

PCTEST KOREA CO., LTD.

(#1407) 13, Heungdeok 1-ro, Giheung-gu, Yongin-si, Gyeonggi-do 16954, Korea Tel. +82 31.660.7319 / Fax +82 31.660.7918 http://www.pctest.com

MEASUREMENT REPORT FCC Part 30 5G mmWave

Applicant Name:

Samsung Electronics Co., Ltd. 129, Samsung-ro, Yeongtong-gu, Suwon-si Gyeonggi-do, 16677, Korea

Date of Testing: 06/21/2021 - 08/31/2021 **Test Site/Location:** PCTEST KOREA Lab. Yongin-si, Gyeonggi-do, Korea **Test Report Serial No.:** 8K21060202-01-R1.A3L

FCC ID: A3LAT1K06-A10 APPLICANT: Samsung Electronics Co., Ltd.

Application Type:	Class II Permissive Change
Model:	AT1K06-A10
EUT Type:	AU(AT1K06)
FCC Classification:	Part 30 Fixed Transmitter (5GB)
FCC Rule Part:	30
Test Procedure(s):	ANSI C63.26-2015, KDB 971168 D01 v03r01,
	KDB 842590 D01 v01r02

This revised Test Report (S/N: 8K21060202-01-R1.A3L) supersedes and replaces the previously issued test report (S/N: 8K21060202-01.A3L) on the same subject device for the same type of testing as indicated. Please discard or destroy the previously issued test report(s) and dispose of it accordingly.

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in §2.947. Test results reported herein relate only to the item(s) tested.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

Prepared by Ian.Kim Test Engineer

Reviewed by Charles.Shin **Technical Manager**

FCC ID: A3LAT1K06-A10	PCTEST* Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dege 1 of 96
8K21060202-01-R1.A3L	06/21/2021-08/31/2021	AU(AT1K06)		Page 1 01 86
© 2021 PCTEST.				PK-QP-16-09 Rev.02

PK-QP-16-09 Rev.02

TABLE OF CONTENTS

1.0	INTR	RODUCTION	3
	1.1	Scope	3
	1.2	PCTEST KOREA Test Location	3
	1.3	Test Facility / Accreditations	3
2.0	PRO	DUCT INFORMATION	4
	2.1	Equipment Description	4
	2.2	Device Capabilities	4
	2.3	Test Configuration	4
	2.4	EMI Suppression Device(s)/Modifications	4
3.0	DES	CRIPTION OF TESTS	5
	3.1	Measurement Procedure	5
	3.2	Radiated Power and Radiated Spurious Emissions	5
4.0	MEA	SUREMENT UNCERTAINTY	8
5.0	TES	T EQUIPMENT CALIBRATION DATA	9
6.0	SAM	IPLE CALCULATIONS	10
7.0	TES	T RESULTS	11
	7.1	Summary	11
	7.2	Occupied Bandwidth	12
	7.3	Equivalent Isotropic Radiated Power (EIRP) Density	17
	7.4	RF Conducted Output Power	28
	7.5	Radiated Spurious and Harmonic Emissions	31
	7.6	Band Edge Emissions	69
	7.7	Frequency Stability / Temperature Variation	77
8.0	CON	ICLUSION	80
9.0	APP	ENDIX A	81
	9.1	Introduction (KDB 484596 Section 3 a)	81
	9.2	Explain the Differences (KDB 484596 Section 3 b)	81
	9.3	Spot Check Verification Data (KDB 484596 Section 3 c)	81
	9.4	Reference Section (KDB 484596 Section 3 d)	82
10.0	APP	ENDIX B	83
	10.1	HARMONIC MIXER Verification Certificate	83

FCC ID: A3LAT1K06-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 2 of 96
8K21060202-01-R1.A3L	06/21/2021-08/31/2021	AU(AT1K06)		Page 2 01 86
B 0004 DOTEOT				DK OD 40 00 Day 02

1.0 INTRODUCTION

1.1 Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Innovation, Science and Economic Development Canada.

1.2 PCTEST KOREA Test Location

These measurement tests were conducted at the PCTEST KOREA CO., LTD. facility located at (#1407) 13, Heungdeok 1-ro, Giheung-gu, Yongin-si, Gyeonggi-do 16954, Korea.

1.3 Test Facility / Accreditations

Measurements were performed at PCTEST KOREA Lab located in Yongin-si, Gyeonggi, Korea.

- PCTEST KOREA is an ISO 17025:2005 accredited test facility under the National Institute of Standards and Technology (NIST) with Certificate number 600143-0 for Specific Absorption Rate (SAR), where applicable, and Electromagnetic Compatibility (EMC) testing for FCC and Innovation, Science, and Economic Development Canada rules.
- PCTEST KOREA facility is accredited and designated in accordance with the provision of Radio Wave Act and International Standard ISO/IEC 17025:2017 under the National Radio Research Agency.
 - Designation Number: KR0169
 - Test Firm Registration Number: 417945

FCC ID: A3LAT1K06-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	SUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 2 of 96
8K21060202-01-R1.A3L	06/21/2021-08/31/2021	AU(AT1K06)		Page 3 01 86
© 2021 PCTEST.				PK-QP-16-09 Rev.02

2.0 PRODUCT INFORMATION

2.1 Equipment Description

The Equipment Under Test (EUT) is the **Samsung 5G Access Unit FCC ID: A3LAT1K06-A10**. The test data contained in this report pertains only to the emissions due to the EUT's 5G mmWave function.

The EUT supports 100 MHz bandwidth. The EUT supports multiple component carrier configuration which also supports for contiguous and non-contiguous transmit condition.

The EUT operates as a 4X4 MIMO system that consists of four antenna arrays (denoted herein as "Antenna A", "Antenna B", "Antenna C" and "Antenna D". Each of the four antenna arrays has 256 antenna elements for a total of 1024 antenna elements. Of the 4 antenna arrays, Antenna A and Antenna C have the same polarization (135 degrees from horizontal) and Antenna B and Antenna D have the same polarization (45 degrees from horizontal). Beamforming is used with Antenna A and Antenna C and it is also used with Antenna B and Antenna D. Signal correlation is possible between the outputs of all four antenna arrays.

The unit is powered by a nominal DC voltage source.

See Section 3.2 for the antenna polarization of the 5G Access Unit and the measurement antenna.

Test Device Serial No.: EP96-05810A

2.2 Device Capabilities

This device contains the following capabilities:

5G NR (n260) with multiple configurations of operation as below: 100 MHz bandwidth with single component carrier 100 MHz bandwidth with up to 8 contiguous component carrier 100 MHz bandwidth with up to 8 Non-contiguous component carrier The device is supports QPSK, 16QAM and 64QAM of CP-OFDM.

2.3 Test Configuration

The EUT was tested per the guidance of KDB 842590 D01 v01r02 and ANSI C63.26-2015. See Section 7.0 of this test report for a description of the radiated tests.

2.4 EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and no modifications were made during testing.

FCC ID: A3LAT1K06-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 4 of 96
8K21060202-01-R1.A3L	06/21/2021-08/31/2021	AU(AT1K06)		Page 4 01 86
© 2021 PCTEST.				PK-QP-16-09 Rev.02

DESCRIPTION OF TESTS 3.0

3.1 **Measurement Procedure**

The measurement procedures described in the document titled "American National Standard for Compliance Testing of Transmitter Used in Licensed Radio Service" (ANSI C63.26-2015) and the guidance provided in KDB 842590 D01 v01r02 were used in the measurement of the EUT.

Radiated Power and Radiated Spurious Emissions 3.2

§30.202, §30.203

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for Final measurement and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. The test site inside the chamber is a 8.5 m(L) x 6.1 m(W) x 5.6 m(H) elliptical, obstruction-free area in accordance with Figure 5.7 of Clause 5 in ANSI C63.4-2014. Absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections for measurements above 1 GHz. For measurements below 1 GHz, the absorbers are removed. A raised turntable is used for radiated measurement. The turn table is a continuously rotatable, remote-controlled, metallic turntable and 2 meters (6.56 ft.) in diameter. The turn table is flush with the raised floor of the chamber in order to maintain its function as a ground plane. An 80 cm tall test table made of Styrodur is placed on top of the turn table. A Styrodur pedestal is placed on top of the test table to bring the total table height to 1.5 m.

Made of Styrodur is placed on top of the turn table. A Styrodur pedestal is placed on top of the test table to bring the total table height to 1.5 m for measurements above 1 GHz.

The equipment under test was transmitting while connected to its integral antenna and is placed on a turntable. The measurement antenna is in the far field of the EUT per formula $2D^2/\lambda$ where D is the larger between the dimension of the measurement antenna and the transmitting antenna of the EUT. In this case, "D" is the largest dimension of the measurement antenna. The EUT is manipulated through all orthogonal planes representative of its typical use to achieve the highest reading on the receive spectrum analyzer.

Frequency Range [GHz]	Wavelength [cm]	Far Field Distance [m]	Measurements Distance [m]
18 to 40	0.749	2.61	2.61
40 to 60	0.500	1.39	2.61
60 to 90	0.333	0.91	2.61
90 to 140	0.214	0.58	1.00
140 to 220	0.150	0.39	1.00

Table 3-1. Far-Field Distance & Measurement Distance per Frequency Range

Radiated power levels are investigated with the receive antenna horizontally and vertically polarized. Additionally, the receive antenna was rotated on various angles to investigate worst case emissions on each EUT antenna array. The EUT antenna array polarization and horn antennas angle are denoted as follows:

FCC ID: A3LAT1K06-A10	PCTEST* Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dara 5 -(00
8K21060202-01-R1.A3L	06/21/2021-08/31/2021	AU(AT1K06)		Page 5 of 86
© 2021 PCTEST.				PK-QP-16-09 Rev.02

PK-QP-16-09 Rev.02

Horn antenna at 135 degrees

5G Access Unit Antenna Array Polarization

The maximized power level is recorded using the spectrum analyzer "Channel Power" function with the integration band set to the emissions' occupied bandwidth. The EIRP is calculated from the raw power level measured with the spectrum analyzer using the formulas shown below.

Effective Isotropic Radiated Power Sample Calculation

The measured e.i.r.p is converted to E-field in V/m. Then the distance correction is applied before converted back to calculated e.i.r.p.as explained in KDB 971168 D01.

Field Strength [dB V/m]	= Measured Value (dBm) + AFCL (dB/m) + 107		
	= -16.01 dBm + (42.91 dB/m + 13.26 dB) + 107 = 147.16 dBuV/m		
	= 10^(147.16/20)/1000000		
	= 22.80 V/m		
e.i.r.p. (dBm)	= 10*log(E-Field*D _m)^2/30) + 30 dB		
	= 10*log(22.80 V/m * 2.61 m)^2/30) + 30 dB		
	= 50.72 dBm e.i.r.p.		

FCC ID: A3LAT1K06-A10	MEASUREMENT REPORT (Class II Permissive Change)	MEASUREMENT REPORT	Approved by:
		(Class II Permissive Change)	Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 6 of 86
8K21060202-01-R1.A3L	06/21/2021-08/31/2021	AU(AT1K06)	Page 6 01 86
© 2021 PCTEST.			PK-QP-16-09 Rev.02

Sample MIMO e.i.r.p. Calculation:

The e.i.r.p at Antenna A, Antenna B, Antenna C and Antenna D were first measured individually. The measured values were then summed in linear power units then converted back to dBm for the co-polarized antennas.

Conversion to linear value	= 10^(e.i.r.p/10) = 10^(50.69/10) = 118032 mW		
MIMO e.i.r.p.	= e.i.r.pA + e.i.r.pc		
	= 118032 mW + 110407 mW		
	= 10*log(228439 mW)		
	= 53.59 dBm		
For summation across all ant	ennas,		
MIMO e.i.r.p.	= e.i.r.p. _A + e.i.r.p. _B + e.i.r.p.c + e.i.r.p. _D		
	= 118032 mW + 121898 mW + 110407 mW + 123026 mW		
	= 10*log(473363 mW)		
	= 56.75 dBm		

FCC ID: A3LAT1K06-A10	Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 7 of 96
8K21060202-01-R1.A3L	06/21/2021-08/31/2021	AU(AT1K06)		Fage / 01 00
© 2021 PCTEST.				PK-QP-16-09 Rev.02

4.0 MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.4-2014. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95% level of confidence. The measurement uncertainty shown below meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Contribution	Expanded Uncertainty (±dB)
Conducted Bench Top Measurements	1.20
Radiated Disturbance (<1GHz)	3.01
Radiated Disturbance (>1GHz)	5.56
Radiated Disturbance (>18GHz)	3.16

FCC ID: A3LAT1K06-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 9 of 90
8K21060202-01-R1.A3L	06/21/2021-08/31/2021	AU(AT1K06)		Page 8 of 86
© 2021 PCTEST.				PK-QP-16-09 Rev.02

5.0 TEST EQUIPMENT CALIBRATION DATA

Test Equipment Calibration is traceable to the National Institute of Standards and Technology (NIST). Measurements antennas used during testing were calibrated in accordance to the requirements of ANSI C63.5-2017.

Manufacture	Model	Description	Cal Date	Cal interval	Cal Due	Serial Number
Rohde & Schwarz	FSW	Signal & Spectrum Analyzer	09/17/2020	Annual	09/16/2021	101250
KIKISUI	PWR1201ML	DC POWER SUPPLY	05/25/2021	Annual	05/24/2022	ZL000972
SUKSAN TECHNOLOGY	SE-CT-10	Temperature Chamber	09/17/2020	Annual	09/16/2021	191021
Schwarzbeck	VULB9162	Broadband TRILOG Antenna	07/13/2021	Biennial	07/12/2023	9162-217
Sunol sciences	DRH-118	Horn Antenna	07/14/2021	Biennial	07/13/2023	A102416-1
Schwarzbeck	BBHA 9170	Horn Antenna	09/02/2020	Biennial	09/01/2022	1037
MIWV	261F-25/387	Horn Antenna	07/13/2021	Annual	07/12/2022	2019
MIWV	261U-25/383	Horn Antenna	07/13/2021	Annual	07/12/2022	2019
MIWV	261G-25/387	Horn Antenna	07/19/2021	Annual	07/18/2022	-
MIWV	261E-25/387	Horn Antenna	07/13/2021	Annual	07/12/2022	2019
Radiometer Physics	FS-Z220	Harmonic Mixer	10/21/2020	Annual	10/20/2021	101015
Radiometer Physics	FS-Z140	Harmonic Mixer	03/08/2021	Annual	03/07/2022	101135
Radiometer Physics	FS-Z60	Harmonic Mixer	03/08/2021	Annual	03/07/2022	100981
Rohde & Schwarz	FS-Z90	Harmonic Mixer	10/21/2020	Annual	10/20/2021	101860

Table 5-1. Test Equipment

Notes:

For equipment listed above that has a calibration date or calibration due date that falls within the test date range, care was taken to ensure that this equipment was used after the calibration date and before the calibration due date.

FCC ID: A3LAT1K06-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 0 of 96
8K21060202-01-R1.A3L	06/21/2021-08/31/2021	AU(AT1K06)		Page 9 of 86
© 2021 PCTEST.				PK-QP-16-09 Rev.02

6.0 SAMPLE CALCULATIONS

Emission Designator

QPSK Modulation

Emission Designator = 800MG7D

BW = 800 MHz G = Phase Modulation 7 = Quantized/Digital Info D = Data transmission, telemetry, telecommand

QAM Modulation

Emission Designator = 802MW7D

BW = 802 MHz W = Amplitude/Angle Modulated 7 = Quantized/Digital Info D = Data transmission, telemetry, telecommand

FCC ID: A3LAT1K06-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 10 of 90
8K21060202-01-R1.A3L	06/21/2021-08/31/2021	AU(AT1K06)		Page 10 of 86
© 2021 PCTEST.				PK-QP-16-09 Rev.02

7.0 TEST RESULTS

7.1 Summary

Company Name:	Samsung Electronics Co., Ltd.
FCC ID:	A3LAT1K06-A10
FCC Classification:	Part 30 Fixed Transmitter (5GB)
Mode(s):	TDD

FCC Part Section(s)	Test Description	Test Limit	Test Condition	Test Result	Reference
2.1049	Occupied Bandwidth	N/A		PASS	Section 7.2
30.202	Equivalent Isotropic Radiated Power Density	75 dBm/100 MHz		PASS	Section 7.3
2.1046	RF Output Power	N/A		PASS	Section 7.4
2.1051 30.203	Out-of-Band Spurious Emissions	-13 dBm/MHz for all out-of- band emissions	RADIATED	PASS	Section 7.5
2.1051 30.203	Out-of-Band Emissions at the Band Edge	13 dBm/MHz for all out-of-band emissions, -5 dBm/MHz from the band edge up to 10 % of the channel BW		PASS	Section 7.6
2.1055	Frequency Stability	Fundamental emissions stay within authorized frequency block		PASS	Section 7.7

Table 7-1. Summary of Radiated Test Results

Notes:

- 1) For comparison with the original authorization, the testing was performed on the worst case of the orginal test results
- 2) Per 2.1057(a)(3), spurious emissions were investigated up to 100 GHz for n261 and up to 200 GHz for n260.
- 3) All radiated emission measurements at the band edge are converted to an equivalent conductive power by subtracting the known antenna gain from the EIRP measured at each frequency of interest. These emissions are compared to the 30.203 spurious emission limits as conductive power levels.
- 4) The radiated RF output power and all out-of-band emissions in the spurious domain are evaluated to the EIRP limits.
- 5) The fundamental band consists of 1 8 component carriers, referred as "CC" in this report.
- 6) In the following tables, the term "CCs Active" refers to which component carrier is transmitting for a particular test.
- 7) CCs active 1, 8 = 1 Components Carriers Active Channel, 8 = 8 Component Carriers Active. 8(NC) = 8 Noncontiguous Component Carriers Active. Each component carrier is 100 MHz bandwidth.

FCC ID: A3LAT1K06-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	AMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 11 of 90
8K21060202-01-R1.A3L	06/21/2021-08/31/2021	AU(AT1K06)		Page 11 of 86
© 2021 PCTEST.				PK-QP-16-09 Rev.02

7.2 Occupied Bandwidth §2.1049

Test Overview

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 % of the total mean power radiated by a given emission shall be measured. All modes of operation were investigated and the worst case configuration results are reported in this section.

Test Procedure Used

ANSI C63.25-2015 Section 5.4.3 KDB 842590 D01 v01r02 Section 4.3

Test Settings

- 1. The signal analyzer's automatic bandwidth measurement capability was used to perform the 99 % occupied bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = 1 5 % of the expected OBW
- 3. VBW \geq 3 x RBW
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep = auto couple
- 7. The trace was allowed to stabilize
- 8. If necessary, steps 2 7 were repeated after changing the RBW such that it would be within 1 5 % of

the 99 % occupied bandwidth observed in Step 7

Test Notes

1. For comparison with the original authorization, the testing was performed on the worst case of the orginal test results.

FCC ID: A3LAT1K06-A10	Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 12 of 96
8K21060202-01-R1.A3L	06/21/2021-08/31/2021	AU(AT1K06)	Page 12 of 86
© 2021 PCTEST.			PK-QP-16-09 Rev.02

7.2.1 Antenna A Occupied Bandwidth

Bandwidth [MHz]	Channel	Antenna	CCs active	Modulation	OBW [MHz]
100 Mid	А	1	64QAM	94.48	
		8	16QAM	788.50	

Plot 7-1. Occupied Bandwidth Plot (100 MHz BW 1CC 64QAM Mid Channel)

Plot 7-2. Occupied Bandwidth Plot (100 MHz 8CC BW 16QAM Mid Channel)

FCC ID: A3LAT1K06-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	ISUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 12 of 96
8K21060202-01-R1.A3L	06/21/2021-08/31/2021	AU(AT1K06)		Page 13 of 86
© 2021 PCTEST.				PK-QP-16-09 Rev.02

PK-QP-16-09 Rev.02

7.2.2 Antenna B Occupied Bandwidth

Bandwidth [MHz]	Channel	Antenna	CCs active	Modulation	OBW [MHz]
100 Mid	В	1	64QAM	94.51	
		8	16QAM	789.14	

Plot 7-3. Occupied Bandwidth Plot (100 MHz BW 1CC 64QAM Mid Channel)

Plot 7-4. Occupied Bandwidth Plot (100 MHz 8CC BW 16QAM Mid Channel)

FCC ID: A3LAT1K06-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	MSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		
8K21060202-01-R1.A3L	06/21/2021-08/31/2021	AU(AT1K06)		Page 14 of 86
© 2021 PCTEST.	•	•		PK-QP-16-09 Rev.02

PK-QP-16-09 Rev.02

7.2.3 Antenna C Occupied Bandwidth

Bandwidth [MHz]	Channel	Antenna	CCs active	Modulation	OBW [MHz]
100	Mid	0	1	64QAM	94.50
	IVIIG	C	8	16QAM	94.50 788.33

Plot 7-5. Occupied Bandwidth Plot (100 MHz BW 1CC 64QAM Mid Channel)

Plot 7-6. Occupied Bandwidth Plot (100 MHz 8CC BW 16QAM Mid Channel)

FCC ID: A3LAT1K06-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 15 of 90
8K21060202-01-R1.A3L	06/21/2021-08/31/2021	AU(AT1K06)		Page 15 of 86
© 2021 PCTEST.		·		PK-QP-16-09 Rev.02

PK-QP-16-09 Rev.02

7.2.4 Antenna D Occupied Bandwidth

Bandwidth [MHz]	Channel	Antenna	CCs active	Modulation	OBW [MHz]
100	Mid	D	1	64QAM	94.46
	IVIIG	D	8	16QAM	788.92

Plot 7-7. Occupied Bandwidth Plot (100 MHz BW 1CC 64QAM Mid Channel)

Plot 7-8. Occupied Bandwidth Plot (100 MHz 8CC BW 16QAM Mid Channel)

FCC ID: A3LAT1K06-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 16 of 96
8K21060202-01-R1.A3L	06/21/2021-08/31/2021	AU(AT1K06)		Page 16 of 86
© 2021 PCTEST.		•		PK-QP-16-09 Rev.02

PK-QP-16-09 Rev.02

7.3 Equivalent Isotropic Radiated Power (EIRP) Density §2.1046 §30.202

Test Overview

Equivalent Isotropic Radiated Power (EIRP) measurements are performed using broadband horn antennas. All measurements are performed as RMS average measurements while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies.

The average power of the sum of all antenna elements is limited to an equivalent isotopically radiated power (EIRP) density of +75 dBm / 100 MHz.

Test Procedures Used

ANSI C63.26-2015 Section 5.2.4.4.1 ANSI C63.26-2015 Section 6.4 KDB 842590 D01 v01r02 Section 4.2

Test Settings

- 1. Radiated power measurements are performed using the signal analyzer's "channel power" measurement capability for signals with continuous operation.
- 2. RBW = 1 5 % of the expected OBW, not to exceed 1 MHz
- 3. VBW \geq 3 x RBW
- 4. Span = 2x to 3x the OBW
- 5. No. of sweep points \geq 2 x span / RBW
- 6. Detector = RMS
- 7. The integration bandwidth was roughly set equal to the measured (EIRP) Density of the signal for signals with continuous operation. For signals with burst transmission, the "gating" function was enabled to ensure that measurements are performed during times in which the transmitter is operating at its maximum power
- 8. Trace mode = trace averaging (RMS) over 100 sweeps
- 9. The trace was allowed to stabilize

FCC ID: A3LAT1K06-A10	Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 17 of 96
8K21060202-01-R1.A3L	06/21/2021-08/31/2021	AU(AT1K06)	Page 17 01 86
© 2021 PCTEST.			PK-QP-16-09 Rev.02

- 1) For comparison with the original authorization, the testing was performed on the worst case of the original test results.
- 2) For multiple carrier configuration, the highest value among all carrier powers was taken.
- 3) The EUT was tested while positioned upright and mounted on a mast at 1.5 m height. The worst case emissions are reported with the EUT in this fixed position and with the modulations and active component carriers shown in the tables below.
- 4) The EIRP measurements of the co-polarized antenna arrays (Antenna A/C and Antenna B/D) were added together to address MIMO concerns referenced in ANSI C63.26-2015 Section 6.4.
- 5) Elements within the same antenna array are correlated to produce beamforming array gain. During testing, only one antenna array was active.
- 6) Measurements were taken in the far field of the mmWave signal based on the formula: R \geq 2D^2/wavelength.
- 7) The test case with from 1CC to 8CC active, was selected for the worst case emission testing as it created the highest EIRP within 100 MHz bandwidth carrier configurations.
- 8) The average EIRP reported below is calculate per section 5.2.7 of ANSI C63.26-2015 which states:
- 9) EIRP (dBm) = E (dBuV/m) + 20log(D) 104.8; where D is the measurement distance (in the far field region) in m. For this section, all EIRP density measurements were performed at a distance of 3.20 m, so, the effective correction is:

EIRP (dBm) = E (dBuV/m) - 96.46 dB

= Analyzer Level (dBm) + AFCL (dB/m) + 107 - 96.46 dB

= Analyzer Level (dBm) + AFCL (dB/m) + 12.30

*AFCL (dB/m) contains measurement antenna factor(dB/m) and cable loss(dB) as below:

Frequency [GHz]	Antenna Factor (dB/m)	Cable loss [dB]	Distance factor [dB]	AFCL (dB/m)
37.05	42.91	9.55	12.30	64.76
38.50	43.70	9.76	12.30	65.76
39.95	44.43	9.77	12.30	66.50

Table 7-6. Adopted AFCL value in the calculation

10) The angle of the horn antenna was rotated to maximize and find the worst case emissions. Worst case EIRP is reported below.

FCC ID: A3LAT1K06-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dege 10 of 96
8K21060202-01-R1.A3L	06/21/2021-08/31/2021	AU(AT1K06)		Page 18 of 86
© 2021 PCTEST.		•		PK-QP-16-09 Rev.02

PK-QP-16-09 Rev.02

© 2021 PCTEST.

7.3.1 Antenna A EIRP Density

Antenna Bandwidth [MHz] Configuration	Configuration	Chan	Frequency	Modulation	Analyzer Level	AFCL	Average e.i.r.p PSD	PSD Limit	Margin	
	Chan.	[GHz]	Modulation	[dBm]	[dBm]	[dBm/100MHz]	[dBm/100MHz]	[dB]		
	100	1CC	Low	37.050	64QAM	-15.18	64.76	49.58	75.00	25.42
А	100	8CC	Low	37.050	64QAM	-20.15	64.76	44.61	75.00	30.39
	100	8NC	High	39.950	64QAM	-20.96	66.50	45.54	75.00	29.46

Table 7-7. Antenna A EIRP Density Summary Data

Plot 7-9. Antenna A EIRP Density Plot (100 MHz BW 1CC 64QAM Low Channel)

Plot 7-10. Antenna A EIRP Density Plot (100 MHz 8CC BW 64QAM Low Channel)

FCC ID: A3LAT1K06-A10	Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 10 of 90
8K21060202-01-R1.A3L	06/21/2021-08/31/2021	AU(AT1K06)	Page 19 01 86

PK-QP-16-09 Rev.02

Plot 7-11. Antenna A EIRP Density Plot (100 MHz BW 8NC 64QAM High Channel)

FCC ID: A3LAT1K06-A10	PCTEST* Proud to be part of @ element	PCTEST MEASUREMENT REPORT (Class II Permissive Change) STMSUNG	
Test Report S/N:	Test Dates:	EUT Type:	Dage 20 of 96
8K21060202-01-R1.A3L	06/21/2021-08/31/2021	AU(AT1K06)	Page 20 01 86
© 2021 PCTEST.			PK-QP-16-09 Rev.02

© 2021 PCTEST.

7.3.2 Antenna B EIRP Density

Antenna	Bandwidth	Configuration	Chan	Frequency	Modulation	Analyzer Level	AFCL	Average e.i.r.p PSD	PSD Limit	Margin
	[MHz]	Conngulation	onan	[GHz]	modulation	[dBm]	[dBm]	[dBm/100MHz]	[dBm/100MHz]	[dB]
В	100	1CC	Low	37.050	64QAM	-14.99	64.76	49.77	75.00	25.23
	100	8CC	Low	37.050	64QAM	-20.22	64.76	44.54	75.00	30.46
	100	8NC	High	39.950	64QAM	-20.84	66.50	45.66	75.00	29.34

Table 7-8. Antenna B EIRP Density Summary Data

Plot 7-12. Antenna B EIRP Density Plot (100 MHz BW 1CC 64QAM Low Channel)

Plot 7-13. Antenna B EIRP Density Plot (100 MHz 8CC BW 64QAM Low Channel)

FCC ID: A3LAT1K06-A10	PCTEST* Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Baga 21 of 96
8K21060202-01-R1.A3L	06/21/2021-08/31/2021	AU(AT1K06)	Page 21 01 86

PK-QP-16-09 Rev.02

Plot 7-14. Antenna B EIRP Density Plot (100 MHz BW 8NC 64QAM High Channel)

FCC ID: A3LAT1K06-A10	PCTEST* Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 22 of 96
8K21060202-01-R1.A3L	06/21/2021-08/31/2021	AU(AT1K06)	Page 22 01 86
© 2021 PCTEST.			PK-QP-16-09 Rev.02

© 2021 PCTEST.

7.3.3 Antenna C EIRP Density

Antenna	Bandwidth	Configuration	Chan	Frequency	Modulation	Analyzer Level	AFCL	Average e.i.r.p PSD	PSD Limit	Margin
	[MHz]	Conngulation	onan	[GHz]	modulation	[dBm]	[dBm]	[dBm/100MHz]	[dBm/100MHz]	[dB]
С	100	1CC	Low	37.050	64QAM	-14.84	64.76	49.92	75.00	25.08
	100	8CC	Low	37.050	64QAM	-20.16	64.76	44.60	75.00	30.40
	100	8NC	High	39.950	64QAM	-20.52	66.50	45.98	75.00	29.02

Table 7-9. Antenna C EIRP Density Summary Data

Plot 7-15. Antenna C EIRP Density Plot (100 MHz BW 1CC 64QAM Low Channel)

Plot 7-16. Antenna C EIRP Density Plot (100 MHz 8CC BW 64QAM Low Channel)

FCC ID: A3LAT1K06-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 22 of 96
8K21060202-01-R1.A3L	06/21/2021-08/31/2021	AU(AT1K06)	Page 23 01 86

PK-QP-16-09 Rev.02

Plot 7-17. Antenna C EIRP Density Plot (100 MHz BW 8NC 64QAM High Channel)

FCC ID: A3LAT1K06-A10	PCTEST* Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 24 of 96
8K21060202-01-R1.A3L	06/21/2021-08/31/2021	AU(AT1K06)	Page 24 01 86
© 2021 PCTEST.			PK-QP-16-09 Rev.02

© 2021 PCTEST.

7.3.4 Antenna D EIRP Density

Antenna	Bandwidth	Configuration	Chan	Frequency	Modulation	Analyzer Level	AFCL	Average e.i.r.p PSD	PSD Limit	Margin
	[MHz]	comgulation	onan	[GHz]	Modulation	[dBm]	[dBm]	[dBm/100MHz]	[dBm/100MHz]	[dB]
D	100	1CC	Low	37.050	64QAM	-14.53	64.76	50.23	75.00	24.77
	100	8CC	Low	37.050	64QAM	-20.17	64.76	44.59	75.00	30.41
	100	8NC	High	39.950	64QAM	-20.96	66.50	45.54	75.00	29.46

Table 7-10. Antenna D EIRP Density Summary Data

Plot 7-18. Antenna D EIRP Density Plot (100 MHz BW 1CC 64QAM Low Channel)

Plot 7-19. Antenna D EIRP Density Plot (100 MHz 8CC BW 64QAM Low Channel)

FCC ID: A3LAT1K06-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 25 of 26
8K21060202-01-R1.A3L	06/21/2021-08/31/2021	AU(AT1K06)	Page 25 01 86

PK-QP-16-09 Rev.02

Plot 7-20. Antenna D EIRP Density Plot (100 MHz BW 8NC 64QAM High Channel)

FCC ID: A3LAT1K06-A10	PCTEST* Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 26 of 96
8K21060202-01-R1.A3L	06/21/2021-08/31/2021	AU(AT1K06)	Page 26 01 86
© 2021 PCTEST.			PK-QP-16-09 Rev.02

7.3.5 MIMO EIRP Density

Antenna	Bandwidth	Configuration	Chan	Frequency	Modulation	Ant A	Ant C	Average e.i.r.p PSD	PSD Limit	Margin
	[MHz]	Conngaration	•	[GHz]	modulation	[mW]	[mW]	[dBm/100MHz]	[dBm/100MHz]	[dB]
A + C	100	1CC	Low	37.050	64QAM	90.84	98.24	52.77	75.00	22.23
	100	8CC	Low	37.050	64QAM	28.93	28.86	47.62	75.00	27.38
	100	8NC	High	39.950	64QAM	35.83	39.66	48.78	75.00	26.22

Table 7-11. MIMO EIRP Density Summary Data (Antenna A + C)

Antenna	Bandwidth	Configuration	Chan	Frequency	Modulation	Ant B	Ant D	Average e.i.r.p PSD	PSD Limit	Margin
	[MHz]	Conngalation	onani	[GHz]	Modulation	[mW]	[mW]	[dBm/100MHz]	[dBm/100MHz]	[dB]
B + D	100	1CC	Low	37.050	64QAM	94.91	105.51	53.02	75.00	21.98
	100	8CC	Low	37.050	64QAM	28.46	28.79	47.58	75.00	27.42
	100	8NC	High	39.950	64QAM	36.84	35.83	48.61	75.00	26.39

Table 7-12. MIMO EIRP Density Summary Data (Antenna B + D)

Antenna	Band width	Configuration	Chan.	Freq.	Modulat	Ant A	Ant B	Ant C	Ant D	Average e.i.r.p PSD	PSD Limit	Margin
	[MHz]			[GHz]	ion	[mW]	[mW]	[mW]	[mW]	[dBm/100MHz]	[dBm/100MHz]	[dB]
	100	1CC	Low	37.050	64QAM	90.84	94.91	98.24	105.51	55.91	75.00	19.09
A + B + C + D	100	8CC	Low	37.050	64QAM	28.93	28.46	28.86	28.79	50.61	75.00	24.39
C+D	100	8NC	High	39.950	64QAM	35.83	36.84	39.66	35.83	51.71	75.00	23.29

Table 7-13. MIMO EIRP Density Summary Data (Antenna A + B + C + D)

FCC ID: A3LAT1K06-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dege 07 of 96
8K21060202-01-R1.A3L	06/21/2021-08/31/2021	AU(AT1K06)		Page 27 01 86
© 2021 PCTEST.				PK-QP-16-09 Rev.02

7.4 RF Conducted Output Power §2.1046

Test Overview

RF conducted output power measurements are performed using broadband horn antennas. The conducted power is determined by maximizing the full spectrum EIRP for all component carrier configurations and then subtracting the known antenna gain from the EIRP. All measurements are performed as RMS average measurements while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies.

Test Procedures Used

ANSI C63.26-2015 Section 5.2.4.4.1 ANSI C63.26-2015 Section 6.4

Test Settings

- 1. Radiated power measurements are performed using the signal analyzer's "channel power" measurement capability for signals with continuous operation.
- 2. RBW = 1 5 % of the expected OBW
- 3. VBW \geq 3 x RBW
- 4. Span = 2x to 3x the OBW
- 5. No. of sweep points \geq 2 x span / RBW
- 6. Detector = RMS
- 7. The integration bandwidth was roughly set equal to the measured RF Conducted Output Power of the signal for signals with continuous operation. For signals with burst transmission, the "gating" function was enabled to ensure that measurements are performed during times in which the transmitter is operating at its maximum power
- 8. Trace mode = trace averaging (RMS) over 100 sweeps
- 9. The trace was allowed to stabilize

FCC ID: A3LAT1K06-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 28 of 86
8K21060202-01-R1.A3L	06/21/2021-08/31/2021	AU(AT1K06)	Page 28 of 86
© 2021 PCTEST.			PK-QP-16-09 Rev.02

- 1) For comparison with the original authorization, the testing was performed on the worst case of the orginal test results.
- 2) For multiple carrier configuration, the highest value among all carrier powers was taken.
- 3) The EUT was tested while positioned upright and mounted on a mast at 1.5 m height. The worst case emissions are reported with the EUT in this fixed position and with the modulations and active component carriers shown in the tables below.
- 4) Elements within the same antenna array are correlated to produce beamforming array gain, only one antenna array was active.
- 5) Measurements were taken in the far field of the mmWave signal based on the formula: $R \ge 2D^2/wavelength$.
- 6) The test case with from 1CC to 8CC active, was selected for the worst case emission testing as it created the highest EIRP within 100 MHz bandwidth carrier configurations.
- 7) The average EIRP reported below is calculated per formula specific in d) of ANSI C63.26-2015 Section 5.2.7: EIRP (dBm) = E (dBµV/m) + 20log(D) -104.8; where D is the measurement distance (in the far field region) in m. For this section, all EIRP density measurements were performed at a distance of 3.20 m, so the effective correction is: EIRP (dBm) = E (dBuV/m) - 96.46 dB = Analyzer Level (dBm) + AFCL (dB/m) + 107 dB - 96.46 dB = Analyzer Level (dBm) + AFCL (dB/m) + 12.30 dB
- 8) The conducted average power over the full channel BW is calculated as follows: Conducted Average Power (dBm) = Average EIRP (dBm) – Antenna Gain (dBi)
- 9) Per ANSI C63.26-2015 Section 6.4, individual EIRPs are also summed before compared to the limit.
- 10) The angle of the horn antenna was rotated to maximize and find the worst case emissions. Worst case EIRP is reported below.
- 11) 7.3 Equivalent Isotropic Radiated Power (EIRP) Density plots cover for 7.4 Conducted Output Power plot.

FCC ID: A3LAT1K06-A10	Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 20 of 86
8K21060202-01-R1.A3L	06/21/2021-08/31/2021	AU(AT1K06)	Page 29 01 86
© 2021 PCTEST.	•		PK-QP-16-09 Rev.02

7.4.1 **Antenna A Conducted Power**

Antenna	Bandwidth	Configuration	Chan.	Frequency	Modulation	Analyzer Level	AFCL	EUT Antenna Gain	Average e.i.r.p. PSD	Conducted Average Power
	[MHz]			[GHz]		[dBm]	[dBm]	[dBi]	[dBm]	[dBm]
A	100	1CC	Low	37.050	64QAM	-15.18	64.76	27.00	49.58	22.58
	100	8CC	Low	37.050	64QAM	-20.15	64.76	27.00	44.61	17.61
	100	8NC	High	39.950	64QAM	-20.96	66.50	27.00	45.54	18.54

Table 7-14. Antenna A Conducted Power Summary Data

7.4.2 Antenna B Conducted Power

Antenna [MH:	Bandwidth	Configuration	Chan.	Frequency	Modulation	Analyzer Level	AFCL	EUT Antenna Gain	Average e.i.r.p. PSD	Conducted Average Power
	[MHz]			[GHz]		[dBm]	[dBm]	[dBi]	[dBm]	[dBm]
	100	1CC	Low	37.050	64QAM	-14.99	64.76	27.00	49.77	22.77
В	100	8CC	Low	37.050	64QAM	-20.22	64.76	27.00	44.54	17.54
	100	8NC	High	39.950	64QAM	-20.84	66.50	27.00	45.66	18.66

Table 7-15. Antenna B Conducted Power Summary Data

7.4.3 Antenna C Conducted Power

Antenna Bandwi	Bandwidth	Configuration	Chan.	Frequency	Modulation	Analyzer Level	AFCL	EUT Antenna Gain	Average e.i.r.p. PSD	Conducted Average Power
	[MHz]		[GH	[GHz]		[dBm]	[dBm]	[dBi]	[dBm]	[dBm]
	100	1CC	Low	37.050	64QAM	-14.84	64.76	27.00	49.92	22.92
С	100	8CC	Low	37.050	64QAM	-20.16	64.76	27.00	44.60	17.60
	100	8NC	High	39.950	64QAM	-20.52	66.50	27.00	45.98	18.98

Table 7-16. Antenna C Conducted Power Summary Data

7.4.4 Antenna D Conducted Power

Antenna Band	Bandwidth	Configuration	Chan.	Frequency	Modulation	Analyzer Level	AFCL	EUT Antenna Gain	Average e.i.r.p. PSD	Conducted Average Power
	[MHz]			[GHz]		[dBm]	[dBm]	[dBi]	[dBm]	[dBm]
	100	1CC	Low	37.050	64QAM	-14.53	64.76	27.00	50.23	23.23
D	100	8CC	Low	37.050	64QAM	-20.17	64.76	27.00	44.59	17.59
	100	8NC	High	39.950	64QAM	-20.96	66.50	27.00	45.54	18.54

Table 7-17. Antenna D Conducted Power Summary Data

FCC ID: A3LAT1K06-A10	PCTEST* Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 30 of 86
8K21060202-01-R1.A3L	06/21/2021-08/31/2021	AU(AT1K06)		. age 66 61 66
© 2021 PCTEST.				PK-QP-16-09 Rev.02

PK-QP-16-09 Rev.02

7.5 Radiated Spurious and Harmonic Emissions §2.1051 §30.203

Test Overview

The spectrum is scanned from 30 MHz to 100 GHz for n261 and from 30 MHz to 200 GHz for n260. All out of band emissions are measured in a radiated setup while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All modulations were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.

The conductive power or total radiated power of any emissions outside a licensee's frequency block shall be -13 dBm / 1 MHz.

Test Procedure Used

ANSI C63.26-2015 Section 5.7.4 ANSI C63.26-2015 Section 6.4 KDB 842590 D01 v01r02 Section 4.4.2 and Section 4.4.3

Test Settings

- 1. Start frequency was set to 30 MHz and stop frequency was set to 100 GHz for n261 and 200 GHz for n260. Several plots are used to show investigations in this entire span.
- 2. Detector = RMS
- 3. Trace mode = trace average
- 4. Sweep time = auto couple
- 5. Number of sweep points $\ge 2 \times \text{Span/RBW}$
- 6. The trace was allowed to stabilize
- 7. RBW = 1 MHz, VBW = 3 MHz

Test Notes

- 1) The peak spurious emissions level is within up to 3 dB from the original authorization.
- 2) For comparison with the original authorization, the testing was performed on the worst case of the orginal test results.
- 3) For the measurement range from 33 GHz to 200 GHz, A3LAT1K06-A10 test result is referenced as A3LAT1K06-A00 result which is is difference of power type between AC source (A3LAT1K06-A00) and DC source (A3LAT1K06-A10). Power supply condition is not affected to declared RF specification. Emissions testing from 30 MHz to 33 GHz was performed.
- 4) The EUT was tested while positioned upright and mounted on a mast 1.5 m height. The worst case emissions are reported with the EUT in this fixed position and with the modulations and active component carriers shown in the tables below.
- 5) All radiated spurious emissions were measured as EIRP to compare with the §30.203 TRP limits.
- 6) Emissions below 18 GHz were measured at a 3 meter test distance, while emissions above 18 GHz were measured at the appropriate far field distance. The far field of the mmWave signal is based on formula; R > 2D^2/wavelength, where D is the larger between the dimension of the measurement antenna and the transmitting antenna of the EUT. In this case, D is the largest dimension of the measurement antenna.

FCC ID: A3LAT1K06-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 21 of 96
8K21060202-01-R1.A3L	06/21/2021-08/31/2021	AU(AT1K06)	Page 31 01 86
© 2021 PCTEST.			PK-QP-16-09 Rev.02

- 7) Out-band Emission of 10% channel bandwidth are exempted on Radiated Spurious and Harmonic Emissions test case.
- 8) The plots from 1-200 GHz show corrected average EIRP levels. The average EIRP reported below is calculated per section 5.2.7 of ANSI C63.26-2015 which states: EIRP (dBm) = E (dBµV/m) + 20log(D) 104.8; where D is the measurement distance (in the far field region) in m. The field strength E is calculated E (dBµV/m) = Spectrum Analyzer Level (dBm) + Antenna Factor (dB/m) + Cable Loss (dB) + Duty Cycle (dB) + Harmonic Mixer Conversion Loss (dB) + 107. All appropriate Antenna Factor and Cable Loss have been applied in the spectrum analyzer for each measurement. For measurements > 40 GHz, Harmonic Mixer Conversion Loss was also applied to the spectrum analyzer.

Frequency Range [GHz]	Wavelength [cm]	Far Field Distance [m]	Measurements Distance [m]
18 to 40	0.749	2.61	3.20
40 to 60	0.500	1.39	3.20
60 to 90	0.333	0.91	3.20
90 to 140	0.214	0.58	1.00
140 to 200	0.150	0.39	1.00

 Table 7-18. Far-field Distance & Measurement Distance per Frequency Rage

Frequency Range [GHz]	Calculated Measurement D * E [dB]	Duty Cycle [dB]	Reference offset [dB]
18 to 90	12.30	1.37	13.67
90 to 200	2.20	1.37	3.57

 Table 7-19. Far-field Distance & Measurement Distance per Frequency Rage

- 9) Emissions > 40 GHz were measured using a harmonic mixer with the spectrum analyzer.
- 10) The "-" shown in the following RSE tables are used to denote a noise floor measurement.
- 11) Spurious emissions were measured with all EUT antennas transmitting simultaneously.
- Per section 4.4.1 of KDB 842590 D01, unwanted emission measurements, "If the device does not meet the emission limit at one or some frequencies, then TRP measurements shall be performed only at the failing frequencies at which emission levels exceed the limit." The TRP measurement plots using the three cut test method as described in section 4.4 of the KDB, follow all failing emission plots in this report.

TRP Measurement Procedure

If the recorded EIRP value was close or above the TRP limit, a Two Cut TRP measurement was done according to KDB 842590 D01 v01 Section 4.4.3.3.2

- a) Align the EUT with a chosen xy-plane and the xz-plane of the antenna measurement coordinate system. NOTE 1 For harmonics and spurious emission frequencies which are beamforming as identified in exploratory scan, it may be required to align the orthogonal cuts to include the peak based on exploratory scans.
- b) Measure the EUT dimensions, i.e., depth (d), width (w), and height (h); see Figure A.1 in Appendix A.
- c) Calculate the spherical and cylindrical diameters (D and Dcyl) using Equations (A.1) and (A.2) (see Appendix
- d) For the highest frequency (smallest wavelength) of the frequency band measured, calculate the reference angular steps $\Delta\theta$ ref and $\Delta\phi$ ref using Equations (A.3) and (A.4).
- e) Set the grid spatial sampling step $\Delta \theta \leq \Delta \theta$ ref for the vertical angle and $\Delta \phi \leq \Delta \phi$ ref for the horizontal cut.

FCC ID: A3LAT1K06-A10	Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 22 of 86
8K21060202-01-R1.A3L	06/21/2021-08/31/2021	AU(AT1K06)	Page 32 01 86
© 2021 PCTEST.			PK-QP-16-09 Rev.02

- f) For each emission frequency, measure the EIRP (as a sum of two orthogonal polarizations) at each spatial sampling step on the selected grid.
- g) For each emission frequency, calculate the average EIRP for both the cuts separately, and then take the average of these two average values.
- h) Add 2 dB as a correction factor to the averaged value computed in step g).
- i) If the TRP limit is exceeded, a third orthogonal cut in the yz-plane and using the $\Delta\theta$ angular step, can be added. Now, calculate the average values in all three cuts separately, and then take the average value of these three average values.
- j) Add 1.5 dB as a correction factor to the averaged value computed in step i).
- k) Evaluate the pass/fail decision by comparing TRP from step h) or step j) against the applicable TRP limit.

FCC ID: A3LAT1K06-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 22 of 96
8K21060202-01-R1.A3L	06/21/2021-08/31/2021	AU(AT1K06)		Page 33 01 80
© 2021 PCTEST.				PK-QP-16-09 Rev.02

Plot 7-21. Radiated Spurious Plot 30 MHz - 1 GHz (100 MHz BW 1CC QPSK Mid Channel)

Plot 7-23. Radiated Spurious Plot 30 MHz - 1 GHz (100 MHz BW 8CC QPSK Low Channel)

FCC ID: A3LAT1K06-A10	PCTEST* Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 24 of 96
8K21060202-01-R1.A3L	06/21/2021-08/31/2021	AU(AT1K06)	Fage 34 01 00
© 2021 PCTEST.			PK-QP-16-09 Rev.02

PK-QP-16-09 Rev.02

Plot 7-24. Radiated Spurious Plot 30 MHz - 1 GHz (100 MHz BW 8CC QPSK High Channel)

Spurious Emissions EIRP Sample Calculation (n260)

The raw radiated spurious level is converted to field strength in dBµV/m. Then, the RSE EIRP level is calculated by applying the additional factors shown below for a test distance of 3 meters.

RSE EIRP (dBm) = Analyzer	Level (dBm) + AFCL (dB/	m) + 107 + 20Log(D _m) - 104.8
---------------------------	-------------------------	---

Frequency	Configuration Channel	Channel	nnel Modulation	Ant. Pol.	Antenna Height	Turntable Azimuth	Analyzer Level	AFCL	RSE EIRP	Margin
[MHz]	oomiguation	onanner		[H/V]	[cm]	[degree]	[dBm]	[dBm]	[dBm]	[dB]
565.18	8CC	Mid	QPSK	Н	1.5	0	-76.49	20.71	-44.04	31.04
768.42	8CC	Mid	QPSK	V	1.5	0	-78.92	23.90	-43.27	30.27

Table 7-20. Spurious Emissions (30 MHz to 1 GHz)

Notes

The RSE EIRP level is taken directly from the spectrum analyzer which includes the appropriate antenna factors, and cable losses. Measurements were performed at a distance of 3 meter.

FCC ID: A3LAT1K06-A10	PCTEST* Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		D 05 (00
8K21060202-01-R1.A3L	06/21/2021-08/31/2021	AU(AT1K06)		Page 35 of 86
© 2021 PCTEST.				PK-QP-16-09 Rev.02

Plot 7-26. Radiated Spurious Plot 1 GHz - 18 GHz (100 MHz BW 1CC QPSK High Channel)

Plot 7-27. Radiated Spurious Plot 1 GHz - 18 GHz (100 MHz BW 8CC QPSK Low Channel)

FCC ID: A3LAT1K06-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 26 of 86
8K21060202-01-R1.A3L	06/21/2021-08/31/2021	AU(AT1K06)		Page 30 01 80
© 2021 PCTEST.				PK-QP-16-09 Rev.02

Plot 7-28. Radiated Spurious Plot 1 GHz - 18 GHz (100 MHz BW 8CC QPSK High Channel)

Spurious Emissions EIRP Sample Calculation (n260)

The raw radiated spurious level is converted to field strength in dBµV/m. Then, the RSE EIRP level is calculated by applying the additional factors shown below for a test distance of 3 meters.

RSE EIRP (dBm) = Analyzer Level (dBm) + AFCL (dB/m) + $107 + 20Log(D_m) - 104.8$

Frequency	equency	Channel	Modulation	Ant. Pol.	Antenna Height	Turntable Azimuth	Analyzer Level	AFCL	RSE EIRP	Margin
[MHz]	Gilainei	wouldtion	[H/V]	[cm]	[degree]	[dBm]	[dBm]	[dBm]	[dB]	
1428.43	1CC	Mid	QPSK	Н	1.5	0	-54.19	0.03	-42.42	29.42
2174.18	1CC	Mid	QPSK	V	1.5	0	-66.42	3.69	-50.99	37.99

Table 7-21. Spurious Emissions (1 GHz to 18 GHz)

Notes

The RSE EIRP level is taken directly from the spectrum analyzer which includes the appropriate antenna factors, and cable losses. Measurements were performed at a distance of 3 meter.

FCC ID: A3LAT1K06-A10	PCTEST* Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dara 07 at 00
8K21060202-01-R1.A3L	06/21/2021-08/31/2021	AU(AT1K06)		Page 37 of 86
© 2021 PCTEST.				PK-QP-16-09 Rev.02

7.5.3 Radiated Spurious Emissions Plots (18 GHz to 33 GHz)

Plot 7-29. Radiated Spurious Plot 18 GHz – 33 GHz (100 MHz BW 1CC QPSK Mid Channel Pol. H)

Plot 7-30. Radiated Spurious Plot 18 GHz – 33 GHz (100 MHz BW 1CC QPSK Mid Channel Pol. V)

FCC ID: A3LAT1K06-A10	PCTEST* Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 38 of 86
8K21060202-01-R1.A3L	06/21/2021-08/31/2021	AU(AT1K06)	Fage So of ob
© 2021 PCTEST.			PK-QP-16-09 Rev.02

								
MultiView 🚦	Spectrum							•
Ref Level 30.0 Att PA TDF "PART30	0 dBm Offset 15 dB SWT AF""PART30 CI	t 13.67 dB • RB 60 ms • VB	WIMHz WI3MHz Moo	le Sweep			s	GL ount 100/100
1 Frequency Sw	veep							o1Rm Avg
Limit Check Line FCC P	k ART 30		PA PA	SS SS			M1[1]	-24.48 dBm 32.961750 GHz
20 dBm-								
10 dBm								
0 dBm-								
-10 dBm-								
FCC PART 30								
-20 dBm-								
-30 dBm					and the second s			
-40 dBm-								
-50 dBm-								
-60 dBm-								
			00004					00.0 0
18.0 GHz			30001 pi	S		.5 GHZ/		33.0 GHz

Plot 7-31. Radiated Spurious Plot 18 GHz – 33 GHz (100 MHz BW 1CC QPSK High Channel Pol. H)

Plot 7-32. Radiated Spurious Plot 18 GHz – 33 GHz (100 MHz BW 1CC QPSK High Channel Pol. V)

FCC ID: A3LAT1K06-A10		MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dama 00 at 00
8K21060202-01-R1.A3L	06/21/2021-08/31/2021	AU(AT1K06)	Page 39 of 86
© 2021 PCTEST.			PK-QP-16-09 Rev.02

							
MultiView 🕂 Spectru	im 🗙 Spectr	um 2 🗙					•
Ref Level 30.00 dBm Off Att 10 dB SW PA TDE "PART30 AE" "PART30	Íset 13.67 dB ● RBW 1 /T 60 ms ● VBW 3 ⊔CL''	MHz MHz Mode Sweep				s c	GL ount 100/100
1 Frequency Sweep							o1Rm Avg
Limit Check Line FCC PART 30		PASS PASS				M1[1]	-29.62 dBm
20 dBm-							2107 5200 0112
10 dBm-							
0 dBm-							
-10 dBm							
FCC PART 30							
-20 dBm							
-30 dBm							MI
					and the second		
-40 dBm-							
-50 dBm-							
-60 dBm-							
18.0 GHz		30001 pts	1	.5 GHz/			33.0 GHz
~					▼ Ready		29.07.2021

Plot 7-33. Radiated Spurious Plot 18 GHz – 33 GHz (100 MHz BW 8CC QPSK Low Channel Pol. H)

Plot 7-34. Radiated Spurious Plot 18 GHz – 33 GHz (100 MHz BW 8CC QPSK Low Channel Pol. V)

FCC ID: A3LAT1K06-A10	PCTEST* Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 40 of 96
8K21060202-01-R1.A3L	06/21/2021-08/31/2021	AU(AT1K06)	Page 40 of 86
© 2021 PCTEST.			PK-QP-16-09 Rev.02

								(*)
MultiView 🗄	Spectrum	× Sp	ectrum 2	<mark></mark> ★ ×				•
Ref Level 30.00	dBm Offset	13.67 dB • RE	3W 1 MHz				s	GL
Att 1	IS dB SWT	60 ms 🗢 VE	W 3 MHz Mo	de Sweep			с	ount 100/100
PA TDF "PART30 AF	F","PART30 CL"							
1 Frequency Swe	ер							IRm Avg
Limit Check	DT 00		PA	SS			M1[1]	-24.14 dBm
Line FCC PA			PA	55				2.990250 GHz
20 dBm								
100.000								
1U dBm								
0 dBm								
-10 dBm								
FCC PART 30								
-20 dBm								M1
								and the second second second
-20 dpm-				and the second day of	and the second			
	the second s							
-40 dBm								
-50 dBm-								
60 d0m								
-60 GBM-								
			00001					
18.0 GHz			30001 p	ts				33.0 GHz
~								29.07.2021

Plot 7-35. Radiated Spurious Plot 18 GHz – 33 GHz (100 MHz BW 8CC QPSK High Channel Pol. H)

Plot 7-36. Radiated Spurious Plot 18 GHz – 33 GHz (100 MHz BW 8CC QPSK High Channel Pol. V)

FCC ID: A3LAT1K06-A10		MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dama 44 at 00
8K21060202-01-R1.A3L	06/21/2021-08/31/2021	AU(AT1K06)	Page 41 of 86
© 2021 PCTEST.			PK-QP-16-09 Rev.02

7.5.4 Radiated Spurious Emissions Plots (33 GHz to 37 GHz)

Plot 7-38. Radiated Spurious Plot 34.190 GHz - 34.210 GHz (100 MHz BW 1CC QPSK High Channel TRP)

FCC ID: A3LAT1K06-A10	PCTEST* Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 42 of 96
8K21060202-01-R1.A3L	06/21/2021-08/31/2021	AU(AT1K06)	Page 42 01 86
© 2021 PCTEST.			PK-QP-16-09 Rev.02

Plot 7-39. Radiated Spurious Plot 36.970 GHz – 36.990 GHz (100 MHz BW 8CC QPSK Low Channel TRP)

Plot 7-40. Radiated Spurious Plot 33.676 GHz – 33.696 GHz (100 MHz BW 8CC QPSK High Channel TRP)

FCC ID: A3LAT1K06-A10	Proud to be part of element	MEASUREMENT REPORT (Class II Permissive Change)	SUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 12 of 96
8K21060202-01-R1.A3L	06/21/2021-08/31/2021	AU(AT1K06)		Fage 43 01 00
© 2021 PCTEST.				PK-QP-16-09 Rev.02

Configuration	Channel	Ant Pol. [Degree]	Frequency [GHz]	RSE EIRP [dBm]	Early Exit?	TRP [dBm]	Margin [dB]
	Mid	Н	36.48	-9.82	No	26 77	13.77
	Mid	V	36.48	-15.99	No ¹	-20.77	
	High	Н	34.20	-3.54	No	20.02	17.92
	riigii	V	34.20	-7.43	No	-30.92	
	Low	Н	33.69	-10.69	No	07.45	14.15
		V	33.69	-13.35	No ¹	-27.15	
	Lliab	Н	36.89	-3.75	No	27 70	14 70
	High	V	36.90	-8.51	No	-27.70	14.78
1. "Early Exit" – Less thar	3 dB margir)					

Table 7-22. Radiated Spurious Emissions (33 GHz to 37 GHz)

FCC ID: A3LAT1K06-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 44 of 90
8K21060202-01-R1.A3L	06/21/2021-08/31/2021	AU(AT1K06)	Page 44 01 86

7.5.5 Radiated Spurious Emissions Plots (40 GHz to 60 GHz)

Plot 7-41. Radiated Spurious Plot 40.156 GHz – 60 GHz (100 MHz BW 1CC QPSK Mid Channel TRP)

Plot 7-42. Radiated Spurious Plot 40 GHz – 60 GHz (100 MHz BW 1CC QPSK High Channel TRP)

FCC ID: A3LAT1K06-A10	PCTEST* Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 45 of 90
8K21060202-01-R1.A3L	06/21/2021-08/31/2021	AU(AT1K06)	Page 45 of 86
© 2021 PCTEST.			PK-QP-16-09 Rev.02

Plot 7-43. Radiated Spurious Plot 40 GHz – 60 GHz (100 MHz 8CC CC BW QPSK Low Channel Pol. H)

Plot 7-44. Radiated Spurious Plot 40 GHz – 60 GHz (100 MHz 8CC CC BW QPSK Low Channel Pol. V)

FCC ID: A3LAT1K06-A10	Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	ISUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 46 of 96
8K21060202-01-R1.A3L	06/21/2021-08/31/2021	AU(AT1K06)		Page 46 01 86
© 2021 PCTEST.				PK-QP-16-09 Rev.02

Plot 7-45. Radiated Spurious Plot 40 GHz – 60 GHz (100 MHz BW 8CC QPSK High Channel TRP)

FCC ID: A3LAT1K06-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 47 of 96
8K21060202-01-R1.A3L	06/21/2021-08/31/2021	AU(AT1K06)		Page 47 of 86
© 2021 PCTEST.				PK-QP-16-09 Rev.02

Spurious Emissions EIRP Sample Calculation (n260)

The raw radiated spurious level is converted to field strength in dBµV/m. Then, the RSE EIRP level is calculated by applying the additional factors shown below for a test distance of 3.2 meters.

RSE EIRP (dBm) = Analyzer Level (dBm) + Antenna Factor (dB/m) + Offset (dB)* + Harmonic Mixer Conversion Loss (dB)

* Offset = IF Cable Loss (dB) + 107 + 20Log(D_m) - 104.8 + Duty cycle (dB) = 0.55 + 107 + 20Log(3.2m) - 104.8 + 1.37 dB = 14.22 dB

Frequency	Config	Channel	Modulation	Ant. Pol.	Analyzer Level	Antenna Factor	Offset	Mixer	RSE EIRP	Early	TRP	Margin
[GHz]	uration	Channer	wooddation	[H/V]	[dBm]	[dBm]	[dB]	[dB]	[dBm]	Exit?	[dBm]	[dB]
40.18	1CC	Mid	QPSK	Н	-91.49	38.80	14.22	9.81	-28.66	Yes	24.42	21 42
40.16	1CC	Mid	QPSK	V	-70.12	38.80	14.22	9.82	-7.28	No	-34.42	21.42
42.54	1CC	High	QPSK	Н	-94.39	38.86	14.22	11.61	-29.70	Yes	25.09	12.09
40.02	1CC	High	QPSK	V	-71.64	38.80	14.22	9.85	-8.77	No	-25.06	12.00
42.36	8CC	Low	QPSK	н	-80.73	38.80	14.22	11.42	-16.29	Yes	-	3.29
42.74	8CC	Low	QPSK	V	-86.48	38.96	14.22	11.40	-21.90	Yes	-	8.90
40.00	8CC	High	QPSK	Н	-54.26	38.80	14.22	9.85	8.61	No	25.22	10.00
42.32	8CC	High	QPSK	V	-82.85	38.80	14.22	11.36	-18.47	Yes	-20.33	12.33

Table 7-23. Radiated Spurious Emissions (40 GHz to 60 GHz)

FCC ID: A3LAT1K06-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dege 40 of 90
8K21060202-01-R1.A3L	06/21/2021-08/31/2021	AU(AT1K06)		Page 48 01 86
© 2021 PCTEST.				PK-QP-16-09 Rev.02

7.5.6 Radiated Spurious Emissions Plots (60 GHz to 90 GHz)

Plot 7-46. Radiated Spurious Plot 60 GHz – 90 GHz (100 MHz BW 1CC QPSK Mid Channel Pol. H)

FCC ID: A3LAT1K06-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 40 of 96
8K21060202-01-R1.A3L	06/21/2021-08/31/2021	AU(AT1K06)	Page 49 of 86
© 2021 PCTEST.			PK-QP-16-09 Rev.02

PK-QP-16-09 Rev.02

Plot 7-47. Radiated Spurious Plot 60 GHz – 90 GHz (100 MHz BW 1CC QPSK Mid Channel Pol. V)

Plot 7-48. Radiated Spurious Plot 60 GHz – 90 GHz (100 MHz BW 1CC QPSK High Channel Pol. H)

Plot 7-49. Radiated Spurious Plot 60 GHz – 90 GHz (100 MHz BW 1CC QPSK High Channel Pol. V)

FCC ID: A3LAT1K06-A10	Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dawa 50 at 00
8K21060202-01-R1.A3L	06/21/2021-08/31/2021	AU(AT1K06)	Page 50 of 86
© 2021 PCTEST.			PK-QP-16-09 Rev.02

Plot 7-50. Radiated Spurious Plot 60 GHz – 90 GHz (100 MHz BW 8CC QPSK Low Channel Pol. H)

Plot 7-51. Radiated Spurious Plot 60 GHz – 90 GHz (100 MHz BW 8CC QPSK Low Channel Pol. V)

FCC ID: A3LAT1K06-A10		MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 51 of 90
8K21060202-01-R1.A3L	06/21/2021-08/31/2021	AU(AT1K06)	Page 51 01 86
© 2021 PCTEST.			PK-QP-16-09 Rev.02

Plot 7-52. Radiated Spurious Plot 60 GHz - 90 GHz (100 MHz BW 8CC QPSK High Channel Pol. H)

Plot 7-53. Radiated Spurious Plot 60 GHz – 90 GHz (100 MHz BW 8CC QPSK High Channel Pol. V)

FCC ID: A3LAT1K06-A10	Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 52 of 96
8K21060202-01-R1.A3L	06/21/2021-08/31/2021	AU(AT1K06)	Page 52 of 86
© 2021 PCTEST.			PK-QP-16-09 Rev.02

Spurious Emissions EIRP Sample Calculation (n260)

The raw radiated spurious level is converted to field strength in dBµV/m. Then, the RSE EIRP level is calculated by applying the additional factors shown below for a test distance of 3.2 meters.

RSE EIRP (dBm) = Analyzer Level (dBm) + Antenna Factor (dB/m) + Offset (dB)* + Harmonic Mixer Conversion Loss (dB)

* Offset = IF Cable Loss (dB/m) + 107 + 20Log(D_m) – 104.8 + Duty cycle (dB) = 0.55 + 107 + 20Log(3.2m) – 104.8 + 1.37 dB = 14.22 dB

Frequency	Config	Channel	Modulation	Ant. Pol.	Analyzer Level	Antenna Factor	Offset	Mixer	RSE EIRP	Margin
[GHz]	uration	Ghanner	woodaation	[H/V]	[dBm]	[dBm]	[dB]	[dB]	[dBm]	[dB]
60.02	1CC	Mid	QPSK	Н	-101.78	42.28	14.22	26.39	-18.89	5.89
60.03	1CC	Mid	QPSK	V	-101.62	42.27	14.22	26.34	-18.79	5.79
60.03	1CC	High	QPSK	Н	-101.87	42.27	14.22	26.34	-19.04	6.04
60.01	1CC	High	QPSK	V	-101.68	42.29	14.22	26.45	-18.72	5.72
60.15	8CC	Low	QPSK	Н	-101.20	42.20	14.22	25.70	-19.08	6.08
60.05	8CC	Low	QPSK	V	-101.98	42.25	14.22	26.23	-19.28	6.28
60.04	8CC	High	QPSK	Н	-101.60	42.26	14.22	26.29	-18.83	5.83
60.01	8CC	High	QPSK	V	-101.73	42.29	14.22	26.45	-18.77	5.77

Table 7-24. Radiated Spurious Emissions (60 GHz to 90 GHz)

<u>Notes</u>

The RSE EIRP level is taken directly from the spectrum analyzer which includes the appropriate antenna factors, and cable losses and harmonic mixer conversion losses. Measurements were performed at a distance of 3.2 meter.

FCC ID: A3LAT1K06-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dege 52 of 96
8K21060202-01-R1.A3L	06/21/2021-08/31/2021	AU(AT1K06)		
© 2021 PCTEST.		•		PK-QP-16-09 Rev.02

Radiated Spurious Emissions Plots (90 GHz - 140 GHz) 7.5.7

Plot 7-54. Radiated Spurious Plot 90 GHz – 140 GHz (100 MHz BW 1CC QPSK Mid Channel Pol. H)

Plot 7-55. Radiated Spurious Plot 90 GHz – 140 GHz (100 MHz BW 1CC QPSK Mid Channel Pol. V)

FCC ID: A3LAT1K06-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	SAMSUNG	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage E4 of 96	
8K21060202-01-R1.A3L	06/21/2021-08/31/2021	AU(AT1K06)		Page 54 of 86	
© 2021 PCTEST.				PK-QP-16-09 Rev.02	

PK-QP-16-09 Rev.02

Plot 7-56. Radiated Spurious Plot 90 GHz – 140 GHz (100 MHz BW 1CC QPSK High Channel Pol. H)

Plot 7-57. Radiated Spurious Plot 90 GHz – 140 GHz (100 MHz BW 1CC QPSK High Channel Pol. V)

FCC ID: A3LAT1K06-A10	Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo EE of 90
8K21060202-01-R1.A3L	06/21/2021-08/31/2021	AU(AT1K06)	Page 55 01 86
© 2021 PCTEST.			PK-QP-16-09 Rev.02

Plot 7-58. Radiated Spurious Plot 90 GHz – 140 GHz (100 MHz BW 8CC QPSK Low Channel Pol. H)

Plot 7-59. Radiated Spurious Plot 90 GHz – 140 GHz (100 MHz BW 8CC QPSK Low Channel Pol. V)

FCC ID: A3LAT1K06-A10	Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo EC of 90
8K21060202-01-R1.A3L	06/21/2021-08/31/2021	AU(AT1K06)	Page 50 01 80
© 2021 PCTEST.			PK-QP-16-09 Rev.02

Plot 7-60. Radiated Spurious Plot 90 GHz – 140 GHz (100 MHz BW 8CC QPSK High Channel Pol. H)

Plot 7-61. Radiated Spurious Plot 90 GHz – 140 GHz (100 MHz BW 8CC QPSK High Channel Pol. V)

FCC ID: A3LAT1K06-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga EZ af 90
8K21060202-01-R1.A3L	06/21/2021-08/31/2021	AU(AT1K06)	Page 57 01 86
© 2021 PCTEST.			PK-QP-16-09 Rev.02

Spurious Emissions EIRP Sample Calculation (n260)

The raw radiated spurious level is converted to field strength in dBµV/m. Then, the RSE EIRP level is calculated by applying the additional factors shown below for a test distance of 1 meters.

RSE EIRP (dBm) = Analyzer Level (dBm) + Antenna Factor (dB/m) + Offset (dB)* + Harmonic Mixer Conversion Loss (dB)

* Offset = IF Cable Loss $(dB/m) + 107 + 20Log(D_m) - 104.8 + Duty cycle (dB)$ = 0.55 + 107 + 20Log(1m) - 104.8 + 1.37 dB = 4.12 dB

Frequency	Config	Channel	Modulation	Ant. Pol.	Analyzer Level	Antenna Factor	Offset	Mixer	RSE EIRP	Margin
[GHz]	uration	Ghanner	woodaation	[H/V]	[dBm]	[dBm]	[dB]	[dB]	[dBm]	[dB]
135.22	1CC	Mid	QPSK	Н	-100.15	46.91	4.12	33.69	-15.43	2.43
135.35	1CC	Mid	QPSK	V	-99.74	46.91	4.12	33.63	-15.08	2.08
134.98	1CC	High	QPSK	Н	-99.79	46.90	4.12	33.74	-15.03	2.03
135.01	1CC	High	QPSK	V	-99.75	46.90	4.12	33.80	-14.93	1.93
135.29	8CC	Low	QPSK	Н	-99.94	46.91	4.12	33.66	-15.25	2.25
135.31	8CC	Low	QPSK	V	-99.81	46.91	4.12	33.65	-15.13	2.13
135.68	8CC	High	QPSK	Н	-99.58	46.92	4.12	33.46	-15.08	2.08
135.03	8CC	High	QPSK	V	-99.91	46.90	4.12	33.79	-15.10	2.10

Table 7-25. Radiated Spurious Emissions (90 GHz to 140 GHz)

<u>Notes</u>

The RSE EIRP level is taken directly from the spectrum analyzer which includes the appropriate antenna factors, and cable losses and harmonic mixer conversion losses. Measurements were performed at a distance of 1 meter.

FCC ID: A3LAT1K06-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	MSUNG	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 50 of 90	
8K21060202-01-R1.A3L	06/21/2021-08/31/2021	AU(AT1K06)		Page 58 of 86	
© 2021 PCTEST.				PK-QP-16-09 Rev.02	

Radiated Spurious Emissions Plots (140 GHz - 170 GHz) 7.5.8

Plot 7-62. Radiated Spurious Plot 140 GHz – 170 GHz (100 MHz BW 1CC QPSK Mid Channel Pol. H)

Plot 7-63. Radiated Spurious Plot 140 GHz – 170 GHz (100 MHz BW 1CC QPSK Mid Channel Pol. V)

FCC ID: A3LAT1K06-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	SAMSUNG	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage E0 of 96	
8K21060202-01-R1.A3L	06/21/2021-08/31/2021	AU(AT1K06)		Page 59 of 86	
© 2021 PCTEST.				PK-QP-16-09 Rev.02	

PK-QP-16-09 Rev.02

Plot 7-64. Radiated Spurious Plot 140 GHz – 170 GHz (100 MHz BW 1CC QPSK High Channel Pol. H)

Plot 7-65. Radiated Spurious Plot 140 GHz – 170 GHz (100 MHz BW 1CC QPSK High Channel Pol. V)

FCC ID: A3LAT1K06-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 60 af 86
8K21060202-01-R1.A3L	06/21/2021-08/31/2021	AU(AT1K06)	Page 60 01 86
© 2021 PCTEST.			PK-QP-16-09 Rev.02

Plot 7-66. Radiated Spurious Plot 140 GHz – 170 GHz (100 MHz BW 8CC QPSK Low Channel Pol. H)

Plot 7-67. Radiated Spurious Plot 140 GHz – 170 GHz (100 MHz BW 8CC QPSK Low Channel Pol. V)

FCC ID: A3LAT1K06-A10	Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dama 61 of 96
8K21060202-01-R1.A3L	06/21/2021-08/31/2021	AU(AT1K06)	Page 61 01 86
© 2021 PCTEST.			PK-QP-16-09 Rev.02

Plot 7-68. Radiated Spurious Plot 140 GHz – 170 GHz (100 MHz BW 8CC QPSK High Channel Pol. H)

Plot 7-69. Radiated Spurious Plot 140 GHz – 170 GHz (100 MHz BW 8CC QPSK High Channel Pol. V)

FCC ID: A3LAT1K06-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 62 of 96
8K21060202-01-R1.A3L	06/21/2021-08/31/2021	AU(AT1K06)	Page 62 01 86
© 2021 PCTEST.			PK-QP-16-09 Rev.02

Spurious Emissions EIRP Sample Calculation (n260)

The raw radiated spurious level is converted to field strength in dBµV/m. Then, the RSE EIRP level is calculated by applying the additional factors shown below for a test distance of 1 meters.

RSE EIRP (dBm) = Analyzer Level (dBm) + Antenna Factor (dB/m) + Offset (dB)* + Harmonic Mixer Conversion Loss (dB)

* Offset = IF Cable Loss (dB/m) + 107 + $20Log(D_m) - 104.8 + Duty cycle (dB)$ = 0.55 + 107 + 20Log(1m) - 104.8 + 1.37 dB = 4.12 dB

Frequency	Config	Channel	Modulation	Ant. Pol.	Analyzer Level	Antenna Factor	Offset	Mixer	RSE EIRP	Margin
[GHz]	uration	onanner	modulation	[H/V]	[dBm]	[dBm]	[dB]	[dB]	[dBm]	[dB]
163.95	1CC	Mid	QPSK	Н	-107.96	50.12	4.12	35.60	-18.12	5.12
164.16	1CC	Mid	QPSK	V	-109.06	50.12	4.12	36.70	-18.12	5.12
164.03	1CC	High	QPSK	Н	-109.38	50.12	4.12	37.03	-18.11	5.11
164.06	1CC	High	QPSK	V	-109.26	50.12	4.12	36.95	-18.07	5.07
163.93	8CC	Low	QPSK	Н	-107.96	50.12	4.12	35.59	-18.13	5.13
164.06	8CC	Low	QPSK	V	-109.06	50.12	4.12	36.95	-17.87	4.87
156.35	8CC	High	QPSK	Н	-108.53	50.01	4.12	36.66	-17.74	4.74
164.09	8CC	High	QPSK	V	-109.15	50.12	4.12	36.88	-18.03	5.03

Table 7-26. Radiated Spurious Emissions (140 GHz to 170 GHz)

<u>Notes</u>

The RSE EIRP level is taken directly from the spectrum analyzer which includes the appropriate antenna factors, and cable losses and harmonic mixer conversion losses. Measurements were performed at a distance of 1 meter.

FCC ID: A3LAT1K06-A10	PCTEST*	MEASUREMENT REPORT (Class II Permissive Change)	UNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 62 of 96
8K21060202-01-R1.A3L	06/21/2021-08/31/2021	AU(AT1K06)		
© 2021 PCTEST.				PK-QP-16-09 Rev.02

Radiated Spurious Emissions Plots (170 GHz - 200 GHz) 7.5.9

Plot 7-70. Radiated Spurious Plot 170 GHz – 200 GHz (100 MHz BW 1CC QPSK Mid Channel Pol. H)

Plot 7-71. Radiated Spurious Plot 170 GHz – 200 GHz (100 MHz BW 1CC QPSK Mid Channel Pol. V)

FCC ID: A3LAT1K06-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 64 of 96
8K21060202-01-R1.A3L	1.A3L 06/21/2021-08/31/2021 AU(AT1K06)			
© 2021 PCTEST.				PK-QP-16-09 Rev.02

PK-QP-16-09 Rev.02

									~~
MultiView 🖶	Spectrum								•
Ref Level 0.00 o	dBm Offset • SWT	4.12 dB • RBW 120 ms • VBW	1 MHz 3 MHz Mode /	Auto Sweep				s C	GL ount 100/100
TDF "FCC PART30)_140-220G AF	_261G-25" Inp:	ExtMix G					0.100	a Aug Auto ID
Limit Check	eeh		PA	SS				MILII	-22.26 dBm
Line FCC PA	ART 30		PA	SS				17	23.20 dBm
-10 dBm									01001700 0112
ECC PART 30									
I COTAICI SO									
M10 dBm									
-30 dBm									
-40 dBm									
150 JB-0									
-50 dBm-									
-60 dBm-									
-70 dBm-									
-90 dBm-									
oo abii									
-90 dBm									
170.0 GHz			60001 pt	s	3	.0 GHz/			200.0 GHz
							• Roadu		20.08.2021
									01/22/55

~

Plot 7-72. Radiated Spurious Plot 170 GHz – 200 GHz (100 MHz BW 1CC QPSK High Channel Pol. H)

Plot 7-73. Radiated Spurious Plot 170 GHz – 200 GHz (100 MHz BW 1CC QPSK High Channel Pol. V)

FCC ID: A3LAT1K06-A10	Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage CE of CC
8K21060202-01-R1.A3L	06/21/2021-08/31/2021	Page 65 01 86	
© 2021 PCTEST.			PK-QP-16-09 Rev.02

			\$
MultiView 🖶 Spectrum			
Ref Level 0.00 dBm Offset	4.12 dB • RBW 1 MHz		SGL Count 100/100
	=_261G-25" Inp: ExtMix G		Count 100/100
1 Frequency Sweep			1Rm Avg Auto ID
Limit Check Line ECC PART 30	PASS		M1[1] -23.06 dBm
			170,052250 GHz
FOC DADT 20			
FCC PART 30			
M1:0 dBm			
-30 dBm-			
-40 dBm			
-50 dBm			
-60 dBm-			
55 dbm			
-70 dBm-			
-80 dBm-			
-90 dBm-			
170.0 GHz	60001 pts	3.0 GHz/	200.0 GHz
			 20.08.2021

~

Plot 7-74. Radiated Spurious Plot 170 GHz – 200 GHz (100 MHz BW 8CC QPSK Low Channel Pol. H)

Plot 7-75. Radiated Spurious Plot 170 GHz - 200 GHz (100 MHz BW 8CC QPSK Low Channel Pol. V)

FCC ID: A3LAT1K06-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dege CC of 9C	
8K21060202-01-R1.A3L	<21060202-01-R1.A3L 06/21/2021-08/31/2021 AU(AT1K06)			
© 2021 PCTEST.			PK-QP-16-09 Rev.02	

								~~
MultiView 🖶	Spectrum							
Ref Level 0.00 d	dBm Offset 4	4.12 dB • RBW	1 MHz	lute Curre			s	GL
TDF "FCC PART30) 140-220G AF	261G-25" Inp:	ExtMix G	auto sweep			ι U	
1 Frequency Sw	еер						• 1Rn	h Avg Auto ID
Limit Check			PA	SS			M1[1]	-23.34 dBm
Line FCC PA	ART 30		РА	55			17	0.318240 GHz
-10 dBm								
FCC PART 30								
M1) dBm								
							and a state back and a state of the	
-30 dBm								
-40 dBm-								
-50 dBm-								
-60 dBm								
-70 dBm								
-80 dBm-								
-90 dBm								
170 0 CHz			60001 pt					200.0.647
170:0 GHZ				<u> </u>	 	Devel		20010 GH2
						 Ready 		22/25/20

~

Plot 7-76. Radiated Spurious Plot 170 GHz – 200 GHz (100 MHz BW 8CC QPSK High Channel Pol. H)

Plot 7-77. Radiated Spurious Plot 170 GHz – 200 GHz (100 MHz BW 8CC QPSK High Channel Pol. V)

FCC ID: A3LAT1K06-A10	Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 67 of 96
8K21060202-01-R1.A3L	06/21/2021-08/31/2021	Page 67 01 86	
© 2021 PCTEST.			PK-QP-16-09 Rev.02

Spurious Emissions EIRP Sample Calculation (n260)

The raw radiated spurious level is converted to field strength in dBµV/m. Then, the RSE EIRP level is calculated by applying the additional factors shown below for a test distance of 1 meters.

RSE EIRP (dBm) = Analyzer Level (dBm) + Antenna Factor (dB/m) + Offset (dB)* + Harmonic Mixer Conversion Loss (dB)

* Offset = IF Cable Loss (dB/m) + 107 + $20Log(D_m) - 104.8 + Duty cycle (dB)$ = 0.55 + 107 + 20Log(1m) - 104.8 + 1.37 dB = 4.12 dB

Frequency	Config	Channel	Modulation	Ant. Pol.	Analyzer Level	Antenna Factor	Offset	Mixer	RSE EIRP	Margin
[GHz]	uration	onanner	modulation	[H/V]	[dBm]	[dBm]	[dB]	[dB]	[dBm]	[dB]
170.04	1CC	Mid	QPSK	Н	-109.48	50.21	4.12	31.94	-23.21	10.21
170.03	1CC	Mid	QPSK	V	-109.48	50.21	4.12	31.94	-23.21	10.21
170.06	1CC	High	QPSK	Н	-109.53	50.21	4.12	31.94	-23.26	10.26
170.07	1CC	High	QPSK	V	-109.6	50.21	4.12	31.94	-23.33	10.33
170.05	8CC	Low	QPSK	Н	-109.33	50.21	4.12	31.94	-23.06	10.06
170.05	8CC	Low	QPSK	V	-109.52	50.21	4.12	31.94	-23.25	10.25
170.32	8CC	High	QPSK	Н	-109.61	50.21	4.12	31.94	-23.34	10.34
170.03	8CC	High	QPSK	V	-109.58	50.21	4.12	31.94	-23.31	10.31

Table 7-27. Radiated Spurious Emissions (170 GHz to 200 GHz)

Notes

The RSE EIRP level is taken directly from the spectrum analyzer which includes the appropriate antenna factors, and cable losses and harmonic mixer conversion losses. Measurements were performed at a distance of 1 meter.

FCC ID: A3LAT1K06-A10	Prout to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 69 of 96
8K21060202-01-R1.A3L	21060202-01-R1.A3L 06/21/2021-08/31/2021 AU(AT1K06)			
© 2021 PCTEST.				PK-QP-16-09 Rev.02

Band Edge Emissions 7.6 §2.1051 §30.203

Test Overview

All out of band emissions are measured in a radiated setup while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All modulations were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.

The minimum permissible attenuation level of any spurious emission is -13 dBm / 1 MHz. However, in the bands immediately outside and adjacent to the licensee's frequency block, having a bandwidth equal to 10 percent of the channel bandwidth, the conductive power or the total radiated power of any emission shall be -5 dBm / MHz or lower.

Test Procedure Used

ANSI C63.26-2015 Section 5.7.3 ANSI C63.26-2015 Section 6.4 KDB 842590 D01 v01r02 Section 4.4.2.5

Test Settings

- 1. Start and stop frequency were set such that both upper and lower band edges are measured.
- 2. Span was set large enough so as to capture all out of band emissions near the band edge
- 3. RBW = 1 MHz
- 4. VBW > 3 x RBW
- 5. Detector = RMS
- 6. Number of sweep points $\geq 2 \times \text{Span/RBW}$
- 7. Trace mode = trace average
- 8. Sweep time = auto couple
- 9. The trace was allowed to stabilize

Test Notes

- 1) For comparison with the original authorization, the testing was performed on the worst case of the orginal test results.
- 2) The EUT was tested while positioned upright and mounted on a mast 1.5 m height. The worst case emissions are reported with the EUT in this fixed position and with the modulations and active component carriers shown in the tables below.
- All measurements in this section was performed in the radiated setup in the far field.
- 4) All appropriate Antenna Factor, Cable Loss, and Duty Correction factor have been applied in the spectrum analyzer for each measurement. Additionally, band Edge measurements in this section are shown as equivalent conductive powers for direct comparison to the 30.203 limit. The conductive power at the band edge is calculated by subtracting the gain of the EUT's antenna from the measured EIRP level. Antenna Gain information is shown on the following page.
- 5) For band edge measurement of the receive horn antenna was maximized on Antenna A were individually energized and measured while maintaining maximized position on Antenna A. These measurements were saved into a spreadsheet and their spectra were summed to determine the total conducted power

FCC ID: A3LAT1K06-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 60 of 96
8K21060202-01-R1.A3L	06/21/2021-08/31/2021	AU(AT1K06)	Page 69 01 86
© 2021 PCTEST.			PK-QP-16-09 Rev.02

PK-QP-16-09 Rev.02

for the band edge emissions level shown starting in Section 7.6.5. The same procedure was repeated with the receive horn antenna maximized on Antennas B, C, and D.

- 6) The MIMO Band Edges were calculated by using the "measure and sum the spectra across the outputs" technique specified in Section 6.4.3.2.2 of ANSI C63.26-2015. The spectra were summed linearly and converted to dBm for comparison with the limit.
- 10% outside of the channel bandwidth result should be referred from 7.5 Radiated Spurious and Harmonic Emissions due to EUT Antenna subtraction calculation adoption. Thus, some failure results are performed of TRP measurement adopted.

FCC ID: A3LAT1K06-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 70 of 90
8K21060202-01-R1.A3L	A3L 06/21/2021-08/31/2021 AU(AT1K06)			
© 2021 PCTEST.				PK-QP-16-09 Rev.02

7.6.1 Antenna Gain Information at the Band Edge

The following antenna gain information is provided to demonstrate the antenna performance of the 37.05 GHz to 39.95 GHz band. These antenna gains were subtracted from the measured EIRP levels at the lower and upper band edge frequencies to determine an equivalent conductive power that was compared directly with the §30.203 limits.

Frequency [GHz]	Channel	Antenna Gain [dBi]
37.05	High	27.00
39.95	High	27.00

Table 7-28. Antenna Gains at the Band Edges

Sample Analyzer Offset Calculation (at 39.95 GHz)

Measurement Antenna Factor = 44.43 dB/m

Cable Loss = 9.77 dB

Far Field Distance = 3.20 m

EUT Antenna Gain = 27.00 dBi

Duty Cycle Correction Factor = 1.37 dB

Analyzer Offset (dB) = AF (dB/m) + CL (dB) + 107 + $20\log_{10}(D) - 104.8 \text{ dB} - \text{Gain} (dBi) + \text{Duty Correction}$ factor (dB)

= 44.43 dB/m + 9.77 dB + 107 + 20log₁₀(3.20) - 104.8 dB - 27.00 dBi + 1.37 dB

= 40.87 dB

FCC ID: A3LAT1K06-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 71 of 86
8K21060202-01-R1.A3L	06/21/2021-08/31/2021	AU(AT1K06)	Page 71 of 86
© 2021 PCTEST.			PK-QP-16-09 Rev.02

7.6.2 Antenna A Conducted Band Edge Maximized on Antenna A

Plot 7-78. Band Edge (100 MHz BW 1CC QPSK High channel)

Plot 7-79. Band Edge (100 MHz BW 8NC QPSK High channel)

FCC ID: A3LAT1K06-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	SAMSUNG	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 72 of 96	
8K21060202-01-R1.A3L	06/21/2021-08/31/2021	AU(AT1K06)		Page 72 of 86	
© 2021 PCTEST.				PK-QP-16-09 Rev.02	

7.6.3 Antenna B Conducted Band Edge Maximized on Antenna B

Plot 7-80. Band Edge (100 MHz BW 1CC QPSK High channel)

Plot 7-81. Band Edge (100 MHz BW 8NC QPSK High channel)

FCC ID: A3LAT1K06-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 72 of 96
8K21060202-01-R1.A3L	06/21/2021-08/31/2021	AU(AT1K06)		Page 73 01 80
© 2021 PCTEST.				PK-QP-16-09 Rev.02

7.6.4 Antenna C Conducted Band Edge Maximized on Antenna C

Plot 7-82. Band Edge (100 MHz BW 1CC QPSK High channel)

Plot 7-83. Band Edge (100 MHz BW 8NC QPSK High channel)

FCC ID: A3LAT1K06-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 74 of 96
8K21060202-01-R1.A3L	06/21/2021-08/31/2021	AU(AT1K06)		Page 74 of 86
© 2021 PCTEST.				PK-QP-16-09 Rev.02

7.6.5 Antenna D Conducted Band Edge Maximized on Antenna D

Plot 7-84. Band Edge (100 MHz BW 1CC QPSK High channel)

Plot 7-85. Band Edge (100 MHz BW 8NC QPSK High channel)

FCC ID: A3LAT1K06-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	MSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 75 of 96
8K21060202-01-R1.A3L	06/21/2021-08/31/2021	AU(AT1K06)		Page 75 01 86
© 2021 PCTEST.				PK-QP-16-09 Rev.02

7.6.6 MIMO Band Edge Maximized on Antenna A/B/C/D

Plot 7-87. Band Edge MIMO (100 MHz BW 8NC QPSK High)

FCC ID: A3LAT1K06-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	9	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 76 of 96
8K21060202-01-R1.A3L	06/21/2021-08/31/2021	AU(AT1K06)		Page 76 01 86
© 2021 PCTEST.				PK-QP-16-09 Rev.02

7.7 Frequency Stability / Temperature Variation §2.1055

Test Overview and Limit

Frequency stability testing is performed in accordance with the guidelines of ANSI C63.26-2015. The frequency stability of the transmitter is measured by:

- a.) **Temperature:** The temperature is varied from -30°C to +50°C in 10°C increments using an environmental chamber.
- b.) **Primary Supply Voltage:** The primary supply voltage is varied from 85 % to 115 % of the nominal value for non hand-carried battery and AC powered equipment. For hand-carried, battery-powered equipment, primary supply voltage is reduced to the battery operating end point which shall be specified by the manufacturer.

Test Procedure Used

ANSI C63.26-2015 Section 5.6 KDB 842590 D01 v01r02 Section 4.5

Test Settings

- 1. The carrier frequency of the transmitter is measured at room temperature (20°C to provide a reference).
- 2. The equipment is turned on in a "standby" condition for fifteen minutes before applying power to the transmitter. Measurement of the carrier frequency of the transmitter is made within one minute after applying power to the transmitter.
- 3. Frequency measurements are made at 10°C intervals ranging from -30°C to +50°C. A period of at least one hour is provided to allow stabilization of the equipment at each temperature level.

Test Setup

Figure 7-1. Test Instrument & Measurement Setup

The EUT was measured using horn antenna connected to a spectrum analyzer. The EUT was placed inside an environmental chamber.

Test Notes

The Frequency Deviation column in the table below is the amount of deviation measured from the center frequency of the Reference measurement (first row).

FCC ID: A3LAT1K06-A10		MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 77 of 96
8K21060202-01-R1.A3L	06/21/2021-08/31/2021	AU(AT1K06)	Page 77 01 86
© 2021 PCTEST.			PK-QP-16-09 Rev.02

Frequency Stability Measurements <u>§2.1055</u>

OPERATING FREQUENCY:	38,500,000,000	Hz
REFERENCE VOLTAGE:	-48	VDC

VOLTAGE (%)	POWER (VAC)	TEMP (°C)	FREQUENCY (Hz)	Freq. Dev. (Hz)	Deviation (%)
100 %		+ 20 (Ref)	38,500,073,161	0	0.0000000
100 %		- 30	38,500,073,502	341	0.0000009
100 %		- 20	38,500,073,156	-5	0.0000000
100 %	-48	- 10	38,500,073,224	63	0.0000002
100 %		0	38,500,073,194	33	0.0000001
100 %		+ 10	38,500,073,234	72	0.0000002
100 %		+ 20	38,500,073,161	0	0.0000000
100 %		+ 30	38,500,073,536	375	0.0000010
100 %		+ 40	38,500,073,116	-45	-0.0000001
100 %		+ 50	38,500,073,524	363	0.0000009
85 %	-40.80	+ 20	38,500,073,725	564	0.0000015
115 %	-55.20	+ 20	38,500,073,552	391	0.0000010

Table 7-29. Frequency Stability Data

Note:

Based on the results of the frequency stability test at the center channel the frequency deviation results measured are very small. As such it is determined that the channels at the band edge would remain in-band when the maximum measured frequency deviation noted during the frequency stability tests is applied. Therefore, the device is determined to remain operating in band over the temperature and voltage range as tested.

FCC ID: A3LAT1K06-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	NG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 79 of 96
8K21060202-01-R1.A3L	06/21/2021-08/31/2021	AU(AT1K06)		Page 78 01 86
© 2021 PCTEST.				PK-QP-16-09 Rev.02

PK-QP-16-09 Rev.02

Frequency Stability Measurements §2.1055

Figure 7-2. Frequency Stability Graph

FCC ID: A3LAT1K06-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dago 70 of 96
8K21060202-01-R1.A3L	06/21/2021-08/31/2021	AU(AT1K06)	Fage 79 01 00
© 0001 DOTEOT			DK OD 46 00 Day 02

8.0 CONCLUSION

The data collected relate only to the item(s) tested and show that the **Samsung 5G Access Unit Model: AT1K06-A10** complies with all the requirements of Part 30.

FCC ID: A3LAT1K06-A10		MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 90 of 90
8K21060202-01-R1.A3L	06/21/2021-08/31/2021	AU(AT1K06)	Fage 80 01 86
© 2021 PCTEST.			PK-QP-16-09 Rev.02

9.0 APPENDIX A

9.1 Introduction (KDB 484596 Section 3 a)

The applicant takes full responsibility that the test data as referenced FCC ID : A3LAT1K06-A00 represents compliance for FCC ID : A3LAT1K06-A10

9.2 Explain the Differences (KDB 484596 Section 3 b)

FCC ID : A3LAT1K06-A00 is powered by AC voltage source. For FCC ID : A3LAT1K06-A10 is powered by DC voltage source which is only different power supply condition that no affect to RF parameters because other components are identical except for power supply.

9.3 Spot Check Verification Data (KDB 484596 Section 3 c)

Spot check verification was adopted to the following test cases to check whether it is changed by power supply difference. As a result, the For FCC ID : A3LAT1K06-A10 And For FCC ID : A3LAT1K06-A00 test result can be identical because both are using same RF components.

The spot check verification data included this test report on 7.0 Test Result.

- Case #1 : Occupied Bandwidth
- Case #2 : Equivalent Isotropic Radiated Power (EIRP) Density
- Case #3 : RF Conducted Output Power
- Case #4 : Radiated Spurious and Harmonic Emissions [30MHz 33GHz]
- Case #5 : Band Edge Emissions
- Case #6 : Frequency Stability / Temperature Variation

FCC ID: A3LAT1K06-A10	PCTEST* Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 91 of 96
8K21060202-01-R1.A3L	06/21/2021-08/31/2021	AU(AT1K06)	Fage of 01 00
© 2021 PCTEST.			PK-QP-16-09 Rev.02

9.4 Reference Section (KDB 484596 Section 3 d)

A matrix has been provided the source data for rule part, frequency range, and emission designator as required by KDB 484596:

Rule	Frequency	Emission	Source Data	Exhibit Name(s)
Part	Range(MHz)	Designator	FCC ID	
30	37000 - 40000	94M5G7D 94M5W7D 788MG7D 788MW7D	A3LAT1K06-A00	FCC RF Test Report MPE Test Report

FCC ID: A3LAT1K06-A10		MEASUREMENT REPORT (Class II Permissive Change)	SAMSUNG	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 92 of 96	
8K21060202-01-R1.A3L	06/21/2021-08/31/2021	1/2021 AU(AT1K06)		Page 62 of 86	
O ANAL DOTEOT				DIC OD 40.00 D	

10.0 APPENDIX B

100

10.1 HARMONIC MIXER Verification Certificate

		교 정 성 CALIBRATION 경기도 이천시 마장면 / TEL: 031645-6900, F	(적 서 CERTIFICATE 네이천로 578번길 74 AX:031-645-6969	UEORALINA COLORADO	LAS ROOT
성적서발급 교 정 빈	급번호(Certificate No): IC <u>호(Calibration No): C-</u>	-2021-17236 2021-021271		페이지(pag	ge):1 of 4
1. 의뢰자 - 기관9 - 주소 ((Client) 경(Name) : 피씨테스 (Address) : 경기도국	느트코리아 주식회사 용인시 기흥구 흥덕1로 13, I	피136, 피137호(영덕동	등, 흥덕 IT 밸리)	
2. 측정기 - 기기당 - 제작형 - 기기당	(Calibration Subject) 영 (Description) : 회사 및 형식(Manufacturer a 번호 (Serial Number) :	◇ 등록번호 : 38 HARMONIC MIXER and Model Name) : ROHDE & 100981	0383 SCHWARZ / FS-Z60	실무지	기술책임자
3. 교정일	자 (Date of Calibration) :	2021.03.08		Cor	o Att
4. 교정환 - 온도(- 교정? 5. 측정표 교정방 상기 기 보된 아	영 (Environment) Temperature): (23.5 ± 장소 (Location) : 고 (주 준의 소급성 (Traceability) 법 및 소급성 서술 (Calibu 기는 고주파 스펙트림 분석 래의 표준장비를 이용하여	0.4) ℃ – 습도(Hur 정표준실(Permanent Calibra 초소: 경기도 이천시 마장면 서이 ◇ Field code : 40641(RF SPEC ration method and/or brief descriptic 기의 교정절차(HCT-CS-125-40 교정 되었음.	midity): (49 ± 5 tion Lab) 천로 578번길 74) TRUM ANALYZER) on) 16641)에 따라 국가측정표) % R.H. 표준기관으로부터 측정	d의 소급성이 확
교정에	사용한 표준상비 영세 ((List of used standards/specification:	5)		
	기기명 (Description)	제작회사 및 형식 (Manufacturer and Model Name)	기기번호 (Serial Number)	자기교정예정일자 (The due date of next Calibration)	교정기관 (Calibration laboratory)
EXG ANAL	OG SIGNAL GENERATOR	KEYSIGHT N5173B	MY53270544	2021/06/23	(주)에이치시티
EPM SE	RIES POWER METER	AGILENT E4419B	GB42420565	2021/11/02	(주)에이치시티
	OWER SENSOR	AGILENT 8487A	MY41092450	2022/01/11	(주)에이치시티
Р					
P	OWER SENSOR	KEYSIGHT V8486A	MY56330017	2022/01/25	Keysight Technologies
P P WR-19	OWER SENSOR MULTIPLIER SOURCE MODULE	KEYSIGHT V8486A OML S19MS-A	MY56330017 160516-1	2022/01/25	Keysight Technologies (주)에이치시티
P P WR-19 6. 교정결:	OWER SENSOR MULTIPLIER SOURCE MODULE 과 (Calibration result)	KEYSIGHT V8486A OML S19MS-A : 교정결과 참조 (R	MY56330017 160516-1 efer to attachment)	2022/01/25 2021/09/09	Keysight Technologies (주)에이치시티
P P WR-19 6. 교정결 7. 측정불	OWER SENSOR MULTIPLIER SOURCE MODULE 과 (Calibration result) 탁도 (Measurement uncertain	KEYSIGHT V8486A OML S19MS-A : 교정결과 참조 (R : 교정결과 참조 (R 신뢰수준 약 95 %, k	MY56330017 160516-1 efer to attachment) efer to attachment) = 2 (Confidence level abou	2022/01/25 2021/09/09	Keysight Technologies (주)에이치시티
P WR-19 6. 교정결 7. 측정불 확 인 affirmation)	OWER SENSOR MULTIPLIER SOURCE MODULE 과 (Calibration result) 탁도 (Measurement uncertain 작성자 (Measurements perf 성명 (Name) 박민지	KEYSIGHT V8486A OML S19MS-A : 교정결과 참조 (R 신뢰수준 약 95 %, k formed by)	MY56330017 160516-1 efer to attachment) efer to attachment) = 2 (Confidence level about 승인자 (Approved by) 직위 (Title) 기술책 5 성명 (Name) 이승친	2022/01/25 2021/09/09 t 95 %, k = 2) 감자(Technical Cal. Mana	Keysight Technologies (주)에이치시티 ager) (정) (전사망)
P WR-19 6. 교정결: 7. 측정불: 확인 affirmation) 위 성적서는 Arrangeme	OWER SENSOR MULTIPLIER SOURCE MODULE 과 (Calibration result) 탁도 (Measurement uncertain 작성자 (Measurements perf 성명 (Name) 박민지 국제시험기관인정협력체 nt)에 서명한 한국인정기구	KEYSIGHT V8486A OML S19MS-A : 교정결과 참조 (R 신뢰수준 약 95 %, k (Al뢰수준 약 95 %, k (International Laboratory Accre P(KOLAS)로부터 공인 받은 분0	MY56330017 160516-1 efer to attachment) efer to attachment) = 2 (Confidence level abou 증인자 (Approved by) 직위 (Title) 기술책 성명 (Name) 이 승 친 cditation Cooperation) 수 의 교정결과입니다.	2022/01/25 2021/09/09 t 95 %, k = 2) 감자(Technical Cal. Mana 상호인정협정(Mutual	Keysight Technologies (주)에이치시티 ager) (종) (전자) Recognition
P WR-19 6. 교정결: 7. 측정불: 확 인 affirmation) 위 성적서는 Arrangeme	OWER SENSOR MULTIPLIER SOURCE MODULE 과 (Calibration result) 탁도 (Measurement uncertain 작성자 (Measurements perf 성명 (Name) 박민지 국제시험기관인정협력체 nt)에 서명한 한국인정기구	KEYSIGHT V8486A OML S19MS-A : 교정결과 참조 (R 신뢰수준 약 95 %, k formed by) (International Laboratory Accre P(KOLAS)로부터 공인 받은 분0	MY56330017 160516-1 efer to attachment) = 2 (Confidence level abou 응인자 (Approved by) 직위 (Title) 기술책 5 성명 (Name) 이 승 천 editation Cooperation) 6 는의 교정결과입니다. 2021.03.08	2022/01/25 2021/09/09 t 95 %, k = 2) 암자(Technical Cal. Mana 상호인정협정(Mutual	Keysight Technologies (주)에이치시티 ager) (종) (신규) Recognition
P WR-19 6. 교정결: 7. 측정불: 확인 affirmation) 위 성적서는 Arrangeme	OWER SENSOR MULTIPLIER SOURCE MODULE 과 (Calibration result) 탁도 (Measurement uncertain 작성자 (Measurements perf 성명 (Name) 박민지 : 국제시험기관인정협력체 nt)에 서명한 한국인정기구 Accredited t	KEYSIGHT V8486A OML S19MS-A : 교정결과 참조 (R 신뢰수준 약 95 %, k Ormed by) (International Laboratory Accre P(KOLAS)로부터 공인 받은 분이 국인정기구 인정	MY56330017 160516-1 efer to attachment) = 2 (Confidence level abou 적위 (Title) 기술책(성명 (Name) 이승천 양에 대한 기술책(성명 (Name) 이승천 양이 교정결과입니다. 2021. 03. 08 주)에 이 치 시 트 President, HO	2022/01/25 2021/09/09 t 95 %, k = 2) 양자(Technical Cal. Mana 양호인정협정(Mutual 다 다 표이사	Keysight Technologies (주)에이치시티 ager) (종) (전나용) Recognition

FCC ID: A3LAT1K06-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 82 of 86
8K21060202-01-R1.A3L	06/21/2021-08/31/2021	AU(AT1K06)	Fage 03 UI 00
@ 2024 DOTECT			DK OD 16 00 Boy 02

ite De	열 람 용 startificate way not be reprodu- other than in full except with mission of the boxing laboration	지 고 정 성 CALIBRATION (경기도 이행서 미광면 서 TB.: (0) 645 6900 F/	적 서 CERTIFICATE 101천로 578번길 74 X5: 031645 6969	ALE CALENDARY ACC	CREDITATION OC TO	
성적서발급 교 정 번	성적서발급번호(Certificate No): IC-2020-77176 교 정 번 호(Calibration No): C-2020-089965 페이지(page): 1 of 3					
1. 의뢰자 - 기관명 - 주소 ((Client) (Client) ﴿ (Name) : 피씨테스 Address) : 경기도 {	:트코리아 주식회사 용인시 기흥구 홍덕1로 13, 프	136, 피137호(영덕동	, 홍덕 IT 밸리)		
2. 측정기 - 기기명 - 제작호 - 기기번	(Calibration Subject) 성 (Description) : 이사 및 형식 (Manufacturer a 호 (Serial Number) :	◇ 등록번호 : 365 HARMONIC MIXER nd Model Name) : ROHDE & 5 101860	9548 SCHWARZ / FS-Z90			
3. 교정일기	자 (Date of Calibration) :	2020.10.21				
4. 교정 환 - 온도(1 - 교정정 5. 측정 표 교정방 상기 기 보편 아 교정에	경 (Environment) 'emperature) : (23.1 ± 상소 (Location) : 고 (주 준의 소급성 (Traceability) 법 및 소급성 서술 (Calibr 기는 고주파 스펙트림 분석 래의 표준장비를 이용하여 사용한 표준장비 명세 (0.3) ℃ - 습도(Hun 정표준실(Permanent Calibral 소: 경기도 이천시 마장면 서이 ◇Field code : 40641(RF SPEC ation method and/or brief descriptio 기의 교정절차(HCT-CS-125-40 교정 되었음. Ust of used standards/specifications	nidity): (46 ± 3 tion Lab) 천로 578번길 74) TRUM ANALYZER) n) 641)에 따라 국가측정표 ;)) % R.H. 표준기관으로부터 측정	성의 소급성이 확	
	기기명 (Description)	제작회사 및 형식 (Manufacturer and Model Name)	기기번호 (Serial Number)	차기교정예정일자 (The due date of next Calibration)	교 정기관 (Calibration laboratory)	
EXG ANAL	OG SIGNAL GENERATOR	KEYSIGHT	MY53270544	2021/06/23	(주)에이치시티	
EPM SE	RIES POWER METER	AGILENT E44.198	GB42420565	2020/11/02	(주)에이치시티	
P	OWER SENSOR	KEYSIGHT V8486A	MY56330017	2021/01/03	Keysight Technologies	
P	OWER SENSOR	KEYSIGHT W8486A	MY56370005	2020/12/30	Keysight Technologies	
WR-12	MULTIPLIER SOURCE	OML S12MS-A	160419-1	2021/09/09	(주)에이치시티	
6. 교정결:	과 (Calibration result)	:교정결과 참조 (R	efer to attachment)			
7. 측정불	확도 (Measurement uncertain	ty) :교정결과 참조 (Re	efer to attachment)			
-		신뢰수준 약 95 %, <i>k</i> :	= 2 (Confidence level abou	it 95 %, k = 2)		
확 인 (affirmation)	작성자 (Measurements per 성영 (Name) 박민지	ormed by) Recent	승인자 (Approved by) 직위 (Title) 기술책(성명 (Name) 이 승친	임 자(Technical Cal. Man t		
위 성적서는 Arrangeme	· 국제시형기관인정협력체 nt)에 서명한 한국인정기-	(International Laboratory Accre P (KOLAS)로부터 공인 받은 분0	editation Cooperation) (야의 교정결과입니다.	상호인경협정(Mutual	Recognition	
증이 성적서는 4	한국인정기구 인정 Accredited by KOLAS, Republic of KOREA (주)에이치시티대표이사 <i>President</i> , HCT Co., Ltd.					
※ 고객전용사이! ※ 성적서의 원본	※ 고객전용사이트(h世p://www.callab.ca.kr)에서 성적서의 진위여부 확인이 가능합니다. ※ 성적서의 원끈은 상단에 HCT홀로그램이 들어간 위변조 방지 용지에 인쇄되어 발급되며, 원끈 특사시에는 특사끈이라는 표시가 처리됩니다. F-02P-02-008 (Rev.02)					

FCC ID: A3LAT1K06-A10
Image: Constraint of the period of the period

		74, Seoicheon-ro 578beo Icheon-si, Gyeonggi- Tel :82-31-645-6900	n-gil, Majang-myeon, do, Korea 17383 , www.hct.co.kr		
보고서번호 _ 측 정 번 .	(Report No) : IC- 호(Measurement No) : C-2	2021-17234 2021-021269		페이지(pag	ie):1 of 3
1. 의뢰자 - 기관당 - 주소 ((Client) ^명 (Name) : 피씨테스 Address) : 경기도 용	·트코리아 주식회사 용인시 기흥구 흥덕1로 13, 피	136. 피137호(영덕동	. 홍덕 IT 밸리)	
2. 대상품 - 기기원 - 제작회 - 기기원	복 (Measurement Item) 병 (Description) : 회사 및 형식(Manufacturer a 번호 (Serial Number) :	◇ HCT 등록번호 : 380 HARMONIC MIXER nd Model Name) : ROHDE & S 101135	0382 SCHWARZ / FS-Z140	실무지	기술책임자
3. 측정일	자 (Measurement date) :	2021.03.08		2702	All
- 온도(5. 측정방 상기 기: 된 아래:	remperature) : (23.5 ± 법 (Measurement metho 기는 고주파 스펙트럼 분석 의 표준장비와 자체 점검된	0.4) ℃ - 습도(Hum d used) 기의 교정절차(HCT-CS-125-406 장비를 사용하여 측정 되었음.	idity): (49 ± 5 41)에 따라 국가측정표) % R.H. 준기관으로부터 측정	의 소급성이 확보
측정에	사용한 표준장비 명세	(List of used standards/spe	cifications)		
	기기명 (Description)	제작회사 및 형식 (Manufacturer and Model Name)	기기번호 (Serial Number)	차기교정예정일자 (The due date of next Calibration)	교정기관 (Calibration laborator
EXG ANAL	OG SIGNAL GENERATOR	KEYSIGHT N5173B	MY53270544	2021/06/23	(주)에이치시티
ERICK	SON POWER METER	VDI PM5	394V	측정	(주)에이치시티
WR-08	MULTIPLIER SOURCE MODULE	OML S08MS-A	160419-1	측정	(주)에이치시티
SPEC	CTRUM ANALYZER	H.P 8563EC	3946A00314	2022/03/03	(주)에이치시티
	(Messurement result)	: 측정결과 참조 (Re 한 시료 및 시료명에만 한정됩	fer to attachment) 닙니다. sured unless otherwise sta	ited.	
6. 측정결 : ㈜ 이 측 The messu 확 인 (Affirmation)	정결과는 의뢰자가 제시 remen results shown in this 작성자 (Tested by) 성명 (Name): 박민지	eport refer only to the sample(s) mea	승인자 (Approved by) 직위 (Title) 기술책임 성명 (Name) 이승찬	임자(Technical Manager)	(BON)
6. 측정결 : ㈜ 이 측 The messu 확 인 (Affirmation) 이 성적서는 II 과 무관합니다 for Laboratory	정결과는 의뢰자가 제시 remen results shown in this re 작성자 (Tested by) 성명 (Name) : 박민지 AC MRA 서명 기관인 KOLAS . This calibration certificate is N Accreditation), a ILAC MRA si	(Korea Laboratory Accreditation Sche Iot an accredited report by KOLAS(Ko gnatory.	승인자 (Approved by) 직위 (Title) 기술책임 성명 (Name) 이승찬 me)와 A2LA (American Lat rea Laboratory Accreditatio 2021. 03. 08	김 자(Technical Manager) poratory for Laboratory Ac n Scheme) and A2LA(Ar	Creditation)의 인정 herican Association

Proud to be part of element

PC

<u>(</u>

FCC ID: A3LAT1K06-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	SAMSUNG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Dege 05 of 00
8K21060202-01-R1.A3L	06/21/2021-08/31/2021	AU(AT1K06)		Page 65 01 66
© 2021 PCTEST				PK-OP-16-09 Rev 02

	24 0000 0000	Tel :82-31-645-6900), www.hct.co.kr	PIOLTU	a) + 1 - 4 - 2
보고서번호 측 정 번 1	(Report No) : IC- 2(Measurement No) : C-2	2020-77177 2020-089966		mioivi(bağı	e):1 of 3
1. 의뢰자 - 기관명 - 주소 ((Client) !(Name) : 피씨테스 Address) : 경기도 &	트코리아 주식회사 중인시 기흥구 흥덕1로 13, 피	136, 피137호(영덕동	, 홍덕 IT 밸리)	
2. 대상품 - 기기명 - 제작호 - 기기번	목 (Measurement Item) (Description) : (사 및 형식(Manufacturera 호 (Serial Number) :	◇ HCT 등록번호: 365 HARMONIC MIXER nd Model Name) : ROHDE & 5 101015	9547 SCHWARZ / FS-Z220		
3. 측정일)	자 (Measurement date) :	2020.10.21			
- 온노(1 5. 측정방법 상기 기기 된 아래의	emperature): (23.1 ± 컵 (Measurement metho 기는 고주파 스펙트럼 분석 리 표준 장비와 자체 점검된	0.3) 단 - 습노(Hun d used) 기의 교정절차(HCT-CS-125-406 장비를 사용하여 측정 되었음.	nidity): (46 ± 3 541)에 따라 국가측정표) % R.H. 준기관으로부터 측정:	의 소급성이 확보
934	기기영 (Description)	N작회사 및 형식 (Manufacturer and Model Name)	기기번호 (Serial Number)	차기교정예정일자 (The due date of	교정기관 (Calibration laboratory
EXG ANAL	OG SIGNAL GENERATOR	KEYSIGHT N5173B	MY53270544	2021/06/23	(주)에이치시티
ERICK	SON POWER METER	VDI PM5	394V	측정	(주) <mark>에</mark> 이치시티
WR-05	MULTIPLIER SOURCE MODULE	OML S05MS-A	160419-1	측정	(주)에이치시티
6. 측정결: ㈜ 이 측 The messu	과 (Messurement result) 정결과는 의뢰자가 제시 remen results shown in this r	: 측정결과 참조 (R 한 시료 및 시료명에만 한정! eport refer only to the sample(s) me	efer to attachment) 됩니다. asured unless otherwise sta	ated.	
확 인 ffirmation)	작성자 (Tested by) 성명 (Name) : 박민지	Recenj	승인자 (Approved by) 직위 (Title) 기술책) 성명 (Name) 이 승친	임 자(Technical Manager) !	an
	LAC MRA 서명 기관인 KOLA: }. This calibration certificate is i y Accreditation), a ILAC MRA s	S(Korea Laboratory Accreditation Sch Not an accredited report by KOLAS(K Ignatory.	eme)와 A2LA (American La orea Laboratory Accreditate	boratory for Laboratory Ac on Scheme) and A2LA(An	coreditation)의 인정 nerican Association
이 성적서는 I 과 무관합니다 for Laborator			2020. 10. 21		

FCC ID: A3LAT1K06-A10		MEASUREMENT REPORT (Class II Permissive Change)	NG	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 86 of 86
8K21060202-01-R1.A3L	06/21/2021-08/31/2021	AU(AT1K06)		Faye of 01 of
O ANAL DOTEOT				DK OD 40 00 D 00