

Date issued:

SAMSUNG ELECTRONICS Co., Ltd., Regulatory Compliance Group IT R&D Center

416, Maetan-3dong, Yeongtong-gu, Suwon-si, Gyeonggi-do, Korea 443-742

Sep.30, 2009

TEST REPORT ON SAR

Model Tested:	GT-I6410
FCC ID (Requested):	A3LGTI6410
Job No:	FG-248
Report No:	FG-248-S1

- Abstract -

This document reports on SAR Tests carried out in accordance with FCC/OET Bulletin 65, Supplement C(July 2001).

	EMM	
Prepared By		
	MK YOUN - Test Engineer	
Authorized By	20	
	JD JANG - Technical Manager	

Contents

1. GENERAL INFORMATION.		3
2. DESCRIPTION OF DEVICE		3
3. DESCRIPTION OF TEST EC	QUIPMENT	4
3.1 SAR Measurement Se	tup	4
3.2 E-field Probe		6
3.3 Phantom		8
3.4 Brain & Muscle Simula	ting Mixture Characterization	9
	smitters	
•		
• •		
4. SAR MEASUREMENT PRO	CEDURE	12
5. DESCRIPTION OF TEST PO	DSITION	13
5.1 SAM Phantom Shape.		13
5.2 Cheek/Touch Position		13
5.3 EAR/Tilt 15° Position		15
5.4 Body Holster/Belt Clip	Configurations	16
6. MEASUREMENT UNCERTA	AINTY	18
7. SYSTEM VERIFICATION		20
7.1 Tissue Verification		20
7.2 Test System Validation		20
8. SAR MEASUREMENT RES	ULTS	21
8.1 Measurement Results(GSM850 Right Head SAR - Touch)	23
`	GSM850 Right Head SAR - Tilt)	
•	GSM850 Left Head SAR - Touch)	
	GSM850 Left Head SAR - Tilt)	
•	GSM850 Body SAR without Holster)	
`	GSM1900 Right Head SAR - Touch)	
`	GSM1900 Right Head SAR - Tilt)	
`	GSM1900 Left Head SAR - Touch)	
•	GSM1900 Left Head SAR - Tilt)	
	s(GSM1900 Body SAR without Holster)	
9. CONCLUSION		33
10 REFERENCES		3/

1. GENERAL INFORMATION

Test Sample: Dual-Band GSM/EDGE 850/1900 Phone with Bluetooth

Model Number: GT-I6410

Serial Number: Identical prototype (S/N: #FG-248-B)

Manufacturer: SAMSUNG ELECTRONICS Co., Ltd.

Address: 416 Maetan3-Dong, Yeongtong-gu, Suwon City

Gyeonggi-Do, Korea 443-742

Test Standard : §2.1093; FCC/OET Bulletin 65, Supplement C(July 2001)

FCC Classification: Licensed Portable Transmitter Held to Ear (PCE)

Test Dates: Sep.04, 2009 ~ Sep.07, 2009

Tested for: FCC/TCB Certification

2. DESCRIPTION OF DEVICE

Tx Freq. Range: 824.2 ~ 848.8 MHz (GSM850)

1850.20 ~ 1909.80 MHz (GSM1900)

2402 ~ 2480 MHz (Bluetooth)

Rx Freq. Range: 869.2 ~ 893.8 MHz (GSM850)

1930.20 ~ 1989.80 MHz (GSM1900)

2402 ~ 2480 MHz (Bluetooth)

Antenna Manufacturer: Tyco Electronics Corporation

Model No.: 2108031-1

Antenna Dimensions : 53.77 X 19.79 X 6.77 (mm)

GPRS Class 12

Separation distance between

Main and Bluetooth antenna: 11.7 (mm)

Report Number: FG-248-S1 3 of 35

3. DESCRIPTION OF TEST EQUIPMENT

3.1 SAR Measurement Setup

Robotic System

Measurements are performed using the DASY4 automated dosimetric assessment system. Which is made by Schmid & Partner Engineering AG (SPEAG) in Zurich, Switzerland and consists of high precision robotics system (Stäubli), robot controller, measurement server, Samsung computer, near-field probe, probe alignment sensor, and the SAM twin phantom containing the brain equivalent material. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF) (see Fig. 3.1).

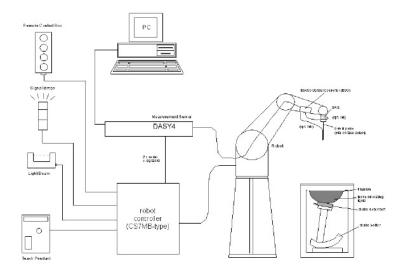


Figure 3.1 SAR Measurement System Setup

System Hardware

A cell controller system contains the power supply, robot controller, teach pendant (Joystick), and a remote control is used to drive the robot motors. The PC consists of the Samsung computer with Windows XP system and SAR Measurement Software DASY4, LCD monitor, mouse and keyboard. The Stäubli Robot is connected to the cell controller to allow software manipulation of the robot. A

Report Number: FG-248-S1 4 of 35

data acquisition electronic (DAE) circuit that performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical into digital electric signal of the DAE and transfers data to the measurement server

System Electronics

The DAE4(or DAE3) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16-bit AD-converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe mounting device includes two different sensor systems for frontal and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer.

Report Number: FG-248-S1 5 of 35

3.2 E-field Probe

The SAR measurement were conducted with the dosimetric probe ES3DV3, designed in the classical triangular configuration (see Fig.3.3) and optimized for dosimetric evaluation. The probe is constructed using the thick film technique; with printed resistive lines on ceramic substrates. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY4 software reads the reflection during a software approach and looks for the maximum using a 2nd order fitting (see Fig.3.2). The approach is stopped at reaching the maximum.

Figure 3.2 DAE System

Probe Specifications

Construction Symmetrical design with triangular core

Interleaved sensors

Built-in shielding against static charges

PEEK enclosure material (resistant to organic solvents, e.g., DGBE)

Calibration Basic Broad Band Calibration in air: 10-3000 MHz

Conversion Factors (CF) for HSL 900 and HSL 1800

Additional CF for other liquids and frequencies upon request

Frequency 10 MHz to > 6 GHz; Linearity: ± 0.2 dB (30 MHz to 3 GHz)

Directivity ± 0.2 dB in HSL (rotation around probe axis)

± 0.3 dB in tissue material (rotation normal to probe axis)

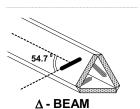


Figure 3.3 Triangular Probe Configuration

Report Number: FG-248-S1 6 of 35

Dynamic 5μ W/g to > 100mW/g; Linearity: \pm 0.2dB

Range

Dimensions Overall length: 330 mm (Tip: 20 mm)

Tip diameter: 3.9 mm (Body: 12 mm)

Distance from probe tip to dipole centers: 2.1 mm

Figure 3.4 Probe Thick-Film Technique

Application General dosimetry up to 5 GHz

Dosimetry in strong gradient fields

Compliance tests of mobile phones

Report Number: FG-248-S1 7 of 35

3.3 Phantom

SAM Twin Phantom

The SAM Twin Phantom V4.0 is constructed of a fiberglass shell integrated in a wooden table. The shape of the shell is based on data from an anatomical study designed to determine the maximum exposure in at least 90% of all users. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents the evaporation of the liquid.

Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot. (See Figure 3.5)

Figure 3.5 SAM Twin Phantom

SAM Twin Phantom Specification

Construction The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM)

phantom defined in IEEE 1528-2003, CENELEC 50361 and IEC 62209-1. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom

region. A cover prevents evaporation of the liquid.

Shell Thickness 2 ± 0.2 mm

Filling Volume Approx. 25 liters

Dimensions Height: 810 mm; Length: 1000 mm; Width: 500 mm

Modular Flat Phantom

The Modular Flat Phantom V5.1 is constructed of a fiberglass shell integrated in a wooden table. Also It consists of three identical flat phantoms (modules) which can be installed and removed separately without emptying the liquid, as well as a wooden support. It enables the dosimetric evaluation of body mounted usage at the flat phantom region. A cover prevents the evaporation of the liquid.

Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot. (See Figure 3.6)

Report Number: FG-248-S1 8 of 35

Figure 3.6 Modular Flat Phantom

Modular Flat Phantom Specification

Construction The shell corresponds to the specifications of IEEE 1528-2003. It enables the dosimetric evaluation

of body mounted usage above 800 MHz at the flat phantom region. A cover prevents evaporation of

the liquid.

Shell Thickness $2 \pm 0.2 \text{ mm}$

Filling Volume Approx. 10 liters

Dimension Wooden support - Height: 810 mm; Length: 830 mm; Width: 500 mm

Each Module - Height: 190 mm; Length: 200 mm; width: 300 mm

3.4 Brain & Muscle Simulating Mixture Characterization

The brain and muscle mixtures consist of a viscous gel using hydroxethylcellullose (HEC) gelling agent and saline solution (see Table 3.1). Preservation with a bactericide is added and visual inspection is made to make sure air bubbles are not trapped during the mixing process. The mixture is calibrated to obtain proper dielectric constant (permittivity) and conductivity of the desired tissue. The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 have been incorporated in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations.

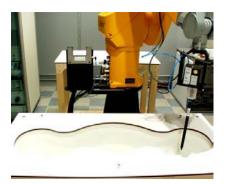


Figure 3.7 Simulated Tissue

Report Number: FG-248-S1 9 of 35

Table 3.1 Composition of the Brain & Muscle Tissue Equivalent Matter

INGREDIENTS	835MHz Brain	835MHz Muscle	1900MHz Brain	1900MHz Muscle
WATER	40.29%	50.75%	55.24%	70.23%
SUGAR	57.90%	48.21%	-	-
SALT	1.38%	0.94%	0.31%	0.29%
DGBE	-	-	44.45%	29.47%
BACTERIACIDE	0.18%	0.10%	-	-
HEC	0.24%	-	-	-
Dielectric Constant Target	41.50	55.20	40.00	53.30
Conductivity Target (S/m)	0.900	0.970	1.400	1.520

3.5 Device Holder for Transmitters

In combination with the Twin SAM Phantom V4.0, the Mounting Device (see Fig. 3.7) enables the rotation of the mounted transmitter in spherical coordinates whereby the rotation points is the ear

opening. The devices can be easily, accurately and repeatedly be positioned according to the FCC specifications. The device holder can be locked at different phantom locations (left head, right head, flat phantom).

*Note: A simulating human hand is not used due to the complex anatomical and geometrical structure of the hand that may produced infinite number of configuration. To produce worst-case condition (the hand absorbs antenna output power), the hand is omitted during the tests.

Figure 3.8 Device Holder

3.6 Validation Dipole

The reference dipole should have a return loss better than –20 dB (measured in the setup) at the resonant frequency to reduce the uncertainty in the power measurement.

Frequency 835, 1900 MHz

Return Loss < -20 dB at specified validation position

Dimensions D835V2: dipole length: 161 mm; overall height: 330 mm

D1900V2: dipole length: 68 mm; overall height: 300 mm

Report Number: FG-248-S1 10 of 35

3.7 Equipment Calibration

Table 3.2 Test Equipment Calibration

Туре	Calibration Due Date	Serial No.
SPEAG DAE4 V1	Apr.01, 2010	486
E-Field Probe ES3DV3	Jan.20, 2010	3080
SPEAG Validation Dipole D835V2	Mar.16, 2011	4d050
SPEAG Validation Dipole D1900V2	Mar.17, 2011	5d082
Stäubli Robot RX90BL	Not Required	F01/5N19A1/A/01
SPEAG SAM Twin Phantom V4.0	Not Required	TP-1141
SPEAG SAM Twin Phantom V4.0	Not Required	TP-1143
SPEAG Modular Phantom	Not Required	MP-1001
E4438C Signal Generator	Mar.06, 2010	MY45092224
BBS3Q7ECK Power Amp	Oct.21, 2009	1007D/C0035
E4419B Power Meter	May.08, 2010	MY45101765
E9300B Power Sensor	May.08, 2010	MY41495885
HP-8753ES Network Analyzer	Apr.22, 2010	US39173712
HP85070C Dielectric Probe Kit	Not Required	US99360087
E4419B Power Meter	Oct.23, 2009	GB41293847
8481A Power Sensor	Oct.23, 2009	MY41092080
8481A Power Sensor	Dec.16, 2009	MY41092077
DASY4 S/W (ver4.7)	Not Required	
Directional Coupler	May.22, 2010	18842
Base Satation Simulator	Dec.29, 2009	GB46490113

NOTE:

The E-field probe was calibrated by SPEAG, by temperature measurement procedure. Dipole Validation measurement is performed by Samsung Lab. before each test. (see § 7.2) The brain simulating material is calibrated by Samsung using the dielectric probe system and network analyzer to determine the conductivity and permittivity (dielectric constant) of the brain-equivalent material. (see § 7.1)

Report Number: FG-248-S1 11 of 35

4. SAR MEASUREMENT PROCEDURE

The evaluation was performed using the following procedure.

STEP 1

The SAR measurement was taken at a selected spatial reference point to monitor power variations during testing. This fixed location point was measured and used as a reference value.

STEP 2

The SAR distribution at the exposed side of the head was measured at a distance of 3.9mm from the inner surface of the shell. The area covered the entire dimension of the head and the horizontal grid spacing was 20mm x 20mm. Based on the area scan data, the area of the maximum absorption was determined by spline interpolation.

STEP 3

Around this point, a volume of $32mm \times 32mm \times 30mm$ (fine resolution volume scan, zoom scan) was assessed by measuring 5 x 5 x 7 points. On this basis of this data set, the spatial peak SAR value was evaluated with the following procedure:

The data at the surface was extrapolated, since the center of the dipoles is 2.7mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.2mm. (This can be variable. Refer to the probe specification) The extrapolation was based on a least square algorithm. A polynomial of the fourth order was calculated through the points in z-axes. This polynomial was then used to evaluated the points between the surface and the probe tip. The maximum interpolated value was searched with a straight-forward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1g or 10g) were computed using the 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions). The volume was integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were interpolated to calculate the average. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.

STEP 4

The SAR value at the same location as in step 1 was again measured. (If the value changed by more than 5%, the evaluation is repeated.)

Report Number: FG-248-S1 12 of 35

5. DESCRIPTION OF TEST POSITION

5.1 SAM Phantom Shape

Figure 5.1 shows the front, back and side views of SAM. The point "M" is the reference point for the center of mouth, "LE" is the left ear reference point (ERP), and "RE" is the right ERP. The ERPs are 15 mm posterior to the entrance to ear canal (EEC) along the B-M line (Back-Mouth), as shown in Figure 5.2.

Figure 5.1 Front, back and side view of SAM

The plane passing through the two ear canals and M is defined as the Reference Plane. The line N-F (Neck-Front) perpendicular to the reference plane and passing through the RE (or LE) is called the Reference Pivoting Line (see Figure 5.3). Line B-M is perpendicular to the N-F line. Both N-F and B-M lines should be marked on the external phantom shell to facilitate handset positioning. Posterior to the N-F line, the thickness of the phantom shell with the shape of an ear is a flat surface 6 mm thick at the ERPs.

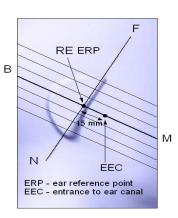
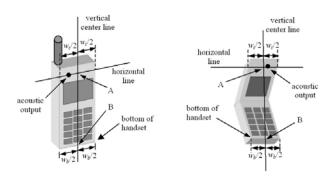


Figure 5.2 Close up side view


5.2 Cheek/Touch Position

Two imaginary lines on the handset were established: the vertical centerline and the horizontal line. The test device was placed in a normal operating position with the "test device reference point" located along the "vertical centerline" on the front of the device aligned to the "ear reference point" (see Fig. 5.4). The "test device reference point" was than located at the same level as the center of

Report Number: FG-248-S1 13 of 35

the eat reference point. The test device was positioned so that the "vertical centerline" was bisecting the front surface of the handset at it's tip and bottom edges, positioning the "ear reference point" on the outer surface of the both the left and right head phantoms on the ear reference point

+30 B₀ -30 +20 N -60 10 mm squire

Figure 5.4 Handset vertical and horizontal reference lines

Figure 5.3 Side view of the phantom showing relevant markings

Step 1

The test device was positioned with the handset close to the surface of the phantom such that point A is on the (virtual) extension of the line passing through points RE and LE on the phantom (see Figure 5.5), such that the plane defined by the vertical center line and the horizontal line of the phone is approximately parallel to the sagittal plane of the phantom

Figure 5.5 Front, Side and Top View of Cheek/Touch Position

Step 2

The handset was translated towards the phantom along the line passing through RE & LE until the handset touches the ear.

Report Number: FG-248-S1 14 of 35

Step 3

While maintaining the handset in this plane, the handset was rotated around the LE-RE line until the vertical centerline was in the plane normal to MB-NF including the line MB (reference plane).

Step 4

Rotate the handset around the vertical centerline until the phone (horizontal line) was symmetrical was respect to the line NF.

Step 5

While maintaining the vertical centerline in the reference plane, keeping point A on the line passing through RE and LE, and maintaining the phone contact with the ear, the handset was rotated about the line NF until any point on the handset made contact with a phantom point below the ear (cheek). See Figure 5.2.

5.3 EAR/Tilt 15° Position

With the test device aligned in the "Cheek/Touch Position":

Step 1

Repeat steps 1 to 5 of 5.2 to place the device in the "Cheek/Touch Position"

Figure 5.6 Front, side and Top View of Ear/Tilt 15° Position

Step 2

While maintaining the orientation of the phone, the phone was retracted parallel to the reference plane far enough to enable a rotation of the phone by 15 degree.

Report Number: FG-248-S1 15 of 35

Step 3

The phone was then rotated around the horizontal line by 15 degree.

Step 4

While maintaining the orientation of the phone, the phone was moved parallel to the reference plane until any part of the phone touches the head. (In this position, point A was located on the line RE-LE). The tilted position is obtained when the contact is on the pinna. If the contact was at any location other than the pinna, the angle of the phone would then be reduced. The tilted position was obtained when any part of the phone was in contact of the ear as well as a second part of the phone was in contact with the head.

5.4 Body Holster/Belt Clip Configurations

Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration (see Figure 5.7). A device with a headset output is tested with a headset connected to the device. Body dielectric parameters are used.

Figure 5.7 Body Belt Clip and Holster Configurations

Accessories for Body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are supplied with the device, the device is tested with each accessory that contains unique metallic component. If multiple accessory share an identical

Report Number: FG-248-S1 16 of 35

metallic component (i.e. the same metallic belt-clip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

Body-worn accessories may not always be supplied or available as options for some Devices intended to be authorized for body-worn use. In this case, a test configuration where a separation distance between the back of the device and the flat phantom is used.

Transmitters that are designed to operate in front of a person's face, as in push-to-talk configurations, are tested for SAR compliance with the front of the device positioned to face the flat phantom. For devices that are carried next to the body such as a shoulder, waist or chest-worn transmitters, SAR compliance is tested with the accessory(ies), Including headsets and microphones, attached to the device and positioned against a flat phantom in a normal use configuration.

In all cases SAR measurements are performed to investigate the worst-case positioning. Worst-case positioning is then documented and used to perform Body SAR testing.

In order for users to be aware of the body-worn operating requirements for meeting RF exposure compliance, operating instructions and cautions statements must be included in the user's manual.

Report Number: FG-248-S1 17 of 35

6. MEASUREMENT UNCERTAINTY

Table 6.1 Uncertainty Budget at 835MHz (June 2009)

Error Description	Uncertainty Value (±%)	Probability Distribution	Divisor	Ci	Standard uncertainty (±%)	v _i ² or V _{eff}
Measurement System						
Probe Calibration	11.00	normal	2.000	1	5.50	∞
Axial Isotropy	4.70	rectangular	1.732	0.7	1.90	∞0
Hemispherical Isotropy	9.60	rectangular	1.732	0.7	3.88	∞
Linearity	4.70	rectangular	1.732	1	2.71	∞
System Detection Limits	0.25	rectangular	1.732	1	0.14	∞
Boundary effects	1.00	rectangular	1.732	1	0.58	∞
Readout electronics	0.30	normal	1.000	1	0.30	∞
Response time	0.80	rectangular	1.732	1	0.46	∞
RF ambient conditions	3.00	rectangular	1.732	1	1.73	∞
Integration time	1.73	rectangular	1.732	1	1.00	∞
Mechanical constrains of robot	1.50	rectangular	1.732	1	0.87	∞
Probe positioning	2.90	rectangular	1.732	1	1.67	∞
Extrapolation and integration	1.00	rectangular	1.732	1	0.58	∞
Test Sample Related						
Test Sample positioning	1.12	normal	1.000	1	1.12	14
Device holded uncertainty	3.44	normal	1.000	1	3.44	∞
Power Drift	5.00	rectangular	1.732	1	2.89	∞
Phantom and Setup						
Modular Phantom uncertainty	5.62	normal	1.000	1	5.62	2
Phantom uncertainty	4.00	rectangular	1.732	1	2.31	∞
Liquid conductivity (deviation from target)	5.00	rectangular	1.732	0.64	1.85	∞
Liquid conductivity (measurement error)	0.38	normal	1.000	0.64	0.24	∞
Liquid permittivity (deviation from target)	5.00	rectangular	1.732	0.6	1.73	∞
Liquid permittivity (measurement error)	5.44	normal	1.000	0.6	3.26	∞
Combined Standard Uncerta	inty	Normal	-	-	11.84	184200
Extended Standard Uncertainty(K=2.00)				23.69	184200

Report Number: FG-248-S1 18 of 35

Table 6.2 Uncertainty Budget at 1900MHz (June 2009)

Error Description	Uncertainty Value (±%)	Probability Distribution	Divisor	Ci	Standard uncertainty (±%)	v _i ² or v _{eff}
Measurement System						
Probe Calibration	11.00	normal	2.000	1	5.50	∞
Axial Isotropy	4.70	rectangular	1.732	0.7	1.90	∞
Hemispherical Isotropy	9.60	rectangular	1.732	0.7	3.88	∞
Linearity	4.70	rectangular	1.732	1	2.71	∞
System Detection Limits	0.25	rectangular	1.732	1	0.14	∞
Boundary effects	1.00	rectangular	1.732	1	0.58	∞
Readout electronics	0.30	normal	1.000	1	0.30	∞
Response time	0.80	rectangular	1.732	1	0.46	∞
RF ambient conditions	3.00	rectangular	1.732	1	1.73	∞
Integration time	0.00	rectangular	1.732	1	0.00	∞
Mechanical constrains of robot	1.50	rectangular	1.732	1	0.87	∞
Probe positioning	2.90	rectangular	1.732	1	1.67	∞
Extrapolation and integration	1.00	rectangular	1.732	1	0.58	∞
Test Sample Related						
Test Sample positioning	1.50	normal	1.000	1	1.50	14
Device holded uncertainty	3.44	normal	1.000	1	3.44	∞
Power Drift	5.00	rectangular	1.732	1	2.89	∞
Phantom and Setup						
Modular Phantom uncertainty	6.02	normal	1.000	1	6.02	2
Phantom uncertainty	4.00	rectangular	1.732	1	2.31	∞
Liquid conductivity (deviation from target)	5.00	rectangular	1.732	0.64	1.85	∞
Liquid conductivity (measurement error)	1.84	normal	1.000	0.64	1.18	∞
Liquid permittivity (deviation from target)	5.00	rectangular	1.732	0.6	1.73	∞
Liquid permittivity (measurement error)	4.54	normal	1.000	0.6	2.73	∞
Combined Standard Uncerta	ninty	Normal	-	-	12.00	60176
Extended Standard Uncertainty	(K=2.00)		l.		24.00	60176

Report Number: FG-248-S1 19 of 35

7. SYSTEM VERIFICATION

7.1 Tissue Verification

Table 7.1 MEASURED TISSUE PARAMETERS

	835MI	-IzBrain	835MH	z Musde	1900M	Hz Brain	1900MH	łzMusde
	Target	Measured	Target	Measured	Target	Measured	Target	Measured
Date	-	Sep.04, 2009	-	Sep.04, 2009	-	Sep.07, 2009	-	Sep.07, 2009
Liquid Temperature(°C)	-	22.3	-	22.4	-	21.7	-	21.8
Dielectric Constant: ε'	41.5	40.8	552	54.5	40.0	38.9	53.3	522
Conductivity: σ	0.90	0.91	0.97	0.99	1.40	1.40	1.52	1.52

The measured value must be within ±5% of the target value.

7.2 Test System Validation

Prior to assessment, the system is verified to the ±10% of the specification at 835MHz and 1900MHz by using the system validation kit(s). (see Appendix E, Graphic Plot Attached)

Table 7.2 System Validation Results

System Validation Kit	Tissue	Targeted SAR _{1q} (mW/g)	Measured SAR _{1g} (mW/g)	Deviation (%)	Date	Liquid Temperature(°C)	Ambient Temperature(°C)
4d050	835MHz Brain	9.49	9.24	-2.63	Sep.04, 2009	22.3	22.6
5d082	1900MHz Brain	39.4	39.96	1.42	Sep.07, 2009	21.8	22.2

*Validation was measured with input power 250 mW and normalized to 1W.

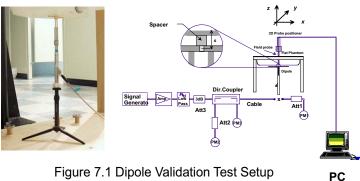


Figure 7.1 Dipole Validation Test Setup

Report Number: FG-248-S1 20 of 35

8. SAR MEASUREMENT RESULTS

Procedures Used To Establish Test Signal

The handset was placed into simulated call mode using manufacturers test codes. Such test signals offer a consistent means for testing SAR and are recommended for evaluating SAR. When test modes are not available or inappropriate for testing a handset, the actual transmission is activated through a base station simulator or similar equipment. See data pages for actual procedure used in measurement.

Device Test Conditions

The handset is battery operated. Each SAR measurement was taken with a fully charged battery. In order to verify that the device was tested at full power, conducted output power measurements were performed before and after each SAR measurement to confirm the output power. If a conducted power deviation of more than 5% occurred, the test was repeated. And all Tx(1~4Tx) conducted power were also investigated for Body-Worn SAR measurement.

Table 8.1 GPRS Power Table

Band	Channel	1Tx	2Tx	3Тх	4Tx
	128	32.62	32.40	29.61	28.20
GSM850	190	32.57	32.34	29.55	28.14
	251	32.61	32.38	29.55	28.14
	512	29.52	29.25	26.58	25.50
GSM1900	661	29.77	29.53	26.86	25.78
	810	29.48	29.24	26.61	25.53

Simultaneous Transmission

Refer to the FCC OET document, 'SAR Evaluation Considerations for Handsets with Multiple Transmitters and Antennas' (Feb 2008)

Table 8.1 Output Power Thresholds for Unlicensed Transmitters

	2.45	5.15 - 5.35	5.47 - 5.85	GHz	
P Ref	12	6	5	mW	
Device output power should be rounded to the nearest mW to compare with values specified in this table					

Report Number: FG-248-S1 21 of 35

Table 8.2 Summary of SAR Evaluation Requirements for Cell phones with Multiple Transmitters

	Individual Transmitter	Simultaneous Transmission
Licensed Transmitters	Routine evaluation required	SAR not required: Unlicensed only
Unlicensed Transmitters	When there is no simultaneous transmission — o output < 60/f: SAR not required o output ≥ 60/f: stand-alone SAR required When there is simultaneous transmission — Stand-alone SAR not required when O output ≤ 2.P _{Ref} and antenna is > 5.0 cm from other antennas o output ≤ P _{Ref} and antenna is > 2.5 cm from other antennas, each either output power output ≤ P _{Ref} or 1-g SAR < 1.2 W/Kg Otherwise stand-alone SAR is required o test SAR on highest output channel for each wireless mode and exposure condition o if SAR for highest output channel is > 50% of SAR limit, evaluate all channels according to normal procedures	o when stand-alone 1-g SAR is not required and antenna is > 5 cm from other antennas Licensed & Unlicensed o when the sum of the 1-g SAR is <1.6 W/kg for all simultaneous transmitting antennas o when SAR to antenna separation ratio of simultaneous transmitting antenna pair is < 0.3 SAR required: Licensed & Unlicensed antenna pairs with SAR to antenna separation ratio ≥ 0.3; test is only required for the configuration that results in the highest SAR in standalone configuration for each wireless mode and exposure condition Note: simultaneous transmission exposure conditions for head and body can be different for different style phones; therefore, different test requirements may apply

Conclusion

Based on the output power, antenna separation distance, and Body SAR, a stand-alone BT SAR test is not required. The summation of BT SAR and Licensed Transmitter SAR is 0.885 + 0 = 0.885, which is less than 1.6 W/Kg, therefore, a simultaneous SAR evaluation is not required.

Report Number: FG-248-S1 22 of 35

8.1 Measurement Results(GSM850 Right Head SAR - Touch)

Mixture Type: 835 MHz Brain

FREQUE	NCY	Modulation	Ве	gin/End F	POWER*	Device Test	Antenna	SAR	
MHz	Ch.	Wiodulation	(dE	(dBm) Battery		Position	Position	(W/kg)	
836.6	190	GSM 850	32.69	32.75	Standard	Cheek/Touch	Intenna	0.294	
		/ IEEE C95.1 20 Spatial olled Exposure	Peak				6W/kg (mW/g) aged over 1 gra	ım	

NOTES:

- The test data reported are the worst-case SAR value with the antenna-head position set in a typical configuration. Test procedures used are according to FCC/OET Bulletin 65, Supp.C [July 2001].
- 2. All modes of operation were investigated, and the worst-case results are reported.
- 3. Tissue parameters and temperatures are listed on the SAR plot.
- 4. Liquid tissue depth is 15.2 \pm 0.2cm

5.	Battery is fully charged for all read	ding	S.				
	*Power Measured	\times	Conducted				
6.	Battery Option	X	Standard		Extended		Slim
7.	Phantom Configuration		Left Head		Flat Phantom	\boxtimes	Right Head
8.	SAR Configuration	\times	Head		Body		Hand
9.	Test Signal Call Mode		Manu. Test Co	des	Base S	Statio	n Simulator
10.	Justification for reduced test conf	igura	ations: Per FCC	OE	Γ Bulletin 65 Sup	plem	ent C (July,
	2001), if the SAR measured at the	e mi	ddle channel fo	r eac	ch test configurati	ion (l	eft, right,
	cheek/touch, tilt/ear, extended an	d ret	racted) is least	3.0	dB lower than the	SAF	R limit, testing
	at the high and low channels is or	otion	al for such test	conf	iguration(s).		

Report Number: FG-248-S1 23 of 35

8.2 Measurement Results(GSM850 Right Head SAR - Tilt)

Mixture Type: 835 MHz Brain

FREQUE	REQUENCY Modulation		Ве	gin/End F	POWER*	Device Test	Antenna	SAR
MHz	Ch.	Wodulation	(dE	3m)	Battery	Position	Position	(W/kg)
836.6	190	GSM 850	32.74	32.80	Standard	Ear/Tilt 15°	Intenna	0.150
ι		/ IEEE C95.1 20 Spatial olled Exposure	Peak				6W/kg (mW/g) aged over 1 gra	ım

NOTES:

- The test data reported are the worst-case SAR value with the antenna-head position set in a typical configuration. Test procedures used are according to FCC/OET Bulletin 65, Supp.C [July 2001].
- 2. All modes of operation were investigated, and the worst-case results are reported.

at the high and low channels is optional for such test configuration(s).

- 3. Tissue parameters and temperatures are listed on the SAR plot.
- 4. Liquid tissue depth is 15.2 ± 0.2 cm

5.	Battery is fully charged for all rea	ding	S.				
	*Power Measured	\boxtimes	Conducted				
6.	Battery Option	X	Standard		Extended		Slim
7.	Phantom Configuration		Left Head		Flat Phantom	X	Right Head
8.	SAR Configuration	\times	Head		Body		Hand
9.	Test Signal Call Mode		Manu. Test Co	des	Base S	Statio	n Simulator
10.	Justification for reduced test conf	igura	ations: Per FCC	OE	T Bulletin 65 Sup	plem	ent C (July,
	2001), if the SAR measured at th	e mi	ddle channel fo	r ead	ch test configurati	ion (l	eft, right,

cheek/touch, tilt/ear, extended and retracted) is least 3.0 dB lower than the SAR limit, testing

Report Number: FG-248-S1 24 of 35

8.3 Measurement Results(GSM850 Left Head SAR - Touch)

Mixture Type: 835 MHz Brain

FREQUE	REQUENCY		Ве	gin/End F	POWER*	Device Test	Antenna	SAR
MHz	Ch.	Wodulation	(dE	(dBm) Bat		Position	Position	(W/kg)
836.6	190	GSM 850	32.65	32.74	Standard	Cheek/Touch	Intenna	0.280
·		/ IEEE C95.1 20 Spatial olled Exposure	Peak				6W/kg (mW/g) aged over 1 gra	ım

NOTES:

- The test data reported are the worst-case SAR value with the antenna-head position set in a typical configuration. Test procedures used are according to FCC/OET Bulletin 65, Supp.C [July 2001].
- 2. All modes of operation were investigated, and the worst-case results are reported.

at the high and low channels is optional for such test configuration(s).

- 3. Tissue parameters and temperatures are listed on the SAR plot.
- 4. Liquid tissue depth is 15.2 ± 0.2 cm

5.	Battery is fully charged for all rea	ding	S.				
	*Power Measured	\boxtimes	Conducted				
6.	Battery Option	\boxtimes	Standard		Extended		Slim
7.	Phantom Configuration	\times	Left Head		Flat Phantom		Right Head
8.	SAR Configuration	\times	Head		Body		Hand
9.	Test Signal Call Mode		Manu. Test Co	des	Base S	Statio	n Simulator
10.	Justification for reduced test conf	igura	ations: Per FCC	OE	T Bulletin 65 Sup	plem	ent C (July,
	2001), if the SAR measured at th	e mi	ddle channel fo	r ead	ch test configurat	ion (l	eft, right,

cheek/touch, tilt/ear, extended and retracted) is least 3.0 dB lower than the SAR limit, testing

Report Number: FG-248-S1 25 of 35

8.4 Measurement Results(GSM850 Left Head SAR - Tilt)

Mixture Type: 835 MHz Brain

FREQUE	FREQUENCY Modulation		Ве	gin/End F	POWER*	Device Test	Antenna	SAR	
MHz	Ch.	Wiodulation	(dBm)		Battery	Position	Position	(W/kg)	
836.6	190	GSM 850	32.74	32.75	Standard	Ear/Tilt 15°	Intenna	0.140	
ı		/ IEEE C95.1 20 Spatial olled Exposure	Peak				6W/kg (mW/g) aged over 1 gra	ım	

NOTES:

- The test data reported are the worst-case SAR value with the antenna-head position set in a typical configuration. Test procedures used are according to FCC/OET Bulletin 65, Supp.C [July 2001].
- 2. All modes of operation were investigated, and the worst-case results are reported.
- 3. Tissue parameters and temperatures are listed on the SAR plot.
- 4. Liquid tissue depth is 15.2 ± 0.2 cm

5.	Battery is fully charged for all rea	ding	S.				
	*Power Measured	X	Conducted				
6.	Battery Option	X	Standard		Extended		Slim
7.	Phantom Configuration	\times	Left Head		Flat Phantom		Right Head
8.	SAR Configuration	\times	Head		Body		Hand
9.	Test Signal Call Mode		Manu. Test Co	des	Base	Statio	n Simulator
10.	Justification for reduced test conf	igura	ations: Per FCC	OE	T Bulletin 65 Su	pplem	ent C (July,
	2001) if the SAR measured at th	e mi	ddle channel foi	r eac	h test configura	tion (I	eft right

Justification for reduced test configurations: Per FCC/OET Bulletin 65 Supplement C (July, 2001), if the SAR measured at the middle channel for each test configuration (left, right, cheek/touch, tilt/ear, extended and retracted) is least 3.0 dB lower than the SAR limit, testing at the high and low channels is optional for such test configuration(s).

Report Number: FG-248-S1 26 of 35

8.5 Measurement Results(GSM850 Body SAR without Holster)

Mixture Type: 835 MHz Muscle

FREQUE	NCY	Modulation	Ве	gin/End F	OWER*	Device Test	Antenna	SAR
MHz	Ch.	Wodulation	(dE	3m)	Battery	Position	Position	(W/kg)
824.2	128	GSM 850	32.39	32.42	Standard	1.5 cm [w/o Holster]	Intenna	0.290
836.6	190	GSM 850	32.30	32.35	Standard	1.5 cm [w/o Holster]	Intenna	0.304
848.8	251	GSM 850	32.36	32.41	Standard	1.5 cm [w/o Holster]	Intenna	0.325
836.6	190	GSM 850	29.51	29.55	Standard	1.5 cm [w/o Holster]	Intenna	1) 0.281
836.6	190	GSM 850	28.09	28.12	Standard	1.5 cm [w/o Holster]	Intenna	2) 0.276
ı		/ IEEE C95.1 20 Spatial olled Exposure	Peak			6W/kg (mW/g) aged over 1 gra	ım	

NOTES:

- The test data reported are the worst-case SAR value with the antenna-head position set in a typical configuration. Test procedures used are according to FCC/OET Bulletin 65, Supp.C [July 2001].
- 2. All modes of operation were investigated, and the worst-case results are reported.
- 3. Tissue parameters and temperatures are listed on the SAR plot.
- Liquid tissue depth is 15.2 \pm 0.2cm

5.	Battery	' is fully	√charged f	or all	readings.

	*Power Measured	X	Conducted				
6.	Battery Option	X	Standard		Extended		Slim
7.	Phantom Configuration		Left Head	X	Flat Phantom		Right Head
8.	SAR Configuration		Head	\boxtimes	Body		Hand
9.	Test Signal Call Mode		Manu. Test Co	des	Base S	Statio	n Simulator
10.	Test Configuration		With Holster		Withou	ıt Hol	lster
11.	Justification for reduced test conf	igura	ations: This mod	lel sı	upports GPRS C	LASS	3 12(max 4Tx)
	and EDGE. The burst power and	timir	ng period is mor	e tha	an 2dB higher in	GPR	S mode than
	in GSM850and EDGE mode. Her	nce,	the GSM850 ar	d E	DGE mode was r	not re	ported. And
	all Tx(1~4Tx) cases were also inv	estiç	gated and the w	orst-	-case results are	repo	rted.(2Tx)
12.	1) 3TX						
13.	2) 4TX						

Report Number: FG-248-S1 27 of 35

8.6 Measurement Results(GSM1900 Right Head SAR - Touch)

Mixture Type: 1900 MHz Brain

FREQUE	NCY	Modulation	Ве	gin/End F	POWER*	Device Test	Antenna	SAR
MHz	Ch.	Wodulation	(dE	3m)	Battery	Position	Position	(W/kg)
1850.2	512	PCS GSM	29.53	29.50	Standard	Cheek/Touch	Intenna	0.946
1880.0	661	PCS GSM	29.86	29.95	Standard	Cheek/Touch	Intenna	1.100
1909.8	810	PCS GSM	29.56	29.58	Standard	Cheek/Touch	Intenna	1.140
ANSI / IEEE C95.1 2005– SAFETY LIMIT Spatial Peak Uncontrolled Exposure / General Population					6W/kg (mW/g) aged over 1 gra	ım		

NOTES:

- The test data reported are the worst-case SAR value with the antenna-head position set in a typical configuration. Test procedures used are according to FCC/OET Bulletin 65, Supp.C [July 2001].
- 2. All modes of operation were investigated, and the worst-case results are reported.
- 3. Tissue parameters and temperatures are listed on the SAR plot.
- 4. Liquid tissue depth is 15.2 \pm 0.2cm
- 5. Battery is fully charged for all readings.

	*Power Measured	\times	Conducted				
6.	Battery Option	X	Standard		Extended		Slim
7.	Phantom Configuration		Left Head		Flat Phantom	X	Right Head
8.	SAR Configuration	\times	Head		Body		Hand
9.	Test Signal Call Mode		Manu. Test Co	des	Base S	tatio	n Simulator

Report Number: FG-248-S1 28 of 35

8.7 Measurement Results(GSM1900 Right Head SAR - Tilt)

Mixture Type: 1900 MHz Brain

FREQUENCY		Modulation	Ве	gin/End F	POWER*	Device Test	Antenna	SAR	
MHz	Ch.	Wodulation	(dE	3m)	Battery	Position	Position	(W/kg)	
1880.0	661	PCS GSM	29.84 29.76 Standard			Ear/Tilt 15°	Intenna	0.389	
		/ IEEE C95.1 20 Spatial olled Exposure	Peak				6W/kg (mW/g) aged over 1 gra	ım	

NOTES:

- The test data reported are the worst-case SAR value with the antenna-head position set in a typical configuration. Test procedures used are according to FCC/OET Bulletin 65, Supp.C [July 2001].
- 2. All modes of operation were investigated, and the worst-case results are reported.
- 3. Tissue parameters and temperatures are listed on the SAR plot.
- 4. Liquid tissue depth is 15.2 ± 0.2 cm

5.	Battery is fully charged for all rea	ding	S.				
	*Power Measured	\times	Conducted				
6.	Battery Option	\boxtimes	Standard		Extended		Slim
7.	Phantom Configuration		Left Head		Flat Phantom	\boxtimes	Right Head
8.	SAR Configuration	\times	Head		Body		Hand
9.	Test Signal Call Mode		Manu. Test Co	des	Base ■	Statio	n Simulator
10.	Justification for reduced test conf	igura	ations: Per FCC	OE	T Bulletin 65 Sup	plem	nent C (July,
	2001) if the SAR measured at th	գ mi	ddle channel for	- 62	h test configura	tion (I	left right

Justification for reduced test configurations: Per FCC/OET Bulletin 65 Supplement C (July, 2001), if the SAR measured at the middle channel for each test configuration (left, right, cheek/touch, tilt/ear, extended and retracted) is least 3.0 dB lower than the SAR limit, testing at the high and low channels is optional for such test configuration(s).

Report Number: FG-248-S1 29 of 35

8.8 Measurement Results(GSM1900 Left Head SAR - Touch)

Mixture Type: 1900 MHz Brain

FREQUENCY		Modulation	Ве	gin/End F	OWER*	Device Test Antenna		SAR
MHz	Ch.	Wodulation	(dE	3m)	Battery	Position	Position	(W/kg)
1850.2	512	PCS GSM	29.56	29.66	Standard	Cheek/Touch	Intenna	0.920
1880.0	661	PCS GSM	29.84	29.86	Standard	Cheek/Touch	Intenna	1.030
1909.8	810	PCS GSM	29.56	29.49	Standard	Cheek/Touch	Intenna	1.080
ı	7	/ IEEE C95.1 20 Spatial olled Exposure	Peak			6W/kg (mW/g) aged over 1 gra	ım	

NOTES:

- The test data reported are the worst-case SAR value with the antenna-head position set in a typical configuration. Test procedures used are according to FCC/OET Bulletin 65, Supp.C [July 2001].
- 2. All modes of operation were investigated, and the worst-case results are reported.
- 3. Tissue parameters and temperatures are listed on the SAR plot.
- 4. Liquid tissue depth is 15.2 \pm 0.2cm
- 5. Battery is fully charged for all readings.

	*Power Measured	\times	Conducted				
3.	Battery Option	\times	Standard		Extended		Slim
7.	Phantom Configuration	X	Left Head		Flat Phantom		Right Head
3.	SAR Configuration	\times	Head		Body		Hand
9.	Test Signal Call Mode		Manu. Test Co	des	Base	Statio	n Simulator

Report Number: FG-248-S1 30 of 35

8.9 Measurement Results(GSM1900 Left Head SAR - Tilt)

Mixture Type: 1900 MHz Brain

FREQUENCY		Modulation	Ве	gin/End F	POWER*	Device Test	Antenna	SAR	
MHz	Ch.	Wodulation	(dE	3m)	Battery	Position	Position	(W/kg)	
1880.0	661	PCS GSM	29.83 29.87 Standard			Ear/Tilt 15°	Intenna	0.333	
ı		/ IEEE C95.1 20 Spatial olled Exposure	Peak				6W/kg (mW/g) aged over 1 gra	ım	

NOTES:

- The test data reported are the worst-case SAR value with the antenna-head position set in a typical configuration. Test procedures used are according to FCC/OET Bulletin 65, Supp.C [July 2001].
- 2. All modes of operation were investigated, and the worst-case results are reported.

at the high and low channels is optional for such test configuration(s).

- 3. Tissue parameters and temperatures are listed on the SAR plot.
- 4. Liquid tissue depth is 15.2 \pm 0.2cm

5.	Battery is fully charged for all rea	ding	S.						
	*Power Measured	\times	Conducted						
6.	Battery Option	X	Standard		Extended		Slim		
7.	Phantom Configuration	\times	Left Head		Flat Phantom		Right Head		
8.	SAR Configuration	\times	Head		Body		Hand		
9.	Test Signal Call Mode		Manu. Test Co	des	⊠ Base §	Statio	n Simulator		
10.	Justification for reduced test conf	igura	ations: Per FCC	OE	T Bulletin 65 Sup	plen	nent C (July,		
	2001), if the SAR measured at the middle channel for each test configuration (left, right,								

cheek/touch, tilt/ear, extended and retracted) is least 3.0 dB lower than the SAR limit, testing

Report Number: FG-248-S1 31 of 35

8.10 Measurement Results(GSM1900 Body SAR without Holster)

Mixture Type: 1900 MHz Muscle

FREQUE	NCY	Modulation	lation Begin/End POWER* (dBm) Battery		POWER*	Device Test	Antenna	SAR	
MHz	Ch.	Wodulation			Position	Position	(W/kg)		
1850.2	512	PCS GSM	29.23	29.26	Standard	1.5 cm [w/o Holster]	Intenna	0.699	
1880.0	661	PCS GSM	29.50	29.50 29.55 Stan		1.5 cm [w/o Holster]	Intenna	0.885	
1909.8	810	PCS GSM	29.23 29.30 Standard		1.5 cm [w/o Holster]	Intenna	0.816		
1880.0	661	PCS GSM	26.88 26.92 Standard		1.5 cm [w/o Holster]	Intenna	1) 0.704		
1880.0	661	PCS GSM	25.77	25.86	Standard	1.5 cm [w/o Holster]	1.5 cm [w/o Holster] Intenna 2) 0		
		/ IEEE C95.1 20 Spatial olled Exposure	Peak		1.6W/kg (mW/g) averaged over 1 gram				

NOTES:

6.

 The test data reported are the worst-case SAR value with the antenna-head position set in a typical configuration. Test procedures used are according to FCC/OET Bulletin 65, Supp.C [July 2001].

☐ Extended

□ Slim

- 2. All modes of operation were investigated, and the worst-case results are reported.
- 3. Tissue parameters and temperatures are listed on the SAR plot.
- 4. Liquid tissue depth is 15.2 \pm 0.2cm

*Power Measured

Battery Option

5.	Batter	∕ is full\	v charged	for all	readings.

7.	Phantom Configuration		Left Head	\times	Flat Phantom		Right Head		
8.	SAR Configuration		Head	\times	Body		Hand		
9.	Test Signal Call Mode		Manu. Test Co	des	⊠ Base	Statio	n Simulator		
10.	Test Configuration		With Holster		☑ Witho	ut Ho	lster		
11.	Justification for reduced test confi	igura	itions: This mod	lel sı	upports GPRS C	CLASS	S 12(max 4Tx)		
	and EDGE. The burst power and	timir	ng period is mor	e tha	an 2dB higher in	ı GPR	S mode than		
	in GSM1900and EDGE mode. Hence, the GSM1900 and EDGE mode was not reported. And								
	all Tx(1~4Tx) cases were also inv	estiç	gated and the w	orst-	-case results are	e repo	rted.(2Tx)		

- 12. 1) 3TX
- 13. 2) 4TX

Report Number: FG-248-S1 32 of 35

9. CONCLUSION

The SAR measurement indicates that the EUT complies with the RF radiation exposure limits of the FCC. These measurements are taken to simulate the RF effects exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The test results and statements relate only to the item(s) tested.

Please note that the absorption and distribution of electromagnetic energy in the body are very complex phenomena that depend on the mass, shape, and size of the body, the orientation of the body with respect to the field vectors, and the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because innumerable factors may interact to determine the specific biological outcome of an exposure to electromagnetic fields, any protection guide shall consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables.

The highest reported SAR values are as follows:

GSM850: Head: 0.294 W/Kg : Body-worn: 0.325 W/Kg GSM1900: Head: 1.140 W/Kg : Body-worn: 0.885 W/Kg

Report Number: FG-248-S1 33 of 35

10. REFERENCES

- [1] IEEE Standards Coordinating Committee 34 IEEE Std. 1528-2003 (Draft 6.1 July 2001), IEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques..
- [2] Federal Communications Commission, OET Bulletin 65 (Edition 97-01), Supplement C (Edition 01-01), Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields, July 2001.
- [3] ANSI/IEEE C95.3 1991, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields RF and Microwave, New York: IEEE, 1992.
- [4] Federal Communications Commission, OET Bulletin 65, Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields. Supplement C, Dec. 1997.
- [5] ANSI/IEEE C95.1 1991, American National Standard Safety levels with respect to human exposure to radio frequency electromagnetic fields, 300kHz to 100GHz, New York: : IEEE, Aug. 1992.
- [6] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radiofrequency Radiation, Aug. 1996.
- [7] NCRP, National Council on Radiation Protection and Measurements, *Biological Effects and Exposure Criteria for RadioFrequency Electromagnetic Fields*, NCRP Report No. 86, 1986. Reprinted Feb. 1995.
- [8] T. Schmid, O. Egger, N. Kuster, *Automated E-field scanning system for dosimetric assessments,* IEEE Transaction on Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113.
- [9] K. Pokovic, T.Schmid, N. Kuster, Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies, ICECOM97, Oct. 1997, pp. 120-124.
- [10] G.Hartsgrove, A. raszewski, A. Surowiec, Simulated Biological Materials for Electromagnetic Radiation Absorption Studies, University of Ottawa, Bioelectromagnetics, Canada: 1987, pp. 29-36
- [11] Q. Balzano, O. Garay, T. Manning Jr,. *Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones*, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995.
- [12] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, *Numerical Recepies in C,* The Art of Scientific Computing, Second edition, Cambridge University Press, 1992.
- [13] K. Pokovic, T.Schmid, N. Kuster, *E-field Probe with improved isotropy in brain simulating liquids*, Proceedings of the ELMAR, Zadar, June 23-25, 1996, pp. 172-175.
- [14] Schmid & Partner Engineering AG, Application Note: Data Storage and Evaluation, June 1998, p2.
- [15] V. Hombach, K.Meier, M. Burkhardt, E. Kuhn, N. Kuster, *The Dependence of EM Energy Absorption upon Human Head Modeling at 900MHz*, IEEE Transaction on Microwave Theory and Techniques, vol 44 no. 10, Oct. 1996, pp. 1865-1873.
- [16] N. Kuster and Q. Balzano, Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300MHz, IEEE Transaction on Vehicular Technology, vol. 41, no.1, Feb.1992, pp. 17-23.
- [17] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp.645-652.

Report Number: FG-248-S1 34 of 35

- [18] ANSI/IEEE C95.1-2005, American National Standard safety levels with respect to human exposure to radio frequency electromagnetic fields, 300kHz to 100GHz, New York: IEEE, April 2006.
- [19] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic Fields High-frequency: 10kHz-300GHz, Jan. 1995.
- [20] Prof. Dr. Niels Kuster, ETH, Eidgenössische Technische Hoschschule Zürich, Dosimetric Evaluation of the Cellular Phone.
- [21] FCC SAR Measurement Procedures for 3G Devices, June 2006
- [22] SAR Measurement procedures for IEEE 802.11a/b/g rev 1.1, Oct 2006
- [23] IEC 62209-1, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices Human models, instrumentation, and procedures Part 1: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz), Feb. 2005.
- [24] FCC Public Notice DA-02-1438. Office of Engineering and Technology Announces a Transition Period for the Phantom Requirements of Supplement C to OET Bulletin 65, June 19, 2002.
- [25] FCC SAR Evaluation Considerations for Handsets with Multiple Transmitters and Antennas. Feb 2008

Report Number: FG-248-S1 35 of 35

APPENDIX A

SAR Definition

Specific Absorption Rate (SAR) is defined as the time derivative (rate) of the incremental energy (dU) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (p). It is also defined as the rate of RF energy absorption pet unit mass at a point in an absorbing body (see Fig. A.1).

$$SAR = \frac{d}{dt} \left(\frac{dU}{dm} \right) = \frac{d}{dt} \left(\frac{dU}{pdv} \right)$$

Figure A.1 SAR Mathematical Equation

SAR is expressed in units of Watts per Kilogram (W/kg).

$$SAR = \sigma E^2/p$$

Where:

 σ = conductivity of the tissue-simulant material (S/m)

p = mass density of the tissue-simulant material (kg/m³)

E = Total RMS electric field strength (V/m)

Note: The primary factors that control rate or energy absorption were found to be the wavelength of the incident field in relations to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane.

APPENDIX B

Probe Calibration Process

Dosimetric Assessment Procedure

Each probe is calibrated according to a dosimetric assessment procedure described in **K. Pokovic, T.Schmid, N. Kuster,** *Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies,* ICECOM97, Oct. 1997, pp. 120-124 with an accuracy better than +/-10%. The spherical isotropy was evaluated with the procedure described in **K. Pokovic, T.Schmid, N. Kuster,** *E-field Probe with improved isotropy in brain simulating liquids,* **Proceedings of the ELMAR, Zadar, June 23-25, 1996,** pp. 172-175 and found to be better than +/-0.25dB. The sensitivity parameters (NormX, NormY, NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe is tested.

Free Space Assessment

The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies bellow 1 GHz (see Fig. B.1), and in a waveguide above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees.

Temperature Assessment

E-field temperature correlation calibration is performed in a flat phantom flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium correlates to temperature rise in a dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe (see Fig. B.2).

$$SAR = C \frac{\Delta T}{\Delta t}$$

 $SAR = \frac{\left|E\right|^2 \cdot \sigma}{p}$

where

 Δt = exposure time (30 seconds)

C = heat capacity of tissue (brain or muscle).

 ΔT = temperature increase due to RF exposure.

SAR is proportional to $\Delta T/\Delta t$, the initial rate of tissue

heating, before thermal diffusion takes place. Now it's possible to quantify the electric field in the simulated tissue

by equating the thermally derived SAR to the E-field;

where:

 σ = simulated tissue conductivity

p = Tissue density (1.25 g/cm³ for brain tissue)

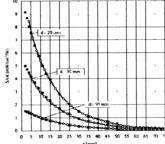


Figure B.1. E-Field and Temperature measurements at 900MHz

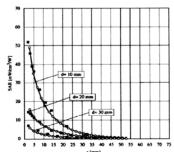


Figure B.2. E-Field and temperature measurements at 1.9GHz

APPENDIX C

ANSI/IEEE C95.1 - 2005 RF EXPOSURE LIMITS

Uncontrolled Environment

UNCONTROLLED ENVIRONMENTS are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

Controlled Environment

CONTROLLED ENVIRONMENTS are defined as locations where there is the exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Table C.1 Safety Limits for Partial Body Exposure

	UNCONTROLLED ENVIRONMENT General Population (W/kg) or (mW/g)	CONTROLLED ENVIRONMENT General Population (W/kg) or (mW/g)
SPATIAL PEAK SAR ¹ Brain	1.60	8.00
SPATIAL PEAK SAR ² Whole Body	0.08	0.40
SPATIAL PEAK SAR ³ Hands,Feet,Ankles, Wrists	4.00	20.00

¹ The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as tissue volume in the shape of a cube) and over the appropriate averaging time.

² The Spatial Average value of the SAR averaged over the whole body.

³ The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

APPENDIX D

Test Setup Photographs

APPENDIX E

The Validation Measurements

DUT: Dipole 835 MHz; Serial: 4d050

Program Name: 835MHz Dipole Validation 2009.09.04

Procedure Name: 835MHz @ 250mW

Meas. Ambient Temp(celsius)-22.6, Tissue Temp(celsius)-22.3; Test Date-

04/Sep/2009

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium parameters used: f = 835 MHz; σ = 0.91 mho/m; ε_r = 40.8; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ES3DV3 SN3080; ConvF(5.7, 5.7, 5.7); Calibrated: 2009-01-20
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn486; Calibrated: 2009-04-01
- Phantom: PHANTOM #2; Type: SAM; Serial: TP-1141
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

835MHz @ 250mW/Area Scan (51x51x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (interpolated) = 2.49 mW/g

835MHz @ 250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 52.9 V/m; Power Drift = 0.080 dB

Peak SAR (extrapolated) = 3.47 W/kg

SAR(1 g) = 2.31 mW/g; SAR(10 g) = 1.5 mW/g Maximum value of SAR (measured) = 2.50 mW/g

-2.16
-4.32
-6.48
-8.64
-10.8

O dB = 2.50mW/g

DUT: Dipole 1900 MHz; Serial: 5d082

Program Name: 1900MHz Dipole Validation 2009.09.07

Procedure Name: 1900MHz @ 250mW

Meas. Ambient Temp(celsius)-22.2 Tissue Temp(celsius)-21.8; Test Date-07/Sep/2009

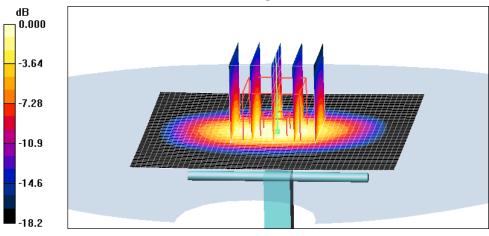
Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium parameters used: f = 1900 MHz; σ = 1.4 mho/m; ε_r = 38.9; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ES3DV3 SN3080; ConvF(4.74, 4.74, 4.74); Calibrated: 2009-01-20
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn486; Calibrated: 2009-04-01
- Phantom: PHANTOM #1; Type: SAM; Serial: TP-1143
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184


1900MHz @ 250mW/Area Scan (51x51x1): Measurement grid: dx=20mm, dy=20mm Maximum value of SAR (interpolated) = 14.8 mW/g

1900MHz @ 250mW/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 87.8 V/m; Power Drift = -0.043 dB

Peak SAR (extrapolated) = 19.9 W/kg

SAR(1 g) = 9.99 mW/g; SAR(10 g) = 5.08 mW/g Maximum value of SAR (measured) = 11.2 mW/g

0 dB = 11.2 mW/g

APPENDIX F

Plots of The SAR Measurements

DUT: GT-I6410; Serial: FG-248-B

Program Name: GT-I6410 GSM850 Right (Job No.: FG-248) Procedure Name: Cheek/Touch, Ch.190, Ant.Intenna, Bat.Standard

Meas. Ambient Temp(celsius)-22.6, Tissue Temp(celsius)-22.3; Test Date-

04/Sep/2009

Communication System: GSM 850; Frequency: 836.6 MHz;Duty Cycle: 1:8.3

Medium parameters used: f = 836.6 MHz; σ = 0.91 mho/m; ε_r = 40.8; ρ = 1000 kg/m³

Phantom section: Right Section

DASY4 Configuration:

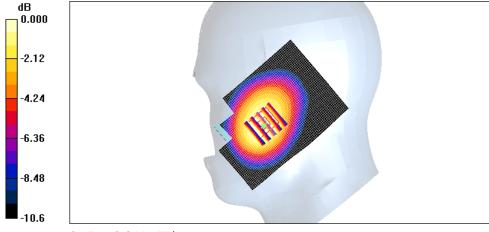
- Probe: ES3DV3 SN3080; ConvF(5.7, 5.7, 5.7); Calibrated: 2009-01-20
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn486; Calibrated: 2009-04-01
- Phantom: PHANTOM #2; Type: SAM; Serial: TP-1141
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Cheek/Touch, Ch.190, Ant.Intenna, Bat.Standard/Area Scan (51x71x1): Measurement

grid: dx=20mm, dy=20mm

Maximum value of SAR (interpolated) = 0.337 mW/g

Cheek/Touch, Ch.190, Ant.Intenna, Bat.Standard/Zoom Scan (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 18.6 V/m; Power Drift = -0.054 dB

Peak SAR (extrapolated) = 0.395 W/kg

SAR(1 g) = 0.294 mW/g; SAR(10 g) = 0.213 mW/g

Maximum value of SAR (measured) = 0.311 mW/g

0 dB = 0.311 mW/g

DUT: GT-I6410; Serial: FG-248-B

Program Name: GT-I6410 GSM850 Right (Job No.: FG-248) Procedure Name: Ear/Tilt, Ch.190, Ant.Intenna, Bat.Standard

Meas. Ambient Temp(celsius)-22.6, Tissue Temp(celsius)-22.3; Test Date-

04/Sep/2009

Communication System: GSM 850; Frequency: 836.6 MHz; Duty Cycle: 1:8.3

Medium parameters used: f = 836.6 MHz; $\sigma = 0.91 \text{ mho/m}$; $\varepsilon_r = 40.8$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Right Section

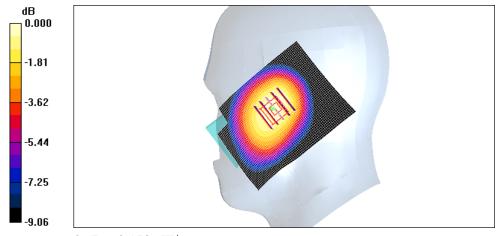
DASY4 Configuration:

- Probe: ES3DV3 SN3080; ConvF(5.7, 5.7, 5.7); Calibrated: 2009-01-20
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn486; Calibrated: 2009-04-01
- Phantom: PHANTOM #2; Type: SAM; Serial: TP-1141
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Ear/Tilt, Ch.190, Ant.Intenna, Bat.Standard/Area Scan (51x71x1): Measurement grid: dx=20mm, dy=20mm

Maximum value of SAR (interpolated) = 0.159 mW/g

Ear/Tilt, Ch.190, Ant.Intenna, Bat.Standard/Zoom Scan (5x5x7)/Cube 0: Measurement


grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 9.05 V/m; Power Drift = -0.016 dB

Peak SAR (extrapolated) = 0.194 W/kg

SAR(1 g) = 0.150 mW/g; SAR(10 g) = 0.111 mW/g

Maximum value of SAR (measured) = 0.158 mW/g

0 dB = 0.158 mW/g

DUT: GT-I6410; Serial: FG-248-B

Program Name: GT-I6410 GSM850 Left (Job No.: FG-248) Procedure Name: Cheek/Touch, Ch.190, Ant.Intenna, Bat.Standard

Meas. Ambient Temp(celsius)-22.6, Tissue Temp(celsius)-22.3; Test Date-

04/Sep/2009

Communication System: GSM 850; Frequency: 836.6 MHz; Duty Cycle: 1:8.3

Medium parameters used: f = 836.6 MHz; $\sigma = 0.91 \text{ mho/m}$; $\varepsilon_r = 40.8$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Left Section

DASY4 Configuration:

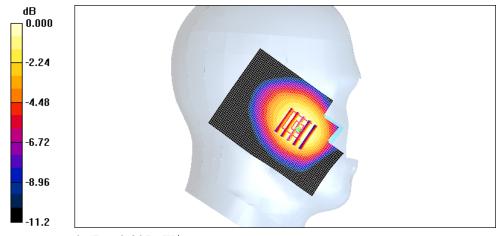
- Probe: ES3DV3 SN3080; ConvF(5.7, 5.7, 5.7); Calibrated: 2009-01-20
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn486; Calibrated: 2009-04-01
- Phantom: PHANTOM #2; Type: SAM; Serial: TP-1141
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Cheek/Touch, Ch.190, Ant.Intenna, Bat.Standard/Area Scan (51x71x1): Measurement

grid: dx=20mm, dy=20mm

Maximum value of SAR (interpolated) = 0.304 mW/g

Cheek/Touch, Ch.190, Ant.Intenna, Bat.Standard/Zoom Scan (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 18.2 V/m; Power Drift = 0.039 dB

Peak SAR (extrapolated) = 0.352 W/kg

SAR(1 g) = 0.280 mW/g; SAR(10 g) = 0.207 mW/g

Maximum value of SAR (measured) = 0.295 mW/g

0 dB = 0.295 mW/g

DUT: GT-I6410; Serial: FG-248-B

Program Name: GT-I6410 GSM850 Left (Job No.: FG-248) Procedure Name: Ear/Tilt, Ch.190, Ant.Intenna, Bat.Standard

Meas. Ambient Temp(celsius)-22.6, Tissue Temp(celsius)-22.3; Test Date-

04/Sep/2009

Communication System: GSM 850; Frequency: 836.6 MHz; Duty Cycle: 1:8.3

Medium parameters used: f = 836.6 MHz; $\sigma = 0.91 \text{ mho/m}$; $\varepsilon_r = 40.8$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Left Section

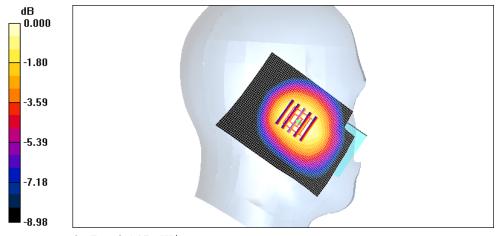
DASY4 Configuration:

- Probe: ES3DV3 SN3080; ConvF(5.7, 5.7, 5.7); Calibrated: 2009-01-20
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn486; Calibrated: 2009-04-01
- Phantom: PHANTOM #2; Type: SAM; Serial: TP-1141
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Ear/Tilt, Ch.190, Ant.Intenna, Bat.Standard/Area Scan (51x71x1): Measurement grid: dx=20mm, dy=20mm

Maximum value of SAR (interpolated) = 0.151 mW/g

Ear/Tilt, Ch.190, Ant.Intenna, Bat.Standard/Zoom Scan (5x5x7)/Cube 0: Measurement


grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 8.59 V/m; Power Drift = 0.099 dB

Peak SAR (extrapolated) = 0.181 W/kg

SAR(1 g) = 0.140 mW/g; SAR(10 g) = 0.103 mW/g

Maximum value of SAR (measured) = 0.147 mW/g

0 dB = 0.147 mW/g

DUT: GT-I6410; Serial: FG-248-B

Program Name: GT-I6410 GSM850 Right (Job No.: FG-248) Procedure Name: Cheek/Touch, Ch.190, Ant.Intenna, Bat.Standard

Meas. Ambient Temp(celsius)-22.6, Tissue Temp(celsius)-22.3; Test Date-

04/Sep/2009

Communication System: GSM 850; Frequency: 836.6 MHz; Duty Cycle: 1:8.3

Medium parameters used: f = 836.6 MHz; $\sigma = 0.91 \text{ mho/m}$; $\varepsilon_r = 40.8$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Right Section

DASY4 Configuration:

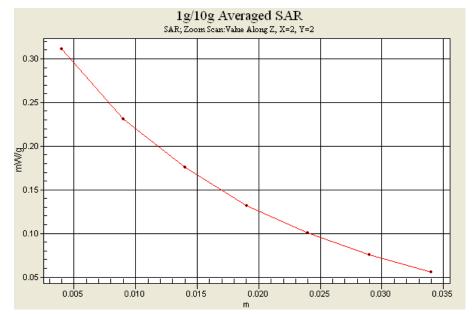
- Probe: ES3DV3 SN3080; ConvF(5.7, 5.7, 5.7); Calibrated: 2009-01-20
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn486; Calibrated: 2009-04-01
- Phantom: PHANTOM #2; Type: SAM; Serial: TP-1141
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Cheek/Touch, Ch.190, Ant.Intenna, Bat.Standard/Area Scan (51x71x1): Measurement

grid: dx=20mm, dy=20mm

Maximum value of SAR (interpolated) = 0.337 mW/g

Cheek/Touch, Ch.190, Ant.Intenna, Bat.Standard/Zoom Scan (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 18.6 V/m; Power Drift = -0.054 dB

Peak SAR (extrapolated) = 0.395 W/kg

SAR(1 g) = 0.294 mW/g; SAR(10 g) = 0.213 mW/g

Maximum value of SAR (measured) = 0.311 mW/g

SAMSUNG FCC ID: A3LGTI6410 GPRS850 Body SAR

DUT: GT-I6410; Serial: FG-248-B

Program Name: GT-I6410 GPRS850 Body (Job No.:FG-248) Procedure Name: Body, Ch.251, Ant.Intenna, Bat.Standard

Meas. Ambient Temp(celsius)-22.6, Tissue Temp(celsius)-22.5; Test Date-

04/Sep/2009

Communication System: GPRS 850; Frequency: 848.8 MHz; Duty Cycle: 1:4.15 Medium parameters used: f = 848.8 MHz; σ = 0.99 mho/m; ϵ_r = 54.5; ρ = 1000 kg/m³ Phantom section: Left Section

DASY4 Configuration:

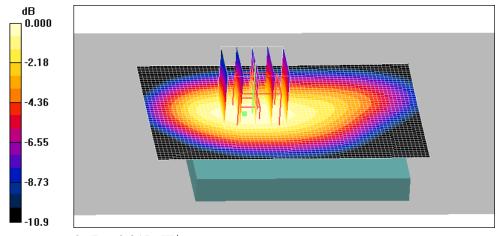
- Probe: ES3DV3 SN3080; ConvF(5.5, 5.5, 5.5); Calibrated: 2009-01-20
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn486; Calibrated: 2009-04-01
- Phantom: Triple Flat Phantom 5.1; Type: Triple Flat Phantom 5.1; Serial: 1001
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Body, Ch.251, Ant.Intenna, Bat.Standard/Area Scan (51x71x1): Measurement grid:

dx=20mm, dy=20mm

Maximum value of SAR (interpolated) = 0.342 mW/g

Body, Ch.251, Ant.Intenna, Bat.Standard/Zoom Scan (5x5x7)/Cube 0: Measurement grid:


dx=8mm, dy=8mm, dz=5mm

Reference Value = 17.8 V/m; Power Drift = 0.011 dB

Peak SAR (extrapolated) = 0.432 W/kg

SAR(1 g) = 0.325 mW/g; SAR(10 g) = 0.233 mW/g

Maximum value of SAR (measured) = 0.345 mW/g

0 dB = 0.345 mW/g

SAMSUNG FCC ID: A3LGTI6410 GPRS850 Body SAR

DUT: GT-I6410; Serial: FG-248-B

Program Name: GT-I6410 GPRS850 Body (Job No.:FG-248) Procedure Name: Body, Ch.251, Ant.Intenna, Bat.Standard

Meas. Ambient Temp(celsius)-22.6, Tissue Temp(celsius)-22.5; Test Date-

04/Sep/2009

Communication System: GPRS 850; Frequency: 848.8 MHz; Duty Cycle: 1:4.15 Medium parameters used: f = 848.8 MHz; σ = 0.99 mho/m; ϵ_r = 54.5; ρ = 1000 kg/m³ Phantom section: Left Section

DASY4 Configuration:

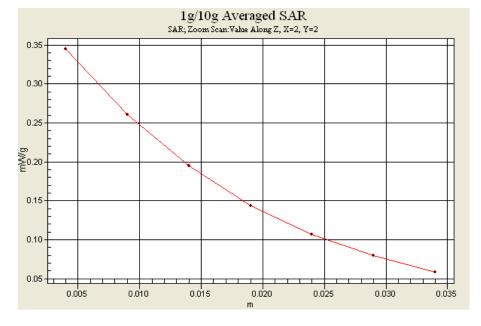
- Probe: ES3DV3 SN3080; ConvF(5.5, 5.5, 5.5); Calibrated: 2009-01-20
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn486; Calibrated: 2009-04-01
- Phantom: Triple Flat Phantom 5.1; Type: Triple Flat Phantom 5.1; Serial: 1001
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Body, Ch.251, Ant.Intenna, Bat.Standard/Area Scan (51x71x1): Measurement grid:

dx=20mm, dy=20mm

Maximum value of SAR (interpolated) = 0.342 mW/g

Body, Ch.251, Ant.Intenna, Bat.Standard/Zoom Scan (5x5x7)/Cube 0: Measurement grid:


dx=8mm, dy=8mm, dz=5mm

Reference Value = 17.8 V/m; Power Drift = 0.011 dB

Peak SAR (extrapolated) = 0.432 W/kg

SAR(1 g) = 0.325 mW/g; SAR(10 g) = 0.233 mW/g

Maximum value of SAR (measured) = 0.345 mW/g

DUT: GT-I6410; Serial: FG-248-B

Program Name: GT-I6410 GSM1900 Right (Job No.: FG-248) Procedure Name: Cheek/Touch, Ch.810, Ant.Intenna, Bat.Standard

Meas. Ambient Temp(celsius)-22.2 Tissue Temp(celsius)-21.8; Test Date-07/Sep/2009

Communication System: GSM 1900; Frequency: 1909.8 MHz; Duty Cycle: 1:8.3 Medium parameters used: f = 1909.8 MHz; σ = 1.4 mho/m; ϵ_r = 38.9; ρ = 1000 kg/m³ Phantom section: Right Section

DASY4 Configuration:

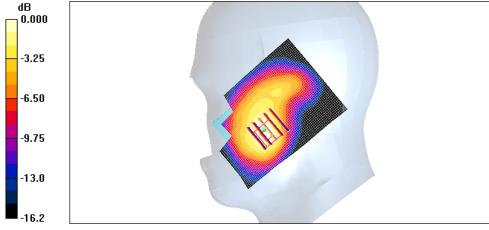
- Probe: ES3DV3 SN3080; ConvF(4.74, 4.74, 4.74); Calibrated: 2009-01-20
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn486; Calibrated: 2009-04-01
- Phantom: PHANTOM #1; Type: SAM; Serial: TP-1143
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Cheek/Touch, Ch.810, Ant.Intenna, Bat.Standard/Area Scan (51x71x1): Measurement

grid: dx=20mm, dy=20mm

Maximum value of SAR (interpolated) = 1.18 mW/g

Cheek/Touch, Ch.810, Ant.Intenna, Bat.Standard/Zoom Scan (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 23.4 V/m; Power Drift = -0.004 dB

Peak SAR (extrapolated) = 1.98 W/kg

SAR(1 g) = 1.14 mW/g; SAR(10 g) = 0.645 mW/g

Maximum value of SAR (measured) = 1.19 mW/g

0 dB = 1.19 mW/g

DUT: GT-I6410; Serial: FG-248-B

Program Name: GT-I6410 GSM1900 Right (Job No.: FG-248) Procedure Name: Ear/Tilt, Ch.661, Ant.Intenna, Bat.Standard

Meas. Ambient Temp(celsius)-22.2 Tissue Temp(celsius)-21.8; Test Date-07/Sep/2009

Communication System: GSM 1900; Frequency: 1880 MHz; Duty Cycle: 1:8.3 Medium parameters used: f = 1880 MHz; σ = 1.4 mho/m; ϵ_r = 38.9; ρ = 1000 kg/m³ Phantom section: Right Section

DASY4 Configuration:

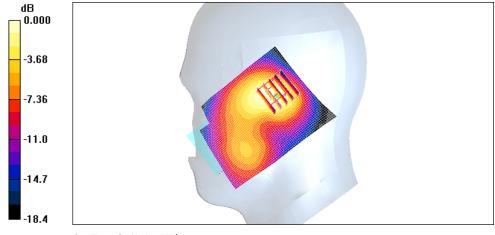
- Probe: ES3DV3 SN3080; ConvF(4.74, 4.74, 4.74); Calibrated: 2009-01-20
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn486; Calibrated: 2009-04-01
- Phantom: PHANTOM #1; Type: SAM; Serial: TP-1143
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Ear/Tilt, Ch.661, Ant.Intenna, Bat.Standard/Area Scan (51x71x1): Measurement grid:

dx=20mm, dy=20mm

Maximum value of SAR (interpolated) = 0.411 mW/g

Ear/Tilt, Ch.661, Ant.Intenna, Bat.Standard/Zoom Scan (5x5x7)/Cube 0: Measurement


grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 16.7 V/m; Power Drift = 0.029 dB

Peak SAR (extrapolated) = 0.643 W/kg

SAR(1 g) = 0.389 mW/g; SAR(10 g) = 0.237 mW/g

Maximum value of SAR (measured) = 0.411 mW/g

0 dB = 0.411 mW/g

DUT: GT-I6410; Serial: FG-248-B

Program Name: GT-I6410 GSM1900 Left (Job No.: FG-248) Procedure Name: Cheek/Touch, Ch.810, Ant.Intenna, Bat.Standard

Meas. Ambient Temp(celsius)-22.2 Tissue Temp(celsius)-21.8; Test Date-07/Sep/2009

Communication System: GSM 1900; Frequency: 1909.8 MHz; Duty Cycle: 1:8.3 Medium parameters used: f = 1909.8 MHz; σ = 1.4 mho/m; ϵ_r = 38.9; ρ = 1000 kg/m³ Phantom section: Left Section

DASY4 Configuration:

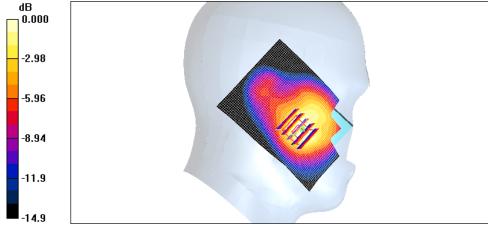
- Probe: ES3DV3 SN3080; ConvF(4.74, 4.74, 4.74); Calibrated: 2009-01-20
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn486; Calibrated: 2009-04-01
- Phantom: PHANTOM #1; Type: SAM; Serial: TP-1143
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Cheek/Touch, Ch.810, Ant.Intenna, Bat.Standard/Area Scan (51x71x1): Measurement

grid: dx=20mm, dy=20mm

Maximum value of SAR (interpolated) = 1.22 mW/g

Cheek/Touch, Ch.810, Ant.Intenna, Bat.Standard/Zoom Scan (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 26.0 V/m; Power Drift = -0.032 dB

Peak SAR (extrapolated) = 1.75 W/kg

SAR(1 g) = 1.08 mW/g; SAR(10 g) = 0.661 mW/g

Maximum value of SAR (measured) = 1.14 mW/g

0 dB = 1.14 mW/g

DUT: GT-I6410; Serial: FG-248-B

Program Name: GT-I6410 GSM1900 Left (Job No.: FG-248) Procedure Name: Ear/Tilt, Ch.661, Ant.Intenna, Bat.Standard

Meas. Ambient Temp(celsius)-22.2 Tissue Temp(celsius)-21.8; Test Date-07/Sep/2009

Communication System: GSM 1900; Frequency: 1880 MHz; Duty Cycle: 1:8.3 Medium parameters used: f = 1880 MHz; σ = 1.4 mho/m; ϵ_r = 38.9; ρ = 1000 kg/m³

Phantom section: Left Section

DASY4 Configuration:

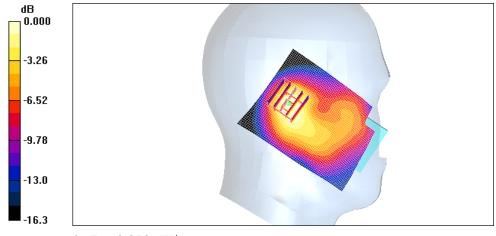
- Probe: ES3DV3 SN3080; ConvF(4.74, 4.74, 4.74); Calibrated: 2009-01-20
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn486; Calibrated: 2009-04-01
- Phantom: PHANTOM #1; Type: SAM; Serial: TP-1143
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Ear/Tilt, Ch.661, Ant.Intenna, Bat.Standard/Area Scan (51x71x1): Measurement grid:

dx=20mm, dy=20mm

Maximum value of SAR (interpolated) = 0.376 mW/g

Ear/Tilt, Ch.661, Ant.Intenna, Bat.Standard/Zoom Scan (5x5x7)/Cube 0: Measurement


grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 14.8 V/m; Power Drift = -0.058 dB

Peak SAR (extrapolated) = 0.541 W/kg

SAR(1 g) = 0.333 mW/g; SAR(10 g) = 0.201 mW/g

Maximum value of SAR (measured) = 0.356 mW/g

0 dB = 0.356 mW/g

DUT: GT-I6410; Serial: FG-248-B

Program Name: GT-I6410 GSM1900 Right (Job No.: FG-248) Procedure Name: Cheek/Touch, Ch.810, Ant.Intenna, Bat.Standard

Meas. Ambient Temp(celsius)-22.2 Tissue Temp(celsius)-21.8; Test Date-07/Sep/2009

Communication System: GSM 1900; Frequency: 1909.8 MHz; Duty Cycle: 1:8.3 Medium parameters used: f = 1909.8 MHz; σ = 1.4 mho/m; ϵ_r = 38.9; ρ = 1000 kg/m³ Phantom section: Right Section

DASY4 Configuration:

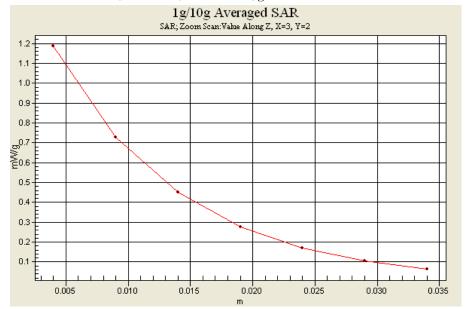
- Probe: ES3DV3 SN3080; ConvF(4.74, 4.74, 4.74); Calibrated: 2009-01-20
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn486; Calibrated: 2009-04-01
- Phantom: PHANTOM #1; Type: SAM; Serial: TP-1143
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Cheek/Touch, Ch.810, Ant.Intenna, Bat.Standard/Area Scan (51x71x1): Measurement

grid: dx=20mm, dy=20mm

Maximum value of SAR (interpolated) = 1.18 mW/g

Cheek/Touch, Ch.810, Ant.Intenna, Bat.Standard/Zoom Scan (5x5x7)/Cube 0:


Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 23.4 V/m; Power Drift = -0.004 dB

Peak SAR (extrapolated) = 1.98 W/kg

SAR(1 g) = 1.14 mW/g; SAR(10 g) = 0.645 mW/g

Maximum value of SAR (measured) = 1.19 mW/g

SAMSUNG FCC ID: A3LGTI6410 GPRS1900 Body SAR

DUT: GT-I6410; Serial: FG-248-B

Program Name: GT-I6410 GPRS1900 Body (Job No.: FG-248) Procedure Name: Body, Ch.661, Ant.Intenna, Bat.Standard

Meas. Ambient Temp(celsius)-22.3 Tissue Temp(celsius)-21.7; Test Date-07/Sep/2009

Communication System: GPRS 1900; Frequency: 1880 MHz; Duty Cycle: 1:4.15 Medium parameters used: f = 1880 MHz; σ = 1.52 mho/m; ϵ_r = 52.2; ρ = 1000 kg/m³ Phantom section: Center Section

DASY4 Configuration:

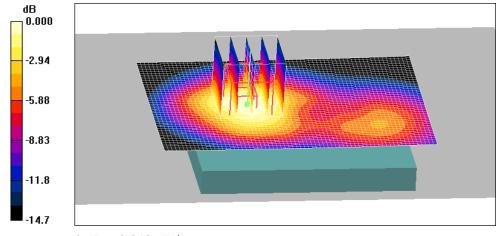
- Probe: ES3DV3 SN3080; ConvF(4.5, 4.5, 4.5); Calibrated: 2009-01-20
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn486; Calibrated: 2009-04-01
- Phantom: Triple Flat Phantom 5.1; Type: Triple Flat Phantom 5.1; Serial: 1001
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Body, Ch.661, Ant.Intenna, Bat.Standard/Area Scan (51x71x1): Measurement grid:

dx=20mm, dy=20mm

Maximum value of SAR (interpolated) = 1.04 mW/g

Body, Ch.661, Ant.Intenna, Bat.Standard/Zoom Scan (5x5x7)/Cube 0: Measurement grid:


dx=8mm, dy=8mm, dz=5mm

Reference Value = 23.0 V/m; Power Drift = -0.049 dB

Peak SAR (extrapolated) = 1.61 W/kg

SAR(1 g) = 0.885 mW/g; SAR(10 g) = 0.525 mW/g

Maximum value of SAR (measured) = 0.948 mW/g

0 dB = 0.948 mW/g

SAMSUNG FCC ID: A3LGTI6410 GPRS1900 Body SAR

DUT: GT-I6410; Serial: FG-248-B

Program Name: GT-I6410 GPRS1900 Body (Job No.: FG-248) Procedure Name: Body, Ch.661, Ant.Intenna, Bat.Standard

Meas. Ambient Temp(celsius)-22.3 Tissue Temp(celsius)-21.7; Test Date-07/Sep/2009

Communication System: GPRS 1900; Frequency: 1880 MHz; Duty Cycle: 1:4.15 Medium parameters used: f = 1880 MHz; σ = 1.52 mho/m; ϵ_r = 52.2; ρ = 1000 kg/m³

Phantom section: Center Section

DASY4 Configuration:

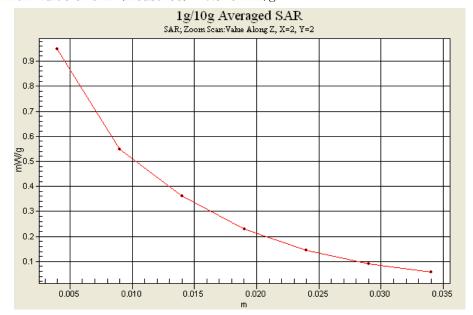
- Probe: ES3DV3 SN3080; ConvF(4.5, 4.5, 4.5); Calibrated: 2009-01-20
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn486; Calibrated: 2009-04-01
- Phantom: Triple Flat Phantom 5.1; Type: Triple Flat Phantom 5.1; Serial: 1001
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Body, Ch.661, Ant.Intenna, Bat.Standard/Area Scan (51x71x1): Measurement grid:

dx=20mm, dy=20mm

Maximum value of SAR (interpolated) = 1.04 mW/g

Body, Ch.661, Ant.Intenna, Bat.Standard/Zoom Scan (5x5x7)/Cube 0: Measurement grid:


dx=8mm, dy=8mm, dz=5mm

Reference Value = 23.0 V/m; Power Drift = -0.049 dB

Peak SAR (extrapolated) = 1.61 W/kg

SAR(1 g) = 0.885 mW/g; SAR(10 g) = 0.525 mW/g

Maximum value of SAR (measured) = 0.948 mW/g

APPENDIX G

Probe Calibration

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

C

Client

Samsung (Dymstec)

Certificate No: ES3-3080_Jan09

CALIBRATION CERTIFICATE

Object

ES3DV3 - SN:3080

Calibration procedure(s)

QA CAL-01.v6 and QA CAL-23.v3

Calibration procedure for dosimetric E-field probes

Calibration date:

January 20, 2009

Condition of the calibrated item

In Tolerance

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	1-Apr-08 (No. 217-00788)	Apr-09
Power sensor E4412A	MY41495277	1-Apr-08 (No. 217-00788)	Apr-09
Power sensor E4412A	MY41498087	1-Apr-08 (No. 217-00788)	Apr-09
Reference 3 dB Attenuator	SN: S5054 (3c)	1-Jul-08 (No. 217-00865)	Jul-09
Reference 20 dB Attenuator	SN: S5086 (20b)	31-Mar-08 (No. 217-00787)	Apr-09
Reference 30 dB Attenuator	SN: S5129 (30b)	1-Jul-08 (No. 217-00866)	Jul-09
Reference Probe ES3DV2	SN: 3013	2-Jan-09 (No. ES3-3013_Jan09)	Jan-10
DAE4	SN: 660	9-Sep-08 (No. DAE4-660_Sep08)	Sep-09
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Oct-07)	In house check: Oct-09
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-08)	In house check: Oct-09
	Name	Function	Signature
Calibrated by:	Katja Pokovic	Technical Manager	20-10g
Approved by:	Niels Kuster		XIII
Approved by.	NICIS RUSTEF	Quality Manager	VILLES

Issued: January 20, 2009 ratory.

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: ES3-3080_Jan09

Page 1 of 9

2009.2.9

정원 - 1F- 01(C)

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kallbrierdienst
Service sulsse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

NORMx,y,z ConvF sensitivity in free space sensitivity in TSL / NORMx,y,z

DCP

diode compression point

Polarization φ

φ rotation around probe axis

Polarization 9

9 rotation around an axis that is in the plane normal to probe axis (at

measurement center), i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This
 linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of
 the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Probe ES3DV3

SN:3080

Manufactured:

Last calibrated:

Recalibrated:

March 14, 2005

January 29, 2008

January 20, 2009

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

DASY - Parameters of Probe: ES3DV3 SN:3080

Sensitivity	in	Froo	SnacoA
CCHOILIVILV	11 1	1100	UDate

Diode Compression^B

NormX	1.23 ± 10.1%	$\mu V/(V/m)^2$	DCP X	92 mV
NormY	1.13 ± 10.1%	$\mu V/(V/m)^2$	DCP Y	94 mV
NormZ	1.18 ± 10.1%	$\mu V/(V/m)^2$	DCP Z	91 mV

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

Boundary Effect

TSL

900 MHz

Typical SAR gradient: 5 % per mm

Sensor Center to Phantom Surface Distance		3.0 mm	4.0 mm
SAR _{be} [%]	Without Correction Algorithm	10.8	6.2
SAR _{be} [%]	With Correction Algorithm	0.8	0.3

TSL

1810 MHz

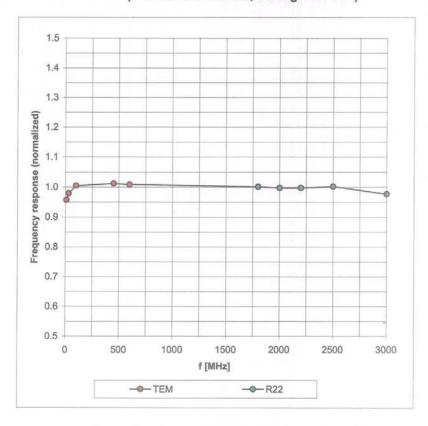
Typical SAR gradient: 10 % per mm

Sensor Center to Phantom Surface Distance		3.0 mm	4.0 mm
SAR _{be} [%]	Without Correction Algorithm	11.9	7.3
SAR _{be} [%]	With Correction Algorithm	0.9	0.6

Sensor Offset

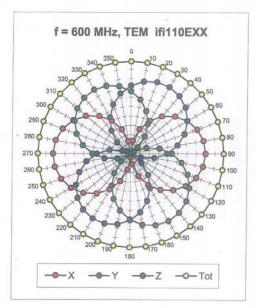
Probe Tip to Sensor Center

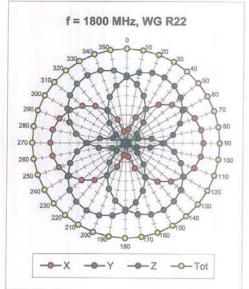
2.0 mm

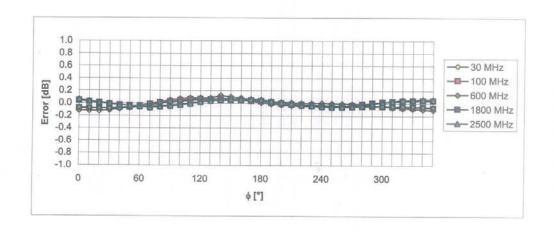

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 8).

^B Numerical linearization parameter: uncertainty not required.

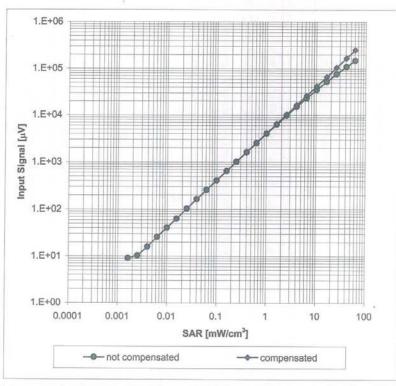

Frequency Response of E-Field

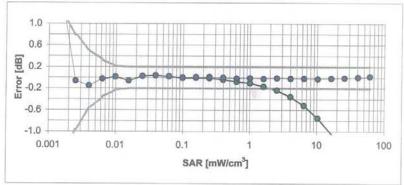

(TEM-Cell:ifi110 EXX, Waveguide: R22)



Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

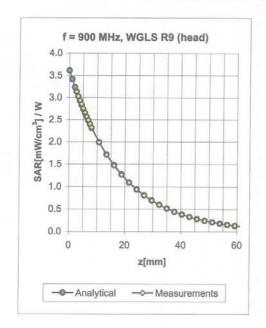
Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

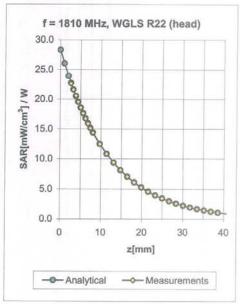




Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

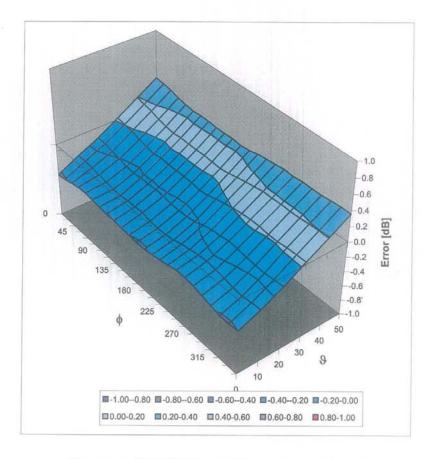
Dynamic Range f(SAR_{head})


(Waveguide R22, f = 1800 MHz)



Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment



Validity [MHz] ^C	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF	Uncertainty
± 50 / ± 100	Head	41.5 ± 5%	0.97 ± 5%	0.95	1.13	5.60	± 11.0% (k=2)
± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.73	1.31	4.81	± 11.0% (k=2)
± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.66	1.35	4.66	± 11.0% (k=2)
± 50 / ± 100	Head	$39.2 \pm 5\%$	$1.80 \pm 5\%$	0.61	1.51	4.40	± 11.0% (k=2)
± 50 / ± 100	Body	55.0 ± 5%	1.05 ± 5%	0.99	1.13	5.58	± 11.0% (k=2)
± 50 / ± 100	Body	$53.3 \pm 5\%$	1.52 ± 5%	0.59	1.48	4.70	± 11.0% (k=2)
± 50 / ± 100	Body	$53.3 \pm 5\%$	$1.52 \pm 5\%$	0.54	1.56	4.57	± 11.0% (k=2)
± 50 / ± 100	Body	$52.7 \pm 5\%$	$1.95 \pm 5\%$	0.89	1.23	4.10	± 11.0% (k=2)
	± 50 / ± 100 ± 50 / ± 100	± 50 / ± 100 Head ± 50 / ± 100 Body ± 50 / ± 100 Body	±50/±100 Head 41.5±5% ±50/±100 Head 40.0±5% ±50/±100 Head 40.0±5% ±50/±100 Head 39.2±5% ±50/±100 Body 55.0±5% ±50/±100 Body 53.3±5% ±50/±100 Body 53.3±5%	±50/±100 Head 41.5±5% 0.97±5% ±50/±100 Head 40.0±5% 1.40±5% ±50/±100 Head 40.0±5% 1.40±5% ±50/±100 Head 39.2±5% 1.80±5% ±50/±100 Body 55.0±5% 1.05±5% ±50/±100 Body 53.3±5% 1.52±5% ±50/±100 Body 53.3±5% 1.52±5%	$\pm 50/\pm 100$ Head $41.5 \pm 5\%$ $0.97 \pm 5\%$ 0.95 $\pm 50/\pm 100$ Head $40.0 \pm 5\%$ $1.40 \pm 5\%$ 0.73 $\pm 50/\pm 100$ Head $40.0 \pm 5\%$ $1.40 \pm 5\%$ 0.66 $\pm 50/\pm 100$ Head $39.2 \pm 5\%$ $1.80 \pm 5\%$ 0.61 $\pm 50/\pm 100$ Body $55.0 \pm 5\%$ $1.05 \pm 5\%$ 0.99 $\pm 50/\pm 100$ Body $53.3 \pm 5\%$ $1.52 \pm 5\%$ 0.59 $\pm 50/\pm 100$ Body $53.3 \pm 5\%$ $1.52 \pm 5\%$ 0.54	$\pm 50/\pm 100$ Head $41.5 \pm 5\%$ $0.97 \pm 5\%$ 0.95 1.13 $\pm 50/\pm 100$ Head $40.0 \pm 5\%$ $1.40 \pm 5\%$ 0.66 1.35 $\pm 50/\pm 100$ Head $40.0 \pm 5\%$ $1.40 \pm 5\%$ 0.66 1.35 $\pm 50/\pm 100$ Head $39.2 \pm 5\%$ $1.80 \pm 5\%$ 0.61 1.51 $\pm 50/\pm 100$ Body $55.0 \pm 5\%$ $1.05 \pm 5\%$ 0.99 1.13 $\pm 50/\pm 100$ Body $53.3 \pm 5\%$ $1.52 \pm 5\%$ 0.59 1.48 $\pm 50/\pm 100$ Body $53.3 \pm 5\%$ $1.52 \pm 5\%$ 0.54 1.56	$\pm 50/\pm 100$ Head $41.5 \pm 5\%$ $0.97 \pm 5\%$ 0.95 1.13 5.60 $\pm 50/\pm 100$ Head $40.0 \pm 5\%$ $1.40 \pm 5\%$ 0.66 1.35 4.66 $\pm 50/\pm 100$ Head $40.0 \pm 5\%$ $1.40 \pm 5\%$ 0.66 1.35 4.66 $\pm 50/\pm 100$ Head $39.2 \pm 5\%$ $1.80 \pm 5\%$ 0.61 1.51 4.40 $\pm 50/\pm 100$ Body $55.0 \pm 5\%$ $1.05 \pm 5\%$ 0.99 1.13 5.58 $\pm 50/\pm 100$ Body $53.3 \pm 5\%$ $1.52 \pm 5\%$ 0.59 1.48 4.70 $\pm 50/\pm 100$ Body $53.3 \pm 5\%$ $1.52 \pm 5\%$ 0.54 1.56 4.57

 $^{^{\}rm C}$ The validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Deviation from Isotropy in HSL

Error (φ, θ), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com

Additional Conversion Factors

for Dosimetric E-Field Probe

Type:	ES3DV3
Serial Number:	3080
Place of Assessment:	Zurich
Date of Assessment:	June 27, 2009
Probe Calibration Date:	January 20, 2009

Schmid & Partner Engineering AG hereby certifies that conversion factor(s) of this probe have been evaluated on the date indicated above. The assessment was performed using the FDTD numerical code SEMCAD of Schmid & Partner Engineering AG. Since the evaluation is coupled with measured conversion factors, it has to be recalculated yearly, i.e., following the recalibration schedule of the probe. The uncertainty of the numerical assessment is based on the extrapolation from measured value at 900 MHz or at 1810 MHz.

Assessed by:

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com

Dosimetric E-Field Probe ES3DV3 - SN:3080

Conversion factor (± standard deviation)

$850 \pm 50 \; \mathrm{MHz}$	ConvF	$5.70 \pm 7\%$	$\varepsilon_r = 41.5 \pm 5\%$ $\sigma = 0.92 \pm 5\% \text{ mho/m}$
			(head tissue)
$1860 \pm 50 \; \mathrm{MHz}$	ConvF	$4.74 \pm 7\%$	$\varepsilon_r = 40.0 \pm 5\%$
			$\sigma = 1.40 \pm 5\% \text{ mho/m}$ (head tissue)
$850 \pm 50 \; \mathrm{MHz}$	ConvF	$5.50 \pm 7\%$	$\varepsilon_r = 55.2 \pm 5\%$
			$\sigma = 0.99 \pm 5\% \text{ mho/m}$ (body tissue)
$1860 \pm 50 \text{ MHz}$	ConvF	$4.50 \pm 7\%$	$\varepsilon_r = 53.3 \pm 5\%$
			$\sigma = 1.52 \pm 5\% \text{ mho/m}$
			(body tissue)

Important Note:

For numerically assessed probe conversion factors, parameters Alpha and Delta in the DASY software must have the following entries: Alpha = 0 and Delta = 1.

Please see also Section 4.7 of the DASY4 Manual.

APPENDIX H

Calibration of The Validation Dipole

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S wiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client

Samsung (Dymstec)

Certificate No: D835V2-4d050 Mar09

CALIBRATION CERTIFICATE

Object

D835V2 - SN: 4d050

Calibration procedure(s)

QA CAL-05.v7

Calibration procedure for dipole validation kits

Calibration date:

March 16, 2009

Condition of the calibrated item

In Tolerance

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	08-Oct-08 (No. 217-00898)	Oct-09
Power sensor HP 8481A	US37292783	08-Oct-08 (No. 217-00898)	Oct-09
Reference 20 dB Attenuator	SN: 5086 (20g)	01-Jul-08 (No. 217-00864)	Jul-09
Type-N mismatch combination	SN: 5047.2 / 06327	01-Jul-08 (No. 217-00867)	Jul-09
Reference Probe ES3DV2	SN: 3025	28-Apr-08 (No. ES3-3025_Apr08)	Apr-09
DAE4	SN: 601	07-Mar-09 (No. DAE4-601_Mar09)	Mar-10
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-07)	In house check: Oct-09
RF generator R&S SMT-06	100005	4-Aug-99 (in house check Oct-07)	In house check: Oct-09
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-08)	In house check: Oct-09
	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	1 1h
Approved by:	Katja Pokovic		
Approved by.	raya FUKOVIC	Technical Manager	Solo Hil

Issued: March 17, 2009

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D835V2-4d050_Mar09

Page 1 of 6

2009.1.8

정전 - 1F- 01(C)

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

 a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V5.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V4.9	
Distance Dipole Center - TSL	15 mm with Sp.	
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.3 ± 6 %	0.87 mho/m ± 6 %
Head TSL temperature during test	(21.5 ± 0.2) °C		~~~

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.33 mW / g
SAR normalized	normalized to 1W	9.32 mW / g
SAR for nominal Head TSL parameters ¹	normalized to 1W	9.49 mW /g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.53 mW / g
SAR normalized	normalized to 1W	6.12 mW / g
SAR for nominal Head TSL parameters ¹	normalized to 1W	6.21 mW /g ± 16.5 % (k=2)

¹ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.5 Ω - 4.5 jΩ	
Return Loss	- 26.7 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.387 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	August 16, 2006

Date/Time: 16.03.2009 11:58:06

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d050

Communication System: CW-835; Frequency: 835 MHz; Duty Cycle: 1:1

Medium: HSL 900 MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.87$ mho/m; $\varepsilon_r = 40.1$; $\rho = 1000$ kg/m³

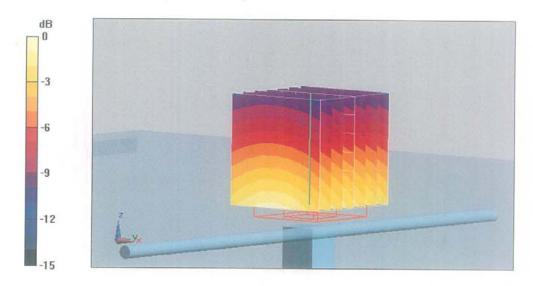
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:

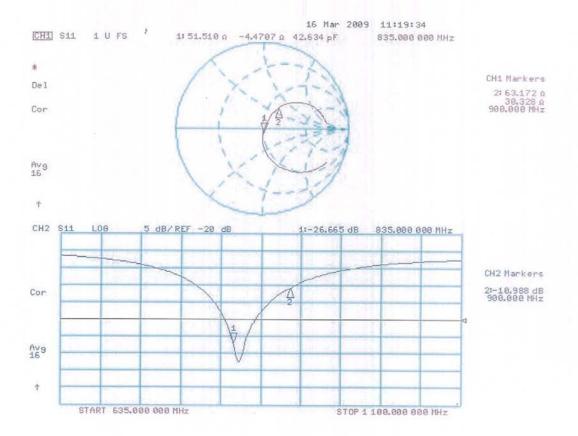
- Probe: ES3DV2 SN3025; ConvF(5.97, 5.97, 5.97); Calibrated: 28.04.2008
- Sensor-Surface: 3.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 07.03.2009
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001
- Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

Pin=250mW; dip=15mm; dist=3.4mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid:


dx=5mm, dy=5mm, dz=5mm

Reference Value = 56.4 V/m; Power Drift = -0.032 dB

Peak SAR (extrapolated) = 3.41 W/kg


SAR(1 g) = 2.33 mW/g; SAR(10 g) = 1.53 mW/g

Maximum value of SAR (measured) = 2.63 mW/g

0 dB = 2.63 mW/g

Impedance Measurement Plot for Head TSL

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client

Samsung (Dymstec)

Certificate No: D1900V2-5d082-Mar09

	CERTIFICAT		
Object	D1900V2 - SN:	5d082	William Company
Calibration procedure(s)	QA CAL-05.v7 Calibration proce	edure for dipole validation kits	
Calibration date:	March 17, 2009		
Condition of the calibrated item	In Tolerance		
The integration of the unce	rtainties with confidence p	probability are given on the following pages and	are part of the certificate.
	cted in the closed laborato	ry facility: environment temperature (22 ± 3)°C (
All calibrations have been conducted and calibration Equipment used (M&	cted in the closed laborato	ry facility: environment temperature (22 ± 3)°C (and humidity < 70%.
All calibrations have been conduc	cted in the closed laborato		Scheduled Calibration Oct-09 Oct-09 Jul-09 Jul-09 Apr-09
Calibrations have been conducted Calibration Equipment used (M&Calibration Equipment used (M&Cal	TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3025 SN: 601	Cal Date (Calibrated by, Certificate No.) 08-Oct-08 (No. 217-00898) 08-Oct-08 (No. 217-00898) 01-Jul-08 (No. 217-00864) 01-Jul-08 (No. 217-00867) 28-Apr-08 (No. ES3-3025_Apr08) 07-Mar-09 (No. DAE4-601_Mar09)	Scheduled Calibration Oct-09 Oct-09 Jul-09 Jul-09
All calibrations have been conducted. Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV2	TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3025	Cal Date (Calibrated by, Certificate No.) 08-Oct-08 (No. 217-00898) 08-Oct-08 (No. 217-00898) 01-Jul-08 (No. 217-00864) 01-Jul-08 (No. 217-00867) 28-Apr-08 (No. ES3-3025_Apr08)	Scheduled Calibration Oct-09 Oct-09 Jul-09 Jul-09 Apr-09
Calibrations have been conducted Calibration Equipment used (M&Calibration Equipment used (M&Calibration Equipment used (M&Calibration EPM-442A) Cower sensor HP 8481A Calibration Equipment used (M&Calibration EPM-442A) Calibration Experiment (Macalibration EPM-442A) Calibration Experiment (Macalibration EPM-442A) Calibration EPM-442A Calibration EQUIPMENT (Macalibration EPM-442A Calibration Equipment used (M&Calibration EPM-442A Calibration EQUIPMENT (Macalibration EPM-442A Calibration E	ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3025 SN: 601 ID # MY41092317 100005 US37390585 S4206	Cal Date (Calibrated by, Certificate No.) 08-Oct-08 (No. 217-00898) 08-Oct-08 (No. 217-00898) 01-Jul-08 (No. 217-00864) 01-Jul-08 (No. 217-00867) 28-Apr-08 (No. ES3-3025_Apr08) 07-Mar-09 (No. DAE4-601_Mar09) Check Date (in house) 18-Oct-02 (in house check Oct-07) 4-Aug-99 (in house check Oct-07) 18-Oct-01 (in house check Oct-08)	Scheduled Calibration Oct-09 Oct-09 Jul-09 Jul-09 Apr-09 Mar-10 Scheduled Check In house check: Oct-09 In house check: Oct-09 In house check: Oct-09
Calibrations have been conducted Calibration Equipment used (M&Calibration Equipment used (M&Calibration Equipment used (M&Calibration EPM-442A) Cower sensor HP 8481A Calibration Equipment used (M&Calibration EPM-442A) Calibration Experiment (Macalibration EPM-442A) Calibration Experiment (Macalibration EPM-442A) Calibration EPM-442A Calibration EQUIPMENT (Macalibration EPM-442A Calibration Equipment used (M&Calibration EPM-442A Calibration EQUIPMENT (Macalibration EPM-442A Calibration E	TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 / 06327 SN: 3025 SN: 601 ID # MY41092317 100005	Cal Date (Calibrated by, Certificate No.) 08-Oct-08 (No. 217-00898) 08-Oct-08 (No. 217-00898) 01-Jul-08 (No. 217-00864) 01-Jul-08 (No. 217-00867) 28-Apr-08 (No. ES3-3025_Apr08) 07-Mar-09 (No. DAE4-601_Mar09) Check Date (in house) 18-Oct-02 (in house check Oct-07) 4-Aug-99 (in house check Oct-07)	Scheduled Calibration Oct-09 Oct-09 Jul-09 Jul-09 Apr-09 Mar-10 Scheduled Check In house check: Oct-09 In house check: Oct-09

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D1900V2-5d082_Mar09

Page 1 of 6

2009. t.11

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura

Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Glossary:

TSL

tissue simulating liquid

ConvF N/A

sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

 a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

 b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), July 2001

c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V5.0
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	and the state of t
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.8 ± 6 %	1,47 mho/m ± 6 %
Head TSL temperature during test	(21.5 ± 0.2) °C	****	****

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	condition	
SAR measured	250 mW input power	10.2 mW / g
SAR normalized	normalized to 1W	40.8 mW / g
SAR for nominal Head TSL parameters 1	normalized to 1W	39.4 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	5.27 mW / g
SAR normalized	normalized to 1W	21.1 mW / g
SAR for nominal Head TSL parameters 1	normalized to 1W	20.7 mW / g ± 16.5 % (k=2)

Certificate No: D1900V2-5d082_Mar09

Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.9 Ω + 4.5 jΩ	
Return Loss	- 25.7 dB	

General Antenna Parameters and Design

Electrical Delay (one disenting)	
Electrical Delay (one direction)	1.195 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	June 28, 2006

DASY5 Validation Report for Head TSL

Date/Time: 17.03.2009 14:52:19

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d082

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: HSL U10 BB

Medium parameters used: f = 1900 MHz; $\sigma = 1.47$ mho/m; $\varepsilon_r = 38.8$; $\rho = 1000$ kg/m³

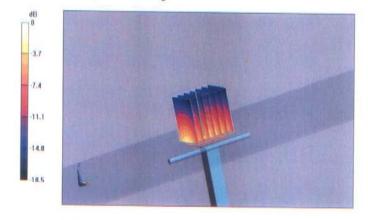
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC)

DASY5 Configuration:

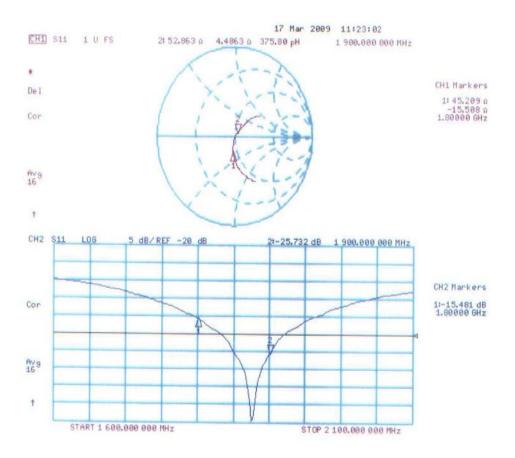
- Probe: ES3DV2 SN3025; ConvF(4.9, 4.9, 4.9); Calibrated: 28.04,2008
- Sensor-Surface: 3.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 07.03.2009
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- Measurement SW: DASY5, V5.0 Build 120; SEMCAD X Version 13.4 Build 45

Pin = 250 mW; dip = 10 mm, scan at 3.4mm/Zoom Scan (dist=3.4mm, probe 0deg) (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 91.3 V/m; Power Drift = 0.022 dB

Peak SAR (extrapolated) = 19.3 W/kg


SAR(1 g) = 10.2 mW/g; SAR(10 g) = 5.27 mW/g

Maximum value of SAR (measured) = 12.2 mW/g

0 dB = 12.2 mW/g

Impedance Measurement Plot for Head TSL

