

47 CFR Part 15 Subpart B Electromagnetic Compatibility Test Report

For

Notebook computer

ORDER NO.: BVCO-WAY-P21070008

REPORT NO.: FCCBVCO-WAY-P21070008-2R2

ISSUED DATE: 31 August, 2021

MODEL NO.: NP935QDC

Samsung Electronics Co., Ltd.

129, Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16667, Korea

Certificate #4068.03

Copyright © 2020 Bureau Veritas CPS ADT Korea Ltd.

Bureau Veritas CPS ADT Korea Ltd. authorizes the above-named company to reproduce this Report provided it is reproduced in its entirety. This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification.

Report Format Version: BV-FEMC-001 (FQUA-52)

Page: 1 of 27

Model Number NP935QDC

Test Report Details

Test Report No. FCCBVCO-WAY-P21070008-2R2

Tests Performed By: Bureau Veritas CPS ADT Korea Ltd.

Innoplex No.2 106, Sinwon-ro 306, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16675, Republic of Korea

Test site: Bureau Veritas CPS ADT Korea Ltd.

HeungAn-daero 49, DongAn-gu, Anyang-si, Gyeonggi-do,

14119, Republic of Korea

Applicant: Samsung Electronics Co., Ltd.

Applicant address: 129, Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16667,

Korea

Manufacturer: Samsung Electronics Co., Ltd.

Manufacturer address: 129, Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16667,

Korea

Product Type: Notebook computer

Model Number: NP935QDC

Multi-listing model

number:

-

FCC Classification: Part 15 Class B Computing Device/Personal Computer (JBC)

Part 15 Class B Computing Device Peripheral (JBP)

Equipment

authorization

Supplier's Declaration of Conformity

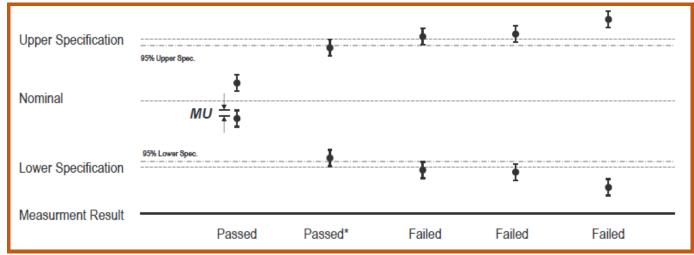
Product standards: 47 CFR Part 15 Subpart B / ANSI C63.4: 2014

Sample Serial Number: 1J9F91ZR700002M

Sample Receive Date: 05 July, 2021 Testing Start Date: 31 July, 2021

Date Testing Complete: 31 July, 2021

This test report apply only to the specific samples tested under stated test conditions. All samples tested were in good operating condition throughout the entire test program. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components Bureau Veritas CPS ADT Korea Ltd. shall have no liability for any deductions, inferences or generalizations drawn by the client or others from Bureau Veritas CPS ADT Korea Ltd. issued reports.


Report Format Version: BV-FEMC-001 (FQUA-52)

Page: 2 of 27

Overall Results

I. DECISION RULE FOR STATEMENT OF CONFORMITY

MU =95% expanded measurement uncertainty

QUA-52 Decision Rule Applied

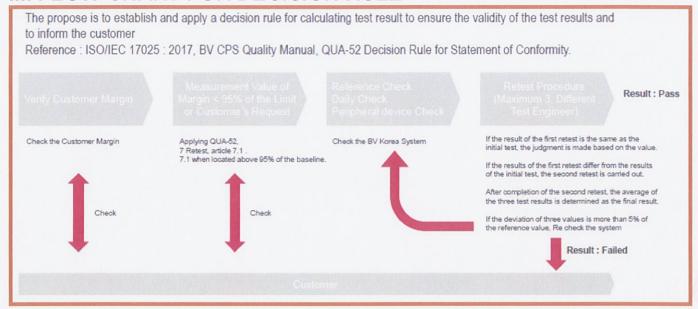
Step 1: Reference Check, Daily Check, Peripheral device Check

Step 2: Retest Procedure (Maximum 3, Different Test Engineer)

- 1) If the result of the first retest is the same as the initial test, the judgment is made based on the value.
- 2) If the results of the first retest differ from the initial test result, the second retest is carried out.

After completion of the second retest, the average of the three test results is determined as the final result.

If the deviation of three values is more than 5% of the reference value, Re check the system


II. Measurement uncertainty

Measurement uncertainty
2.46 dB
4.00 dB
6.54 dB
5.94 dB
5.16 dB
5.40 dB

Note 1: Measurement uncertainty is calculated in according with CISPR 16-4-2: 2011+A1: 2014+A2: 2018 The measurement uncertainty is given with a confidence of 95 % with the coverage factor, k=2.

III. FLOW CHART FOR DECISION RULE

IV. FINAL DECISION

RELEASE CONTROL RECORD

REPORT NO.	REASON FOR CHANGE	DATE ISSUED
FCCBVCO-WAY-P210 70008-2	Original release	10 August, 2021
FCCBVCO-WAY-P210 70008-2R1	Overall Modification	27 August, 2021
FCCBVCO-WAY-P210 70008-2R2	Added FCC Classification (JBP) as C2PC target is module.	31 August, 2021

This project has been tested and verified to comply with the requirements of **Bureau Veritas CPS ADT Korea Ltd.** Therefore, this certificate is issued.

PREPARED BY:

Taejoo Kim / Senior Engineer

, DATE: 31 August, sol

APPROVED BY:

, DATE : 3

31 August =21

Report Format Version: BV-FEMC-001 (FQUA-52) Page: 5 of 27

Table of Contents

1.	EMC R	Result Conclusion (With Justification)	€
2.	Genera 2.1 2.2 2.3	al Product Description	7 7
3.	Test Co 3.1 3.2 3.3 3.4 3.5 3.6	Ancillary Equipment Input/Output Ports Power Interface: EUT Internal Operating Frequencies Modes of Description Configuration	9 10 10
4.	Test Co 4.1 4.2 4.3	Condition and Results Conducted RF Emissions Radiated RF Emissions (30 MHz - 1 000 MHz) Radiated RF Emissions (Above 1 GHz)	13 16
App	oendix A	A. Test site accreditations	26
App	oendix B	B. Test Equipment	26

Model Number NP935QDC

Report Format Version: BV-FEMC-001 (FQUA-52)

Page: 6 of 27

1. EMC Result Conclusion (With Justification)

The following tests were performed on a sample submitted for evaluation of compliance with 47 CFR Part 15.107(b) / 47 CFR Part 15.109 (b).

Test requirements	Standard	Results	Verdict	
Emissions	☐ Class A / ☑ Class B			
Conducted RF Emissions		Pass	Complied	
Radiated RF Emissions (Below 1 GHz)	47 CFR Part 15 Subpart B ANSI C63.4: 2014	Pass	Complied	
Radiated RF Emissions (Above 1 GHz)		Pass	Complied	

We tested the Notebook computer, Model: NP935QDC, to determine if it was in compliance with the relevant standards as marked on the EMC Verification Summary. We found that the unit met the requirement of 47 CFR Part 15 Subpart B / ANSI C63.4: 2014 standards when tested as received. The production units are required to conform to the initial sample as received when the units are placed on the market.

2. General Product Description

2.1 Equipment Description

Description

The Equipment under Test (EUT) is the Notebook computer.

The test data contained in this report pertains only to the emissions due to the digital circuitry of the EUT.

(Bluetooth, WLAN, LTE, 5G NR, WCDMA, Camera, Audio, Video, Display(HDMI) and micro SD Card, Disk Drive)

- Bluetooth 5.2(BDR/EDR/LE)(2400.0-2483.5 MHz)

802.11b/g/n/ax(2400.0-2483.5 MHz)

- 802.11a/n/ac/ax(5150.0-5850.0 MHz)

- 802.11a/n/ac/ax(5925.0-7125.0 MHz)

- WCDMA Band : 2/4/5

- LTE Band : 2/4/5/7/12/13/14/17/25/29/41/66/71

5G NR: 2/5/41/66/71/77

2.2 Technical Data

CPU	Intel, TGL-UP4 i7-1160G7		
Main Memory	Samsung, LPDDR4x 16GB		
Graphic Controller	Controller Intel, Shared Internal Memory		
Display	Samsung, 13.3" AMOLED display FHD Up to 400nit		
Storage	Samsung, NVMe x2 256 / 512G		
MI ANDUGA oth	Intel, AX210 Wi-Fi 6E		
WLAN/Bluetooth	Intel, AX210 BT 5.1		
Battery SAMSUNG SDI, AA-PBMN4MR, 62.5Wh Li-ion, Quick Charging			
Camera Kingcome, 720p HD Camera			
Input Devices	Keyboard, Touchpad		
Ports	TBT4 x1, Type-C x2, uSD, Audio Jack, USIM Slot		
H/W Version	REV 1.0		
S/W Version	0		
Un-licensed Module	Samsung, AX210D2W (FCC ID : A3LAX210D)		
Licensed Module	Samsung, SM-H111U (FCC ID : A3LH111U935QDC)		

Model Number NP935QDC

Report Format Version: BV-FEMC-001 (FQUA-52)

Page: 8 of 27

2.3 Detail information of Multi-listing model

No.	Model	Description	Comment
1	-	-	-

*Note: The manufacturer has declared to all the multiple model names into the basic model without any further evaluation by Bureau Veritas CPS ADT Korea.

3. Test Condition

3.1 Ancillary Equipment

Use*	Product Type	Manufacturer	Model	Comments
EUT	Notebook computer	Samsung Electronics Co., Ltd.	NP935QDC	-
EUT	Travel adapter	Samsung Electronics Co., Ltd.	EP-TA865	In box
EUT	DONGLE-USB3.0 C TO A	Samsung Electronics Co., Ltd.	BA96-07506A	In box
EUT	DONGLE-USB3.0 C TO HDMI	Samsung Electronics Co., Ltd.	BA39-01509A	In box
EUT	S-Pen	Samsung Electronics Co., Ltd.	BA98-02871A	In box
AE	LED Monitor	Samsung Electronics Co., Ltd.	LU32J590UQKX KR	-
AE	AC/DC adapter	POWERNET Technologies Corp.	A5919_KPNL	-
AE	IN-EAR HEADPHONES	Samsung Electronics Co., Ltd.	EO-HS1303	-
AE	Micro USIM	-	-	-
AE	Micro SD Card	Samsung Electronics Co., Ltd.	MB-MC64G	-
AE	Mouse	Logitech Inc.	M-U0026	
SIM	Wide Band Radio Communication Tester	R&S	CMW500	For Conducted Emission

^{*} **Note:** EUT - Equipment Under Test, AE - Auxiliary/Associated Equipment, SIM - Simulator (Not Subjected to Test)

Model Number NP935QDC

3.2 Input/Output Ports

Start		END		CABLE		
Name I/O Port		Name	I/O Port	Length (m)	Shield	With Ferrite
	USB Type-C(Left)	Travel adapter	USB Type-C (DC Out)	1.8	Shield	-
	Thunderbolt 4	DONGLE-USB 3.0 C TO HDMI	USB Type-C	0.1	Shield	-
EUT	Memory card slot	Micro SD Card	-	-	-	-
E01	USIM Slot	Micro USIM	-	-	-	-
	USB Type-C(Right)	DONGLE-USB 3.0 C TO A	-	-	-	-
	Audio Jack	IN-EAR HEADPHONES	-	1.2	Unshield	-
	-	S-Pen	-	-	-	-
Travel adapter	AC IN	AC Mains	AC Out	-	-	-
DONGLE-USB 3.0 C TO HDMI	HDMI	LED Monitor	HDMI	2.0	Shield	-
DONGLE-USB 3.0 C TO A	USB Type-A	Mouse	USB Type-A	1.8	Unshield	-
LED Monitor	DC IN	AC/DC adapter	DC Out	1.8	Unshield	
AC/DC adapter	AC IN	AC Mains	AC Out	-	-	-

3.3 Power Interface:

Rated Voltage	Travel adapter	Input: AC (100-240) V, (50-60) Hz Output: (PDO) DC 5 V, 3 A / DC 9 V, 3 A / DC 15 V, 3 A / DC 20 V, 3.25 A (PPS) DC (5-20) V, 3.25 A
	Notebook computer rating	DC 20 V, 3.25 A, 65 W
Test Voltage		AC 120 V, 60 Hz

3.4 EUT Internal Operating Frequencies

	CPU : 4.6 GHz
Clock Frequency	Memory : 4 266 MHz
	Wi-Fi : 7 125 MHz
	•

Report Format Version: BV-FEMC-001 (FQUA-52)
Page: 10 of 27

Model Number NP935QDC

Report Format Version: BV-FEMC-001 (FQUA-52)

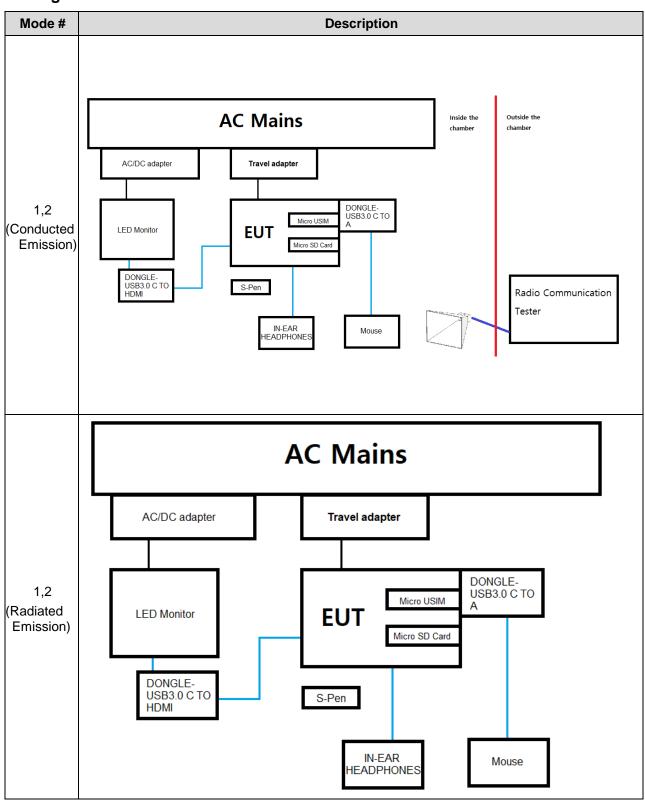
Page: 11 of 27

3.5 Modes of Description

Mode #	Mode Description		Comments			
	Conducted Emission Note4)					
1	Notebook mode	eUFS(internal storage) & micro SD Card Read/Write/Delete + Display Port(USB C-Type to HDMI) + Camera Preview + Scrolled H-character on video + Digital white noise sound(W/ earphone) + Cellular receiver (LTE B5) + Charging(w/ TA)	-			
2	Tablet mode	eUFS(internal storage) & micro SD Card Read/Write/Delete + Display Port(USB C-Type to HDMI) + Camera Preview + Scrolled H-character on video + Digital white noise sound(W/ earphone) + Cellular receiver (LTE B5) + Charging(w/ TA)	-			
		Radiated Emission Note5)				
1	Notebook mode	eUFS(internal storage) & micro SD Card Read/Write/Delete + Display Port(USB C-Type to HDMI) + Camera Preview + Scrolled H-character on video + Digital white noise sound(W/ earphone) + Charging(w/ TA)	-			
2	Tablet mode	eUFS(internal storage) & micro SD Card Read/Write/Delete + Display Port(USB C-Type to HDMI) + Camera Preview + Scrolled H-character on video + Digital white noise sound(W/ earphone) + Charging(w/ TA)	-			

Note1) The connection status of Ancillary Equipment in Notebook mode and Tablet mode is the same.

Note2) Test Resolution: 1920 x 1080 @ 60 Hz


Note3) Bluetooth + Wi-Fi Standby

Note4) RX mode testing was performed with the LTE B5 RX test mode at center frequency. All licensed communication RX mode, WCDMA/LTE/5G, test results are not significantly different.

Note5) Compliance with Part 15B requirements for the receiver part of the licensed transmitter (equipment code CXX) is covered by other test report (FCCBVCO-WAY-P21070008-3R1).

3.6 Configuration

Model Number

NP935QDC

Report Format Version: BV-FEMC-001 (FQUA-52)

Page: 13 of 27

4. Test Condition and Results

4.1 Conducted RF Emissions

	TEST: Limits of	mains terminal condu	ucted RF emission	on		
Method reference of their was of	The AMN placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane. This distance was between the closest points of the AMN and the EUT. All other units of the EUT and associated equipment were at least 0.8 m from the AMN. All power was connected to the system through Artificial Mains Network (AMN). Conducted voltage measurements on mains lines were made at the output of the AMN.					
Basic	Standard		ANSI 63.4: 201	4		
Tes	t Date		31 July, 2021			
Parameters reco	rded during the test	Laboratory Ambient	Temperature	(23.2 ± 1.0) °C		
T drameters rece	raca daming the test	Relative Hu	midity	(51.9 ± 1.0) %		
	I	Frequency range on e	each side of line	Measurement Point		
	ample scanned over frequency range	150 kHz to 30 MHz		AC mains power ports		
	Limits –	AC mains power port	s (Class A)			
Frequency (MHz)		Limit (dBμV)				
Frequency (MHZ)	Quasi-Peak	Result	Average	Result		
0.15 to 0.5	79	-	66	-		
0.5 to 30	73	-	60	-		
	Limits –	AC mains power port	s (Class B)			
Frequency (MHz)		Limit (dBμV)				
1 requericy (Wil 12)	Quasi-Peak	Result	Average	Result		
0.15 to 0.5	66 to 56	Pass	56 to 46 Pass			
0.5 to 5	56	Pass	46	Pass		
5 to 30	60	Pass	50	Pass		

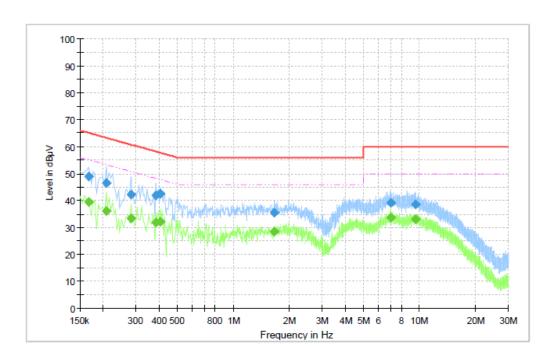
Note1) Formula

Final Value (QP and/or CAV) = Reading Value (QP and/or CAV) + Corr. (AMN Insertion Loss + Cable Loss)
Margin (QP and/or CAV) = Limit – Final Value (QP and/or CAV)

QP = Quasi-Peak, CAV = CISPR-Average, Corr. = Correction Factor

Table 1. Test data for conducted RF emissions

Test Report


Common Information

 Project Number
 BVCO-WAY-P21070008

 Location
 EMI Test Site

 Date
 2021.07.31

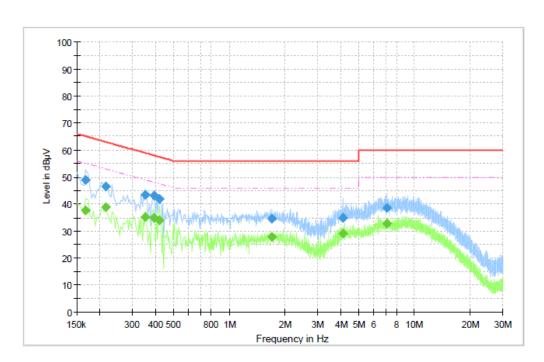
 Enviroment
 23.2 'C / 51.9 % R.H.

Final Result

i illai 1163	ин								
Frequency	QuasiPeak	CAverage	Limit	Margin	Meas. Time	Bandwidth	Line	Filter	Corr.
(MHz)	(dBµV)	(dBµV)	(dBµV)	(dB)	(ms)	(kHz)			(dB)
0.167559		39.32	55.08	15.76	15000.0	9.000	N	ON	10.1
0.167559	48.81	-	65.08	16.27	15000.0	9.000	N	ON	10.1
0.207066		35.99	53.32	17.33	15000.0	9.000	L1	ON	9.9
0.207066	46.52		63.32	16.80	15000.0	9.000	L1	ON	9.9
0.281691	42.13		60.77	18.64	15000.0	9.000	N	ON	9.8
0.281691		33.31	50.77	17.45	15000.0	9.000	N	ON	9.8
0.382654		31.87	48.22	16.35	15000.0	9.000	N	ON	10.0
0.382654	42.00		58.22	16.22	15000.0	9.000	N	ON	10.0
0.404603		32.05	47.76	15.71	15000.0	9.000	N	ON	10.0
0.404603	42.62		57.76	15.14	15000.0	9.000	N	ON	10.0
1.655669		28.31	46.00	17.69	15000.0	9.000	N	ON	9.9
1.655669	35.43		56.00	20.57	15000.0	9.000	N	ON	9.9
6.989162	39.06	-	60.00	20.94	15000.0	9.000	L1	ON	10.1
6.989162		33.57	50.00	16.43	15000.0	9.000	L1	ON	10.1
9.478125		33.14	50.00	16.86	15000.0	9.000	L1	ON	10.2
9.478125	38.43		60.00	21.57	15000.0	9.000	L1	ON	10.2

Note1) Two graphs measured for both Line 1(L1) and Neutral (N) of the LISN are combined into one graph.

Report Format Version: BV-FEMC-001 (FQUA-52)
Page: 14 of 27


Model Number

Test Report

Common Information

Project Number BVCO-WAY-P21070008 Location EMI Test Site Date 2021.07.31 23.2 'C / 51.9 % R.H. Enviroment

Final Result

I IIIui Itos	are.								
Frequency	QuasiPeak	CAverage	Limit	Margin	Meas. Time	Bandwidth	Line	Filter	Corr.
(MHz)	(dBµV)	(dBµV)	(dBµV)	(dB)	(ms)	(kHz)			(dB)
0.167559		37.75	55.08	17.33	15000.0	9.000	L1	ON	10.1
0.167559	48.78		65.08	16.30	15000.0	9.000	L1	ON	10.1
0.215846		38.89	52.98	14.09	15000.0	9.000	N	ON	9.9
0.215846	46.42		62.98	16.55	15000.0	9.000	N	ON	9.9
0.351927	43.47		58.92	15.45	15000.0	9.000	L1	ON	9.9
0.351927		35.15	48.92	13.77	15000.0	9.000	L1	ON	9.9
0.391434	42.98		58.03	15.05	15000.0	9.000	N	ON	10.0
0.391434		34.72	48.03	13.31	15000.0	9.000	N	ON	10.0
0.417772		34.02	47.49	13.47	15000.0	9.000	N	ON	10.0
0.417772	41.90		57.49	15.59	15000.0	9.000	N	ON	10.0
1.695177		27.77	46.00	18.23	15000.0	9.000	N	ON	9.9
1.695177	34.48		56.00	21.52	15000.0	9.000	N	ON	9.9
4.113904	34.79		56.00	21.21	15000.0	9.000	L1	ON	9.9
4.113904		28.91	46.00	17.09	15000.0	9.000	L1	ON	9.9
7.085735	38.50		60.00	21.50	15000.0	9.000	L1	ON	10.1
7.085735		32.62	50.00	17.38	15000.0	9.000	L1	ON	10.1

Note1) Two graphs measured for both Line 1(L1) and Neutral (N) of the LISN are combined into one graph.

Model Number

4.2 Radiated RF Emissions (30 MHz - 1 000 MHz)

Tradiated IVI Emissions (50 ii		
TES	Γ: Limits for radiated RF emissior	ıs
Method	Measurements were made in a 10 that complies to ANSI C63.4. Preli were performed at an antenna to I 10-meter. The EUT was rotated 36 receive antenna located at 1, 2, 3 horizontal and vertical polarities. F noted) were then performed by rot the receive antenna height from 1 investigated in both horizontal and applicable.	minary (peak) measurements EUT separation distance of 3 or 60° about its azimuth with the and 4 meter heights in both inal measurements (quasi-peak as ating the EUT 360° and adjusting to 4 meters. All frequencies were
Basic Standards	ANSI C6	3.4: 2014
Test Date	31 July	y, 2021
Parameters recorded during the test	Laboratory Ambient Temperature	(21.2 ± 1.0) °C
arameters recorded during the test	Relative Humidity	(46.7 ± 1.0) %
	Frequency range	Measurement Point
Fully configured sample scanned over the following frequency range	30 MHz – 1 000 MHz	3 or 10 meter measurement distance
L	Limits – Class A (10 m distance)	
Frequency (MHz)	Limit (d	BμV/m)
Frequency (MIT2)	Quasi-Peak	Results
30 to 88	39.0	-
88 to 216	43.5	-
216 to 960	46.4	-
960 to 1000	49.5	-
	Limits –Class B (3 m distance)	
Frequency (MHz)	Limit (d	BµV/m)
Frequency (MHZ)	Quasi-Peak	Results
30 to 88	40.0	Pass
88 to 216	43.5	Pass
216 to 960	46.0	Pass
960 to 1000	54.0	Pass

Note1) Formula

Final Value (PK and/or QP and/or CAV) = Reading Value (PK and/or QP and/or CAV) + Corr. (Antenna Factor + Cable Loss - Amplifier Gain)

Report Format Version: BV-FEMC-001 (FQUA-52)

Page: 16 of 27

Margin (PK and/or QP and/or CAV) = Limit – Final Value (PK and/or QP and/or CAV) PK = Peak, QP = Quasi-Peak, CAV = CISPR-Average, Corr. = Correction Factor

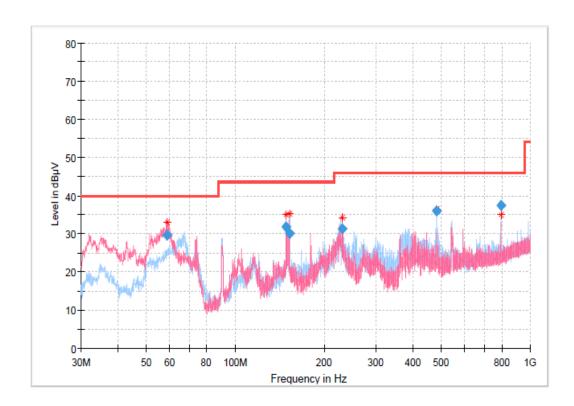
Note2) Distance (Antenna to Centre of Turntable), Antenna Height

Below 1 GHz, Distance = 3 or 10 m, Antenna Height = (1 to 4) m

Table 2. Test data for radiated RF emissions

Test Report

Common Information


Project Number BVCO-WAY-P21070008

 Location
 10 m SAC

 System:
 Below 1 GHz

 Date:
 2021.07.31

Environment 21.2 'C / 46.7% R.H.

Final Result

i iliui_ittos	ait								
Frequency	QuasiPeak	Limit	Margin	Meas.	Bandwidth	Height	Pol	Azimuth	Corr.
(MHz)	(dBµV)	(dBµV)	(dB)	Time	(kHz)	(cm)		(deg)	(dB)
				(ms)					
58.831000	29.57	40.00	10.43	15000	120	105.0	٧	342.0	-20.5
148.485500	31.75	43.50	11.75	15000	120	215.0	Н	187.0	-25.3
152.562000	30.08	43.50	13.42	15000	120	191.0	Н	216.0	-25.2
231.001000	31.29	46.00	14.71	15000	120	107.0	٧	30.0	-20.7
482.359500	36.03	46.00	9.97	15000	120	109.0	Н	108.0	-14.8
795.559000	37.47	46.00	8.53	15000	120	115.0	Н	111.0	-10.2

Note1) Two graphs measured for both Vertical and Horizontal of the Antenna are combined into one graph.

Report Format Version: BV-FEMC-001 (FQUA-52)
Page: 17 of 27

#2

Test Report

Common Information

Project Number BVCO-WAY-P21070008

 Location
 10 m SAC

 System:
 Below 1 GHz

 Date:
 2021.07.31

 Environment
 21.2 'C / 46.7% R.H.

80 70 60 60 30 40 20 30M 50 60 80 100M 200 300 400 500 800 1G Frequency in Hz

Final Result

Frequ		QuasiPeak	Limit	Margin	Meas.	Bandwidth	Height	Pol	Azimuth	Corr.
(Mi	lz)	(dBµV)	(dBµV)	(dB)	Time	(kHz)	(cm)		(deg)	(dB)
					(ms)					
36	.210500	28.03	40.00	11.97	15000	120	100.0	V	83.0	-21.6
55	.536500	30.81	40.00	9.19	15000	120	100.0	V	56.0	-20.2
89	.963000	32.67	43.50	10.83	15000	120	211.0	Н	59.0	-23.5
224	.458500	27.16	46.00	18.84	15000	120	215.0	Н	256.0	-21.0
482	.319500	37.09	46.00	8.91	15000	120	115.0	Н	132.0	-14.8
796	.057500	33.76	46.00	12.24	15000	120	185.0	Н	115.0	-10.2

Note1) Two graphs measured for both Vertical and Horizontal of the Antenna are combined into one graph.

Model Number NP935QDC

Report Format Version: BV-FEMC-001 (FQUA-52)

Page: 19 of 27

4.3 Radiated RF Emissions (Above 1 GHz)

TEST	Γ: Limits for radia	ated RF emission	ns						
Method	that complies to a Rotate the EUT f heights from 1 m continuously to a and record them The measureme	Measurements were made in a 10-meter semi-anechoic chamber that complies to ANSI C63.4. Rotate the EUT from 0° to 360° and position the receiving antenna are neights from 1 m to 4 m above the reference ground plane continuously to determine associated with higher emission levels and record them. The measurement was made in both the vertical and horizontal polarization, and the maximum value is presented in the report. ANSI C63.4: 2014							
Basic Standards		ANSI C6	3.4: 2014						
Test Date		31 Jul	y, 2021						
Parameters recorded during the test	Laboratory Ambi	ent Temperature		(21.2 ± 1.0) °C					
r drametere received daring the test	Relative	Humidity	d position the receiving antennareference ground plane red with higher emission levels of the vertical and horizontal ue is presented in the report. 3.4: 2014 7, 2021 (21.2 ± 1.0) Measurement Point 3 meter measurement distance 3 µV/m) Average Result 60 -	(46.7 ± 1.0) %					
	Frequen	cy range	(46.7 ± 1.0)						
Fully configured sample scanned over the following frequency range	1 GHz –	40 GHz	3 meter measu	rement distance					
	Limits – C	lass A							
Fraguency (CHz)		Limit (d	BμV/m)						
Frequency (GHz)	Peak	Result	Average	Result					
1 to	80	-	60	-					
	Limits – C	lass B							
Frequency (GHz)		Limit (d	BμV/m)						
Frequency (GHZ)	Peak	Result	Average	Result					
1 to 40	74	Pass	54	Pass					

Note1) Formula

Final Value (PK and/or QP and/or CAV) = Reading Value (PK and/or QP and/or CAV) + Corr. (Antenna Factor + Cable Loss - Amplifier Gain)

Margin (PK and/or QP and/or CAV) = Limit – Final Value (PK and/or QP and/or CAV)

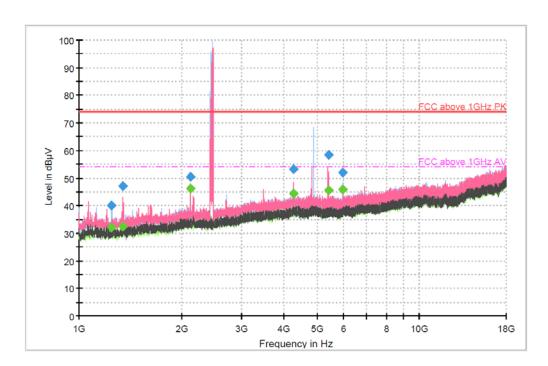
PK = Peak, QP = Quasi-Peak, CAV = CISPR-Average, Corr. = Correction Factor

Note2) Distance (Antenna to Centre of Turntable), Antenna Height

Above 1 GHz, Distance = 4.5 m, Antenna Height (Considering size of EUT) = (1 to 4) m

 $L2 = L1 + 20 \log (d1 (m) / d2 (m)) = 20 \log (3 / 4.5) = -3.5$

Table 3. Test data for radiated RF emissions


#1 (1 ~ 18 GHz)

Test Report

Common Information

Project Number BVCO-WAY-P21070008

Location 10 m SAC
System: (1 to 18) GHz
Date: 2021.07.31
Environment 21.2 'C / 46.7% R.H.

Final Result

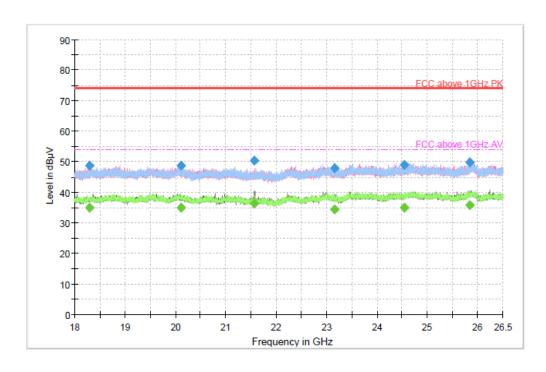
i iiiai_itco										
Frequency	MaxPeak	CAverage	Limit	Margin	Meas.	Bandwidth	Height	Pol	Azimuth	Corr.
(MHz)	(dBµV)	(dBµV)	(dBµV)	(dB)	Time	(kHz)	(cm)		(deg)	(dB)
					(ms)					
1249.805556		32.23	54.00	21.77	15000	1000	123.0	Н	49.0	-10.5
1249.805556	40.03		74.00	29.97	15000	1000	123.0	Н	49.0	-10.5
1349.972222		32.52	54.00	21.48	15000	1000	102.0	V	125.0	-10.2
1349.972222	47.21		74.00	26.79	15000	1000	102.0	V	125.0	-10.2
2132.116667	50.44		74.00	23.56	15000	1000	197.0	V	134.0	-6.7
2132.116667		46.24	54.00	7.76	15000	1000	197.0	V	134.0	-6.7
4264.200000	53.18		74.00	20.82	15000	1000	100.0	V	127.0	-0.6
4264.200000		44.46	54.00	9.54	15000	1000	100.0	V	127.0	-0.6
5399.788889	58.28		74.00	15.72	15000	1000	101.0	V	142.0	-0.1
5399.788889		45.52	54.00	8.48	15000	1000	101.0	V	142.0	-0.1
5940.116667	51.99		74.00	22.01	15000	1000	199.0	Н	52.0	0.2
5940.116667		45.94	54.00	8.06	15000	1000	199.0	Н	52.0	0.2

Note1) Two graphs measured for both Vertical and Horizontal of the Antenna are combined into one graph. Note2) Radiated emissions (Tx / Rx frequency) from the transceiver shall be ignored.

- -Data transmission in the 2.4 GHz ISM Fundamental band (Bluetooth/Wi-Fi 802.11 b/g/n)
- -Data transmission in the 4.8 GHz ISM Harmonic band (Bluetooth/Wi-Fi 802.11 b/g/n)
- : Operating frequencies (2 400 ~2483.5) MHz

Report Format Version: BV-FEMC-001 (FQUA-52)
Page: 20 of 27

#1 (18 ~ 26.5 GHz)


Test Report

Common Information

Project Number BVCO-WAY-P21070008

Location 10 m SAC System: (18.0 to 26.5) GHz Date: 2021.07.31

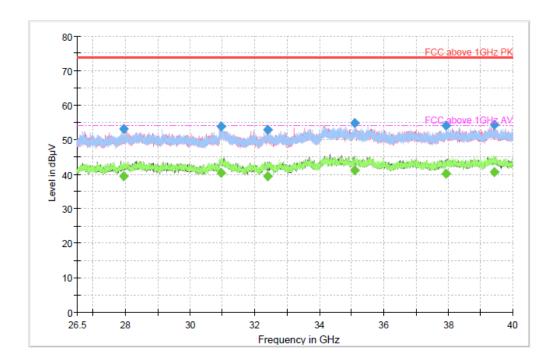
Environment 21.2 'C / 46.7 % R.H.

Final Result

Frequency	MaxPeak	CAverage	Limit	Margin	Meas.	Bandwidth	Height	Pol	Azimuth	Corr.
(MHz)	(dBµV)	(dBµV)	(dBµV)	(dB)	Time	(kHz)	(cm)		(deg)	(dB)
, ,	,				(ms)	,	,			, ,
18293.722222		34.83	54.00	19.17	15000	1000	123.0	V	24.0	2.4
18293.722222	48.76		74.00	25.24	15000	1000	123.0	V	24.0	2.4
20113.194445	48.59		74.00	25.41	15000	1000	268.0	Н	322.0	4.8
20113.194445		34.89	54.00	19.11	15000	1000	268.0	Н	322.0	4.8
21559.138889	50.26		74.00	23.74	15000	1000	302.0	V	97.0	5.6
21559.138889		36.32	54.00	17.68	15000	1000	302.0	V	97.0	5.6
23152.888889		34.37	54.00	19.63	15000	1000	400.0	٧	299.0	5.1
23152.888889	47.76		74.00	26.24	15000	1000	400.0	V	299.0	5.1
24545.000000		35.07	54.00	18.93	15000	1000	250.0	٧	7.0	4.6
24545.000000	48.99		74.00	25.01	15000	1000	250.0	V	7.0	4.6
25845.027778		35.85	54.00	18.15	15000	1000	150.0	٧	26.0	6.0
25845.027778	49.84		74.00	24.16	15000	1000	150.0	V	26.0	6.0

Note1) Two graphs measured for both Vertical and Horizontal of the Antenna are combined into one graph.

Model Number


#1 (26.5 ~ 40 GHz)

Test Report

Common Information

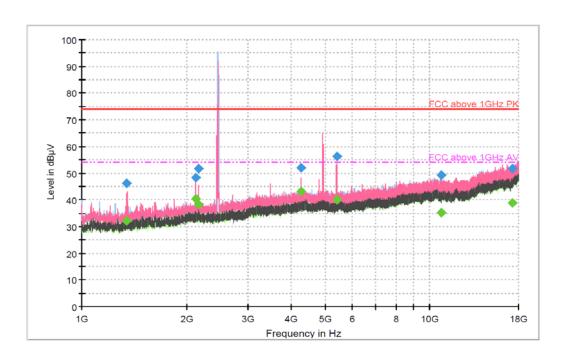
Project Number BVCO-WAY-P21070008

Location 10 m SAC System: (26.5 to 40.0) GHz Date: 2021.07.31 21.2 'C / 46.7 % R.H. Environment

Final Result

Frequency	MaxPeak	CAverage	Limit	Margin	Meas.	Bandwidth	Height	Pol	Azimuth	Corr.
(MHz)	(dBµV)	(dBµV)	(dBµV)	(dB)	Time	(kHz)	(cm)		(deg)	(dB)
					(ms)					
27930.035714		39.41	54.00	14.59	15000	1000	125.0	٧	66.0	12.8
27930.035714	53.14		74.00	20.86	15000	1000	125.0	>	66.0	12.8
30956.928572	53.90		74.00	20.10	15000	1000	395.0	٧	295.0	12.0
30956.928572		40.36	54.00	13.64	15000	1000	395.0	٧	295.0	12.0
32392.750000		39.43	54.00	14.57	15000	1000	125.0	٧	170.0	13.0
32392.750000	52.95		74.00	21.05	15000	1000	125.0	٧	170.0	13.0
35107.214286	54.71		74.00	19.29	15000	1000	388.0	٧	311.0	11.9
35107.214286		41.02	54.00	12.98	15000	1000	388.0	٧	311.0	11.9
37941.250000		40.12	54.00	13.88	15000	1000	105.0	٧	92.0	11.3
37941.250000	53.96		74.00	20.04	15000	1000	105.0	٧	92.0	11.3
39428.178571		40.69	54.00	13.31	15000	1000	125.0	Н	-15.0	13.9
39428.178571	54.33		74.00	19.67	15000	1000	125.0	Η	-15.0	13.9

Note1) Two graphs measured for both Vertical and Horizontal of the Antenna are combined into one graph.


#2 (1 ~ 18 GHz)

Test Report

Common Information

Project Number BVCO-WAY-P21070008

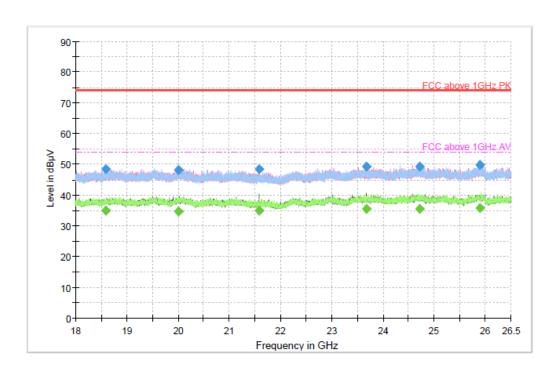
Location 10 m SAC
System: (1 to 18) GHz
Date: 2021.07.31
Environment 21.2 'C / 46.7% R.H.

Final Result

I IIIai_Nes	uit									
Frequency	MaxPeak	CAverage	Limit	Margin	Meas.	Bandwidth	Height	Pol	Azimuth	Corr.
(MHz)	(dBµV)	(dBµV)	(dBµV)	(dB)	Time (ms)	(kHz)	(cm)		(deg)	(dB)
1349.461111	46.05		74.00	27.95	15000	1000	277.0	٧	156.0	-10.2
1349.461111		32.15	54.00	21.85	15000	1000	277.0	V	156.0	-10.2
2132.116667		40.23	54.00	13.77	15000	1000	256.0	V	255.0	-6.7
2132.116667	48.27		74.00	25.73	15000	1000	256.0	V	255.0	-6.7
2161.194444		38.22	54.00	15.78	15000	100	134.0	V	226.0	-6.4
2161.194444	51.56		74.00	22.44	15000	1000	134.0	V	226.0	-6.4
4264.127778		43.11	54.00	10.89	15000	1000	215.0	V	127.0	-0.6
4264.127778	52.11		74.00	21.89	15000	1000	215.0	V	127.0	-0.6
5398.150000	56.21		74.00	17.79	15000	1000	102.0	V	122.0	-0.1
5398.150000		40.03	54.00	13.97	15000	1000	102.0	V	122.0	-0.1
10789.005556	49.13		74.00	24.87	15000	1000	308.0	V	66.0	6.3
10789.005556		35.15	54.00	18.85	15000	1000	308.0	V	66.0	6.3
17255.333333		38.91	54.00	15.09	15000	1000	133.0	V	100.0	11.8
17255.333333	51.56		74.00	22.44	15000	1000	133.0	V	100.0	11.8

Note1) Two graphs measured for both Vertical and Horizontal of the Antenna are combined into one graph. Note2) Radiated emissions (Tx / Rx frequency) from the transceiver shall be ignored.

- -Data transmission in the 2.4 GHz ISM Fundamental band (Bluetooth/Wi-Fi 802.11 b/g/n)
- -Data transmission in the 4.8 GHz ISM Harmonic band (Bluetooth/Wi-Fi 802.11 b/g/n)
- : Operating frequencies (2 400 ~2483.5) MHz


#2 (18 ~ 26.5 GHz)

Test Report

Common Information

Project Number BVCO-WAY-P21070008

Location 10 m SAC
System: (18.0 to 26.5) GHz
Date: 2021.07.31
Environment 21.2 'C / 46.7 % R.H.

Final Result

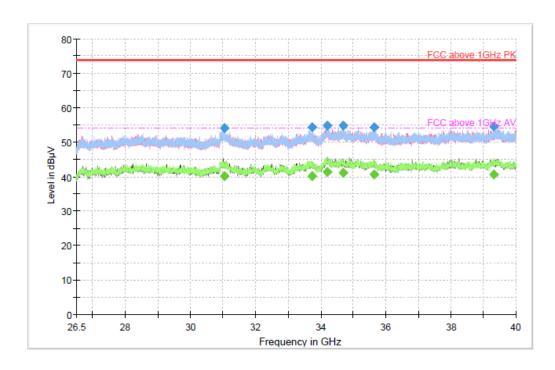
MaxPeak	CAverage	Limit	Margin	Meas.	Bandwidth	Height	Pol	Azimuth	Corr.
(dBµV)	(dBµV)	(dBµV)	(dB)	Time	(kHz)	(cm)		(deg)	(dB)
				(ms)					
48.48		74.00	25.52	15000	1000	215.0	Н	153.0	3.2
	34.95	54.00	19.05	15000	1000	215.0	Н	153.0	3.2
	34.71	54.00	19.29	15000	1000	353.0	Н	299.0	4.6
48.09		74.00	25.91	15000	1000	353.0	Н	299.0	4.6
	35.09	54.00	18.91	15000	1000	400.0	٧	113.0	5.6
48.34		74.00	25.66	15000	1000	400.0	V	113.0	5.6
	35.37	54.00	18.63	15000	1000	135.0	Н	198.0	5.1
49.17		74.00	24.83	15000	1000	135.0	Н	198.0	5.1
49.15		74.00	24.85	15000	1000	400.0	Н	298.0	4.9
	35.55	54.00	18.45	15000	1000	400.0	Н	298.0	4.9
	35.76	54.00	18.24	15000	1000	356.0	V	130.0	6.1
49.85		74.00	24.15	15000	1000	356.0	٧	130.0	6.1
	48.48 48.09 48.34 49.17 49.15	(dBμV) (dBμV) 48.48 34.95 34.71 48.09 35.09 48.34 35.37 49.17 35.55 35.76	(dBμV) (dBμV) (dBμV) 48.48 74.00 34.95 54.00 34.71 54.00 48.09 74.00 35.09 54.00 48.34 74.00 35.37 54.00 49.17 74.00 35.55 54.00 35.76 54.00	(dBμV) (dBμV) (dBμV) (dB) 48.48 74.00 25.52 34.95 54.00 19.05 34.71 54.00 19.29 48.09 74.00 25.91 35.09 54.00 18.91 48.34 74.00 25.66 35.37 54.00 18.63 49.17 74.00 24.83 49.15 74.00 24.85 35.55 54.00 18.45 35.76 54.00 18.24	(dBμV) (dBμV) (dBμV) (dB) Time (ms) 48.48 74.00 25.52 15000 34.95 54.00 19.05 15000 34.71 54.00 19.29 15000 48.09 74.00 25.91 15000 35.09 54.00 18.91 15000 48.34 74.00 25.66 15000 35.37 54.00 18.63 15000 49.17 74.00 24.83 15000 49.15 74.00 24.85 15000 35.55 54.00 18.45 15000 35.76 54.00 18.24 15000	(dBμV) Time (ms) (kHz) 48.48	(dBμV) (dBμV)	(dBμV) (dBμV) (dBμV) (dB) Time (ms) (kHz) (cm) 48.48	(dBμV) (dBμV) (dBμV) (dB) Time (ms) (kHz) (cm) (deg) 48.48 74.00 25.52 15000 1000 215.0 H 153.0 34.95 54.00 19.29 15000 1000 215.0 H 153.0 34.71 54.00 19.29 15000 1000 353.0 H 299.0 48.09 74.00 25.91 15000 1000 353.0 H 299.0 35.09 54.00 18.91 15000 1000 400.0 V 113.0 48.34 74.00 25.66 15000 1000 400.0 V 113.0 35.37 54.00 18.63 15000 1000 135.0 H 198.0 49.17 74.00 24.83 15000 1000 135.0 H 198.0 49.15 74.00

Note1) Two graphs measured for both Vertical and Horizontal of the Antenna are combined into one graph.

#2 (26.5 ~ 40 GHz)

Test Report

Common Information


Project Number BVCO-WAY-P21070008

 Location
 10 m SAC

 System:
 (26.5 to 40.0) GHz

 Date:
 2021.07.31

Environment 21.2 'C / 46.7 % R.H.

Final Result

Frequency	MaxPeak	CAverage	Limit	Margin	Meas.	Bandwidth	Height	Pol	Azimuth	Corr.
(MHz)	(dBµV)	(dBµV)	(dBµV)	(dB)	Time	(kHz)	(cm)		(deg)	(dB)
					(ms)					
31034.071429		40.16	54.00	13.84	15000	1000	400.0	٧	107.0	11.7
31034.071429	54.05		74.00	19.95	15000	1000	400.0	٧	107.0	11.7
33747.571429	54.31		74.00	19.69	15000	1000	300.0	Н	0.0	13.6
33747.571429		40.06	54.00	13.94	15000	1000	300.0	Н	0.0	13.6
34195.964286	54.77		74.00	19.23	15000	1000	400.0	Н	307.0	12.9
34195.964286		41.24	54.00	12.76	15000	1000	400.0	Н	307.0	12.9
34680.035714	54.91		74.00	19.09	15000	1000	200.0	٧	208.0	12.3
34680.035714		41.20	54.00	12.80	15000	1000	200.0	V	208.0	12.3
35639.500000	54.29		74.00	19.71	15000	1000	200.0	V	333.0	12.4
35639.500000		40.64	54.00	13.36	15000	1000	200.0	٧	333.0	12.4
39332.714286		40.56	54.00	13.44	15000	1000	125.0	Н	269.0	13.7
39332.714286	54.61		74.00	19.39	15000	1000	125.0	Н	269.0	13.7

Note1) Two graphs measured for both Vertical and Horizontal of the Antenna are combined into one graph.

Appendix A. Test site accreditations

Certificate	Nation	Agency	Code	Remark	
Accreditation	USA	A2LA	4068.03	31 July, 2019	
Accreditation	KOREA	RRA	KR0158	10 January, 2020	
Registration	Japan	VCCI	4013	17 February, 2020	
Accreditation	USA MRA	FCC	KR0158, 666061	17 March, 2020	
Accreditation	CANADA MRA	ISED	KR0158, 25944	17 March, 2020	
Accreditation	Vietnam MRA	MIC	KR0158	20 April, 2020	

Quality control in the testing laboratory is implemented as per ISO/IEC 17025 which is the "General requirements for the competent of calibration and testing laboratory".

Appendix B. Test Equipment

Conducted Emissions					
Description	Manufacturer	Model	Identifier	Cal. Date	Cal. Due
EMI Test Receiver	R&S	ESR	102529	2020.12.08	2021.12.08
LISN	R&S	ENV216	102437	2020.12.08	2021.12.08
LISN	R&S	ENV432	101474	2020.12.08	2021.12.08
50 ohm Termination	R&S	50 OHM	3	2020.12.09	2021.12.09
Software	R&S	EMC 32	10.50.40 Version	-	-

Radiated Emissions (30 MHz ~ 1 GHz)					
Equipment Name	Manufacturer	Model	Serial No.	Cal. Date	Cal. Due
EMI Test Receiver	R&S	ESW44	101812	2020.12.09	2021.12.09
Trilog Antenna (with 6dB ATT.)	Schwarzbeck	VULB9163	01199	2019.08.26	2021.08.26
SIGNAL CONDITIONING UNIT	R&S	SCU08F2	08400016	2020.12.09	2021.12.09
Software	R&S	EMC 32	10.35.10 Version	-	-

Radiated Emissions (1 GHz ~ 40 GHz)					
Equipment Name	Manufacturer	Model	Serial No.	Cal. Date	Cal. Due
EMI Test Receiver	R&S	ESW44	101812	2020.12.09	2021.12.09
HORN ANTENNA	R&S	HF907	102772	2020.12.09	2021.12.09
HORN ANTENNA	Steatite Antenna	QSH-SL-18-26- S-20	19926	2020.12.09	2021.12.09
HORN ANTENNA	Steatite Antenna	QSH-SL-26-40- K-20	18320	2020.12.09	2021.12.09
SIGNAL CONDITIONING UNIT	R&S	SCU-18F	180111	2020.12.09	2021.12.09
SIGNAL CONDITIONING UNIT	R&S	SCU-26F	260005	2020.12.08	2021.12.08
SIGNAL CONDITIONING UNIT	R&S	SCU-40F	400010	2020.12.08	2021.12.08
Software	R&S	EMC 32	10.35.10 Version	-	-

- The End -