

Nemko Korea CO., Ltd.

300-2, Osan-Ri, Mohyeon-Myeon, Cheoin-Gu, Yongin-Si, Gyeonggi-Do, KOREA

TEL:+82 31 322 2333

FAX:+82 31 322 2332

FCC and IC EVALUATION REPORT FOR CERTIFICATION

Applicant:

FCC ID

Brand Name

Contact Person

IC ID

Samsung Electronics Co., Ltd.

416, Maetan-3Dong, Yeongtong-Gu,

Suwon-Si, Gyeonggi-Do, Korea.

Dates of Issue: February 20, 2010

Test Report No.: NK-09-R-191

Test Site: Nemko Korea Co., Ltd.

(Post code : 443-742) Attn. : Mr. Jaywoo. Lee

> A3LDNUBS1 649E-DNUBS1

> > SAMSUNG

Samsung Electronics Co., Ltd.
416, Maetan-3Dong, Yeongtong-Gu,
Suwon-Si, Gyeonggi-Do, Korea, 442-742.
Mr. Jaywoo. Lee
Telephone No.: +82-10-5691-9410

Applied Standard: FCC 47 CFR Part 15C and IC RSS-210 Classification: FCC part 15 Spread Spectrum Transmitter

EUT Type: Wireless LAN module

The device bearing the brand name and model specified above has been shown to comply with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in ANSI C63.4-2003. The client should not use it to claim product endorsement by TAF or any government agencies. The test results in the report only apply to the tested sample.

I attest to the accuracy of data and all measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

Tested By: Minchul Shin

Engineer

Reviewed By : H.H. Kim Manager & Chief Engineer

Samsung Electronics Co., Ltd.

Page 1 of 126

FCC ID: A3LDNUBS1 / IC ID: 649E-DNUBS1

FCC and IC Certification

TABLE OF CONTENTS

1.	Scope	4
2.	Introduction (Site Description)	5
3.	Test Conditions & EUT Information	6
	3.1 Operation During Test	6
	3.2 Support Equipment	7
	3.3 Setup Drawing	7
	3.4 EUT Information	8
4.	Summary of Test Results	9
5.	Recommendation / Conclusion	10
6.	Antenna Requirements	10
7.	Description of Test	11
	7.1 Conducted Emissions	11
	7.2 Radiated Emissions	12
	7.3 6 dB Bandwidth	13
	7.4 Maximum Peak Output Power	13
	7.5 Peak Power Spectral Density	14
	7.6 Conducted Spurious Emissions	14
8.	Test Data	15
	8.1 Conducted Emissions	15
	8.2 Radiated Emissions	18
	8.3 6 dB Modulated Bandwidth	19
	8.4 Peak Power Output	36
	8.5 Power Spectral Density	38
	8.6 Conducted Spurious Emissions	52
	8.7 Radiated Spurious Emissions	93
	8.8 Receiver Spurious Emissions	116

Test Report No.: NK-09-R-191

FCC and IC Certification

9	Maximum Permissible Exposure	117
10	Accuracy of Measurement	119
11.	Test Equipment	120
Appe	ndix A: Labelling Requirement	121
Appe	endix B: Photographs of Test Set-up	122
Appe	endix C: EUT Photographs	124

1. SCOPE

Measurement and determination of electromagnetic emissions (EME) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission under FCC part 15 and IC RSS-210.

Responsible Party: Samsung Electronics Co., Ltd.

Contact Person: Mr. Jaywoo. Lee

Manufacturer: Samsung Electronics Co., Ltd.

416 Maetan-3Dong, Yeongtong-Gu, Suwon-Si,

Gyeonggi-Do, 443-742 KOREA

FCC ID: A3LDNUBS1Model: DNUB-S1Brand Name: SAMSUNG

EUT Type: wireless LAN module

Classification:
 Applied Standard:
 FCC part 15 Spread Spectrum Transmitter
 FCC 47 CFR Part 15 subpart C and IC RSS-210

Test Procedure(s): ANSI C63.4 (2003)

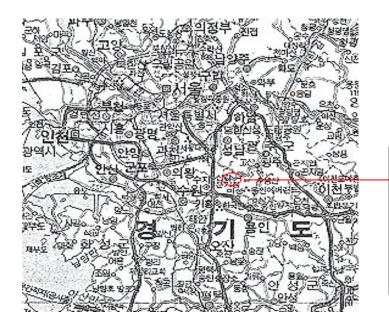
Dates of Test:
 Nov. 24, 2009 ~ Feb. 19, 2010

Place of Tests: Nemko Korea Co., Ltd.

2. INTRODUCTION

The measurement procedure described in American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9kHz to 40GHz (ANSI C63.4-2003) was used in determining radiated and conducted emissions emanating from **Samsung Electronics Co., Ltd.**

FCC ID: A3LDNUBS1 and IC ID: 649E-DNUBS1


These measurement tests were conducted at Nemko Korea Co., Ltd. EMC Laboratory .

The site address is 300-2, Osan-Ri, Mohyeon-Myeon, Cheoin-Gu, Yongin-Si, Gyeonggi-Do, KOREA.

The area of Nemko Korea Corporation Ltd. EMC Test Site is located in a mountain area at 80 kilo-meters (48 miles) southeast and Incheon International Airport (Incheon Airport), 30 kilometers (18miles) south-southeast from central Seoul.

It is located in the valley surrounded by mountains in all directions where ambient radio signal conditions are quiet and a favorable area to measure the radio frequency interference on open field test site for the computing and ISM devices manufactures.

The detailed description of the measurement facility was found to be in compliance with the requirements of §2.948 according to ANSI C63.4 2003.

Nemko Korea Co., Ltd.

EMC Lab.

300-2, Osan-Ri, Mohyeon-Myeon, Cheoin-Gu, Yongin-Si, Gyeonggi-Do,

KOREA 449-852

Tel)+82-31-322-2333

Fig. 1. The map above shows the Seoul in Korea vicinity area.

The map also shows Nemko Korea Corporation Ltd. EMC Lab. and Incheon Airport.

Samsung Electronics Co., Ltd. FCC ID: A3LDNUBS1 / IC ID: 649E-DNUBS1

3. TEST CONDITIONS & EUT INFORMATION

3.1 Operation During Test

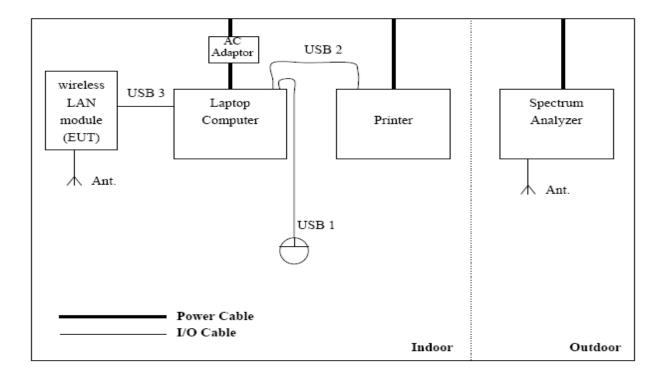
The EUT is the MIMO transceiver which is module supporting the 802.11b/g/n mode. It has two transmitter and two receiver chains. It support the 2TX, 2RX for 802.11n (HT20/HT40) mode and 1TX, 1RX for 802.11b,g mode, therefore some of conducted combined test were measured at 802.11n(HT20/HT40) mode only.

The EUT was tested at the lowest channel, middle channel and the highest channel with the maximum RF power and all test data recorded in the report.

During the test, the EUT was connected to notebook PC and then a test program was executed to operate EUT continuously.

The EUT is programmed with the following data rate setting that used during testing:

Test fre	quency	2412 MHz	2437 MHz	2462 MHz	
	Power Level	15	15	15	
802.11b	Data rate	11	11	11	
802.11g	Power Level	12	15	12	
	Data rate	9	9	9	
802.11n(HT20)	Power Level	10	13.5	10	
	Data rate	MCS0	MCS0	MCS0	


Test frequency		2422 MHz	2437 MHz	2452 MHz
	Power Level	9	13.5	10
802.11n(HT40)	Data rate	MCS0	MCS0	MCS0

3.2 Support Equipment

wireless LAN module (EUT)	Samsung Electronics Co., Ltd. FCC ID: A3LDNUBS1 0.1 m unshielded USB cable	S/N: D09G94600049J01
Laptop Computer	Dell Inc. Model: PP32LA 1.5 m shielded dc power cable Adaptor: DELTA ELECTRONICS (JANG SU), LTD. Model: DA90PE1-00 1.0 m unshielded AC power cable	FCC DOC S/N: N/A FCC DOC S/N: N/A
USB Mouse	Kardak Model : M056UO 1.8 m shielded USB cable	FCC DOC S/N: 513032204
Printer	HP Model: C6429A 1.5 m shielded USB cable	FCC DOC S/N: N/A

3.3 Setup Drawing

3.4 EUT Information

The EUT is the Samsung wireless LAN module FCC ID: A3LDNUBS1, IC ID: 649E-DNUBS1.

Specifications:

EUT Type	wireless LAN module
Model Name	DNUB-S1
Brand Name	SAMSUNG
Frequency of Operation	2412 MHz to 2462 MHz
Peak Power Output (Conducted)	802.11b : 17.57 dBm 802.11g : 20.61 dBm 802.11n(HT20) : 20.77 dBm 802.11n(HT40) : 19.86 dBm
Channels	802.11b,g,n(HT20) : 11 CH 802.11n(HT40) : 9 CH
Antenna Gain	0.6 dBi
Spreading	DSSS, OFDM
Modulations	BPSK, QPSK, 16QAM, 64QAM
Temperature Range	- 20 °C ~ + 55 °C
Voltage	5.0 VDC
Dimension(W x H x D)	20 mm x 56 mm x 3 mm
Weight	5 g
Remarks	-

4. SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specification:

The EOT has been tested according	FCC	IC		
Name of Test	Paragraph	Paragraph	Result	Remark
	No.	No.		
Conducted Emission	15.207	RSS-GEN	Complies	
		RSS-210		
Dadiated Emission	15.205	Clause 2.6,	Complies	
Radiated Emission	15.209	RSS-GEN	Complies	
		Clause 6		
C dD Dag dwidth	45.047(-)(0)	RSS-210 A8.2	0	
6 dB Bandwidth	15.247(a)(2)	(a)	Complies	
		RSS-210		
Peak Power Output	15.247(b)(3)	Issue 7	Complies	
		Clause A8.4		
Davier Created Daneity	45.047(-)	RSS-210	0	
Power Spectral Density	15.247(e)	Clause A8.2	Complies	
Open de esta d'Opennique Francisco	45.047(-1)	IC RSS-210	0 1'	
Conducted Spurious Emission	15.247(d)	A8.5	Complies	
		RSS-210		
D 11 10 1 5 1 1	45.047(1)	Clause 2.6,	0 "	
Radiated Spurious Emission	15.247(d)	RSS-GEN	Complies	
		Clause 6		
Maximum Permissible Exposure	1.1307(b)	RSS-102	Complies	

5. RECOMMENDATION/CONCLUSION

The data collected shows that the **Samsung wireless LAN module FCC ID: A3LDNUBS1**, **IC ID: 649E-DNUBS1** is in compliance with Part 15 Subpart C 15.247 of the FCC Rules.

6. ANTENNA REQUIREMENTS

§15.203 of the FCC Rules part 15 Subpart C

: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

The antenna of the Samsung wireless LAN module FCC ID: A3LDNUBS1, IC ID: 649E-DNUBS1 is Permanently attached and there are no provisions for connection to an external antenna. It complies with the requirement of §15.203.

Antenna 0,1: 0.6 dBi

Total antenna gain = 10 log (10 ^ (Antenna 0 / 10) + 10 ^ (Antenna 1 / 10)) = 3.6 dBi

Total antenna gain is 3.6 dBi therefore it does not over the 6 dBi limit.

7. DESCRIPTION OF TESTS

7.1 Conducted Emissions

The Line conducted emission test facility is located inside a 4 X 7 X 2.5 m shielded enclosure. It is manufactured by EM engineering. The shielding effectiveness of the shielded room is in accordance with MIL-STD-285 or NSA 65-6.

A 1 m X 1.5 m wooden table 0.8 m height is placed 0.4 m away from the vertical wall and 1.5 m away from the side of wall of the shielded room Rohde & Schwarz (ESH3-Z5) and Rohde & Schwarz (ESH2-Z5) of the 50 ohm/50 uH Line Impedance Stabilization Network(LISN) are bonded to the shielded room.

The EUT is powered from the Rohde & Schwarz LISN (ESH3-Z5) and the support equipment is powered from the Rohde & Schwarz LISN (ESH2-Z5). Power to the LISNs are filtered by high-current high insertion loss Power line filters. The purpose of filter is to attenuate ambient signal interference and this filter is also bonded to shielded enclosure. All electrical cables are shielded by tinned copper zipper tubing with inner diameter of 1 / 2 ".

If DC power device, power will be derived from the source power supply it normally will be powered from

and this supply lines will be connected to the LISNs, All interconnecting cables more than 1 meter were shortened by non inductive bundling (serpentine fashion) to a 1 meter length.

Sufficient time for EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the spectrum analyzer to determine the frequency producing the maximum EME from the EUT.

The spectrum was scanned from 150 kHz to 30 MHz with 200 msec sweep time.

The frequency producing the maximum level was re-examined using the EMI test receiver. (Rohde & Schwarz ESCS30).

The detector function were set to CISPR quasi-peak mode & average mode.

The bandwidth of receiver was set to 9 KHz. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each EME emission.

Each emission was maximized by; switching power lines; varying the mode of operation or resolution; clock or data exchange speed; scrolling H pattern to the EUT and of support equipment, and powering the monitor from the floor mounted outlet box and computer aux AC outlet, if applicable; which ever determined the worst case emission.

Each EME reported was calibrated using the R&S signal generator.

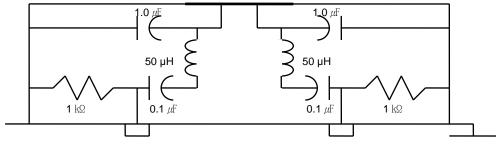


Fig. 2. LISN Schematic Diagram

Samsung Electronics Co., Ltd.

7.2 Radiated Emissions

Preliminary measurement were made indoors at 3 meter using broad band antennas, broadband amplifier, and spectrum analyzer to determine the frequency producing the maximum EME. Appropriate precaution was taken to ensure that all EME from the EUT were maximized and investigated. The Technology configuration, clock speed, mode of operation or video resolution, turntable azimuth with respect to the antenna was note for each frequency found. The spectrum was scanned from 9 kHz to 30 MHz using Loop Antenne(EMCO, 6502) and 30 to 1000 MHz using Bi-conical log Antenna(ARA, LPB-2520/A). Above 1 GHz, Horn antenna (Scwarzbeck BBHA 9120D: upto 18 GHz, BBHA9170: up to 40 GHz) was used. Final Measurements were made outdoors at 3 or 10 m test range using Loop Antenna(EMCO, 6502) and Logbicon Super Antenna (Schwarzbeck, VULB9168) or Double Ridged Broadband Horn antenna.(Scwarzbeck BBHA 9120D: up to 18 GHz, BBHA9170: up to 40 GHz).

The test equipment was placed on a wooden table. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition.

Each frequency found during pre-scan measurements was reexamined and investigated using EMI test receiver.(ESCS30 & FSP40) The detector function was set to CISPR peak mode or quasi-peak mode or average mode and the band-width of the receiver was set to 120 kHz or 1MHz depending on the frequency or type of signal. The half wave dipole antenna was tuned to the frequency found during preliminary radiated measurements. The EUT support equipment and interconnecting cables were re configured to the setup producing the maximum emission for the frequency and were placed on top of a 0.8 m high non-metallic 1.0 X 1.5 meter table. The EUT, support equipment and interconnecting cables were re-arranged and manipulated to maximize each EME emission. The turn table containing the Technology was rotated; the antenna height was varied 1 to 4meter and stopped at the azimuth or height producing the maximum emission Each emission was maximized by: switching power lines; varying the mode of operation or resolution; clock or data exchange speed; scrolling H pattern to the EUT and of support equipment, and powering the monitor from the floor mounted outlet box and computer aux AC outlet, if applicable; which ever determined the worst case emission.

Each EME reported was calibrated using the R/S signal generator.

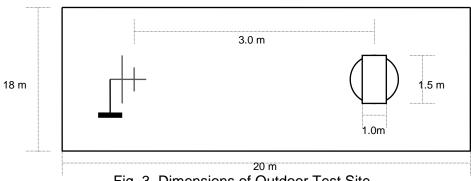
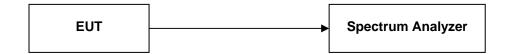



Fig. 3. Dimensions of Outdoor Test Site

7.3 6 dB Bandwidth

Test Setup

Test Procedure

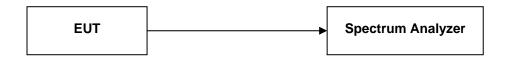
The transmitter is set to the Low, Middle, High channels is connected to the spectrum analyzer. The RBW and VBW of spectrum analyzer are set to 100 kHz.

The sweep time is coupled.

The spectrum analyzer is set for peak detected and Max hold scan mode.

7.4 Maximum Peak Output Power

Test Setup


Test Procedure

The transmitter is set to the Low, Middle, High channels is connected to the Peak Power Meter.

7.5 Peak Power Spectral Density

Test Setup

Test Procedure

The transmitter is connected to the Spectrum analyzer.

The maximum level in a 3 kHz bandwidth is measured with the spectrum analyzer.

The RBW of spectrum analyzer is set to 3 kHz and VBW is set to 3 kHz.

The sweep time is set to Span/3 kHz and video averaging is turned off.

The PPSD is the highest level found across the emission in any 3 kHz band.

7.6 Conducted Spurious Emissions

Test Setup

Test Procedure

The transmitter is connected to the spectrum analyzer.

The RBW of spectrum analyzer is set to 1 MHz and VBW is set to the 1 MHz.

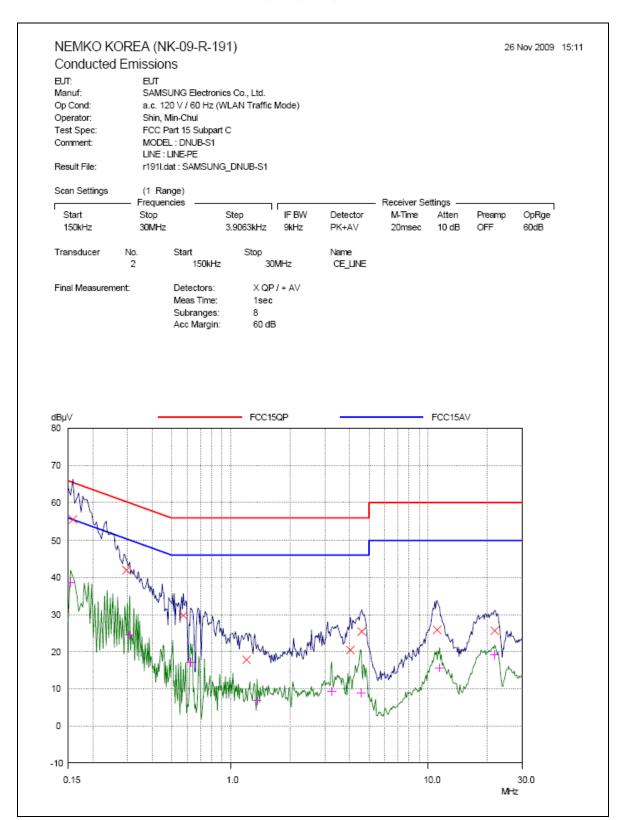
Measurements are made over the 30 MHz to 25 GHz range with the transmitter set to the Lowest, Middle and highest channels.

8. TEST DATA

8.1 Conducted Emissions

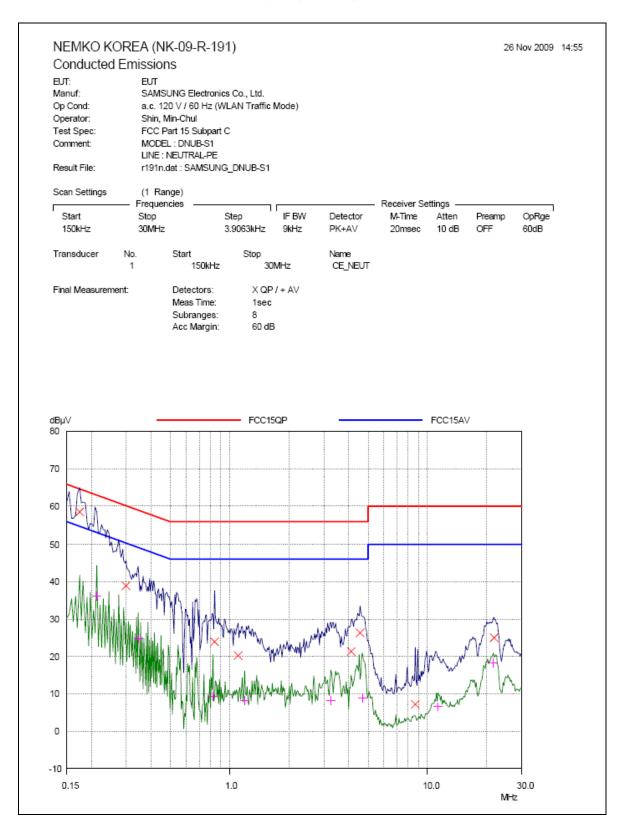
FCC §15.207. 15.107

Frequency	Level	(dB µV)	*)Factor	**) Line	Limit(dBµV)		Margin(dB)	
(MHz)	Q-Peak	Average	(dB)		Q-Peak	Average	Q-Peak	Average
0.15	62.2	45.2	0.1	N	66.0	56.0	3.8	10.8
0.16	57.0	39.5	0.1	N	65.5	55.5	8.5	16.0
0.17	59.2	41.9	0.1	L	65.0	55.0	5.8	13.1
0.18	58.1	40.1	0.1	N	64.5	54.5	6.4	14.4
0.19	56.9	39.9	0.1	N	64.0	54.0	7.1	14.1
0.20	53.5	36.9	0.1	N	63.6	53.6	10.1	16.7


Line Conducted Emissions Tabulated Data

NOTES:

- 1. Measurements using CISPR quasi-peak mode & average mode.
- 2. All modes of operation were investigated and the worst -case emission are reported. See attached Plots.
- 3. Factor = LISN + Cable Loss
- 4. LINE : L = Line , N = Neutral
- 5. The limit is on the FCC Part section 15.207(a), 15.107(a).



• Conducted Emission at the Mains port (Line)

Conducted Emission at the Mains port (Neutral)

TEST DATA

8.2 Radiated Emissions

FCC §15.209, 15. 205, IC RSS-210 Clause 2.6, IC RSS-GEN Clause 6

Frequency	Reading	Pol*	AF+CL+Amp	Result	Limit	Margin
(MHz)	(dB <i>µ</i> V/m)	(H/V)	(dB)**	(dB <i>µ</i> V/m)	(dB <i>µ</i> V/m)	(dB)
214.55	52.2	Н	-19.1	33.1	43.5	10.4
229.08	53.3	Н	-19.1	34.2	46.0	11.8
229.87	54.5	Н	-19.1	35.4	46.0	10.6
235.33	59.4	Н	-19.1	40.3	46.0	5.7
237.79	60.2	Н	-19.1	41.1	46.0	4.9
240.00	61.0	Н	-19.1	41.9	46.0	4.1

Radiated Measurements at 3meters

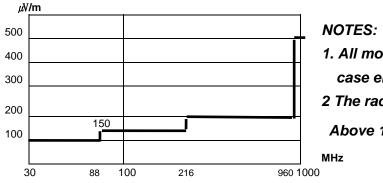


Fig. 4. Limits at 3 meters

- 1. All modes were measured and the worstcase emission was reported.
- 2 The radiated limits are shown on Figure 4.

 Above 1GHz the limit is 500 µV/m.

- 1. *Pol. H = Horizontal, V = Vertical
- 2. **AF + CL + Amp. = Antenna Factor + Cable Loss + Amplifier.
- 3. Measurements using CISPR quasi-peak mode.
- 4. The radiated emissions testing were made by rotating through three orthogonal axes. The worst date was recorded.
- 5. The limit is on the FCC Part section 15.109(a), 15.209(a).

Samsung Electronics Co., Ltd.
FCC ID: A3LDNUBS1 / IC ID: 649E-DNUBS1

8.3 6 dB Modulated Bandwidth

FCC §15.247(a), IC RSS-210 A8.1(b)

Test Mode: Set to Lowest channel, Middle channel and Highest channel

Result:

802.11b mode

Channel	Frequency(MHz)	Resul	Result(MHz)		
Chamilei	Frequency(Minz)	Chain 0	Chain 1	Limit(MHz)	
Low	2412	7.79	8.24	0.5	
Middle	2437	8.22	7.39	0.5	
High	2462	7.82	7.71	0.5	

802.11a mode

ooz. Try mode							
Channel	Channel Frequency(MHz)		Result(MHz)				
Chamie	r requericy(ivii iz)	Chain 0	Chain 1	Limit(MHz)			
Low	2412	15.79	15.82	0.5			
Middle	2437	15.78	15.79	0.5			
High	2462	15.81	15.78	0.5			

802.11n (HT20) mode

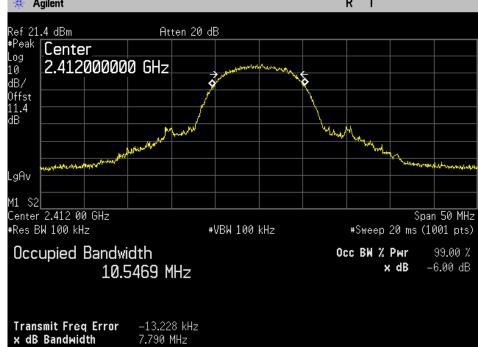
Channel	Frequency(MHz)	Result(MHz)		Limit(MHz)
Chamie	Frequency(Minz)	Chain 0	Chain 1	Littiit(WiFi2)
Low	2412	16.33	16.93	0.5
Middle	2437	15.85	16.34	0.5
High	2462	16.29	17.12	0.5

802.11n (HT40) mode

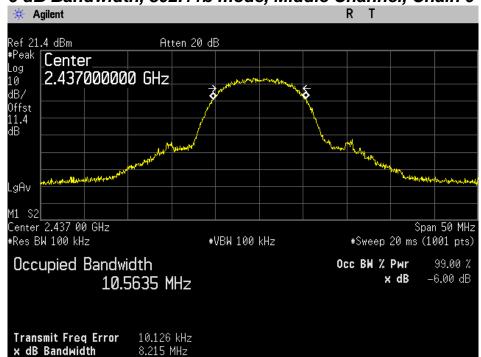
Channel	Frequency(MHz)	Result(MHz)		Limit(MHz)
	Frequency(IVID2)	Chain 0	Chain 1	
Low	2422	35.10	35.13	0.5
Middle	2437	35.11	35.14	0.5
High	2452	33.93	35.12	0.5

802.11n (HT20) mode (Combined)

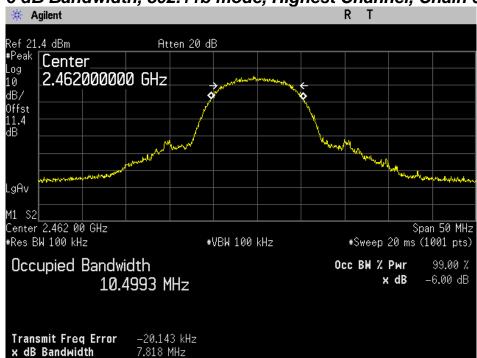
Channel	Frequency(MHz)	Result(MHz)	Limit(MHz)
Low	2412	15.91	0.5
Middle	2437	15.91	0.5
High	2462	16.15	0.5


802.11n (HT40) mode (Combined)

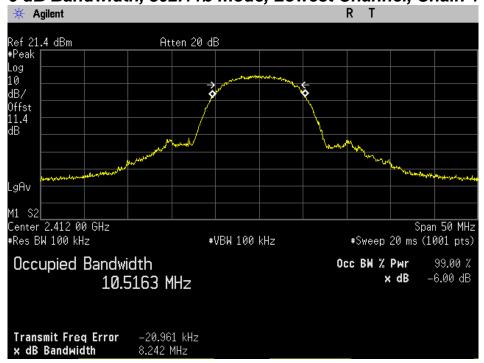
Channel	Frequency(MHz)	Result(MHz)	Limit(MHz)
Low	2422	35.24	0.5
Middle	2437	35.21	0.5
High	2452	35.21	0.5

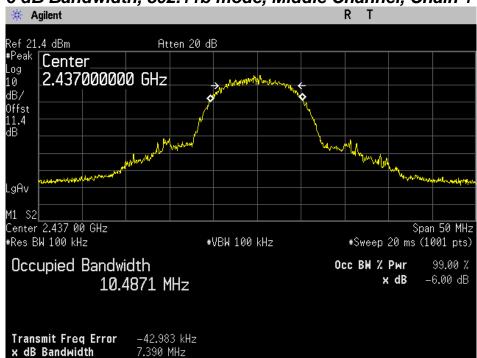


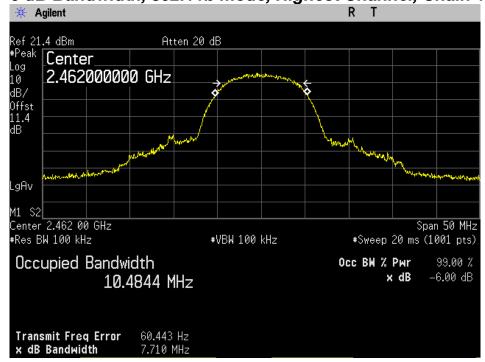
802.11b mode

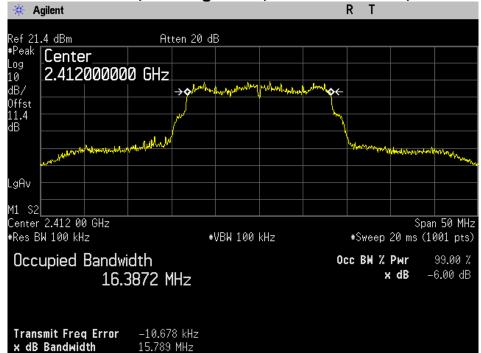


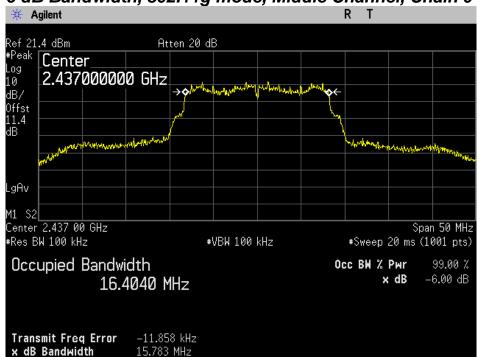
6 dB Bandwidth, 802.11b mode, Middle Channel, Chain 0



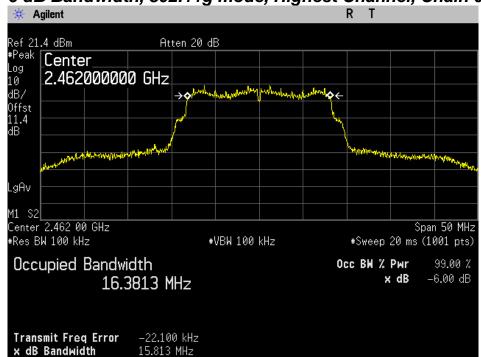

6 dB Bandwidth, 802.11b mode, Lowest Channel, Chain 1


Samsung Electronics Co., Ltd.

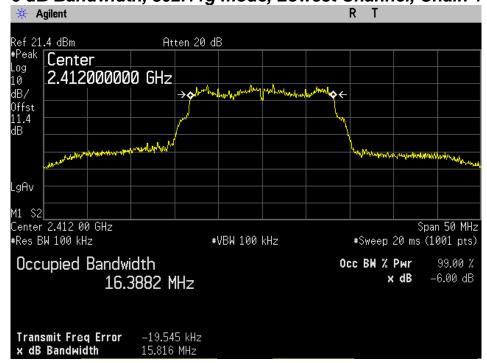

6 dB Bandwidth, 802.11b mode, Highest Channel, Chain 1

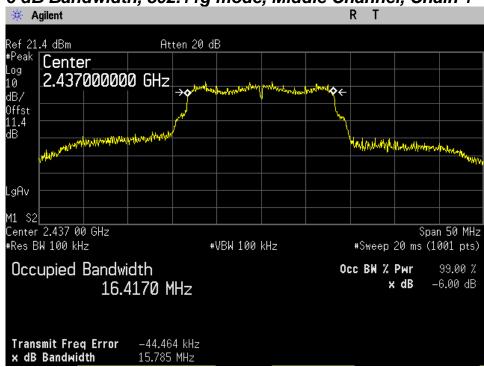


802.11g mode

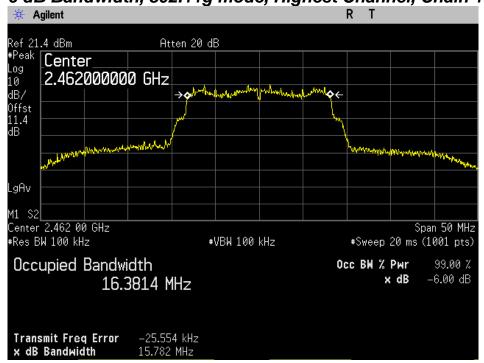


6 dB Bandwidth, 802.11g mode, Middle Channel, Chain 0

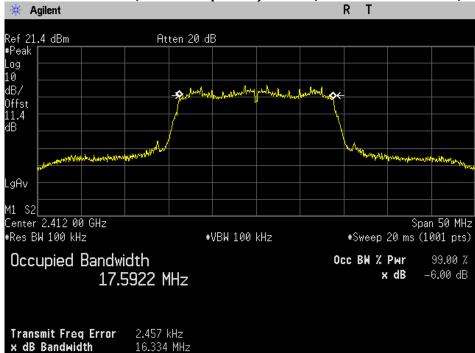


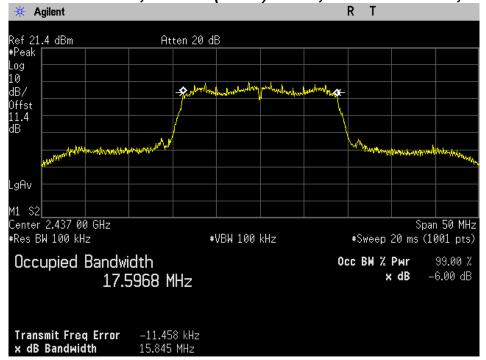


6 dB Bandwidth, 802.11g mode, Lowest Channel, Chain 1



6 dB Bandwidth, 802.11g mode, Middle Channel, Chain 1

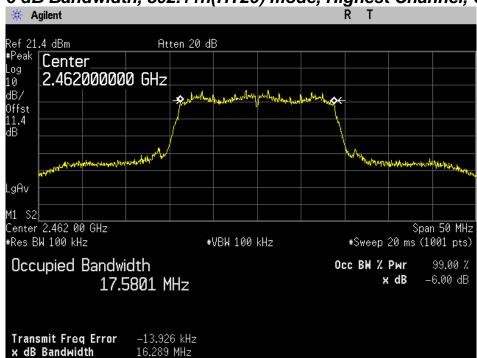

6 dB Bandwidth, 802.11g mode, Highest Channel, Chain 1



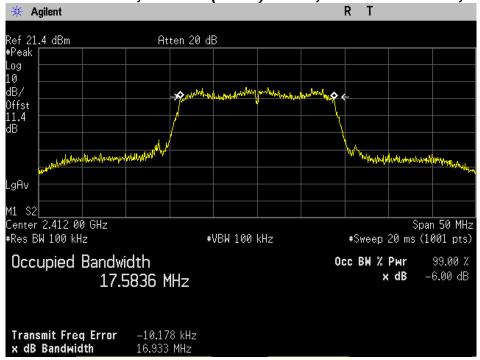
802.11n(HT20) mode

6 dB Bandwidth, 802.11n(HT20) mode, Lowest Channel, Chain 0

6 dB Bandwidth, 802.11n(HT20) mode, Middle Channel, Chain 0

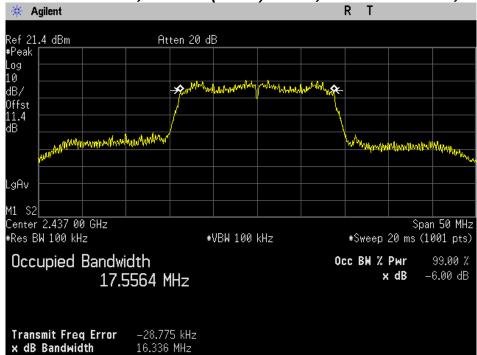


Samsung Electronics Co., Ltd.

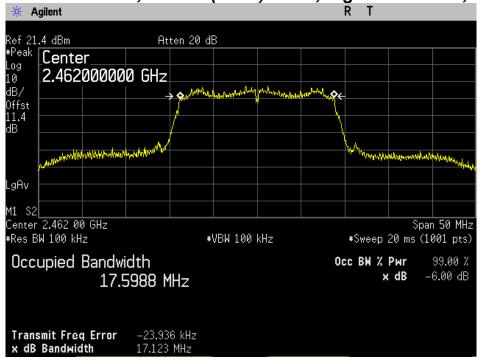

Page 27 of 126

6 dB Bandwidth, 802.11n(HT20) mode, Highest Channel, Chain 0

6 dB Bandwidth, 802.11n(HT20) mode, Lowest Channel, Chain 1

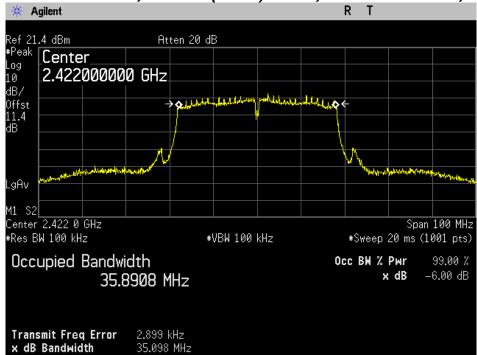


Samsung Electronics Co., Ltd.

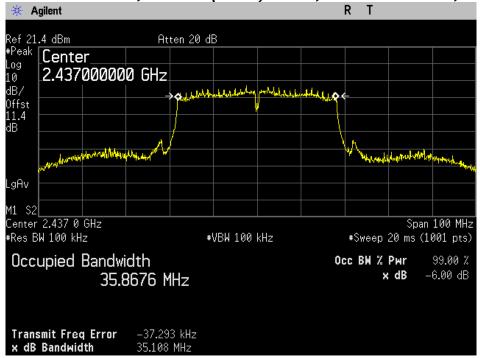

Page 28 of 126

6 dB Bandwidth, 802.11n(HT20) mode, Middle Channel, Chain 1

6 dB Bandwidth, 802.11n(HT20) mode, Highest Channel, Chain 1

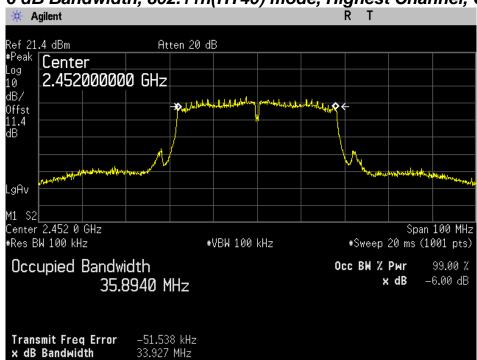

Samsung Electronics Co., Ltd.

Page 29 of 126

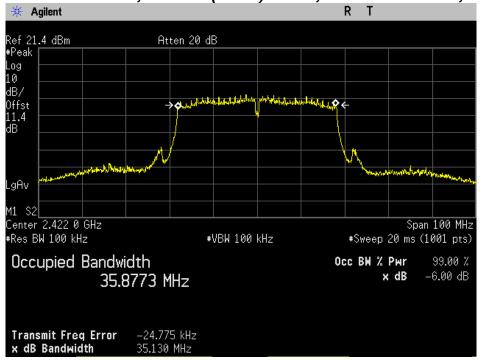


802.11n(HT40) mode

6 dB Bandwidth, 802.11n(HT40) mode, Lowest Channel, Chain 0

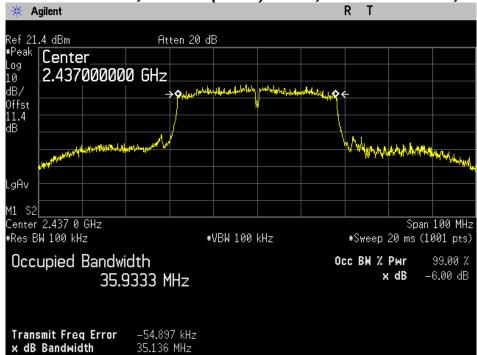


6 dB Bandwidth, 802.11n(HT40) mode, Middle Channel, Chain 0

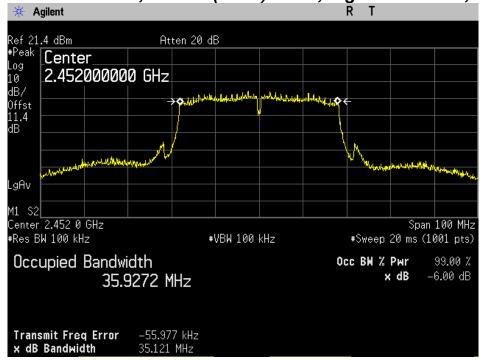


6 dB Bandwidth, 802.11n(HT40) mode, Highest Channel, Chain 0

6 dB Bandwidth, 802.11n(HT40) mode, Lowest Channel, Chain 1

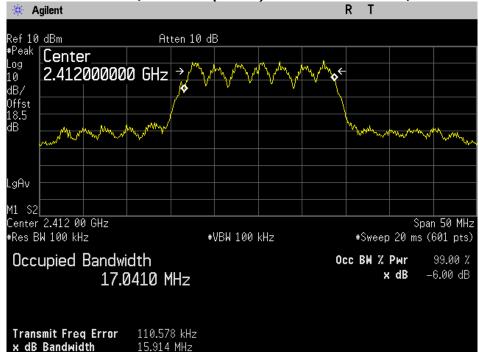


Samsung Electronics Co., Ltd.

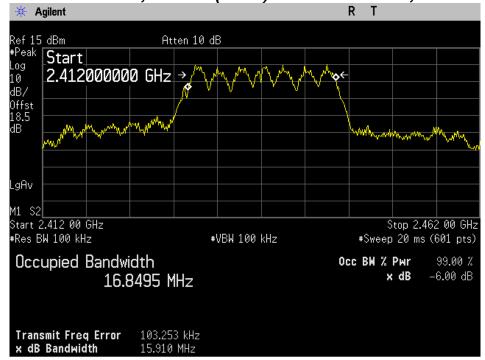

Page 31 of 126

6 dB Bandwidth, 802.11n(HT40) mode, Middle Channel, Chain 1

6 dB Bandwidth, 802.11n(HT40) mode, Highest Channel, Chain 1

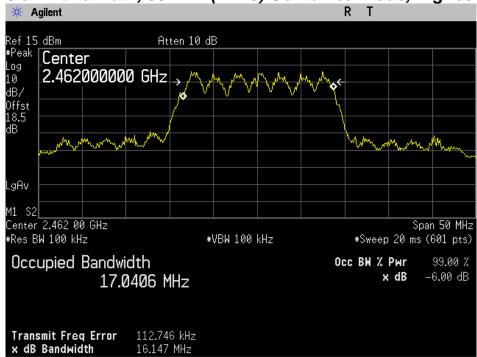

Samsung Electronics Co., Ltd.

Page 32 of 126 FCC ID: A3LDNUBS1 / IC ID: 649E-DNUBS1

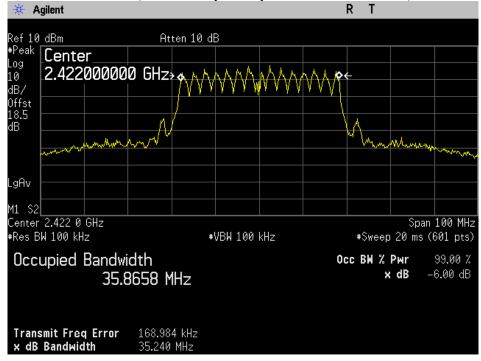


802.11n(HT20) Combined mode

6 dB Bandwidth, 802.11n(HT20) Combined mode, Lowest Channel



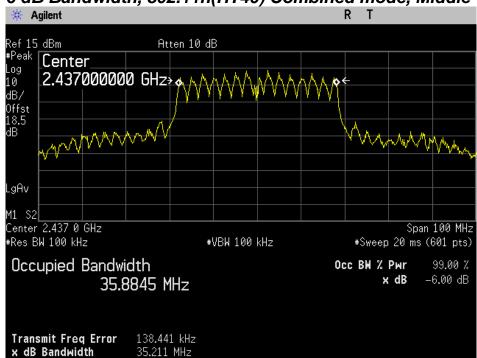
6 dB Bandwidth, 802.11n(HT20) Combined mode, Middle Channel



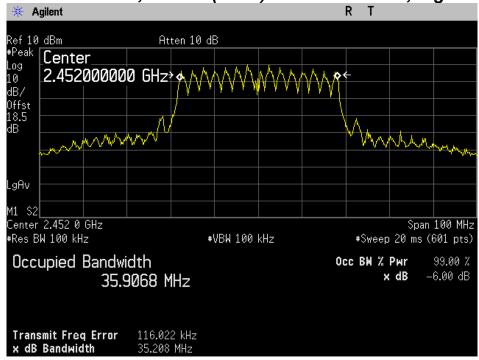
6 dB Bandwidth, 802.11n(HT20) Combined mode, Highest Channel

802.11n(HT40) Combined mode

6 dB Bandwidth, 802.11n(HT40) Combined mode, Lowest Channel



Samsung Electronics Co., Ltd.


Page 34 of 126

6 dB Bandwidth, 802.11n(HT40) Combined mode, Middle Channel

6 dB Bandwidth, 802.11n(HT40) Combined mode, Highest Channel

8.4 Peak Power Output

FCC §15.247(b), IC RSS-210 Issue 7 Clause A8.4

Test Mode: Set to Lowest channel, Middle channel and Highest channel

Result:

Total peak power = 10 log (10 ^ (Chain 0 Power / 10) + 10 ^ (Chain 1 Power / 10))

802.11b mode

Channel	Frequency(MHz)	Peak Power(dBm)		Limit(dPm)
		Chain 0	Chain 1	Limit(dBm)
Low	2412	17.57	16.82	30
Middle	2437	16.68	16.57	30
High	2462	16.94	16.46	30

802.11g mode

Channel	Frequency(MHz)	Peak Power(dBm)		Limit(dBm)
		Chain 0	Chain 1	Lillill(UBIII)
Low	2412	17.48	17.10	30
Middle	2437	20.35	20.61	30
High	2462	17.15	16.67	30

802.11n (HT20) mode

Channel	Frequency(MHz)	Peak Power(dBm)		Total Peak Power	Limit(dBm)	
Onamie	Trequency(Wiriz)	Chain 0	Chain 1	(dBm)	Lillia (dBill)	
Low	2412	14.20	14.28	17.25	30	
Middle	2437	17.58	17.93	20.77	30	
High	2462	13.64	13.78	16.72	30	

802.11n (HT40) mode

Channel	Frequency(MHz)	Peak Power(dBm)		Total Peak Power	Limit(dBm)	
Onamiei	Trequency(Wiriz)	Chain 0	Chain 1	(dBm)		
Low	2422	12.14	12.12	15.14	30	
Middle	2437	16.57	17.11	19.86	30	
High	2452	13.27	12.84	16.07	30	

8.5 Power Spectral Density

FCC §15.247(e), IC RSS-210 Issue 7 Clause A8.2

Test Mode: Set to Lowest channel, Middle channel and Highest channel

Result:

Total Power Spectral Density

= 10 log (10 ^ (Chain 0 PPSD / 10) + 10 ^ (Chain 1 PPSD / 10))

802.11b mode

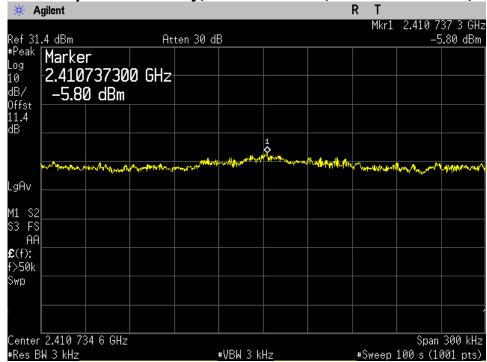
Channel	Frequency(MHz)	PPSD(dBm)		Limit(dBm)
Chamie	Frequency(MH2)	Chain 0	Chain 1	Limit(dBin)
Low	2412	-5.80	-4.34	8
Middle	2437	-6.31	-5.88	8
High	2462	-5.96	-4.11	8

802.11g mode

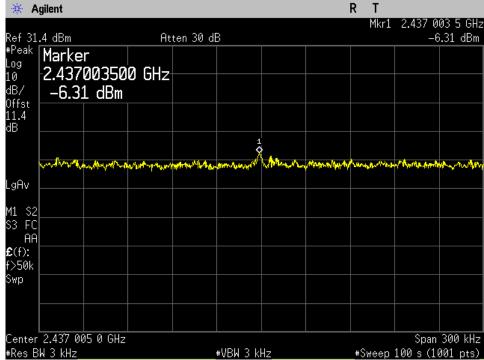
Channel	Eroguenov/MU=\	PPSD(dBm)		Limit/dPm\
Chamiei	Frequency(MHz)	Chain 0	Chain 1	Limit(dBm)
Low	2412	-11.56	-13.50	8
Middle	2437	-7.99	-7.67	8
High	2462	-10.84	-12.32	8

802.11n((HT20)) mode

Channel	Frequency(MHz)	PPSD(dBm)		Total PPSD	Limit(dBm)
Chame	Frequency(MH2)	Chain 0	Chain 1	(dBm)	Limit(dBin)
Low	2412	-13.82	-13.56	-10.68	8
Middle	2437	-11.25	-11.20	-8.21	8
High	2462	-14.08	-13.44	-10.74	8

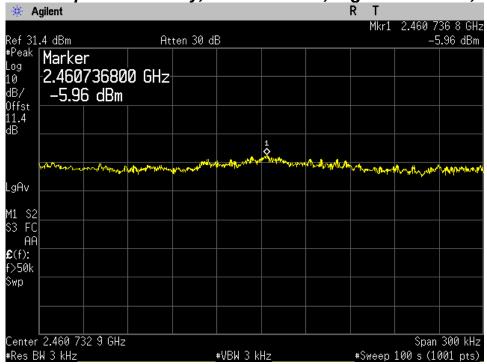

802.11n(HT40) mode

Channel	Frequency(MHz)	PPSD(dBm)		Total PPSD	Limit(dBm)
Chamilei	i requericy(wii iz)	Chain 0	Chain 1	(dBm)	Lillidabili
Low	2412	-15.66	-17.31	-13.40	8
Middle	2437	-14.95	-13.51	-11.16	8
High	2462	-18.25	-17.10	-14.63	8

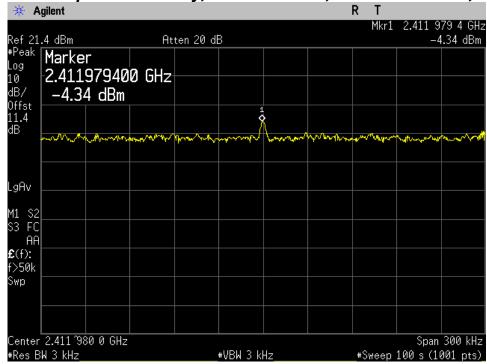


802.11b mode

Power Spectral Density, 802.11b mode, Lowest Channel, Chain 0

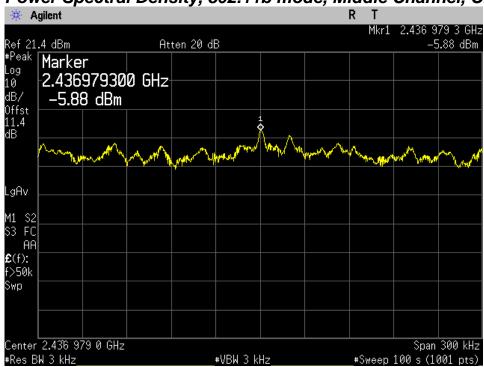


Power Spectral Density, 802.11b mode, Middle Channel, Chain 0

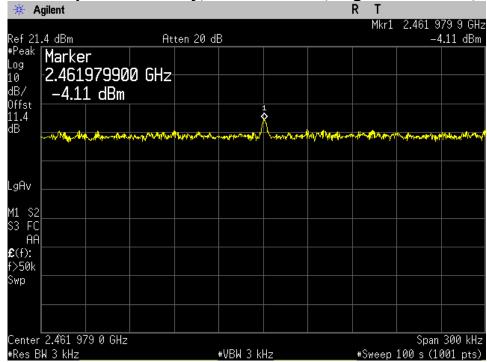


Power Spectral Density, 802.11b mode, Highest Channel, Chain 0

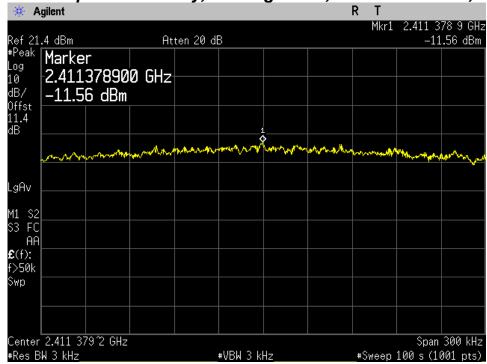
Power Spectral Density, 802.11b mode, Lowest Channel, Chain 1

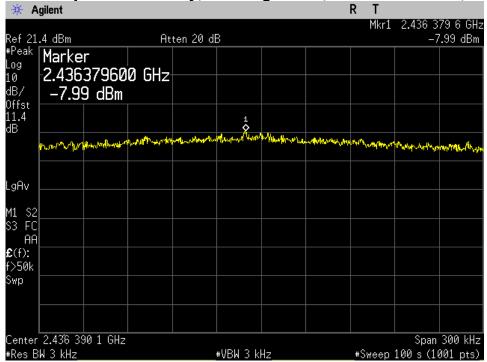


Samsung Electronics Co., Ltd.


Page 41 of 126 FCC ID: A3LDNUBS1 / IC ID: 649E-DNUBS1

Power Spectral Density, 802.11b mode, Middle Channel, Chain 1

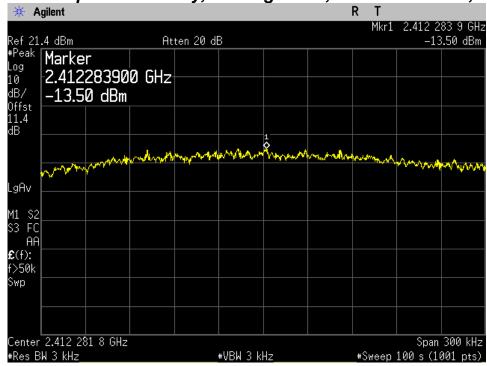

Power Spectral Density, 802.11b mode, Highest Channel, Chain 1



802.11g mode

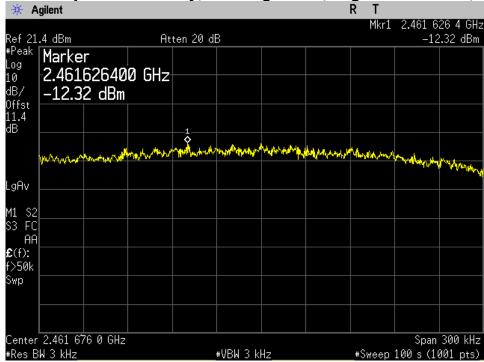
Power Spectral Density, 802.11g mode, Lowest Channel, Chain 0

Power Spectral Density, 802.11g mode, Middle Channel, Chain 0



Power Spectral Density, 802.11g mode, Highest Channel, Chain 0

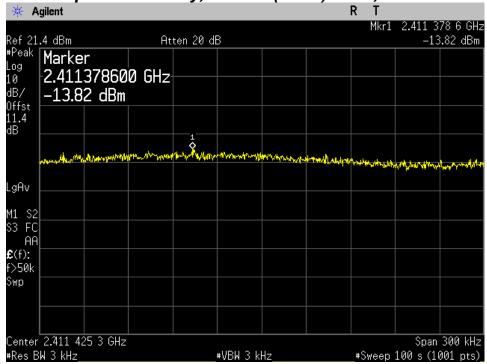
Power Spectral Density, 802.11g mode, Lowest Channel, Chain 1



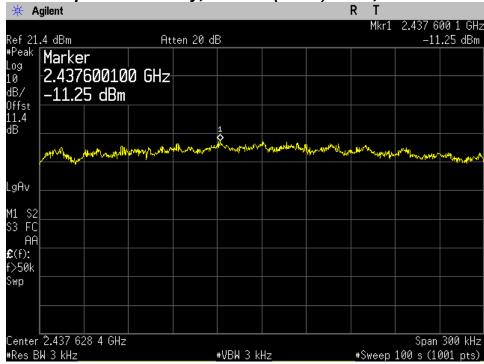
Power Spectral Density, 802.11g mode, Middle Channel, Chain 1

Power Spectral Density, 802.11g mode, Highest Channel, Chain 1

Samsung Electronics Co., Ltd.

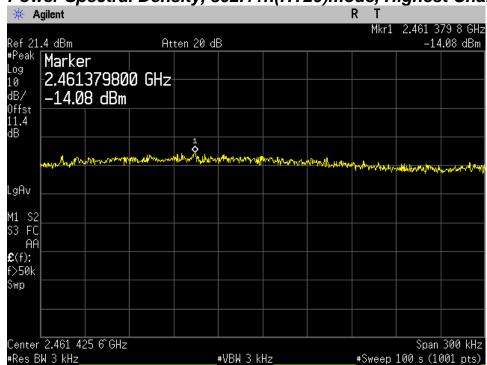

Page 45 of 126

FCC ID: A3LDNUBS1 / IC ID: 649E-DNUBS1

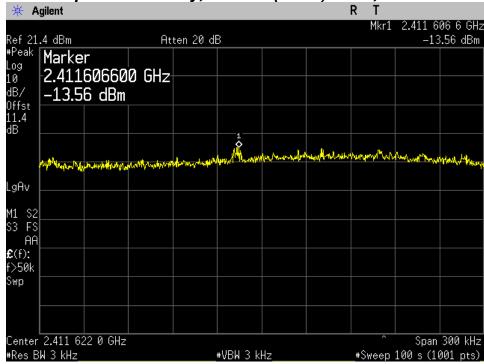


802.11n(HT20) mode

Power Spectral Density, 802.11n(HT20)mode, Lowest Channel, Chain 0

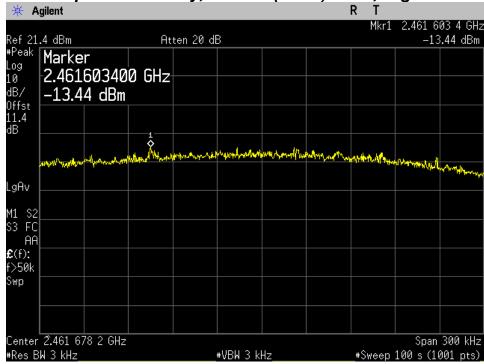


Power Spectral Density, 802.11n(HT20)mode, Middle Channel, Chain 0



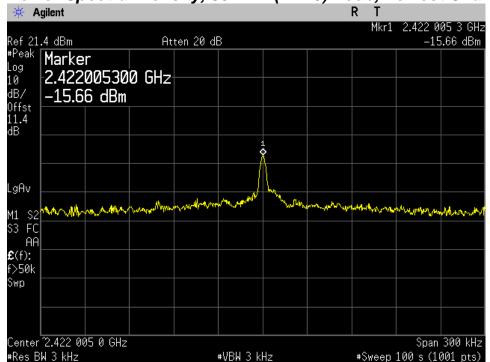
Power Spectral Density, 802.11n(HT20)mode, Highest Channel, Chain 0

Power Spectral Density, 802.11n(HT20)mode, Lowest Channel, Chain 1

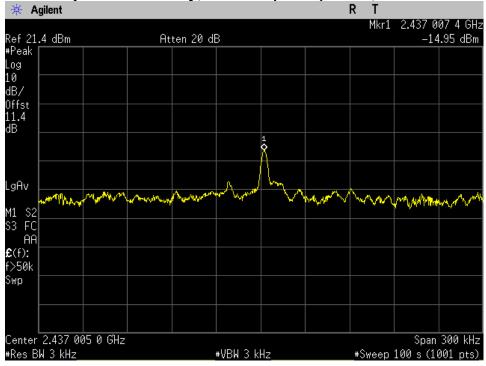


Power Spectral Density, 802.11n(HT20)mode, Middle Channel, Chain 1

Power Spectral Density, 802.11n(HT20)mode, Highest Channel, Chain 1


Samsung Electronics Co., Ltd.

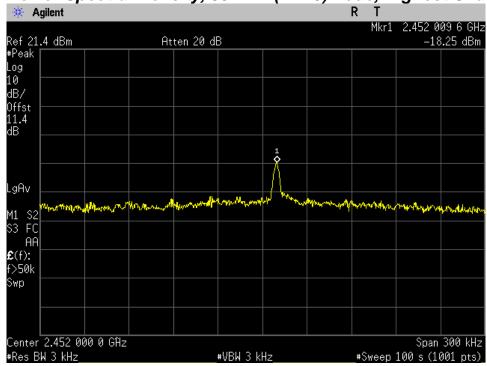
FCC ID: A3LDNUBS1 / IC ID: 649E-DNUBS1



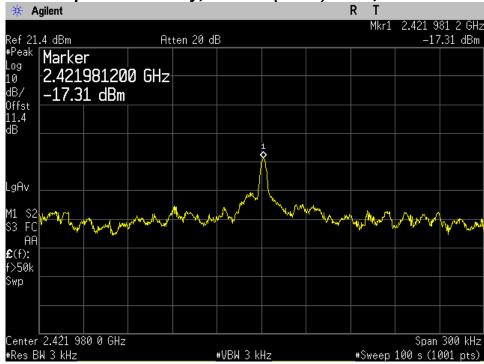
802.11n(HT40) mode

Power Spectral Density, 802.11n(HT40)mode, Lowest Channel, Chain 0

Power Spectral Density, 802.11n(HT40)mode, Middle Channel, Chain 0

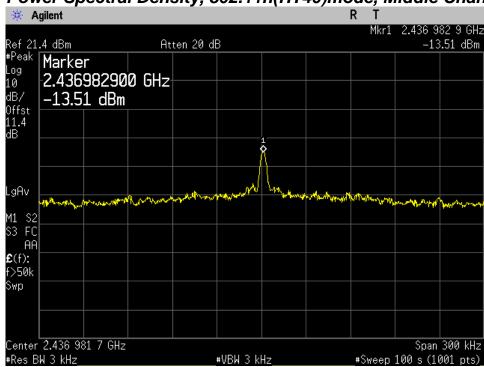


Samsung Electronics Co., Ltd.

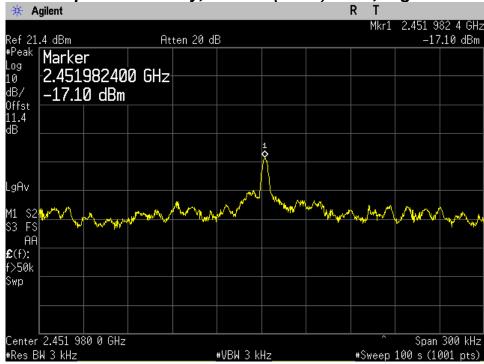

Page 49 of 126 FCC ID: A3LDNUBS1 / IC ID: 649E-DNUBS1

Power Spectral Density, 802.11n(HT40)mode, Highest Channel, Chain 0

Power Spectral Density, 802.11n(HT40)mode, Lowest Channel, Chain 1



Samsung Electronics Co., Ltd.


Page 50 of 126 FCC ID: A3LDNUBS1 / IC ID: 649E-DNUBS1

Power Spectral Density, 802.11n(HT40)mode, Middle Channel, Chain 1

Power Spectral Density, 802.11n(HT40)mode, Highest Channel, Chain 1

Samsung Electronics Co., Ltd.

Page 51 of 126 FCC ID: A3LDNUBS1 / IC ID: 649E-DNUBS1

TEST DATA

8.6 Conducted Spurious Emissions

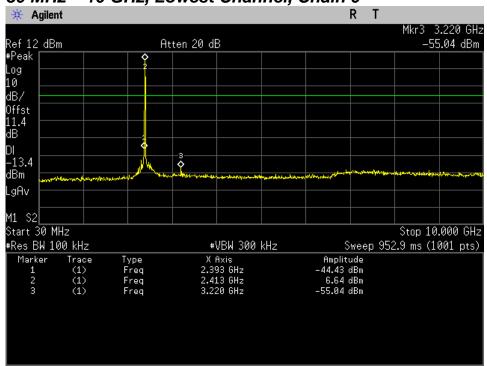
FCC §15.247(d), IC RSS-210 A8.5

Test Mode: Set to Lowest channel, Middle channel and Highest channel

Result:

802.11b/g/n(HT20) mode

Channel	Frequency(MHz)	Result(dBc)	Limit(dBc)
Low	2412	More than 20 dBc	20
Middle	2437	More than 20 dBc	20
High	2462	More than 20 dBc	20

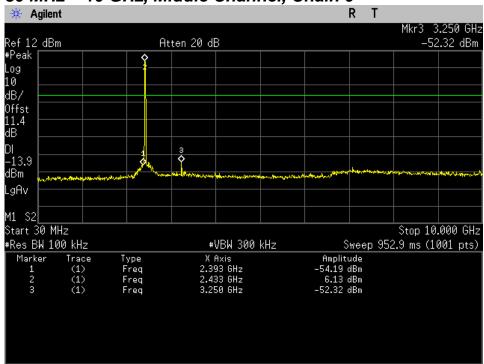

802.11n(HT40) mode

Channel	Frequency(MHz)	Result(dBc)	Limit(dBc)
Low	2412	More than 20 dBc	20
Middle	2437	More than 20 dBc	20
High	2462	More than 20 dBc	20

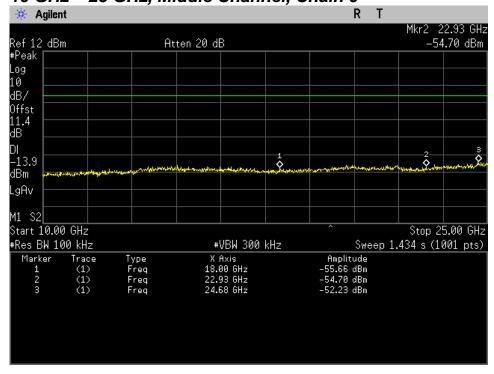
802.11b mode

Conducted Spurious Emissions, 802.11b mode, 30 MHz ~ 10 GHz, Lowest Channel, Chain 0

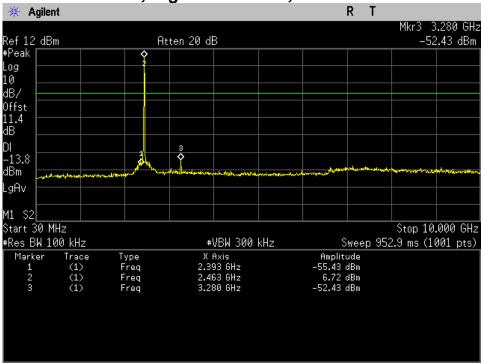
Conducted Spurious Emissions, 802.11b mode, 10 GHz ~ 25 GHz, Lowest Channel, Chain 0



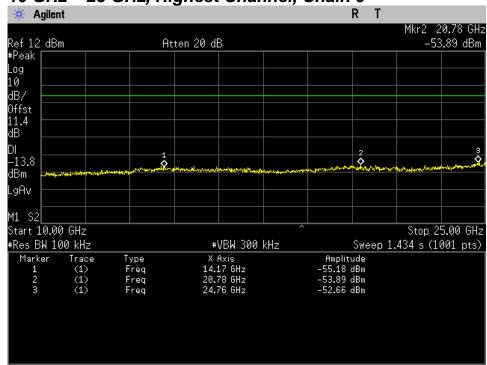
Samsung Electronics Co., Ltd.


Page 53 of 126

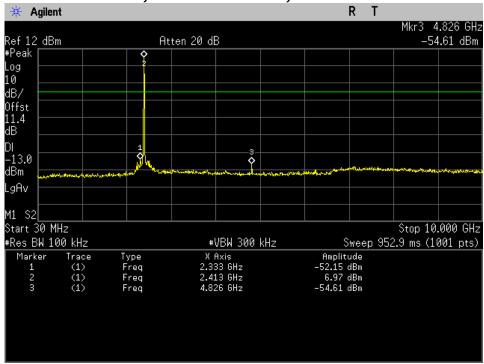
Conducted Spurious Emissions, 802.11b mode, 30 MHz ~ 10 GHz, Middle Channel, Chain 0



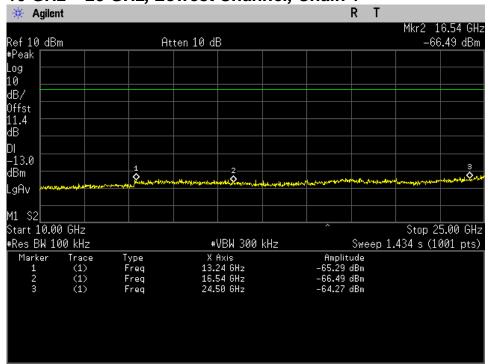
Conducted Spurious Emissions, 802.11b mode, 10 GHz ~ 25 GHz, Middle Channel, Chain 0



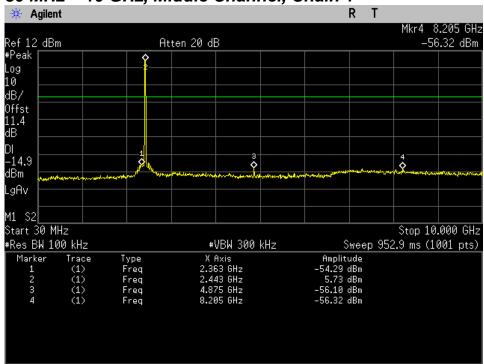
Conducted Spurious Emissions, 802.11b mode, 30 MHz ~ 10 GHz, Highest Channel, Chain 0



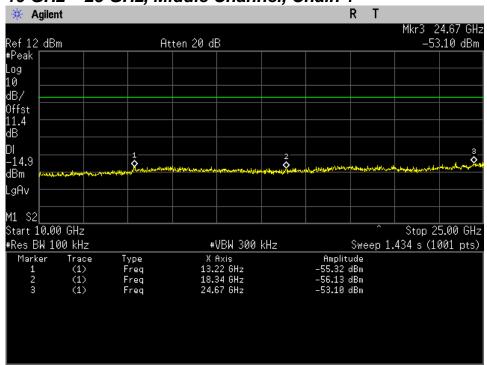
Conducted Spurious Emissions, 802.11b mode, 10 GHz ~ 25 GHz, Highest Channel, Chain 0



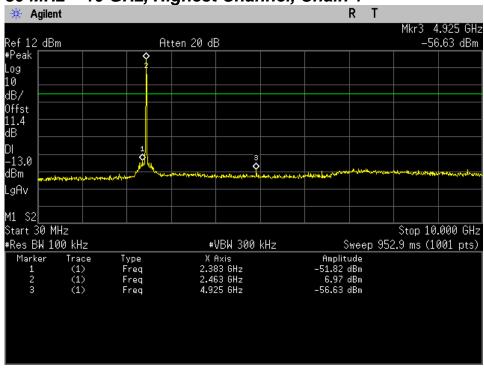
Conducted Spurious Emissions, 802.11b mode, 30 MHz ~ 10 GHz, Lowest Channel, Chain 1



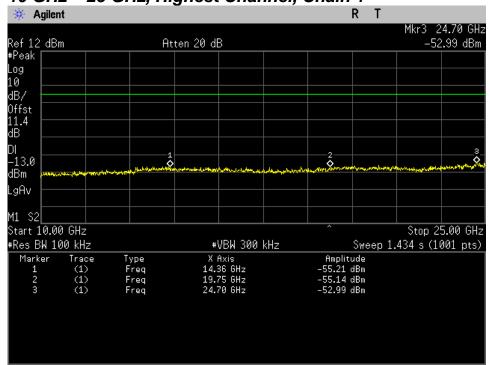
Conducted Spurious Emissions, 802.11b mode, 10 GHz ~ 25 GHz, Lowest Channel, Chain 1



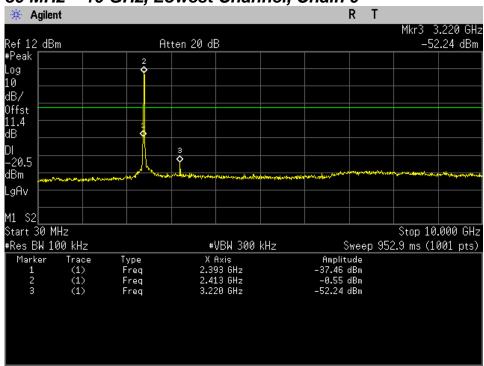
Conducted Spurious Emissions, 802.11b mode, 30 MHz ~ 10 GHz, Middle Channel, Chain 1

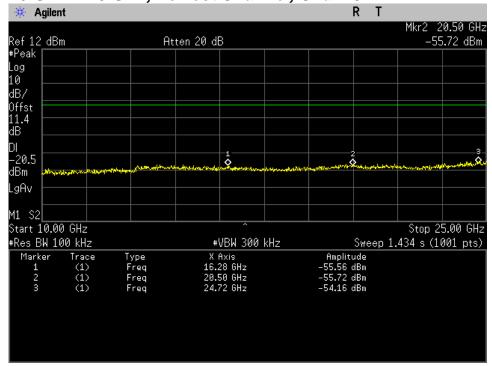


Conducted Spurious Emissions, 802.11b mode, 10 GHz ~ 25 GHz, Middle Channel, Chain 1



Conducted Spurious Emissions, 802.11b mode, 30 MHz ~ 10 GHz, Highest Channel, Chain 1

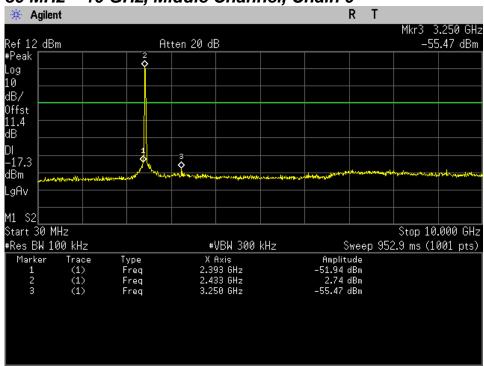

Conducted Spurious Emissions, 802.11b mode, 10 GHz ~ 25 GHz, Highest Channel, Chain 1



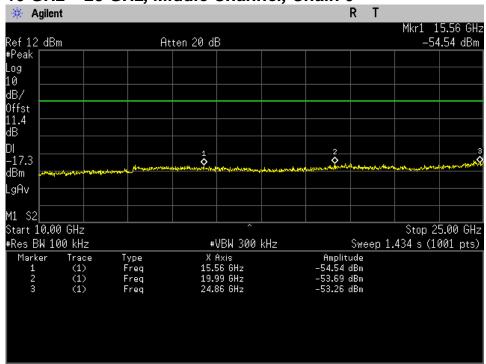
802.11g mode

Conducted Spurious Emissions, 802.11g mode, 30 MHz ~ 10 GHz, Lowest Channel, Chain 0

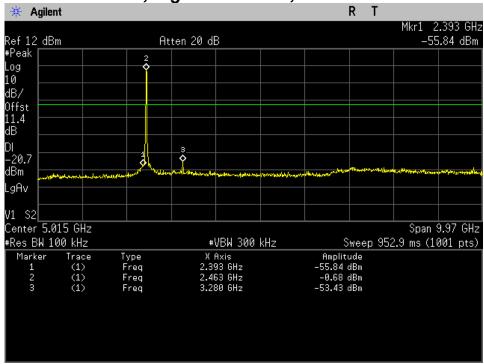
Conducted Spurious Emissions, 802.11g mode, 10 GHz ~ 25 GHz, Lowest Channel, Chain 0



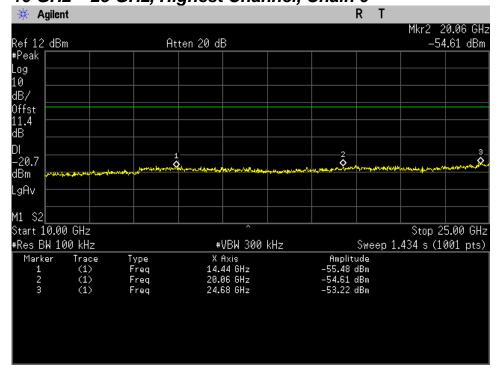
Samsung Electronics Co., Ltd.


Page 59 of 126 FCC ID: A3LDNUBS1 / IC ID: 649E-DNUBS1

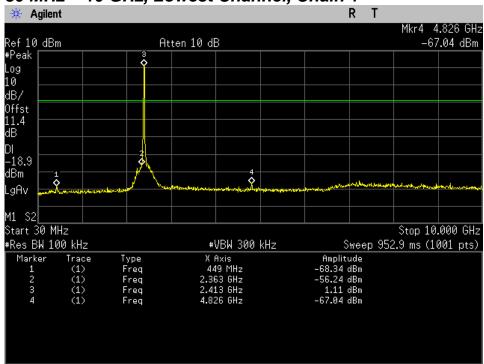
Conducted Spurious Emissions, 802.11g mode, 30 MHz ~ 10 GHz, Middle Channel, Chain 0



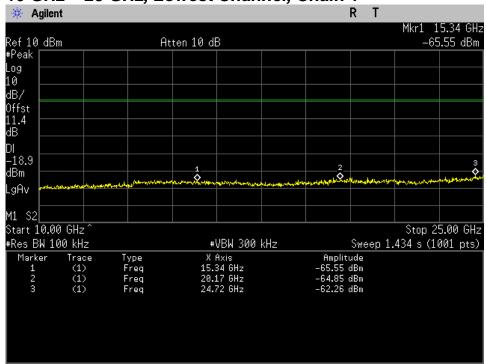
Conducted Spurious Emissions, 802.11g mode, 10 GHz ~ 25 GHz, Middle Channel, Chain 0



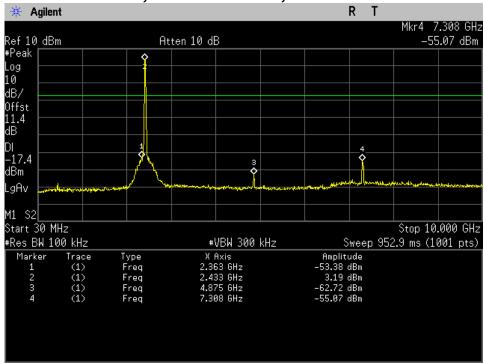
Conducted Spurious Emissions, 802.11g mode, 30 MHz ~ 10 GHz, Highest Channel, Chain 0



Conducted Spurious Emissions, 802.11g mode, 10 GHz ~ 25 GHz, Highest Channel, Chain 0

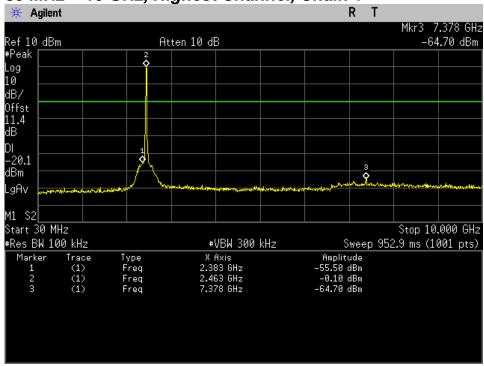


Conducted Spurious Emissions, 802.11g mode, 30 MHz ~ 10 GHz, Lowest Channel, Chain 1

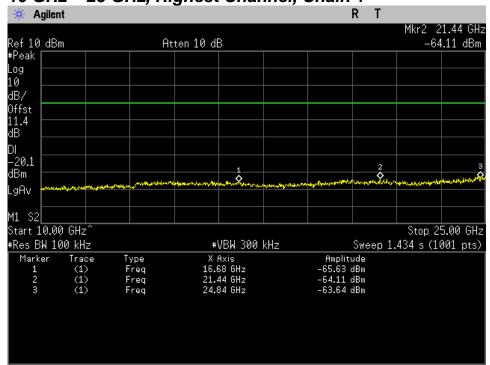


Conducted Spurious Emissions, 802.11g mode, 10 GHz ~ 25 GHz, Lowest Channel, Chain 1

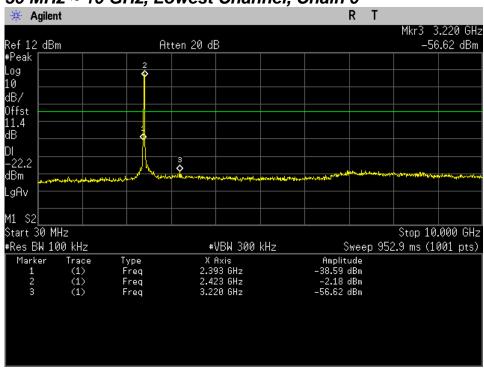
Conducted Spurious Emissions, 802.11g mode, 30 MHz ~ 10 GHz, Middle Channel, Chain 1

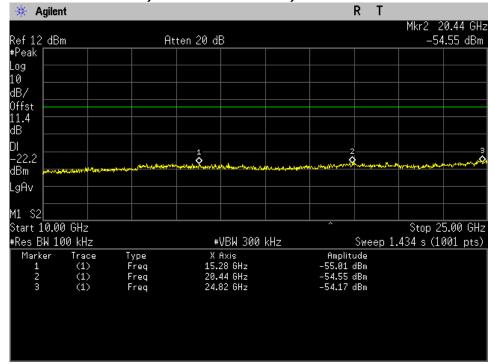


Conducted Spurious Emissions, 802.11g mode, 10 GHz ~ 25 GHz, Middle Channel, Chain 1



Conducted Spurious Emissions, 802.11g mode, 30 MHz ~ 10 GHz, Highest Channel, Chain 1

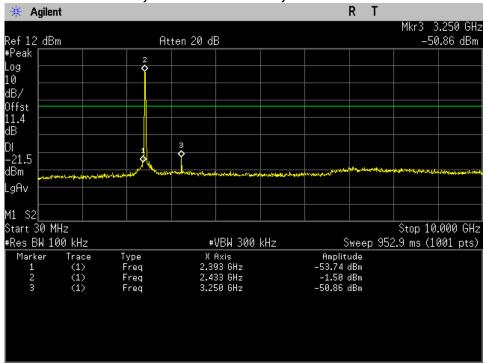

Conducted Spurious Emissions, 802.11g mode, 10 GHz ~ 25 GHz, Highest Channel, Chain 1



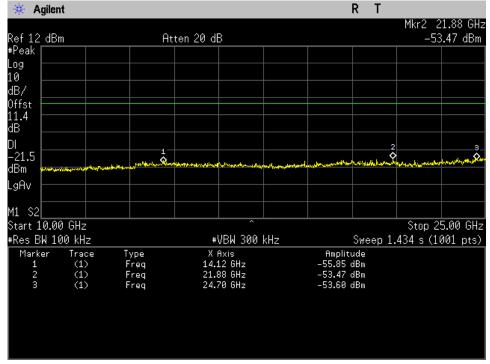
802.11n(HT20) mode

Conducted Spurious Emissions, 802.11n(HT20) mode, 30 MHz ~ 10 GHz, Lowest Channel, Chain 0

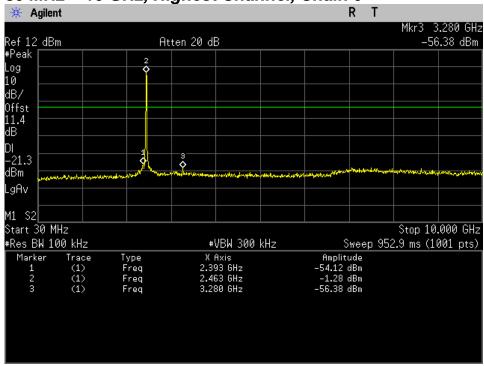
Conducted Spurious Emissions, 802.11n(HT20) mode, 10 GHz ~ 25 GHz, Lowest Channel, Chain 0



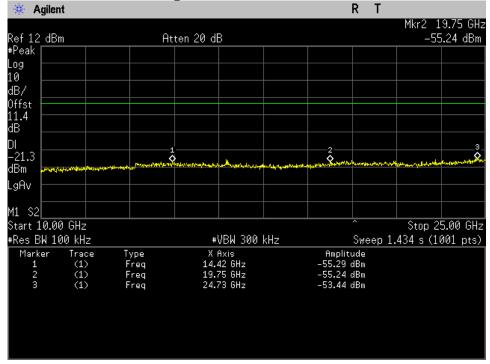
Samsung Electronics Co., Ltd.


FCC ID : A3LDNUBS1 / IC ID :649E-DNUBS1

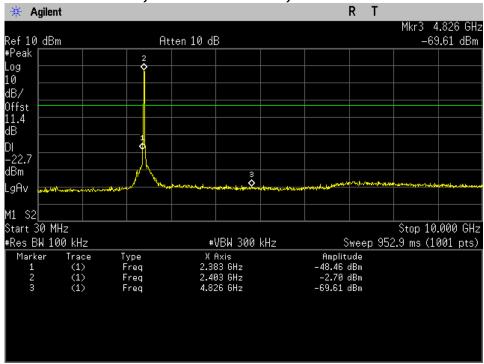
Conducted Spurious Emissions, 802.11n(HT20) mode, 30 MHz ~ 10 GHz, Middle Channel, Chain 0



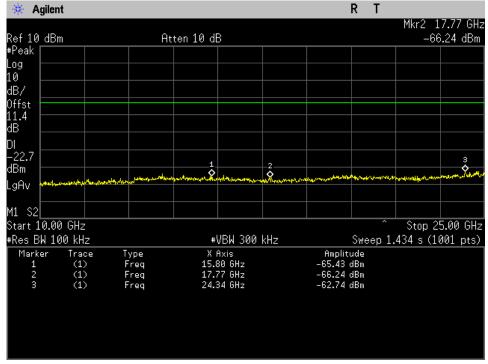
Conducted Spurious Emissions, 802.11n(HT20) mode, 10 GHz ~ 25 GHz, Middle Channel, Chain 0



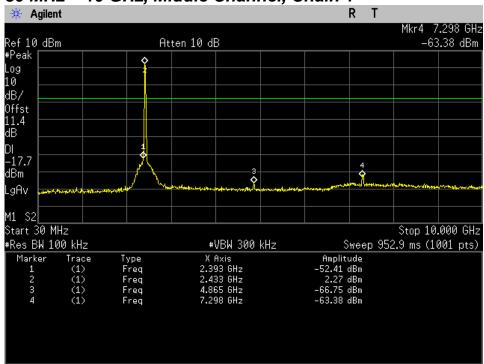
Conducted Spurious Emissions, 802.11n(HT20) mode, 30 MHz ~ 10 GHz, Highest Channel, Chain 0



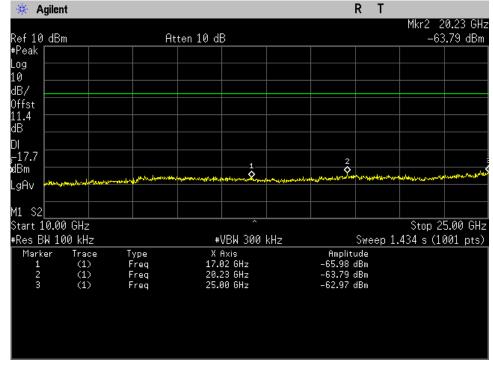
Conducted Spurious Emissions, 802.11n(HT20) mode, 10 GHz ~ 25 GHz, Highest Channel, Chain 0



Conducted Spurious Emissions, 802.11n(HT20) mode, 30 MHz ~ 10 GHz, Lowest Channel, Chain 1

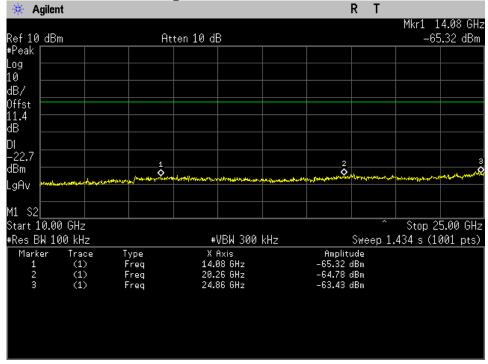


Conducted Spurious Emissions, 802.11n(HT20) mode, 10 GHz ~ 25 GHz, Lowest Channel, Chain 1

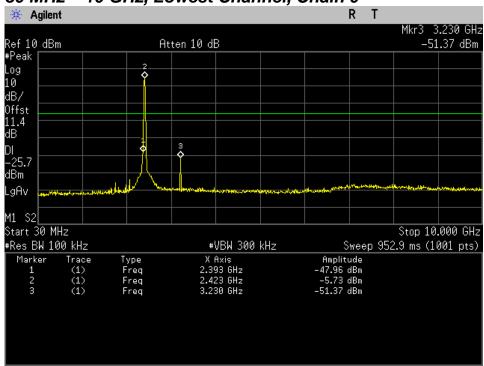


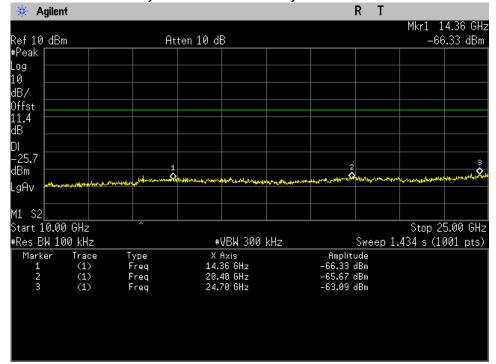
Conducted Spurious Emissions, 802.11n(HT20) mode, 30 MHz ~ 10 GHz, Middle Channel, Chain 1

Conducted Spurious Emissions, 802.11n(HT20) mode, 10 GHz ~ 25 GHz, Middle Channel, Chain 1



Conducted Spurious Emissions, 802.11n(HT20) mode, 30 MHz ~ 10 GHz, Highest Channel, Chain 1

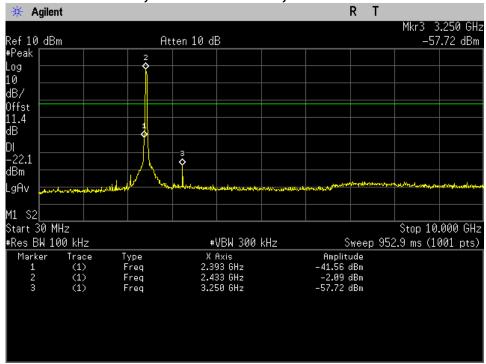

Conducted Spurious Emissions, 802.11n(HT20) mode, 10 GHz ~ 25 GHz, Highest Channel, Chain 1



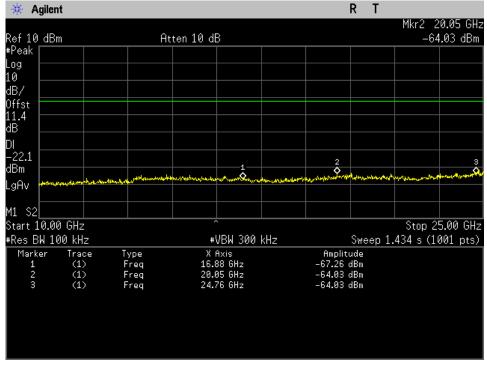
802.11n(HT40) mode

Conducted Spurious Emissions, 802.11n(HT40) mode, 30 MHz ~ 10 GHz, Lowest Channel, Chain 0

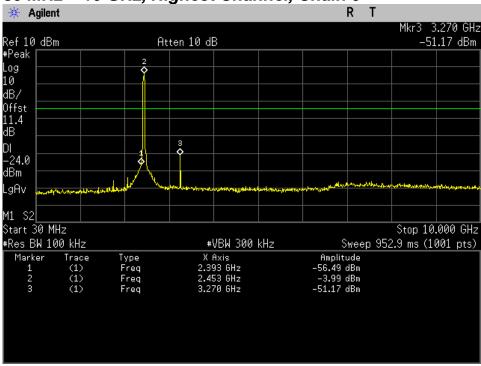
Conducted Spurious Emissions, 802.11n(HT40) mode, 10 GHz ~ 25 GHz, Lowest Channel, Chain 0



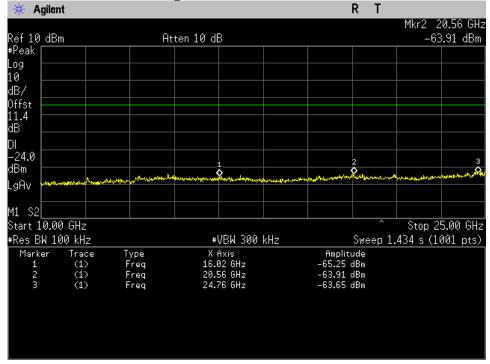
Samsung Electronics Co., Ltd.


FCC ID: A3LDNUBS1 / IC ID:649E-DNUBS1

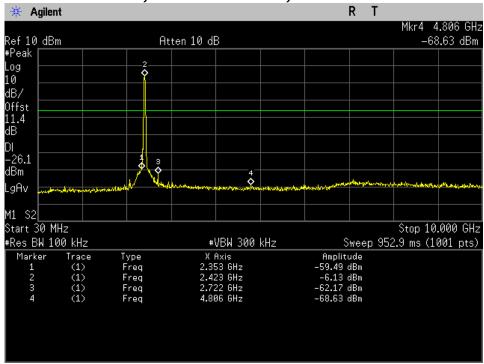
Conducted Spurious Emissions, 802.11n(HT40) mode, 30 MHz ~ 10 GHz, Middle Channel, Chain 0



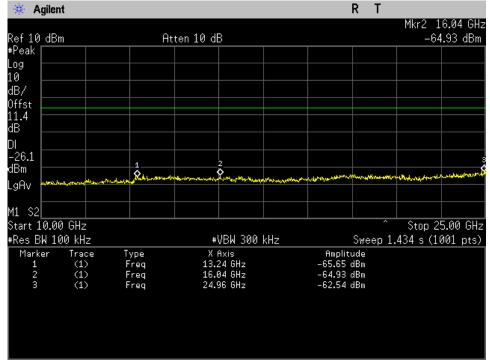
Conducted Spurious Emissions, 802.11n(HT40) mode, 10 GHz ~ 25 GHz, Middle Channel, Chain 0



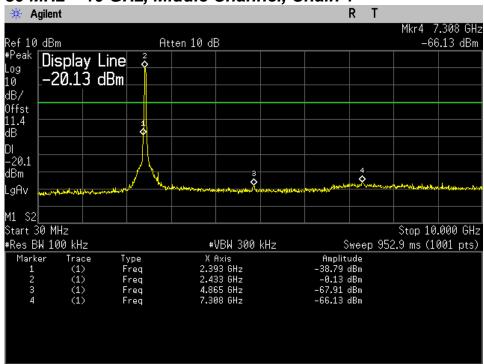
Conducted Spurious Emissions, 802.11n(HT40) mode, 30 MHz ~ 10 GHz, Highest Channel, Chain 0



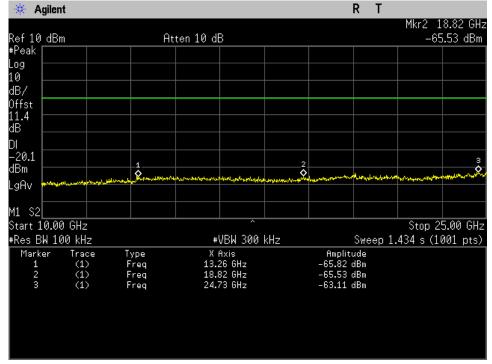
Conducted Spurious Emissions, 802.11n(HT40) mode, 10 GHz ~ 25 GHz, Highest Channel, Chain 0



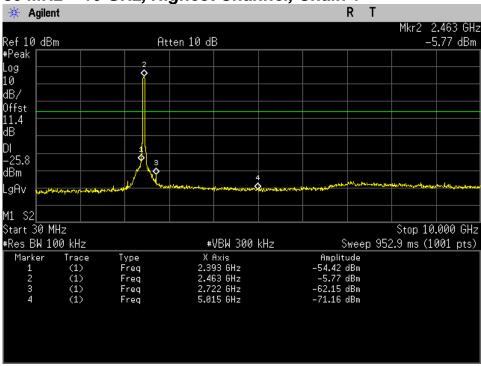
Conducted Spurious Emissions, 802.11n(HT40) mode, 30 MHz ~ 10 GHz, Lowest Channel, Chain 1



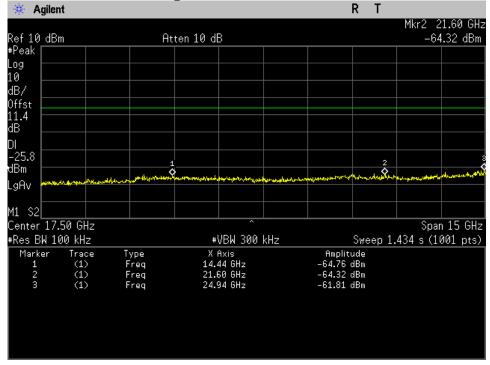
Conducted Spurious Emissions, 802.11n(HT40) mode, 10 GHz ~ 25 GHz, Lowest Channel, Chain 1



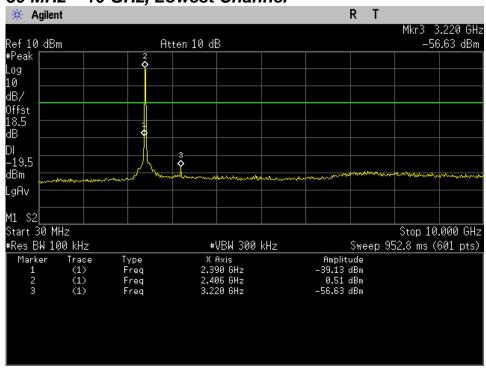
Conducted Spurious Emissions, 802.11n(HT40) mode, 30 MHz ~ 10 GHz, Middle Channel, Chain 1

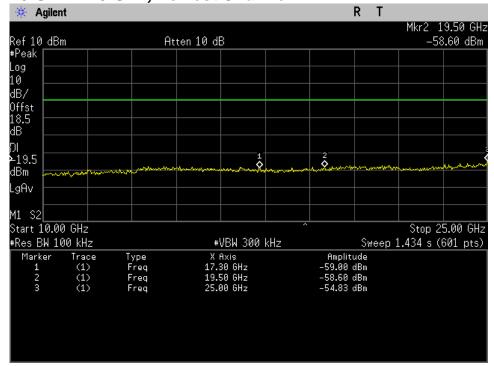


Conducted Spurious Emissions, 802.11n(HT40) mode, 10 GHz ~ 25 GHz, Middle Channel, Chain 1



Conducted Spurious Emissions, 802.11n(HT40) mode, 30 MHz ~ 10 GHz, Highest Channel, Chain 1

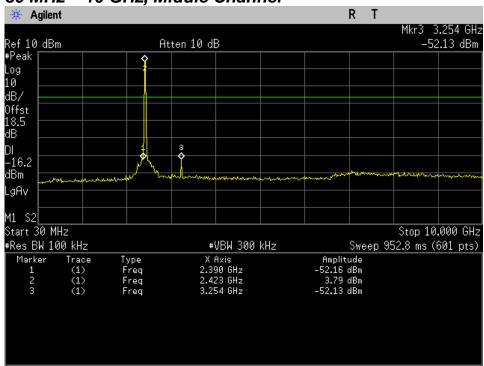

Conducted Spurious Emissions, 802.11n(HT40) mode, 10 GHz ~ 25 GHz, Highest Channel, Chain 1



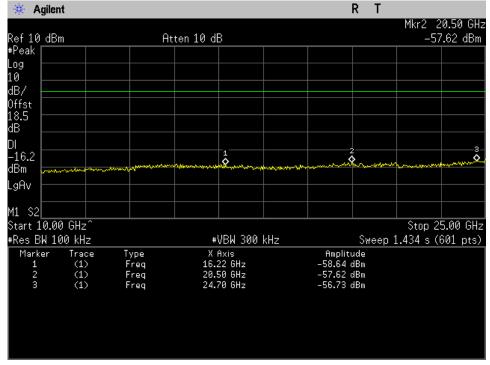
802.11n(HT20)Combined mode

Conducted Spurious Emissions, 802.11n(HT20)Combined mode, 30 MHz ~ 10 GHz, Lowest Channel

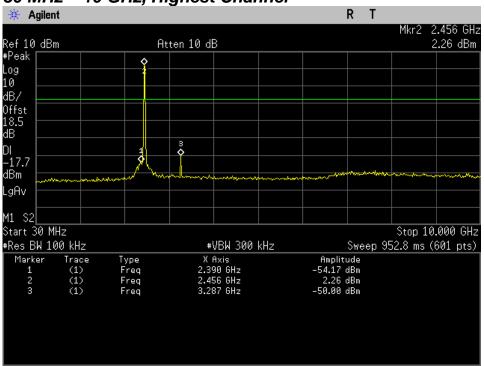
Conducted Spurious Emissions, 802.11n(HT20)Combined mode, 10 GHz ~ 25 GHz, Lowest Channel



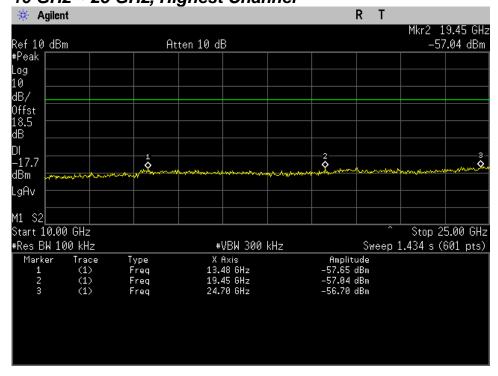
Samsung Electronics Co., Ltd.


FCC ID: A3LDNUBS1 / IC ID: 649E-DNUBS1

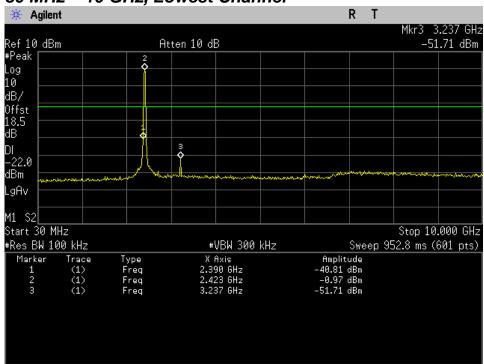
Conducted Spurious Emissions, 802.11n(HT20)Combined mode, 30 MHz ~ 10 GHz, Middle Channel

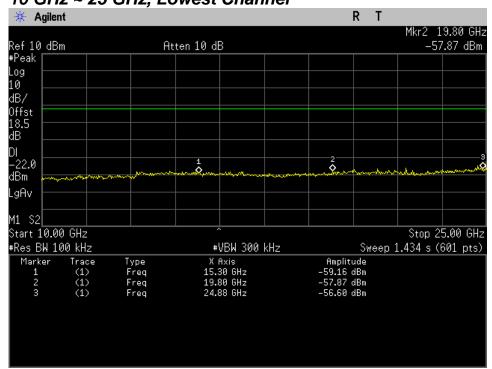


Conducted Spurious Emissions, 802.11n(HT20)Combined mode, 10 GHz ~ 25 GHz, Middle Channel



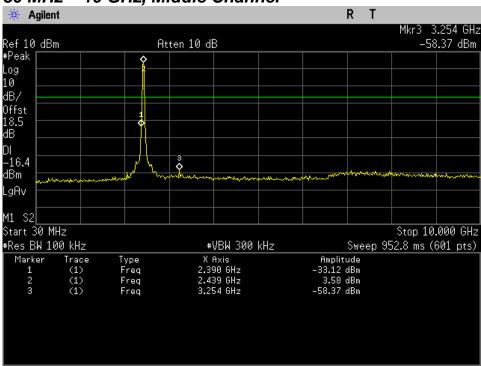
Conducted Spurious Emissions, 802.11n(HT20)Combined mode, 30 MHz ~ 10 GHz, Highest Channel


Conducted Spurious Emissions, 802.11n(HT20)Combined mode, 10 GHz ~ 25 GHz, Highest Channel

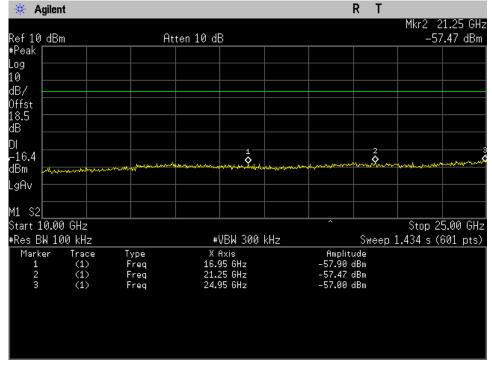


802.11n(HT40)Combined mode

Conducted Spurious Emissions, 802.11n(HT40)Combined mode, 30 MHz ~ 10 GHz, Lowest Channel

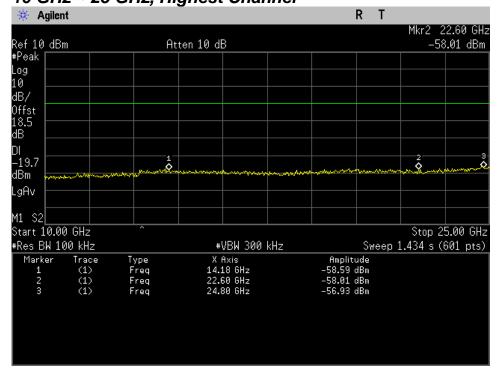


Conducted Spurious Emissions, 802.11n(HT40)Combined mode, 10 GHz ~ 25 GHz, Lowest Channel



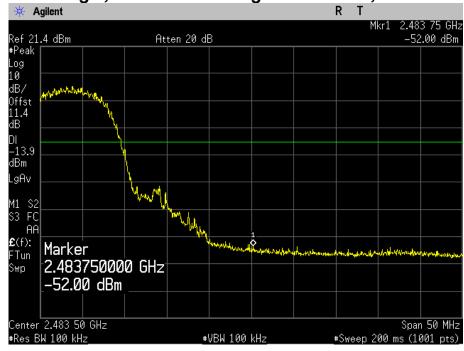
Conducted Spurious Emissions, 802.11n(HT40)Combined mode, 30 MHz ~ 10 GHz, Middle Channel

Conducted Spurious Emissions, 802.11n(HT40)Combined mode, 10 GHz ~ 25 GHz, Middle Channel



Conducted Spurious Emissions, 802.11n(HT40)Combined mode, 30 MHz ~ 10 GHz, Highest Channel

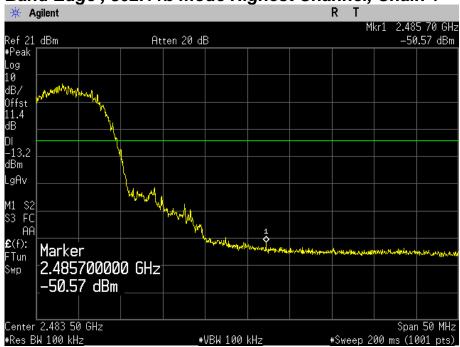
Conducted Spurious Emissions, 802.11n(HT40)Combined mode, 10 GHz ~ 25 GHz, Highest Channel



802.11b mode

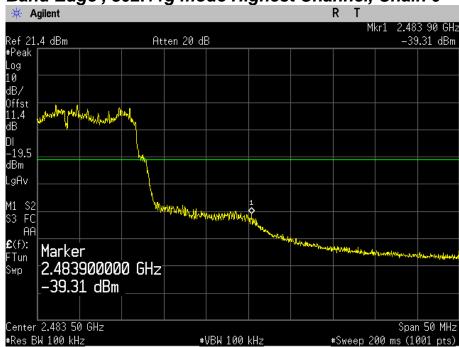
Band Edge, 802.11b mode, Lowest Channel, Chain 0

Band Edge, 802.11b mode Highest Channel, Chain 0


Samsung Electronics Co., Ltd.

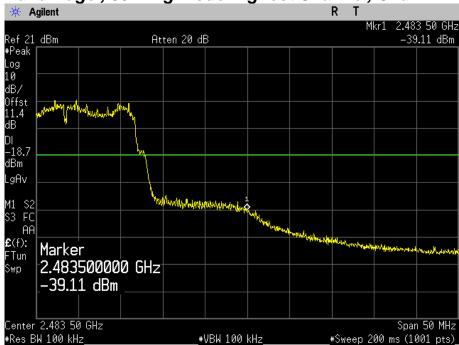
Band Edge , 802.11b mode, Lowest Channel, Chain 1



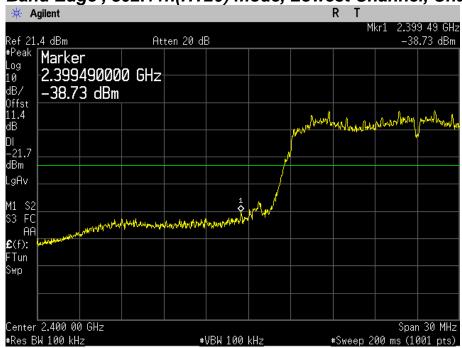


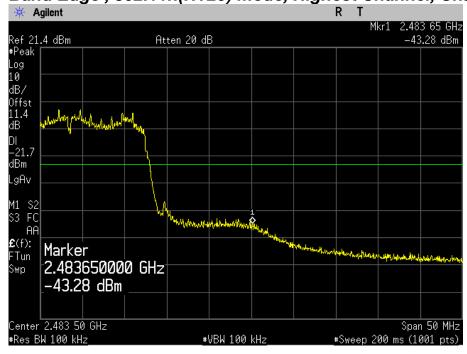
802.11g mode

Band Edge , 802.11g mode, Lowest Channel, Chain 0



Band Edge , 802.11g mode, Lowest Channel, Chain 1

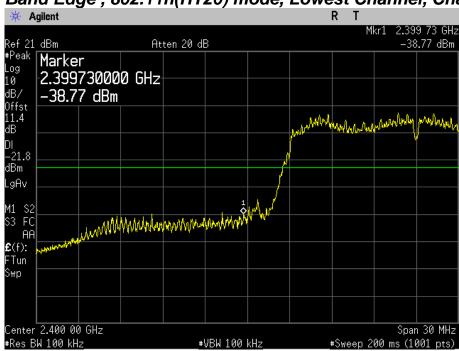




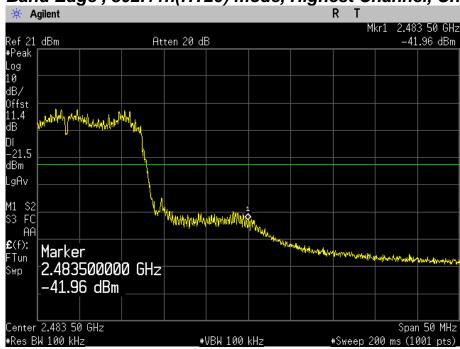
802.11n(HT20) mode

Band Edge , 802.11n(HT20) mode, Lowest Channel, Chain 0

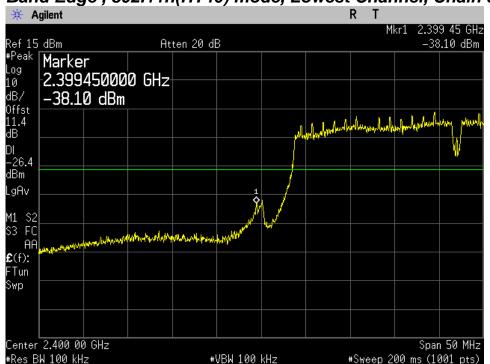
Band Edge, 802.11n(HT20) mode, Highest Channel, Chain 0

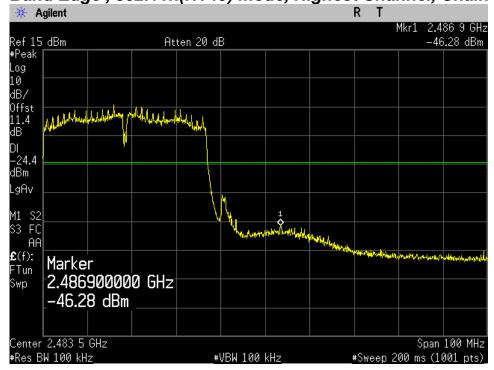


Samsung Electronics Co., Ltd.


FCC ID: A3LDNUBS1 / IC ID: 649E-DNUBS1

Band Edge, 802.11n(HT20) mode, Lowest Channel, Chain 1

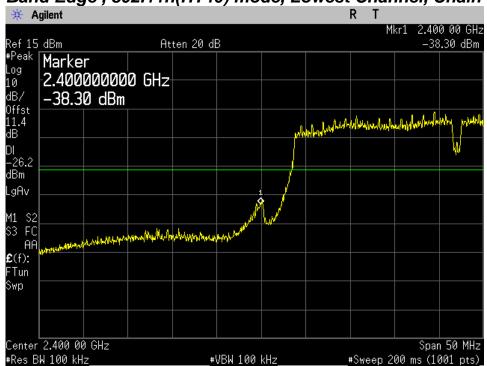

Band Edge , 802.11n(HT20) mode, Highest Channel, Chain 1



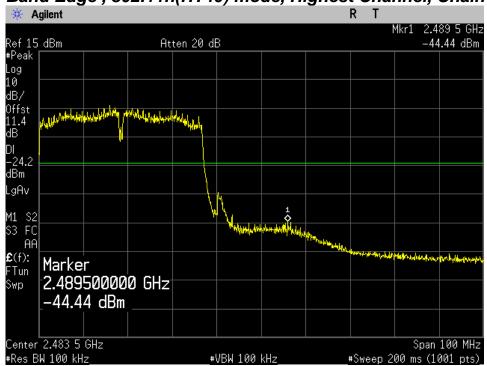
802.11n(HT40) mode

Band Edge , 802.11n(HT40) mode, Lowest Channel, Chain 0

Band Edge, 802.11n(HT40) mode, Highest Channel, Chain 0

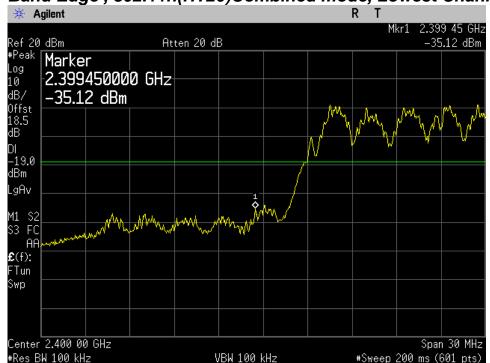


Samsung Electronics Co., Ltd.

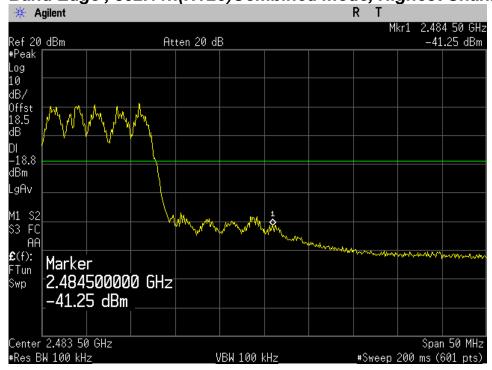

Page 89 of 126 FCC ID: A3LDNUBS1 / IC ID: 649E-DNUBS1

Band Edge, 802.11n(HT40) mode, Lowest Channel, Chain 1

Band Edge , 802.11n(HT40) mode, Highest Channel, Chain 1


Samsung Electronics Co., Ltd.

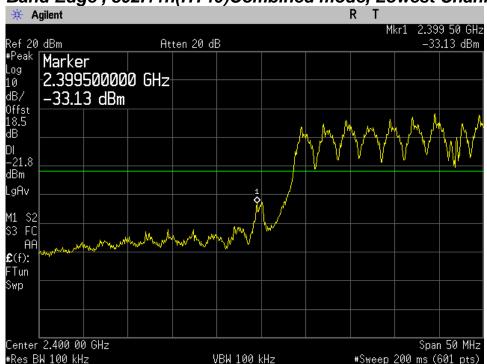
FCC ID : A3LDNUBS1 / IC ID :649E-DNUBS1



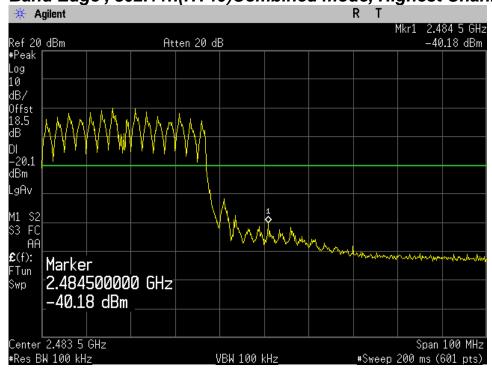
802.11n(HT20)Combined mode

Band Edge, 802.11n(HT20)Combined mode, Lowest Channel

Band Edge, 802.11n(HT20)Combined mode, Highest Channel


Samsung Electronics Co., Ltd.

Page 91 of 126 FCC ID: A3LDNUBS1 / IC ID: 649E-DNUBS1



802.11n(HT40)Combined mode

Band Edge, 802.11n(HT40)Combined mode, Lowest Channel

Band Edge , 802.11n(HT40)Combined mode, Highest Channel

Samsung Electronics Co., Ltd.

Page 92 of 126 FCC ID: A3LDNUBS1 / IC ID: 649E-DNUBS1

TEST DATA

8.7 Radiated Spurious Emissions

FCC §15.247(d), IC RSS-210 Clause 2.6, IC RSS-GEN Clause 6

Test Mode: Set to Lowest channel, Middle channel and Highest channel

Result:

802.11b mode

Lowest Channel

Frequency	Reading	Pol*	mode	AF+CL+Amp	Result	Limit	Margin
(MHz)	(dΒ <i>μ</i> V)	(H/V)		(dB)**	(dB <i>µ</i> V/m)	(dB <i>µ</i> ∛/m)	(dB)
1665.00	55.2	V	peak	-4.10	51.1	74.0	22.9
1665.00	41.0	V	average	-4.10	36.9	54.0	17.1
1993.00	52.4	V	peak	-1.90	50.5	74.0	23.5
1993.00	40.5	V	average	-1.90	38.6	54.0	15.4
4886.62	39.6	V	peak	8.90	48.5	74.0	25.5
4886.62	28.6	V	average	8.90	37.5	54.0	16.5
7602.00	40.5	V	peak	15.40	55.9	74.0	18.1
7602.00	33.7	V	average	15.40	49.1	54.0	4.9
9786.00	40.6	Н	peak	19.00	59.6	74.0	14.4
9786.00	30.1	Н	average	19.00	49.1	54.0	4.9

Middle Channel

Frequency	Reading	Pol*	mode	AF+CL+Amp	Result	Limit	Margin
(MHz)	(dB <i>µ</i> ∛)	(H/V)		(dB)**	(dB <i>µ</i> ∛ /m)	(dB _⊭ V/m)	(dB)
1565.00	50.0	V	peak	-4.40	45.6	74.0	28.4
1565.00	39.2	V	average	-4.40	34.8	54.0	19.2
1664.00	50.0	V	peak	-4.10	45.9	74.0	28.1
1664.00	39.6	V	average	-4.10	35.5	54.0	18.5
1995.00	54.4	V	peak	-3.50	50.9	74.0	23.1
1995.00	41.9	V	average	-3.50	38.4	54.0	15.6
2519.00	49.8	V	peak	-1.40	48.4	74.0	25.6
2519.00	41.6	V	average	-1.40	40.2	54.0	13.8
7431.00	40.3	V	peak	15.50	55.8	74.0	18.2
7431.00	29.3	V	average	15.50	44.8	54.0	9.2
9829.00	40.5	Н	peak	19.20	59.7	74.0	14.3
9829.00	29.2	Н	average	19.20	48.4	54.0	5.6

Highest Channel

Frequency	Reading	Pol*	mode	AF+CL+Amp	Result	Limit	Margin
(MHz)	(dΒ <i>μ</i> V)	(H/V)		(dB)**	(dB <i>µ</i> V/m)	(dB <i>µ</i> ∛/m)	(dB)
1660.00	51.3	V	peak	-4.10	47.2	74.0	26.8
1660.00	41.0	V	average	-4.10	36.9	54.0	17.1
1708.00	50.8	V	peak	-4.00	46.8	74.0	27.2
1708.00	38.0	V	average	-4.00	34.0	54.0	20.0
1994.00	53.6	V	peak	-3.50	50.1	74.0	23.9
1994.00	41.9	V	average	-3.50	38.4	54.0	15.6
2383.00	49.7	V	peak	-1.90	47.8	74.0	26.2
2383.00	40.8	V	average	-1.90	38.9	54.0	15.1
7509.37	40.9	Н	peak	5.50	46.4	74.0	27.6
7509.37	29.3	Н	average	15.50	44.8	54.0	9.2
9576.37	41.0	Н	peak	18.60	59.6	74.0	14.4
9576.37	29.9	Н	average	18.60	48.5	54.0	5.5

802.11g mode

Lowest Channel

Frequency	Reading	Pol*	mode	AF+CL+Amp	Result	Limit	Margin
(MHz)	(dΒ <i>μ</i> V)	(H/V)		(dB)**	(dB <i>µ</i> V/m)	(dB <i>µ</i> ∛/m)	(dB)
1664.00	51.9	V	peak	-4.10	47.8	74.0	26.2
1664.00	37.8	V	average	-4.10	33.7	54.0	20.3
1994.00	54.2	V	peak	-3.50	50.7	74.0	23.3
1994.00	42.3	V	average	-3.50	38.8	54.0	15.2
5305.87	40.5	Н	peak	9.50	50.0	74.0	24.0
5305.87	28.9	Н	average	9.50	38.4	54.0	15.6
7509.37	40.4	Н	peak	15.50	55.9	74.0	18.1
7509.37	29.6	Н	average	15.50	45.1	54.0	8.9
9727.50	41.5	Н	peak	18.60	60.1	74.0	13.9
9727.50	30.4	Н	average	18.60	49.0	54.0	5.0

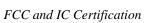
Middle Channel

Frequency	Reading	Pol*	mode	AF+CL+Amp	Result	Limit	Margin
(MHz)	(dΒ <i>μ</i> V)	(H/V)		(dB)**	(dB <i>µ</i> V/m)	(dB <i>µ</i> ∛/m)	(dB)
1991.00	53.8	V	peak	-3.50	50.3	74.0	23.7
1991.00	42.6	V	average	-3.50	39.1	54.0	14.9
5447.25	41.2	Н	peak	9.80	51.0	74.0	23.0
5447.25	29.2	Н	average	9.80	39.0	54.0	15.0
7538.62	39.0	V	peak	16.70	55.7	74.0	18.3
7538.62	28.2	V	average	16.70	44.9	54.0	9.1
8006.62	39.1	V	peak	17.90	57.0	74.0	17.0
8006.62	28.0	V	average	17.90	45.9	54.0	8.1
9737.25	41.7	Н	peak	18.70	60.4	74.0	13.6
9737.25	30.2	Н	average	18.70	48.9	54.0	5.1

TEST DATA

Highest Channel

Frequency	Reading	Pol*	mode	AF+CL+Amp	Result	Limit	Margin
(MHz)	(dΒ <i>μ</i> V)	(H/V)		(dB)**	(dB <i>µ</i> V/m)	(dB <i>µ</i> ∛/m)	(dB)
1996.00	55.1	V	peak	-3.50	51.6	74.0	22.4
1996.00	43.0	V	average	-3.50	39.5	54.0	14.5
4886.00	39.7	V	peak	8.90	48.6	74.0	25.4
4886.00	29.3	V	average	8.90	38.2	54.0	15.8
5071.87	40.8	Н	peak	9.50	50.3	74.0	23.7
5071.87	29.1	Н	average	9.50	38.6	54.0	15.4
7587.37	41.1	V	peak	15.50	56.6	74.0	17.4
7587.37	30.0	V	average	15.50	45.5	54.0	8.5
9517.87	42.9	V	peak	18.30	61.2	74.0	12.8
9517.87	30.8	V	average	18.30	49.1	54.0	4.9


802.11n(HT20) mode

Lowest Channel

Frequency	Reading	Pol*	mode	AF+CL+Amp	Result	Limit	Margin
(MHz)	(dΒ <i>μ</i> V)	(H/V)		(dB)**	(dB <i>µ</i> V/m)	(dB <i>µ</i> ∛/m)	(dB)
97.00	53.5	Н	peak	-4.30	49.2	74.0	24.8
1597.00	40.2	Н	average	-4.30	35.9	54.0	18.1
1675.00	52.1	V	peak	-4.10	48.0	74.0	26.0
1675.00	38.9	V	average	-4.10	34.8	54.0	19.2
2253.00	50.4	V	peak	-2.40	48.0	74.0	26.0
2253.00	41.7	V	average	-2.40	39.3	54.0	14.7
4950.00	40.5	Н	peak	9.10	49.6	74.0	24.4
4950.00	30.4	Н	average	9.10	39.5	54.0	14.5
7548.37	40.8	V	peak	15.50	56.3	74.0	17.7
7548.37	29.8	V	average	15.50	45.3	54.0	8.7
9654.37	41.1	Н	peak	19.00	60.1	74.0	13.9
9654.37	30.6	Н	average	19.00	49.6	54.0	4.4

Samsung Electronics Co., Ltd.

Page 96 of 126

Middle Channel

TEST DATA

Frequency	Reading	Pol*	mode	AF+CL+Amp	Result	Limit	Margin
(MHz)	(dB <i>µ</i> √)	(H/V)		(dB)**	(dB <i>µ</i> ∛ /m)	(dB _⊭ V/m)	(dB)
1665.00	51.4	V	peak	-4.10	47.3	74.0	26.7
1665.00	38.7	V	average	-4.10	34.6	54.0	19.4
1761.00	52.3	V	peak	-3.90	48.4	74.0	25.6
1761.00	39.2	V	average	-3.90	35.3	54.0	18.7
1994.00	54.3	V	peak	-3.50	50.8	74.0	23.2
1994.00	42.2	V	average	-3.50	38.7	54.0	15.3
2352.00	50.3	V	peak	-1.90	48.4	74.0	25.6
2352.00	41.1	V	average	-1.90	39.2	54.0	14.8
4608.00	41.6	Н	peak	7.90	49.5	74.0	24.5
4608.00	29.8	Н	average	7.90	37.7	54.0	16.3
9669.00	41.4	V	peak	18.40	59.8	74.0	14.2
9669.00	30.4	V	average	18.40	48.8	54.0	5.2

Highest Channel

nignest Channel									
Frequency	Reading	Pol*	mode	AF+CL+Amp	Result	Limit	Margin		
(MHz)	(dΒ <i>μ</i> V)	(H/V)		(dB)**	(dB <i>µ</i> V/m)	(dB <i>µ</i> ∛/m)	(dB)		
1594.00	51.7	Н	peak	-4.30	47.4	74.0	26.6		
1594.00	41.1	Н	average	-4.30	36.8	54.0	17.2		
1994.00	54.2	V	peak	-3.50	50.7	74.0	23.3		
1994.00	42.4	V	average	-3.50	38.9	54.0	15.1		
2300.00	52.1	V	peak	-2.30	49.8	74.0	24.2		
2300.00	41.9	V	average	-2.30	39.6	54.0	14.4		
4930.50	40.5	Н	peak	9.00	49.5	74.0	24.5		
4930.50	29.6	Н	average	9.00	38.6	54.0	15.4		
7431.37	41.1	V	peak	15.50	56.6	74.0	17.4		
7431.37	29.4	V	average	15.50	44.9	54.0	9.1		
8011.50	40.3	V	peak	16.70	57.0	74.0	17.0		
8011.50	29.5	V	average	16.70	46.2	54.0	7.8		
9815.25	40.5	V	peak	19.20	59.7	74.0	14.3		
9815.25	30.1	V	average	19.20	49.3	54.0	4.7		

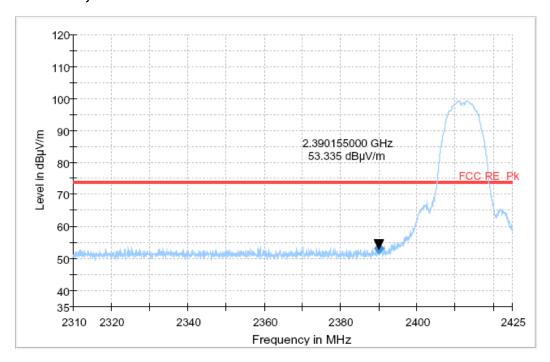
802.11n(HT40) mode

Lowest Channel

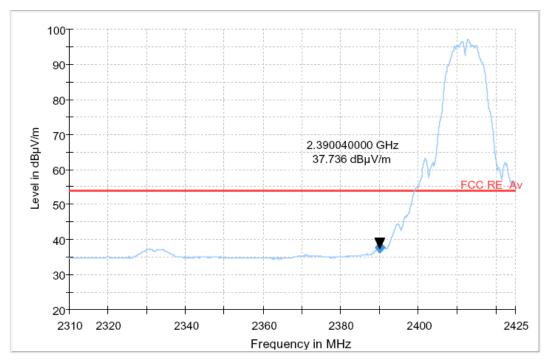
Frequency	Reading	Pol*	mode	AF+CL+Amp	Result	Limit	Margin
(MHz)	(dΒ <i>μ</i> V)	(H/V)		(dB)**	(dB <i>µ</i> V/m)	(dB <i>µ</i> ∛/m)	(dB)
1830.00	54.0	V	peak	-3.80	50.2	74.0	23.8
1830.00	41.5	V	average	-3.80	37.7	54.0	16.3
1997.00	54.8	V	peak	-3.50	51.3	74.0	22.7
1997.00	42.4	V	average	-3.50	38.9	54.0	15.1
4950.00	39.5	Н	peak	9.10	48.6	74.0	25.4
4950.00	29.2	Н	average	9.10	38.3	54.0	15.7
5120.62	40.4	Н	peak	9.40	49.8	74.0	24.2
5120.62	29.1	Н	average	9.40	38.5	54.0	15.5
7548.37	40.9	Н	peak	15.50	56.4	74.0	17.6
7548.37	29.4	Н	average	15.50	44.9	54.0	9.1
9834.75	41.7	Н	peak	19.20	60.9	74.0	13.1
9834.75	29.6	Н	average	19.20	48.8	54.0	5.2

Middle Channel

Frequency	Reading	Pol*	mode	AF+CL+Amp	Result	Limit	Margin
(MHz)	(dB <i>µ</i> V)	(H/V)		(dB)**	(dB <i>µ</i> V/m)	(dB <i>µ</i> ∛/m)	(dB)
1559.00	54.5	V	peak	-4.40	50.1	74.0	23.9
1559.00	42.1	V	average	-4.40	37.7	54.0	16.3
1664.00	55.2	V	peak	-4.10	51.1	74.0	22.9
1664.00	39.6	V	average	-4.10	35.5	54.0	18.5
1734.00	54.0	V	peak	-4.10	49.9	74.0	24.1
1734.00	40.7	V	average	-4.10	36.6	54.0	17.4
1999.00	54.4	V	peak	-3.50	50.9	74.0	23.1
1999.00	42.7	V	average	-3.50	39.2	54.0	14.8
2336.00	52.1	V	peak	-2.00	50.1	74.0	23.9
2336.00	42.4	V	average	-2.00	40.4	54.0	13.6
8528.00	41.0	V	peak	16.90	57.9	74.0	16.1
8258.00	30.2	V	average	16.90	47.1	54.0	6.9

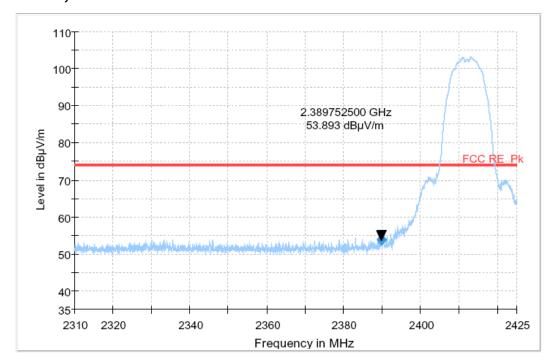

Highest Channel

Highest Char							
Frequency	Reading	Pol*	mode	AF+CL+Amp	Result	Limit	Margin
(MHz)	(dΒ <i>μ</i> V)	(H/V)		(dB)**	(dB <i>⊭</i> V/m)	(dB <i>µ</i> V/m)	(dB)
1571.00	51.9	V	peak	-4.40	47.5	74.0	26.5
1571.00	39.5	V	average	-4.40	35.1	54.0	18.9
1677.00	51.6	V	peak	-4.10	47.5	74.0	26.5
1677.00	39.4	V	average	-4.10	35.3	54.0	18.7
1995.00	54.6	V	peak	-3.50	51.1	74.0	22.9
1995.00	42.6	V	average	-3.50	39.1	54.0	14.9
2355.00	51.3	V	peak	-1.90	49.4	74.0	24.6
2355.00	41.7	V	average	-1.90	39.8	54.0	14.2
2534.00	52.7	V	peak	-1.30	51.4	74.0	22.6
2534.00	42.7	V	average	-1.30	41.4	54.0	12.6
4954.87	39.7	Η	peak	9.10	48.8	74.0	25.2
4954.87	29.3	Н	average	9.10	38.4	54.0	15.6
8635.50	41.5	V	peak	16.90	58.4	74.0	15.6
8635.50	30.0	V	average	16.90	46.9	54.0	7.1

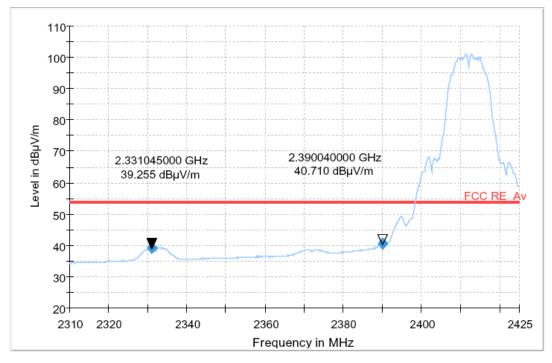

- 1. *Pol. H = Horizontal V = Vertical
- 2. **AF + CL + Amp. = Antenna Factor + Cable Loss + Amplifier.
- 3. Other spurious are 20 dB below than Fundamental.
- 4. The radiated emissions testing were made by rotating through three orthogonal axes. The worst date was recorded.
- 5. For measurements the resolution bandwidth is set to 1 MHz, and then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.
- 6. The spectrum is measured from 9 kHz to 10th harmonic and the worst-case emissions are reported. No significant emissions were found beyond the fifth harmonic for this device.

802.11b mode Restricted Band Spurious Emissions, 802.11b, Lowest channel Horizontal, Peak

Restricted Band Spurious Emissions, 802.11b, Lowest channel Horizontal, Average

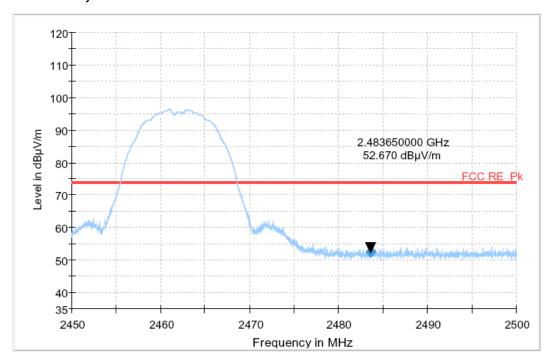


Samsung Electronics Co., Ltd. FCC ID: A3LDNUBS1 / IC ID: 649E-DNUBS1

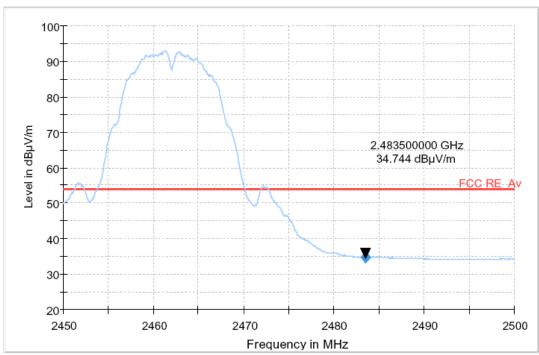

Page 100 of 126

Restricted Band Spurious Emissions, 802.11b, Lowest channel Vertical, Peak

Restricted Band Spurious Emissions, 802.11b, Lowest channel Vertical, Average

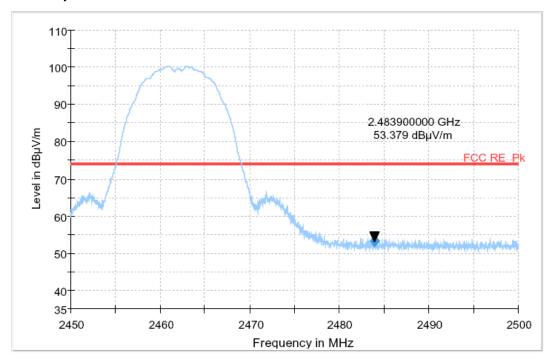


Samsung Electronics Co., Ltd. FCC ID: A3LDNUBS1 / IC ID: 649E-DNUBS1

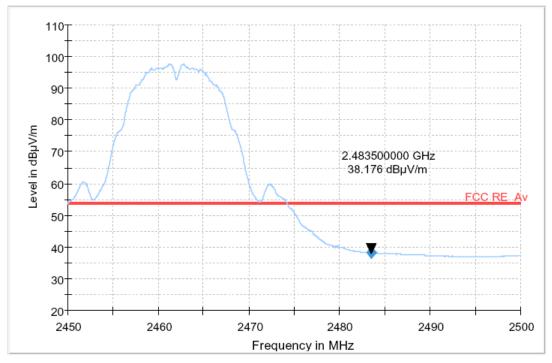

Page 101 of 126

Restricted Band Spurious Emissions, 802.11b, Highest channel Horizontal, Peak

Restricted Band Spurious Emissions, 802.11b, Highest channel Horizontal, Average

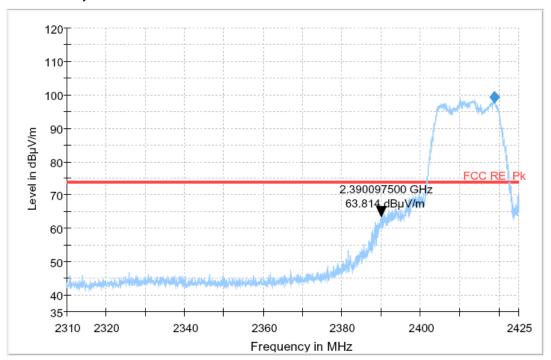


Samsung Electronics Co., Ltd.

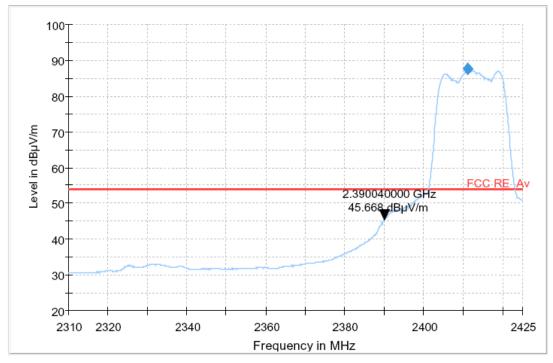

FCC ID: A3LDNUBS1 / IC ID:649E-DNUBS1

Restricted Band Spurious Emissions, 802.11b, Highest channel Vertical, Peak

Restricted Band Spurious Emissions, 802.11b, Highest channel Vertical, Average

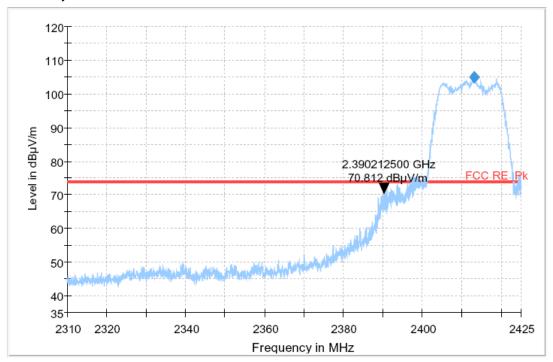


Samsung Electronics Co., Ltd. FCC ID: A3LDNUBS1 / IC ID: 649E-DNUBS1

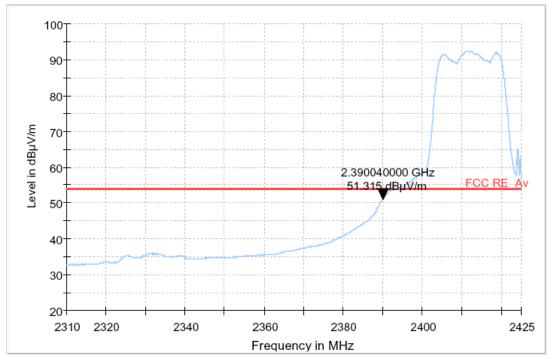

Page 103 of 126

802.11g mode Restricted Band Spurious Emissions, 802.11g, Lowest channel Horizontal, Peak

Restricted Band Spurious Emissions, 802.11g, Lowest channel Horizontal, Average

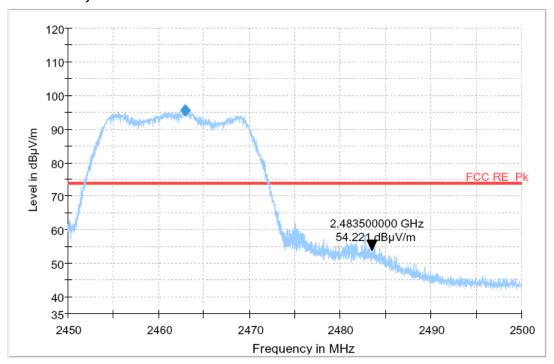


Samsung Electronics Co., Ltd.

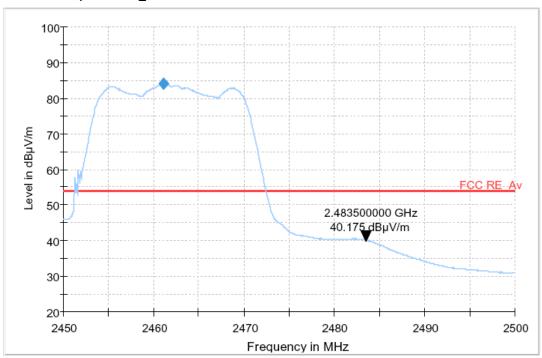

FCC ID : A3LDNUBS1 / IC ID :649E-DNUBS1

Restricted Band Spurious Emissions, 802.11g, Lowest channel Vertical, Peak

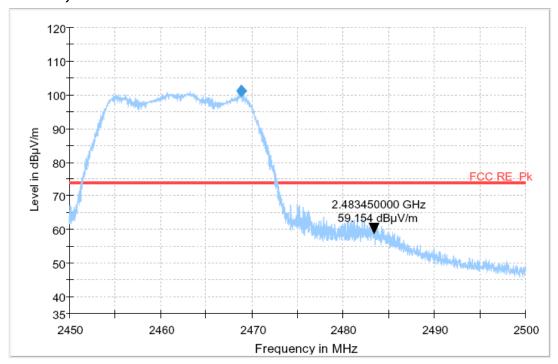
Restricted Band Spurious Emissions, 802.11g, Lowest channel Vertical, Average



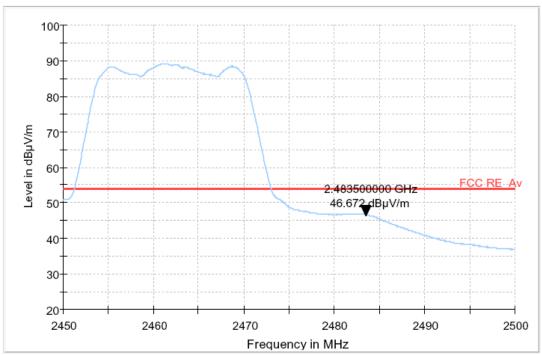
Samsung Electronics Co., Ltd.


Page 105 of 126

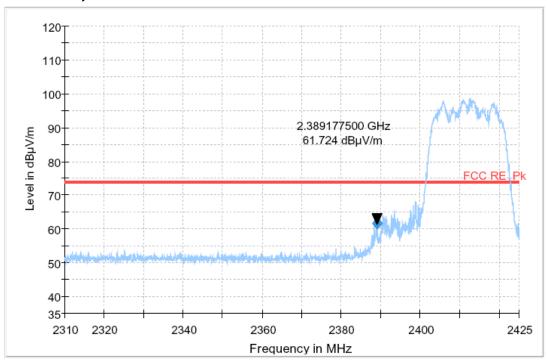
Restricted Band Spurious Emissions, 802.11g, Highest channel Horizontal, Peak



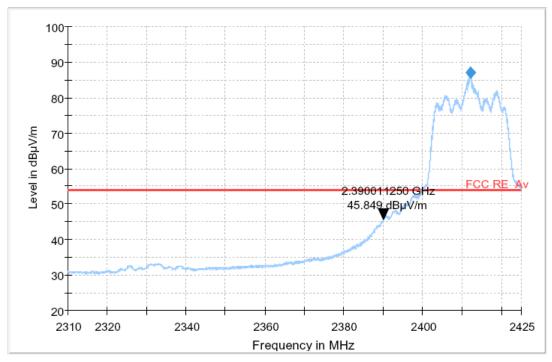
Restricted Band Spurious Emissions, 802.11g, Highest channel Horizontal, Average



Restricted Band Spurious Emissions, 802.11g, Highest channel Vertical, Peak

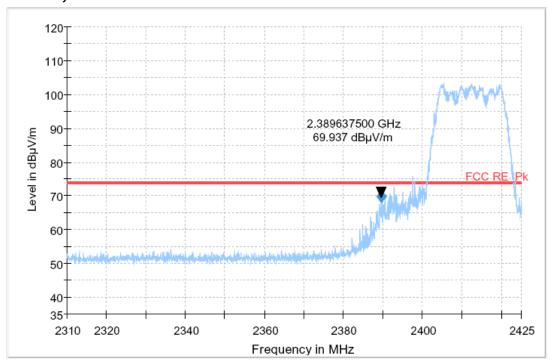


Restricted Band Spurious Emissions, 802.11g, Highest channel Vertical, Average

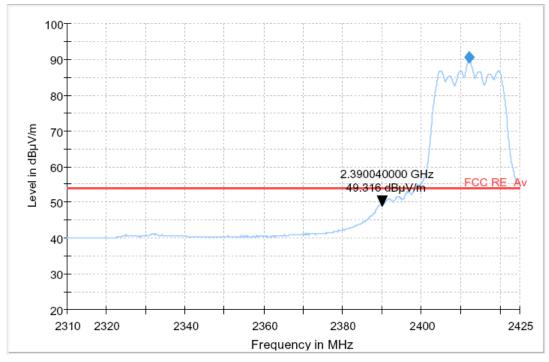


802.11n(HT20) mode Restricted Band Spurious Emissions, 802.11n(HT20), Lowest channel Horizontal, Peak

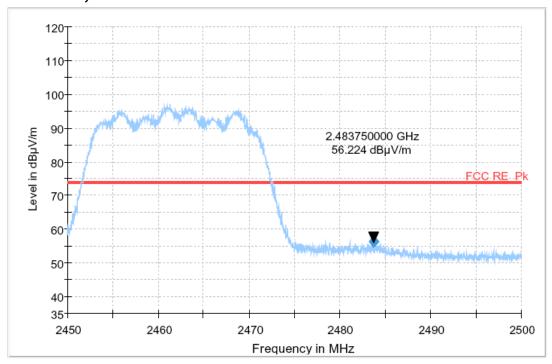
Restricted Band Spurious Emissions, 802.11n(HT20), Lowest channel Horizontal, Average



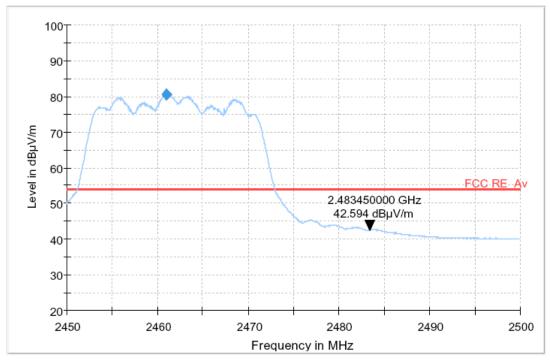
Samsung Electronics Co., Ltd. FCC ID: A3LDNUBS1 / IC ID: 649E-DNUBS1


Page 108 of 126

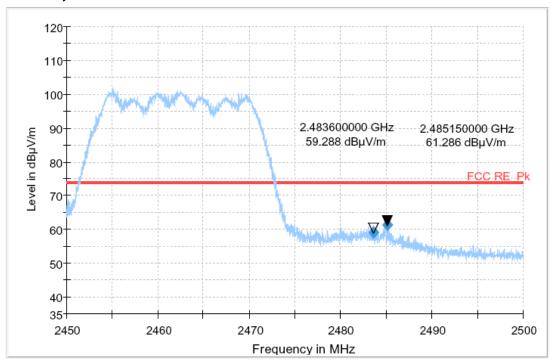
Restricted Band Spurious Emissions, 802.11n(HT20), Lowest channel Vertical, Peak



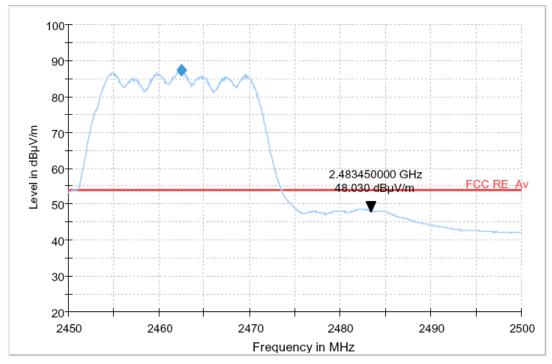
Restricted Band Spurious Emissions, 802.11n(HT20), Lowest channel Vertical, Average



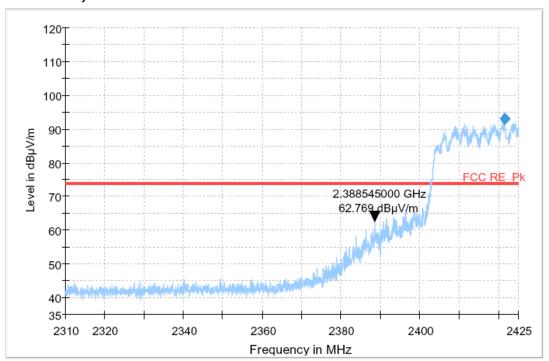
Restricted Band Spurious Emissions, 802.11n(HT20), Highest channel Horizontal, Peak



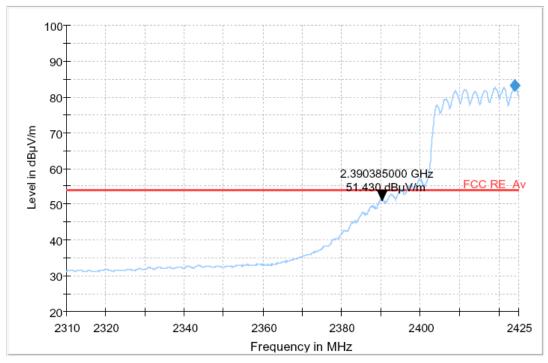
Restricted Band Spurious Emissions, 802.11n(HT20), Highest channel Horizontal, Average



Restricted Band Spurious Emissions, 802.11n(HT20), Highest channel Vertical, Peak

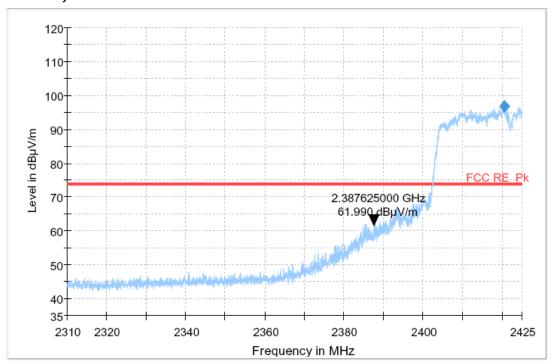


Restricted Band Spurious Emissions, 802.11n(HT20), Highest channel Vertical, Average

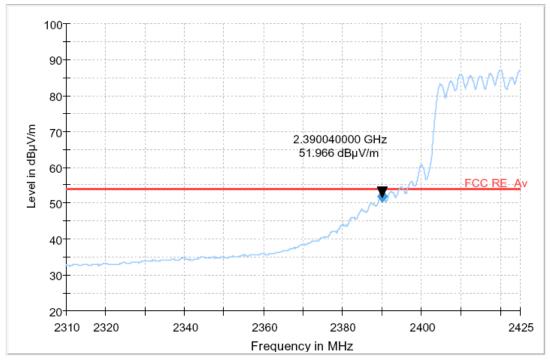


802.11n(HT40) mode Restricted Band Spurious Emissions, 802.11n(HT40), Lowest channel Horizontal, Peak

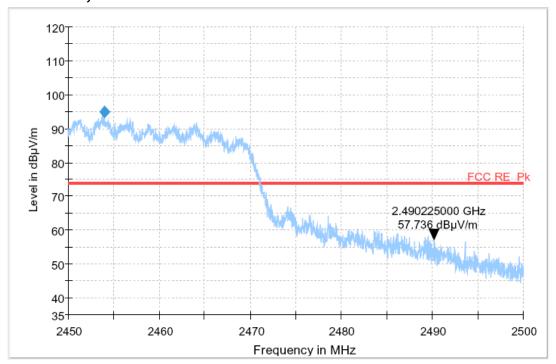
Restricted Band Spurious Emissions, 802.11n(HT40), Lowest channel Horizontal, Average

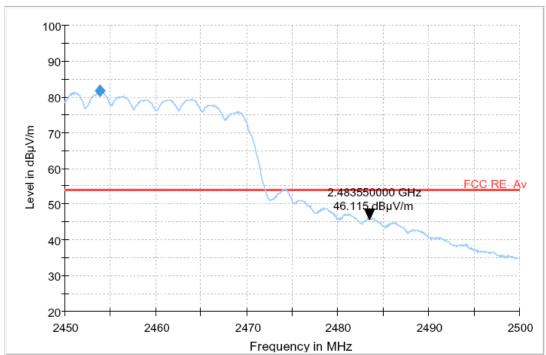


Samsung Electronics Co., Ltd.


Page 112 of 126 FCC ID: A3LDNUBS1 / IC ID: 649E-DNUBS1

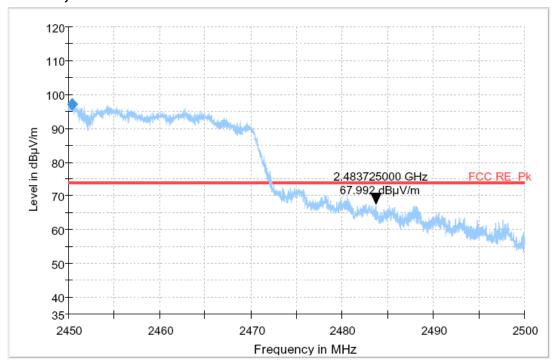
Restricted Band Spurious Emissions, 802.11n(HT40), Lowest channel Vertical, Peak


Restricted Band Spurious Emissions, 802.11n(HT40), Lowest channel Vertical, Average

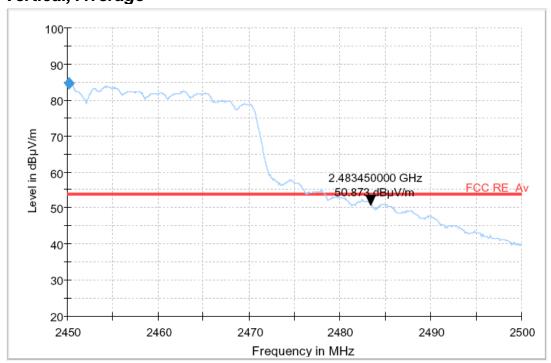

Samsung Electronics Co., Ltd. FCC ID: A3LDNUBS1 / IC ID: 649E-DNUBS1

Restricted Band Spurious Emissions, 802.11n(HT40), Highest channel Horizontal, Peak

Restricted Band Spurious Emissions, 802.11n(HT40), Highest channel Horizontal, Average



Samsung Electronics Co., Ltd. FCC ID: A3LDNUBS1 / IC ID: 649E-DNUBS1


Page 114 of 126

Restricted Band Spurious Emissions, 802.11n(HT40), Highest channel Vertical, Peak

Restricted Band Spurious Emissions, 802.11n(HT40), Highest channel Vertical, Average

Samsung Electronics Co., Ltd. FCC ID: A3LDNUBS1 / IC ID: 649E-DNUBS1

Page 115 of 126

TEST DATA

8.8 Receiver Spurious Emissions

IC RSS-GEN Clause 6

Frequency	Reading	Pol*	AF+CL+Amp	Result	Limit	Margin
(MHz)	(dB <i>µ</i> V/m)	(H/V)	(dB)**	(dB <i>µ</i> V/m)	(dB <i>µ</i> V/m)	(dB)
160.95	38.00	V	-10.00	28.00	43.50	15.50
236.13	45.20	Н	-13.50	31.70	46.00	14.30
343.31	42.60	Н	-11.00	31.60	46.00	14.40
351.07	43.20	Н	-10.80	32.40	46.00	13.60
480.56	48.10	Н	-8.40	39.70	46.00	6.30
2435.00	42.30	V	-1.70	40.60	54.00	13.40

Radiated Measurements at 3meters

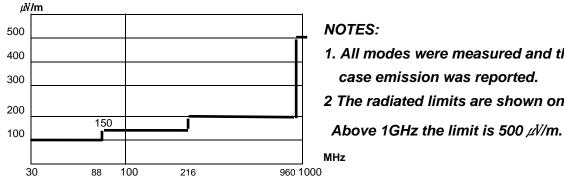


Fig. 5. Limits at 3 meters

- 1. All modes were measured and the worstcase emission was reported.
- 2 The radiated limits are shown on Figure 5.

NOTES:

- 1. *Pol. H = Horizontal, V = Vertical
- 2. **AF + CL + Amp. = Antenna Factor + Cable Loss + Amplifier.
- 3. Measurements using CISPR quasi-peak mode.
- 4. The radiated emissions testing were made by rotating through three orthogonal axes. The worst date was recorded.
- 5. The limit is on the IC RSS GEN Clause 6.

9. MAXIMUM PERMISSIBLE EXPOSURE

RF Exposure Limit

According to FCC 1.1310: The criteria listed in the following table shall be used to evaluate the Environmental of human exposure to radio frequency (RF) radiation as specified in 1.1307(b)

Limits for Maximum Permissible Exposure (MPE)

Frequency	Electric Field	Magnetic Field	Power Density	Averaging Time (Minutes)		
Range(MHz)	Strength(V/m)	Strength(A/m)	(mW/cm^2)			
(A) Limits for occupational / Contral Exposure						
30 - 300	61.4	0.163	1	6		
300 - 1500			F/300	6		
1500 - 100000			5	6		
(B) Limits for General Population / Uncontrolled Exposure						
30 - 300	27.5	0.073	0.2	30		
300 - 1500			F/1500	30		
1500 - 100000			1	30		

F = Frequency (MHz)

Fries formula

Fries transmission formula : Pd = (Pout * G) / (4 * π * r^2)

 $r = \sqrt{((Pout * G) / 4 * \pi * Pd))}$

Where

Pd = Power density in mW/cm²

Pout = Output power to antenna in mW

G = Gain of antenna in linear scale

 $\pi = 3.1416$

r = Distance between observation point center of the radiator in cm

Pd is the limit of MPE, <u>1 mW/cm²</u>. If we know the Maximum Gain of the antenna and the total power input to the antenna, through the calculation, we will know the Maximum distance r where the MPE limit is reached and Power density at prediction frequency.

FCC and IC Certification

Test Result:

The maximum antenna gain is 0.6 dBi or 1.15(Numeric).

Maximum peak output power at antenna input terminal: 20.77 (dBm)

Maximum peak output power at antenna input terminal: 119.40 (mW)

Antenna gain(typical): 0.60 (dBi)

Maximum antenna gain: 1.15 (numeric)

Prediction distance: 20 (cm)

Prediction frequency: 2437 (MHz)

MPE limit for uncontrolled exposure at prediction frequency: 1 (mW/cm^2)

Maximum allowable antenna gain: 16.24 (dBi)

Maximum Distance: 3.30 (cm)

Power density at prediction frequency: 0.027273 (mW/cm^2)

Test result: PASS

Samsung Electronics Co., Ltd.
FCC ID: A3LDNUBS1 / IC ID: 649E-DNUBS1

10. ACCURACY OF MEASUREMENT

The Measurement Uncertainties stated were calculated in accordance with the requirements of NIST Technical Note 1297 with the confidence level of 95%

1. Radiation Uncertainty Calculation

Contribution	Probability Distribution	Uncertainty(+/-dB)	
Antenna Factor	Normal (k=2)	± 0.5	
Cable Loss	Normal (k=2)	± 0.04	
Receiver Specification	Rectangular	± 2.0	
Antenna directivity			
Antenna Factor variation with Height			
Antenna Phase Center Variation	Rectangular	± 1.0	
Antenna Factor Frequency Interpolation			
Measurement Distance Variation			
Site Inperfections	Rectangular	± 2.0	
Mismatch:Receiver VRC ri=0.3			
Antenna VRC rR=0.1(Bi)0.4(Lp)	U-Shaped	+ 0.25 / - 0.26	
Uncertainty Limits 20Log(1+/-ri rR)			
System Repeatibilty	Std.deviation	± 0.05	
Repeatability of EUT	-	-	
Combined Standard Uncertainty	Normal	± 1.77	
Expended Uncertainty U	Normal (k=2)	± 3.5	

2. Conducted Uncertainty Calculation

Contribution	Probability Distribution	Uncertainty(+/-dB)	
Receiver Specification	Normal (k=2)	± 2.0	
LISN coupling spec.	Normal (k=2)	± 0.4	
Cable and input attenuator cal.	Rectangular	± 0.4	
Mismatch:Receiver VRC ri=0.3			
LISN vrc rg=0.1	U-Shaped	$\pm~0.26$	
Uncertainty Limits 20Log(1+/-ri rR)			
System Repeatibilty	Std.deviation	± 0.68	
Repeatability of EUT	-	-	
Combined Standard Uncertainty	Normal	± 1.18	
Expended Uncertainty U	Normal (k=2)	± 2.4	

11. TEST EQUIPMENT

No.	Instrument	Manufacturer	Model	Serial No.	Calibration Date	Calibration Interval
1	*Test Receiver	R & S	ESCS 30	833364/020	Mar. 28 2009	1 year
2	*Test Receiver	R&S	ESCS 30	100302	Nov. 11 2009	1 year
3	*Amplifier	НР	8447F	2805A03427	Jul. 20 2009	1 year
4	*Amplifier	Sonoma Instrument	310N	291916	Jul. 22 2009	1 year
5	*Pre Amplifier	HP	8449B	3008A00107	Feb. 03 2010	1 year
6	*Pre Amplifier	HP	8447F	2805A03406	Apr. 09 2009	1 year
7	*Pre Amplifier	Agilent	83051A	3950M00201	Jun. 15 2009	1 year
8	*Spectrum Analyzer	Agilent	E4440A	MY44303257	Jul. 20 2009	1 year
9	*Spectrum Analyzer	Agilent	E4440A	MY44022567	Sep. 04 2009	1 year
10	*Spectrum Analyzer	R&S	FSP40	100361	Sep. 04 2009	1 year
11	*Loop Antenna	ЕМСО	6502	8911-2436	Jan. 11 2009	2 year
12	*Spectrum Analyzer	R&S	FSP40	100361	Sep. 04 2009	1 year
13	*Power Meter	R&S	NRVS	835360/002	Jan. 15 2010	1 years
14	*Peak Power Sensor	R&S	NRV-Z32	836019/028	Nov. 11 2009	1 years
15	*Biconical Log Anter	ARA	LPB-2520/A	1209	Dec. 08 2008	2 years
16	*Horn Antenna	SCHWARZBECK	BBHA9120D	9120D-508	Dec.11 2008	2 years
17	Horn Antenna	SCHWARZBECK	BBHA9170	9170223	Jun. 16 2008	2 years
18	*Trilog-Broadband Antenna	SCHWARZBECK	VULB 9168	9168-257	Apr. 21 2008	2 years
19	*Logbicon Antenna	SCHWARZBECK	VULB9166	1067	Oct. 08 2009	2 year
20	*LISN	R&S	ESH3-Z5	833874/006	Nov. 11 2009	1 year
21	*LISN	R&S	ESH2-Z5	100227	Feb. 03 2010	1 year
22	*Position Controller	DAEIL EMC	N/A	N/A	N/A	N/A
23	*Turn Table	DAEIL EMC	N/A	N/A	N/A	N/A
24	*Antenna Mast	DAEIL EMC	N/A	N/A	N/A	N/A
25	*Anechoic Chamber	EM Eng.	N/A	N/A	N/A	N/A
26	*Shielded Room	EM Eng.	N/A	N/A	N/A	N/A
27	*Position Controller	Seo-Young EMC	N/A	N/A	N/A	N/A
28	*Turn Table	Seo-Young EMC	N/A	N/A	N/A	N/A
29	*Antenna Mast	Seo-Young EMC	N/A	N/A	N/A	N/A
30	*Anechoic Chamber	Seo-Young EMC	N/A	N/A	N/A	N/A
31	*Shielded Room	Seo-Young EMC	N/A	N/A	N/A	N/A

^{*)} Test equipment used during the test