0	0.5	0.5	∞
Integration Time	E.2.8	2.6	R	1.73	1.0	1.0	1.5	1.5	∞
RF Ambient Conditions	E.6.1	3.0	R	1.73	1.0	1.0	1.7	1.7	∞
Probe Positioner Mechanical Tolerance	E.6.2	0.4	R	1.73	1.0	1.0	0.2	0.2	∞
Probe Positioning w/ respect to Phantom	E.6.3	2.9	R	1.73	1.0	1.0	1.7	1.7	∞
Extrapolation, Interpolation & Integration algorithms for Max. SAR Evaluation	E.5	1.0	R	1.73	1.0	1.0	0.6	0.6	∞
Test Sample Related									
Test Sample Positioning	E.4.2	6.0	N	1	1.0	1.0	6.0	6.0	287
Device Holder Uncertainty	E.4.1	3.32	R	1.73	1.0	1.0	1.9	1.9	∞
Output Power Variation - SAR drift measurement	E.6.2	5.0	R	1.73	1.0	1.0	2.9	2.9	∞
Phantom & Tissue Parameters									
Phantom Uncertainty (Shape & Thickness tolerances)	E.3.1	4.0	R	1.73	1.0	1.0	2.3	2.3	∞
Liquid Conductivity - deviation from target values	E.3.2	5.0	R	1.73	0.64	0.43	1.8	1.2	∞
Liquid Conductivity - measurement uncertainty	E.3.3	3.8	N	1	0.64	0.43	2.4	1.6	6
Liquid Permittivity - deviation from target values	E.3.2	5.0	R	1.73	0.60	0.49	1.7	1.4	∞
Liquid Permittivity - measurement uncertainty	E.3.3	4.5	N	1	0.60	0.49	2.7	2.2	6
Combined Standard Uncertainty (k=1)							12.4	12.0	299
Expanded Uncertainty							24.7	24.0	
(95% CONFIDENCE LEVEL)									

The above measurement uncertainties are according to IEEE Std. 1528-2003

FCC ID: A3LGTP1000		SAR COMPLIANCE REPORT		Reviewed by: Quality Manager
Filename: 0Y1008191386-R5.A3L	Test Dates: 08/24/10 - 10/3/10	EUT Type: 850/1900 GSM/GPRS/EDGE and 1900 WCDMA/HSPA Mini-Tablet with BT and WLAN		Page 13 of 41

10 SYSTEM VERIFICATION

10.1 Tissue Verification

Table 10-1
Measured Tissue Properties

Calibrated for Tests Performed on:	Tissue Type	Measured Frequency (MHz)	Measured Conductivity, σ (S/m)	Measured Dielectric Constant, ϵ	TARGET Conductivity, σ (S/m)	TARGET Dielectric Constant, ϵ	% dev σ	% dev ϵ
8/25/10 8/26/10	835B	820	0.949	54.66	0.969	55.284	-2.06%	-1.13%
		835	0.963	54.46	0.970	55.200	-0.72%	-1.34%
		850	0.977	54.31	0.988	55.154	-1.11%	-1.53%
8/25/10 8/26/10	1900B	1850	1.467	52.33	1.520	53.300	-3.49%	-1.82%
		1880	1.503	52.15	1.520	53.300	-1.12%	-2.16%
		1910	1.535	52.06	1.520	53.300	0.99%	-2.33%
08/24/2010	2450B	2401	1.905	52.28	1.903	52.765	0.11%	-0.92%
		2450	1.974	52.12	1.950	52.700	1.23%	-1.10%
		2499	2.045	51.99	2.019	52.638	1.29%	-1.23%
08/31/2010	2450B	2401	1.859	51.01	1.903	52.765	-2.31%	-3.33%
		2450	1.926	50.83	1.950	52.700	-1.23%	-3.55%
		2499	1.999	50.69	2.019	52.638	-0.99%	-3.70%
08/27/2010	5200B-5800B	5170	5.296	47.14	5.260	49.055	0.68%	-3.90%
		5210	5.304	47.20	5.310	49.001	-0.11%	-3.68%
		5250	5.378	47.13	5.360	48.946	0.34%	-3.71%
		5270	5.431	46.91	5.380	48.919	0.95%	-4.11%
		5310	5.481	46.85	5.430	48.865	0.94%	-4.12%
		5350	5.537	46.88	5.470	48.811	1.22%	-3.96%
		5470	5.677	46.49	5.620	48.650	1.01%	-4.44%
		5510	5.737	46.34	5.660	48.590	1.36%	-4.63%
		5550	5.809	46.40	5.710	48.540	1.73%	-4.41%
		5570	5.805	46.37	5.730	48.510	1.31%	-4.41%
		5610	5.869	46.12	5.780	48.460	1.54%	-4.83%
		5650	5.945	46.11	5.830	48.400	1.97%	-4.73%
		5670	5.966	46.23	5.850	48.380	1.98%	-4.44%
		5710	5.999	45.95	5.900	48.320	1.68%	-4.90%
		5750	6.085	45.87	5.950	48.270	2.27%	-4.97%
		5770	6.135	45.95	5.970	48.240	2.76%	-4.75%
		5810	6.149	45.87	6.000	48.200	2.48%	-4.83%
		5850	6.208	46.23	6.050	48.620	2.61%	-4.92%
10/03/2010	1900B	1850	1.507	52.54	1.520	53.300	-0.86%	-1.43%
		1880	1.547	52.45	1.520	53.300	1.78%	-1.59%
		1910	1.585	52.43	1.520	53.300	4.28%	-1.63%

Note: KDB 450824 was ensured to be applied for probe calibration frequencies greater than or equal to 50 MHz of the DUT frequencies.

The above measured tissue parameters were used in the DASY software to perform interpolation via the DASY software to determine actual dielectric parameters at the test frequencies (per IEEE 1528 6.6.1.2). The SAR test plots may slightly differ from the table above since the DASY software rounds to three significant digits.

FCC ID: A3LGTP1000		SAR COMPLIANCE REPORT		Reviewed by: Quality Manager
Filename: 0Y1008191386-R5.A3L	Test Dates: 08/24/10 - 10/3/10	EUT Type: 850/1900 GSM/GPRS/EDGE and 1900 WCDMA/HSPA Mini-Tablet with BT and WLAN		Page 14 of 41

10.2 Measurement Procedure for Tissue verification

- 1) The network analyzer and probe system was configured and calibrated.
- 2) The probe was immersed in the sample which was placed in a nonmetallic container. Trapped air bubbles beneath the flange were minimized by placing the probe at a slight angle.
- 3) The complex admittance with respect to the probe aperture was measured
- 4) The complex relative permittivity , for example from the below equation (Pournaropoulos and Misra):

$$Y = \frac{j2\omega\epsilon_r\epsilon_0}{[\ln(b/a)]^2} \int_a^b \int_a^b \int_0^\pi \cos\phi' \frac{\exp[-j\omega r(\mu_0\epsilon_r\epsilon_0)^{1/2}]}{r} d\phi' d\rho' d\rho$$

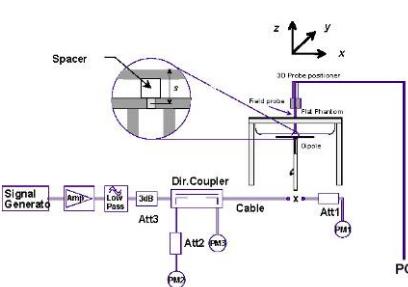
where Y is the admittance of the probe in contact with the sample, the primed and unprimed coordinates refer to source and observation points, respectively, $r^2 = \rho^2 + \rho'^2 - 2\rho\rho' \cos\phi'$, ω is the angular frequency, and $j = \sqrt{-1}$.

10.3 Justification for Extended SAR Dipole Calibrations

Usage of SAR dipoles calibrated less than 2 years ago but more than 1 year ago were confirmed in maintaining return loss (< -20 dB, within 20% of prior calibration) and impedance (within 5 ohm from prior calibration) requirements per extended calibrations in KDB 450824:

Table 10-2 Extended Dipole Calibration Data

D835V2 SN: 4d047				
Date of Measurement	Return Loss (dB)	Δ %	Impedance (Ω)	$\Delta\Omega$
1/19/2009	-28.4		50.9	
8/19/2010	-25.6	-10%	48.9	-2
D1900V2 SN: 5d080				
Date of Measurement	Return Loss (dB)	Δ %	Impedance (Ω)	$\Delta\Omega$
8/18/2009	-24.3		50	
8/19/2010	-22.4	-7.8%	51	1.0
D2450V2 SN: 719				
Date of Measurement	Return Loss (dB)	Δ %	Impedance (Ω)	$\Delta\Omega$
8/27/2009	-28.6		53.4	
8/19/2010	-27.5	-3.8%	51	-2.4
D5GHzV2 SN: 1057 5500MHz				
Date of Measurement	Return Loss (dB)	Δ %	Impedance (Ω)	$\Delta\Omega$
1/15/2009	-30.2		51.5	
8/19/2010	-29.4	-2.6%	48.9	-2.6


FCC ID: A3LGTP1000		SAR COMPLIANCE REPORT				Reviewed by: Quality Manager
Filename: 0Y1008191386-R5.A3L	Test Dates: 08/24/10 - 10/3/10	EUT Type: 850/1900 GSM/GPRS/EDGE and 1900 WCDMA/HSPA Mini-Tablet with BT and WLAN				Page 15 of 41

10.4 Test System Verification

Prior to assessment, the system is verified to $\pm 10\%$ of the manufacturer SAR measurement on the reference dipole at the time of calibration.

Table 10-3
System Verification Results

System Verification TARGET & MEASURED										
Date:	Amb. Temp (°C)	Liquid Temp (°C)	Input Power (W)	Tissue Frequency (MHz)	Dipole SN	Tissue Type	Measured SAR _{1g} (W/kg)	1 W Target SAR _{1g} (W/kg)	1 W Normalized SAR _{1g} (W/kg)	Deviation (%)
08/25/2010	22.4	21.1	0.063	835	4d047	Body	0.677	9.820	10.75	9.43%
08/26/2010	22.8	20.9	0.063	835	4d047	Body	0.677	9.820	10.75	9.43%
08/25/2010	23.9	22.4	0.100	1900	5d080	Body	4.12	40.500	41.20	1.73%
08/26/2010	23.5	22.1	0.100	1900	5d080	Body	4.15	40.500	41.50	2.47%
08/27/2010	24.3	22.6	0.025	5200	1057	Body	1.98	79.100	79.20	0.13%
08/27/2010	24.6	22.8	0.025	5500	1057	Body	2.09	81.600	83.60	2.45%
08/27/2010	24.7	22.9	0.025	5800	1057	Body	1.82	71.600	72.80	1.68%
08/31/2010	22.9	21.5	0.040	2450	719	Body	1.99	51.400	49.75	-3.21%
08/24/2010	22.7	21.1	0.040	2450	719	Body	2.11	51.400	52.75	2.63%
10/03/2010	21.7	21.0	0.040	1900	5d080	Body	1.65	40.500	41.25	1.85%

Figure 10-1
System Verification Setup Diagram

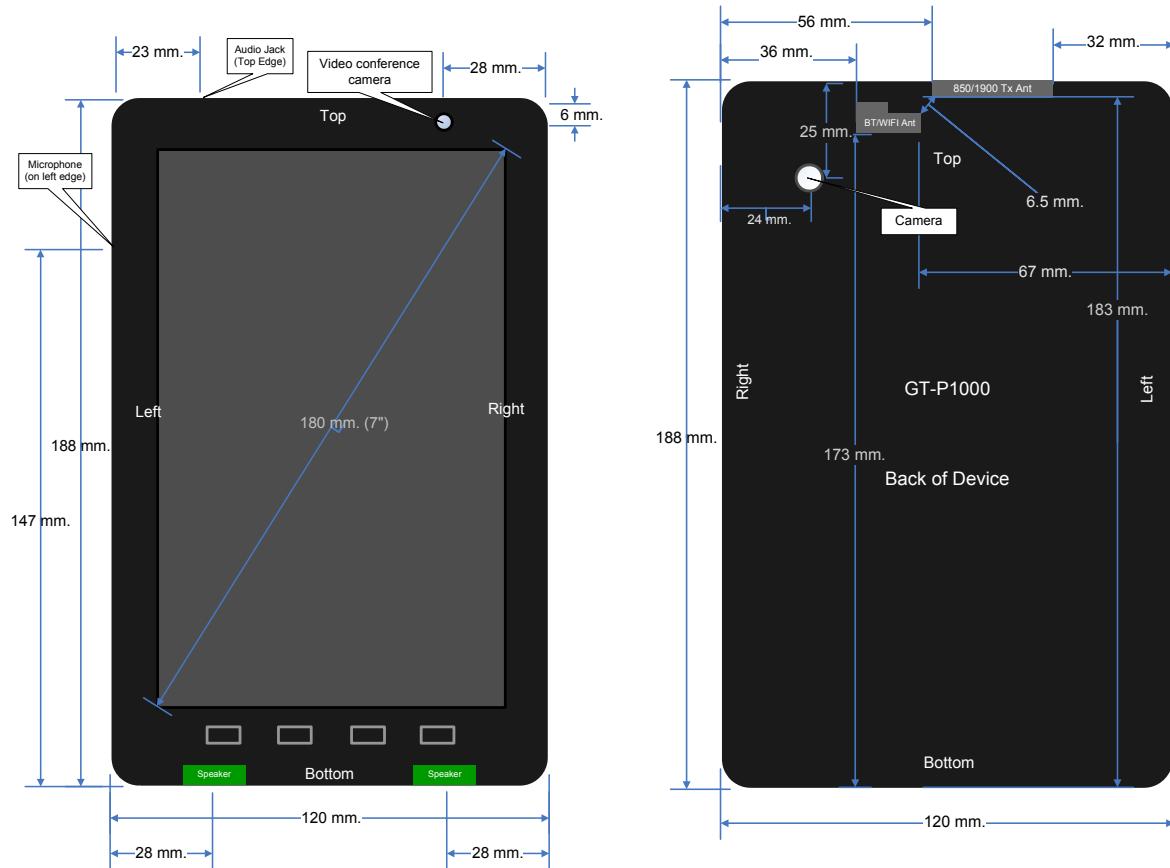


Figure 10-2
System Verification Setup Photo

Note: Measured SAR was confirmed to be within IEEE 1528 Section 8.3.6 ranges for System Check.

FCC ID: A3LGTP1000		SAR COMPLIANCE REPORT		Reviewed by: Quality Manager
Filename: 0Y1008191386-R5.A3L	Test Dates: 08/24/10 - 10/3/10	EUT Type: 850/1900 GSM/GPRS/EDGE and 1900 WCDMA/HSPA Mini-Tablet with BT and WLAN		Page 16 of 41

11.1 Antenna & Key Feature Information for GT-P1000

Figure 11-1
Antenna & Key Feature Diagram

Note: The sensor pad is located near the upper half of the device (below both antennas) at the back, with sufficient size to cover exposure conditions to the main antenna. See technical description for sensor size and location.

11.2 Display Orientations Capabilities

Table 11-1

Transmission Modes	Right Side Up Portrait	Up-Side Down Portrait	Left Side down Landscape	Right Side Down Landscape	Back Flat
	Bottom	Top	Left	Right	Back
Voice	Yes	Yes	Yes	Yes	Yes
Video-Call	Yes	N/A	Yes	Yes	Yes
Data Transmit Modes	Yes	Yes	Yes	Yes	Yes

Note: See Section 15.2.

FCC ID: A3LGTP1000		SAR COMPLIANCE REPORT		Reviewed by: Quality Manager
Filename: 0Y1008191386-R5.A3L	Test Dates: 08/24/10 - 10/3/10	EUT Type: 850/1900 GSM/GPRS/EDGE and 1900 WCDMA/HSPA Mini-Tablet with BT and WLAN		Page 17 of 41

12

SIMULTANEOUS TRANSMISSION ANALYSIS

All antennas may transmit simultaneously with one another. Bluetooth and WIFI cannot transmit simultaneously since it shares the same circuit path and are switched by the radio.

5GHz WIFI cannot transmit simultaneously with the 2G/3G antenna.

Simult Tx	Configuration	2G/3G SAR (W/kg)	2.4 GHz WIFI SAR (W/kg)	Σ SAR (W/kg)
Body SAR	Back	0.972	0.404	1.376
	Top	0.992	0.043	1.035
	Left	0.113	0.000	0.113
	Right	0.062	0.023	0.085
	Bottom	0.033	0.000	0.033

Considering the above simultaneous SAR cases, the summation for the worst-case SAR is below the SAR limit. Therefore, the above analysis is sufficient to determine that a volumetric scan will not exceed the SAR limit. Therefore, no aggregate volumetric SAR evaluation is required because the numerical sums are below the limit.

Note: 0 W/kg SAR in the table were for conditions where SAR was not required to be measured due to exclusions mentioned in Section 0.

FCC ID: A3LGTP1000			SAR COMPLIANCE REPORT		Reviewed by: Quality Manager
Filename: 0Y1008191386-R5.A3L	Test Dates: 08/24/10 - 10/3/10	EUT Type: 850/1900 GSM/GPRS/EDGE and 1900 WCDMA/HSPA Mini-Tablet with BT and WLAN			Page 18 of 41

13 RF OUTPUT POWER CONSIDERATIONS

Power measurements were performed using a base station simulator under digital average power.

13.1 Procedures Used to Establish RF Signal for SAR HSPA Devices

The following procedures are applicable to HSDPA data devices operating under 3GPP Release 5. HSDPA operates in conjunction with WCDMA and requires an active DPCCH. The default test configuration is to measure SAR in WCDMA without HSDPA, with an established radio link between the DUT and a communication test set using a 12.2 kbps RMC configured in Test Loop Mode 1; and test HSDPA within FRC and a 12.2 kbps RMC using the highest SAR configuration in WCDMA. SAR is selectively confirmed for other physical channel configurations according to output power, exposure conditions and device operating capabilities. Maximum output power is verified according to 3GPP TS 23.121 (Release 5) and SAR must be measured according to these maximum output conditions.

The device was placed into a simulated call using a base station simulator in a shielded chamber. Such test signals offer a consistent means for testing SAR and are recommended for evaluating SAR [4]. SAR measurements were taken with a fully charged battery. In order to verify that the device was tested and maintained at full power, this was configured with the base station simulator. The SAR measurement software calculates a reference point at the start and end of the test to check for power drifts. If SAR drifts of more than 5% were observed, the tests were repeated.

13.2 SAR Measurement Conditions for HSDPA Data Devices

13.2.1 Output Power Verification

Maximum output power is verified on the High, Middle and Low channels according to the general descriptions in section 5.2 of 3GPP TS 34.121 (release 5), using the appropriate RMC with TPC (transmit power control) set to all “1s”. Results for all applicable physical channel configurations (DPCCH, DPDCHn and spreading codes, HS-DPCCH) is tabulated in the test report.

13.2.2 Body SAR Measurements

SAR for body exposure configurations is measured using the 12.2 kbps RMC with the TPC bits configured to all “1s”. In addition, body SAR is also measured in HSDPA with an FRC, together with a 12.2 kbps RMC configured in Test Loop Mode 1, using the highest body SAR configuration in 12.2 kbps RMC without HSDPA.

The H-set used in FRC for HSDPA should be configured according to the UE category of a test device. The number of HS-DSCH/HSPDSCHs, HARQ processes, minimum inter-TTI interval, transport block sizes and RV coding sequence are defined by the applicable H-set. To maintain a consistent test configuration and stable transmission conditions, QPSK is used in the FRC for SAR testing. HS-DPCCH should be configured with a CQI feedback cycle of 2 ms to maintain a constant rate of active CQI slots. DPCCH and DPDCH gain factors of $\beta_c=9$ and $\beta_d=15$, and power offset parameters of $\Delta ACK = \Delta NACK = 5$ and $\Delta CQI = 2$ is used. The CQI value is determined by the UE category, transport block size, number of HS-PDSCHs and modulation used in the FRC.

FCC ID: A3LGTP1000		SAR COMPLIANCE REPORT		Reviewed by: Quality Manager
Filename: 0Y1008191386-R5.A3L	Test Dates: 08/24/10 - 10/3/10	EUT Type: 850/1900 GSM/GPRS/EDGE and 1900 WCDMA/HSPA Mini-Tablet with BT and WLAN		Page 19 of 41

13.3 SAR Measurement Conditions for HSPA Data Devices

13.3.1 Body SAR Measurements

When voice transmission and head exposure conditions are applicable to a WCDMA/HSPA data device, head exposure is measured according to the 'Head SAR Measurements' procedures in the 'WCDMA Handsets' section of the FCC 3G document. SAR for body exposure configurations are measured according to the 'Body SAR Measurements' procedures in the 'WCDMA Handsets' section of the FCC 3G document. In addition, body SAR is also measured for HSPA when the maximum average output of each RF channel with HSPA active is at least $\frac{1}{4}$ dB higher than that measured without HSPA using 12.2 kbps RMC or the maximum SAR for 12.2 kbps RMC is above 75% of the SAR limit. Body SAR for HSPA is measured with E-DCH Sub-test 5, using H-Set 1 and QPSK for FRC and a 12.2 kbps RMC configured in Test Loop Mode 1 with power control algorithm 2, according to the highest body SAR configuration in 12.2 kbps RMC without HSPA. When VOIP is applicable for head exposure, SAR is not required when the maximum output of each RF channel with HSPA is less than $\frac{1}{4}$ dB higher than that measured using 12.2 kbps RMC; otherwise, the same HSPA configuration used for body measurements should be used to test for head exposure.

Due to inner loop power control requirements in HSPA, a commercial communication test set should be used for the output power and SAR tests. The 12.2 kbps RMC, FRC H-set 1 and EDCH configurations for HSPA should be configured according to the β values indicated below as well as other applicable procedures described in the 'WCDMA Handset' and 'Release 5 HSDPA Data Devices' sections of the FCC 3G document.

Sub-test	β_c	β_d	β_d (SF)	β_c/β_d	$\beta_{hs}^{(1)}$	β_{ec}	β_{ed}	β_{ed} (SF)	β_{ed} (codes)	CM ⁽²⁾ (dB)	MPR (dB)	AG ⁽⁴⁾ Index	E-TFCI
1	11/15 ⁽³⁾	15/15 ⁽³⁾	64	11/15 ⁽³⁾	22/15	209/225	1039/225	4	1	1.0	0.0	20	75
2	6/15	15/15	64	6/15	12/15	12/15	94/75	4	1	3.0	2.0	12	67
3	15/15	9/15	64	15/9	30/15	30/15	$\beta_{ed1}: 47/15$ $\beta_{ed2}: 47/15$	4	2	2.0	1.0	15	92
4	2/15	15/15	64	2/15	4/15	2/15	56/75	4	1	3.0	2.0	17	71
5	15/15 ⁽⁴⁾	15/15 ⁽⁴⁾	64	15/15 ⁽⁴⁾	30/15	24/15	134/15	4	1	1.0	0.0	21	81

Note 1: $\Delta_{ACK}, \Delta_{NACK}$ and $\Delta_{CQI} = 8 \Leftrightarrow A_{hs} = \beta_{hs}/\beta_c = 30/15 \Leftrightarrow \beta_{hs} = 30/15 * \beta_c$.
Note 2: CM = 1 for $\beta_c/\beta_d = 12/15$, $\beta_{hs}/\beta_c = 24/15$. For all other combinations of DPDCH, DPCCH, HS- DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference.
Note 3: For subtest 1 the β_c/β_d ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF1) to $\beta_c = 10/15$ and $\beta_d = 15/15$.
Note 4: For subtest 5 the β_c/β_d ratio of 15/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signaled gain factors for the reference TFC (TF1, TF1) to $\beta_c = 14/15$ and $\beta_d = 15/15$.
Note 5: Testing UE using E-DPDCH Physical Layer category 1 Sub-test 3 is not required according to TS 25.306 Table 5.1g.
Note 6: β_{ed} can not be set directly; it is set by Absolute Grant Value.

FCC ID: A3LGTP1000		SAR COMPLIANCE REPORT		Reviewed by: Quality Manager
Filename: 0Y1008191386-R5.A3L	Test Dates: 08/24/10 - 10/3/10	EUT Type: 850/1900 GSM/GPRS/EDGE and 1900 WCDMA/HSPA Mini-Tablet with BT and WLAN		Page 20 of 41

13.4 Power Reduction Design Specification

Mode	Power Reduction
850 GSM Voice	-3 dB
850 GPRS/EDGE	-3 dB
1900 GSM Voice	-3 dB
1900 GPRS/EDGE	-3 dB
1900 UMTS/HSPA	-4 dB
WIFI	0 dB

13.5 GSM Conducted Powers

		RF Conducted Power Table - Without Power Back off									
		Voice		GPRS Data				EDGE Data			
Band	Channel	GSM [dBm] CS (1 Slot)	GPRS [dBm] 1 Tx Slot	GPRS [dBm] 2 Tx Slot	GPRS [dBm] 3 Tx Slot	GPRS [dBm] 4 Tx Slot	EDGE [dBm] 1 Tx Slot	EDGE [dBm] 2 Tx Slot	EDGE [dBm] 3 Tx Slot	EDGE [dBm] 4 Tx Slot	
Cellular	128	32.23	32.27	29.41	27.81	26.67	27.10	27.00	25.37	23.57	
	190	32.31	32.35	29.43	27.86	26.64	27.05	26.94	25.34	23.55	
	251	32.26	32.25	29.37	27.81	26.58	25.98	25.86	24.28	22.29	
PCS	512	29.11	29.11	27.39	25.81	24.30	25.99	25.96	23.96	22.14	
	661	29.18	29.20	27.51	25.85	24.33	25.91	25.93	23.97	22.18	
	810	29.20	29.22	27.48	25.94	24.39	26.07	26.05	24.11	22.31	

		RF Conducted Power Table - With Power Back off									
		Voice		GPRS Data				EDGE Data			
Band	Channel	GSM [dBm] CS (1 Slot)	GPRS [dBm] 1 Tx Slot	GPRS [dBm] 2 Tx Slot	GPRS [dBm] 3 Tx Slot	GPRS [dBm] 4 Tx Slot	EDGE [dBm] 1 Tx Slot	EDGE [dBm] 2 Tx Slot	EDGE [dBm] 3 Tx Slot	EDGE [dBm] 4 Tx Slot	
Cellular	128	29.25	29.29	26.45	24.83	23.73	24.17	24.02	22.37	20.66	
	190	29.32	29.36	26.46	24.87	23.69	24.14	23.97	22.33	20.63	
	251	29.26	29.27	26.39	24.83	23.60	23.00	22.88	21.24	19.31	
PCS	512	26.18	26.13	24.41	22.87	21.38	23.06	23.05	21.02	19.21	
	661	26.23	26.22	24.52	22.90	21.40	22.93	23.00	20.99	19.24	
	810	26.22	26.23	24.50	22.96	21.41	23.09	23.08	21.18	19.36	

GSM Device Class: C (only voice or only data connection possible)

GPRS Multislot Class: 12 (4 Tx max slots uplink)

EDGE Multislot Class: 12 (4 Tx max slots uplink)

DTM Multislot Class: N/A

FCC ID: A3LGTP1000		SAR COMPLIANCE REPORT		Reviewed by: Quality Manager
Filename: 0Y1008191386-R5.A3L	Test Dates: 08/24/10 - 10/3/10	EUT Type: 850/1900 GSM/GPRS/EDGE and 1900 WCDMA/HSPA Mini-Tablet with BT and WLAN		Page 21 of 41

13.6 UMTS Conducted Powers (no back-off)

3GPP Release Version	Mode	3GPP 34.121 Subtest	PCS Band [dBm]			β_c	β_d	ΔE -DPCCH	# of E-TFCI's	MPR
			9262	9400	9538					
99	WCDMA	12.2 kbps RMC	21.51	21.41	21.52	-	-	-	-	-
99		12.2 kbps AMR	21.47	21.33	21.38	-	-	-	-	-
6	HSDPA	Subtest 1	21.50	21.37	21.45	2	15			0
6		Subtest 2	21.53	21.43	21.49	11	15			0
6		Subtest 3	20.95	20.87	20.81	15	8	5	1	0.5
6		Subtest 4	20.91	20.84	20.87	15	4	5	1	0.5
6	HSUPA	Subtest 1	21.57	21.46	21.49	10	15	6	5	0
6		Subtest 2	19.67	19.59	19.61	6	15	8	5	2
6		Subtest 3	20.47	20.41	20.44	15	9	8	2	1
6		Subtest 4	19.64	19.41	19.44	2	15	5	5	2
6		Subtest 5	21.58	21.47	21.50	14	15	7	5	0

13.7 UMTS Conducted Powers (with Back-off)

3GPP Release Version	Mode	3GPP 34.121 Subtest	PCS Band [dBm] With Power Back Off			β_c	β_d	ΔE -DPCCH	# of E-TFCI's	MPR
			9262	9400	9538					
99	WCDMA	12.2 kbps RMC	17.58	17.53	17.50	-	-	-	-	-
99		12.2 kbps AMR	17.50	17.57	17.57	-	-	-	-	-
6	HSDPA	Subtest 1	17.54	17.51	17.50	2	15			0
6		Subtest 2	17.52	17.38	17.54	11	15			0
6		Subtest 3	16.96	16.77	16.86	15	8	5	1	0.5
6		Subtest 4	16.91	16.80	16.92	15	4	5	1	0.5
6	HSUPA	Subtest 1	17.55	17.55	17.52	10	15	6	5	0
6		Subtest 2	15.69	15.60	15.51	6	15	8	5	2
6		Subtest 3	16.49	16.51	16.47	15	9	8	2	1
6		Subtest 4	15.54	15.56	15.47	2	15	5	5	2
6		Subtest 5	17.60	17.38	17.54	14	15	7	5	0

Note: For SAR tests, RMC 12.2 kbps with HSPA inactive was configured for SAR testing, since HSPA was excluded per FCC 3G Procedures according to the conducted power measurements.

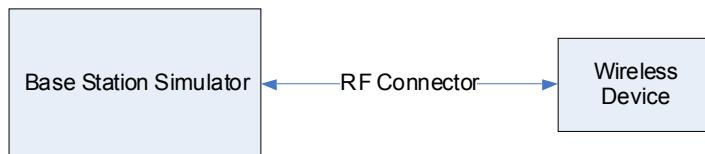


Figure 13-1
Power Measurement Setup

FCC ID: A3LGTP1000		SAR COMPLIANCE REPORT		Reviewed by: Quality Manager
Filename: 0Y1008191386-R5.A3L	Test Dates: 08/24/10 - 10/3/10	EUT Type: 850/1900 GSM/GPRS/EDGE and 1900 WCDMA/HSPA Mini-Tablet with BT and WLAN		Page 22 of 41

Normal network operating configurations are not suitable for measuring the SAR of 802.11 a/b/g transmitters. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure the results are consistent and reliable.

14.1.1 General Device Setup

Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters. The test frequencies should correspond to actual channel frequencies defined for domestic use. SAR for devices with switched diversity should be measured with only one antenna transmitting at a time during each SAR measurement, according to a fixed modulation and data rate. The same data pattern should be used for all measurements.

14.1.2 Frequency Channel Configurations²²

802.11 a/b/g and 4.9 GHz operating modes are tested independently according to the service requirements in each frequency band. 802.11 b/g modes are tested on channels 1, 6 and 11. 802.11a is tested for UNII operations on channels 36 and 48 in the 5.15-5.25 GHz band; channels 52 and 64 in the 5.25-5.35 GHz band; channels 104, 116, 124 and 136 in the 5.470-5.725 GHz band; and channels 149 and 161 in the 5.8 GHz band. When 5.8 GHz §15.247 is also available, channels 149, 157 and 165 should be tested instead of the UNII channels. 4.9 GHz is tested on channels 1, 10 and 5 or 6, whichever has the higher output power, for 5 MHz channels; channels 11, 15 and 19 for 10 MHz channels; and channels 21 and 25 for 20 MHz channels. These are referred to as the “default test channels”. 802.11g mode was evaluated only if the output power was 0.25 dB higher than the 802.11b mode.

Table 14-1
802.11 Test Channels per FCC Requirements

Mode	GHz	Channel	Turbo Channel	“Default Test Channels”			
				§15.247	802.11b	802.11g	UNII
802.11 b/g	2.412	1			✓	✓	
	2.437	6	6		✓	✓	
	2.462	11			✓	✓	
802.11a	5.18	36					✓
	5.20	40	42 (5.21 GHz)				*
	5.22	44					*
	5.24	48	50 (5.25 GHz)				✓
	5.26	52					✓
	5.28	56	58 (5.29 GHz)				*
	5.30	60					*
	5.32	64					✓
	5.500	100	Unknown				*
	5.520	104					✓
	5.540	108					*
	5.560	112					*
	5.580	116					✓
	5.600	120					*
	5.620	124					✓
	5.640	128					*
	5.660	132					*
	5.680	136					✓
	5.700	140					*
UNII or §15.247	5.745	149		✓		✓	
	5.765	153	152 (5.76 GHz)		*		*
	5.785	157		✓			*
	5.805	161	160 (5.80 GHz)		*		✓
	§15.247	5.825	165		✓		

FCC ID: A3LGTP1000		SAR COMPLIANCE REPORT		Reviewed by: Quality Manager
Filename: 0Y1008191386-R5.A3L	Test Dates: 08/24/10 - 10/3/10	EUT Type: 850/1900 GSM/GPRS/EDGE and 1900 WCDMA/HSPA Mini-Tablet with BT and WLAN		Page 23 of 41

14.2 Procedures Used to Establish RF Signal for SAR

The device was placed into a simulated connection using the manufacturer provided test software. SAR measurements were taken with a fully charged battery. Power was manually set. WIFI has no power-backoff features.

Table 14-2
IEEE 802.11b Average RF Power

Mode	Freq [MHz]	Channel	Conducted Power [dBm]			
			Data Rate [Mbps]			
			1	2	5.5	11
802.11b	2412	1	15.89	15.99	15.85	15.85
802.11b	2437	6	16.47	16.44	16.43	16.44
802.11b	2462	11	16.13	16.21	16.24	16.14

Table 14-3
IEEE 802.11g Average RF Power

Mode	Freq [MHz]	Channel	Conducted Power [dBm]							
			Data Rate [Mbps]							
			6	9	12	18	24	36	48	54
802.11g	2412	1	14.16	14.12	14.15	14.02	14.10	13.94	14.02	14.03
802.11g	2437	6	14.66	14.46	14.46	14.34	14.33	14.37	14.34	14.35
802.11g	2462	11	14.95	14.74	14.81	14.75	14.74	14.73	14.62	14.63

Table 14-4
IEEE 802.11n Average RF Power

Mode	Freq [MHz]	Channel	Conducted Power [dBm]							
			Data Rate [Mbps]							
			13.5	27	40	54	81	108	122	135
802.11n	2412	1	14.17	14.18	14.11	14.15	14.12	14.02	14.02	14.04
802.11n	2437	6	14.66	14.40	14.44	14.34	14.36	14.31	14.33	14.35
802.11n	2462	11	15.07	14.83	14.74	14.80	14.73	14.70	14.72	14.69

Table 14-5
IEEE 802.11a Average RF Power

Mode	Freq [MHz]	Channel	Conducted Power [dBm]							
			Data Rate [Mbps]							
			6	9	12	18	24	36	48	54
802.11a	5180	36	15.19	15.03	15.06	15.03	15.03	14.92	14.88	15.14
802.11a	5200	40	14.83	14.84	15.07	14.74	15.03	14.98	14.97	14.93
802.11a	5220	44	14.54	14.56	14.75	14.57	14.72	14.33	14.42	14.18
802.11a	5240	48	14.79	14.87	14.76	14.52	14.60	14.62	14.80	15.14
802.11a	5260	52	14.81	14.55	14.48	14.29	14.65	14.66	14.82	14.85
802.11a	5280	56	14.69	14.43	14.44	14.56	14.79	14.78	14.69	14.67
802.11a	5300	60	14.68	14.79	14.54	14.80	14.66	14.74	14.65	14.70
802.11a	5320	64	14.58	14.58	14.61	14.65	14.71	14.79	14.75	14.81
802.11a	5500	100	15.21	15.40	15.41	15.41	15.18	15.32	15.33	15.22
802.11a	5520	104	15.21	15.08	15.33	15.14	15.11	15.03	15.01	15.00
802.11a	5540	108	15.09	15.12	15.08	15.07	14.93	14.91	14.93	14.99
802.11a	5560	112	14.97	15.09	15.07	15.00	15.19	15.22	15.14	15.15
802.11a	5580	116	15.11	15.03	15.18	15.16	15.13	15.07	15.08	15.07
802.11a	5600	120	15.56	15.44	15.37	15.34	15.36	15.31	15.29	15.21
802.11a	5620	124	15.07	14.93	15.10	15.12	15.04	15.02	15.05	15.09
802.11a	5640	128	15.09	15.12	14.96	15.10	15.12	15.03	15.06	14.94
802.11a	5660	132	15.02	14.95	15.05	14.91	15.00	15.08	14.96	14.95
802.11a	5680	136	15.00	15.06	15.04	15.03	15.00	14.76	14.93	14.85
802.11a	5700	140	15.13	15.14	15.10	15.07	15.03	15.19	15.28	15.02
802.11a	5745	149	14.99	14.84	14.64	14.53	14.43	14.46	14.43	14.44
802.11a	5765	153	14.56	14.60	14.58	14.38	14.66	14.37	14.55	14.57
802.11a	5785	157	14.84	14.57	14.52	14.55	14.55	14.42	14.45	14.42
802.11a	5805	161	14.60	14.55	14.53	14.51	14.46	14.42	14.32	14.38
802.11a	5825	165	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a

FCC ID: A3LGTP1000		SAR COMPLIANCE REPORT		Reviewed by: Quality Manager
Filename: 0Y1008191386-R5.A3L	Test Dates: 08/24/10 - 10/3/10	EUT Type: 850/1900 GSM/GPRS/EDGE and 1900 WCDMA/HSPA Mini-Tablet with BT and WLAN		Page 24 of 41

Table 14-6
IEEE 802.11n Average RF Power

Mode	Freq [MHz]	Channel	Conducted Power [dBm]							
			Data Rate [Mbps]							
			13.5	27	40	54	81	108	122	135
802.11n	5180	36	15.09	15.16	15.12	14.87	14.97	14.91	14.83	14.83
802.11n	5200	40	14.79	14.49	14.57	14.49	14.46	14.72	14.73	14.79
802.11n	5220	44	14.26	14.55	13.95	14.31	14.26	14.44	14.27	14.75
802.11n	5240	48	14.44	14.33	14.15	14.55	14.67	14.78	14.89	14.89
802.11n	5260	52	14.79	14.41	14.42	14.39	14.32	14.38	14.69	14.81
802.11n	5280	56	14.67	14.75	14.48	14.48	14.68	14.72	14.73	14.73
802.11n	5300	60	14.49	14.36	14.12	14.34	13.84	14.01	14.24	14.12
802.11n	5320	64	14.43	14.32	14.37	14.47	14.60	14.57	14.52	14.43
802.11n	5500	100	15.16	15.16	15.15	15.13	15.06	15.05	15.19	15.18
802.11n	5520	104	14.93	14.81	14.74	14.87	14.96	15.03	14.99	14.92
802.11n	5540	108	14.57	14.91	14.84	14.93	14.75	15.53	15.17	15.09
802.11n	5560	112	15.16	14.68	15.04	15.06	15.22	15.21	15.12	15.16
802.11n	5580	116	15.21	15.11	15.12	15.10	15.06	15.02	15.04	15.03
802.11n	5600	120	15.31	15.40	15.26	15.28	15.25	15.17	15.11	15.09
802.11n	5620	124	15.10	15.07	15.11	15.03	15.04	15.03	14.97	15.00
802.11n	5640	128	15.03	15.06	15.09	15.02	15.08	15.00	15.07	14.98
802.11n	5660	132	15.08	15.09	15.10	15.12	15.14	15.01	15.03	14.91
802.11n	5680	136	14.87	15.03	14.97	14.90	14.87	14.67	14.08	14.76
802.11n	5700	140	15.01	15.05	14.98	14.99	14.96	15.11	15.17	14.92
802.11n	5745	149	14.49	14.45	14.52	14.52	14.38	14.43	14.40	14.36
802.11n	5765	153	14.67	14.48	14.56	14.90	14.84	14.45	14.44	14.50
802.11n	5785	157	14.49	14.42	14.44	14.42	14.45	14.48	14.36	14.31
802.11n	5805	161	14.44	14.40	14.41	14.40	14.37	14.34	14.32	14.27
802.11n	5825	165	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a

Figure 14-1
Power Measurement Setup

Notes:

1. The maximum RF output power for all channels across all data rates were measured.
2. The highest default channel across all data rates was tested for SAR, instead of only the lowest data rate per KDB 248227.
3. WIFI has no power back-off capability in this device.

FCC ID: A3LGTP1000		SAR COMPLIANCE REPORT		Reviewed by: Quality Manager
Filename: 0Y1008191386-R5.A3L	Test Dates: 08/24/10 - 10/3/10	EUT Type: 850/1900 GSM/GPRS/EDGE and 1900 WCDMA/HSPA Mini-Tablet with BT and WLAN		Page 25 of 41

15 SAR TESTING CONSIDERATIONS & FCC KDB INQUIRIES

15.1 "UMPC Mini-Tablet" testing for SAR

A general composite test separation distance of 5 mm was considered for the transmitting modes of the device according to Lab KDB Inquiry 502978. The test considerations were based on the form factor, size, operational configurations, exposure conditions, video conference camera location, and display orientations pertinent for the device.

15.2 Top Edge SAR Testing Distance

From the discussions with the applicant and FCC lab pertinent to lab KDB Inquiry 502978, a composite and conservative test separation distance of 7.5 mm was determined to be applicable for the top edge (where the antennas are located), based on the form factor, size, operational configurations, exposure conditions, video conference camera location, and display orientations pertinent for the device. Since WCDMA voice is available, a more conservative 5 mm test distance was evaluated for the top edge.

A test separation distance of 5 mm was applied for all transmission modes for the left, right, bottom and back of the device. The back of the device has a camera that is not used for video conference calls.

15.3 HSPA Exclusion for SAR Testing

Since the SAR test setup for HSPA is typically problematic due to static ETFCI and AG requirements for the duration of the SAR test, as long as the maximum average output power for WCDMA and HSPA are similar, testing in WCDMA mode is performed, which also facilitates the exclusion of HSPA testing.

15.4 WIFI Exclusions for SAR Testing

WIFI does not have power back-off capabilities. Therefore, WIFI was tested only at one distance, 5 mm from the back of the device per Lab KDB Inquiry 502978. Since the top and right side of the device was closest to the user, these edges were tested for SAR and were determined to be very low. Left and bottom side were excluded from additional SAR testing.

15.5 Additional SAR Testing for the Back of the Device

Based on the discussions with applicant and FCC lab on 8/19/2010 for lab KDB Inquiry 607156, it was determined that the sensor type and implementation required (1) secondary SAR evaluation at a conservative distance from the device where power back-off de-activated and (2) reliability data is provided. Details about sensing mechanism and sensor pad locations are included in the technical description.

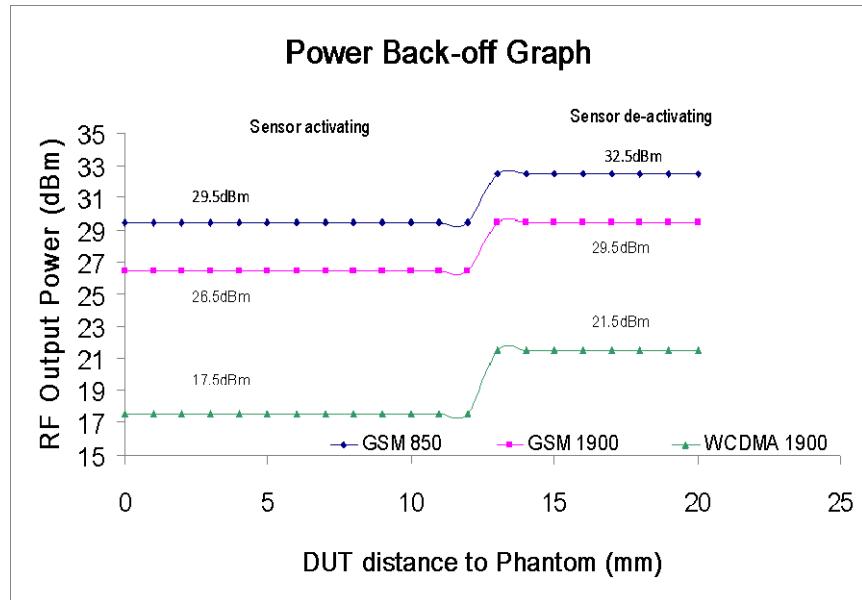

There is only one sensor for the back of the device (no sensors for the edges). Please see below for sensor activation/de-activation information:

Table 15-1
Body Sensor Distance from Back of Mini-Tablet

distance in mm	9	10	11	12	13	14
Condition of Sensor in the back of the device	on	on	on	off	off	off

Please see **Figure 15-1** for power vs. back-off distance plots for each mode.

FCC ID: A3LGTP1000	PCTEST			SAR COMPLIANCE REPORT	SAMSUNG	Reviewed by: Quality Manager
Filename: 0Y1008191386-R5.A3L	Test Dates: 08/24/10 - 10/3/10	EUT Type: 850/1900 GSM/GPRS/EDGE and 1900 WCDMA/HSPA Mini-Tablet with BT and WLAN				Page 26 of 41

Figure 15-1
Back Off Sensor Power Reduction Graph

The RF output power was measured at the RF conducted port.

In order to evaluate the RF output power with the sensor activated, the difference in radiated powers were measured between the sensor activated and de-activated, and applied to the conducted measurements.

15.6 Method of SAR Measurement with Power Reduction

Based on the power-reduction activation vs. distance results and discussions with the applicant and FCC pertaining to KDB Inquiry 607156, the device was tested at 5 mm with the sensor activated and additionally at a conservative 10 mm distance (with respect to Table 15-1) with the sensor de-activated (max power, no back-off).

To test SAR with power back-off ON at 5 mm, the device was placed in maximum power transmit mode with a base station simulator. The device was then positioned under the tissue equivalent liquid-filled flat phantom at a distance of 5 mm.

To test SAR with power back-off OFF at 10 mm, the device sensor detection mechanism would normally be active and therefore had to be disabled via manufacturer test software. The device was placed in maximum power transmit mode with a base station simulator. The device was then positioned under the tissue equivalent liquid-filled flat phantom at a distance of 10 mm with the sensor deactivated (via software) and tested at maximum power.

FCC ID: A3LGTP1000		SAR COMPLIANCE REPORT		Reviewed by: Quality Manager
Filename: 0Y1008191386-R5.A3L	Test Dates: 08/24/10 - 10/3/10	EUT Type: 850/1900 GSM/GPRS/EDGE and 1900 WCDMA/HSPA Mini-Tablet with BT and WLAN		Page 27 of 41

16 SAR DATA SUMMARY

**Table 16-1
GSM 850 Body SAR Results**

MEASUREMENT RESULTS										
FREQUENCY		Mode/Band	Service	C_Power[dBm]		Spacing	Side	Battery Type	Slots	SAR (1g)
MHz	Ch.			Start	End					(W/kg)
836.60	190	GSM 850	GSM	29.42	29.43	0.5 cm	Back*	Standard	1	0.433
836.60	190	GSM 850	GPRS	26.65	26.63	0.5 cm	Back*	Standard	2	0.502
836.60	190	GSM 850	GPRS	25.19	25.19	0.5 cm	Back*	Standard	3	0.588
836.60	190	GSM 850	GPRS	23.79	23.77	0.5 cm	Back*	Standard	4	0.641
836.60	190	GSM 850	GPRS	29.43	29.42	1.0 cm	Back	Standard	2	0.241
836.60	190	GSM 850	GPRS	27.86	27.89	1.0 cm	Back	Standard	3	0.370
836.60	190	GSM 850	GPRS	26.64	26.66	1.0 cm	Back	Standard	4	0.431
836.60	190	GSM 850	GPRS	26.64	26.64	0.75 cm	Top	Standard	4	0.451
836.60	190	GSM 850	GPRS	26.64	26.66	0.5 cm	Left	Standard	4	0.033
836.60	190	GSM 850	GPRS	26.64	26.69	0.5 cm	Right	Standard	4	0.062
836.00	190	GSM 850	GPRS	26.64	26.70	0.5 cm	Bottom	Standard	4	0.033
ANSI / IEEE C95.1 1992 - SAFETY LIMIT						Body 1.6 W/kg (mW/g) averaged over 1 gram				
Spatial Peak Uncontrolled Exposure/General Population										

Notes:

1. The test data reported are the worst-case SAR value with the position set in a typical configuration. Test procedures used were according to FCC/OET Bulletin 65, Supplement C.
2. All modes of operation were investigated, and worst-case results are reported.
3. Batteries are fully charged for all readings.
4. Tissue parameters and temperatures are listed on the SAR plots.
5. Liquid tissue depth was at least 15.0 cm.
6. Justification for reduced test configurations: Per FCC/OET Bulletin 65 Supplement C (June 2001) and Public Notice DA-02-1438, if the SAR measured at the middle channel for each test configuration is at least 3.0 dB lower than the SAR limit, testing at the high and low channels is optional for such test configuration(s).
7. Justification for reduced test configurations per KDB 941225: The source-based time-averaged output power was evaluated for all multi-slot operations. In addition to the worst-case reported, all source-based time-averaged powers within 10% of the worst-case were additionally included in the evaluation.
8. Asterisk (*) denotes power back off activated.
9. Justification for 7.5 mm top edge test configuration based on discussions on 6/4/2010 with applicant and FCC lab based on KDB Inquiry 502978. See Section 15.2 for more details.
10. Per discussions with applicant and FCC lab on 8/19/2010 based on KDB Inquiry 607156, a conservative secondary test distance of 10 mm from the back was chosen to additionally test SAR at maximum power, no back-off active. See Section 15.5 for more details.
11. SAR levels for Left and Right were confirmed since it was observed that the SAR behavior was different between bands.

FCC ID: A3LGTP1000		SAR COMPLIANCE REPORT		Reviewed by: Quality Manager
Filename: 0Y1008191386-R5.A3L	Test Dates: 08/24/10 - 10/3/10	EUT Type: 850/1900 GSM/GPRS/EDGE and 1900 WCDMA/HSPA Mini-Tablet with BT and WLAN		Page 28 of 41

Table 16-2
GSM 1900 Body SAR Results

MEASUREMENT RESULTS										
FREQUENCY		Mode/Band	Service	C_Power[dBm]		Spacing	Side	Battery Type	Slots	SAR (1g) (W/kg)
MHz	Ch.			Start	End					
1880.00	661	GSM 1900	GSM	26.20	26.27	0.5 cm	Back*	Standard	1	0.606
1880.00	661	GSM 1900	GPRS	26.20	26.20	0.5 cm	Back*	Standard	2	0.549
1880.00	661	GSM 1900	GPRS	26.20	26.17	0.5 cm	Back*	Standard	3	0.727
1850.20	512	GSM 1900	GPRS	21.30	21.22	0.5 cm	Back*	Standard	4	0.913
1880.00	661	GSM 1900	GPRS	26.20	26.20	0.5 cm	Back*	Standard	4	0.972
1909.80	810	GSM 1900	GPRS	21.39	21.36	0.5 cm	Back*	Standard	4	0.760
1880.00	661	GSM 1900	GPRS	26.95	26.96	1.0 cm	Back	Standard	2	0.247
1880.00	661	GSM 1900	GPRS	25.33	25.31	1.0 cm	Back	Standard	3	0.556
1880.00	661	GSM 1900	GPRS	23.94	24.00	1.0 cm	Back	Standard	4	0.724
1880.00	661	GSM 1900	GPRS	23.94	23.97	0.75 cm	Top	Standard	4	0.341
1880.00	661	GSM 1900	GPRS	24.33	24.33	0.5 cm	Left	Standard	4	0.091
1880.00	661	GSM 1900	GPRS	24.33	24.33	0.5 cm	Right	Standard	4	0.019
1880.00	661	GSM 1900	GPRS	24.33	24.21	0.5 cm	Bottom	Standard	4	0.017
ANSI / IEEE C95.1 1992 - SAFETY LIMIT						Body 1.6 W/kg (mW/g) averaged over 1 gram				
Spatial Peak Uncontrolled Exposure/General Population										

Notes:

1. The test data reported are the worst-case SAR value with the position set in a typical configuration. Test procedures used were according to FCC/OET Bulletin 65, Supplement C [June 2001].
2. All modes of operation were investigated, and worst-case results are reported.
3. Batteries are fully charged for all readings.
4. Tissue parameters and temperatures are listed on the SAR plots.
5. Liquid tissue depth was at least 15.0 cm.
6. Justification for reduced test configurations: Per FCC/OET Bulletin 65 Supplement C (June 2001) and Public Notice DA-02-1438, if the SAR measured at the middle channel for each test configuration is at least 3.0 dB lower than the SAR limit, testing at the high and low channels is optional for such test configuration(s).
7. Justification for reduced test configurations per KDB 941225: The source-based time-averaged output power was evaluated for all multi-slot operations. In addition to the worst-case reported, all source-based time-averaged powers within 10% of the worst-case were additionally included in the evaluation.
8. Asterisk (*) denotes power back off activated.
9. Justification for 7.5 mm top edge test configuration based on discussions on 6/4/2010 with applicant and FCC lab based on KDB Inquiry 502978. See Section 15.2 for more details.
10. Per discussions with applicant and FCC lab on 8/19/2010 based on KDB Inquiry 607156, a conservative secondary test distance of 10 mm from the back was chosen to additionally test SAR at maximum power, no back-off active. See Section 15.5 for more details.

FCC ID: A3LGTP1000		SAR COMPLIANCE REPORT		Reviewed by: Quality Manager
Filename: 0Y1008191386-R5.A3L	Test Dates: 08/24/10 - 10/3/10	EUT Type: 850/1900 GSM/GPRS/EDGE and 1900 WCDMA/HSPA Mini-Tablet with BT and WLAN		Page 29 of 41

Table 16-3
UMTS II Body SAR Results

MEASUREMENT RESULTS									
FREQUENCY		Mode/Band	Service	C_Power[dBm]		Spacing	Side	Battery Type	SAR (1g)
MHz	Ch.			Start	End				(W/kg)
1880.00	9400	UMTS II	RMC	17.53	17.46	0.5 cm	Back*	Standard	0.655
1852.40	9262	UMTS II	RMC	21.51	21.51	1.0 cm	Back	Standard	0.881
1880.00	9400	UMTS II	RMC	21.41	21.16	1.0 cm	Back	Standard	0.859
1907.60	9538	UMTS II	RMC	21.52	21.52	1.0 cm	Back	Standard	0.813
1852.40	9262	UMTS II	RMC	21.51	21.38	0.5 cm	Top	Standard	0.992
1880.00	9400	UMTS II	RMC	21.41	21.46	0.5 cm	Top	Standard	0.965
1907.60	9538	UMTS II	RMC	21.52	21.59	0.5 cm	Top	Standard	0.901
1880.00	9400	UMTS II	RMC	21.41	21.41	0.5 cm	Left	Standard	0.113
1880.00	9400	UMTS II	RMC	21.41	21.55	0.5 cm	Right	Standard	0.020
1880.00	9400	UMTS II	RMC	21.41	21.32	0.5 cm	Bottom	Standard	0.019
ANSI / IEEE C95.1 1992 - SAFETY LIMIT						Body			
Spatial Peak						1.6 W/kg (mW/g)			
Uncontrolled Exposure/General Population						averaged over 1 gram			

Notes:

1. The test data reported are the worst-case SAR value with the position set in a typical configuration. Test procedures used were according to FCC/OET Bulletin 65, Supplement C [June 2001].
2. All modes of operation were investigated, and worst-case results are reported.
3. Batteries are fully charged for all readings.
4. Tissue parameters and temperatures are listed on the SAR plots.
5. Liquid tissue depth was at least 15.0 cm.
6. Justification for reduced test configurations: Per FCC/OET Bulletin 65 Supplement C (June 2001) and Public Notice DA-02-1438, if the SAR measured at the middle channel for each test configuration is at least 3.0 dB lower than the SAR limit, testing at the high and low channels is optional for such test configuration(s).
7. WCDMA mode was tested under RMC 12.2 kbps with HSPA Inactive.
8. Asterisk (*) denotes power back off activated.
9. Justification for 5 mm edge test configurations based on discussions with FCC lab based on KDB Inquiry 502978. See Section 15.2 for more details.
10. Per discussions with applicant and FCC lab on 8/19/2010 based on KDB Inquiry 607156, an additional conservative test distance of 10 mm from the back was chosen to additionally test SAR at maximum power, no back-off active. See Section 15.5 for more details.

FCC ID: A3LGTP1000		SAR COMPLIANCE REPORT		Reviewed by: Quality Manager
Filename: 0Y1008191386-R5.A3L	Test Dates: 08/24/10 - 10/3/10	EUT Type: 850/1900 GSM/GPRS/EDGE and 1900 WCDMA/HSPA Mini-Tablet with BT and WLAN		Page 30 of 41

Table 16-4
2.4 GHz WLAN Body SAR Results

MEASUREMENT RESULTS										
FREQUENCY		Mode	C_Power[dBm]		Test Position	Spacing	Side	Battery Type	Data Rate (Mbps)	SAR (1g) (W/kg)
MHz	Ch.		Start	End						
2437	6	2.4 GHz WLAN	16.47	16.50	Body	0.5 cm	Back	Standard	1	0.404
2437	6	2.4 GHz WLAN	16.47	16.40	Body	0.75 cm	Top	Standard	1	0.043
2437	6	2.4 GHz WLAN	16.47	16.53	Body	0.5 cm	Right	Standard	1	0.023
ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population						Body 1.6 W/kg (mW/g) averaged over 1 gram				

Notes:

1. The test data reported are the worst-case SAR value with the position set in a typical configuration. Test procedures used were according to FCC/OET Bulletin 65, Supplement C [June 2001].
2. All modes of operation were investigated, and worst-case results are reported.
3. Batteries are fully charged for all readings.
4. Tissue parameters and temperatures are listed on the SAR plots.
5. Liquid tissue depth was at least 15.0 cm.
6. Justification for reduced test configurations for WIFI channels per KDB 248227 and April 2010 FCC/TCB Meeting Notes: Highest average RF output power channel was selected for WLAN for SAR evaluation. Other IEEE 802.11 modes (including 802.11n), were not investigated since the average output powers were not greater than 0.25 dB than that of the corresponding highest output power channel in the lowest data rate IEEE 802.11b mode per channel.
7. WLAN transmission was verified using a spectrum analyzer.
8. Justification for 7.5 mm top edge test configuration based on discussions on 6/4/2010 with applicant and FCC lab based on KDB Inquiry 502978. See Section 15.2 for more details.
9. There is no power back-off for WIFI.

FCC ID: A3LGTP1000		SAR COMPLIANCE REPORT		Reviewed by: Quality Manager
Filename: 0Y1008191386-R5.A3L	Test Dates: 08/24/10 - 10/3/10	EUT Type: 850/1900 GSM/GPRS/EDGE and 1900 WCDMA/HSPA Mini-Tablet with BT and WLAN		Page 31 of 41

Table 16-5
5 GHz WLAN Body SAR Results

MEASUREMENT RESULTS										
FREQUENCY		Mode	C_Power[dBm]		Side	Test Position	Side	Battery Type	Data Rate (Mbps)	SAR (1g) (W/kg)
MHz	Ch.		Start	End						
5180	36	5.2 GHz WLAN	15.19	15.16	Body	0.5 cm	Back	Standard	6	0.610
5260	52	5.3 GHz WLAN	14.85	14.91	Body	0.5 cm	Back	Standard	54	0.512
5600	120	5.5 - 5.7 GHz WLAN	15.56	15.59	Body	0.5 cm	Back	Standard	6	0.956
5520	104	5.5 - 5.7 GHz WLAN	15.33	15.32	Body	0.5 cm	Back	Standard	12	0.711
5580	116	5.5 - 5.7 GHz WLAN	15.18	15.18	Body	0.5 cm	Back	Standard	12	0.834
5620	124	5.5 - 5.7 GHz WLAN	15.12	15.13	Body	0.5 cm	Back	Standard	18	0.795
5680	136	5.5 - 5.7 GHz WLAN	15.06	15.14	Body	0.5 cm	Back	Standard	9	0.815
5700	140	5.5 - 5.7 GHz WLAN	15.28	15.39	Body	0.5 cm	Back	Standard	48	0.571
5745	149	5.8 GHz WLAN	14.99	15.19	Body	0.5 cm	Back	Standard	6	0.972
5785	157	5.8 GHz WLAN	14.84	14.91	Body	0.5 cm	Back	Standard	6	0.869
5805	161	5.8 GHz WLAN	14.60	14.59	Body	0.5 cm	Back	Standard	6	0.776
5180	36	5.2 GHz WLAN	15.19	15.23	Body	0.75 cm	Top	Standard	6	0.489
5260	52	5.3 GHz WLAN	14.85	14.83	Body	0.75 cm	Top	Standard	54	0.191
5600	120	5.5 - 5.7 GHz WLAN	15.56	15.77	Body	0.75 cm	Top	Standard	6	0.271
5745	149	5.8 GHz WLAN	14.99	15.09	Body	0.75 cm	Top	Standard	6	0.208
5180	36	5.2 GHz WLAN	15.19	15.35	Body	0.5 cm	Right	Standard	6	0.049
5260	52	5.3 GHz WLAN	14.85	14.91	Body	0.5 cm	Right	Standard	54	0.050
5600	120	5.5 - 5.7 GHz WLAN	15.56	15.61	Body	0.5 cm	Right	Standard	6	0.029
5745	149	5.8 GHz WLAN	14.99	14.85	Body	0.5 cm	Right	Standard	6	0.025
ANSI / IEEE C95.1 1992 - SAFETY LIMIT						Body 1.6 W/kg (mW/g) averaged over 1 gram				
Spatial Peak										
Uncontrolled Exposure/General Population										

Notes:

1. The test data reported are the worst-case SAR value with the position set in a typical configuration. Test procedures used were according to FCC/OET Bulletin 65, Supplement C.
2. All modes of operation were investigated, and worst-case results are reported.
3. Batteries are fully charged for all readings.
4. Tissue parameters and temperatures are listed on the SAR plots.
5. Liquid tissue depth was at least 15.0 cm.
6. Justification for reduced test configurations for WIFI channels per KDB 248227 and April 2010 FCC/TCB Meeting Notes: IEEE 802.11n mode was not investigated since the average output powers were not greater than 0.25 dB than the corresponding channel in IEEE 802.11a mode
7. The highest power channel across all data rates was tested for SAR, instead of the lowest data rate only per KDB 248227 publication. Upon FCC consultation, this was acceptable.
8. Per KDB 248227, each configuration with SAR greater than 0.8 W/kg were tested for all default channels within its respective 5 GHz band.
9. Justification for 7.5 mm top edge test configuration based on discussions on 6/4/2010 with applicant and FCC lab based on KDB Inquiry 502978. See Section 15.2 for more details.

FCC ID: A3LGTP1000		SAR COMPLIANCE REPORT		Reviewed by: Quality Manager
Filename: 0Y1008191386-R5.A3L	Test Dates: 08/24/10 - 10/3/10	EUT Type: 850/1900 GSM/GPRS/EDGE and 1900 WCDMA/HSPA Mini-Tablet with BT and WLAN		Page 32 of 41

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	85070B	Dielectric Probe Kit	8/22/2010	Annual	8/22/2011	US33020316
Agilent	8648D	(9kHz-4GHz) Signal Generator	9/19/2009	Biennial	9/19/2011	3613A00315
Agilent	8753E	(30kHz-6GHz) Network Analyzer	3/31/2010	Annual	3/31/2011	JP38020182
Agilent	E8257D	(250kHz-20GHz) Signal Generator	3/30/2010	Annual	3/30/2011	MY45470194
Index SAR	IXTL-010	Dielectric Measurement Kit	N/A		N/A	N/A
Index SAR	IXTL-030	30MM TEM line for 6 GHz	N/A		N/A	N/A
Rohde & Schwarz	CMU200	Base Station Simulator	6/21/2010	Annual	6/21/2011	833855/0010
Rohde & Schwarz	NRV-Z32	Peak Power Sensor (100uW-2W)	12/5/2008	Biennial	12/5/2010	100155
Rohde & Schwarz	NRV-Z33	Peak Power Sensor (1mW-20W)	12/5/2008	Biennial	12/5/2010	100004
SPEAG	D1450V2	1450 MHz SAR Dipole	5/20/2009	Biennial	5/20/2011	1025
SPEAG	D1765V2	1765 MHz SAR Dipole	5/19/2009	Biennial	5/19/2011	1008
SPEAG	D1900V2	1900 MHz SAR Dipole	1/20/2009	Biennial	1/20/2011	502
SPEAG	D1900V2	1900 MHz SAR Dipole	8/18/2009	Biennial	8/18/2011	5d080
SPEAG	D2450V2	2450 MHz SAR Dipole	8/27/2009	Biennial	8/27/2011	719
SPEAG	D2450V2	2450 MHz SAR Dipole	1/8/2009	Biennial	1/8/2011	797
SPEAG	D2600V2	2600 MHz SAR Dipole	8/12/2009	Biennial	8/12/2011	1004
SPEAG	D5GHzV2	5 GHz SAR Dipole	8/19/2009	Biennial	8/19/2011	1007
SPEAG	D5GHzV2	5 GHz SAR Dipole	1/15/2009	Biennial	1/15/2011	1057
SPEAG	D835V2	835 MHz SAR Dipole	1/19/2009	Biennial	1/19/2011	4d047
SPEAG	D835V2	835 MHz SAR Dipole	8/24/2009	Biennial	8/24/2011	4d026
SPEAG	DAE4	Dasy Data Acquisition Electronics	3/22/2010	Annual	3/22/2011	704
SPEAG	DAE4	Dasy Data Acquisition Electronics	4/21/2010	Annual	4/21/2011	665
SPEAG	DAE4	Dasy Data Acquisition Electronics	1/22/2010	Annual	1/22/2011	649
SPEAG	EX3DV4	SAR Probe	1/26/2010	Annual	1/26/2011	3550
SPEAG	DAE4	Dasy Data Acquisition Electronics	7/8/2010	Annual	7/8/2011	859
SPEAG	D750V3	750 MHz Dipole	8/19/2010	Biennial	8/19/2012	1003
SPEAG	ES3DV3	SAR Probe	3/16/2010	Annual	3/16/2011	3213
SPEAG	ES3DV3	SAR Probe	4/20/2010	Annual	4/20/2011	3209
Rohde & Schwarz	SMIQ03B	Signal Generator	4/1/2010	Annual	4/1/2011	DE27259
SPEAG	D1640V2	1640 MHz Dipole	8/17/2010	Biennial	8/17/2012	321
Rohde & Schwarz	CMW500	LTE Base Station Simulator	8/30/2010	Annual	8/30/2011	100976
Anritsu	MA2481A	Power Sensor	12/2/2009	Annual	12/2/2010	5318
Anritsu	MA2481A	Power Sensor	12/3/2009	Annual	12/3/2010	5442
Anritsu	ML2438A	Power Meter	12/3/2009	Annual	12/3/2010	1190013
Anritsu	ML2438A	Power Meter	12/3/2009	Annual	12/3/2010	98150041
Agilent	8648D	Signal Generator	4/1/2010	Annual	4/1/2011	3629U00687
Anritsu	ML2438A	Power Meter	12/3/2009	Annual	12/3/2010	1070030
Anritsu	MA2481A	Power Sensor	12/2/2009	Annual	12/2/2010	5821
Anritsu	MA2481A	Power Sensor	12/3/2009	Annual	12/3/2010	8013
Anritsu	MA2481A	Power Sensor	12/3/2009	Annual	12/3/2010	2400
Aprel	ALS-PR-DIEL	Dielectric Probe Kit	N/A		N/A	260-00959
Agilent	E5515C	Wireless Communications Tester	4/14/2010	Annual	4/14/2011	US41140256
SPEAG	ES3DV3	SAR Probe	2/10/2010	Annual	2/10/2011	3173

Justification for 2-year calibration cycle for SAR dipoles is found in Section 10.3.

FCC ID: A3LGTP1000		SAR COMPLIANCE REPORT		Reviewed by: Quality Manager
Filename: 0Y1008191386-R5.A3L	Test Dates: 08/24/10 - 10/3/10	EUT Type: 850/1900 GSM/GPRS/EDGE and 1900 WCDMA/HSPA Mini-Tablet with BT and WLAN		Page 33 of 41

18 CONCLUSION

18.1 Measurement Conclusion

The SAR evaluation indicates that the EUT complies with the RF radiation exposure limits of the FCC and Industry Canada, with respect to all parameters subject to this test. These measurements were taken to simulate the RF effects of RF exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The results and statements relate only to the item(s) tested.

Please note that the absorption and distribution of electromagnetic energy in the body are very complex phenomena that depend on the mass, shape, and size of the body, the orientation of the body with respect to the field vectors, and the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because various factors may interact with one another to vary the specific biological outcome of an exposure to electromagnetic fields, any protection guide should consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables. [3]

FCC ID: A3LGTP1000		PCTEST		SAR COMPLIANCE REPORT	SAMSUNG	Reviewed by: Quality Manager
Filename: 0Y1008191386-R5.A3L	Test Dates: 08/24/10 - 10/3/10	EUT Type: 850/1900 GSM/GPRS/EDGE and 1900 WCDMA/HSPA Mini-Tablet with BT and WLAN				Page 34 of 41 REV 8.5M 8/17/2010

19 REFERENCES

- [1] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radiofrequency Radiation, Aug. 1996.
- [2] ANSI/IEEE C95.1-2005, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 300kHz to 100GHz, New York: IEEE, 2006.
- [3] ANSI/IEEE C95.1-1992, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 300kHz to 100GHz, New York: IEEE, Sept. 1992.
- [4] ANSI/IEEE C95.3-2002, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave, New York: IEEE, December 2002.
- [5] Federal Communications Commission, OET Bulletin 65 (Edition 97-01), Supplement C (Edition 01-01), Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields, June 2001.
- [6] IEEE Standards Coordinating Committee 34 – IEEE Std. 1528-2003, Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices.
- [7] NCRP, National Council on Radiation Protection and Measurements, Biological Effects and Exposure Criteria for RadioFrequency Electromagnetic Fields, NCRP Report No. 86, 1986. Reprinted Feb. 1995.
- [8] T. Schmid, O. Egger, N. Kuster, Automated E-field scanning system for dosimetric assessments, IEEE Transaction on Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113.
- [9] K. Pokovic, T. Schmid, N. Kuster, Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies, ICECOM97, Oct. 1997, pp. 120-124.
- [10] K. Pokovic, T. Schmid, and N. Kuster, E-field Probe with improved isotropy in brain simulating liquids, Proceedings of the ELMAR, Zadar, Croatia, June 23-25, 1996, pp. 172-175.
- [11] Schmid & Partner Engineering AG, Application Note: Data Storage and Evaluation, June 1998, p2.
- [12] V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, N. Kuster, The Dependence of EM Energy Absorption upon Human Head Modeling at 900 MHz, IEEE Transaction on Microwave Theory and Techniques, vol. 44 no. 10, Oct. 1996, pp. 1865-1873.
- [13] N. Kuster and Q. Balzano, Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300MHz, IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.
- [14] G. Hartsgrove, A. Kraszewski, A. Surowiec, Simulated Biological Materials for Electromagnetic Radiation Absorption Studies, University of Ottawa, Bioelectromagnetics, Canada: 1987, pp. 29-36.
- [15] Q. Balzano, O. Garay, T. Manning Jr., Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995.

FCC ID: A3LGTP1000		PCTEST		SAR COMPLIANCE REPORT	SAMSUNG	Reviewed by: Quality Manager
Filename:	Test Dates:	EUT Type:				
0Y1008191386-R5.A3L	08/24/10 - 10/3/10	850/1900 GSM/GPRS/EDGE and 1900 WCDMA/HSPA Mini-Tablet with BT and WLAN				Page 35 of 41
© 2010 PCTEST Engineering Laboratory, Inc.				REV 8.5M 8/17/2010		

- [16] W. Gander, Computermathematick, Birkhaeuser, Basel, 1992.
- [17] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recepies in C, The Art of Scientific Computing, Second edition, Cambridge University Press, 1992.
- [18] Federal Communications Commission, OET Bulletin 65, Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields. Supplement C, Dec. 1997.
- [19] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652.
- [20] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic Fields High-frequency: 10kHz-300GHz, Jan. 1995.
- [21] Prof. Dr. Niels Kuster, ETH, Eidgenössische Technische Hochschule Zürich, Dosimetric Evaluation of the Cellular Phone.
- [22] IEC 62209-1, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Human models, instrumentation, and procedures - Part 1: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz), Feb. 2005.
- [23] Industry Canada RSS-102 Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands) Issue 4, March 2010.
- [24] Health Canada Safety Code 6 Limits of Human Exposure to Radio Frequency Electromagnetic Fields in the Frequency Range from 3 kHz – 300 GHz, 2009
- [25] FCC Public Notice DA-02-1438. Office of Engineering and Technology Announces a Transition Period for the Phantom Requirements of Supplement C to OET Bulletin 65, June 19, 2002
- [26] FCC SAR Measurement Procedures for 3G Devices KDB 941225
- [27] SAR Measurement procedures for IEEE 802.11a/b/g KDB 248227
- [28] FCC SAR Considerations for Handsets with Multiple Transmitters and Antennas, KDB 648474
- [29] FCC Application Note for SAR Probe Calibration and System Verification Consideration for Measurements at 150 MHz – 3 GHz, KDB 450824
- [30] FCC SAR Evaluation Considerations for Laptop Computers with Antennas Built-in on Display Screens, KDB 616217
- [31] FCC SAR Measurement Requirements for 3 – 6 GHz, KDB 865664
- [32] FCC Mobile Portable RF Exposure Procedure, KDB 447498
- [33] FCC SAR Procedures for Dongle Transmitters, KDB 447498
- [34] Anexo à Resolução No. 533, de 10 de Setembro de 2009.

FCC ID: A3LGTP1000		PCTEST	SAR COMPLIANCE REPORT	SAMSUNG	Reviewed by: Quality Manager
Filename: 0Y1008191386-R5.A3L	Test Dates: 08/24/10 - 10/3/10	EUT Type: 850/1900 GSM/GPRS/EDGE and 1900 WCDMA/HSPA Mini-Tablet with BT and WLAN			Page 36 of 41
© 2010 PCTEST Engineering Laboratory, Inc.				REV 8.5M 8/17/2010	

APPENDIX A: SAR TEST DATA

PCTEST ENGINEERING LABORATORY, INC.

DUT: A3LGTP1000; Type: 835/1900 GSM/GPRS/EDGE and 1900 WCDMA/HSPA Mini-Tablet with Bluetooth and WLAN; Serial: FCC1

Communication System: GSM850; Frequency: 836.6 MHz; Duty Cycle: 1:8.3

Medium: 835 Muscle Medium parameters used (interpolated):

$f = 836.6 \text{ MHz}$; $\sigma = 0.964 \text{ mho/m}$; $\epsilon_r = 54.4$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section; Space: 0.5 cm

Test Date: 08-25-2010; Ambient Temp: 22.4 ° C; Tissue Temp: 21.1 ° C

Probe: ES3DV3 - SN3213; ConvF(5.91, 5.91, 5.91); Calibrated: 3/16/2010

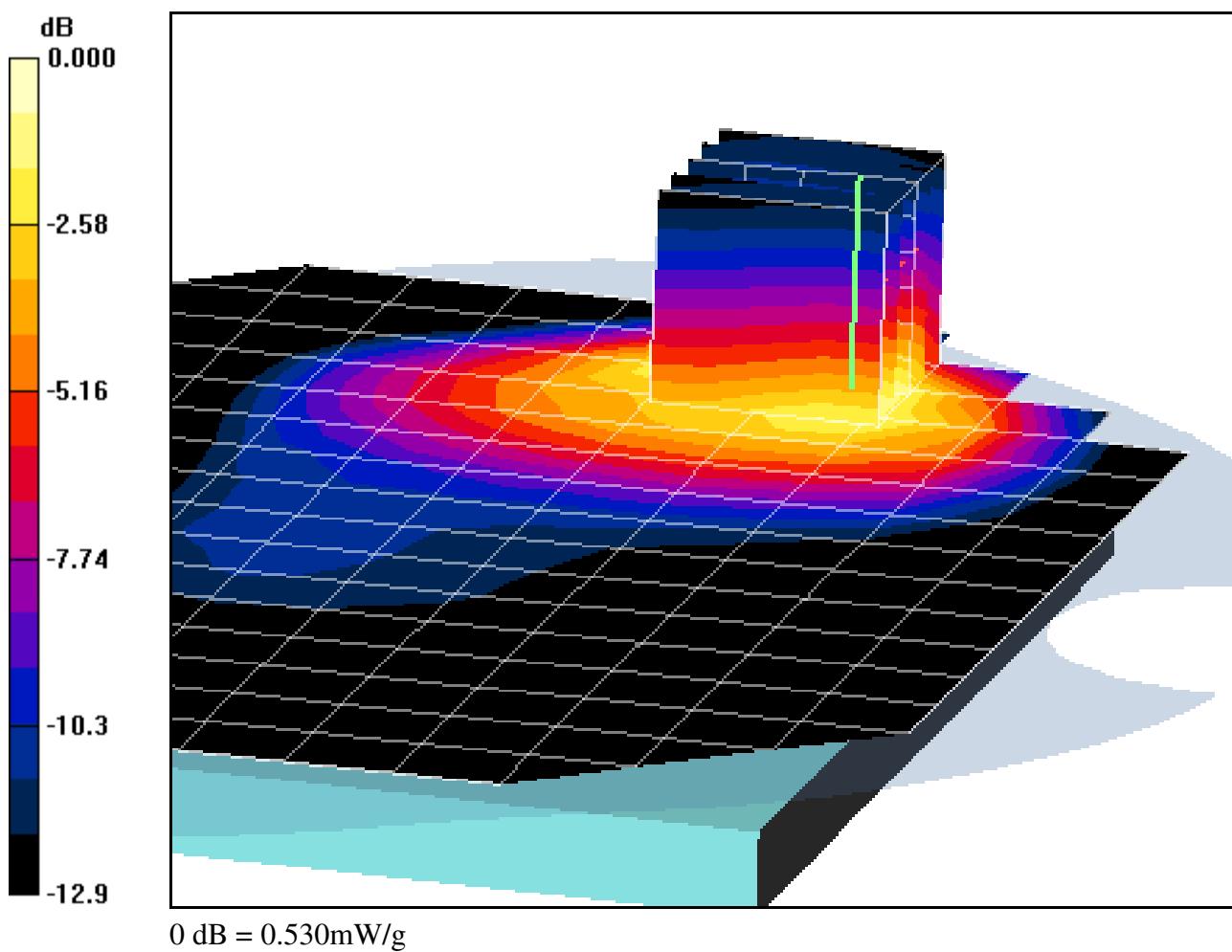
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn704; Calibrated: 3/22/2010

Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1406

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: GSM 850, Body SAR, Back side, Mid.ch


Area Scan (11x17x1): Measurement grid: $dx=15\text{mm}$, $dy=15\text{mm}$

Zoom Scan (5x5x7)/Cube 0: Measurement grid: $dx=8\text{mm}$, $dy=8\text{mm}$, $dz=5\text{mm}$

Reference Value = 6.13 V/m; Power Drift = 0.022 dB

Peak SAR (extrapolated) = 0.787 W/kg

SAR(1 g) = 0.433 mW/g; SAR(10 g) = 0.250 mW/g

PCTEST ENGINEERING LABORATORY, INC.

DUT: A3LGTP1000; Type: 835/1900 GSM/GPRS/EDGE and 1900 WCDMA/HSPA Mini-Tablet with Bluetooth and WLAN; Serial: FCC1

Communication System: GSM850 GPRS; 4 Tx slots; Frequency: 836.6 MHz; Duty Cycle: 1:2.076

Medium: 835 Muscle Medium parameters used (interpolated):

$f = 836.6 \text{ MHz}$; $\sigma = 0.964 \text{ mho/m}$; $\epsilon_r = 54.4$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section; Space: 0.5 cm

Test Date: 08-25-2010; Ambient Temp: 22.4 ° C; Tissue Temp: 21.1 ° C

Probe: ES3DV3 - SN3213; ConvF(5.91, 5.91, 5.91); Calibrated: 3/16/2010

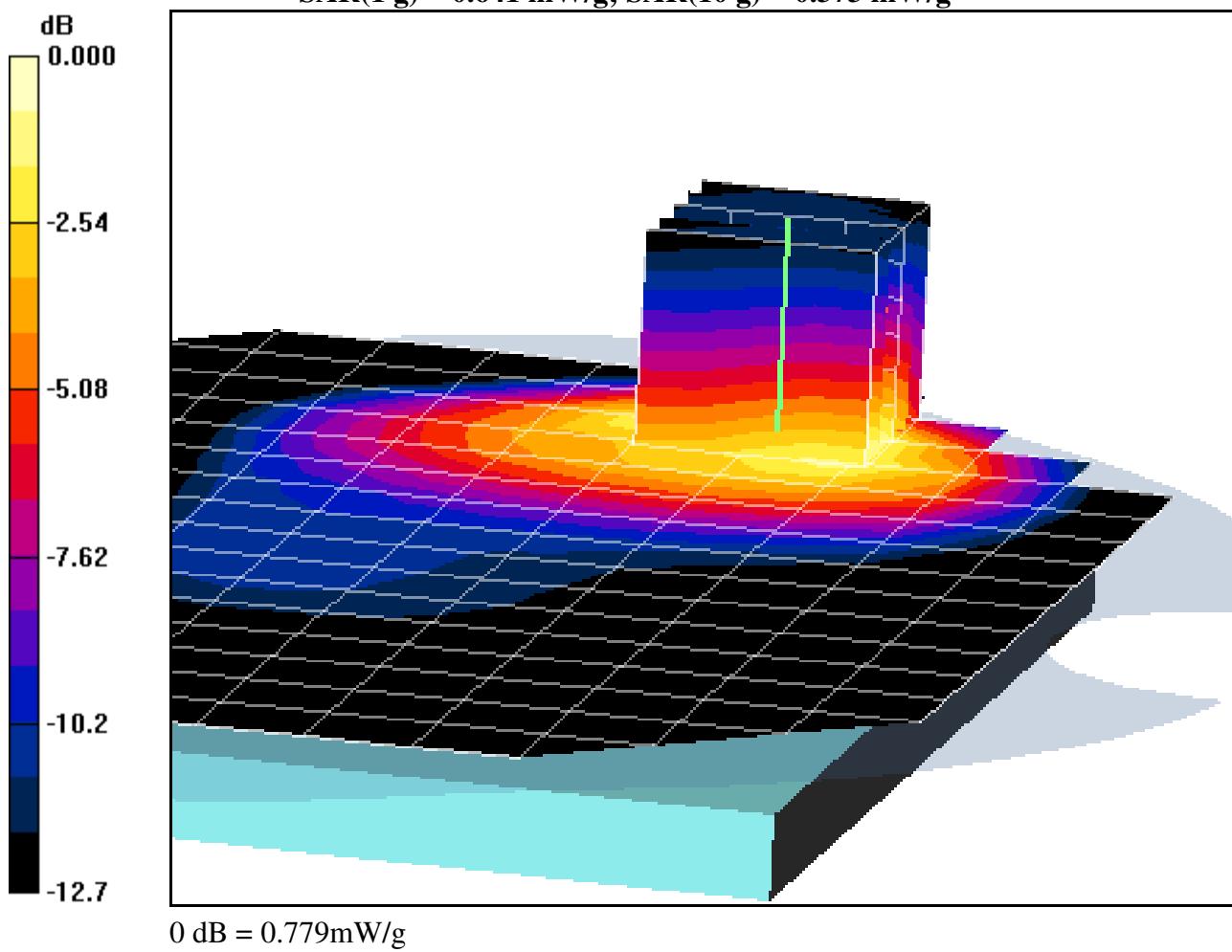
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn704; Calibrated: 3/22/2010

Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1406

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: GPRS 850, Body SAR, Back side, Mid.ch, 4 Tx Slots


Area Scan (11x17x1): Measurement grid: $dx=15\text{mm}$, $dy=15\text{mm}$

Zoom Scan (5x5x7)/Cube 0: Measurement grid: $dx=8\text{mm}$, $dy=8\text{mm}$, $dz=5\text{mm}$

Reference Value = 27.1 V/m; Power Drift = -0.039 dB

Peak SAR (extrapolated) = 1.15 W/kg

SAR(1 g) = 0.641 mW/g; SAR(10 g) = 0.373 mW/g

PCTEST ENGINEERING LABORATORY, INC.

DUT: A3LGTP1000; Type: 835/1900 GSM/GPRS/EDGE and 1900 WCDMA/HSPA Mini-Tablet with Bluetooth and WLAN; Serial: FCC1

Communication System: GSM850 GPRS; 4 Tx slots; Frequency: 836.6 MHz; Duty Cycle: 1:2.076

Medium: 835 Muscle Medium parameters used (interpolated):

$f = 836.6 \text{ MHz}$; $\sigma = 0.964 \text{ mho/m}$; $\epsilon_r = 54.4$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section; Space: 0.5 cm

Test Date: 08-25-2010; Ambient Temp: 22.4 ° C; Tissue Temp: 21.1 ° C

Probe: ES3DV3 - SN3213; ConvF(5.91, 5.91, 5.91); Calibrated: 3/16/2010

Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn704; Calibrated: 3/22/2010

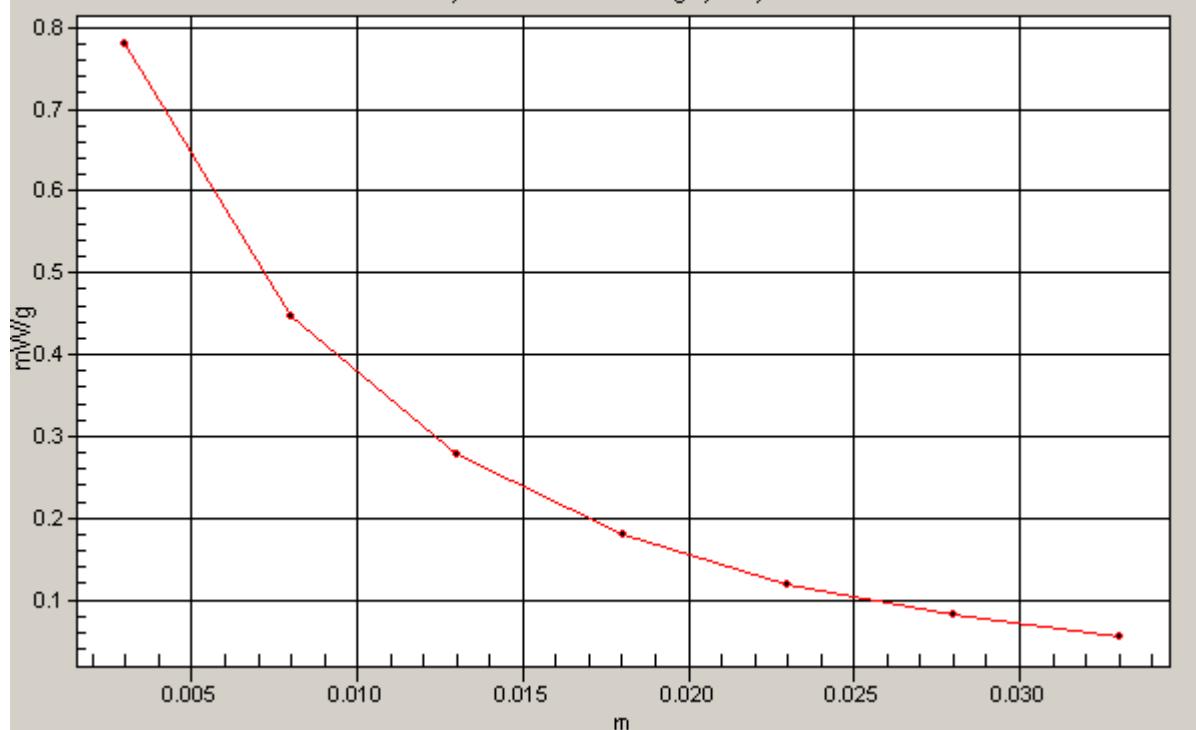
Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1406

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: GPRS 850, Body SAR, Back side, Mid.ch, 4 Tx Slots

Area Scan (11x17x1): Measurement grid: $dx=15\text{mm}$, $dy=15\text{mm}$

Zoom Scan (5x5x7)/Cube 0: Measurement grid: $dx=8\text{mm}$, $dy=8\text{mm}$, $dz=5\text{mm}$


Reference Value = 27.1 V/m; Power Drift = -0.039 dB

Peak SAR (extrapolated) = 1.15 W/kg

SAR(1 g) = 0.641 mW/g; SAR(10 g) = 0.373 mW/g

1g/10g Averaged SAR

SAR; Zoom Scan; Value Along Z, X=2, Y=2

PCTEST ENGINEERING LABORATORY, INC.

DUT: A3LGTP1000; Type: 835/1900 GSM/GPRS/EDGE and 1900 WCDMA/HSPA Mini-Tablet with Bluetooth and WLAN; Serial: FCC1

Communication System: GSM850 GPRS; 4 Tx slots; Frequency: 836.6 MHz; Duty Cycle: 1:2.076
Medium: 835 Muscle Medium parameters used (interpolated):
 $f = 836.6 \text{ MHz}$; $\sigma = 0.964 \text{ mho/m}$; $\epsilon_r = 54.4$; $\rho = 1000 \text{ kg/m}^3$
Phantom section: Flat Section; Space: 1.0 cm

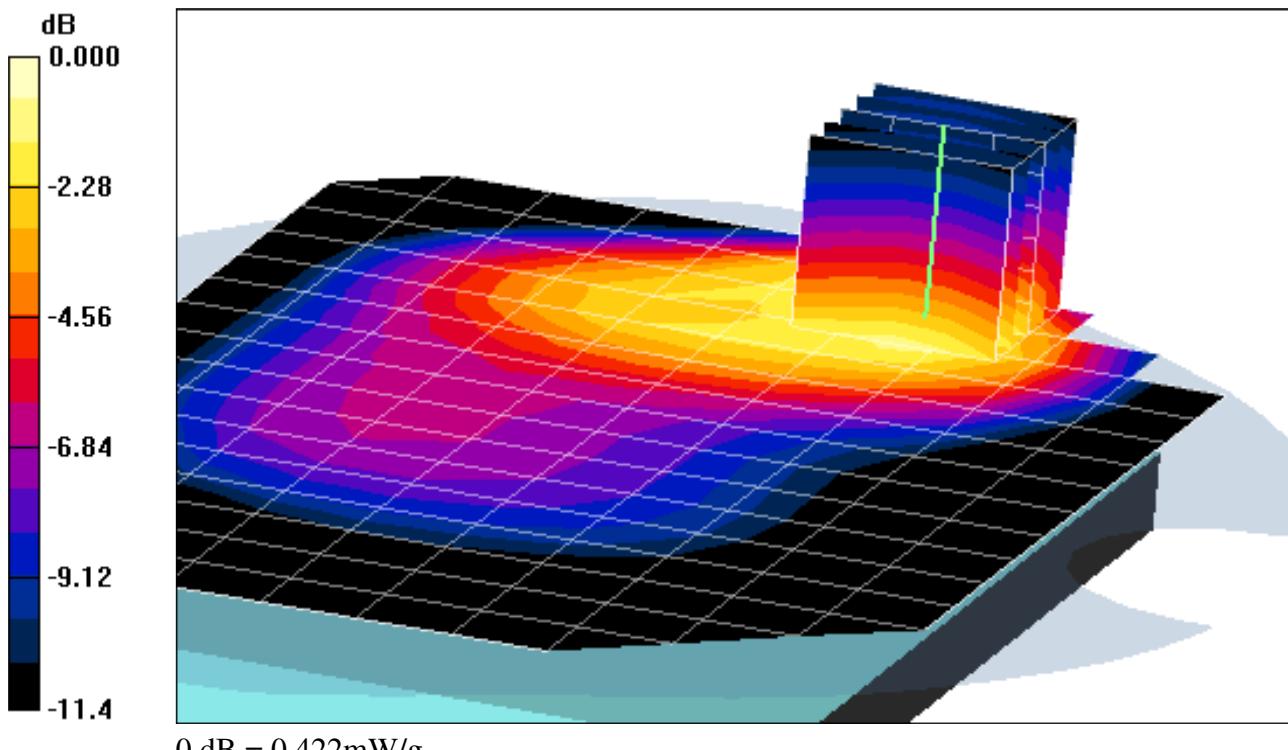
Test Date: 08-26-2010; Ambient Temp: 22.8 °C; Tissue Temp: 20.9 °C

Probe: ES3DV3 - SN3213; ConvF(5.91, 5.91, 5.91); Calibrated: 3/16/2010
Sensor-Surface: 5mm (Mechanical Surface Detection)

Electronics: DAE4 Sn704; Calibrated: 3/22/2010
Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1406

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: GPRS 850, Body SAR, Back side, Mid.ch, 4 Tx Slots


Area Scan (11x17x1): Measurement grid: $dx=15\text{mm}$, $dy=15\text{mm}$

Zoom Scan (5x5x7)/Cube 0: Measurement grid: $dx=8\text{mm}$, $dy=8\text{mm}$, $dz=5\text{mm}$

Reference Value = 20.9 V/m; Power Drift = 0.042 dB

Peak SAR (extrapolated) = 0.706 W/kg

SAR(1 g) = 0.431 mW/g; SAR(10 g) = 0.265 mW/g

PCTEST ENGINEERING LABORATORY, INC.

DUT: A3LGTP1000; Type: 835/1900 GSM/GPRS/EDGE and 1900 WCDMA/HSPA Mini-Tablet with Bluetooth and WLAN; Serial: FCC1

Communication System: GSM850 GPRS; 4 Tx slots; Frequency: 836.6 MHz; Duty Cycle: 1:2.076
Medium: 835 Muscle Medium parameters used (interpolated):
 $f = 836.6 \text{ MHz}$; $\sigma = 0.964 \text{ mho/m}$; $\epsilon_r = 54.4$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section; Space: 0.75 cm

Test Date: 08-26-2010; Ambient Temp: 22.8 °C; Tissue Temp: 20.9 °C

Probe: ES3DV3 - SN3213; ConvF(5.91, 5.91, 5.91); Calibrated: 3/16/2010

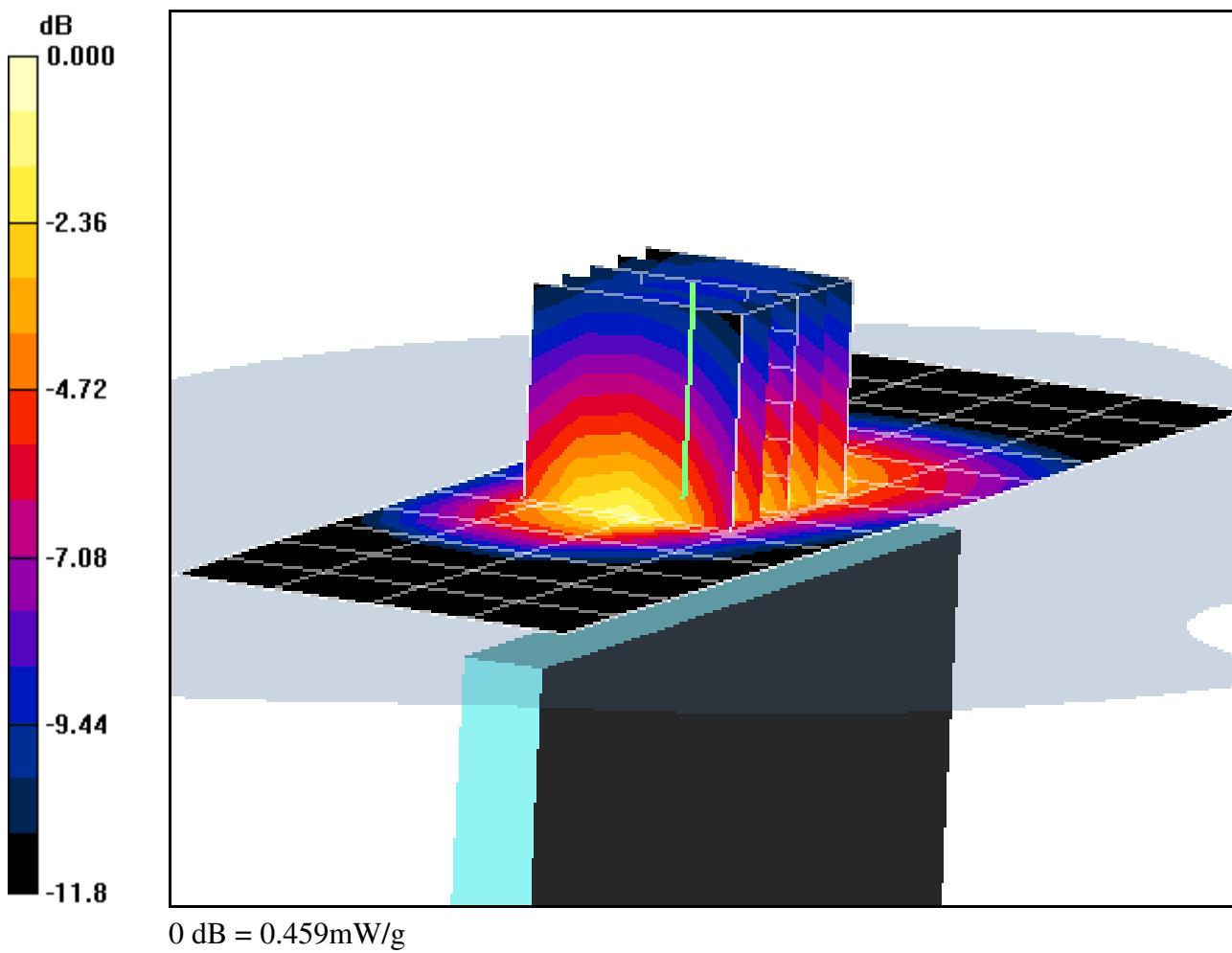
Sensor-Surface: 5mm (Mechanical Surface Detection)

Electronics: DAE4 Sn704; Calibrated: 3/22/2010

Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1406

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: GPRS 850, Body SAR, Top, Mid.ch, 4 Tx Slots


Area Scan (5x14x1): Measurement grid: $dx=15\text{mm}$, $dy=15\text{mm}$

Zoom Scan (5x5x7)/Cube 0: Measurement grid: $dx=8\text{mm}$, $dy=8\text{mm}$, $dz=5\text{mm}$

Reference Value = 23.0 V/m; Power Drift = -0.002 dB

Peak SAR (extrapolated) = 0.713 W/kg

SAR(1 g) = 0.451 mW/g; SAR(10 g) = 0.273 mW/g

PCTEST ENGINEERING LABORATORY, INC.

DUT: A3LGTP1000; Type: 835/1900 GSM/GPRS/EDGE and 1900 WCDMA/HSPA Mini-Tablet with Bluetooth and WLAN; Serial: FCC1

Communication System: GSM850 GPRS; 4 Tx slots; Frequency: 836.6 MHz; Duty Cycle: 1:2.076

Medium: 835 Muscle Medium parameters used (interpolated):

$f = 836.6$ MHz; $\sigma = 0.964$ mho/m; $\epsilon_r = 54.4$; $\rho = 1000$ kg/m³

Phantom section: Flat Section; Space: 0.5 cm

Test Date: 08-26-2010; Ambient Temp: 22.8 °C; Tissue Temp: 20.9 °C

Probe: ES3DV3 - SN3213; ConvF(5.91, 5.91, 5.91); Calibrated: 3/16/2010

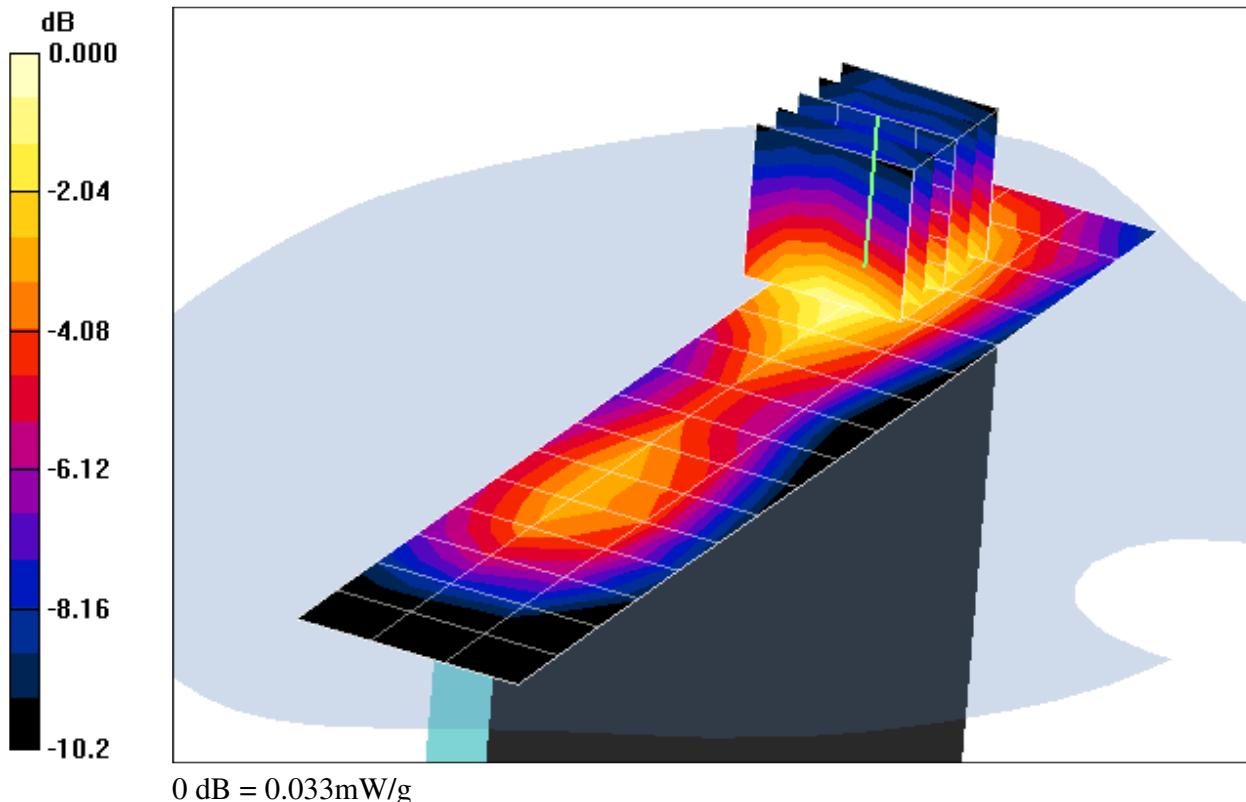
Sensor-Surface: 5mm (Mechanical Surface Detection)

Electronics: DAE4 Sn704; Calibrated: 3/22/2010

Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1406

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: GPRS 850, Body SAR, Left, Mid.ch, 4 Tx Slots


Area Scan (4x17x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.14 V/m; Power Drift = 0.032 dB

Peak SAR (extrapolated) = 0.048 W/kg

SAR(1 g) = 0.033 mW/g; SAR(10 g) = 0.022 mW/g

PCTEST ENGINEERING LABORATORY, INC.

DUT: A3LGTP1000; Type: 835/1900 GSM/GPRS/EDGE and 1900 WCDMA/HSPA Mini-Tablet with Bluetooth and WLAN; Serial: FCC1

Communication System: GSM850 GPRS; 4 Tx slots; Frequency: 836.6 MHz; Duty Cycle: 1:2.076

Medium: 835 Muscle Medium parameters used (interpolated):

$f = 836.6 \text{ MHz}$; $\sigma = 0.964 \text{ mho/m}$; $\epsilon_r = 54.4$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section; Space: 0.5 cm

Test Date: 08-26-2010; Ambient Temp: 22.8 °C; Tissue Temp: 20.9 °C

Probe: ES3DV3 - SN3213; ConvF(5.91, 5.91, 5.91); Calibrated: 3/16/2010

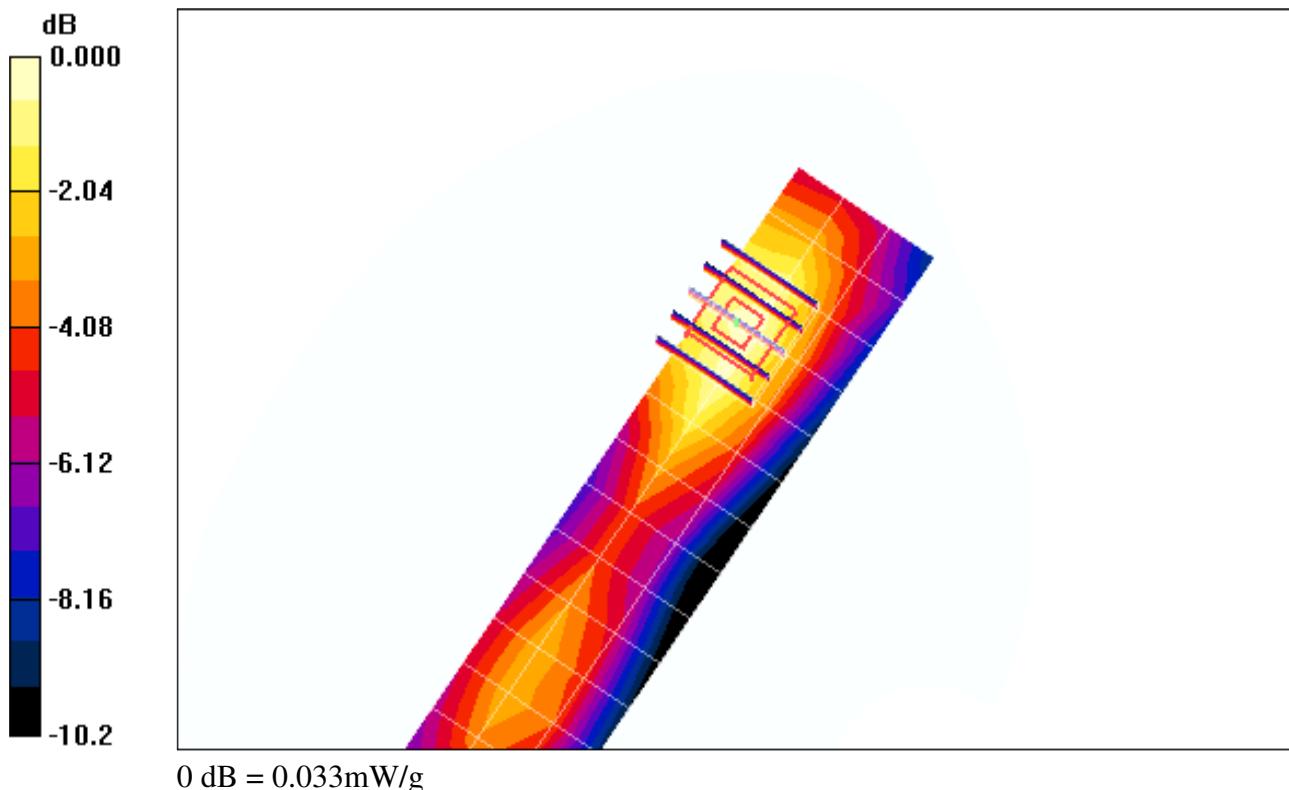
Sensor-Surface: 5mm (Mechanical Surface Detection)

Electronics: DAE4 Sn704; Calibrated: 3/22/2010

Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1406

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: GPRS 835, Body SAR, Left, Mid.ch, 4 Tx Slots


Area Scan (4x17x1): Measurement grid: $dx=15\text{mm}$, $dy=15\text{mm}$

Zoom Scan (5x5x7)/Cube 0: Measurement grid: $dx=8\text{mm}$, $dy=8\text{mm}$, $dz=5\text{mm}$

Reference Value = 6.14 V/m; Power Drift = 0.032 dB

Peak SAR (extrapolated) = 0.048 W/kg

SAR(1 g) = 0.033 mW/g; SAR(10 g) = 0.022 mW/g

PCTEST ENGINEERING LABORATORY, INC.

DUT: A3LGTP1000; Type: 835/1900 GSM/GPRS/EDGE and 1900 WCDMA/HSPA Mini-Tablet with Bluetooth and WLAN; Serial: FCC1

Communication System: GSM850 GPRS; 4 Tx slots; Frequency: 836.6 MHz; Duty Cycle: 1:2.076

Medium: 835 Muscle Medium parameters used (interpolated):

$f = 836.6 \text{ MHz}$; $\sigma = 0.964 \text{ mho/m}$; $\epsilon_r = 54.4$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section; Space: 0.5 cm

Test Date: 08-26-2010; Ambient Temp: 22.8 °C; Tissue Temp: 20.9 °C

Probe: ES3DV3 - SN3213; ConvF(5.91, 5.91, 5.91); Calibrated: 3/16/2010

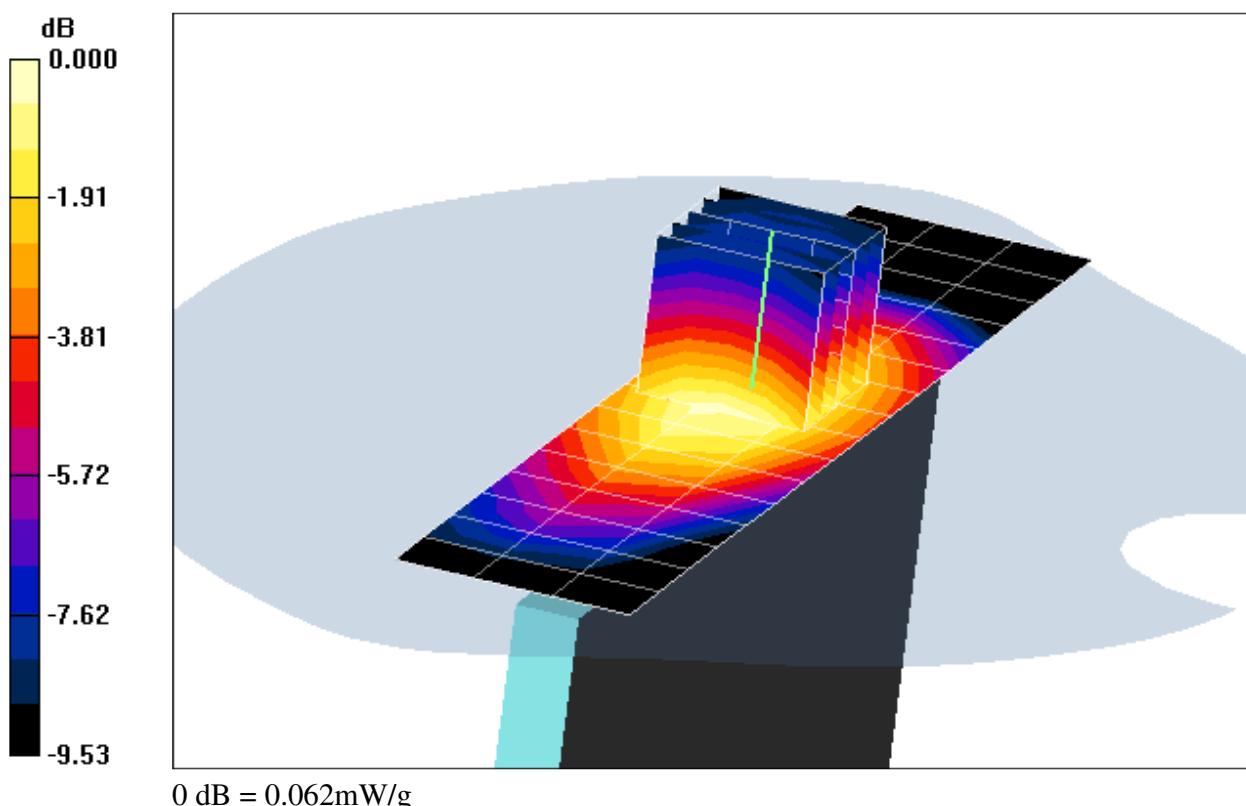
Sensor-Surface: 5mm (Mechanical Surface Detection)

Electronics: DAE4 Sn704; Calibrated: 3/22/2010

Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1406

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: GPRS 850, Body SAR, Right, Mid.ch, 4 Tx Slots


Area Scan (4x17x1): Measurement grid: $dx=15\text{mm}$, $dy=15\text{mm}$

Zoom Scan (5x5x7)/Cube 0: Measurement grid: $dx=8\text{mm}$, $dy=8\text{mm}$, $dz=5\text{mm}$

Reference Value = 8.06 V/m; Power Drift = 0.102 dB

Peak SAR (extrapolated) = 0.087 W/kg

SAR(1 g) = 0.062 mW/g; SAR(10 g) = 0.043 mW/g

PCTEST ENGINEERING LABORATORY, INC.

DUT: A3LGTP1000; Type: 835/1900 GSM/GPRS/EDGE and 1900 WCDMA/HSPA Mini-Tablet with Bluetooth and WLAN; Serial: FCC1

Communication System: GSM850 GPRS; 4 Tx slots; Frequency: 836.6 MHz; Duty Cycle: 1:2.076

Medium: 835 Muscle Medium parameters used (interpolated):

$f = 836.6 \text{ MHz}$; $\sigma = 0.964 \text{ mho/m}$; $\epsilon_r = 54.4$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section; Space: 0.5 cm

Test Date: 08-26-2010; Ambient Temp: 22.8 °C; Tissue Temp: 20.9 °C

Probe: ES3DV3 - SN3213; ConvF(5.91, 5.91, 5.91); Calibrated: 3/16/2010

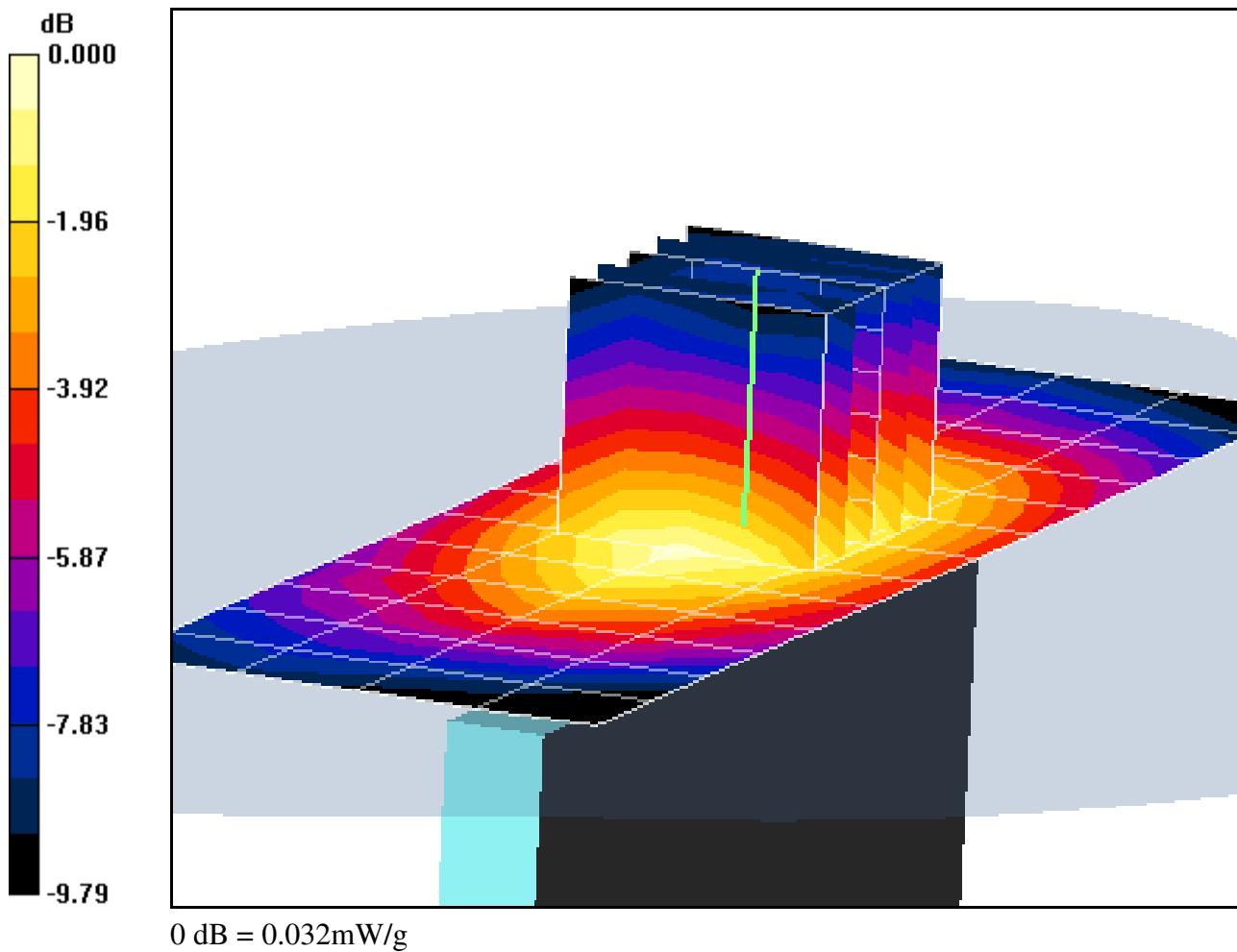
Sensor-Surface: 5mm (Mechanical Surface Detection)

Electronics: DAE4 Sn704; Calibrated: 3/22/2010

Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1406

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: GPRS 850, Body SAR, Bottom, Mid.ch, 4 Tx Slots


Area Scan (5x14x1): Measurement grid: $dx=15\text{mm}$, $dy=15\text{mm}$

Zoom Scan (5x5x7)/Cube 0: Measurement grid: $dx=8\text{mm}$, $dy=8\text{mm}$, $dz=5\text{mm}$

Reference Value = 6.03 V/m; Power Drift = 0.117 dB

Peak SAR (extrapolated) = 0.049 W/kg

SAR(1 g) = 0.033 mW/g; SAR(10 g) = 0.022 mW/g

PCTEST ENGINEERING LABORATORY, INC.

DUT: A3LGTP1000; Type: 835/1900 GSM/GPRS/EDGE and 1900 WCDMA/HSPA Mini -Tablet with Bluetooth and WLAN; Serial: FCC1

Communication System: GSM1900; Frequency: 1880 MHz; Duty Cycle: 1:8.3

Medium: 1900 Muscle Medium parameters used:

$f = 1880$ MHz; $\sigma = 1.5$ mho/m; $\epsilon_r = 52.1$; $\rho = 1000$ kg/m³

Phantom section: Flat Section; Space: 0.5 cm

Test Date: 08-25-2010; Ambient Temp: 23.9 °C; Tissue Temp: 22.4 °C

Probe: ES3DV3 - SN3209; ConvF(4.65, 4.65, 4.65); Calibrated: 4/20/2010

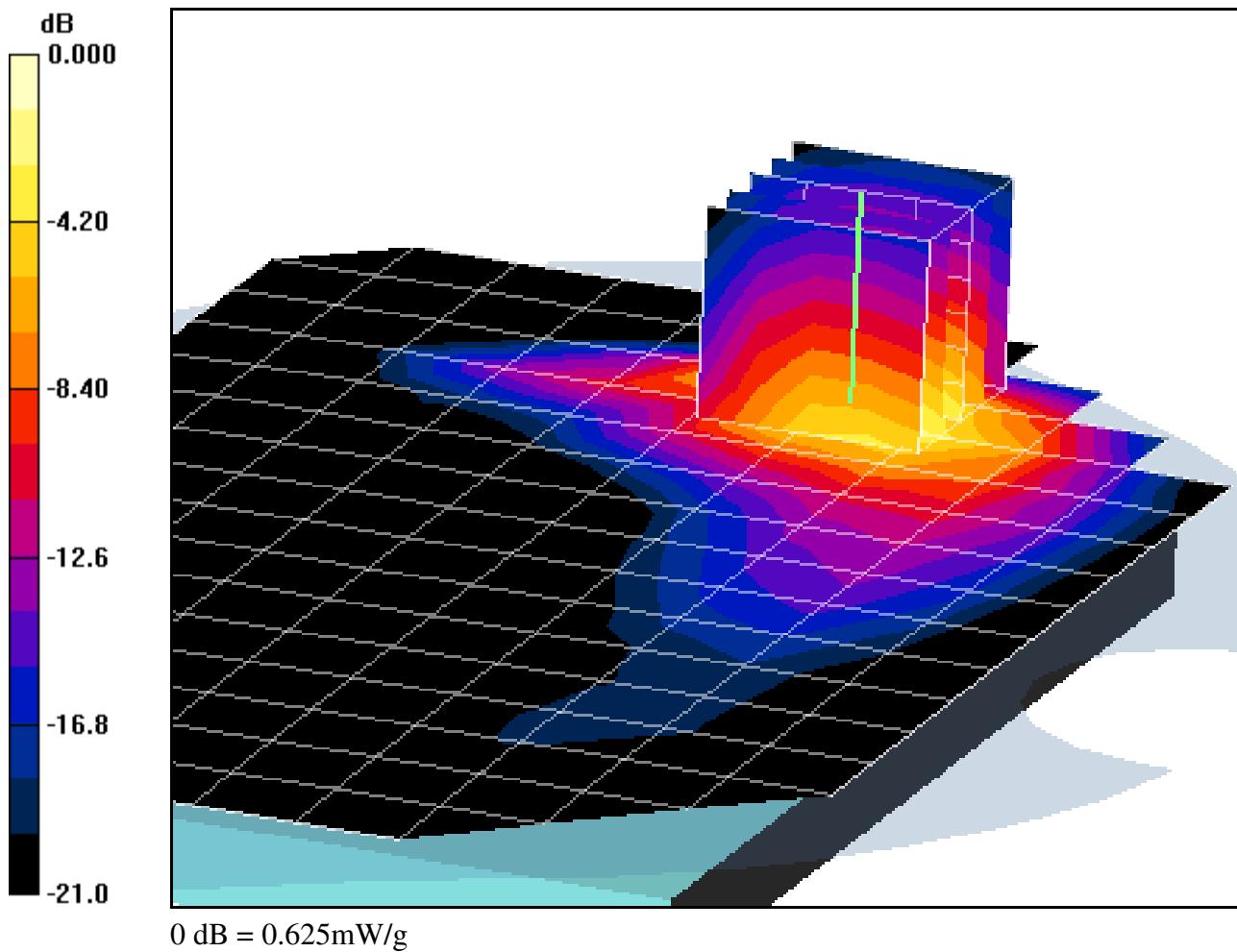
Sensor-Surface: 5mm (Mechanical Surface Detection)

Electronics: DAE4 Sn665; Calibrated: 4/21/2010

Phantom: SAM with CRP; Type: SAM; Serial: TP1375

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: GSM 1900, Body SAR, Back side, Mid.ch


Area Scan (11x17x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 2.36 V/m; Power Drift = 0.146 dB

Peak SAR (extrapolated) = 1.20 W/kg

SAR(1 g) = 0.606 mW/g; SAR(10 g) = 0.292 mW/g

PCTEST ENGINEERING LABORATORY, INC.

DUT: A3LGTP1000; Type: 835/1900 GSM/GPRS/EDGE and 1900 WCDMA/HSPA Mini -Tablet with Bluetooth and WLAN; Serial: FCC1

Communication System: GSM1900 GPRS; 4 Tx slots; Frequency: 1880 MHz; Duty Cycle: 1:2.076
Medium: 1900 Muscle Medium parameters used:

$$f = 1880 \text{ MHz}; \sigma = 1.5 \text{ mho/m}; \epsilon_r = 52.1; \rho = 1000 \text{ kg/m}^3$$

Phantom section: Flat Section; Space: 0.5 cm

Test Date: 08-25-2010; Ambient Temp: 23.9 °C; Tissue Temp: 22.4 °C

Probe: ES3DV3 - SN3209; ConvF(4.65, 4.65, 4.65); Calibrated: 4/20/2010

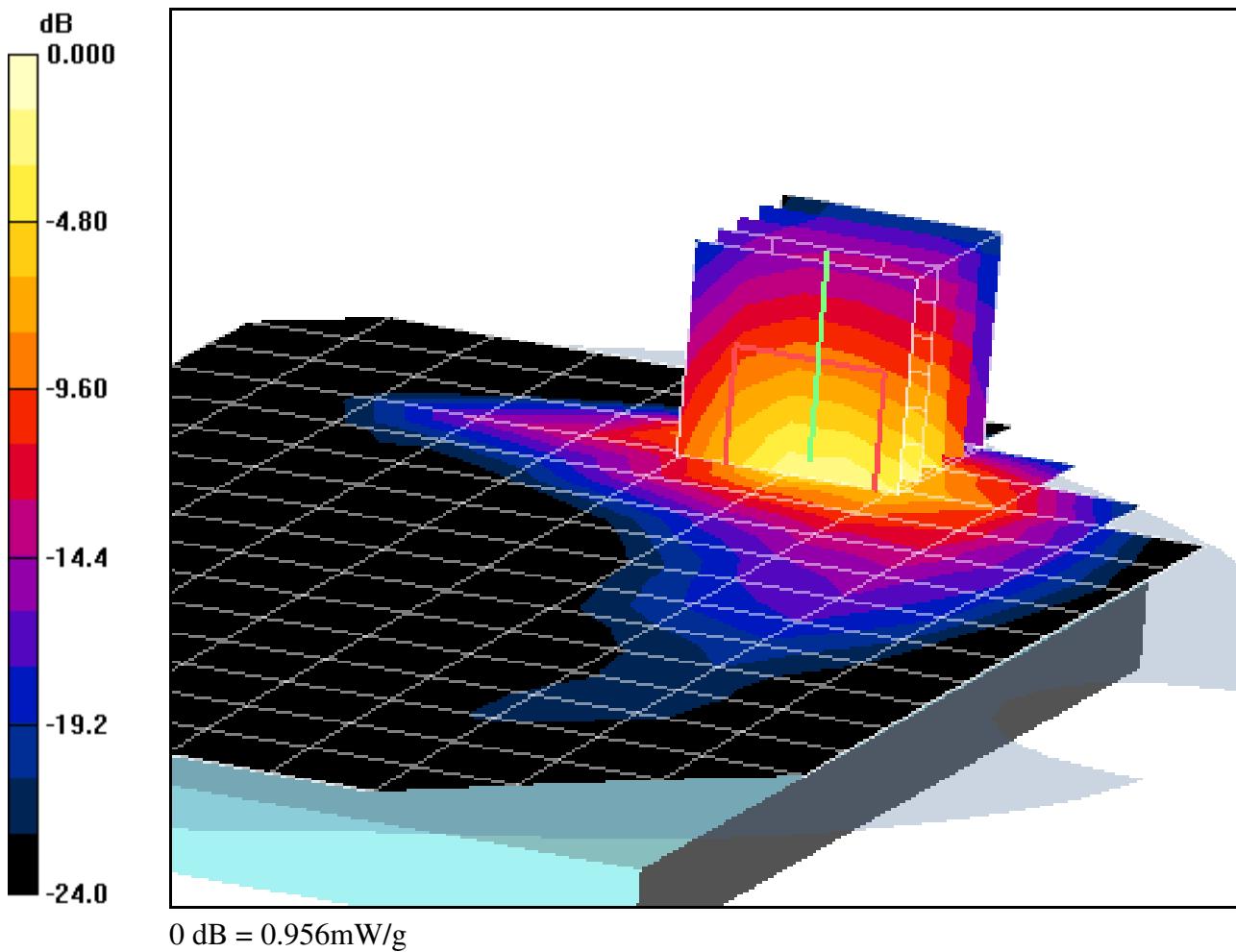
Sensor-Surface: 5mm (Mechanical Surface Detection)

Electronics: DAE4 Sn665; Calibrated: 4/21/2010

Phantom: SAM with CRP; Type: SAM; Serial: TP1375

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: GPRS 1900, Body SAR, Back side, Mid.ch, 4 Tx Slots


Area Scan (11x17x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 24.4 V/m; Power Drift = -0.003 dB

Peak SAR (extrapolated) = 1.87 W/kg

SAR(1 g) = 0.972 mW/g; SAR(10 g) = 0.460 mW/g

PCTEST ENGINEERING LABORATORY, INC.

DUT: A3LGTP1000; Type: 835/1900 GSM/GPRS/EDGE and 1900 WCDMA/HSPA Mini -Tablet with Bluetooth and WLAN; Serial: FCC1

Communication System: GSM1900 GPRS 4 Tx Slots; Frequency: 1880 MHz; Duty Cycle: 1:2.076
Medium: 1900 Muscle Medium parameters used:

$$f = 1880 \text{ MHz}; \sigma = 1.5 \text{ mho/m}; \epsilon_r = 52.1; \rho = 1000 \text{ kg/m}^3$$

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08-25-2010; Ambient Temp: 23.9°C; Tissue Temp: 22.4°C

Probe: ES3DV3 - SN3209; ConvF(4.65, 4.65, 4.65); Calibrated: 4/20/2010

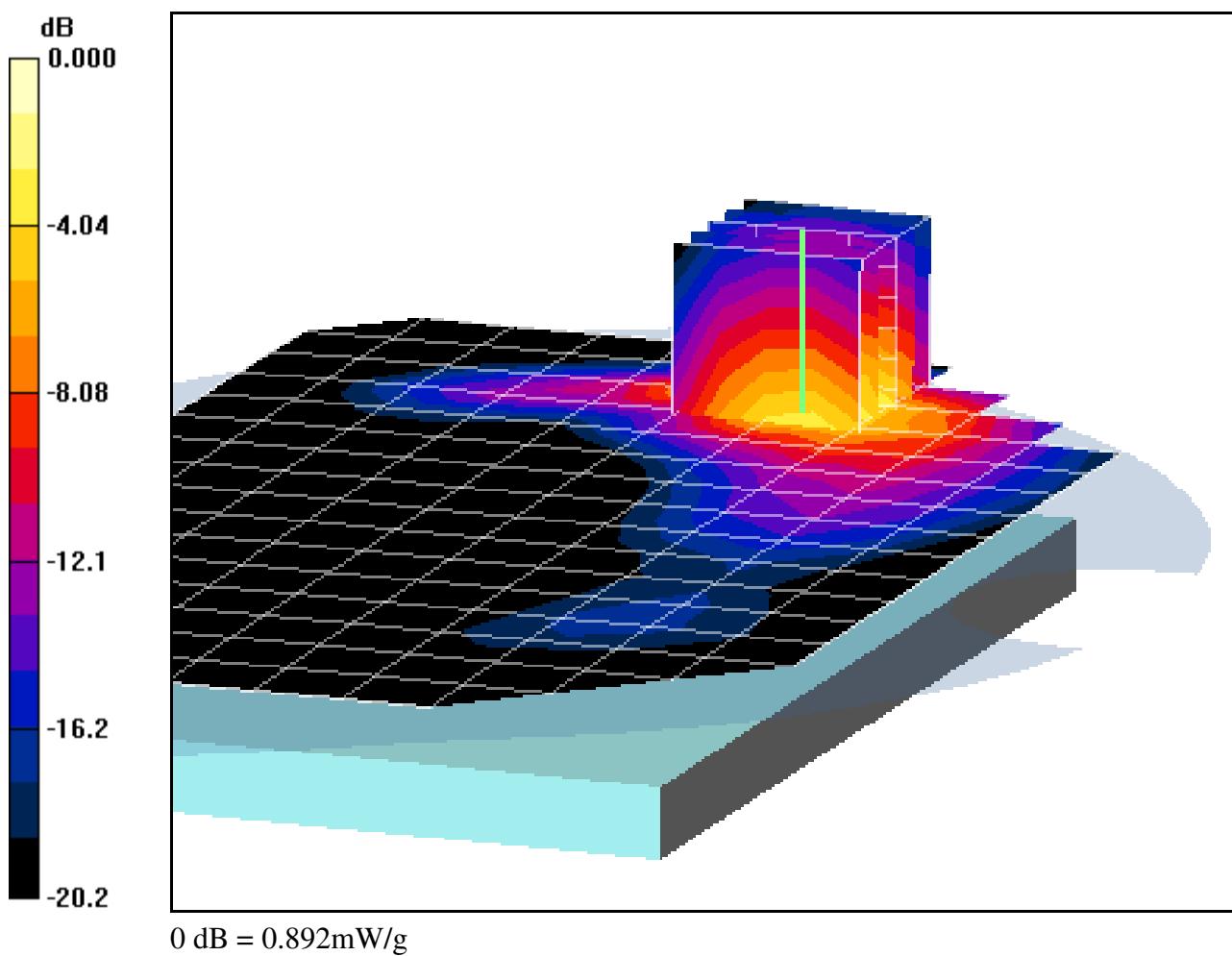
Sensor-Surface: 5mm (Mechanical Surface Detection)

Electronics: DAE4 Sn665; Calibrated: 4/21/2010

Phantom: SAM with CRP; Type: SAM; Serial: TP1375

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: GPRS 1900, Body SAR, Back side, Mid.ch, 4 Tx Slots


Area Scan (11x17x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 20.4 V/m; Power Drift = 0.128 dB

Peak SAR (extrapolated) = 1.27 W/kg

SAR(1 g) = 0.724 mW/g; SAR(10 g) = 0.379 mW/g

PCTEST ENGINEERING LABORATORY, INC.

DUT: A3LGTP1000; Type: 835/1900 GSM/GPRS/EDGE and 1900 WCDMA/HSPA Mini -Tablet with Bluetooth and WLAN; Serial: FCC1

Communication System: GSM1900 GPRS; 4 Tx slots; Frequency: 1880 MHz; Duty Cycle: 1:2.076
Medium: 1900 Muscle Medium parameters used:

$$f = 1880 \text{ MHz}; \sigma = 1.5 \text{ mho/m}; \epsilon_r = 52.1; \rho = 1000 \text{ kg/m}^3$$

Phantom section: Flat Section; Space: 0.75 cm

Test Date: 08-26-2010; Ambient Temp: 23.5 °C; Tissue Temp: 22.1 °C

Probe: ES3DV3 - SN3209; ConvF(4.65, 4.65, 4.65); Calibrated: 4/20/2010

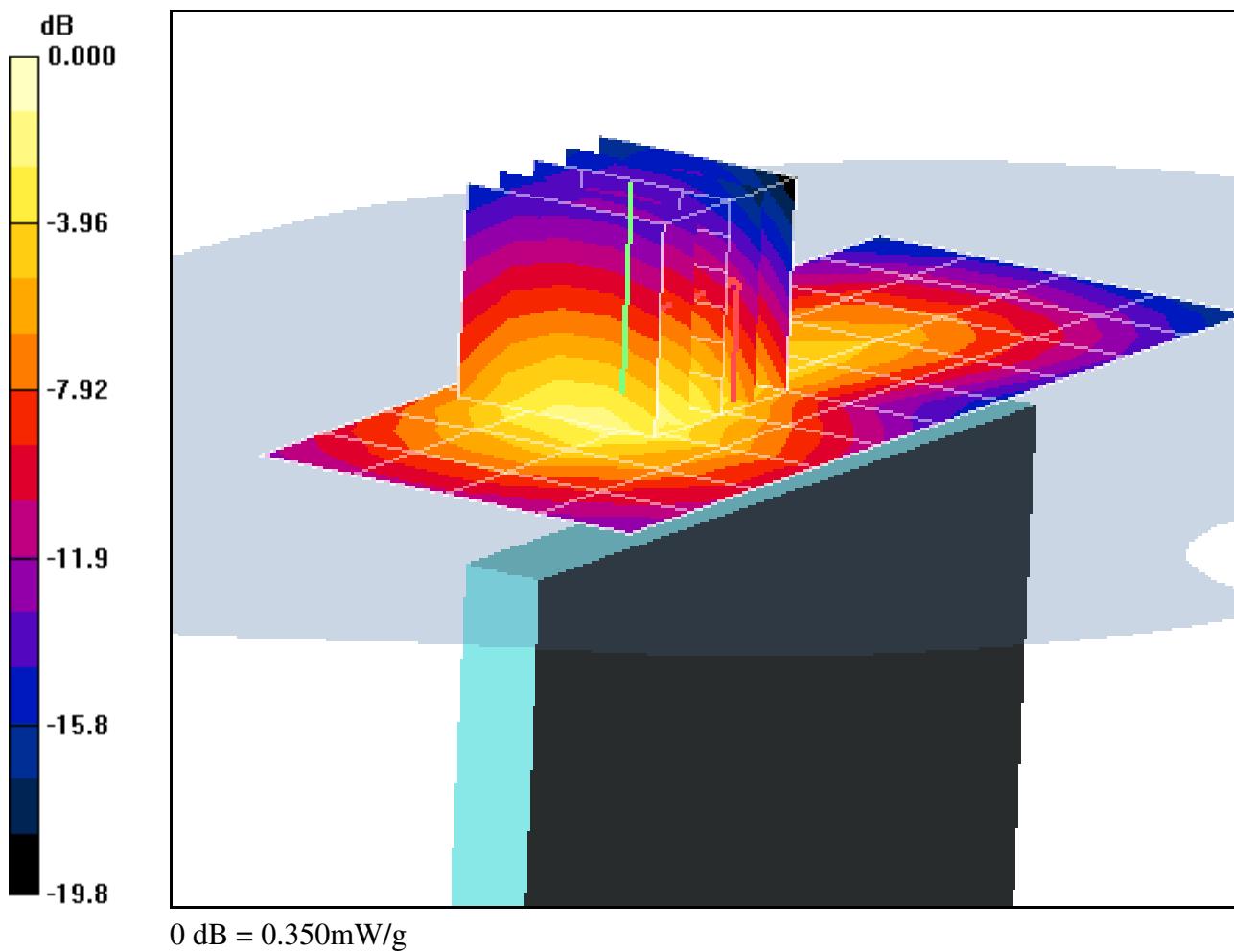
Sensor-Surface: 5mm (Mechanical Surface Detection)

Electronics: DAE4 Sn665; Calibrated: 4/21/2010

Phantom: SAM with CRP; Type: SAM; Serial: TP1375

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: GPRS 1900, Body SAR, Top, Mid.ch, 4 Tx Slots


Area Scan (5x11x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 14.8 V/m; Power Drift = 0.054 dB

Peak SAR (extrapolated) = 0.604 W/kg

SAR(1 g) = 0.341 mW/g; SAR(10 g) = 0.182 mW/g

PCTEST ENGINEERING LABORATORY, INC.

DUT: A3LGTP1000; Type: 835/1900 GSM/GPRS/EDGE and 1900 WCDMA/HSPA Mini -Tablet with Bluetooth and WLAN; Serial: FCC1

Communication System: GSM1900 GPRS; 4 Tx slots; Frequency: 1880 MHz; Duty Cycle: 1:2.076
Medium: 1900 Muscle Medium parameters used:

$$f = 1880 \text{ MHz}; \sigma = 1.5 \text{ mho/m}; \epsilon_r = 52.1; \rho = 1000 \text{ kg/m}^3$$

Phantom section: Flat Section; Space: 0.5 cm

Test Date: 08-26-2010; Ambient Temp: 23.5 °C; Tissue Temp: 22.1 °C

Probe: ES3DV3 - SN3209; ConvF(4.65, 4.65, 4.65); Calibrated: 4/20/2010

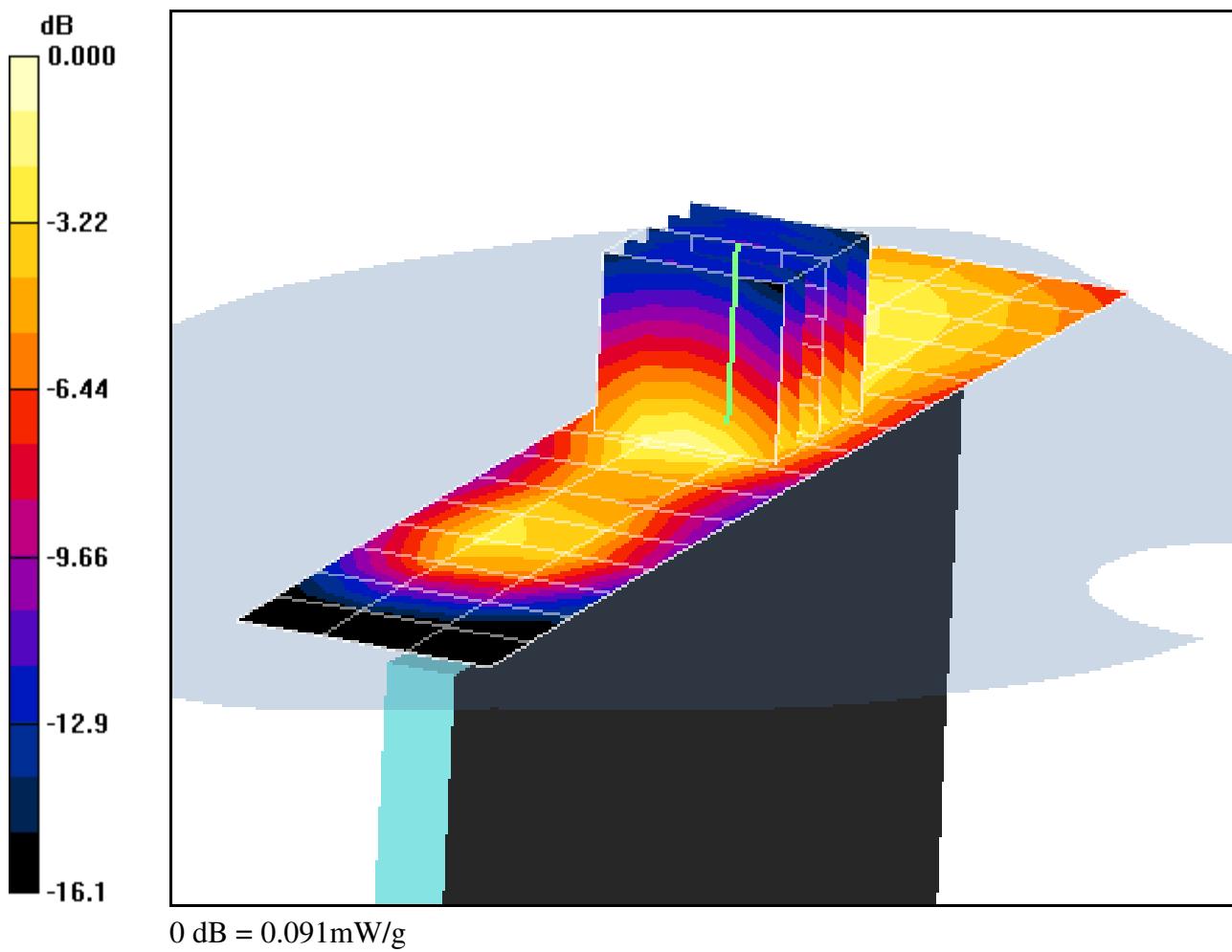
Sensor-Surface: 5mm (Mechanical Surface Detection)

Electronics: DAE4 Sn665; Calibrated: 4/21/2010

Phantom: SAM with CRP; Type: SAM; Serial: TP1375

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: GPRS 1900, Body SAR, Left Side, Mid.ch, 4 Tx Slots


Area Scan (4x17x1): Measurement grid: dx=15mm, dy=15mm

Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 7.63 V/m; Power Drift = 0.005 dB

Peak SAR (extrapolated) = 0.147 W/kg

SAR(1 g) = 0.091 mW/g; SAR(10 g) = 0.053 mW/g

PCTEST ENGINEERING LABORATORY, INC.

DUT: A3LGTP1000; Type: 835/1900 GSM/GPRS/EDGE and 1900 WCDMA/HSPA Mini -Tablet with Bluetooth and WLAN; Serial: FCC1

Communication System: GSM1900 GPRS; 4 Tx slots; Frequency: 1880 MHz; Duty Cycle: 1:2.076
Medium: 1900 Muscle Medium parameters used:

$$f = 1880 \text{ MHz}; \sigma = 1.5 \text{ mho/m}; \epsilon_r = 52.1; \rho = 1000 \text{ kg/m}^3$$

Phantom section: Flat Section; Space: 0.5 cm

Test Date: 08-26-2010; Ambient Temp: 23.5 °C; Tissue Temp: 22.1 °C

Probe: ES3DV3 - SN3209; ConvF(4.65, 4.65, 4.65); Calibrated: 4/20/2010

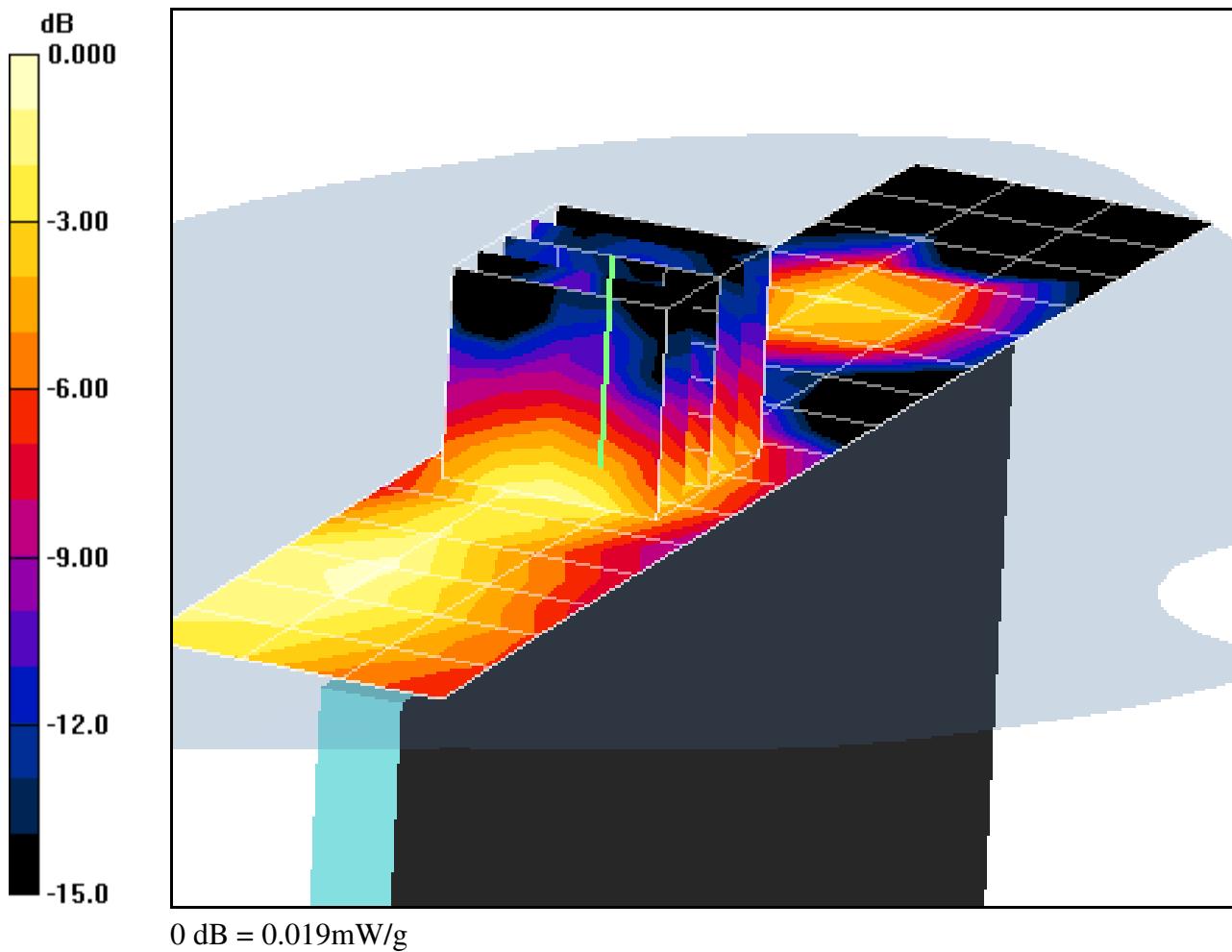
Sensor-Surface: 5mm (Mechanical Surface Detection)

Electronics: DAE4 Sn665; Calibrated: 4/21/2010

Phantom: SAM with CRP; Type: SAM; Serial: TP1375

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: GPRS 1900, Body SAR, Right Side, Mid.ch, 4 Tx Slots


Area Scan (4x17x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 3.62 V/m; Power Drift = -0.006 dB

Peak SAR (extrapolated) = 0.031 W/kg

SAR(1 g) = 0.019 mW/g; SAR(10 g) = 0.011 mW/g

PCTEST ENGINEERING LABORATORY, INC.

DUT: A3LGTP1000; Type: 835/1900 GSM/GPRS/EDGE and 1900 WCDMA/HSPA Mini -Tablet with Bluetooth and WLAN; Serial: FCC1

Communication System: GSM1900 GPRS; 4 Tx slots; Frequency: 1880 MHz; Duty Cycle: 1:2.076
Medium: 1900 Muscle Medium parameters used:

$$f = 1880 \text{ MHz}; \sigma = 1.5 \text{ mho/m}; \epsilon_r = 52.1; \rho = 1000 \text{ kg/m}^3$$

Phantom section: Flat Section; Space: 0.5 cm

Test Date: 08-26-2010; Ambient Temp: 23.5 °C; Tissue Temp: 22.1 °C

Probe: ES3DV3 - SN3209; ConvF(4.65, 4.65, 4.65); Calibrated: 4/20/2010

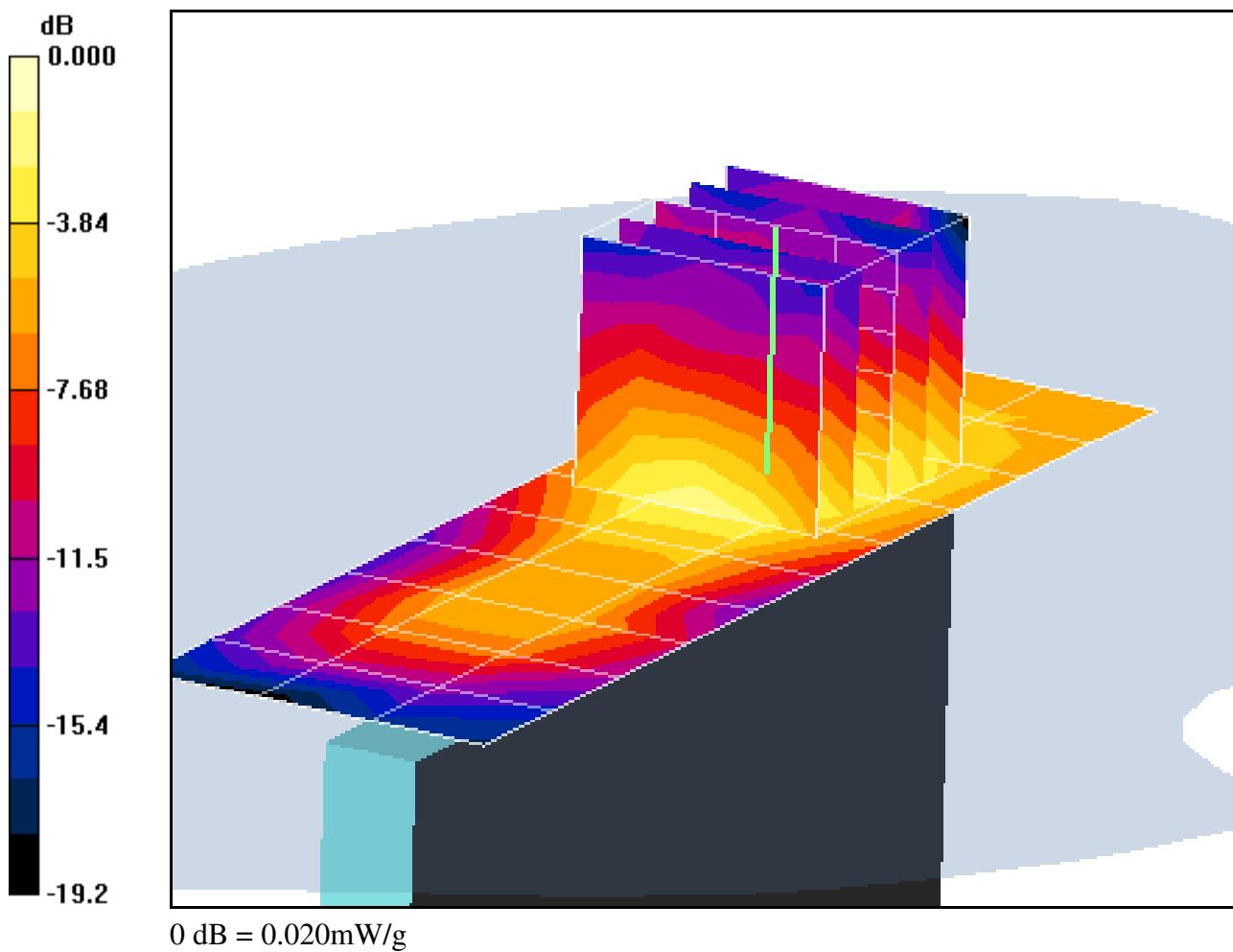
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn665; Calibrated: 4/21/2010

Phantom: SAM with CRP; Type: SAM; Serial: TP1375

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: GPRS 1900, Body SAR, Bottom, Mid.ch, 4 Tx Slots


Area Scan (4x11x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 3.30 V/m; Power Drift = -0.246 dB

Peak SAR (extrapolated) = 0.027 W/kg

SAR(1 g) = 0.017 mW/g; SAR(10 g) = 0.00943 mW/g

PCTEST ENGINEERING LABORATORY, INC.

DUT: A3LGTP1000; Type: 835/1900 GSM/GPRS/EDGE and 1900 WCDMA/HSPA Mini-Tablet with Bluetooth and WLAN; Serial: FCC1

Communication System: WCDMA1900; Frequency: 1880 MHz; Duty Cycle: 1:1

Medium: 1900 Muscle Medium parameters used:

$f = 1880 \text{ MHz}$; $\sigma = 1.5 \text{ mho/m}$; $\epsilon_r = 52.1$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section; Space: 0.5 cm

Test Date: 08-25-2010; Ambient Temp: 23.9 °C; Tissue Temp: 22.4 °C

Probe: ES3DV3 - SN3209; ConvF(4.65, 4.65, 4.65); Calibrated: 4/20/2010

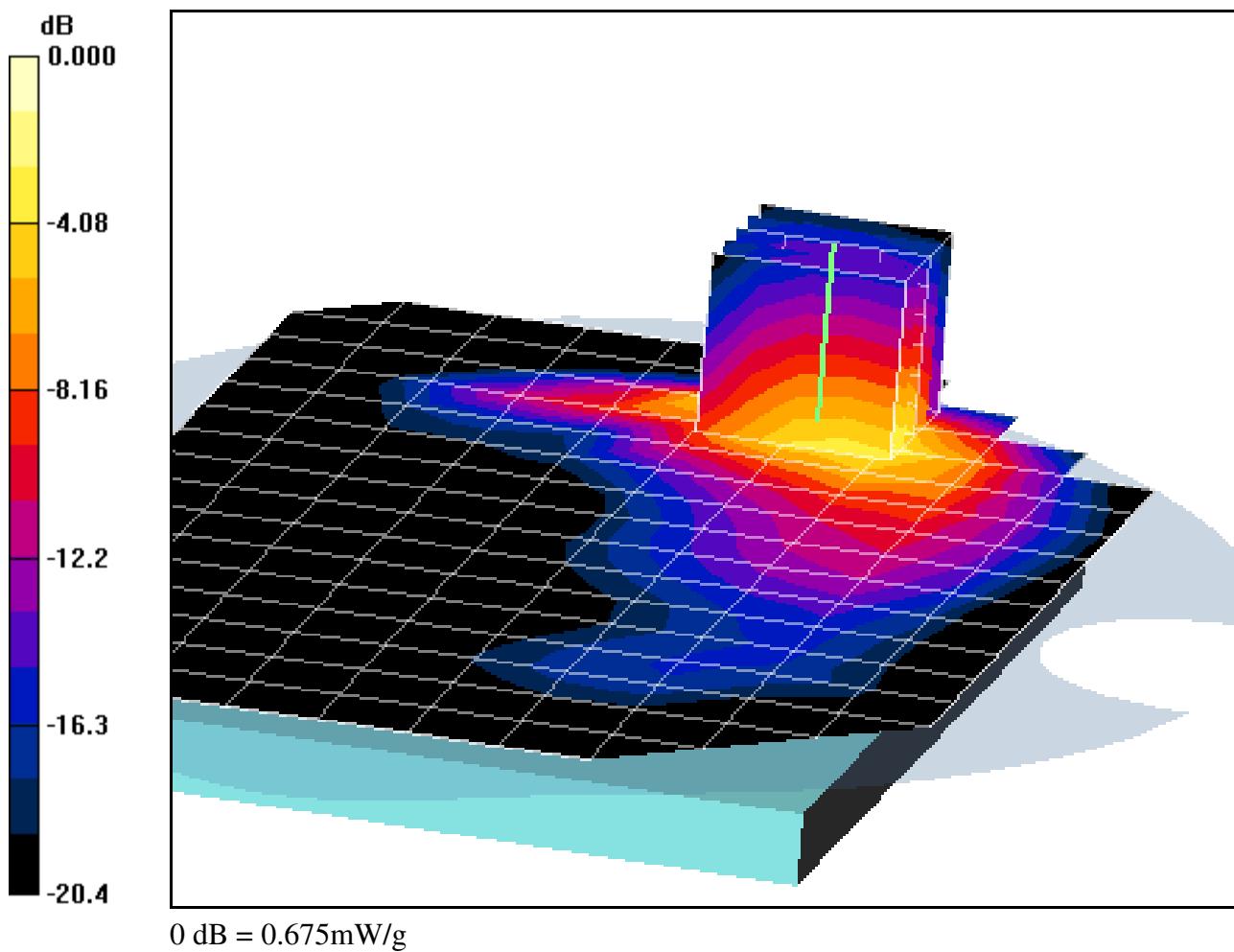
Sensor-Surface: 5mm (Mechanical Surface Detection)

Electronics: DAE4 Sn665; Calibrated: 4/21/2010

Phantom: SAM with CRP; Type: SAM; Serial: TP1375

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: WCDMA 1900, Body SAR, Back side, Mid.ch


Area Scan (11x17x1): Measurement grid: $dx=15\text{mm}$, $dy=15\text{mm}$

Zoom Scan (5x5x7)/Cube 0: Measurement grid: $dx=8\text{mm}$, $dy=8\text{mm}$, $dz=5\text{mm}$

Reference Value = 2.75 V/m; Power Drift = -0.138 dB

Peak SAR (extrapolated) = 1.30 W/kg

SAR(1 g) = 0.655 mW/g; SAR(10 g) = 0.315 mW/g

PCTEST ENGINEERING LABORATORY, INC.

DUT: A3LGTP1000; Type: 835/1900 GSM/GPRS/EDGE and 1900 WCDMA/HSPA Mini-Tablet with Bluetooth and WLAN; Serial: FCC1

Communication System: WCDMA1900; Frequency: 1852.4 MHz; Duty Cycle: 1:1

Medium: 1900 Muscle Medium parameters used (interpolated):

$f = 1852.4$ MHz; $\sigma = 1.47$ mho/m; $\epsilon_r = 52.3$; $\rho = 1000$ kg/m³

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08-25-2010; Ambient Temp: 23.9 °C; Tissue Temp: 22.4 °C

Probe: ES3DV3 - SN3209; ConvF(4.65, 4.65, 4.65); Calibrated: 4/20/2010

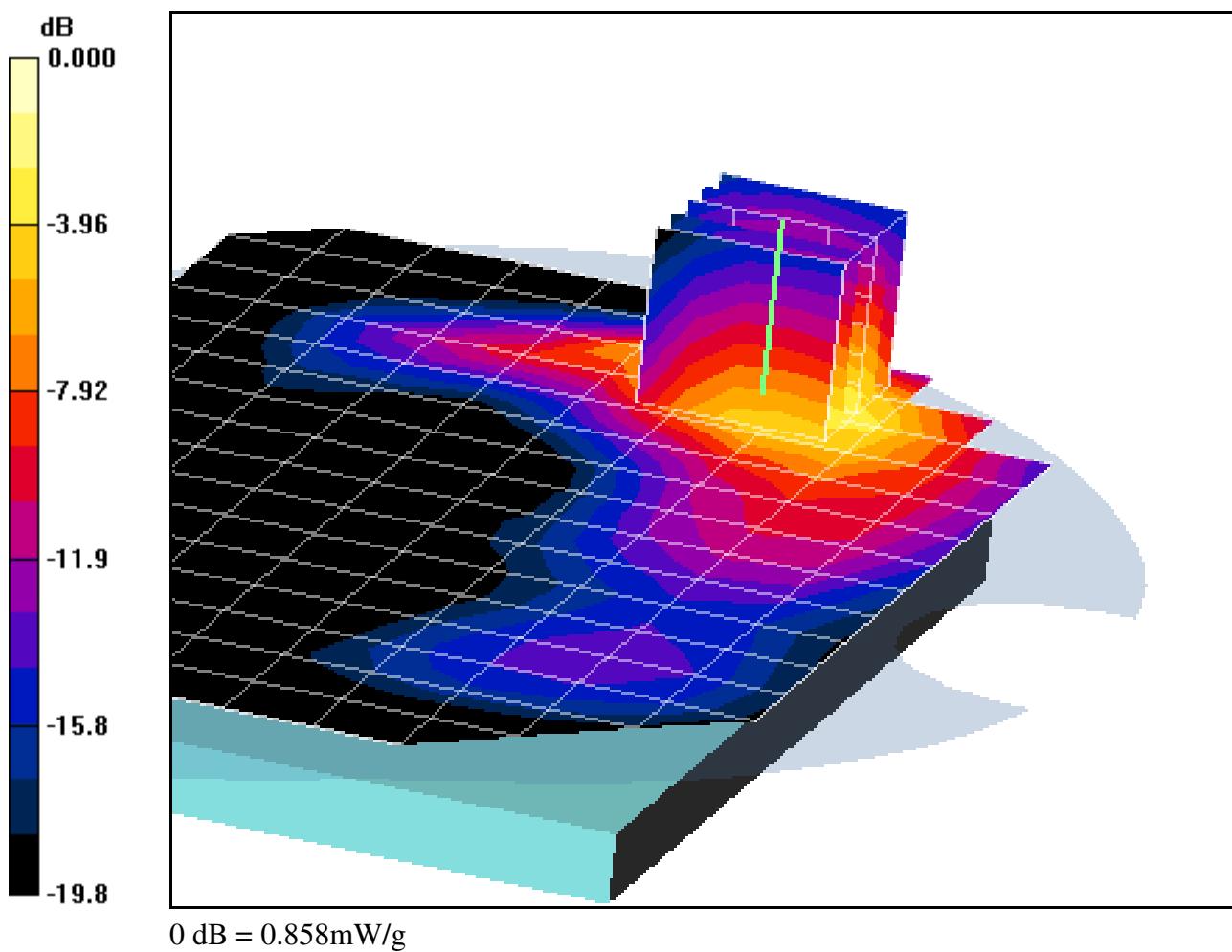
Sensor-Surface: 5mm (Mechanical Surface Detection)

Electronics: DAE4 Sn665; Calibrated: 4/21/2010

Phantom: SAM with CRP; Type: SAM; Serial: TP1375

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: WCDMA 1900, Body SAR, Back side, Low.ch


Area Scan (11x17x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

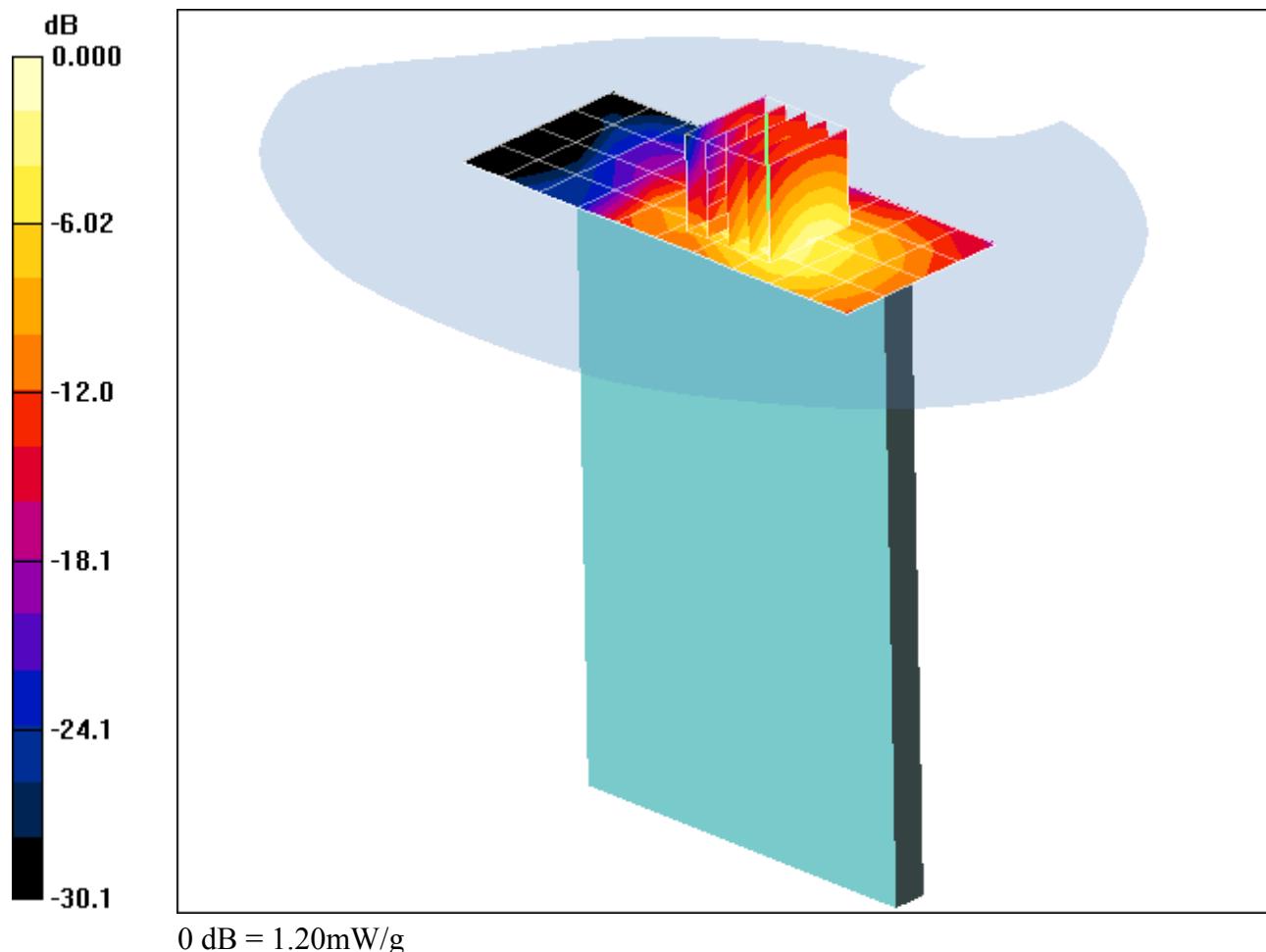
Reference Value = 24.8 V/m; Power Drift = 0.005 dB

Peak SAR (extrapolated) = 1.60 W/kg

SAR(1 g) = 0.881 mW/g; SAR(10 g) = 0.451 mW/g

PCTEST ENGINEERING LABORATORY, INC.

DUT: A3LGTP1000; Type: 850/1900 GSM/GPRS/EDGE and 1900 WCDMA/HSPA Mini-Tablet with Bluetooth and WLAN; Serial: FCC1


Communication System: WCDMA1900; Frequency: 1880 MHz; Duty Cycle: 1:1
Medium parameters used: $f = 1880$ MHz; $\sigma = 1.55$ mho/m; $\epsilon_r = 52.5$; $\rho = 1000$ kg/m³
Phantom section: Flat Section; Space: 0.5 cm

Test Date: 10-3-2010; Amb. Temp: 21.7 C; Tissue Temp: 21.0 C

Probe: EX3DV4 - SN3550; ConvF(6.63, 6.63, 6.63); Calibrated: 1/26/2010
Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn649; Calibrated: 1/22/2010
Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1357
Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: WCDMA 1900, Body SAR, Top Edge, Mid.ch,

Area Scan (5x11x1): Measurement grid: dx=15mm, dy=15mm
Zoom Scan 2 (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm
Reference Value = 18.3 V/m; Power Drift = -0.260 dB
Peak SAR (extrapolated) = 2.06 W/kg
SAR(1 g) = 0.992 mW/g; SAR(10 g) = 0.454 mW/g

PCTEST ENGINEERING LABORATORY, INC.

DUT: A3LGTP1000; Type: 850/1900 GSM/GPRS/EDGE and 1900 WCDMA/HSPA Mini-Tablet with Bluetooth and WLAN; Serial: FCC1

Communication System: WCDMA1900; Frequency: 1880 MHz; Duty Cycle: 1:1
Medium parameters used: $f = 1880$ MHz; $\sigma = 1.55$ mho/m; $\epsilon_r = 52.5$; $\rho = 1000$ kg/m³
Phantom section: Flat Section; Space: 0.5 cm

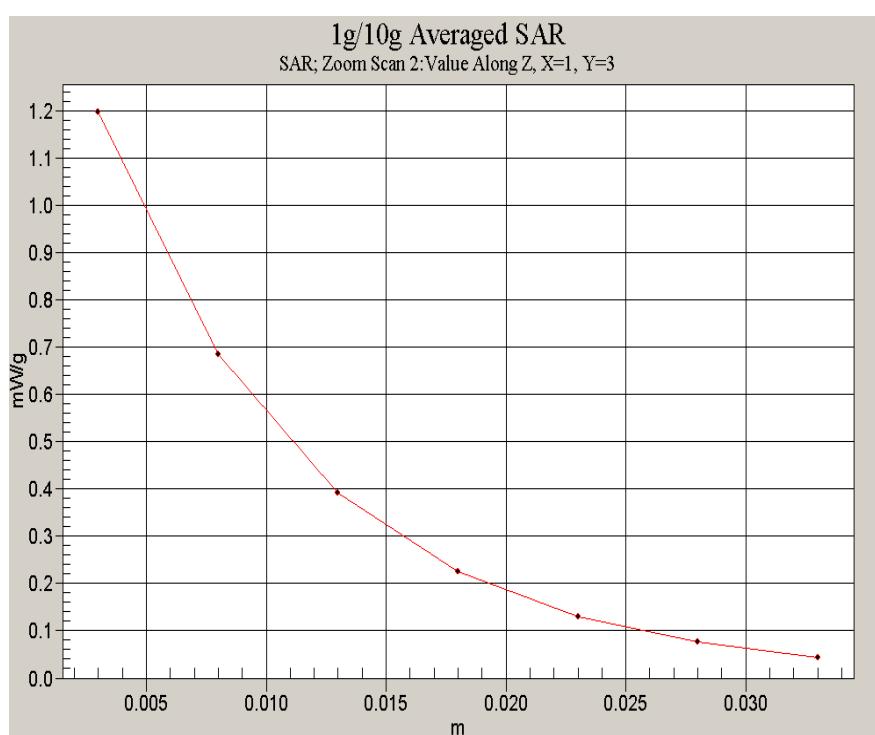
Test Date: 10-3-2010; Amb. Temp: 21.7 C; Tissue Temp: 21.0 C

Probe: EX3DV4 - SN3550; ConvF(6.63, 6.63, 6.63); Calibrated: 1/26/2010
Sensor-Surface: 3mm (Mechanical Surface Detection)
Electronics: DAE4 Sn649; Calibrated: 1/22/2010

Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1357

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: WCDMA 1900, Body SAR, Top Edge, Mid.ch,


Area Scan (5x11x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan 2 (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 18.3 V/m; Power Drift = -0.260 dB

Peak SAR (extrapolated) = 2.06 W/kg

SAR(1 g) = 0.992 mW/g; SAR(10 g) = 0.454 mW/g

0 dB = 1.20mW/g

PCTEST ENGINEERING LABORATORY, INC.

DUT: A3LGTP1000; Type: 835/1900 GSM/GPRS/EDGE and 1900 WCDMA/HSPA Mini-Tablet with Bluetooth and WLAN; Serial: FCC1

Communication System: WCDMA1900; Frequency: 1880 MHz; Duty Cycle: 1:1

Medium: 1900 Muscle Medium parameters used:

$f = 1880 \text{ MHz}$; $\sigma = 1.5 \text{ mho/m}$; $\epsilon_r = 52.1$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section; Space: 0.5 cm

Test Date: 08-26-2010; Ambient Temp: 23.5 °C; Tissue Temp: 22.1 °C

Probe: ES3DV3 - SN3209; ConvF(4.65, 4.65, 4.65); Calibrated: 4/20/2010

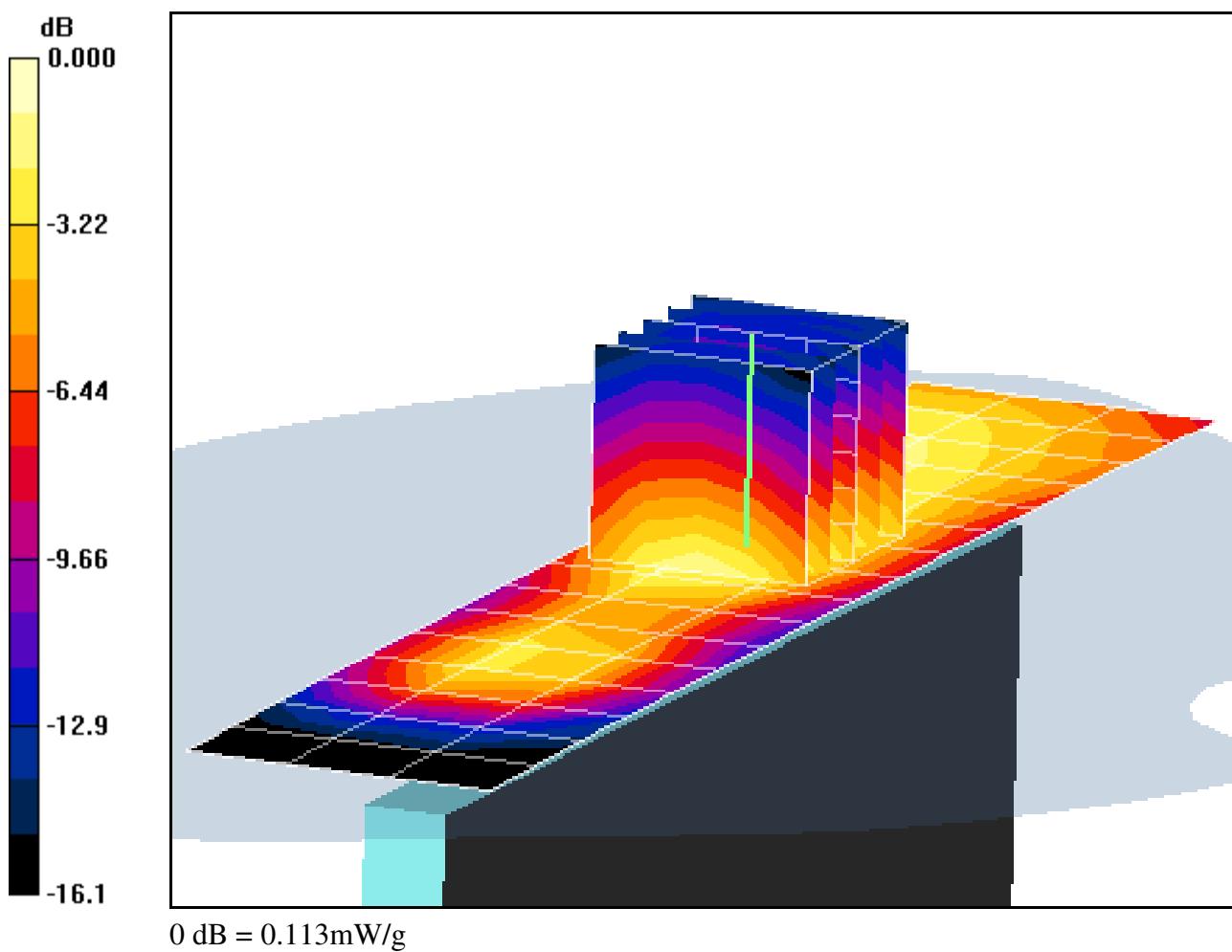
Sensor-Surface: 5mm (Mechanical Surface Detection)

Electronics: DAE4 Sn665; Calibrated: 4/21/2010

Phantom: SAM with CRP; Type: SAM; Serial: TP1375

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: WCDMA 1900, Body SAR, Left Side, Mid.ch


Area Scan (4x17x1): Measurement grid: $dx=15\text{mm}$, $dy=15\text{mm}$

Zoom Scan (5x5x7)/Cube 0: Measurement grid: $dx=8\text{mm}$, $dy=8\text{mm}$, $dz=5\text{mm}$

Reference Value = 8.74 V/m; Power Drift = -0.006 dB

Peak SAR (extrapolated) = 0.184 W/kg

SAR(1 g) = 0.113 mW/g; SAR(10 g) = 0.066 mW/g

PCTEST ENGINEERING LABORATORY, INC.

DUT: A3LGTP1000; Type: 835/1900 GSM/GPRS/EDGE and 1900 WCDMA/HSPA Mini-Tablet with Bluetooth and WLAN; Serial: FCC1

Communication System: WCDMA1900; Frequency: 1880 MHz; Duty Cycle: 1:1

Medium: 1900 Muscle Medium parameters used:

$f = 1880 \text{ MHz}$; $\sigma = 1.5 \text{ mho/m}$; $\epsilon_r = 52.1$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section; Space: 0.5 cm

Test Date: 08-26-2010; Ambient Temp: 23.5 °C; Tissue Temp: 22.1 °C

Probe: ES3DV3 - SN3209; ConvF(4.65, 4.65, 4.65); Calibrated: 4/20/2010

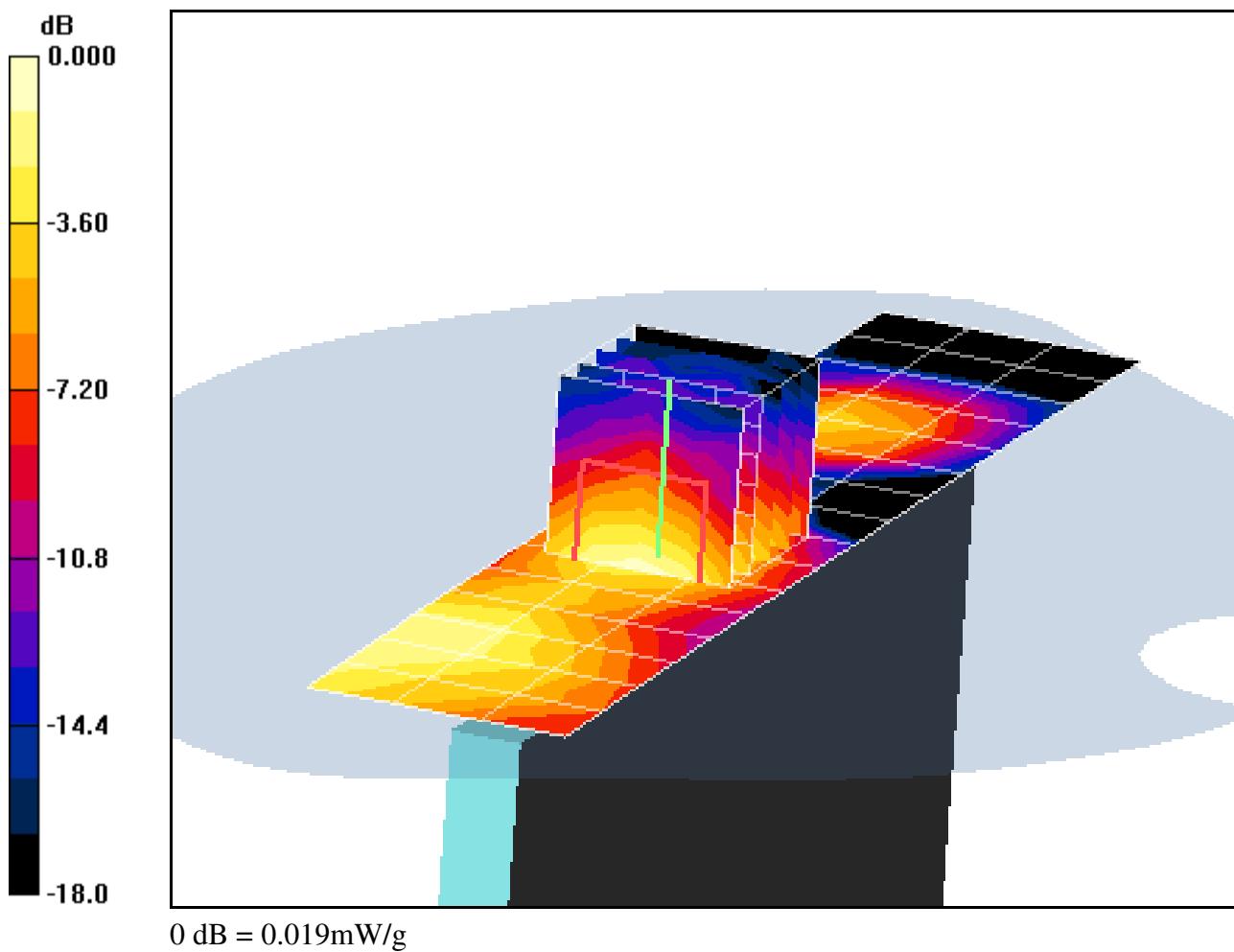
Sensor-Surface: 5mm (Mechanical Surface Detection)

Electronics: DAE4 Sn665; Calibrated: 4/21/2010

Phantom: SAM with CRP; Type: SAM; Serial: TP1375

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: WCDMA 1900, Body SAR, Right, Mid.ch


Area Scan (4x17x1): Measurement grid: $dx=15\text{mm}$, $dy=15\text{mm}$

Zoom Scan (5x5x7)/Cube 0: Measurement grid: $dx=8\text{mm}$, $dy=8\text{mm}$, $dz=5\text{mm}$

Reference Value = 3.28 V/m; Power Drift = 0.276 dB

Peak SAR (extrapolated) = 0.034 W/kg

SAR(1 g) = 0.020 mW/g; SAR(10 g) = 0.011 mW/g

PCTEST ENGINEERING LABORATORY, INC.

DUT: A3LGTP1000; Type: 835/1900 GSM/GPRS/EDGE and 1900 WCDMA/HSPA Mini-Tablet with Bluetooth and WLAN; Serial: FCC1

Communication System: WCDMA1900; Frequency: 1880 MHz; Duty Cycle: 1:1

Medium: 1900 Muscle Medium parameters used:

$f = 1880 \text{ MHz}$; $\sigma = 1.5 \text{ mho/m}$; $\epsilon_r = 52.1$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section; Space: 0.5 cm

Test Date: 08-26-2010; Ambient Temp: 23.5 °C; Tissue Temp: 22.1 °C

Probe: ES3DV3 - SN3209; ConvF(4.65, 4.65, 4.65); Calibrated: 4/20/2010

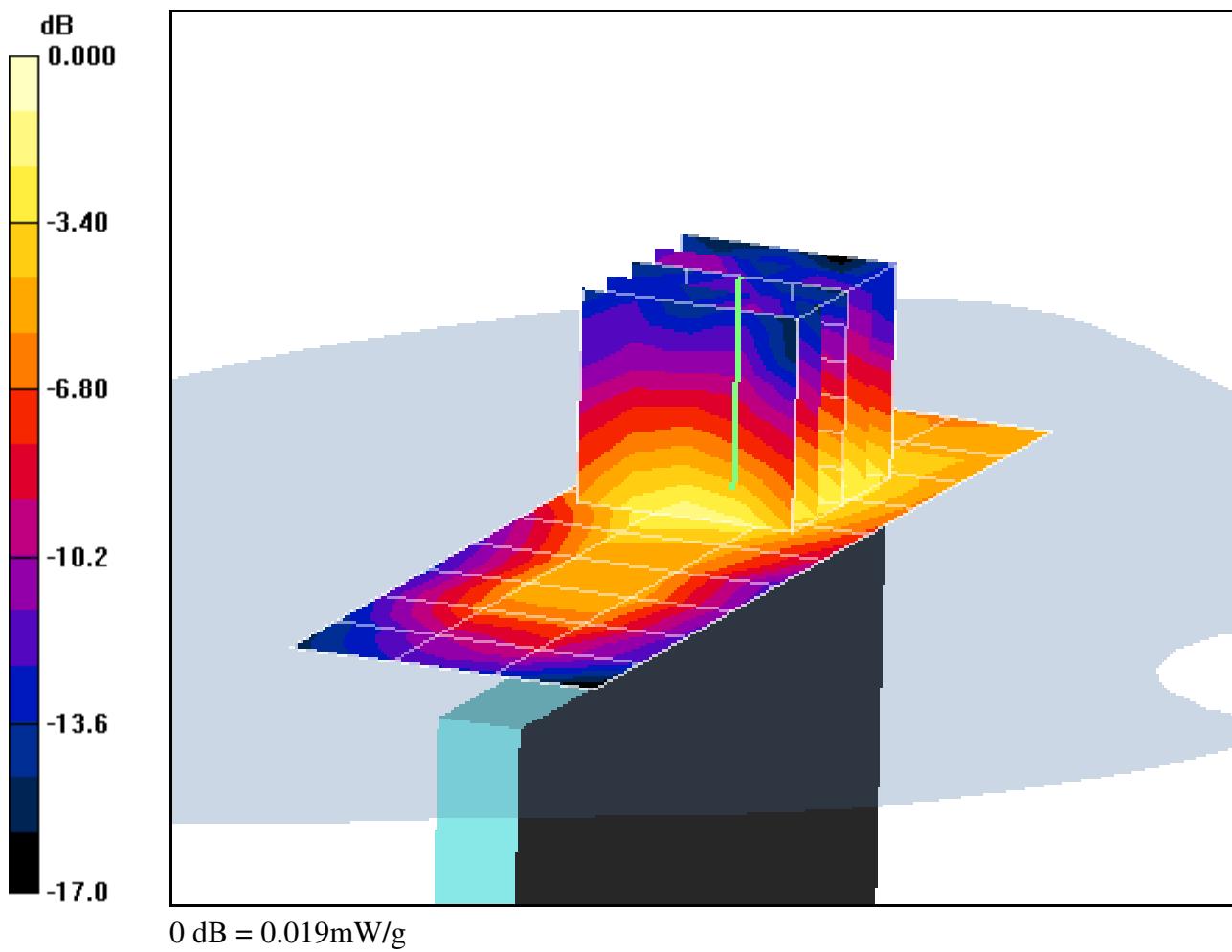
Sensor-Surface: 5mm (Mechanical Surface Detection)

Electronics: DAE4 Sn665; Calibrated: 4/21/2010

Phantom: SAM with CRP; Type: SAM; Serial: TP1375

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: WCDMA 1900, Body SAR, Bottom, Mid.ch


Area Scan (4x11x1): Measurement grid: $dx=15\text{mm}$, $dy=15\text{mm}$

Zoom Scan (5x5x7)/Cube 0: Measurement grid: $dx=8\text{mm}$, $dy=8\text{mm}$, $dz=5\text{mm}$

Reference Value = 3.63 V/m; Power Drift = -0.174 dB

Peak SAR (extrapolated) = 0.030 W/kg

SAR(1 g) = 0.019 mW/g; SAR(10 g) = 0.011 mW/g

PCTEST ENGINEERING LABORATORY, INC.

DUT: A3LGTP1000; Type: 835/1900 GSM/GPRS/EDGE and 1900 WCDMA/HSPA Mini-Tablet with Bluetooth and WLAN; Serial: 21

Communication System: IEEE 802.11b; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium: 2450 Muscle Medium parameters used (interpolated):

$f = 2437$ MHz; $\sigma = 1.96$ mho/m; $\epsilon_r = 52.2$; $\rho = 1000$ kg/m³

Phantom section: Flat Section; Space: 0.5 cm

Test Date: 08-24-2010; Ambient Temp: 22.7 °C; Tissue Temp: 21.1 °C

Probe: ES3DV3 - SN3213; ConvF(4.27, 4.27, 4.27); Calibrated: 3/16/2010

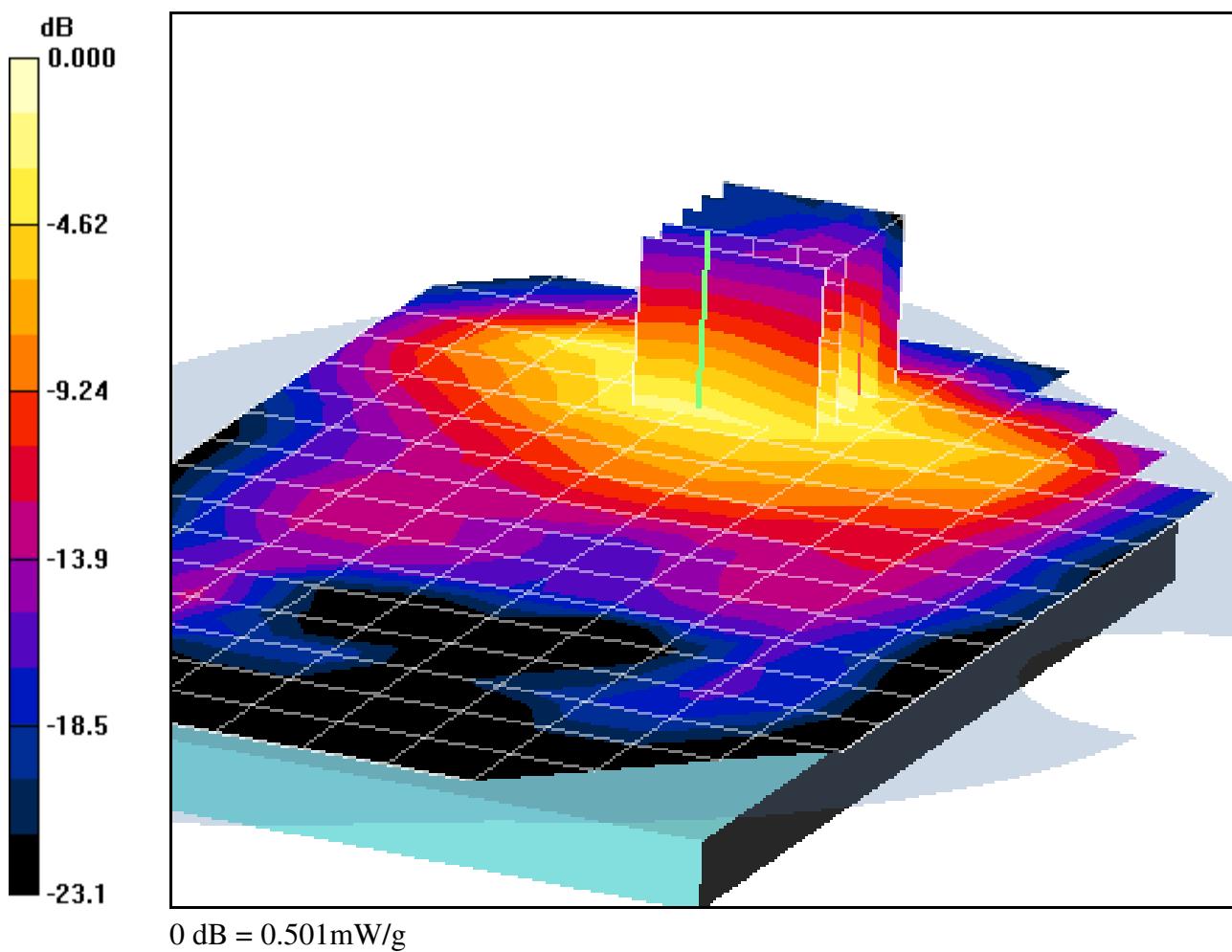
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn704; Calibrated: 3/22/2010

Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1403

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: IEEE 802.11b, Body SAR, Ch 06, 1 Mbps, Back Side


Area Scan (11x17x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 14.2 V/m; Power Drift = 0.067 dB

Peak SAR (extrapolated) = 0.907 W/kg

SAR(1 g) = 0.404 mW/g; SAR(10 g) = 0.227 mW/g

PCTEST ENGINEERING LABORATORY, INC.

DUT: A3LGTP1000; Type: 835/1900 GSM/GPRS/EDGE and 1900 WCDMA/HSPA Mini-Tablet with Bluetooth and WLAN; Serial: 21

Communication System: IEEE 802.11b; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium: 2450 Muscle Medium parameters used (interpolated):

$f = 2437$ MHz; $\sigma = 1.96$ mho/m; $\epsilon_r = 52.2$; $\rho = 1000$ kg/m³

Phantom section: Flat Section; Space: 0.5 cm

Test Date: 08-24-2010; Ambient Temp: 22.7 °C; Tissue Temp: 21.1 °C

Probe: ES3DV3 - SN3213; ConvF(4.27, 4.27, 4.27); Calibrated: 3/16/2010

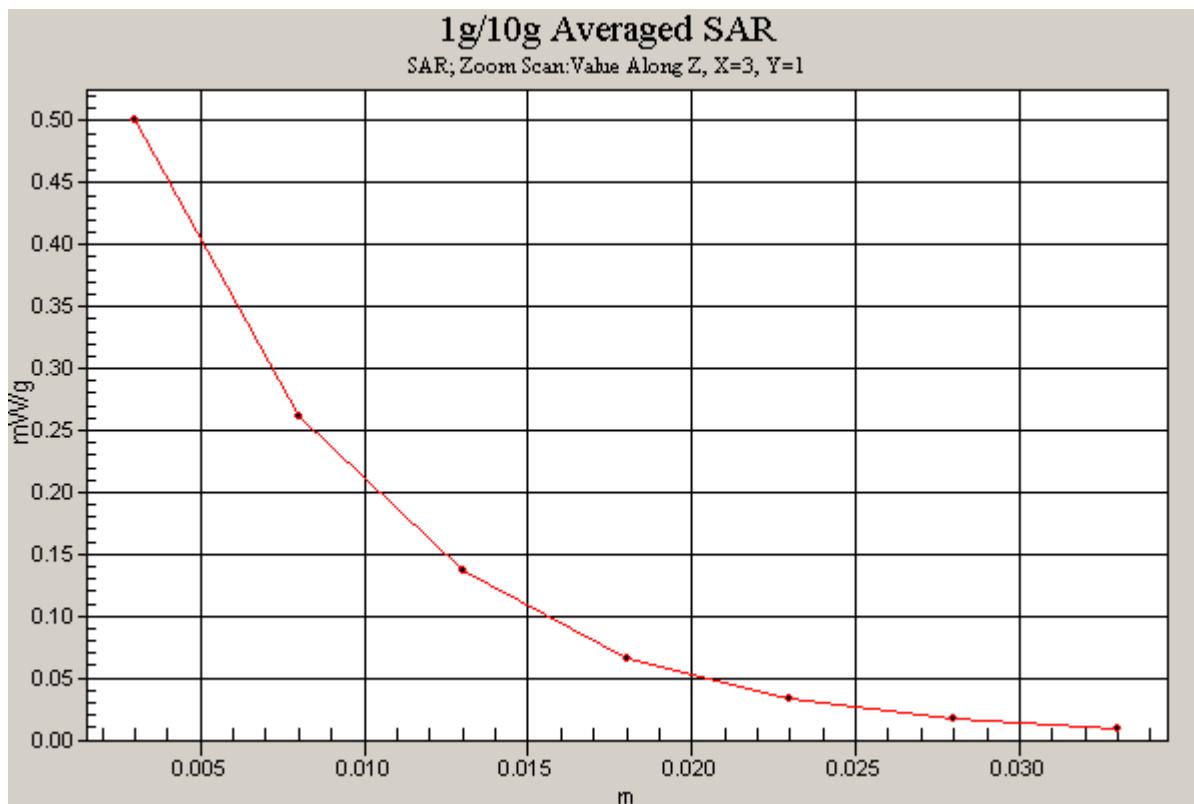
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn704; Calibrated: 3/22/2010

Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1403

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: IEEE 802.11b, Body SAR, Ch 06, 1 Mbps, Back Side


Area Scan (11x17x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 14.2 V/m; Power Drift = 0.067 dB

Peak SAR (extrapolated) = 0.907 W/kg

SAR(1 g) = 0.404 mW/g; SAR(10 g) = 0.227 mW/g

PCTEST ENGINEERING LABORATORY, INC.

DUT: A3LGTP1000; Type: 835/1900 GSM/GPRS/EDGE and 1900 WCDMA/HSPA Mini-Tablet with Bluetooth and WLAN; Serial: 116

Communication System: IEEE 802.11b; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium: 2450 Muscle Medium parameters used (interpolated):

$$f = 2437 \text{ MHz}; \sigma = 1.91 \text{ mho/m}; \epsilon_r = 50.9; \rho = 1000 \text{ kg/m}^3$$

Phantom section: Flat Section; Space: 0.75 cm

Test Date: 08-31-2010; Ambient Temp: 22.9 °C; Tissue Temp: 21.5 °C

Probe: EX3DV4 - SN3550; ConvF(6.4, 6.4, 6.4); Calibrated: 1/26/2010

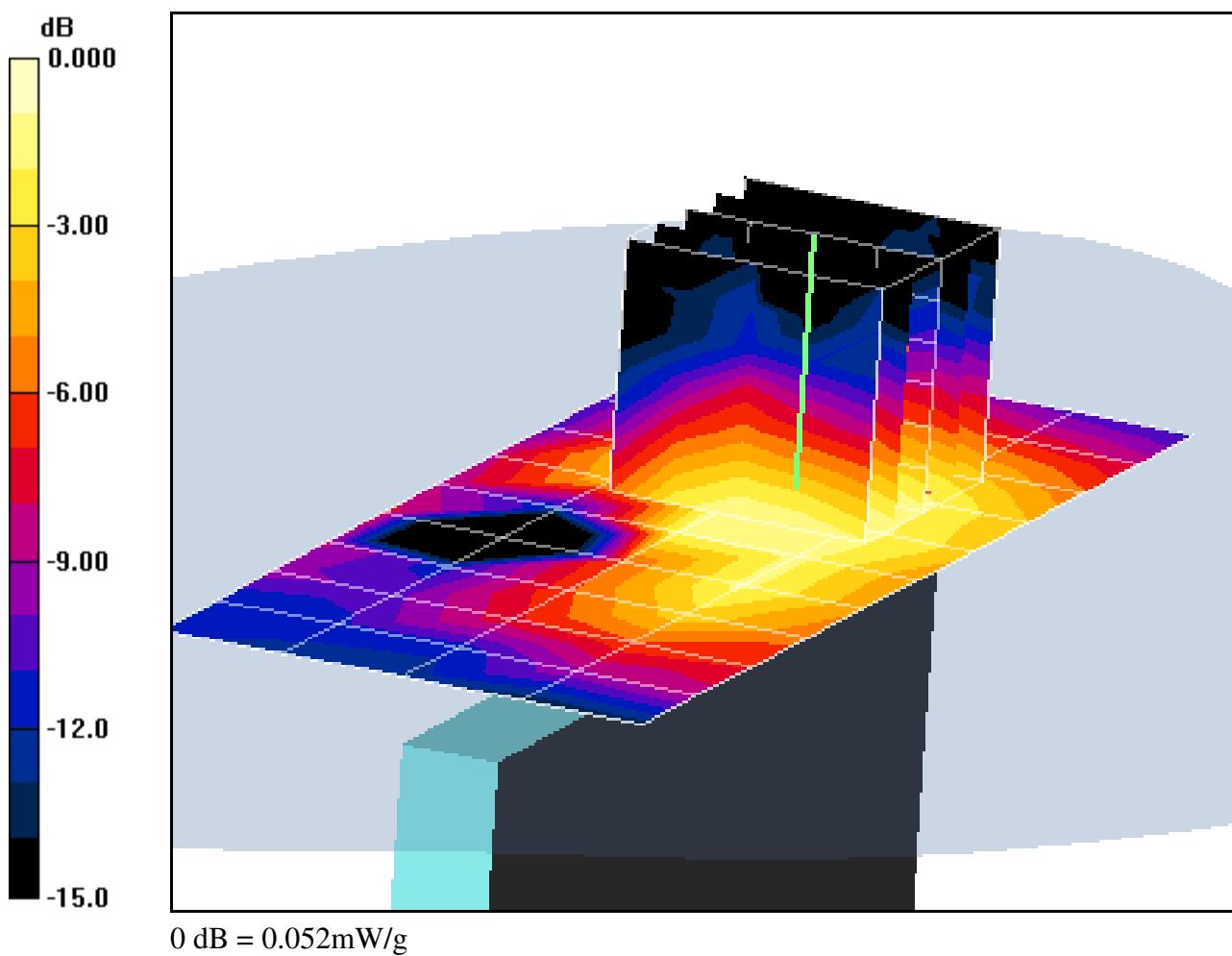
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn649; Calibrated: 1/22/2010

Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1114

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: IEEE 802.11b, Body SAR, Ch 06, 1 Mbps, Top


Area Scan (5x11x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 4.95 V/m; Power Drift = -0.148 dB

Peak SAR (extrapolated) = 0.079 W/kg

SAR(1 g) = 0.043 mW/g; SAR(10 g) = 0.024 mW/g

PCTEST ENGINEERING LABORATORY, INC.

DUT: A3LGTP1000; Type: 835/1900 GSM/GPRS/EDGE and 1900 WCDMA/HSPA Mini-Tablet with Bluetooth and WLAN; Serial: 116

Communication System: IEEE 802.11b; Frequency: 2437 MHz; Duty Cycle: 1:1
Medium: 2450 Muscle Medium parameters used (interpolated):

$$f = 2437 \text{ MHz}; \sigma = 1.91 \text{ mho/m}; \epsilon_r = 50.9; \rho = 1000 \text{ kg/m}^3$$

Phantom section: Flat Section; Space: 0.5 cm

Test Date: 08-31-2010; Ambient Temp: 22.9 °C; Tissue Temp: 21.5 °C

Probe: EX3DV4 - SN3550; ConvF(6.4, 6.4, 6.4); Calibrated: 1/26/2010

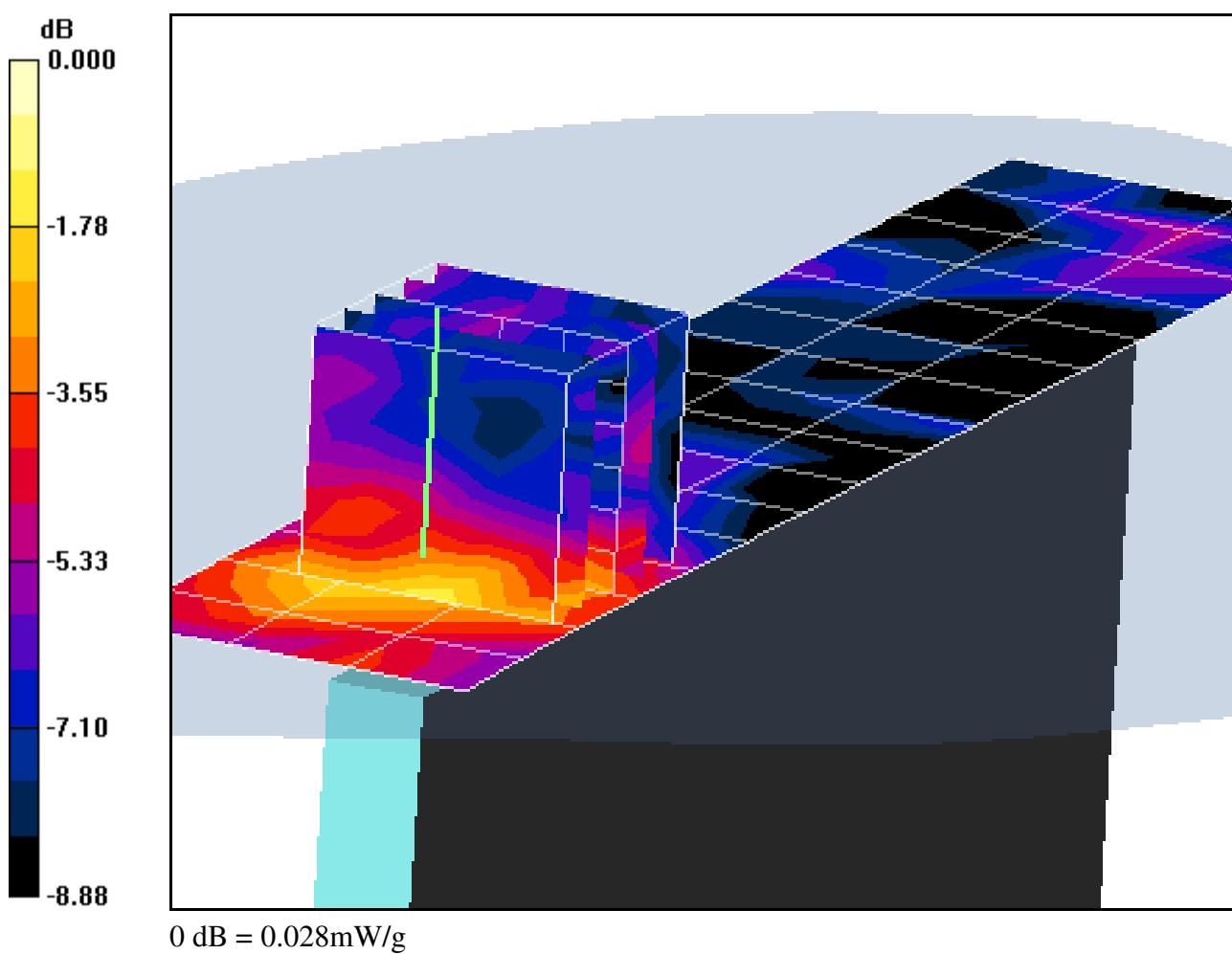
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn649; Calibrated: 1/22/2010

Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1114

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: IEEE 802.11b, Body SAR, Ch 06, 1 Mbps, Right


Area Scan (4x17x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 2.52 V/m; Power Drift = 0.123 dB

Peak SAR (extrapolated) = 0.044 W/kg

SAR(1 g) = 0.023 mW/g; SAR(10 g) = 0.013 mW/g

PCTEST ENGINEERING LABORATORY, INC.

DUT: A3LGTP1000; Type: GSM/835/1900 GPRS/EDGE and 1900 WCDMA/HSPA Mini-Tablet with Bluetooth and WLAN; Serial: 118

Communication System: IEEE 802.11a 5.2-5.8 GHz Band; Frequency: 5180 MHz; Duty Cycle: 1:1
Medium: 5.2-5.8 GHz Muscle; Medium parameters used (interpolated):

$$f = 5180 \text{ MHz}; \sigma = 5.3 \text{ mho/m}; \epsilon_r = 47.2; \rho = 1000 \text{ kg/m}^3$$

Phantom section: Flat Section; Space: 0.5 cm

Test Date: 08-27-2010; Ambient Temp: 24.3 °C; Tissue Temp: 22.6 °C

Probe: EX3DV4 - SN3550; ConvF(3.73, 3.73, 3.73); Calibrated: 1/26/2010

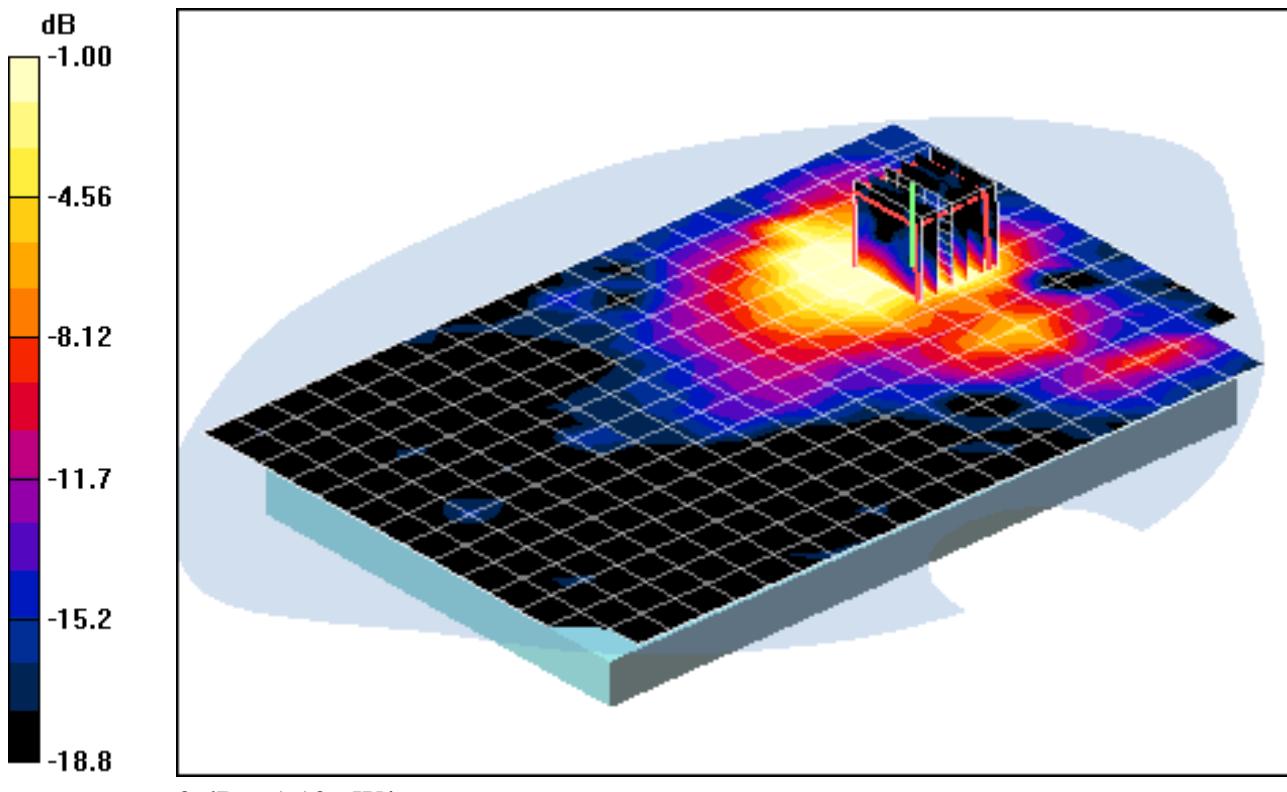
Sensor-Surface: 2.32mm (Mechanical Surface Detection)

Electronics: DAE4 Sn649; Calibrated: 1/22/2010

Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1114

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: IEEE 802.11a 5.2 GHz, Body SAR, Back Side, Ch 36, 6 Mbps


Area Scan (15x22x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (6x6x9)/Cube 0: Measurement grid: dx=4.6mm, dy=4.6mm, dz=2.8mm

Reference Value = 13.8 V/m; Power Drift = -0.050 dB

Peak SAR (extrapolated) = 2.58 W/kg

SAR(1 g) = 0.610 mW/g; SAR(10 g) = 0.178 mW/g

PCTEST ENGINEERING LABORATORY, INC.

DUT: A3LGTP1000; Type: 835/1900 GSM/GPRS/EDGE and 1900 WCDMA/HSPA Mini-Tablet with Bluetooth and WLAN; Serial: 118

Communication System: IEEE 802.11a 5.2-5.8 GHz Band; Frequency: 5180 MHz; Duty Cycle: 1:1
Medium: 5.2-5.8 GHz Muscle; Medium parameters used (interpolated):

$$f = 5180 \text{ MHz}; \sigma = 5.3 \text{ mho/m}; \epsilon_r = 47.2; \rho = 1000 \text{ kg/m}^3$$

Phantom section: Flat Section; Space: 0.5 cm

Test Date: 08-27-2010; Ambient Temp: 24.3 °C; Tissue Temp: 22.6 °C

Probe: EX3DV4 - SN3550; ConvF(3.73, 3.73, 3.73); Calibrated: 1/26/2010

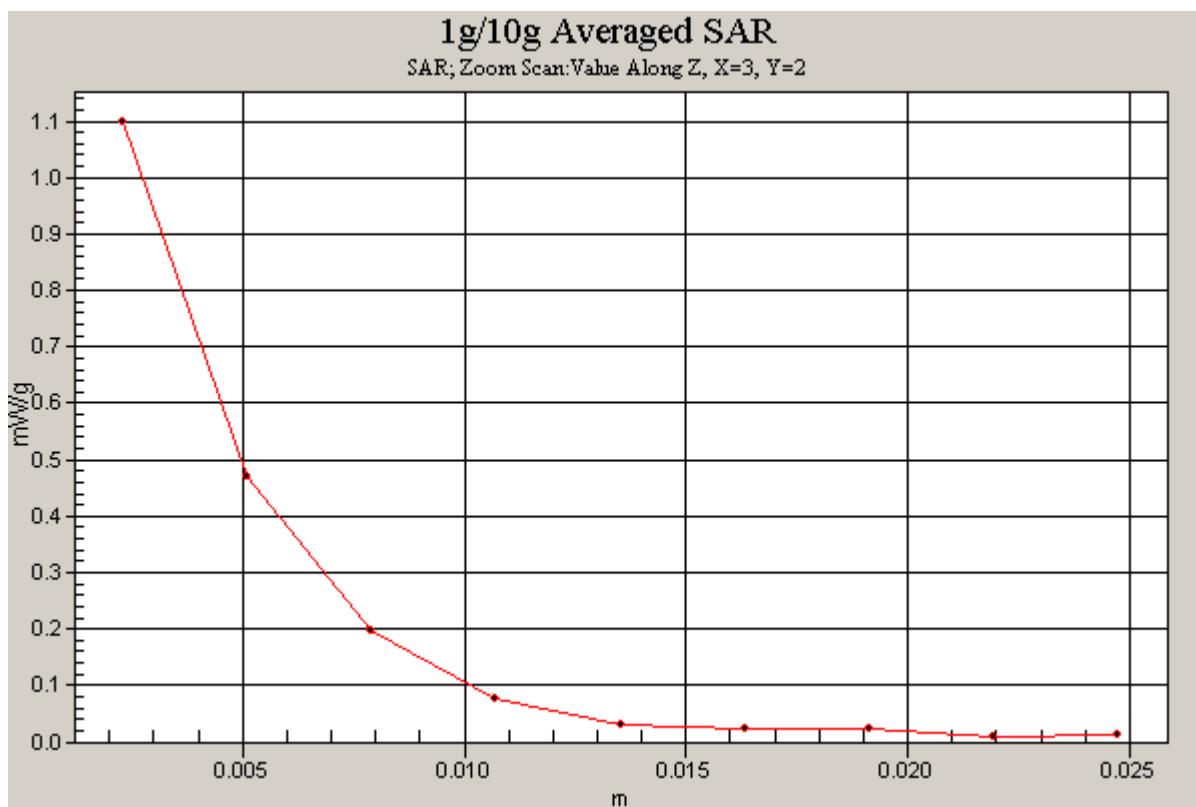
Sensor-Surface: 2.32mm (Mechanical Surface Detection)

Electronics: DAE4 Sn649; Calibrated: 1/22/2010

Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1114

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: IEEE 802.11a 5.2 GHz, Body SAR, Back Side, Ch 36, 6 Mbps


Area Scan (15x22x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (6x6x9)/Cube 0: Measurement grid: dx=4.6mm, dy=4.6mm, dz=2.8mm

Reference Value = 13.8 V/m; Power Drift = -0.050 dB

Peak SAR (extrapolated) = 2.58 W/kg

SAR(1 g) = 0.610 mW/g; SAR(10 g) = 0.178 mW/g

PCTEST ENGINEERING LABORATORY, INC.

DUT: A3LGTP1000; Type: 835/1900 GSM/GPRS/EDGE and 1900 WCDMA/HSPA Mini-Tablet with Bluetooth and WLAN; Serial: 118

Communication System: IEEE 802.11a 5.2-5.8 GHz Band; Frequency: 5260 MHz; Duty Cycle: 1:1
Medium: 5.2-5.8 GHz Muscle Medium parameters used (interpolated):

$$f = 5260 \text{ MHz}; \sigma = 5.4 \text{ mho/m}; \epsilon_r = 47; \rho = 1000 \text{ kg/m}^3$$

Phantom section: Flat Section; Space: 0.5 cm

Test Date: 08-27-2010; Ambient Temp: 24.3 °C; Tissue Temp: 22.6 °C

Probe: EX3DV4 - SN3550; ConvF(3.52, 3.52, 3.52); Calibrated: 1/26/2010

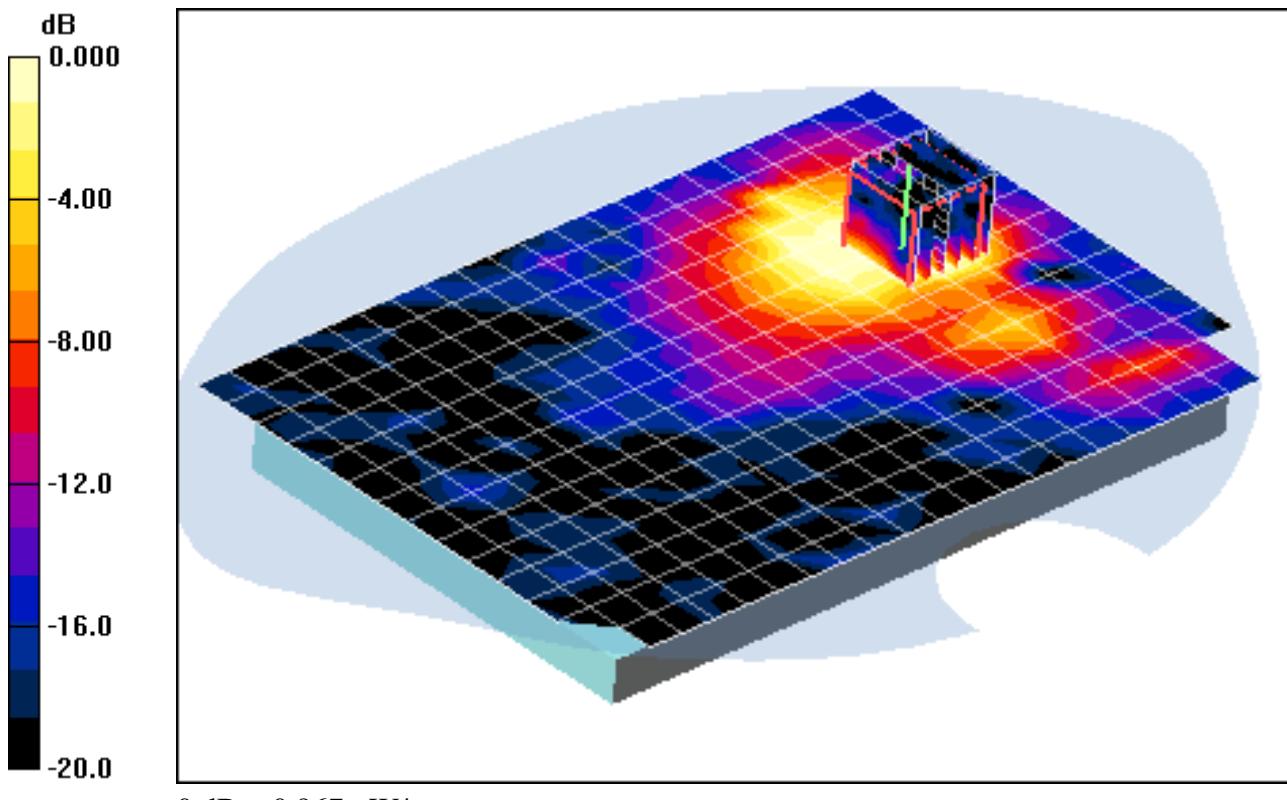
Sensor-Surface: 2.32mm (Mechanical Surface Detection)

Electronics: DAE4 Sn649; Calibrated: 1/22/2010

Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1114

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: IEEE 802.11a 5.3 GHz, Body SAR, Back Side, Ch 52, 54 Mbps


Area Scan (15x22x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (6x6x9)/Cube 0: Measurement grid: dx=4.6mm, dy=4.6mm, dz=2.8mm

Reference Value = 12.4 V/m; Power Drift = 0.119 dB

Peak SAR (extrapolated) = 1.93 W/kg

SAR(1 g) = 0.512 mW/g; SAR(10 g) = 0.150 mW/g

PCTEST ENGINEERING LABORATORY, INC.

DUT: A3LGTP1000; Type: 835/1900 GSM/GPRS/EDGE and 1900 WCDMA/HSPA Mini-Tablet with Bluetooth and WLAN; Serial: 118

Communication System: IEEE 802.11a 5.2-5.8 GHz Band; Frequency: 5260 MHz; Duty Cycle: 1:1
Medium: 5.2-5.8 GHz Muscle Medium parameters used (interpolated):

$$f = 5260 \text{ MHz}; \sigma = 5.4 \text{ mho/m}; \epsilon_r = 47; \rho = 1000 \text{ kg/m}^3$$

Phantom section: Flat Section; Space: 0.5 cm

Test Date: 08-27-2010; Ambient Temp: 24.3 °C; Tissue Temp: 22.6 °C

Probe: EX3DV4 - SN3550; ConvF(3.52, 3.52, 3.52); Calibrated: 1/26/2010

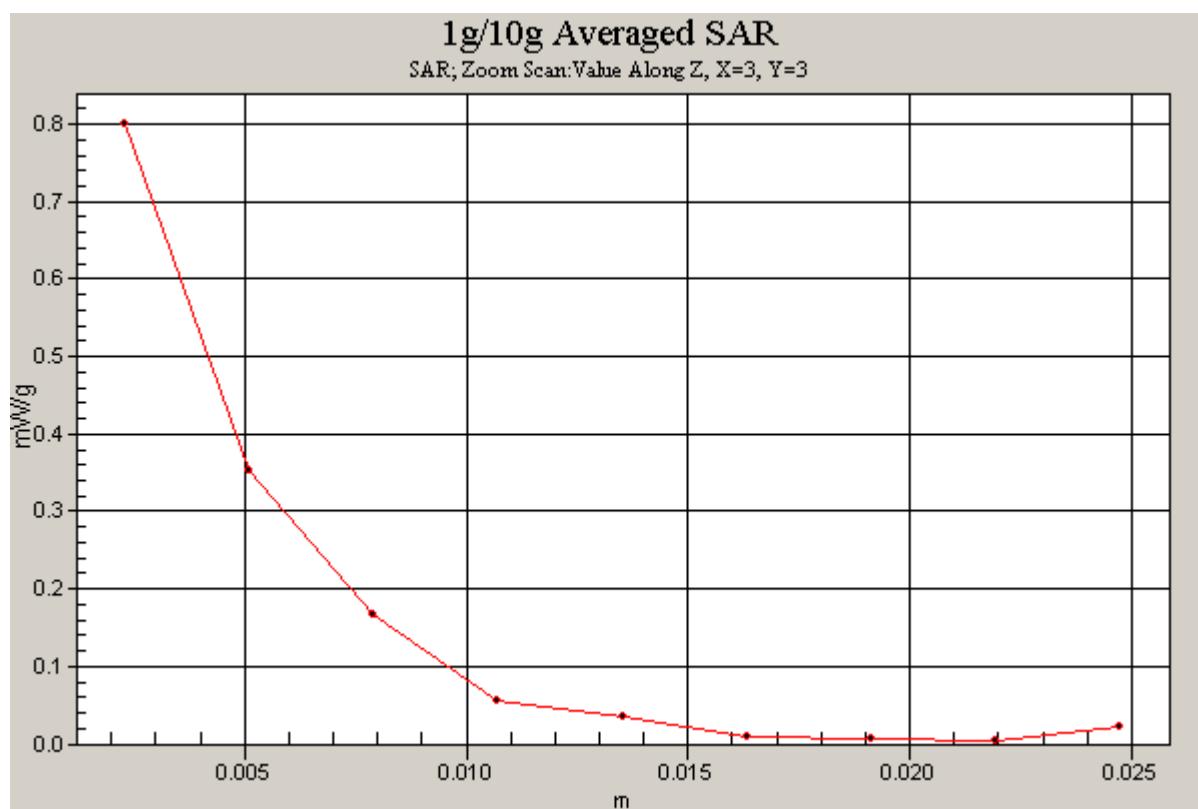
Sensor-Surface: 2.32mm (Mechanical Surface Detection)

Electronics: DAE4 Sn649; Calibrated: 1/22/2010

Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1114

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: IEEE 802.11a 5.3 GHz, Body SAR, Back Side, Ch 52, 54 Mbps


Area Scan (15x22x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (6x6x9)/Cube 0: Measurement grid: dx=4.6mm, dy=4.6mm, dz=2.8mm

Reference Value = 12.4 V/m; Power Drift = 0.119 dB

Peak SAR (extrapolated) = 1.93 W/kg

SAR(1 g) = 0.512 mW/g; SAR(10 g) = 0.150 mW/g

PCTEST ENGINEERING LABORATORY, INC.

DUT: A3LGTP1000; Type: 835/1900 GSM/GPRS/EDGE and 1900 WCDMA/HSPA Mini-Tablet with Bluetooth and WLAN; Serial: 118

Communication System: IEEE 802.11a 5.2-5.8 GHz Band; Frequency: 5600 MHz; Duty Cycle: 1:1
Medium: 5.2-5.8 GHz Muscle; Medium parameters used (interpolated):

$$f = 5600 \text{ MHz}; \sigma = 5.82 \text{ mho/m}; \epsilon_r = 46.3; \rho = 1000 \text{ kg/m}^3$$

Phantom section: Flat Section; Space: 0.5 cm

Test Date: 08-27-2010; Ambient Temp: 24.6 °C; Tissue Temp: 22.8 °C

Probe: EX3DV4 - SN3550; ConvF(3.16, 3.16, 3.16); Calibrated: 1/26/2010

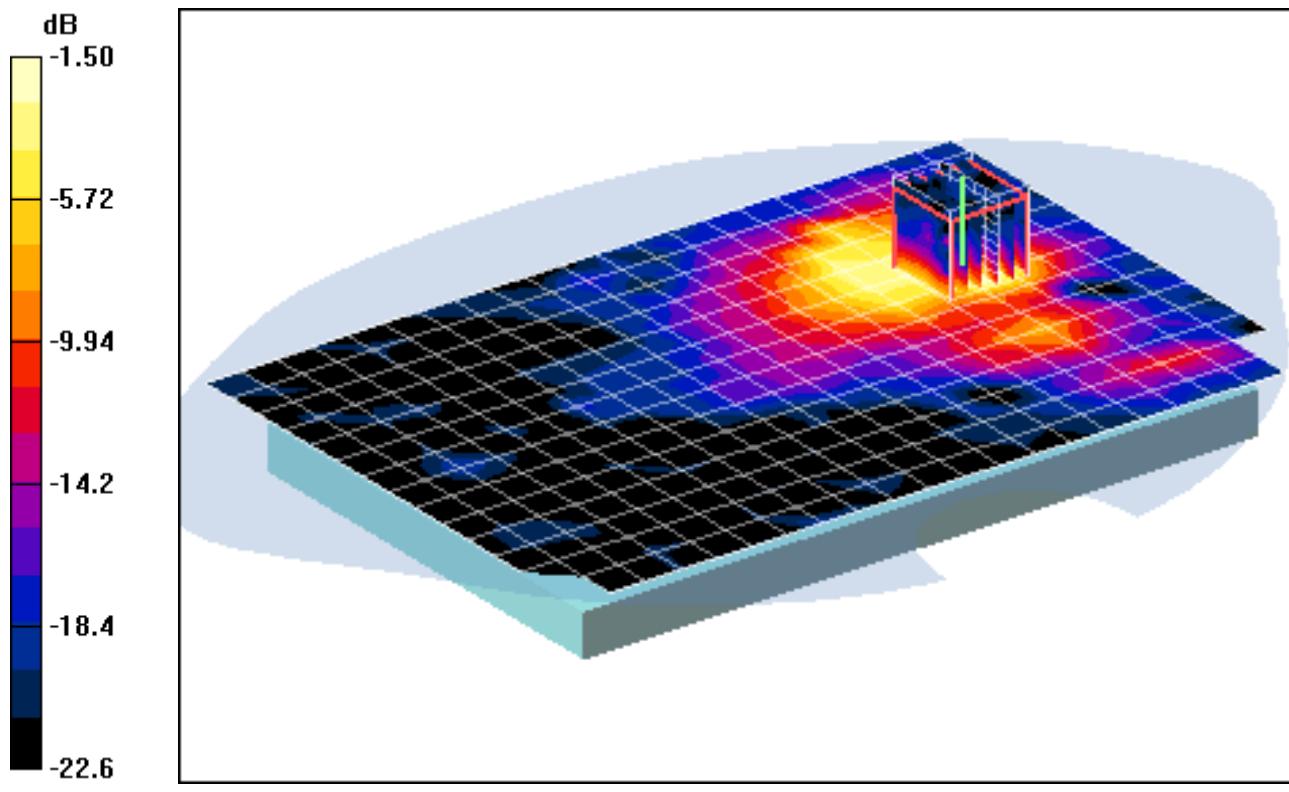
Sensor-Surface: 2.04mm (Mechanical Surface Detection)

Electronics: DAE4 Sn649; Calibrated: 1/22/2010

Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1114

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: IEEE 802.11a 5.5 GHz, Body SAR, Back Side, Ch 120, 6 Mbps


Area Scan (15x22x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (6x6x10)/Cube 0: Measurement grid: dx=4.4mm, dy=4.4mm, dz=2.5mm

Reference Value = 16.6 V/m; Power Drift = 0.057 dB

Peak SAR (extrapolated) = 4.07 W/kg

SAR(1 g) = 0.956 mW/g; SAR(10 g) = 0.255 mW/g

PCTEST ENGINEERING LABORATORY, INC.

DUT: A3LGTP1000; Type: 835/1900 GSM/GPRS/EDGE and 1900 WCDMA/HSPA Mini-Tablet with Bluetooth and WLAN; Serial: 118

Communication System: IEEE 802.11a 5.2-5.8 GHz Band; Frequency: 5600 MHz; Duty Cycle: 1:1
Medium: 5.2-5.8 GHz Muscle; Medium parameters used (interpolated):

$$f = 5600 \text{ MHz}; \sigma = 5.82 \text{ mho/m}; \epsilon_r = 46.3; \rho = 1000 \text{ kg/m}^3$$

Phantom section: Flat Section; Space: 0.5 cm

Test Date: 08-27-2010; Ambient Temp: 24.6 °C; Tissue Temp: 22.8 °C

Probe: EX3DV4 - SN3550; ConvF(3.16, 3.16, 3.16); Calibrated: 1/26/2010

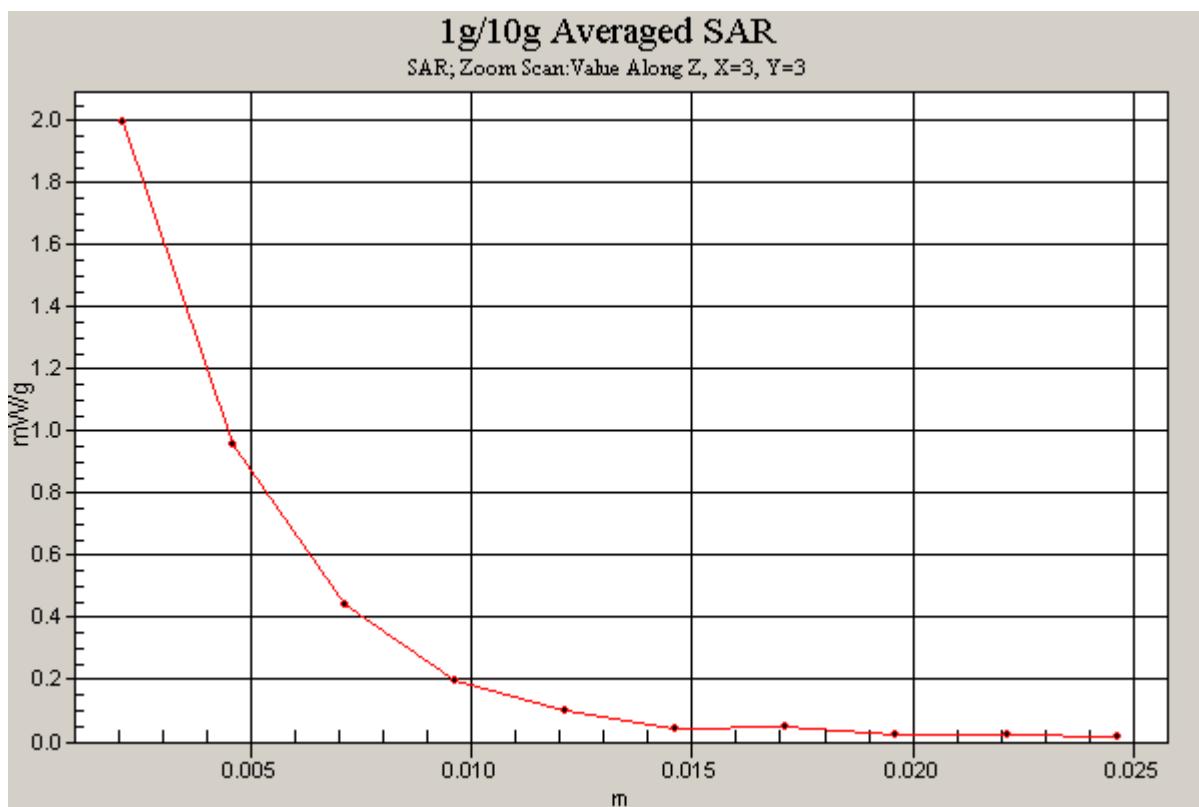
Sensor-Surface: 2.04mm (Mechanical Surface Detection)

Electronics: DAE4 Sn649; Calibrated: 1/22/2010

Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1114

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: IEEE 802.11a 5.5 GHz, Body SAR, Back Side, Ch 120, 6 Mbps


Area Scan (15x22x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (6x6x10)/Cube 0: Measurement grid: dx=4.4mm, dy=4.4mm, dz=2.5mm

Reference Value = 16.6 V/m; Power Drift = 0.057 dB

Peak SAR (extrapolated) = 4.07 W/kg

SAR(1 g) = 0.956 mW/g; SAR(10 g) = 0.255 mW/g

PCTEST ENGINEERING LABORATORY, INC.

DUT: A3LGTP1000; Type: 835/1900 GSM/GPRS/EDGE and 1900 WCDMA/HSPA Mini-Tablet with Bluetooth and WLAN; Serial: 118

Communication System: IEEE 802.11a 5.2-5.8 GHz Band; Frequency: 5745 MHz; Duty Cycle: 1:1
Medium: 5.2-5.8 GHz Muscle Medium parameters used (interpolated):

$f = 5745 \text{ MHz}$; $\sigma = 6.07 \text{ mho/m}$; $\epsilon_r = 45.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section; Space: 0.5 cm

Test Date: 08-27-2010; Ambient Temp: 24.7 °C; Tissue Temp: 22.9 °C

Probe: EX3DV4 - SN3550; ConvF(3.3, 3.3, 3.3); Calibrated: 1/26/2010

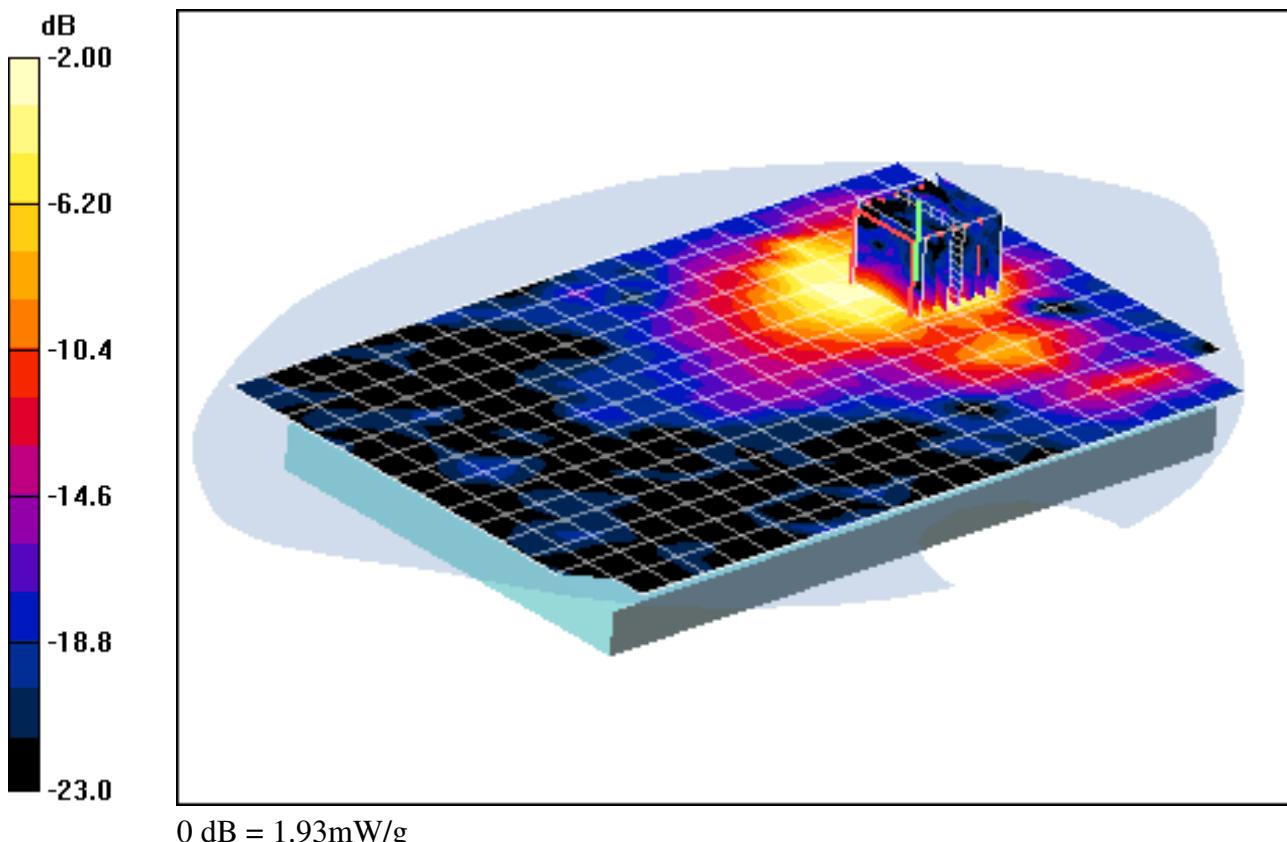
Sensor-Surface: 2.04mm (Mechanical Surface Detection)

Electronics: DAE4 Sn649; Calibrated: 1/22/2010

Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1114

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: IEEE 802.11a 5.8 GHz, Body SAR, Back Side, Ch 149, 6 Mbps


Area Scan (15x22x1): Measurement grid: $dx=10\text{mm}$, $dy=10\text{mm}$

Zoom Scan (7x7x11)/Cube 0: Measurement grid: $dx=4.1\text{mm}$, $dy=4.1\text{mm}$, $dz=2.2\text{mm}$

Reference Value = 14.9 V/m; Power Drift = 0.396 dB

Peak SAR (extrapolated) = 4.69 W/kg

SAR(1 g) = 0.972 mW/g; SAR(10 g) = 0.238 mW/g

PCTEST ENGINEERING LABORATORY, INC.

DUT: A3LGTP1000; Type: 835/1900 GSM/GPRS/EDGE and 1900 WCDMA/HSPA Mini-Tablet with Bluetooth and WLAN; Serial: 118

Communication System: IEEE 802.11a 5.2-5.8 GHz Band; Frequency: 5745 MHz; Duty Cycle: 1:1
Medium: 5.2-5.8 GHz Muscle Medium parameters used (interpolated):

$$f = 5745 \text{ MHz}; \sigma = 6.07 \text{ mho/m}; \epsilon_r = 45.9; \rho = 1000 \text{ kg/m}^3$$

Phantom section: Flat Section; Space: 0.5 cm

Test Date: 08-27-2010; Ambient Temp: 24.7 °C; Tissue Temp: 22.9 °C

Probe: EX3DV4 - SN3550; ConvF(3.3, 3.3, 3.3); Calibrated: 1/26/2010

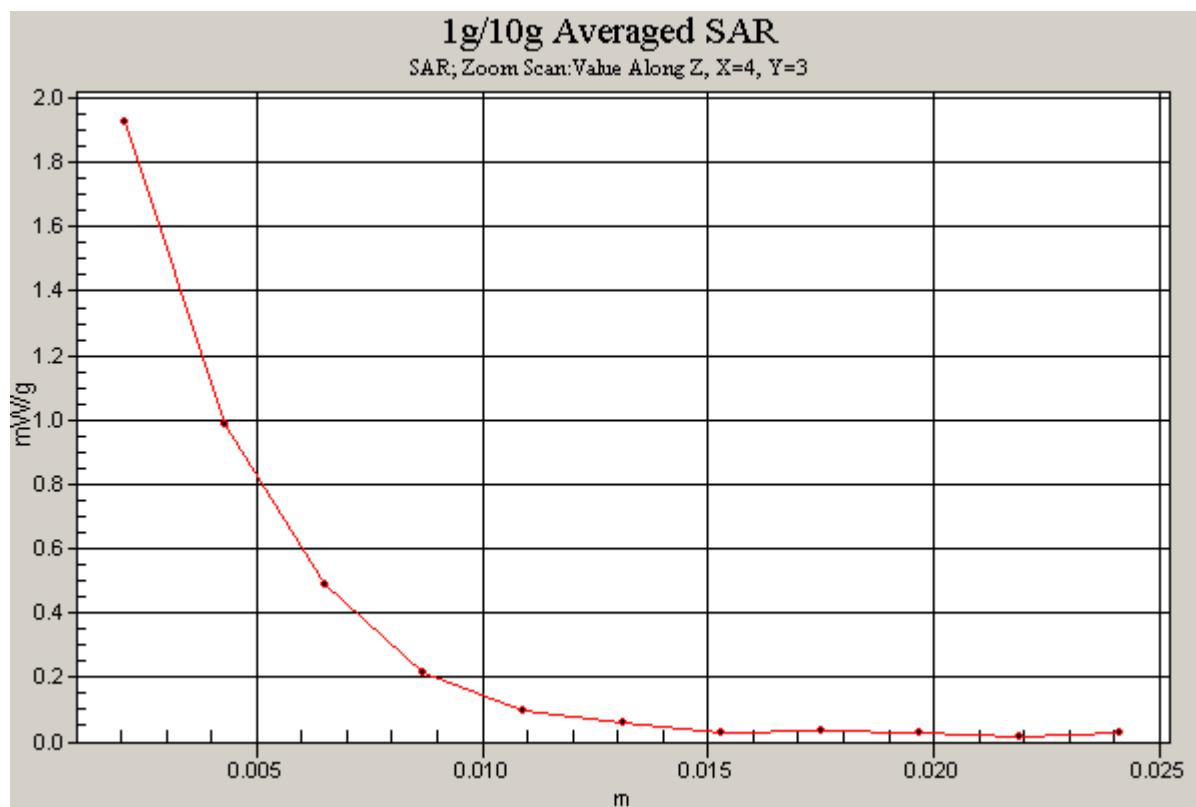
Sensor-Surface: 2.04mm (Mechanical Surface Detection)

Electronics: DAE4 Sn649; Calibrated: 1/22/2010

Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1114

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: IEEE 802.11a 5.8 GHz, Body SAR, Back Side, Ch 149, 6 Mbps


Area Scan (15x22x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (7x7x11)/Cube 0: Measurement grid: dx=4.1mm, dy=4.1mm, dz=2.2mm

Reference Value = 14.9 V/m; Power Drift = 0.396 dB

Peak SAR (extrapolated) = 4.69 W/kg

SAR(1 g) = 0.972 mW/g; SAR(10 g) = 0.238 mW/g

PCTEST ENGINEERING LABORATORY, INC.

DUT: A3LGTP1000; Type: 835/1900 GSM/GPRS/EDGE and 1900 WCDMA/HSPA Mini-Tablet with Bluetooth and WLAN; Serial: 116

Communication System: IEEE 802.11a 5.2-5.8 GHz Band; Frequency: 5180 MHz; Duty Cycle: 1:1
Medium: 5.2-5.8 GHz Muscle; Medium parameters used (interpolated):

$$f = 5180 \text{ MHz}; \sigma = 5.3 \text{ mho/m}; \epsilon_r = 47.2; \rho = 1000 \text{ kg/m}^3$$

Phantom section: Flat Section; Space: 0.75 cm

Test Date: 08-27-2010; Ambient Temp: 24.3 °C; Tissue Temp: 22.6 °C

Probe: EX3DV4 - SN3550; ConvF(3.73, 3.73, 3.73); Calibrated: 1/26/2010

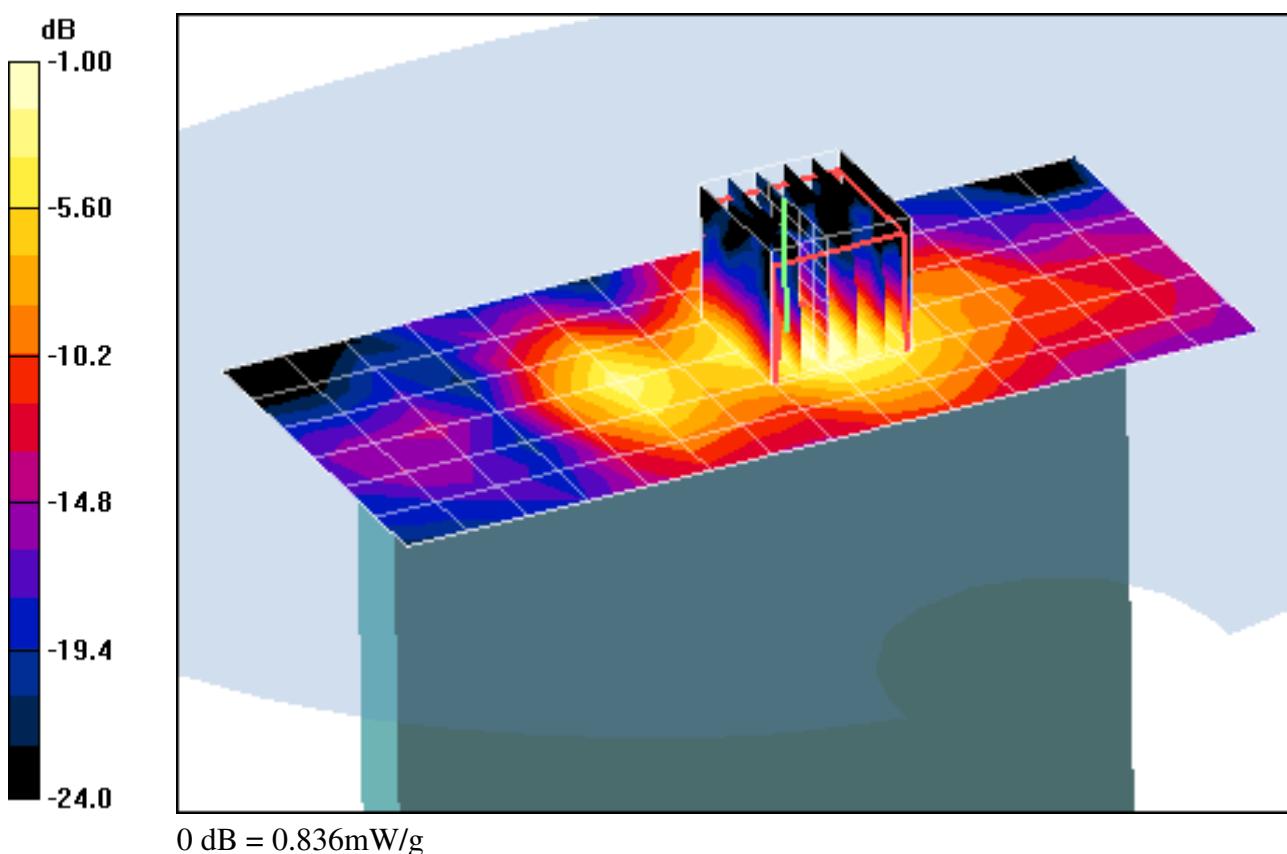
Sensor-Surface: 2.32mm (Mechanical Surface Detection)

Electronics: DAE4 Sn649; Calibrated: 1/22/2010

Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1114

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: IEEE 802.11a 5.2 GHz, Body SAR, Top, Ch 36, 6 Mbps


Area Scan (7x15x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (6x6x9)/Cube 0: Measurement grid: dx=4.6mm, dy=4.6mm, dz=2.8mm

Reference Value = 12.2 V/m; Power Drift = 0.079 dB

Peak SAR (extrapolated) = 1.58 W/kg

SAR(1 g) = 0.489 mW/g; SAR(10 g) = 0.167 mW/g

PCTEST ENGINEERING LABORATORY, INC.

DUT: A3LGTP1000; Type: 835/1900 GSM/GPRS/EDGE and 1900 WCDMA/HSPA Mini-Tablet with Bluetooth and WLAN; Serial: 116

Communication System: IEEE 802.11a 5.2-5.8 GHz Band; Frequency: 5260 MHz; Duty Cycle: 1:1
Medium: 5.2-5.8 GHz Muscle Medium parameters used (interpolated):

$$f = 5260 \text{ MHz}; \sigma = 5.4 \text{ mho/m}; \epsilon_r = 47; \rho = 1000 \text{ kg/m}^3$$

Phantom section: Flat Section; Space: 0.75 cm

Test Date: 08-27-2010; Ambient Temp: 24.3 °C; Tissue Temp: 22.6 °C

Probe: EX3DV4 - SN3550; ConvF(3.52, 3.52, 3.52); Calibrated: 1/26/2010

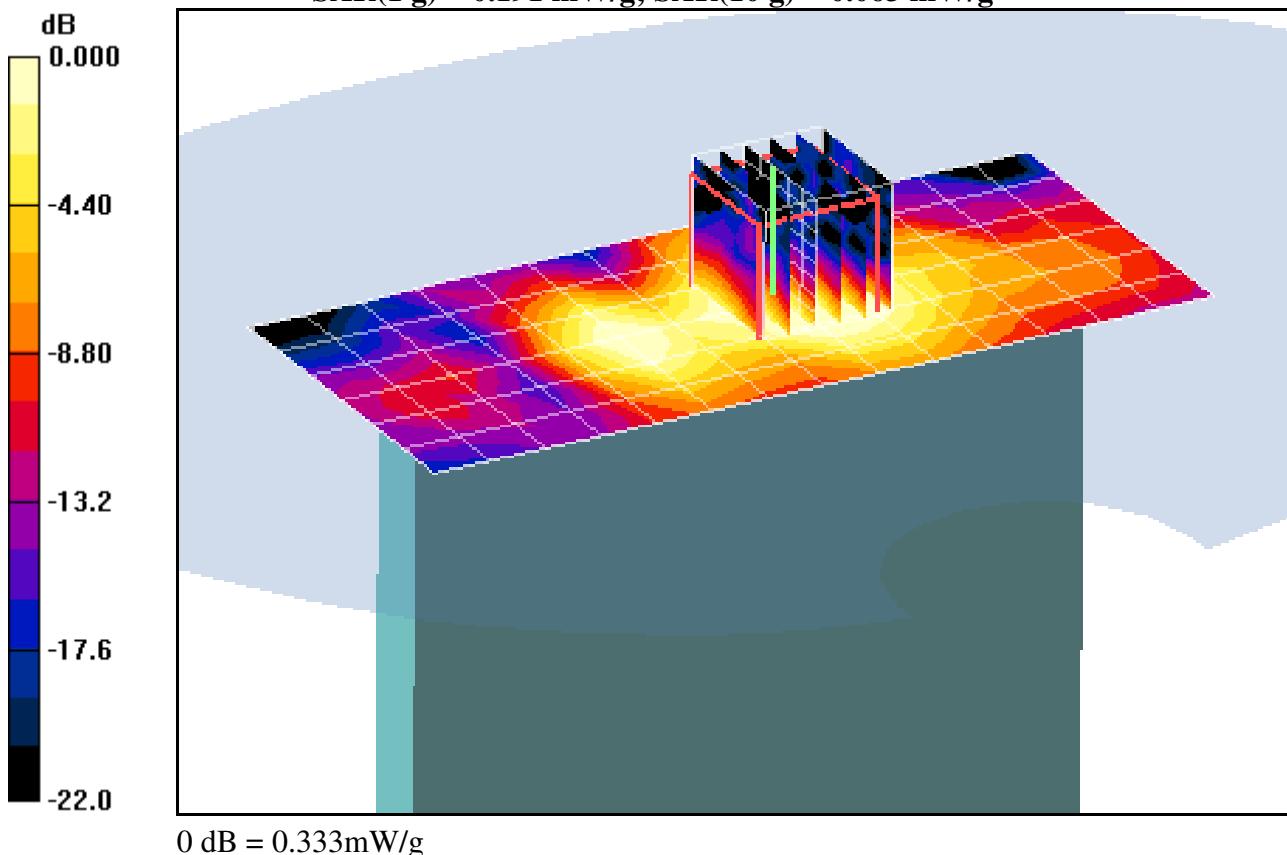
Sensor-Surface: 2.32mm (Mechanical Surface Detection)

Electronics: DAE4 Sn649; Calibrated: 1/22/2010

Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1114

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: IEEE 802.11a 5.3 GHz, Body SAR, Top, Ch 52, 54 Mbps


Area Scan (7x15x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (6x6x9)/Cube 0: Measurement grid: dx=4.6mm, dy=4.6mm, dz=2.8mm

Reference Value = 7.18 V/m; Power Drift = 0.414 dB

Peak SAR (extrapolated) = 1.53 W/kg

SAR(1 g) = 0.191 mW/g; SAR(10 g) = 0.063 mW/g

PCTEST ENGINEERING LABORATORY, INC.

DUT: A3LGTP1000; Type: 835/1900 GSM/GPRS/EDGE and 1900 WCDMA/HSPA Mini-Tablet with Bluetooth and WLAN; Serial: 116

Communication System: IEEE 802.11a 5.2-5.8 GHz Band; Frequency: 5600 MHz; Duty Cycle: 1:1
Medium: 5.2-5.8 GHz Muscle Medium parameters used (interpolated):

$$f = 5600 \text{ MHz}; \sigma = 5.82 \text{ mho/m}; \epsilon_r = 46.3; \rho = 1000 \text{ kg/m}^3$$

Phantom section: Flat Section; Space: 0.75 cm

Test Date: 08-27-2010; Ambient Temp: 24.6 °C; Tissue Temp: 22.8 °C

Probe: EX3DV4 - SN3550; ConvF(3.16, 3.16, 3.16); Calibrated: 1/26/2010

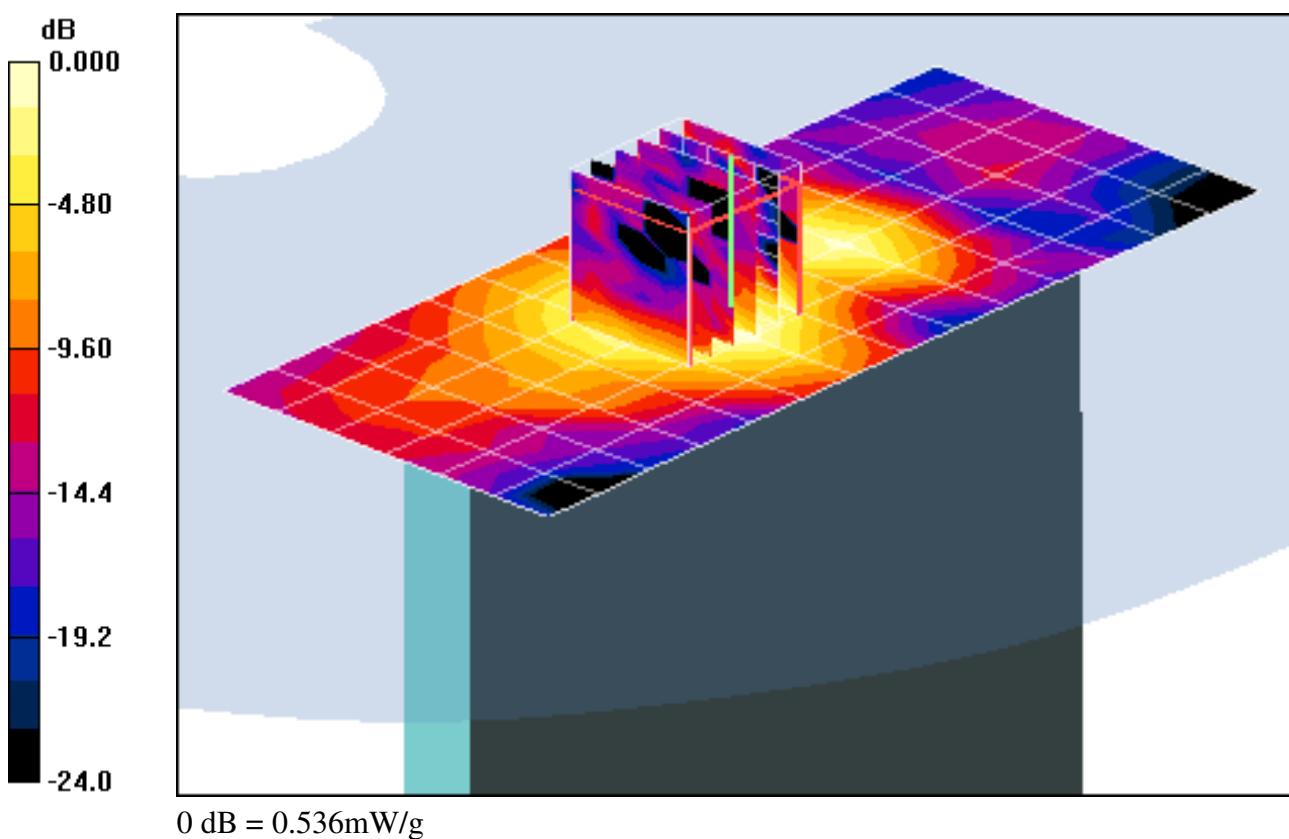
Sensor-Surface: 2.04mm (Mechanical Surface Detection)

Electronics: DAE4 Sn649; Calibrated: 1/22/2010

Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1114

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: IEEE 802.11a 5.3 GHz, Body SAR, Top, Ch 120, 6 Mbps


Area Scan (7x15x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (6x6x10)/Cube 0: Measurement grid: dx=4.4mm, dy=4.4mm, dz=2.5mm

Reference Value = 5.61 V/m; Power Drift = 0.414 dB

Peak SAR (extrapolated) = 0.927 W/kg

SAR(1 g) = 0.271 mW/g; SAR(10 g) = 0.078 mW/g

PCTEST ENGINEERING LABORATORY, INC.

DUT: A3LGTP1000; Type: 835/1900 GSM/GPRS/EDGE and 1900 WCDMA/HSPA Mini-Tablet with Bluetooth and WLAN; Serial: 116

Communication System: IEEE 802.11a 5.2-5.8 GHz Band; Frequency: 5745 MHz; Duty Cycle: 1:1
Medium: 5.2-5.8 GHz Muscle Medium parameters used (interpolated):

$$f = 5745 \text{ MHz}; \sigma = 6.07 \text{ mho/m}; \epsilon_r = 45.9; \rho = 1000 \text{ kg/m}^3$$

Phantom section: Flat Section; Space: 0.75 cm

Test Date: 08-27-2010; Ambient Temp: 24.7 °C; Tissue Temp: 22.9 °C

Probe: EX3DV4 - SN3550; ConvF(3.3, 3.3, 3.3); Calibrated: 1/26/2010

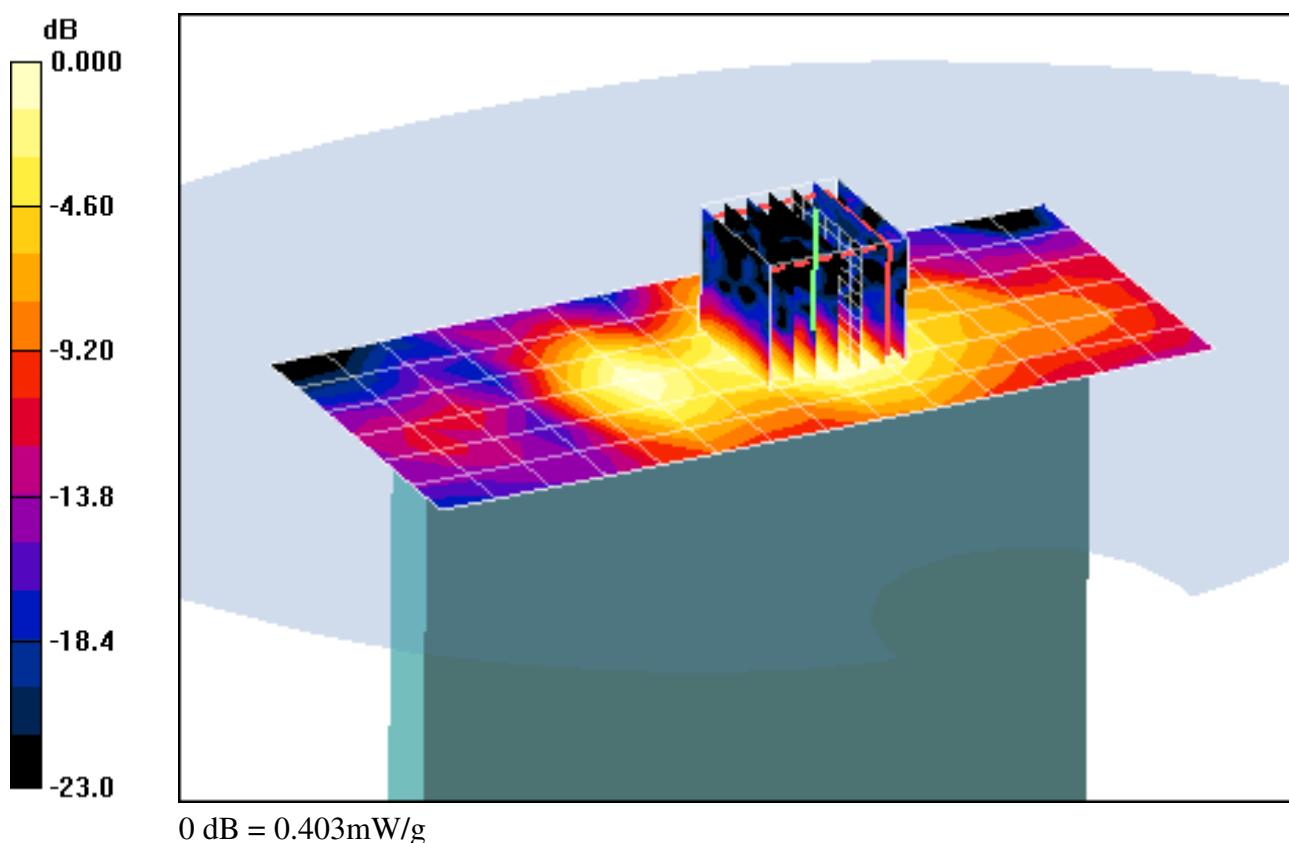
Sensor-Surface: 2.04mm (Mechanical Surface Detection)

Electronics: DAE4 Sn649; Calibrated: 1/22/2010

Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1114

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: IEEE 802.11a 5.8 GHz, Body SAR, Top, Ch 149, 6 Mbps


Area Scan (7x15x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (7x7x11)/Cube 0: Measurement grid: dx=4.1mm, dy=4.1mm, dz=2.2mm

Reference Value = 6.99 V/m; Power Drift = 0.198 dB

Peak SAR (extrapolated) = 0.764 W/kg

SAR(1 g) = 0.208 mW/g; SAR(10 g) = 0.068 mW/g

PCTEST ENGINEERING LABORATORY, INC.

DUT: A3LGTP1000; Type: 835/1900 GSM/GPRS/EDGE and 1900 WCDMA/HSPA Mini-Tablet with Bluetooth and WLAN; Serial: 116

Communication System: IEEE 802.11a 5.2-5.8 GHz Band; Frequency: 5180 MHz; Duty Cycle: 1:1
Medium: 5.2-5.8 GHz Muscle; Medium parameters used (interpolated):

$$f = 5180 \text{ MHz}; \sigma = 5.3 \text{ mho/m}; \epsilon_r = 47.2; \rho = 1000 \text{ kg/m}^3$$

Phantom section: Flat Section; Space: 0.5 cm

Test Date: 08-27-2010; Ambient Temp: 24.3 °C; Tissue Temp: 22.6 °C

Probe: EX3DV4 - SN3550; ConvF(3.73, 3.73, 3.73); Calibrated: 1/26/2010

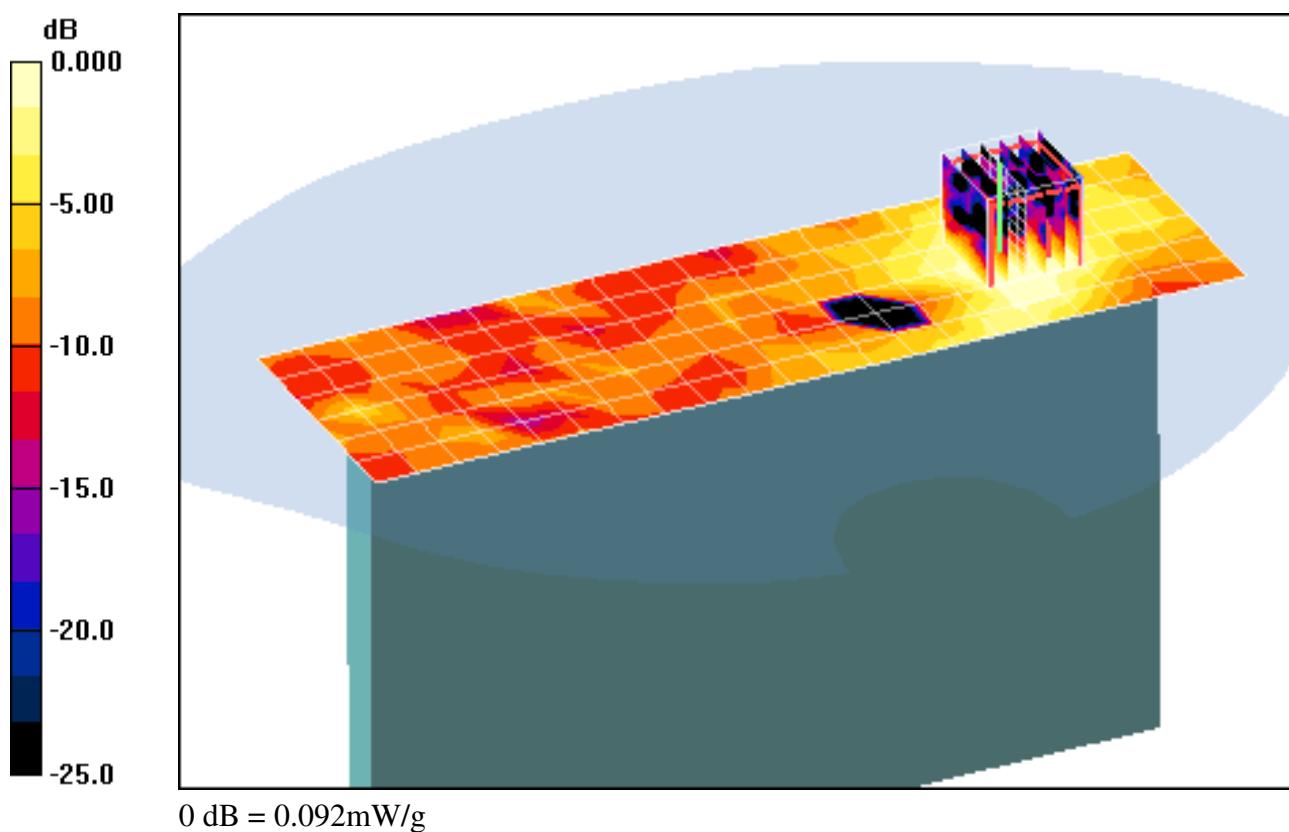
Sensor-Surface: 2.32mm (Mechanical Surface Detection)

Electronics: DAE4 Sn649; Calibrated: 1/22/2010

Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1114

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: IEEE 802.11a 5.2 GHz, Body SAR, Right, Ch 36, 6 Mbps


Area Scan (7x22x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (6x6x9)/Cube 0: Measurement grid: dx=4.6mm, dy=4.6mm, dz=2.8mm

Reference Value = 3.92 V/m; Power Drift = 0.321 dB

Peak SAR (extrapolated) = 0.163 W/kg

SAR(1 g) = 0.049 mW/g; SAR(10 g) = 0.018 mW/g

PCTEST ENGINEERING LABORATORY, INC.

DUT: A3LGTP1000; Type: 835/1900 GSM/GPRS/EDGE and 1900 WCDMA/HSPA Mini-Tablet with Bluetooth and WLAN; Serial: 118

Communication System: IEEE 802.11a 5.2-5.8 GHz Band; Frequency: 5260 MHz; Duty Cycle: 1:1
Medium: 5.2-5.8 GHz Muscle Medium parameters used (interpolated):

$$f = 5260 \text{ MHz}; \sigma = 5.4 \text{ mho/m}; \epsilon_r = 47; \rho = 1000 \text{ kg/m}^3$$

Phantom section: Flat Section; Space: 0.5 cm

Test Date: 08-27-2010; Ambient Temp: 24.3 °C; Tissue Temp: 22.6 °C

Probe: EX3DV4 - SN3550; ConvF(3.52, 3.52, 3.52); Calibrated: 1/26/2010

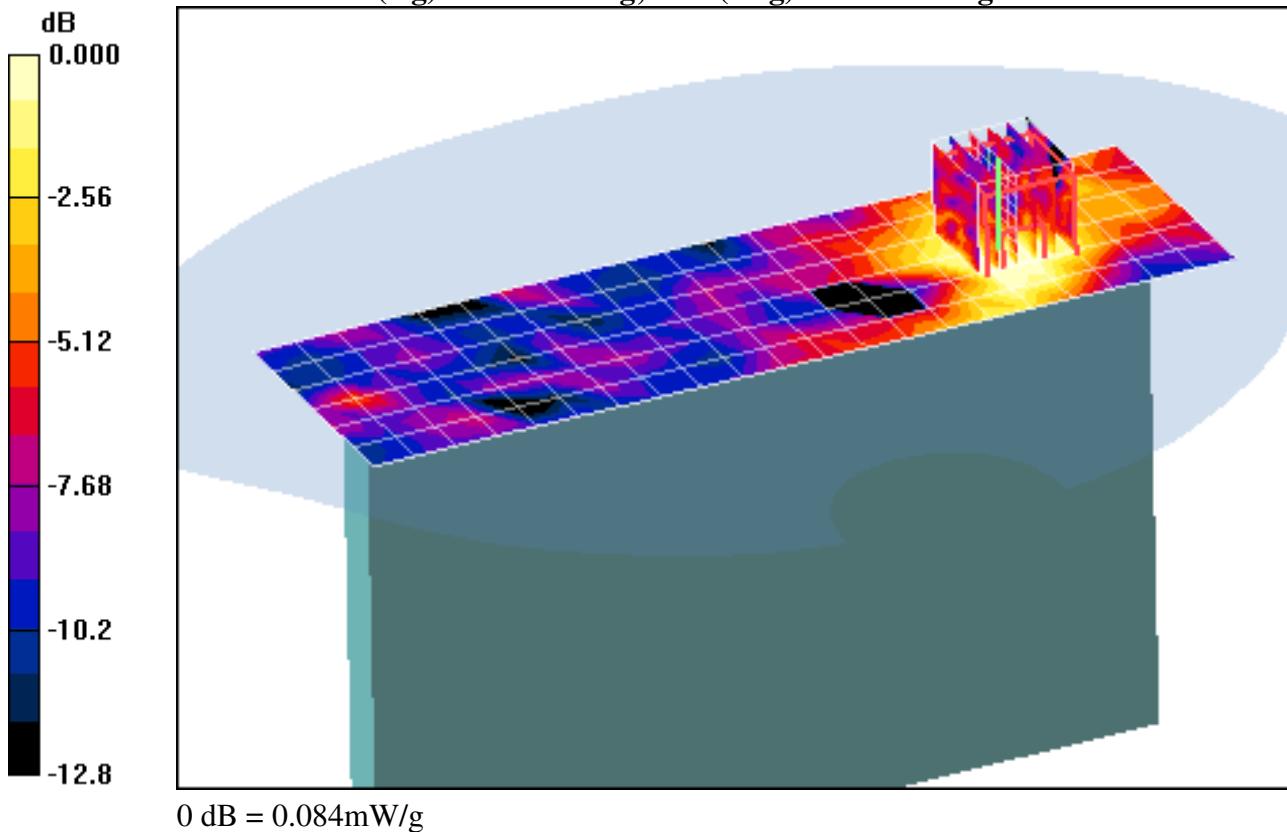
Sensor-Surface: 2.32mm (Mechanical Surface Detection)

Electronics: DAE4 Sn649; Calibrated: 1/22/2010

Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1114

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: IEEE 802.11a 5.3 GHz, Body SAR, Right, Ch 52, 54 Mbps


Area Scan (7x22x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (6x6x9)/Cube 0: Measurement grid: dx=4.6mm, dy=4.6mm, dz=2.8mm

Reference Value = 3.15 V/m; Power Drift = 0.123 dB

Peak SAR (extrapolated) = 0.125 W/kg

SAR(1 g) = 0.050 mW/g; SAR(10 g) = 0.022 mW/g

PCTEST ENGINEERING LABORATORY, INC.

DUT: A3LGTP1000; Type: 835/1900 GSM/GPRS/EDGE and 1900 WCDMA/HSPA Mini-Tablet with Bluetooth and WLAN; Serial: 116

Communication System: IEEE 802.11a 5.2-5.8 GHz Band; Frequency: 5600 MHz; Duty Cycle: 1:1
Medium: 5.2-5.8 GHz Muscle Medium parameters used (interpolated):

$$f = 5600 \text{ MHz}; \sigma = 5.82 \text{ mho/m}; \epsilon_r = 46.3; \rho = 1000 \text{ kg/m}^3$$

Phantom section: Flat Section; Space: 0.5 cm

Test Date: 08-27-2010; Ambient Temp: 24.6 °C; Tissue Temp: 22.8 °C

Probe: EX3DV4 - SN3550; ConvF(3.16, 3.16, 3.16); Calibrated: 1/26/2010

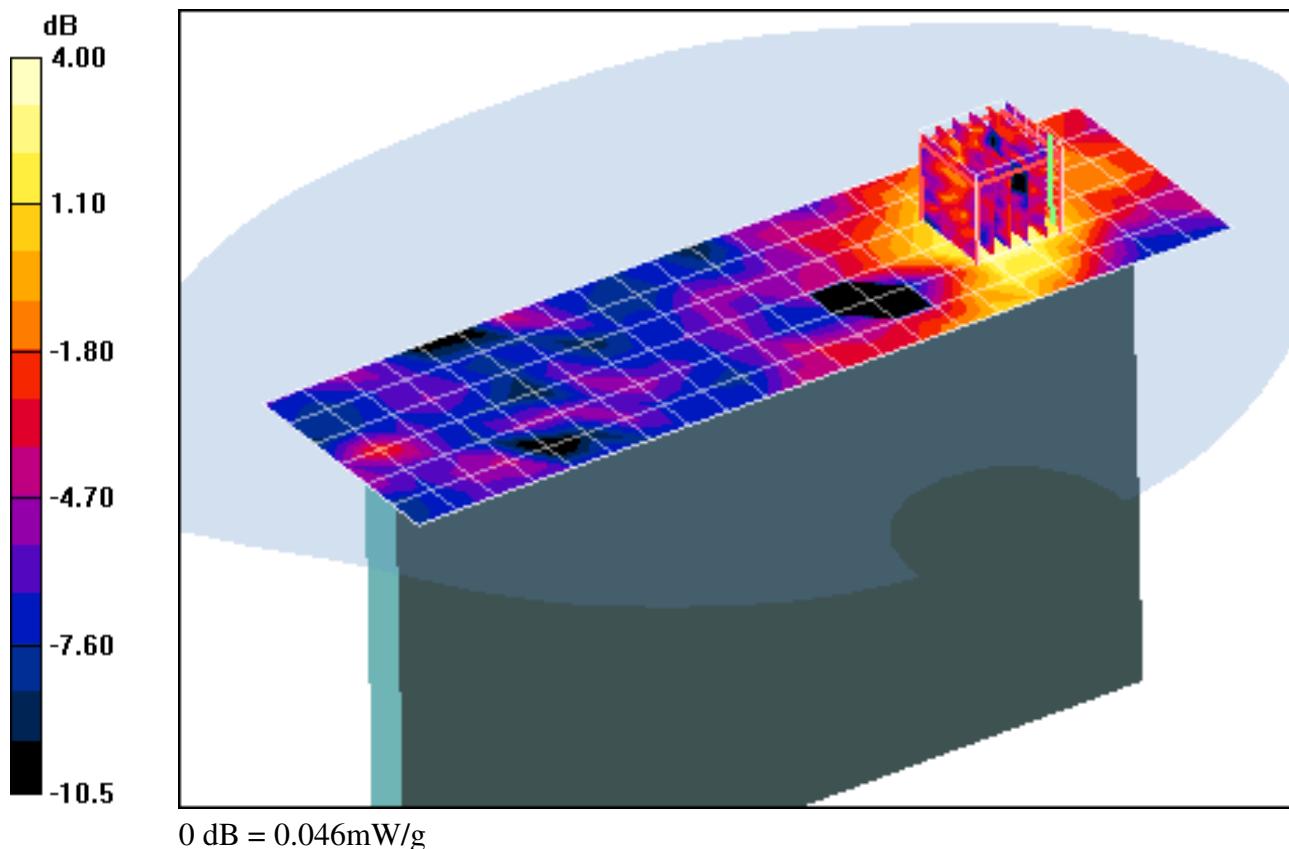
Sensor-Surface: 2.04mm (Mechanical Surface Detection)

Electronics: DAE4 Sn649; Calibrated: 1/22/2010

Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1114

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: IEEE 802.11a 5.5 GHz, Body SAR, Right, Ch 120, 6 Mbps


Area Scan (7x22x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (6x6x10)/Cube 0: Measurement grid: dx=4.4mm, dy=4.4mm, dz=2.5mm

Reference Value = 1.33 V/m; Power Drift = 0.101 dB

Peak SAR (extrapolated) = 0.081 W/kg

SAR(1 g) = 0.029 mW/g; SAR(10 g) = 0.013 mW/g

PCTEST ENGINEERING LABORATORY, INC.

DUT: A3LGTP1000; Type: 835/1900 GSM/GPRS/EDGE and 1900 WCDMA/HSPA Mini-Tablet with Bluetooth and WLAN; Serial: 118

Communication System: IEEE 802.11a 5.2-5.8 GHz Band; Frequency: 5745 MHz; Duty Cycle: 1:1
Medium: 5.2-5.8 GHz Muscle; Medium parameters used (interpolated):

$$f = 5745 \text{ MHz}; \sigma = 6.07 \text{ mho/m}; \epsilon_r = 45.9; \rho = 1000 \text{ kg/m}^3$$

Phantom section: Flat Section; Space: 0.5 cm

Test Date: 08-27-2010; Ambient Temp: 24.7 °C; Tissue Temp: 22.9 °C

Probe: EX3DV4 - SN3550; ConvF(3.3, 3.3, 3.3); Calibrated: 1/26/2010

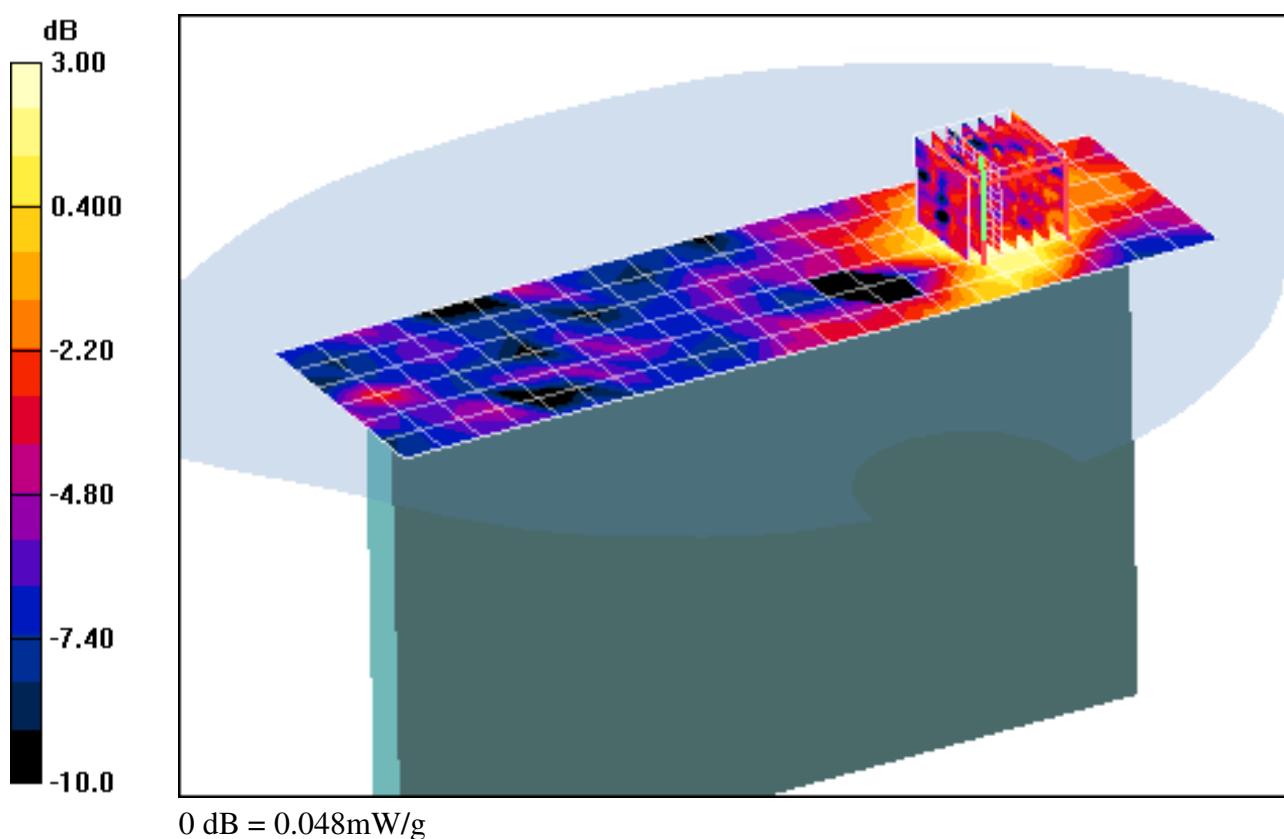
Sensor-Surface: 2.04mm (Mechanical Surface Detection)

Electronics: DAE4 Sn649; Calibrated: 1/22/2010

Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1114

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Mode: IEEE 802.11a 5.8 GHz, Body SAR, Right, Ch 149, 6 Mbps


Area Scan (7x22x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (7x7x11)/Cube 0: Measurement grid: dx=4.1mm, dy=4.1mm, dz=2.2mm

Reference Value = 1.65 V/m; Power Drift = -0.286 dB

Peak SAR (extrapolated) = 0.153 W/kg

SAR(1 g) = 0.025 mW/g; SAR(10 g) = 0.016 mW/g

APPENDIX B: DIPOLE VALIDATION

PCTEST ENGINEERING LABORATORY, INC.

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d047

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: 835 Muscle Medium parameters used:

$f = 835$ MHz; $\sigma = 0.963$ mho/m; $\epsilon_r = 54.5$; $\rho = 1000$ kg/m³

Phantom section: Flat Section; Space: 1.5 cm

Test Date: 08-25-2010; Ambient Temp: 22.4 °C; Tissue Temp: 21.1 °C

Probe: ES3DV3 - SN3213; ConvF(5.91, 5.91, 5.91); Calibrated: 3/16/2010

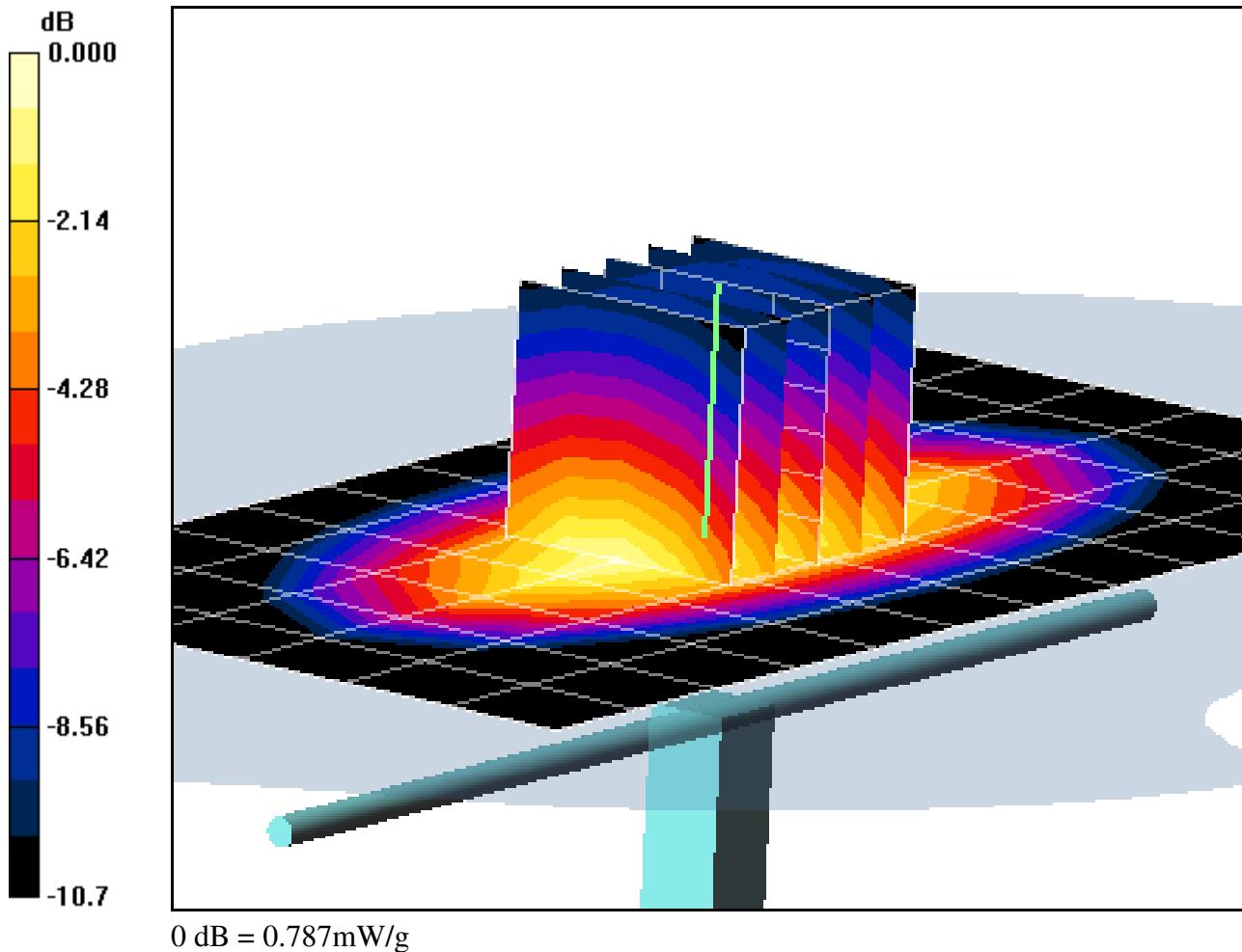
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn704; Calibrated: 3/22/2010

Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1406

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

835MHz System Verification


Area Scan (7x13x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Input Power = 18.0 dBm (63 mW)

SAR(1 g) = 0.677 mW/g; SAR(10 g) = 0.441 mW/g

Deviation = 9.43 %

PCTEST ENGINEERING LABORATORY, INC.

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d047

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: 835 Muscle Medium parameters used:

$f = 835$ MHz; $\sigma = 0.963$ mho/m; $\epsilon_r = 54.5$; $\rho = 1000$ kg/m³

Phantom section: Flat Section; Space: 1.5 cm

Test Date: 08-26-2010; Ambient Temp: 22.8 °C; Tissue Temp: 20.9 °C

Probe: ES3DV3 - SN3213; ConvF(5.91, 5.91, 5.91); Calibrated: 3/16/2010

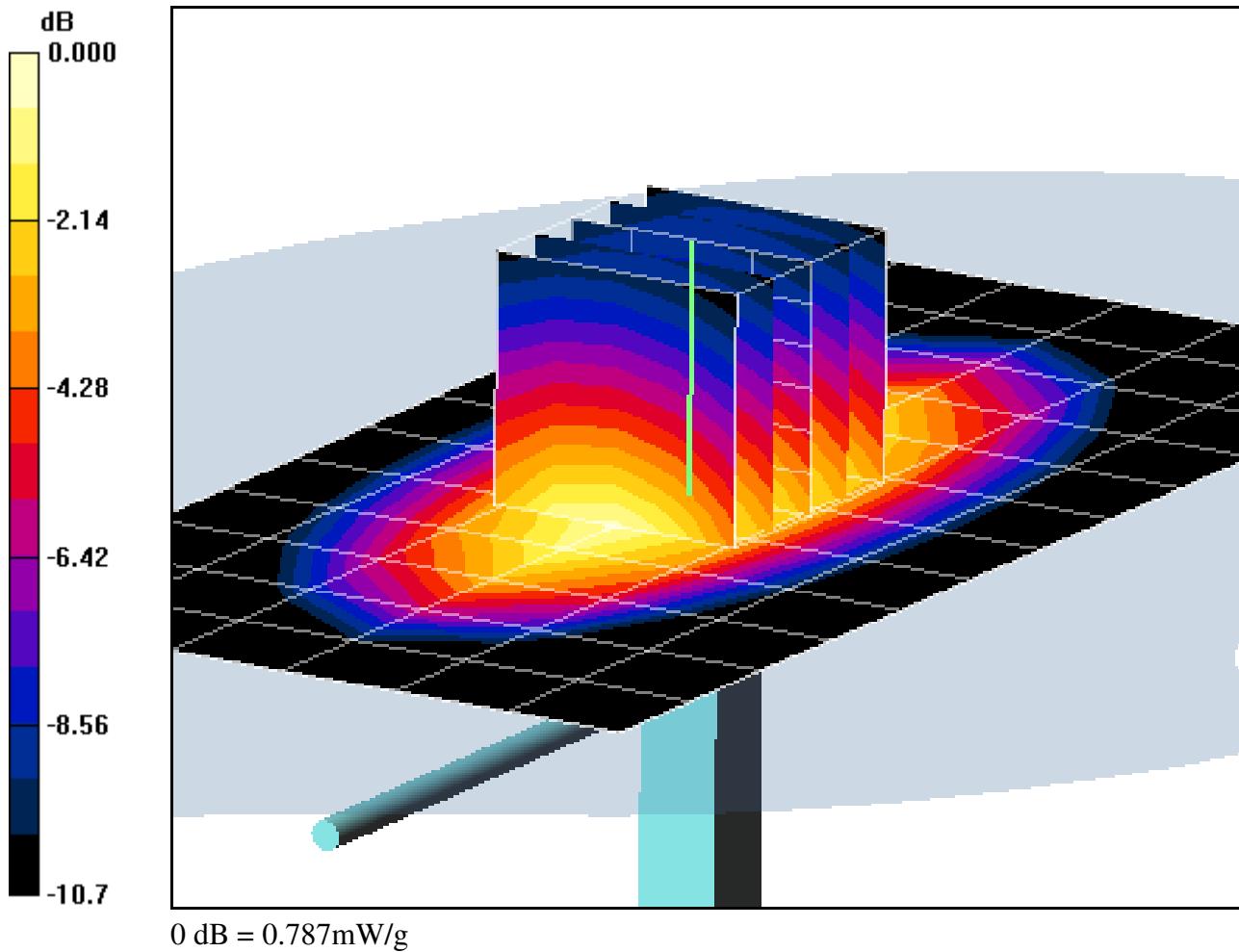
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn704; Calibrated: 3/22/2010

Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1406

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

835MHz System Verification


Area Scan (7x13x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Input Power = 18.0 dBm (63 mW)

SAR(1 g) = 0.677 mW/g; SAR(10 g) = 0.441 mW/g

Deviation = 9.43 %

PCTEST ENGINEERING LABORATORY, INC.

DUT: SAR Dipole 1900 MHz; Type: D1900V2; Serial: 5d080

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: 1900 Muscle Medium parameters used (interpolated):

$f = 1900 \text{ MHz}$; $\sigma = 1.52 \text{ mho/m}$; $\epsilon_r = 52.1$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08-25-2010; Ambient Temp: 23.9 °C; Tissue Temp: 22.4 °C

Probe: ES3DV3 - SN3209; ConvF(4.65, 4.65, 4.65); Calibrated: 4/20/2010

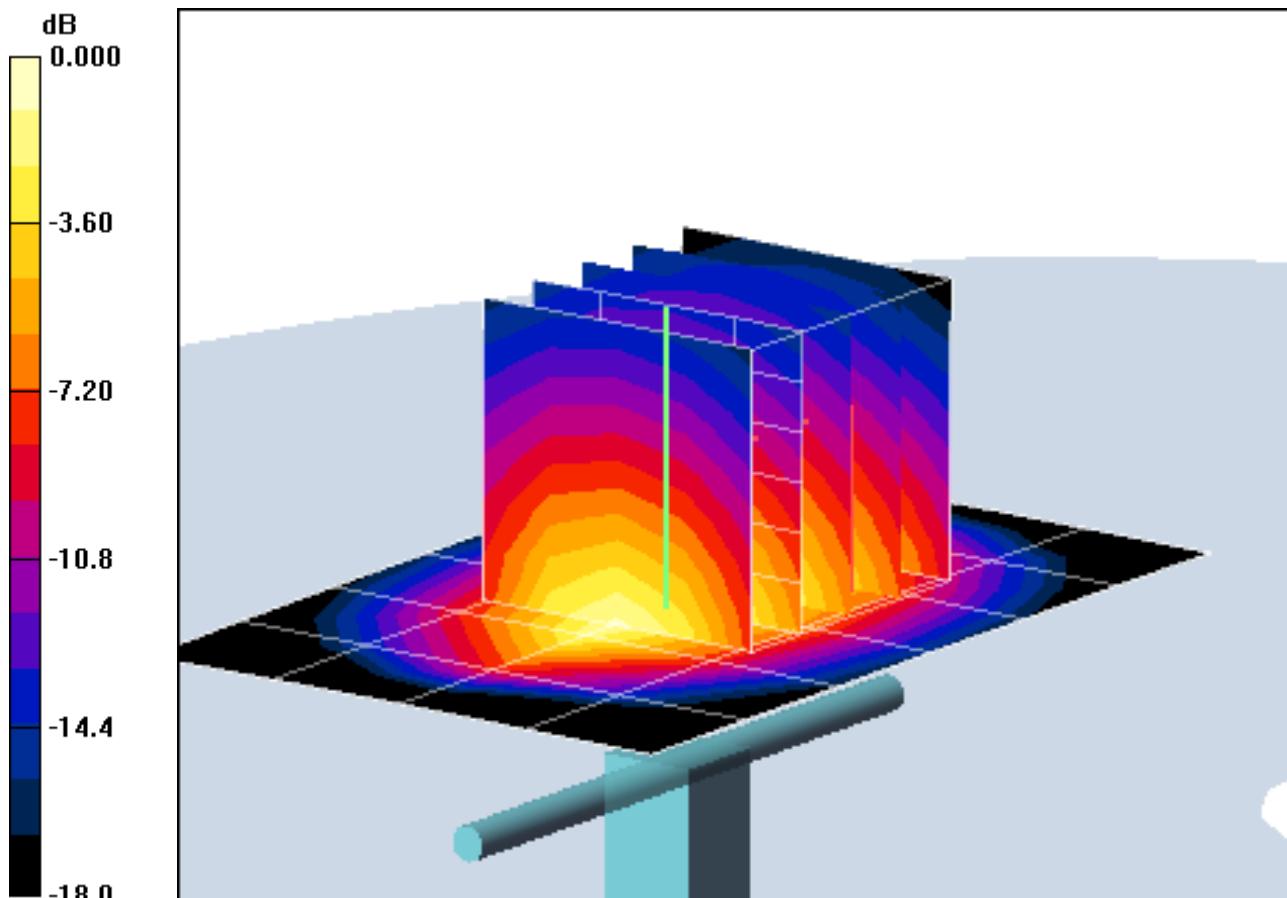
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn665; Calibrated: 4/21/2010

Phantom: SAM with CRP; Type: SAM; Serial: TP1375

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

1900MHz System Verification


Area Scan (5x7x1): Measurement grid: $dx=15\text{mm}$, $dy=15\text{mm}$

Zoom Scan (5x5x7)/Cube 0: Measurement grid: $dx=8\text{mm}$, $dy=8\text{mm}$, $dz=5\text{mm}$

Input Power = 20.0 dBm (100 mW)

SAR(1 g) = 4.12 mW/g; SAR(10 g) = 2.16 mW/g

Deviation = 1.73 %

0 dB = 5.10mW/g

PCTEST ENGINEERING LABORATORY, INC.

DUT: SAR Dipole 1900 MHz; Type: D1900V2; Serial: 5d080

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: 1900 Muscle Medium parameters used (interpolated):

$f = 1900 \text{ MHz}$; $\sigma = 1.52 \text{ mho/m}$; $\epsilon_r = 52.1$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08-26-2010; Ambient Temp: 23.5 °C; Tissue Temp: 22.1 °C

Probe: ES3DV3 - SN3209; ConvF(4.65, 4.65, 4.65); Calibrated: 4/20/2010

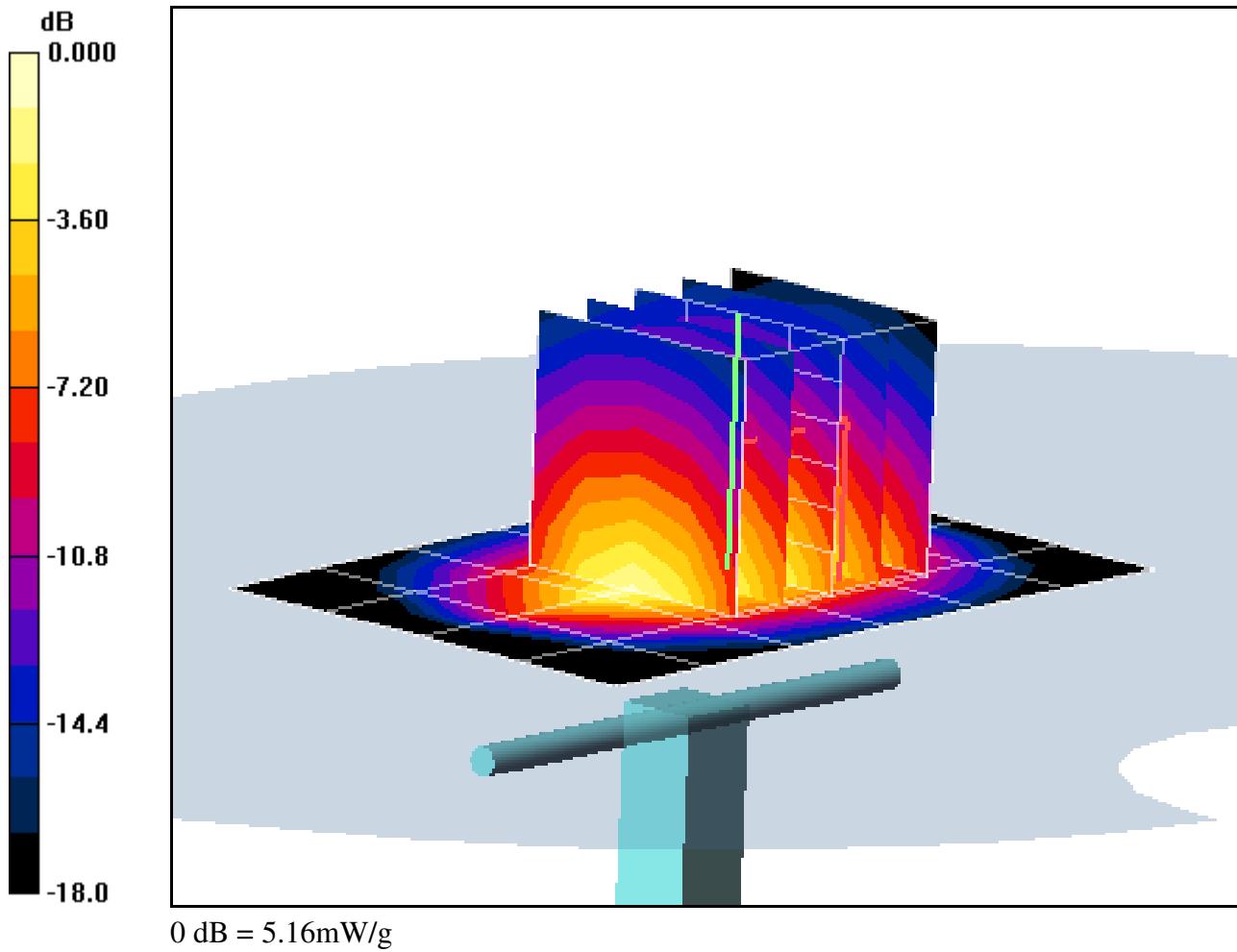
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn665; Calibrated: 4/21/2010

Phantom: SAM with CRP; Type: SAM; Serial: TP1375

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

1900MHz System Verification


Area Scan (5x7x1): Measurement grid: $dx=15\text{mm}$, $dy=15\text{mm}$

Zoom Scan (5x5x7)/Cube 0: Measurement grid: $dx=8\text{mm}$, $dy=8\text{mm}$, $dz=5\text{mm}$

Input Power = 20.0 dBm (100 mW)

SAR(1 g) = 4.15 mW/g; SAR(10 g) = 2.18 mW/g

Deviation = 2.47 %

PCTEST ENGINEERING LABORATORY, INC.

DUT: SAR Dipole 1900 MHz; Type: D1900V2; Serial: 5d080

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: 1900 Muscle; Medium parameters used (interpolated):

$f = 1900 \text{ MHz}$; $\sigma = 1.57 \text{ mho/m}$; $\epsilon_r = 52.4$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 10-3-2010; Amb. Temp: 21.7 C, Tissue Temp: 21.0 C

Probe: EX3DV4 - SN3550; ConvF(6.63, 6.63, 6.63); Calibrated: 1/26/2010

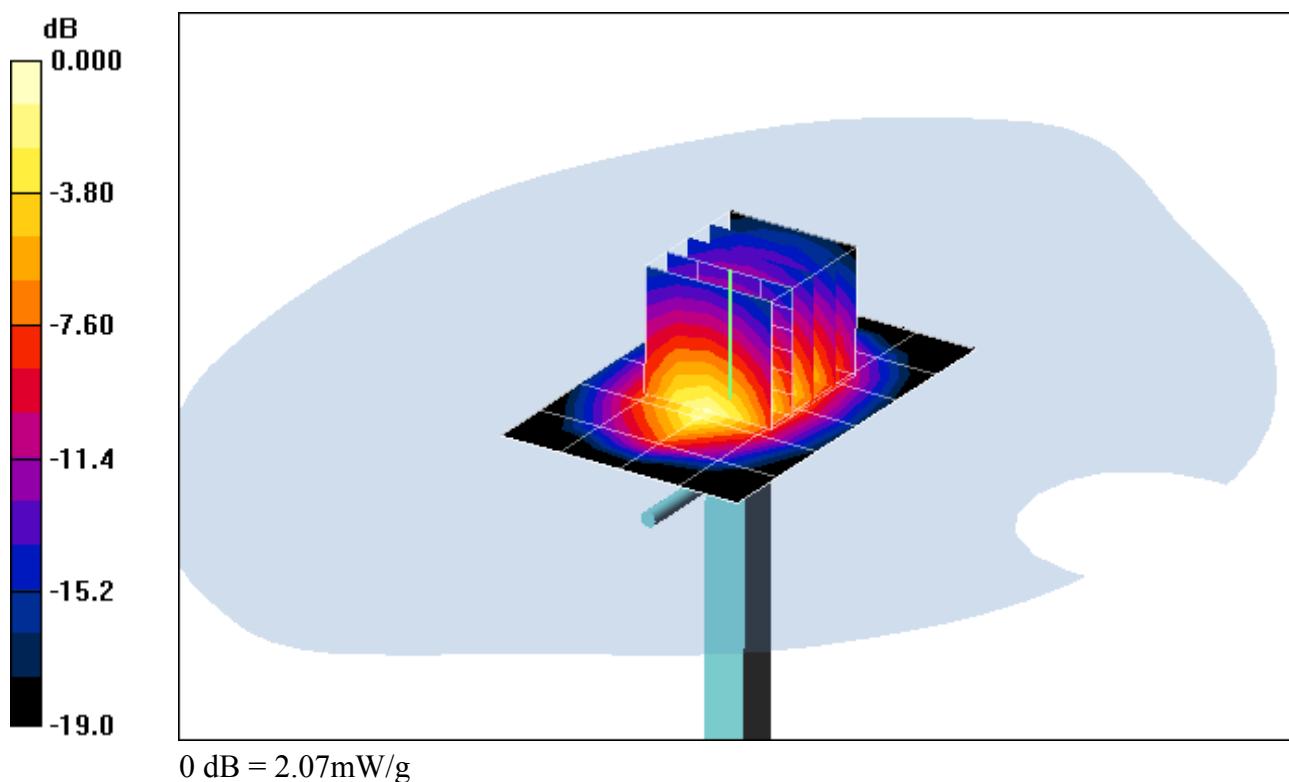
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn649; Calibrated: 1/22/2010

Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1357

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

1900MHz System Verification


Area Scan (5x7x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Input Power = 16 dBm (40 mW)

SAR(1 g) = 1.65 mW/g; SAR(10 g) = 0.851 mW/g

Deviation = 1.85 %

PCTEST ENGINEERING LABORATORY, INC.

DUT: SAR Dipole 2450 MHz; Type: D2450V2; Serial: 719

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: 2450 Muscle Medium parameters used:

$f = 2450 \text{ MHz}$; $\sigma = 1.97 \text{ mho/m}$; $\epsilon_r = 52.1$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08-24-2010; Ambient Temp: 22.7 °C; Tissue Temp: 21.1 °C

Probe: ES3DV3 - SN3213; ConvF(4.27, 4.27, 4.27); Calibrated: 3/16/2010

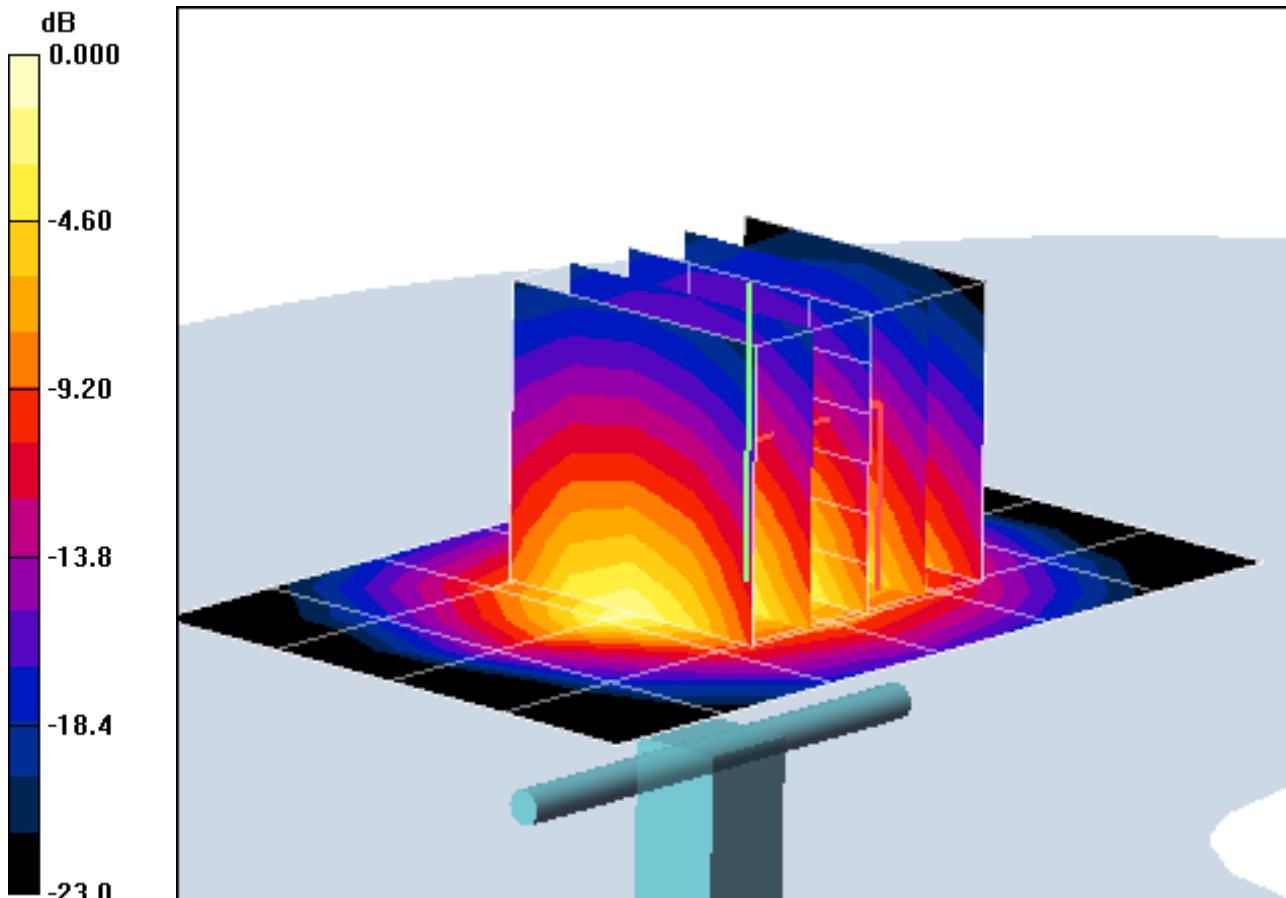
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn704; Calibrated: 3/22/2010

Phantom: SAM Sub; Type: SAM 4.0; Serial: TP-1403

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

2450MHz System Verification


Area Scan (5x7x1): Measurement grid: $dx=15\text{mm}$, $dy=15\text{mm}$

Zoom Scan (5x5x7)/Cube 0: Measurement grid: $dx=8\text{mm}$, $dy=8\text{mm}$, $dz=5\text{mm}$

Input Power = 16.0 dBm (40 mW)

SAR(1 g) = 2.11 mW/g; SAR(10 g) = 0.974 mW/g

Deviation = 2.63 %

0 dB = 2.71mW/g

PCTEST ENGINEERING LABORATORY, INC.

DUT: SAR Dipole 2450 MHz; Type: D2450V2; Serial: 719

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: 2450 Muscle Medium parameters used:

$f = 2450 \text{ MHz}$; $\sigma = 1.93 \text{ mho/m}$; $\epsilon_r = 50.8$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08-31-2010; Ambient Temp: 22.9 °C; Tissue Temp: 21.5 °C

Probe: EX3DV4 - SN3550; ConvF(6.4, 6.4, 6.4); Calibrated: 1/26/2010

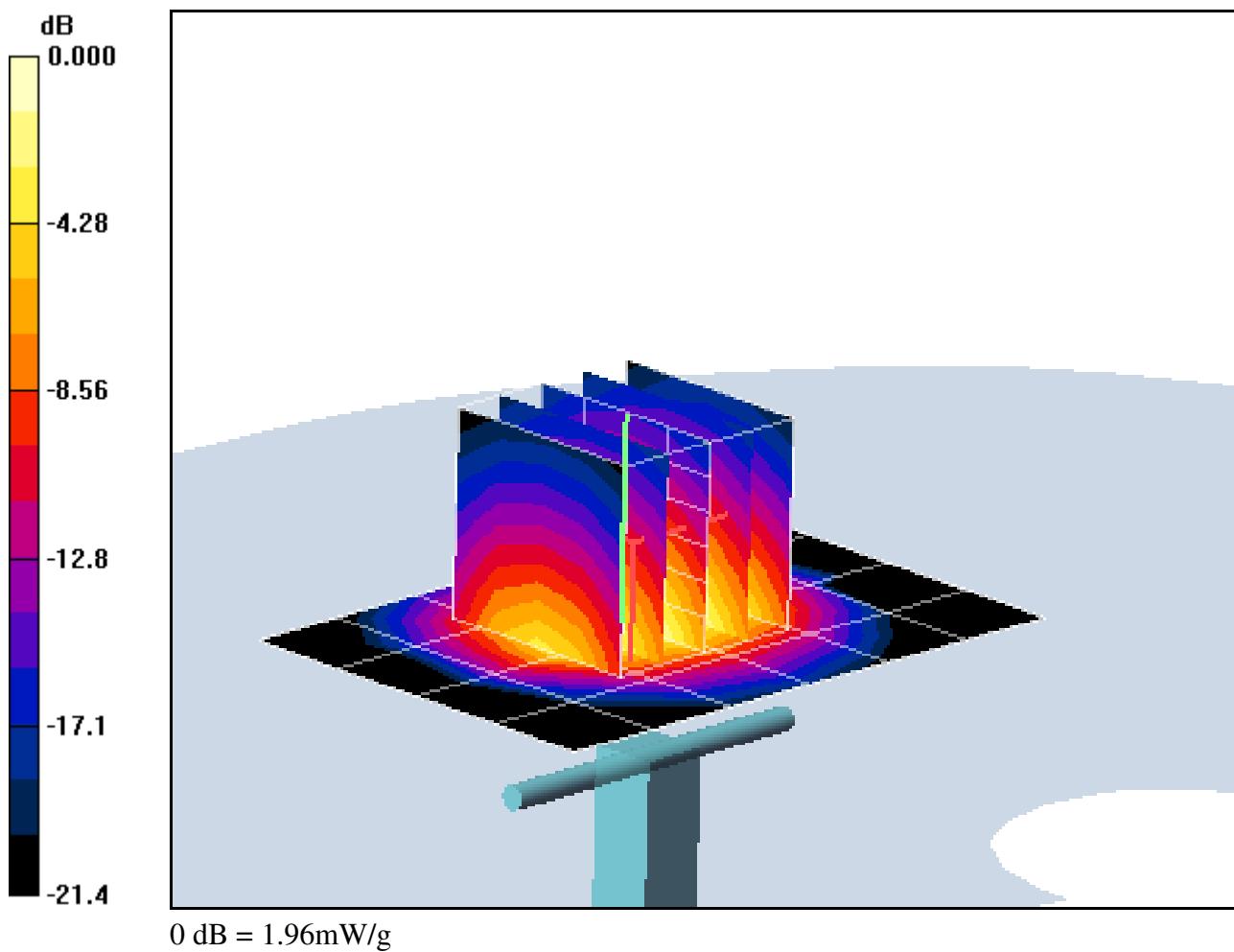
Sensor-Surface: 5mm (Mechanical Surface Detection)

Electronics: DAE4 Sn649; Calibrated: 1/22/2010

Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1114

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

2450MHz System Verification


Area Scan (5x7x1): Measurement grid: $dx=15\text{mm}$, $dy=15\text{mm}$

Zoom Scan (5x5x7)/Cube 0: Measurement grid: $dx=8\text{mm}$, $dy=8\text{mm}$, $dz=5\text{mm}$

Input Power = 16.0 dBm (40 mW)

SAR(1 g) = 1.99 mW/g; SAR(10 g) = 0.928 mW/g

Deviation = -3.21 %

PCTEST ENGINEERING LABORATORY, INC.

DUT: Dipole 5200 MHz; Type: D5GHzV2; Serial: 1057

Communication System: CW; Frequency: 5200 MHz; Duty Cycle: 1:1

Medium: 5200 Muscle; Medium parameters used (interpolated):

$f = 5200 \text{ MHz}$; $\sigma = 5.3 \text{ mho/m}$; $\epsilon_r = 47.2$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08-27-2010; Ambient Temp: 24.3 °C; Tissue Temp: 22.6 °C

Probe: EX3DV4 - SN3550; ConvF(3.73, 3.73, 3.73); Calibrated: 1/26/2010

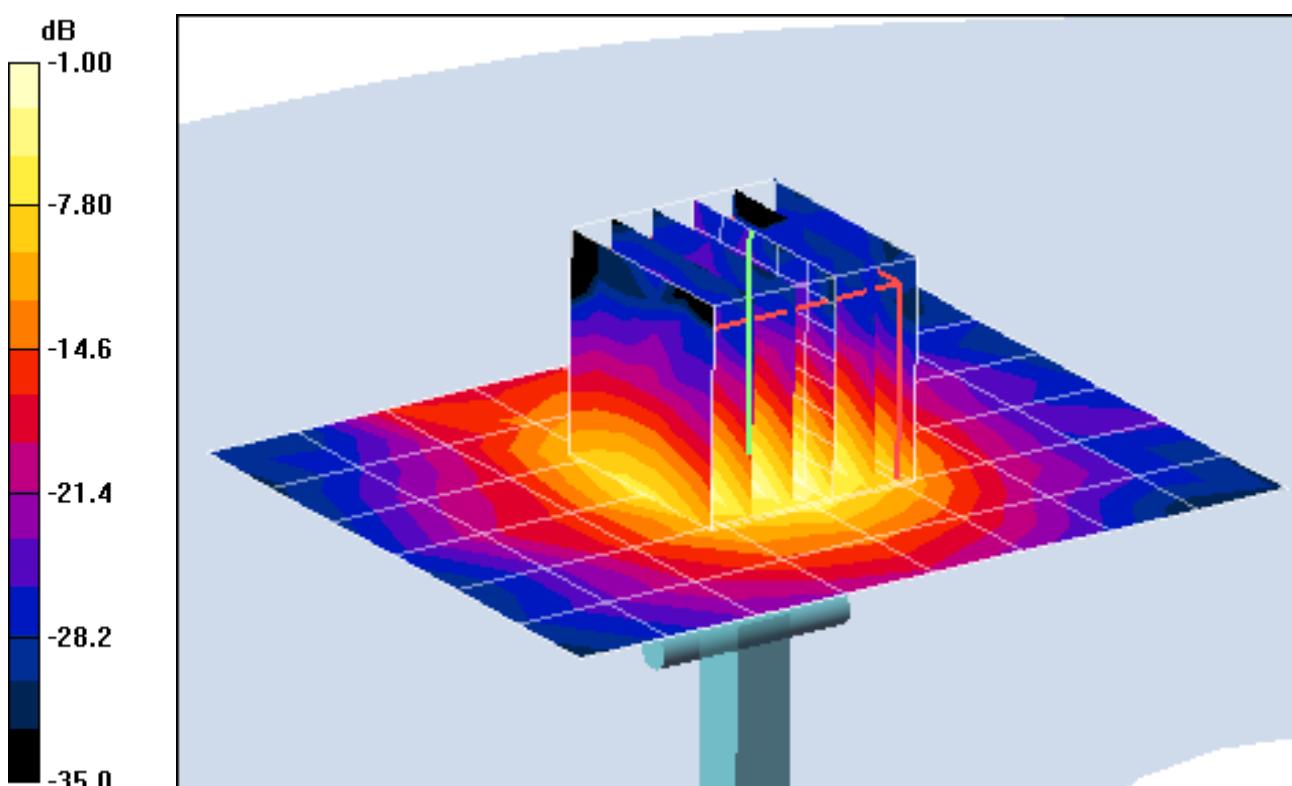
Sensor-Surface: 2.32mm (Mechanical Surface Detection)

Electronics: DAE4 Sn649; Calibrated: 1/22/2010

Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1114

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

5200MHz System Verification


Area Scan (7x9x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (6x6x9)/Cube 0: Measurement grid: dx=4.6mm, dy=4.6mm, dz=2.8mm

Input Power = 14.0 dBm (25 mW)

SAR(1 g) = 1.98 mW/g; SAR(10 g) = 0.553 mW/g

Deviation = 0.13 %

PCTEST ENGINEERING LABORATORY, INC.

DUT: Dipole 5500 MHz; Type: D5GHzV2; Serial: 1057

Communication System: CW; Frequency: 5500 MHz; Duty Cycle: 1:1

Medium: 5500 Muscle; Medium parameters used (interpolated):

$f = 5500 \text{ MHz}$; $\sigma = 5.72 \text{ mho/m}$; $\epsilon_r = 46.4$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08-27-2010; Ambient Temp: 24.6 °C; Tissue Temp: 22.8 °C

Probe: EX3DV4 - SN3550; ConvF(3.26, 3.26, 3.26); Calibrated: 1/26/2010

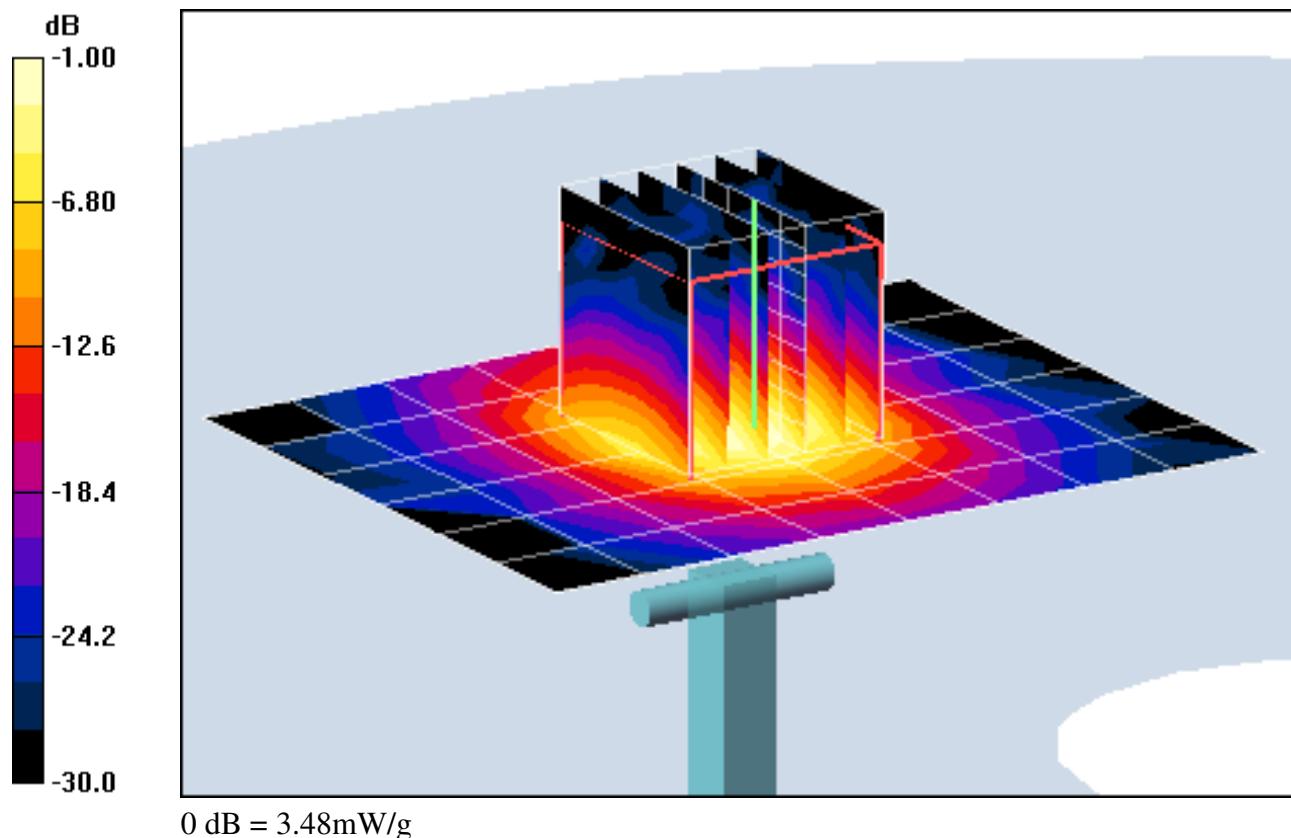
Sensor-Surface: 2.5mm (Mechanical Surface Detection)

Electronics: DAE4 Sn649; Calibrated: 1/22/2010

Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1114

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

5500MHz System Verification


Area Scan (7x9x1): Measurement grid: $dx=10\text{mm}$, $dy=10\text{mm}$

Zoom Scan (6x6x10)/Cube 0: Measurement grid: $dx=4.4\text{mm}$, $dy=4.4\text{mm}$, $dz=2.5\text{mm}$

Input Power = 14.0 dBm (25 mW)

SAR(1 g) = 2.09 mW/g; SAR(10 g) = 0.576 mW/g

Deviation = 2.45 %

PCTEST ENGINEERING LABORATORY, INC.

DUT: Dipole 5800 MHz; Type: D5GHzV2; Serial: 1057

Communication System: CW; Frequency: 5800 MHz; Duty Cycle: 1:1

Medium: 5800 Muscle; Medium parameters used (interpolated):

$f = 5800 \text{ MHz}$; $\sigma = 6.15 \text{ mho/m}$; $\epsilon_r = 45.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section; Space: 1.0 cm

Test Date: 08-27-2010; Ambient Temp: 24.7 °C; Tissue Temp: 22.9 °C

Probe: EX3DV4 - SN3550; ConvF(3.3, 3.3, 3.3); Calibrated: 1/26/2010

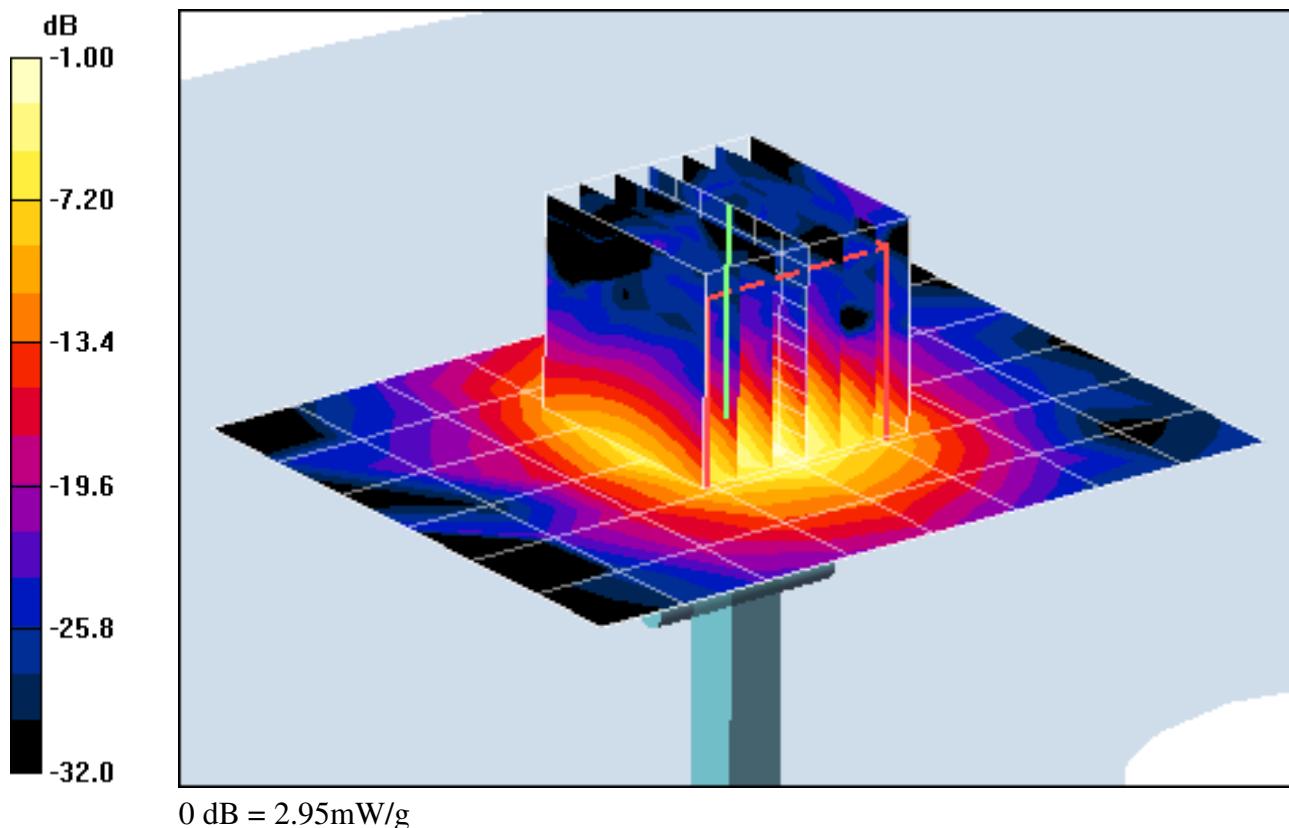
Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn649; Calibrated: 1/22/2010

Phantom: SAM Main; Type: SAM 4.0; Serial: TP-1114

Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

5800MHz System Verification


Area Scan 2 (7x9x1): Measurement grid: $dx=10\text{mm}$, $dy=10\text{mm}$

Zoom Scan (7x7x11)/Cube 0: Measurement grid: $dx=4.1\text{mm}$, $dy=4.1\text{mm}$, $dz=2.2\text{mm}$

Input Power = 14.0 dBm (25 mW)

SAR(1 g) = 1.82 mW/g; SAR(10 g) = 0.505 mW/g

Deviation = 1.68 %

APPENDIX C: PROBE CALIBRATION

Accredited by the Swiss Accreditation Service (SAS)

Accreditation No.: SCS 108

The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Client PC Test

Certificate No: ES3-3209_Apr10

CALIBRATION CERTIFICATE

Object ES3DV3 - SN:3209

Calibration procedure(s) QA CAL-01.v6, QA CAL-23.v3 and QA CAL-25.v2
Calibration procedure for dosimetric E-field probes

Calibration date: April 20, 2010

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	1-Apr-10 (No. 217-01136)	Apr-11
Power sensor E4412A	MY41495277	1-Apr-10 (No. 217-01136)	Apr-11
Power sensor E4412A	MY41498087	1-Apr-10 (No. 217-01136)	Apr-11
Reference 3 dB Attenuator	SN: S5054 (3c)	30-Mar-10 (No. 217-01159)	Mar-11
Reference 20 dB Attenuator	SN: S5086 (20b)	30-Mar-10 (No. 217-01161)	Mar-11
Reference 30 dB Attenuator	SN: S5129 (30b)	30-Mar-10 (No. 217-01160)	Mar-11
Reference Probe ES3DV2	SN: 3013	30-Dec-09 (No. ES3-3013_Dec09)	Dec-10
DAE4	SN: 660	29-Sep-09 (No. DAE4-660_Sep09)	Sep-10

Secondary Standards	ID #	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Oct-09)	In house check: Oct-11
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-09)	In house check: Oct10

Calibrated by:	Name	Function	Signature
	Marcel Fehr	Laboratory Technician	

Approved by:	Name	Function	Signature
	Kalja Pokovic	Technical Manager	

Issued: April 22, 2010

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA
 Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**

Glossary:

TSL	tissue simulating liquid
NORM x,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORM x,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization 9	9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- $NORMx,y,z$: Assessed for E-field polarization 9 = 0 ($f \leq 900$ MHz in TEM-cell; $f > 1800$ MHz: R22 waveguide). NORM x,y,z are only intermediate values, i.e., the uncertainties of NORM x,y,z does not effect the E^2 -field uncertainty inside TSL (see below ConvF).
- $NORM(f)x,y,z = NORMx,y,z * frequency_response$ (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- $DCPx,y,z$: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- $Ax,y,z; Bx,y,z; Cx,y,z; VRx,y,z$: A, B, C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters*: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \leq 800$ MHz) and inside waveguide using analytical field distributions based on power measurements for $f > 800$ MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to $NORMx,y,z * ConvF$ whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy)*: in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset*: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Probe ES3DV3

SN:3209

Manufactured: October 14, 2008

Last calibrated: April 15, 2009

Recalibrated: April 20, 2010

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

DASY - Parameters of Probe: ES3DV3 SN:3209

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm ($\mu\text{V}/(\text{V}/\text{m})^2$) ^A	1.35	1.35	1.15	$\pm 10.1\%$
DCP (mV) ^B	94.4	93.7	94.1	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dBuV	C	VR mV	Unc ^E (k=2)
10000	CW	0.00	X Y Z	0.00 0.00 0.00	0.00 0.00 0.00	1.00 1.00 1.00	300.0 300.0 300.0	$\pm 1.5\%$

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

^B Numerical linearization parameter: uncertainty not required.

^E Uncertainty is determined using the maximum deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

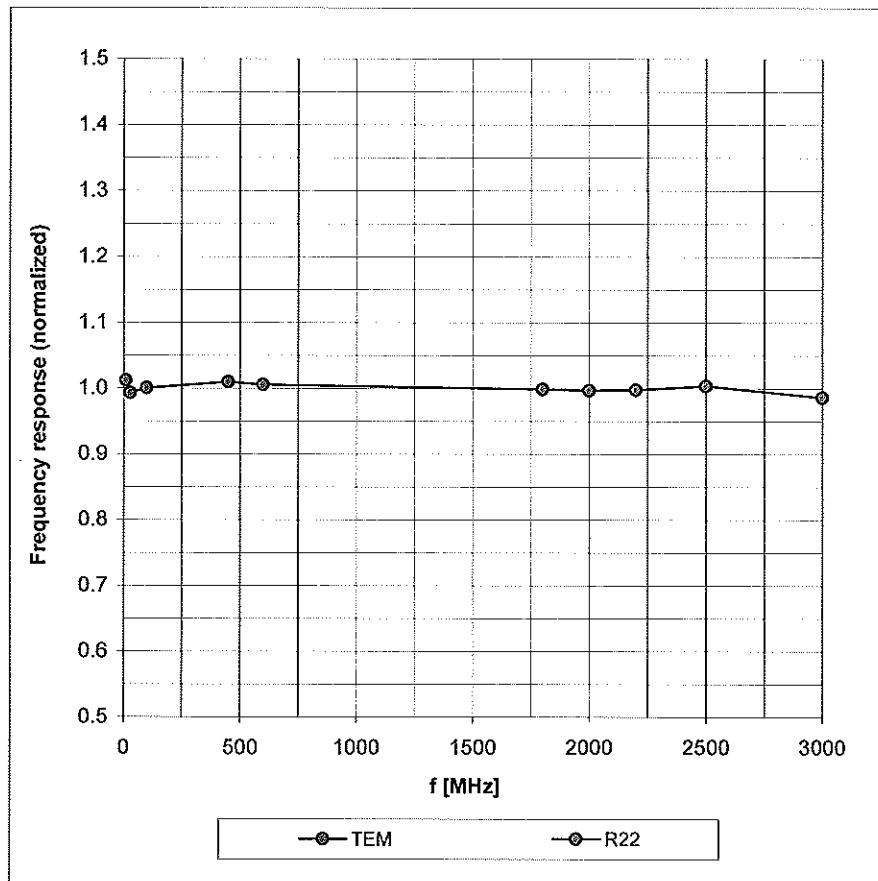
DASY - Parameters of Probe: ES3DV3 SN:3209

Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz]	Validity [MHz] ^c	Permittivity	Conductivity	ConvF X	ConvF Y	ConvF Z	Alpha	Depth Unc (k=2)
750	± 50 / ± 100	41.5 ± 5%	0.90 ± 5%	6.39	6.39	6.39	0.99	1.03 ± 11.0%
835	± 50 / ± 100	41.5 ± 5%	0.90 ± 5%	6.12	6.12	6.12	0.92	1.07 ± 11.0%
1750	± 50 / ± 100	40.1 ± 5%	1.37 ± 5%	5.34	5.34	5.34	0.62	1.33 ± 11.0%
1900	± 50 / ± 100	40.0 ± 5%	1.40 ± 5%	5.16	5.16	5.16	0.48	1.52 ± 11.0%
2450	± 50 / ± 100	39.2 ± 5%	1.80 ± 5%	4.56	4.56	4.56	0.47	1.66 ± 11.0%

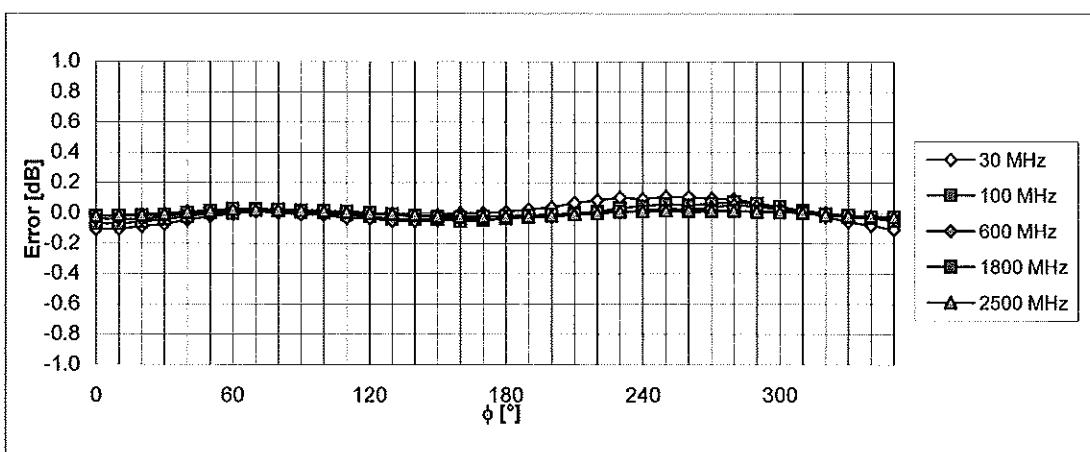
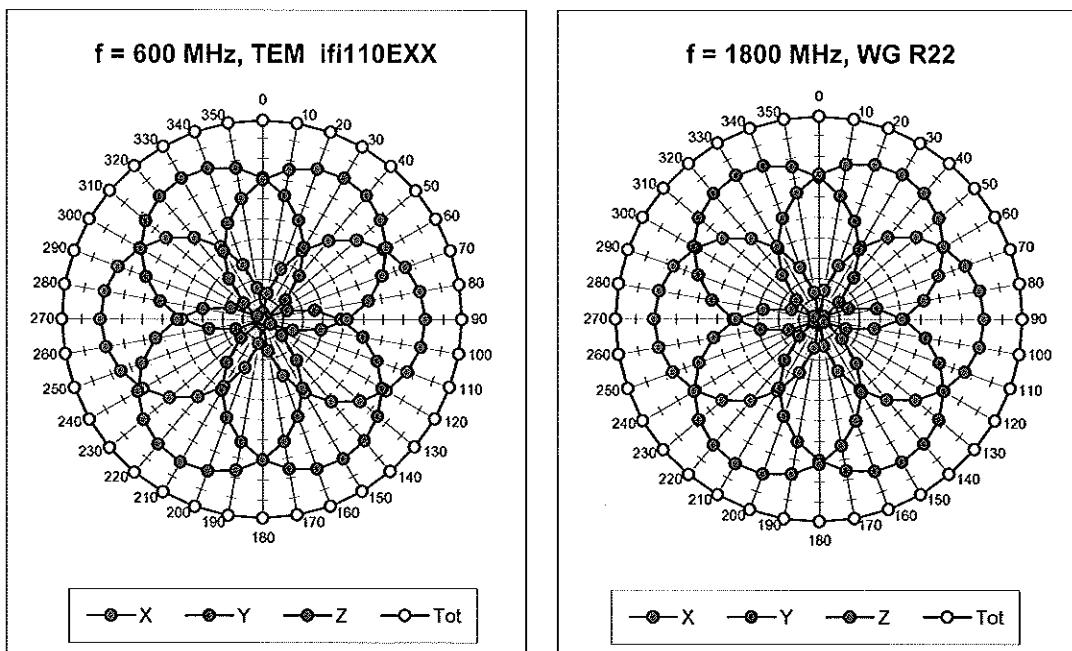
^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

DASY - Parameters of Probe: ES3DV3 SN:3209


Calibration Parameter Determined in Body Tissue Simulating Media

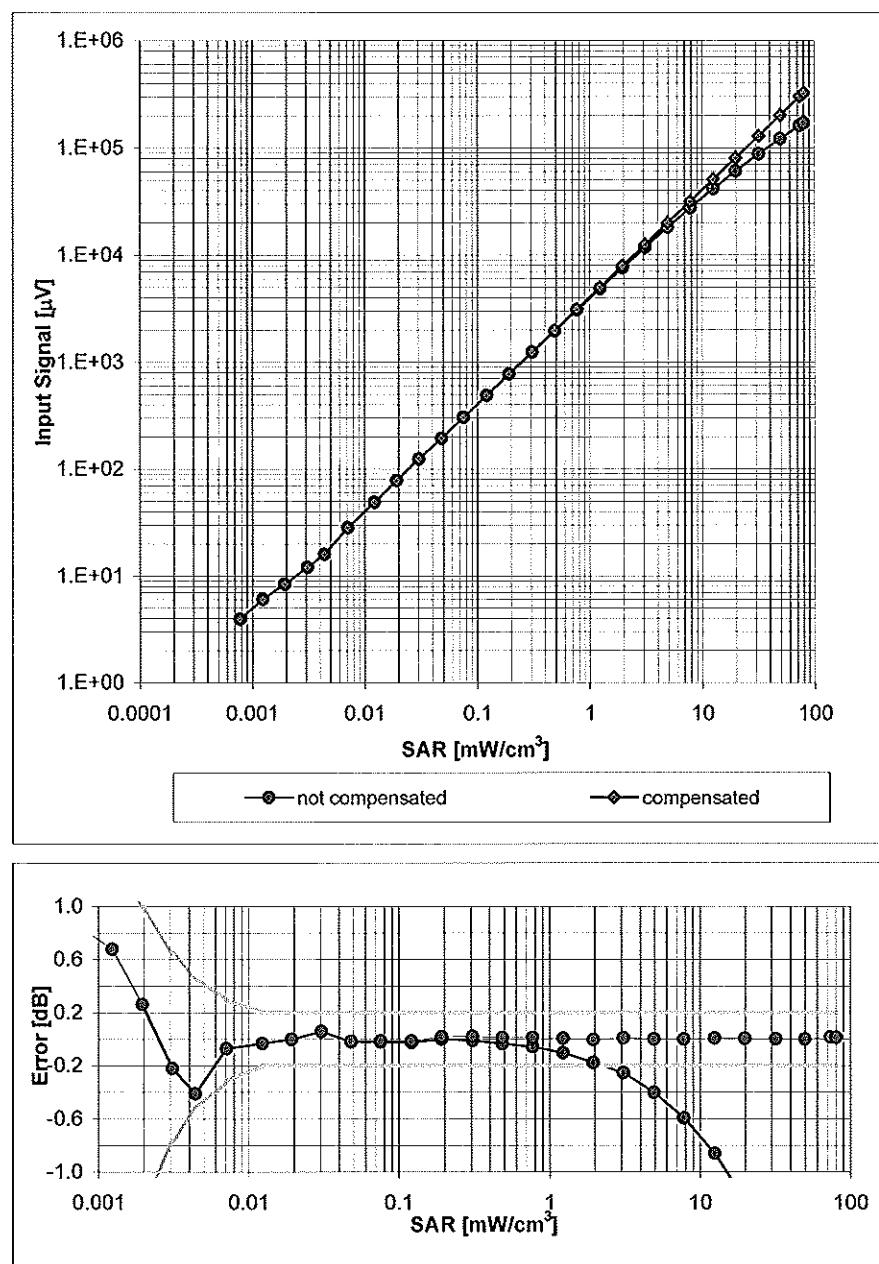
f [MHz]	Validity [MHz] ^c	Permittivity	Conductivity	ConvF X	ConvF Y	ConvF Z	Alpha	Depth Unc (k=2)
750	± 50 / ± 100	55.5 ± 5%	0.96 ± 5%	6.24	6.24	6.24	0.99	1.08 ± 11.0%
835	± 50 / ± 100	55.2 ± 5%	0.97 ± 5%	6.09	6.09	6.09	0.89	1.15 ± 11.0%
1750	± 50 / ± 100	53.4 ± 5%	1.49 ± 5%	4.85	4.85	4.85	0.32	2.16 ± 11.0%
1900	± 50 / ± 100	53.3 ± 5%	1.52 ± 5%	4.65	4.65	4.65	0.36	2.14 ± 11.0%
2450	± 50 / ± 100	52.7 ± 5%	1.95 ± 5%	4.35	4.35	4.35	0.74	1.25 ± 11.0%
2600	± 50 / ± 100	52.5 ± 5%	2.16 ± 5%	4.25	4.25	4.25	0.99	1.06 ± 11.0%

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

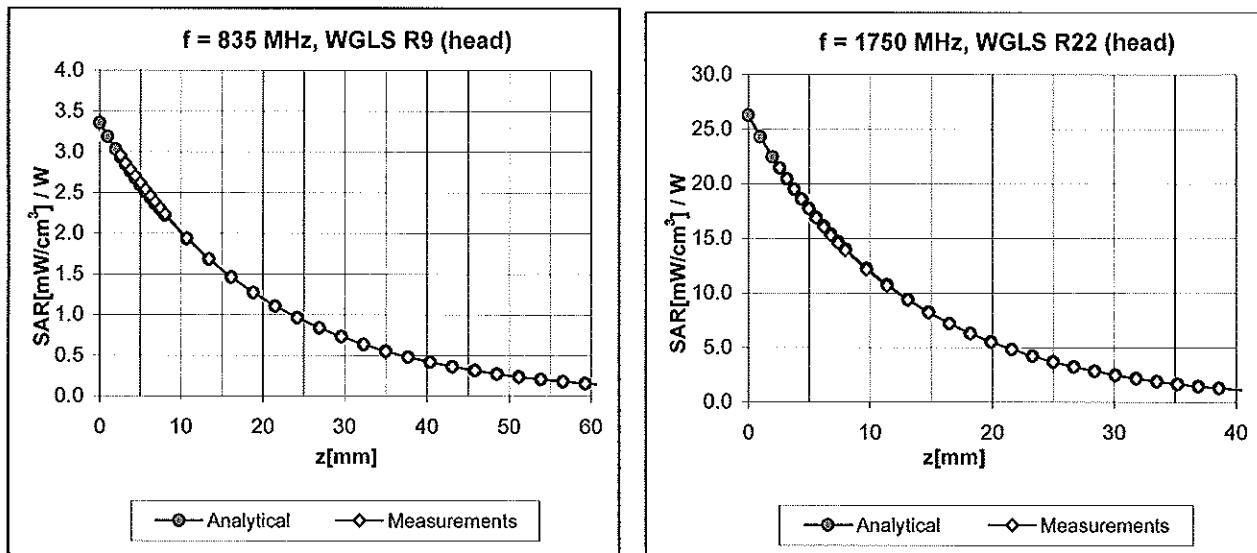


Frequency Response of E-Field

(TEM-Cell:ifi110 EXX, Waveguide: R22)

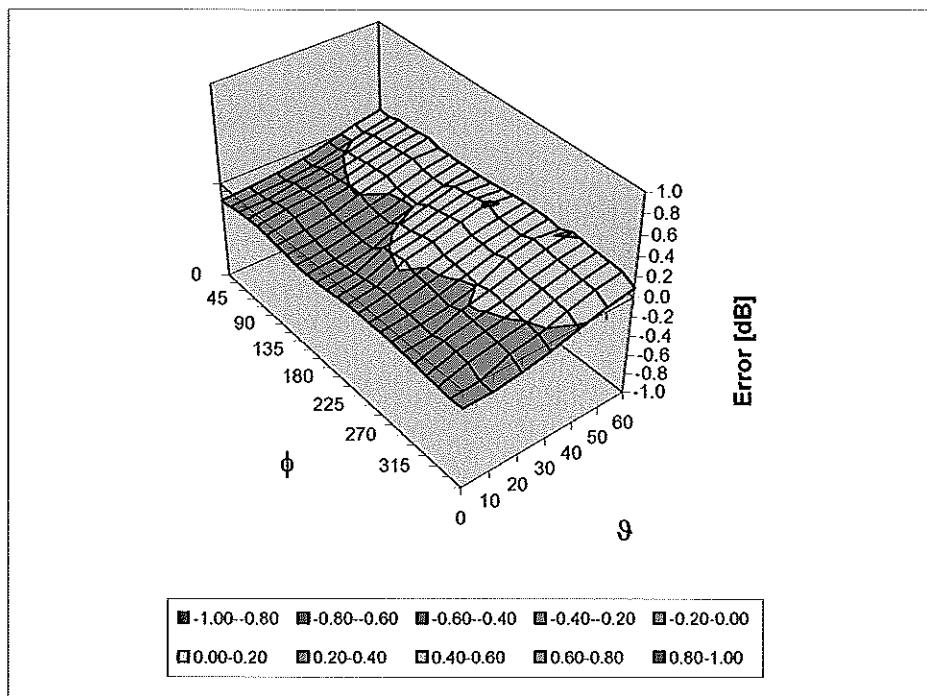
Uncertainty of Frequency Response of E-field: $\pm 6.3\% (k=2)$


Receiving Pattern (ϕ), $\theta = 0^\circ$

Uncertainty of Axial Isotropy Assessment: $\pm 0.5\%$ (k=2)


Dynamic Range f(SAR_{head})

(Waveguide R22, f = 1800 MHz)


Uncertainty of Linearity Assessment: $\pm 0.6\%$ (k=2)

Conversion Factor Assessment

Deviation from Isotropy in HSL

Error (ϕ, θ), $f = 900$ MHz

Uncertainty of Spherical Isotropy Assessment: $\pm 2.6\%$ ($k=2$)

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	Not applicable
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	4.0 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**

Client **PC Test**

Certificate No: **ES3-3213_Mar10**

CALIBRATION CERTIFICATE

Object **ES3DV3 - SN:3213**

Calibration procedure(s) **QA CAL-01.v6, QA CAL-23.v3 and QA CAL-25.v2
Calibration procedure for dosimetric E-field probes**

Calibration date: **March 16, 2010**

✓OK
3/29/10

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^\circ\text{C}$ and humidity $< 70\%$.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	1-Apr-09 (No. 217-01030)	Apr-10
Power sensor E4412A	MY41495277	1-Apr-09 (No. 217-01030)	Apr-10
Power sensor E4412A	MY41498087	1-Apr-09 (No. 217-01030)	Apr-10
Reference 3 dB Attenuator	SN: S5054 (3c)	31-Mar-09 (No. 217-01026)	Mar-10
Reference 20 dB Attenuator	SN: S5086 (20b)	31-Mar-09 (No. 217-01028)	Mar-10
Reference 30 dB Attenuator	SN: S5129 (30b)	31-Mar-09 (No. 217-01027)	Mar-10
Reference Probe ES3DV2	SN: 3013	30-Dec-09 (No. ES3-3013_Dec09)	Dec-10
DAE4	SN: 660	29-Sep-09 (No. DAE4-660_Sep09)	Sep-10

Secondary Standards	ID #	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Oct-09)	In house check: Oct-11
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-09)	In house check: Oct10

Calibrated by:	Name	Function	Signature
	Jeton Kastrati	Laboratory Technician	

Approved by:	Name	Function	Signature
	Katja Pokovic	Technical Manager	

Issued: March 19, 2010

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA
 Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**

Glossary:

TSL	tissue simulating liquid
NORM _{x,y,z}	sensitivity in free space
ConvF	sensitivity in TSL / NORM _{x,y,z}
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization 9	9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORM_{x,y,z}*: Assessed for E-field polarization 9 = 0 ($f \leq 900$ MHz in TEM-cell; $f > 1800$ MHz: R22 waveguide). NORM_{x,y,z} are only intermediate values, i.e., the uncertainties of NORM_{x,y,z} does not effect the E²-field uncertainty inside TSL (see below *ConvF*).
- NORM(f)x,y,z = NORMx,y,z * frequency_response* (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of *ConvF*.
- DCPx,y,z*: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- A_{x,y,z}; B_{x,y,z}; C_{x,y,z}; VR_{x,y,z}*: A, B, C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters*: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \leq 800$ MHz) and inside waveguide using analytical field distributions based on power measurements for $f > 800$ MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to *NORMx,y,z * ConvF* whereby the uncertainty corresponds to that given for *ConvF*. A frequency dependent *ConvF* is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy)*: in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset*: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Probe ES3DV3

SN:3213

Manufactured: October 14, 2008
Last calibrated: April 15, 2009
Recalibrated: March 16, 2010

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

DASY - Parameters of Probe: ES3DV3 SN:3213

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm ($\mu\text{V}/(\text{V}/\text{m})^2$) ^A	1.24	1.40	1.36	$\pm 10.1\%$
DCP (mV) ^B	93.8	93.1	91.6	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dBuV	C	VR mV	Unc ^E (k=2)
10000	CW	0.00	X Y Z	0.00 0.00 0.00	0.00 0.00 0.00	1.00 1.00 1.00	300.0 300.0 300.0	$\pm 1.5\%$

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

^B Numerical linearization parameter: uncertainty not required.

^E Uncertainty is determined using the maximum deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

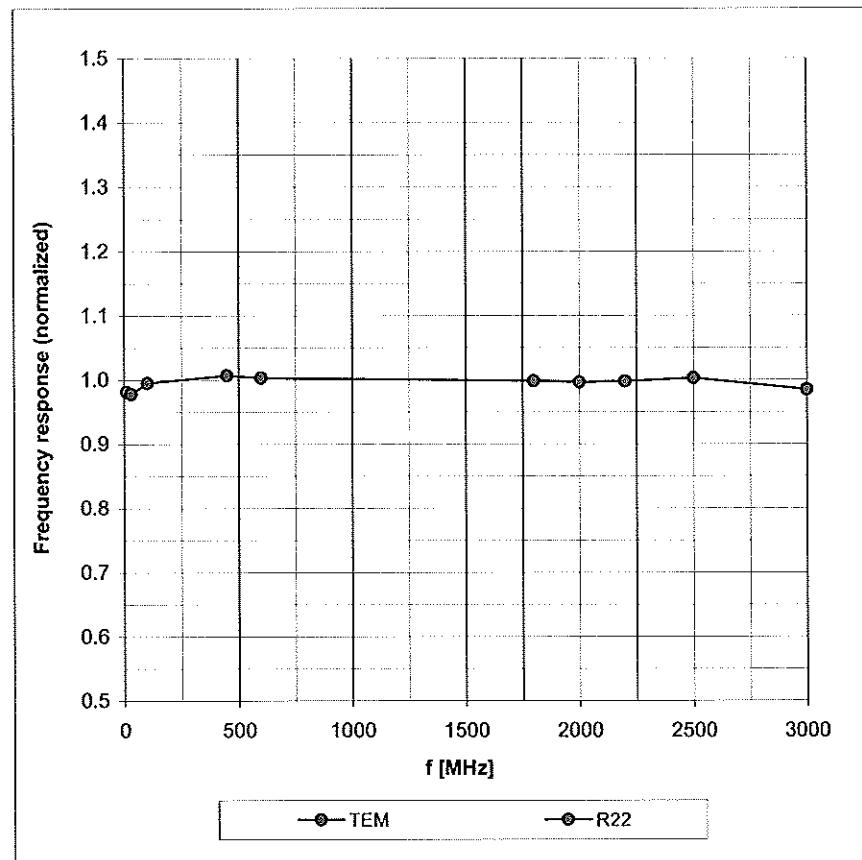
DASY - Parameters of Probe: ES3DV3 SN:3213

Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz]	Validity [MHz] ^c	Permittivity	Conductivity	ConvF X	ConvF Y	ConvF Z	Alpha	Depth Unc (k=2)
750	± 50 / ± 100	41.5 ± 5%	0.90 ± 5%	6.30	6.30	6.30	0.99	1.04 ± 13.3%
835	± 50 / ± 100	41.5 ± 5%	0.90 ± 5%	5.98	5.98	5.98	0.96	1.07 ± 11.0%
1750	± 50 / ± 100	40.1 ± 5%	1.37 ± 5%	5.11	5.11	5.11	0.50	1.38 ± 11.0%
1900	± 50 / ± 100	40.0 ± 5%	1.40 ± 5%	4.92	4.92	4.92	0.53	1.39 ± 11.0%
2450	± 50 / ± 100	39.2 ± 5%	1.80 ± 5%	4.36	4.36	4.36	0.46	1.62 ± 11.0%

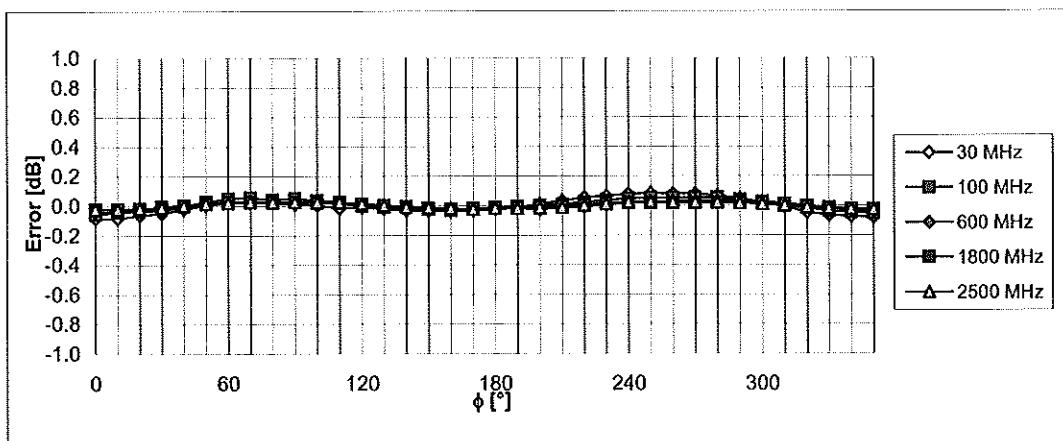
^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

DASY - Parameters of Probe: ES3DV3 SN:3213


Calibration Parameter Determined in Body Tissue Simulating Media

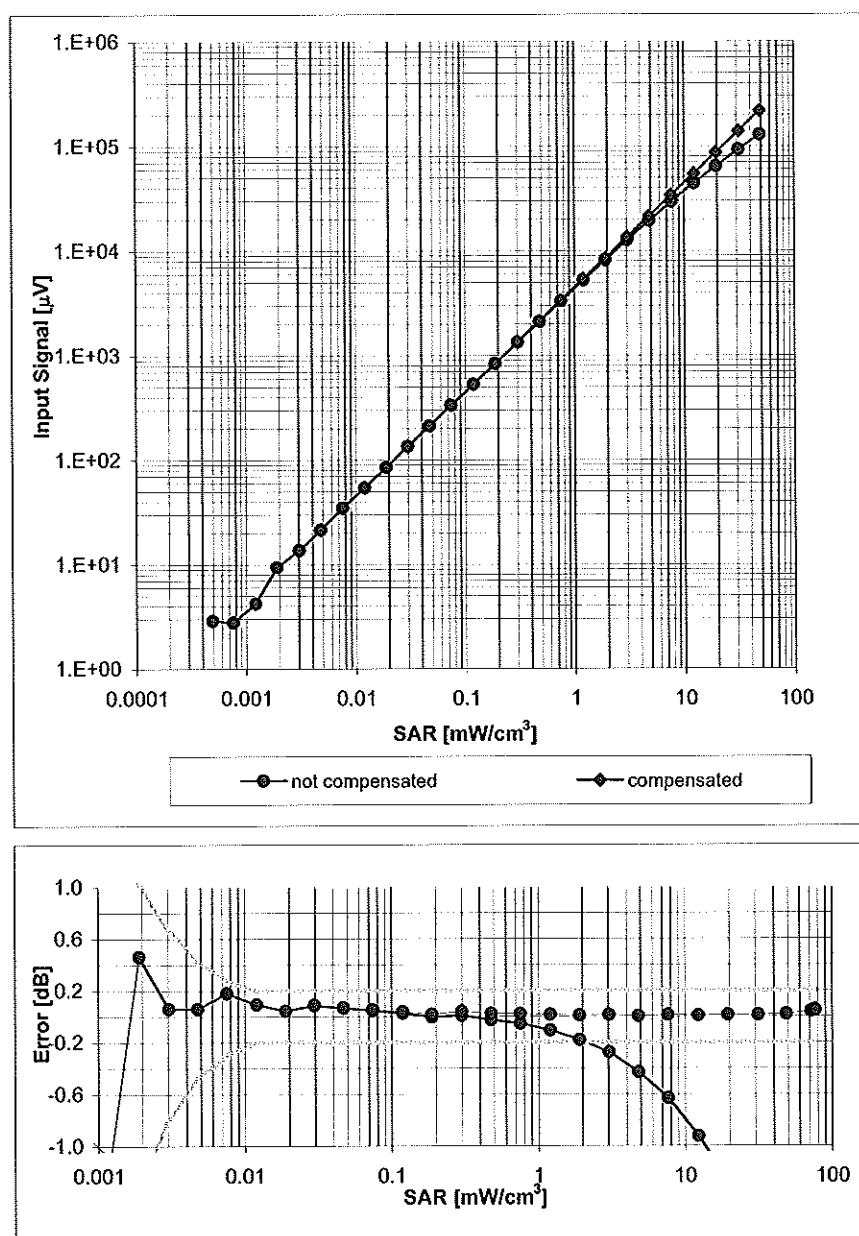
f [MHz]	Validity [MHz] ^c	Permittivity	Conductivity	ConvF X	ConvF Y	ConvF Z	Alpha	Depth Unc (k=2)
750	± 50 / ± 100	55.5 ± 5%	0.96 ± 5%	5.97	5.97	5.97	0.77	1.16 ± 13.3%
835	± 50 / ± 100	55.2 ± 5%	0.97 ± 5%	5.91	5.91	5.91	0.85	1.17 ± 11.0%
1640	± 50 / ± 100	53.8 ± 5%	1.40 ± 5%	5.04	5.04	5.04	0.35	1.97 ± 11.0%
1750	± 50 / ± 100	53.4 ± 5%	1.49 ± 5%	4.80	4.80	4.80	0.42	1.82 ± 11.0%
1900	± 50 / ± 100	53.3 ± 5%	1.52 ± 5%	4.61	4.61	4.61	0.41	1.97 ± 11.0%
2450	± 50 / ± 100	52.7 ± 5%	1.95 ± 5%	4.27	4.27	4.27	0.70	1.36 ± 11.0%
2600	± 50 / ± 100	52.5 ± 5%	2.16 ± 5%	4.16	4.16	4.16	0.92	1.17 ± 11.0%

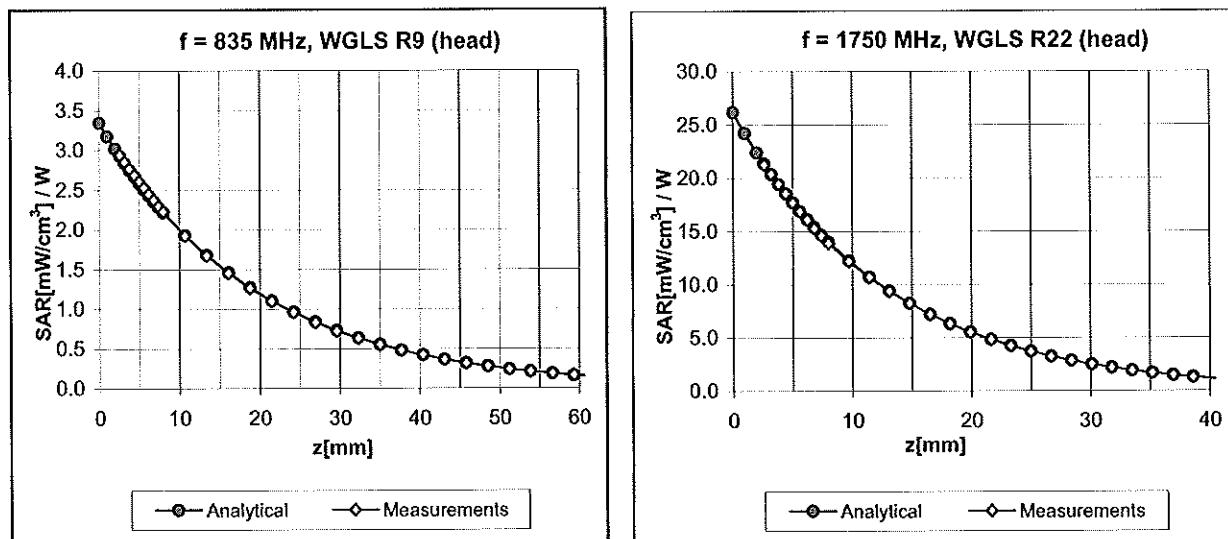
^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.


Frequency Response of E-Field

(TEM-Cell:ifi110 EXX, Waveguide: R22)

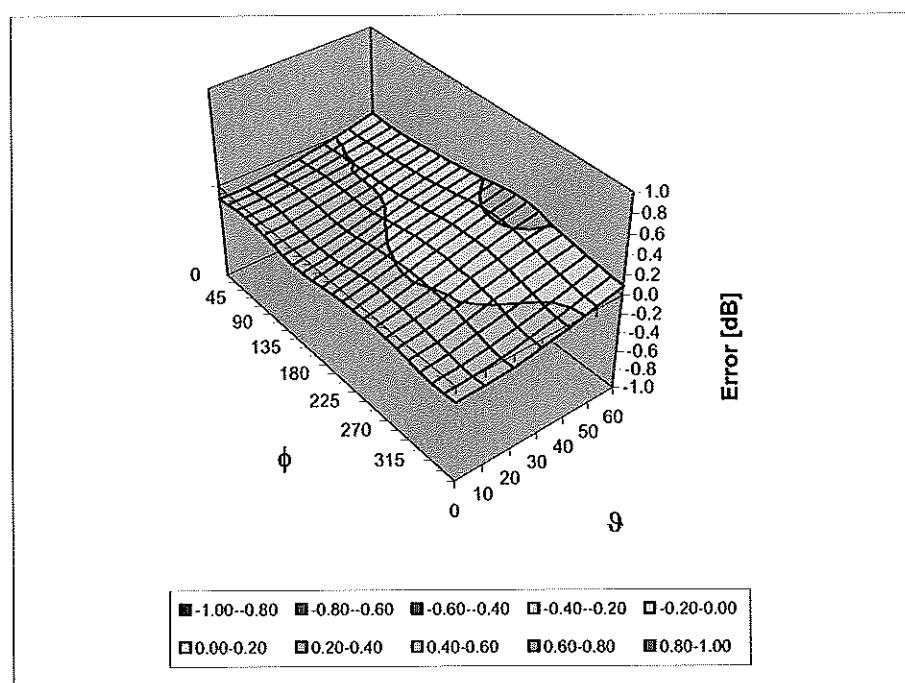
Uncertainty of Frequency Response of E-field: $\pm 6.3\% (k=2)$


Receiving Pattern (ϕ), $\theta = 0^\circ$


Uncertainty of Axial Isotropy Assessment: $\pm 0.5\%$ ($k=2$)

Dynamic Range f(SAR_{head})

(Waveguide R22, f = 1800 MHz)


Uncertainty of Linearity Assessment: $\pm 0.6\%$ (k=2)

Conversion Factor Assessment

Deviation from Isotropy in HSL

Error (ϕ, θ), $f = 900 \text{ MHz}$

Uncertainty of Spherical Isotropy Assessment: $\pm 2.6\%$ ($k=2$)

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	Not applicable
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	4.0 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

Additional Conversion Factors for Dosimetric E-Field Probe

Type:

ES3DV3

Serial Number:

3213

Place of Assessment:

Zurich

Date of Assessment:

April 13, 2010

Probe Calibration Date:

March 16, 2010

Schmid & Partner Engineering AG hereby certifies that conversion factor(s) of this probe have been evaluated on the date indicated above. The assessment was performed using the FDTD numerical code SEMCAD of Schmid & Partner Engineering AG. The evaluation is coupled with measured conversion factors (probe calibration date indicated above). The uncertainty of the numerical assessment is based on the extrapolation from measured value at 835 MHz or at 1750 MHz.

Assessed by:

Dosimetric E-Field Probe ES3DV3 SN:3213

Conversion factor (\pm standard deviation)

1640 \pm 50 MHz

ConvF

5.27 \pm 7%

$\epsilon_r = 40.2 \pm 5\%$
$\sigma = 1.31 \pm 5\% \text{ mho/m}$
(head tissue)

Important Note:

For numerically assessed probe conversion factors, parameters Alpha and Delta in the DASY software must have the following entries: Alpha = 0 and Delta = 1.

Please see also DASY4 Manual.