

Plot 7-120. Antenna D EIRP Density Plot (100 MHz BW 8CC 64QAM Mid Channel)


Plot 7-121. Antenna D EIRP Density Plot (100 MHz BW 8CC NC QPSK Mid Channel)

| FCC ID: A3LAT1K06-A00 |  | MEASUREMENT REPORT (CERTIFICATION) | snmsunf | Approved by: Quality Manager |
| :---: | :---: | :---: | :---: | :---: |
| Test Report S/N: 8K21011301-R1.A3L | Test Dates: <br> 01/18/2021-02/05/2021 | EUT Type: AU(AT1K06) |  | Page 86 of 159 |



Plot 7-122. Antenna D EIRP Density Plot (100 MHz BW 8CC NC 16QAM Mid Channel)


Plot 7-123. Antenna D EIRP Density Plot (100 MHz BW 8CC NC 64QAM Mid Channel)

| FCC ID: A3LAT1K06-A00 |  | MEASUREMENT REPORT (CERTIFICATION) | snmsunf | Approved by: Quality Manager |
| :---: | :---: | :---: | :---: | :---: |
| Test Report S/N: 8K21011301-R1.A3L | Test Dates: <br> 01/18/2021-02/05/2021 | EUT Type: AU(AT1K06) |  | Page 87 of 159 |



Plot 7-124. Antenna D EIRP Density Plot (100 MHz BW 1CC QPSK High Channel)


Plot 7-125. Antenna D EIRP Density Plot (100 MHz 1CC BW 16QAM High Channel)

| FCC ID: A3LAT1K06-A00 |  | MEASUREMENT REPORT (CERTIFICATION) | SnMSUNE | Approved by: Quality Manager |
| :---: | :---: | :---: | :---: | :---: |
| Test Report S/N: 8K21011301-R1.A3L | Test Dates: <br> 01/18/2021-02/05/2021 | EUT Type: <br> AU(AT1K06) |  | Page 88 of 159 |



Plot 7-126. Antenna D EIRP Density Plot (100 MHz 1CC BW 64QAM High Channel)


Plot 7-127. Antenna D EIRP Density Plot (100 MHz BW 8CC QPSK High Channel)

| FCC ID: A3LAT1K06-A00 |  | MEASUREMENT REPORT (CERTIFICATION) | snmsunf | Approved by: Quality Manager |
| :---: | :---: | :---: | :---: | :---: |
| Test Report S/N: 8K21011301-R1.A3L | Test Dates: <br> 01/18/2021-02/05/2021 | EUT Type: AU(AT1K06) |  | Page 89 of 159 |

Plot 7-128. Antenna D EIRP Density Plot (100 MHz BW 8CC 16QAM High Channel)


Plot 7-129. Antenna D EIRP Density Plot (100 MHz BW 8CC 64QAM High Channel)

| FCC ID: A3LAT1K06-A00 | 旆 PCTEST | MEASUREMENT REPORT (CERTIFICATION) | Snmsune | Approved by: Quality Manager |
| :---: | :---: | :---: | :---: | :---: |
| Test Report S/N: 8K21011301-R1.A3L | Test Dates: 01/18/2021-02/05/2021 | EUT Type: AU(AT1K06) |  | Page 90 of 159 |



Plot 7-130. Antenna D EIRP Density Plot (100 MHz BW 8CC NC QPSK High Channel)


Plot 7-131. Antenna D EIRP Density Plot (100 MHz BW 8CC NC 16QAM High Channel)

| FCC ID: A3LAT1K06-A00 |  | MEASUREMENT REPORT (CERTIFICATION) | snmsunf | Approved by: Quality Manager |
| :---: | :---: | :---: | :---: | :---: |
| Test Report S/N: 8K21011301-R1.A3L | Test Dates: <br> 01/18/2021-02/05/2021 | EUT Type: AU(AT1K06) |  | Page 91 of 159 |




Plot 7-132. Antenna D EIRP Density Plot (100 MHz BW 8CC NC 64QAM High Channel)

| FCC ID: A3LAT1K06-A00 | FCTEST | MEASUREMENT REPORT (CERTIFICATION) | shmsung | Approved by: <br> Quality Manager |
| :---: | :---: | :---: | :---: | :---: |
| Test Report S/N: 8K21011301-R1.A3L | Test Dates: 01/18/2021-02/05/2021 | EUT Type: <br> AU(AT1K06) |  | Page 92 of 159 |

### 7.3.5 MIMO EIRP Density

| Antenna | Bandwidth | Configuration | Chan. | Frequency | Modulation | Ant A [mW] | Ant C <br> [mW] | Average e.i.r.p. PSD | PSD Limit | Margin |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | [MHz] |  |  | [GHz] |  |  |  | [dBm/100MHz] | [dBm/100MHz] | [dB] |
| $A+C$ | 100 | 1CC | Low | 37.050 | QPSK | 117.17 | 110.29 | 53.57 | 75.00 | 21.43 |
|  | 100 |  | Low | 37.050 | 16QAM | 115.88 | 106.77 | 53.48 | 75.00 | 21.52 |
|  | 100 |  | Low | 37.050 | 64QAM | 119.14 | 112.94 | 53.66 | 75.00 | 21.34 |
|  | 100 | 8CC | Low | 37.050 | QPSK | 33.78 | 32.70 | 48.23 | 75.00 | 26.77 |
|  | 100 |  | Low | 37.050 | 16QAM | 34.85 | 32.94 | 48.31 | 75.00 | 26.69 |
|  | 100 |  | Low | 37.050 | 64QAM | 35.01 | 33.13 | 48.33 | 75.00 | 26.67 |
|  | 100 | 8NC | Low | 37.050 | QPSK | 28.99 | 30.65 | 47.76 | 75.00 | 27.24 |
|  | 100 |  | Low | 37.050 | 16QAM | 28.41 | 29.51 | 47.63 | 75.00 | 27.37 |
|  | 100 |  | Low | 37.050 | 64QAM | 28.17 | 29.86 | 47.64 | 75.00 | 27.36 |
|  | 100 | 1CC | Mid | 38.500 | QPSK | 104.80 | 99.79 | 53.11 | 75.00 | 21.89 |
|  | 100 |  | Mid | 38.500 | 16QAM | 102.64 | 97.97 | 53.02 | 75.00 | 21.98 |
|  | 100 |  | Mid | 38.500 | 64QAM | 104.37 | 95.70 | 53.01 | 75.00 | 21.99 |
|  | 100 | 8CC | Mid | 38.500 | QPSK | 33.18 | 34.30 | 48.29 | 75.00 | 26.71 |
|  | 100 |  | Mid | 38.500 | 16QAM | 34.19 | 36.09 | 48.47 | 75.00 | 26.53 |
|  | 100 |  | Mid | 38.500 | 64QAM | 32.92 | 35.01 | 48.32 | 75.00 | 26.68 |
|  | 100 | 8NC | Mid | 38.500 | QPSK | 36.54 | 38.64 | 48.76 | 75.00 | 26.24 |
|  | 100 |  | Mid | 38.500 | 16QAM | 35.84 | 37.98 | 48.68 | 75.00 | 26.32 |
|  | 100 |  | Mid | 38.500 | 64QAM | 36.87 | 39.15 | 48.81 | 75.00 | 26.19 |
|  | 100 | 1CC | High | 39.950 | QPSK | 104.73 | 82.48 | 52.72 | 75.00 | 22.28 |
|  | 100 |  | High | 39.950 | 16QAM | 101.69 | 81.71 | 52.63 | 75.00 | 22.37 |
|  | 100 |  | High | 39.950 | 64QAM | 104.54 | 82.28 | 52.71 | 75.00 | 22.29 |
|  | 100 | 8CC | High | 39.950 | QPSK | 30.35 | 26.93 | 47.58 | 75.00 | 27.42 |
|  | 100 |  | High | 39.950 | 16QAM | 29.04 | 25.18 | 47.34 | 75.00 | 27.66 |
|  | 100 |  | High | 39.950 | 64QAM | 30.38 | 26.79 | 47.57 | 75.00 | 27.43 |
|  | 100 | 8NC | High | 39.950 | QPSK | 44.52 | 42.10 | 49.38 | 75.00 | 25.62 |
|  | 100 |  | High | 39.950 | 16QAM | 44.99 | 41.42 | 49.37 | 75.00 | 25.63 |
|  | 100 |  | High | 39.950 | 64QAM | 45.10 | 42.36 | 49.42 | 75.00 | 25.58 |

Table 7-11. MIMO EIRP Density Summary Data (Antenna A + C)

| FCC ID: A3LAT1K06-A00 | F\|PCTEST | MEASUREMENT REPORT (CERTIFICATION) | Snmsuna | Approved by: <br> Quality Manager |
| :---: | :---: | :---: | :---: | :---: |
| Test Report S/N: 8K21011301-R1.A3L | Test Dates: 01/18/2021-02/05/2021 | EUT Type: <br> AU(AT1K06) |  | Page 93 of 159 |


| Antenna | Bandwidth | Configuration | Chan. | Frequency | Modulation | Ant B [mW] | Ant D [mW] | Average e.i.r.p. PSD | PSD Limit | Margin |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | [MHz] |  |  | [GHz] |  |  |  | [dBm/100MHz] | [dBm/100MHz] | [dB] |
| $B+D$ | 100 | 1CC | Low | 37.050 | QPSK | 121.92 | 122.90 | 53.89 | 75.00 | 21.11 |
|  | 100 |  | Low | 37.050 | 16QAM | 123.98 | 128.91 | 54.03 | 75.00 | 20.97 |
|  | 100 |  | Low | 37.050 | 64QAM | 120.43 | 116.94 | 53.75 | 75.00 | 21.25 |
|  | 100 | 8CC | Low | 37.050 | QPSK | 37.08 | 36.98 | 48.70 | 75.00 | 26.30 |
|  | 100 |  | Low | 37.050 | 16QAM | 36.43 | 36.60 | 48.64 | 75.00 | 26.36 |
|  | 100 |  | Low | 37.050 | 64QAM | 35.31 | 35.57 | 48.51 | 75.00 | 26.49 |
|  | 100 | 8NC | Low | 37.050 | QPSK | 34.11 | 33.32 | 48.29 | 75.00 | 26.71 |
|  | 100 |  | Low | 37.050 | 16QAM | 34.06 | 34.50 | 48.36 | 75.00 | 26.64 |
|  | 100 |  | Low | 37.050 | 64QAM | 34.27 | 33.61 | 48.32 | 75.00 | 26.68 |
|  | 100 | 1CC | Mid | 38.500 | QPSK | 108.60 | 97.74 | 53.15 | 75.00 | 21.85 |
|  | 100 |  | Mid | 38.500 | 16QAM | 106.76 | 98.00 | 53.11 | 75.00 | 21.89 |
|  | 100 |  | Mid | 38.500 | 64QAM | 104.97 | 99.48 | 53.11 | 75.00 | 21.89 |
|  | 100 | 8CC | Mid | 38.500 | QPSK | 34.53 | 34.85 | 48.41 | 75.00 | 26.59 |
|  | 100 |  | Mid | 38.500 | 16QAM | 34.94 | 34.72 | 48.43 | 75.00 | 26.57 |
|  | 100 |  | Mid | 38.500 | 64QAM | 33.63 | 33.46 | 48.27 | 75.00 | 26.73 |
|  | 100 | 8NC | Mid | 38.500 | QPSK | 43.19 | 40.84 | 49.24 | 75.00 | 25.76 |
|  | 100 |  | Mid | 38.500 | 16QAM | 43.46 | 41.33 | 49.28 | 75.00 | 25.72 |
|  | 100 |  | Mid | 38.500 | 64QAM | 43.34 | 40.56 | 49.24 | 75.00 | 25.76 |
|  | 100 | 1CC | High | 39.950 | QPSK | 109.61 | 82.91 | 52.84 | 75.00 | 22.16 |
|  | 100 |  | High | 39.950 | 16QAM | 108.45 | 81.09 | 52.78 | 75.00 | 22.22 |
|  | 100 |  | High | 39.950 | 64QAM | 110.27 | 79.73 | 52.79 | 75.00 | 22.21 |
|  | 100 | 8CC | High | 39.950 | QPSK | 32.93 | 27.69 | 47.83 | 75.00 | 27.17 |
|  | 100 |  | High | 39.950 | 16QAM | 32.89 | 26.87 | 47.76 | 75.00 | 27.24 |
|  | 100 |  | High | 39.950 | 64QAM | 32.39 | 27.16 | 47.75 | 75.00 | 27.25 |
|  | 100 | 8NC | High | 39.950 | QPSK | 46.08 | 43.18 | 49.51 | 75.00 | 25.49 |
|  | 100 |  | High | 39.950 | 16QAM | 46.01 | 44.11 | 49.55 | 75.00 | 25.45 |
|  | 100 |  | High | 39.950 | 64QAM | 45.28 | 43.64 | 49.49 | 75.00 | 25.51 |

Table 7-12. MIMO EIRP Density Summary Data (Antenna B + D)

| Antenna | Bandwidth | Configuration | Chan. | Frequency | Modulation | Ant A [mW] | Ant B [mW] | Ant C [mW] | Ant D [mW] | Average e.i.r.p. PSD | PSD Limit | Margin |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | [MHz] |  |  | [GHz] |  |  |  |  |  | [dBm/100MHz] | [dBm/100MHz] | [dB] |
| $A+B+C+D$ | 100 | 1CC | Low | 37.050 | QPSK | 117.17 | 121.92 | 110.29 | 122.90 | 56.74 | 75.00 | 18.26 |
|  | 100 |  | Low | 37.050 | 16QAM | 115.88 | 123.98 | 106.77 | 128.91 | 56.77 | 75.00 | 18.23 |
|  | 100 |  | Low | 37.050 | 64QAM | 119.14 | 120.43 | 112.94 | 116.94 | 56.72 | 75.00 | 18.28 |
|  | 100 | 8CC | Low | 37.050 | QPSK | 33.78 | 37.08 | 32.70 | 36.98 | 51.48 | 75.00 | 23.52 |
|  | 100 |  | Low | 37.050 | 16QAM | 34.85 | 36.43 | 32.94 | 36.60 | 51.49 | 75.00 | 23.51 |
|  | 100 |  | Low | 37.050 | 64QAM | 35.01 | 35.31 | 33.13 | 35.57 | 51.43 | 75.00 | 23.57 |
|  | 100 | 8NC | Low | 37.050 | QPSK | 28.99 | 34.11 | 30.65 | 33.32 | 51.04 | 75.00 | 23.96 |
|  | 100 |  | Low | 37.050 | 16QAM | 28.41 | 34.06 | 29.51 | 34.50 | 51.02 | 75.00 | 23.98 |
|  | 100 |  | Low | 37.050 | 64QAM | 28.17 | 34.27 | 29.86 | 33.61 | 51.00 | 75.00 | 24.00 |
|  | 100 | 1CC | Mid | 38.500 | QPSK | 104.80 | 108.60 | 99.79 | 97.74 | 56.14 | 75.00 | 18.86 |
|  | 100 |  | Mid | 38.500 | 16QAM | 102.64 | 106.76 | 97.97 | 98.00 | 56.08 | 75.00 | 18.92 |
|  | 100 |  | Mid | 38.500 | 64QAM | 104.37 | 104.97 | 95.70 | 99.48 | 56.07 | 75.00 | 18.93 |
|  | 100 | 8CC | Mid | 38.500 | QPSK | 33.18 | 34.53 | 34.30 | 34.85 | 51.36 | 75.00 | 23.64 |
|  | 100 |  | Mid | 38.500 | 16QAM | 34.19 | 34.94 | 36.09 | 34.72 | 51.46 | 75.00 | 23.54 |
|  | 100 |  | Mid | 38.500 | 64QAM | 32.92 | 33.63 | 35.01 | 33.46 | 51.30 | 75.00 | 23.70 |
|  | 100 | 8NC | Mid | 38.500 | QPSK | 36.54 | 43.19 | 38.64 | 40.84 | 52.02 | 75.00 | 22.98 |
|  | 100 |  | Mid | 38.500 | 16QAM | 35.84 | 43.46 | 37.98 | 41.33 | 52.00 | 75.00 | 23.00 |
|  | 100 |  | Mid | 38.500 | 64QAM | 36.87 | 43.34 | 39.15 | 40.56 | 52.04 | 75.00 | 22.96 |
|  | 100 | 1CC | High | 39.950 | QPSK | 104.73 | 109.61 | 82.48 | 82.91 | 55.79 | 75.00 | 19.21 |
|  | 100 |  | High | 39.950 | 16QAM | 101.69 | 108.45 | 81.71 | 81.09 | 55.72 | 75.00 | 19.28 |
|  | 100 |  | High | 39.950 | 64QAM | 104.54 | 110.27 | 82.28 | 79.73 | 55.76 | 75.00 | 19.24 |
|  | 100 | 8CC | High | 39.950 | QPSK | 30.35 | 32.93 | 26.93 | 27.69 | 50.72 | 75.00 | 24.28 |
|  | 100 |  | High | 39.950 | 16QAM | 29.04 | 32.89 | 25.18 | 26.87 | 50.57 | 75.00 | 24.43 |
|  | 100 |  | High | 39.950 | 64QAM | 30.38 | 32.39 | 26.79 | 27.16 | 50.67 | 75.00 | 24.33 |
|  | 100 | 8NC | High | 39.950 | QPSK | 44.52 | 46.08 | 42.10 | 43.18 | 52.45 | 75.00 | 22.55 |
|  | 100 |  | High | 39.950 | 16QAM | 44.99 | 46.01 | 41.42 | 44.11 | 52.47 | 75.00 | 22.53 |
|  | 100 |  | High | 39.950 | 64QAM | 45.10 | 45.28 | 42.36 | 43.64 | 52.46 | 75.00 | 22.54 |

Table 7-13. MIMO EIRP Density Summary Data (Antenna A + B + C + D)

| FCC ID: A3LAT1K06-A00 |  | MEASUREMENT REPORT (CERTIFICATION) | SnMSUNE | Approved by: <br> Quality Manager |
| :---: | :---: | :---: | :---: | :---: |
| Test Report S/N: <br> 8K21011301-R1.A3L | Test Dates: 01/18/2021-02/05/2021 | EUT Type: <br> AU(AT1K06) |  | Page 94 of 159 |

01/18/2021-02/05/2021 $\quad$ AU(AT1K06)

### 7.4 RF Conducted Output Power <br> $\$ 2.1046$

## Test Overview

RF conducted output power measurements are performed using broadband horn antennas. The conducted power is determined by maximizing the full spectrum EIRP for all component carrier configurations and then subtracting the known antenna gain from the EIRP. All measurements are performed as RMS average measurements while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies.

## Test Procedures Used

ANSI C63.26-2015 Section 5.2.4.4.1
ANSI C63.26-2015 Section 6.4

## Test Settings

1. Radiated power measurements are performed using the signal analyzer's "channel power" measurement capability for signals with continuous operation.
2. RBW $=1-5 \%$ of the expected OBW
3. VBW $\geq 3 \times$ RBW
4. Span $=2 x$ to $3 x$ the OBW
5. No. of sweep points $\geq 2 \times$ span / RBW
6. Detector $=$ RMS
7. The integration bandwidth was roughly set equal to the measured RF Conducted Output Power of the signal for signals with continuous operation. For signals with burst transmission, the "gating" function was enabled to ensure that measurements are performed during times in which the transmitter is operating at its maximum power
8. Trace mode $=$ trace averaging (RMS) over 100 sweeps
9. The trace was allowed to stabilize

| FCC ID: A3LAT1K06-A00 |  | MEASUREMENT REPORT (CERTIFICATION) | SMMSUNA | Approved by: <br> Quality Manager |
| :---: | :---: | :---: | :---: | :---: |
| Test Report S/N: 8K21011301-R1.A3L | Test Dates: 01/18/2021-02/05/2021 | EUT Type: AU(AT1K06) |  | Page 95 of 159 |

Test Notes

1) The EUT was tested while positioned upright and mounted on a mast at 1.5 m height. The worst case emissions are reported with the EUT in this fixed position and with the modulations and active component carriers shown in the tables below.
2) Elements within the same antenna array are correlated to produce beamforming array gain, only one antenna array was active.
3) Measurements were taken in the far field of the mmWave signal based on the formula: $R \geq$ 2D^2/wavelength.
4) The test case with from 1CC to 8CC active, was selected for the worst case emission testing as it created the highest EIRP within 100 MHz bandwidth carrier configurations.
5) The average EIRP reported below is calculated per formula specific in d) of ANSI C63.26-2015 Section 5.2.7:
$\operatorname{EIRP}(\mathrm{dBm})=\mathrm{E}(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})+20 \log (\mathrm{D})-104.8$; where D is the measurement distance (in the far field region) in $m$.
For this section, all EIRP density measurements were performed at a distance of 2.61 m , so the effective correction is:
$\operatorname{EIRP}(\mathrm{dBm})=\mathrm{E}(\mathrm{dBuV} / \mathrm{m})-96.46 \mathrm{~dB}$

$$
\begin{aligned}
& =\text { Analyzer Level }(\mathrm{dBm})+\mathrm{AFCL}(\mathrm{~dB} / \mathrm{m})+107 \mathrm{~dB}-96.46 \mathrm{~dB} \\
& =\text { Analyzer Level }(\mathrm{dBm})+\mathrm{AFCL}(\mathrm{~dB} / \mathrm{m})+10.53 \mathrm{~dB}
\end{aligned}
$$

6) The conducted average power over the full channel BW is calculated as follows:

Conducted Average Power $(\mathrm{dBm})=$ Average EIRP $(\mathrm{dBm})$ - Antenna Gain (dBi)
7) Per ANSI C63.26-2015 Section 6.4, individual EIRPs are also summed before compared to the limit.
8) The angle of the horn antenna was rotated to maximize and find the worst case emissions. Worst case EIRP is reported below.
9) 7.3 Equivalent Isotropic Radiated Power (EIRP) Density plots cover for 7.4 Conducted Output Power plot.

| FCC ID: A3LAT1K06-A00 | F\|PCTEST | MEASUREMENT REPORT (CERTIFICATION) | Snmsuna | Approved by: <br> Quality Manager |
| :---: | :---: | :---: | :---: | :---: |
| Test Report S/N: 8K21011301-R1.A3L | Test Dates: 01/18/2021-02/05/2021 | EUT Type: <br> AU(AT1K06) |  | Page 96 of 159 |

### 7.4.1 Antenna A Conducted Power

| Antenna | Bandwidth | Configuration | Chan. | Frequency | Modulation | Analyzer Level | AFCL | EUT <br> Antenna <br> Gain | Average e.i.r.p. PSD | Conducted Average Power |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | [MHz] |  |  | [GHz] |  | [dBm] | [dB/m] | [dBi] | [dBm] | [dBm] |
| A | 100 | 1 CC | Low | 37.050 | QPSK | -16.01 | 66.70 | 26.57 | 50.69 | 24.12 |
|  | 100 |  | Low | 37.050 | 16QAM | -16.06 | 66.70 | 26.57 | 50.64 | 24.07 |
|  | 100 |  | Low | 37.050 | 64QAM | -15.94 | 66.70 | 26.57 | 50.76 | 24.19 |
|  | 100 | 8CC | Low | 37.050 | QPSK | -21.42 | 66.70 | 26.57 | 45.29 | 18.72 |
|  | 100 |  | Low | 37.050 | 16QAM | -21.28 | 66.70 | 26.57 | 45.42 | 18.85 |
|  | 100 |  | Low | 37.050 | 64QAM | -21.26 | 66.70 | 26.57 | 45.44 | 18.87 |
|  | 100 | 8NC | Low | 37.050 | QPSK | -22.08 | 66.70 | 26.57 | 44.62 | 18.05 |
|  | 100 |  | Low | 37.050 | 16QAM | -22.17 | 66.70 | 26.57 | 44.53 | 17.96 |
|  | 100 |  | Low | 37.050 | 64QAM | -22.20 | 66.70 | 26.57 | 44.50 | 17.93 |
|  | 100 | 1 CC | Mid | 38.500 | QPSK | -17.51 | 67.71 | 26.88 | 50.20 | 23.32 |
|  | 100 |  | Mid | 38.500 | 16QAM | -17.60 | 67.71 | 26.88 | 50.11 | 23.23 |
|  | 100 |  | Mid | 38.500 | 64QAM | -17.53 | 67.71 | 26.88 | 50.19 | 23.31 |
|  | 100 | 8CC | Mid | 38.500 | QPSK | -22.50 | 67.71 | 26.88 | 45.21 | 18.33 |
|  | 100 |  | Mid | 38.500 | 16QAM | -22.37 | 67.71 | 26.88 | 45.34 | 18.46 |
|  | 100 |  | Mid | 38.500 | 64QAM | -22.54 | 67.71 | 26.88 | 45.17 | 18.29 |
|  | 100 | 8NC | Mid | 38.500 | QPSK | -22.09 | 67.71 | 26.88 | 45.63 | 18.75 |
|  | 100 |  | Mid | 38.500 | 16QAM | -22.17 | 67.71 | 26.88 | 45.54 | 18.66 |
|  | 100 |  | Mid | 38.500 | 64QAM | -22.05 | 67.71 | 26.88 | 45.67 | 18.79 |
|  | 100 | 1 CC | High | 39.950 | QPSK | -18.97 | 69.17 | 27.00 | 50.20 | 23.20 |
|  | 100 |  | High | 39.950 | 16QAM | -19.10 | 69.17 | 27.00 | 50.07 | 23.07 |
|  | 100 |  | High | 39.950 | 64QAM | -18.98 | 69.17 | 27.00 | 50.19 | 23.19 |
|  | 100 | 8CC | High | 39.950 | QPSK | -24.35 | 69.17 | 27.00 | 44.82 | 17.82 |
|  | 100 |  | High | 39.950 | 16QAM | -24.54 | 69.17 | 27.00 | 44.63 | 17.63 |
|  | 100 |  | High | 39.950 | 64QAM | -24.35 | 69.17 | 27.00 | 44.83 | 17.83 |
|  | 100 | 8NC | High | 39.950 | QPSK | -22.69 | 69.17 | 27.00 | 46.49 | 19.49 |
|  | 100 |  | High | 39.950 | 16QAM | -22.64 | 69.17 | 27.00 | 46.53 | 19.53 |
|  | 100 |  | High | 39.950 | 64QAM | -22.63 | 69.17 | 27.00 | 46.54 | 19.54 |

Table 7-14. Antenna A Conducted Power Summary Data

| FCC ID: A3LAT1K06-A00 | 甭 PCTEST | MEASUREMENT REPORT (CERTIFICATION) | Snmsune | Approved by: <br> Quality Manager |
| :---: | :---: | :---: | :---: | :---: |
| Test Report S/N: <br> 8K21011301-R1.A3L | $\begin{aligned} & \text { Test Dates: } \\ & \text { 01/18/2021-02/05/2021 } \end{aligned}$ | EUT Type: <br> AU(AT1K06) |  | Page 97 of 159 |

### 7.4.2 Antenna B Conducted Power

| Antenna | Bandwidth | Configuration | Chan. | Frequency | Modulation | Analyzer Level | AFCL | EUT <br> Antenna <br> Gain | Average e.i.r.p. PSD | Conducted Average Power |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | [MHz] |  |  | [GHz] |  | [dBm] | [dB/m] | [dBi] | [dBm] | [dBm] |
| B | 100 | 1 CC | Low | 37.050 | QPSK | -15.84 | 66.70 | 26.57 | 50.86 | 24.29 |
|  | 100 |  | Low | 37.050 | 16QAM | -15.77 | 66.70 | 26.57 | 50.93 | 24.36 |
|  | 100 |  | Low | 37.050 | 64QAM | -15.90 | 66.70 | 26.57 | 50.81 | 24.24 |
|  | 100 | 8CC | Low | 37.050 | QPSK | -21.01 | 66.70 | 26.57 | 45.69 | 19.12 |
|  | 100 |  | Low | 37.050 | 16QAM | -21.09 | 66.70 | 26.57 | 45.61 | 19.04 |
|  | 100 |  | Low | 37.050 | 64QAM | -21.22 | 66.70 | 26.57 | 45.48 | 18.91 |
|  | 100 | 8NC | Low | 37.050 | QPSK | -21.37 | 66.70 | 26.57 | 45.33 | 18.76 |
|  | 100 |  | Low | 37.050 | 16QAM | -21.38 | 66.70 | 26.57 | 45.32 | 18.75 |
|  | 100 |  | Low | 37.050 | 64QAM | -21.35 | 66.70 | 26.57 | 45.35 | 18.78 |
|  | 100 | 1 CC | Mid | 38.500 | QPSK | -17.35 | 67.71 | 26.88 | 50.36 | 23.48 |
|  | 100 |  | Mid | 38.500 | 16QAM | -17.43 | 67.71 | 26.88 | 50.28 | 23.40 |
|  | 100 |  | Mid | 38.500 | 64QAM | -17.50 | 67.71 | 26.88 | 50.21 | 23.33 |
|  | 100 | 8CC | Mid | 38.500 | QPSK | -22.33 | 67.71 | 26.88 | 45.38 | 18.50 |
|  | 100 |  | Mid | 38.500 | 16QAM | -22.28 | 67.71 | 26.88 | 45.43 | 18.55 |
|  | 100 |  | Mid | 38.500 | 64QAM | -22.45 | 67.71 | 26.88 | 45.27 | 18.39 |
|  | 100 | 8NC | Mid | 38.500 | QPSK | -21.36 | 67.71 | 26.88 | 46.35 | 19.47 |
|  | 100 |  | Mid | 38.500 | 16QAM | -21.33 | 67.71 | 26.88 | 46.38 | 19.50 |
|  | 100 |  | Mid | 38.500 | 64QAM | -21.34 | 67.71 | 26.88 | 46.37 | 19.49 |
|  | 100 | 1 CC | High | 39.950 | QPSK | -18.77 | 69.17 | 27.00 | 50.40 | 23.40 |
|  | 100 |  | High | 39.950 | 16QAM | -18.82 | 69.17 | 27.00 | 50.35 | 23.35 |
|  | 100 |  | High | 39.950 | 64QAM | -18.75 | 69.17 | 27.00 | 50.42 | 23.42 |
|  | 100 | 8CC | High | 39.950 | QPSK | -24.00 | 69.17 | 27.00 | 45.18 | 18.18 |
|  | 100 |  | High | 39.950 | 16QAM | -24.00 | 69.17 | 27.00 | 45.17 | 18.17 |
|  | 100 |  | High | 39.950 | 64QAM | -24.07 | 69.17 | 27.00 | 45.10 | 18.10 |
|  | 100 | 8NC | High | 39.950 | QPSK | -22.54 | 69.17 | 27.00 | 46.64 | 19.64 |
|  | 100 |  | High | 39.950 | 16QAM | -22.54 | 69.17 | 27.00 | 46.63 | 19.63 |
|  | 100 |  | High | 39.950 | 64QAM | -22.61 | 69.17 | 27.00 | 46.56 | 19.56 |

Table 7-15. Antenna B Conducted Power Summary Data

| FCC ID: A3LAT1K06-A00 |  | MEASUREMENT REPORT (CERTIFICATION) | snmsuna | Approved by: Quality Manager |
| :---: | :---: | :---: | :---: | :---: |
| Test Report S/N: <br> 8K21011301-R1.A3L | Test Dates: 01/18/2021-02/05/2021 | EUT Type: <br> AU(AT1K06) |  | Page 98 of 159 |

### 7.4.3 Antenna C Conducted Power

| Antenna | Bandwidth | Configuration | Chan. | Frequency | Modulation | Analyzer Level | AFCL |  | Average e.i.r.p. PSD | Conducted Average Power |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | [MHz] |  |  | [GHz] |  | [dBm] | [dB/m] | [dBi] | [dBm] | [dBm] |
| C | 100 | 1 CC | Low | 37.050 | QPSK | -16.28 | 66.70 | 26.57 | 50.43 | 23.86 |
|  | 100 |  | Low | 37.050 | 16QAM | -16.42 | 66.70 | 26.57 | 50.28 | 23.71 |
|  | 100 |  | Low | 37.050 | 64QAM | -16.17 | 66.70 | 26.57 | 50.53 | 23.96 |
|  | 100 | 8CC | Low | 37.050 | QPSK | -21.56 | 66.70 | 26.57 | 45.15 | 18.58 |
|  | 100 |  | Low | 37.050 | 16QAM | -21.52 | 66.70 | 26.57 | 45.18 | 18.61 |
|  | 100 |  | Low | 37.050 | 64QAM | -21.50 | 66.70 | 26.57 | 45.20 | 18.63 |
|  | 100 | 8NC | Low | 37.050 | QPSK | -21.84 | 66.70 | 26.57 | 44.86 | 18.29 |
|  | 100 |  | Low | 37.050 | 16QAM | -22.00 | 66.70 | 26.57 | 44.70 | 18.13 |
|  | 100 |  | Low | 37.050 | 64QAM | -21.95 | 66.70 | 26.57 | 44.75 | 18.18 |
|  | 100 | 1 CC | Mid | 38.500 | QPSK | -17.72 | 67.71 | 26.88 | 49.99 | 23.11 |
|  | 100 |  | Mid | 38.500 | 16QAM | -17.80 | 67.71 | 26.88 | 49.91 | 23.03 |
|  | 100 |  | Mid | 38.500 | 64QAM | -17.90 | 67.71 | 26.88 | 49.81 | 22.93 |
|  | 100 | 8CC | Mid | 38.500 | QPSK | -22.36 | 67.71 | 26.88 | 45.35 | 18.47 |
|  | 100 |  | Mid | 38.500 | 16QAM | -22.14 | 67.71 | 26.88 | 45.57 | 18.69 |
|  | 100 |  | Mid | 38.500 | 64QAM | -22.27 | 67.71 | 26.88 | 45.44 | 18.56 |
|  | 100 | 8NC | Mid | 38.500 | QPSK | -21.84 | 67.71 | 26.88 | 45.87 | 18.99 |
|  | 100 |  | Mid | 38.500 | 16QAM | -21.92 | 67.71 | 26.88 | 45.80 | 18.92 |
|  | 100 |  | Mid | 38.500 | 64QAM | -21.79 | 67.71 | 26.88 | 45.93 | 19.05 |
|  | 100 | 1 CC | High | 39.950 | QPSK | -20.01 | 69.17 | 27.00 | 49.16 | 22.16 |
|  | 100 |  | High | 39.950 | 16QAM | -20.05 | 69.17 | 27.00 | 49.12 | 22.12 |
|  | 100 |  | High | 39.950 | 64QAM | -20.02 | 69.17 | 27.00 | 49.15 | 22.15 |
|  | 100 | 8CC | High | 39.950 | QPSK | -24.87 | 69.17 | 27.00 | 44.30 | 17.30 |
|  | 100 |  | High | 39.950 | 16QAM | -25.16 | 69.17 | 27.00 | 44.01 | 17.01 |
|  | 100 |  | High | 39.950 | 64QAM | -24.89 | 69.17 | 27.00 | 44.28 | 17.28 |
|  | 100 | 8NC | High | 39.950 | QPSK | -22.93 | 69.17 | 27.00 | 46.24 | 19.24 |
|  | 100 |  | High | 39.950 | 16QAM | -23.00 | 69.17 | 27.00 | 46.17 | 19.17 |
|  | 100 |  | High | 39.950 | 64QAM | -22.90 | 69.17 | 27.00 | 46.27 | 19.27 |

Table 7-16. Antenna C Conducted Power Summary Data

| FCC ID: A3LAT1K06-A00 | 甭 PCTEST | MEASUREMENT REPORT (CERTIFICATION) | Snmsune | Approved by: <br> Quality Manager |
| :---: | :---: | :---: | :---: | :---: |
| Test Report S/N: <br> 8K21011301-R1.A3L | Test Dates: <br> 01/18/2021-02/05/2021 | EUT Type: <br> AU(AT1K06) |  | Page 99 of 159 |

### 7.4.4 Antenna D Conducted Power

| Antenna | Bandwidth | Configuration | Chan. | Frequency | Modulation | Analyzer Level | AFCL |  | Average e.i.r.p. PSD | Conducted Average Power |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | [MHz] |  |  | [GHz] |  | [dBm] | [dB/m] | [dBi] | [dBm] | [dBm] |
| D | 100 | 1 CC | Low | 37.050 | QPSK | -15.81 | 66.70 | 26.57 | 50.90 | 24.33 |
|  | 100 |  | Low | 37.050 | 16QAM | -15.60 | 66.70 | 26.57 | 51.10 | 24.53 |
|  | 100 |  | Low | 37.050 | 64QAM | -16.02 | 66.70 | 26.57 | 50.68 | 24.11 |
|  | 100 | 8CC | Low | 37.050 | QPSK | -21.02 | 66.70 | 26.57 | 45.68 | 19.11 |
|  | 100 |  | Low | 37.050 | 16QAM | -21.07 | 66.70 | 26.57 | 45.63 | 19.06 |
|  | 100 |  | Low | 37.050 | 64QAM | -21.19 | 66.70 | 26.57 | 45.51 | 18.94 |
|  | 100 | 8NC | Low | 37.050 | QPSK | -21.48 | 66.70 | 26.57 | 45.23 | 18.66 |
|  | 100 |  | Low | 37.050 | 16QAM | -21.32 | 66.70 | 26.57 | 45.38 | 18.81 |
|  | 100 |  | Low | 37.050 | 64QAM | -21.44 | 66.70 | 26.57 | 45.26 | 18.69 |
|  | 100 | 1 CC | Mid | 38.500 | QPSK | -17.81 | 67.71 | 26.88 | 49.90 | 23.02 |
|  | 100 |  | Mid | 38.500 | 16QAM | -17.80 | 67.71 | 26.88 | 49.91 | 23.03 |
|  | 100 |  | Mid | 38.500 | 64QAM | -17.74 | 67.71 | 26.88 | 49.98 | 23.10 |
|  | 100 | 8CC | Mid | 38.500 | QPSK | -22.29 | 67.71 | 26.88 | 45.42 | 18.54 |
|  | 100 |  | Mid | 38.500 | 16QAM | -22.31 | 67.71 | 26.88 | 45.41 | 18.53 |
|  | 100 |  | Mid | 38.500 | 64QAM | -22.47 | 67.71 | 26.88 | 45.25 | 18.37 |
|  | 100 | 8NC | Mid | 38.500 | QPSK | -21.60 | 67.71 | 26.88 | 46.11 | 19.23 |
|  | 100 |  | Mid | 38.500 | 16QAM | -21.55 | 67.71 | 26.88 | 46.16 | 19.28 |
|  | 100 |  | Mid | 38.500 | 64QAM | -21.63 | 67.71 | 26.88 | 46.08 | 19.20 |
|  | 100 | 1 CC | High | 39.950 | QPSK | -19.99 | 69.17 | 27.00 | 49.19 | 22.19 |
|  | 100 |  | High | 39.950 | 16QAM | -20.08 | 69.17 | 27.00 | 49.09 | 22.09 |
|  | 100 |  | High | 39.950 | 64QAM | -20.16 | 69.17 | 27.00 | 49.02 | 22.02 |
|  | 100 | 8CC | High | 39.950 | QPSK | -24.75 | 69.17 | 27.00 | 44.42 | 17.42 |
|  | 100 |  | High | 39.950 | 16QAM | -24.88 | 69.17 | 27.00 | 44.29 | 17.29 |
|  | 100 |  | High | 39.950 | 64QAM | -24.83 | 69.17 | 27.00 | 44.34 | 17.34 |
|  | 100 | 8NC | High | 39.950 | QPSK | -22.82 | 69.17 | 27.00 | 46.35 | 19.35 |
|  | 100 |  | High | 39.950 | 16QAM | -22.73 | 69.17 | 27.00 | 46.45 | 19.45 |
|  | 100 |  | High | 39.950 | 64QAM | -22.77 | 69.17 | 27.00 | 46.40 | 19.40 |

Table 7-17. Antenna D Conducted Power Summary Data

| FCC ID: A3LAT1K06-A00 | 甭 PCTEST | MEASUREMENT REPORT (CERTIFICATION) | Snmsune | Approved by: <br> Quality Manager |
| :---: | :---: | :---: | :---: | :---: |
| Test Report S/N: <br> 8K21011301-R1.A3L | $\begin{aligned} & \text { Test Dates: } \\ & \text { 01/18/2021-02/05/2021 } \end{aligned}$ | EUT Type: <br> AU(AT1K06) |  | Page 100 of 159 |

7.5 Radiated Spurious and Harmonic Emissions
\$2.1051 §30.203

## Test Overview

The spectrum is scanned from 30 MHz to 100 GHz for n261 and from 30 MHz to 200 GHz for n 260 . All out of band emissions are measured in a radiated setup while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All modulations were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.

## The conductive power or total radiated power of any emissions outside a licensee's frequency block shall be - $13 \mathrm{dBm} / 1 \mathrm{MHz}$.

## Test Procedure Used

ANSI C63.26-2015 Section 5.7.4
ANSI C63.26-2015 Section 6.4
KDB 842590 D01 v01r01 Section 4.4.2 and Section 4.4.3

## Test Settings

1. Start frequency was set to 30 MHz and stop frequency was set to 100 GHz for n 261 and 200 GHz for n 260 . Several plots are used to show investigations in this entire span.
2. $\quad$ Detector $=$ RMS
3. Trace mode = trace average
4. Sweep time = auto couple
5. Number of sweep points $\geq 2 \times$ Span/RBW
6. The trace was allowed to stabilize
7. $R B W=1 \mathrm{MHz}, \mathrm{VBW}=3 \mathrm{MHz}$

## Test Notes

1) The EUT was tested while positioned upright and mounted on a mast 1.5 m height. The worst case emissions are reported with the EUT in this fixed position and with the modulations and active component carriers shown in the tables below.
2) All radiated spurious emissions were measured as EIRP to compare with the $\S 30.203$ TRP limits.
3) Emissions below 18 GHz were measured at a 3 meter test distance, while emissions above 18 GHz were measured at the appropriate far field distance. The far field of the mmWave signal is based on formula; $R$ $>2 \mathrm{D}^{\wedge} 2 /$ wavelength, where D is the larger between the dimension of the measurement antenna and the transmitting antenna of the EUT. In this case, D is the largest dimension of the measurement antenna.
4) Out-band Emission of $10 \%$ channel bandwidth are exempted on Radiated Spurious and Harmonic Emissions test case.
5) The plots from $1-200 \mathrm{GHz}$ show corrected average EIRP levels. The average EIRP reported below is calculated per section 5.2.7 of ANSI C63.26-2015 which states: EIRP $(\mathrm{dBm})=\mathrm{E}(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})+20 \mathrm{log}(\mathrm{D})-$ 104.8; where $D$ is the measurement distance (in the far field region) in $m$. The field strength $E$ is calculated $\mathrm{E}(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})=$ Spectrum Analyzer Level $(\mathrm{dBm})+$ Antenna Factor $(\mathrm{dB} / \mathrm{m})+$ Cable Loss $(\mathrm{dB})+$ Duty Cycle (dB) + Harmonic Mixer Conversion Loss (dB) + 107. All appropriate Antenna Factor and Cable Loss have been applied in the spectrum analyzer for each measurement. For measurements $>40 \mathrm{GHz}$, Harmonic Mixer Conversion Loss was also applied to the spectrum analyzer.

| FCC ID: A3LAT1K06-A00 | 至 PCTEST | MEASUREMENT REPORT (CERTIFICATION) | SnMSUNF | Approved by: Quality Manager |
| :---: | :---: | :---: | :---: | :---: |
| Test Report S/N: 8K21011301-R1.A3L | Test Dates: 01/18/2021-02/05/2021 | EUT Type: AU(AT1K06) |  | Page 101 of 159 |


| Frequency Range [GHz] | Wavelength [cm] | Far Field Distance [m] | Measurements Distance [m] |
| :---: | :---: | :---: | :---: |
| 18 to 40 | 0.749 | 2.61 | 2.61 |
| 40 to 60 | 0.500 | 1.39 | 2.61 |
| 60 to 90 | 0.333 | 0.91 | 2.61 |
| 90 to 140 | 0.214 | 0.58 | 1.00 |
| 140 to 200 | 0.150 | 0.39 | 1.00 |

Table 7-18. Far-field Distance \& Measurement Distance per Frequency Rage

| Frequency Range [GHz] | $\frac{\text { Calculated Measurement }}{\mathbf{D} \text { * } \mathbf{~ [ d B ]}}$ | Duty Cycle [dB] | Reference offset [dB] |
| :---: | :---: | :---: | :---: |
| 18 to 40 | 10.53 | 1.41 | 11.95 |
| 40 to 200 | 2.20 | 1.41 | 3.61 |

Table 7-19. Far-field Distance \& Measurement Distance per Frequency Rage
6) Emissions $>40 \mathrm{GHz}$ were measured using a harmonic mixer with the spectrum analyzer.
7) The "-" shown in the following RSE tables are used to denote a noise floor measurement.
8) Spurious emissions were measured with all EUT antennas transmitting simultaneously.

- Per section 4.4.1 of KDB 842590 D01, unwanted emission measurements, "If the device does not meet the emission limit at one or some frequencies, then TRP measurements shall be performed only at the failing frequencies at which emission levels exceed the limit." The TRP measurement plots using the three cut test method as described in section 4.4 of the KDB, follow all failing emission plots in this report.


## TRP Measurement Procedure

If the recorded EIRP value was close or above the TRP limit, a Two Cut TRP measurement was done according to KDB 842590 D01 v01 Section 4.4.3.3.2
a) Align the EUT with a chosen xy-plane and the xz-plane of the antenna measurement coordinate system. NOTE 1 For harmonics and spurious emission frequencies which are beamforming as identified in exploratory scan, it may be required to align the orthogonal cuts to include the peak based on exploratory scans.
b) Measure the EUT dimensions, i.e., depth (d), width (w), and height (h); see Figure A. 1 in Appendix A.
c) Calculate the spherical and cylindrical diameters (D and Dcyl) using Equations (A.1) and (A.2) (see Appendix
d) For the highest frequency (smallest wavelength) of the frequency band measured, calculate the reference angular steps $\Delta \theta$ ref and $\Delta \phi$ ref using Equations (A.3) and (A.4).
e) Set the grid spatial sampling step $\Delta \theta \leq \Delta \theta$ ref for the vertical angle and $\Delta \phi \leq \Delta \phi$ ref for the horizontal cut.
f) For each emission frequency, measure the EIRP (as a sum of two orthogonal polarizations) at each spatial sampling step on the selected grid.
g) For each emission frequency, calculate the average EIRP for both the cuts separately, and then take the average of these two average values.
h) Add 2 dB as a correction factor to the averaged value computed in step g ).

| FCC ID: A3LAT1K06-A00 | $\sqrt{\text { FIT PTEST }}$ | MEASUREMENT REPORT (CERTIFICATION) | SAMSUNE | Approved by: <br> Quality Manager |
| :---: | :---: | :---: | :---: | :---: |
| Test Report S/N: <br> 8K21011301-R1.A3L | Test Dates: 01/18/2021-02/05/2021 | EUT Type: AU(AT1K06) |  | Page 102 of 159 |

i) If the TRP limit is exceeded, a third orthogonal cut in the yz-plane and using the $\Delta \theta$ angular step, can be added. Now, calculate the average values in all three cuts separately, and then take the average value of these three average values.
j) Add 1.5 dB as a correction factor to the averaged value computed in step i).
k) Evaluate the pass/fail decision by comparing TRP from step h) or step j) against the applicable TRP limit.

| FCC ID: A3LAT1K06-A00 |  | MEASUREMENT REPORT (CERTIFICATION) | snmsunf | Approved by: <br> Quality Manager |
| :---: | :---: | :---: | :---: | :---: |
| Test Report S/N: 8K21011301-R1.A3L | Test Dates: <br> 01/18/2021-02/05/2021 | EUT Type: AU(AT1K06) |  | Page 103 of 159 |

### 7.5.1 Radiated Spurious Emissions Plots (30 MHz to 1 GHz )



Plot 7-133. Radiated Spurious Plot 30 MHz - 1 GHz ( 100 MHz BW 1CC QPSK Mid Channel)


Plot 7-134. Radiated Spurious Plot $30 \mathrm{MHz}-1 \mathrm{GHz}$ ( 100 MHz BW 8CC QPSK Mid Channel)


Plot 7-135. Radiated Spurious Plot $30 \mathrm{MHz}-1 \mathrm{GHz}$ ( 100 MHz BW 8CC NC QPSK Mid Channel)

| FCC ID: A3LAT1K06-A00 | FCTEST | MEASUREMENT REPORT (CERTIFICATION) | SMMSUN: | Approved by: <br> Quality Manager |
| :---: | :---: | :---: | :---: | :---: |
| Test Report S/N: <br> 8K21011301-R1.A3L | Test Dates: <br> 01/18/2021-02/05/2021 | EUT Type: <br> AU(AT1K06) |  | Page 104 of 159 |

## Spurious Emissions EIRP Sample Calculation (n260)

The raw radiated spurious level is converted to field strength in $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$. Then, the RSE EIRP level is calculated by applying the additional factors shown below for a test distance of 3 meters.

RSE EIRP $(\mathrm{dBm})=$ Analyzer Level $(\mathrm{dBm})+$ AFCL $(\mathrm{dB} / \mathrm{m})+107+20 \log \left(\mathrm{D}_{\mathrm{m}}\right)-104.8$

| Frequency [MHz] | Channel | Configuration | Modulation | Ant. <br> Pol. <br> [H/V] | Antenna Height [cm] | Turntable Azimuth [degree] | Analyzer Level [dBm] | AFCL [dBm] | RSE EIRP [dBm] | Margin [dB] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 135.37 | Mid | 8CC | QPSK | H | - | - | -77.75 | 22.64 | -43.33 | 30.33 |
| 135.37 | Mid | 8CC | QPSK | V | - | - | -76.35 | 22.64 | -41.93 | 28.93 |

Table 7-20. Spurious Emissions ( $30 \mathrm{MHz}-1 \mathrm{GHz}$ )

## Notes

The RSE EIRP level is taken directly from the spectrum analyzer which includes the appropriate antenna factors, and cable losses. Measurements were performed at a distance of 3 meter.

| FCC ID: A3LAT1K06-A00 |  | MEASUREMENT REPORT (CERTIFICATION) | Snmsunt | Approved by: <br> Quality Manager |
| :---: | :---: | :---: | :---: | :---: |
| Test Report S/N: <br> 8K21011301-R1.A3L | Test Dates: 01/18/2021-02/05/2021 | EUT Type: <br> AU(AT1K06) |  | Page 105 of 159 |

### 7.5.2 Radiated Spurious Emissions Plots (1 GHz to 18 GHz )



Plot 7-136. Radiated Spurious Plot 1 GHz - 18 GHz ( 100 MHz BW 1CC QPSK Mid Channel)


Plot 7-137. Radiated Spurious Plot 1 GHz - 18 GHz ( 100 MHz BW 8CC QPSK Mid Channel)


Plot 7-138. Radiated Spurious Plot 1 GHz - 18 GHz ( 100 MHz BW 8CC NC QPSK Mid Channel)

| FCC ID: A3LAT1K06-A00 | FPCTEST | MEASUREMENT REPORT (CERTIFICATION) | Snmsung | Approved by: <br> Quality Manager |
| :---: | :---: | :---: | :---: | :---: |
| Test Report S/N: <br> 8K21011301-R1.A3L | Test Dates: 01/18/2021-02/05/2021 | EUT Type: <br> AU(AT1K06) |  | Page 106 of 159 |

## Spurious Emissions EIRP Sample Calculation (n260)

The raw radiated spurious level is converted to field strength in $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$. Then, the RSE EIRP level is calculated by applying the additional factors shown below for a test distance of 3 meters.

RSE EIRP $(\mathbf{d B m})=$ Analyzer Level $(\mathrm{dBm})+\operatorname{AFCL}(\mathrm{dB} / \mathrm{m})+107+20 \log \left(\mathrm{D}_{\mathrm{m}}\right)-104.8$

| Frequency [MHz] | Configuration | Channel | Modulation | Ant. Pol. [H/V] | Antenna <br> Height [cm] | Turntable Azimuth [degree] | Analyzer Level [dBm] | AFCL <br> [dBm] | RSE EIRP [dBm] | Margin [dB] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1406.00 | 1CC | Low | QPSK | H | 250 | 360 | -47.22 | -8.59 | -44.03 | 31.03 |
| 1406.00 | 1CC | Low | QPSK | V | 200 | 351 | -48.45 | -8.59 | -45.26 | 32.26 |
| 1406.00 | 1CC | Mid | QPSK | H | 250 | 356 | -48.49 | -8.59 | -45.30 | 32.30 |
| 1406.00 | 1CC | Mid | QPSK | V | 200 | 350 | -50.02 | -8.59 | -46.83 | 33.83 |
| 1406.00 | 1CC | High | QPSK | H | 220 | 350 | -52.10 | -8.59 | -48.91 | 35.91 |
| 1406.00 | 1CC | High | QPSK | V | 220 | 352 | -51.34 | -8.59 | -48.15 | 35.15 |
| 1406.00 | 8CC | Low | QPSK | H | 250 | 359 | -51.01 | -8.59 | -47.82 | 34.82 |
| 1406.00 | 8CC | Low | QPSK | V | 250 | 350 | -51.34 | -8.59 | -48.15 | 35.15 |
| 1406.00 | 8CC | Mid | QPSK | H | 245 | 350 | -47.90 | -8.59 | -44.71 | 31.71 |
| 1406.00 | 8CC | Mid | QPSK | V | 250 | 352 | -49.55 | -8.59 | -46.36 | 33.36 |
| 1406.00 | 8CC | High | QPSK | H | 250 | 355 | -51.02 | -8.59 | -47.83 | 34.83 |
| 1406.00 | 8CC | High | QPSK | V | 240 | 352 | -52.00 | -8.59 | -48.81 | 35.81 |
| 1406.00 | 8NC | Low | QPSK | H | 250 | 330 | -49.69 | -8.59 | -46.50 | 33.50 |
| 1406.00 | 8NC | Low | QPSK | V | 250 | 315 | -46.32 | -8.59 | -43.13 | 30.13 |
| 1406.00 | 8NC | Low | QPSK | V | 245 | 350 | -48.50 | -8.59 | -45.31 | 32.31 |
| 1406.00 | 8NC | Mid | QPSK | H | 250 | 350 | -47.22 | -8.59 | -44.03 | 31.03 |
| 1406.00 | 8NC | Mid | QPSK | V | 250 | 355 | -49.53 | -8.59 | -46.34 | 33.34 |
| 1406.00 | 8NC | High | QPSK | H | 250 | 340 | -50.11 | -8.59 | -46.92 | 33.92 |

Table 7-21. Spurious Emissions (1 GHz to 18 GHz )

## Notes

The RSE EIRP level is taken directly from the spectrum analyzer which includes the appropriate antenna factors, and cable losses. Measurements were performed at a distance of 3 meter.

| FCC ID: A3LAT1K06-A00 |  | MEASUREMENT REPORT (CERTIFICATION) | SnMSUN: | Approved by: Quality Manager |
| :---: | :---: | :---: | :---: | :---: |
| Test Report S/N: 8K21011301-R1.A3L | Test Dates: <br> 01/18/2021-02/05/2021 | EUT Type: <br> AU(AT1K06) |  | Page 107 of 159 |

## (f)PCTEST

### 7.5.3 Radiated Spurious Emissions Plots (18 GHz to 33 GHz )



Plot 7-139. Radiated Spurious Plot 18 GHz - 33 GHz (100 MHz BW 1CC QPSK Mid Channel Pol. H)


Plot 7-140. Radiated Spurious Plot 18 GHz - 33 GHz ( 100 MHz BW 1CC QPSK Mid Channel Pol. V)

| FCC ID: A3LAT1K06-A00 |  | MEASUREMENT REPORT (CERTIFICATION) | IMMSUN | Approved by: <br> Quality Manager |
| :---: | :---: | :---: | :---: | :---: |
| Test Report S/N: <br> 8K21011301-R1.A3L | Test Dates: 01/18/2021-02/05/2021 | EUT Type: AU(AT1K06) |  | Page 108 of 159 |

All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM


Plot 7-141. Radiated Spurious Plot $18 \mathrm{GHz}-33 \mathrm{GHz}$ ( 100 MHz BW 8CC QPSK Mid Channel Pol. H)


Plot 7-142. Radiated Spurious Plot 18 GHz - 33 GHz ( 100 MHz BW 8CC QPSK Mid Channel Pol. V)

| FCC ID: A3LAT1K06-A00 | FCTEST* | MEASUREMENT REPORT <br> (CERTIFICATION) | Approved by: |
| :--- | :--- | :--- | :--- | :--- |
| Quality Manager |  |  |  |

## PCTEST



Plot 7-143. Radiated Spurious Plot 18 GHz - 33 GHz (100 MHz BW 8CC NC QPSK Mid Channel Pol. H)


Plot 7-144. Radiated Spurious Plot 18 GHz - 33 GHz (100 MHz BW 8CC NC QPSK Mid Channel Pol. V)

| FCC ID: A3LAT1K06-A00 | FCTEST* | MEASUREMENT REPORT <br> (CERTIFICATION) | Approved by: |
| :--- | :--- | :--- | :--- | :--- |
| Quality Manager |  |  |  |

### 7.5.4 Radiated Spurious Emissions Plots ( 33 GHz to 37 GHz )

1st Marker Frequency: $36.989 \mathrm{GHz} \quad$ Margin: 14.79 dB


Plot 7-145. Radiated Spurious Plot 33 GHz - 36.99 GHz ( 100 MHz BW 1CC QPSK Low Channel TRP)

1st Marker Frequency: $36.234 \mathrm{GHz} \quad$ Margin: 14.15 dB


Plot 7-146. Radiated Spurious Plot 36.23 GHz (100 MHz BW 1CC QPSK Mid Channel TRP)

| FCC ID: A3LAT1K06-A00 |  | MEASUREMENT REPORT (CERTIFICATION) | Snmsung | Approved by: <br> Quality Manager |
| :---: | :---: | :---: | :---: | :---: |
| Test Report S/N: 8K21011301-R1.A3L | Test Dates: <br> 01/18/2021-02/05/2021 | EUT Type: <br> AU(AT1K06) |  | Page 111 of 159 |

Proud to be part of $\Theta$ element
1st Marker Frequency: 34.200 GHz Margin: 17.16 dB


Plot 7-147. Radiated Spurious Plot 34.20 GHz (100 MHz BW 1CC QPSK High Channel TRP)


Plot 7-148. Radiated Spurious Plot 33 GHz - 36.92 GHz ( 100 MHz BW 8CC QPSK Low Channel TRP)

| FCC ID: A3LAT1K06-A00 | FCTEST | MEASUREMENT REPORT (CERTIFICATION) | shmsung | Approved by: <br> Quality Manager |
| :---: | :---: | :---: | :---: | :---: |
| Test Report S/N: 8K21011301-R1.A3L | Test Dates: 01/18/2021-02/05/2021 | EUT Type: <br> AU(AT1K06) |  | Page 112 of 159 |

1st Marker Frequency: 36.234 GHz Margin: 15.62 dB


Plot 7-149. Radiated Spurious Plot 33 GHz - 36.92 GHz ( 100 MHz BW 8CC QPSK Mid Channel TRP)

1st Marker Frequency: $36.555 \mathrm{GHz} \quad$ Margin: 16.22 dB



| FCC ID: A3LAT1K06-A00 | $\sqrt{\text { FrCTEST }}$ | MEASUREMENT REPORT (CERTIFICATION) | SAMSUNE | Approved by: <br> Quality Manager |
| :---: | :---: | :---: | :---: | :---: |
| Test Report S/N: 8K21011301-R1.A3L | Test Dates: 01/18/2021-02/05/2021 | EUT Type: <br> AU(AT1K06) |  | Page 113 of 159 |

1st Marker Frequency: 36.873 GHz Margin: 15.03 dB


Plot 7-151. Radiated Spurious Plot 33 GHz - 36.92 GHz ( 100 MHz BW 8CC NC QPSK Low Channel TRP)

1st Marker Frequency: $36.534 \mathrm{GHz} \quad$ Margin: 15.54 dB


Plot 7-152. Radiated Spurious Plot 33 GHz - 36.92 GHz ( 100 MHz BW 8CC NC QPSK Mid Channel TRP)

| FCC ID: A3LAT1K06-A00 | 屏 PCTEST | MEASUREMENT REPORT (CERTIFICATION) | Snmsung | Approved by: <br> Quality Manager |
| :---: | :---: | :---: | :---: | :---: |
| Test Report S/N: <br> 8K21011301-R1.A3L | Test Dates: <br> 01/18/2021-02/05/2021 | EUT Type: AU(AT1K06) |  | Page 114 of 159 |

1st Marker Frequency: $36.546 \mathrm{GHz} \quad$ Margin: 16.07 dB


Plot 7-153. Radiated Spurious Plot $33 \mathrm{GHz}-36.92 \mathrm{GHz}$ ( 100 MHz BW 8CC NC QPSK High Channel TRP)

| Configuration | Channel | Ant Pol. [Degree] | $\begin{gathered} \hline \text { Frequency } \\ {[\mathrm{GHz}]} \\ \hline \end{gathered}$ | $\begin{gathered} \text { RSE EIRP } \\ {[\mathrm{dBm}]} \end{gathered}$ | Early Exit? | $\begin{gathered} \text { TRP } \\ {[\mathrm{dBm}]} \end{gathered}$ | Margin [dB] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $100 \mathrm{MHz} \mathrm{BW} \mathrm{1CC}$ | Low | H | 36.61 | -8.73 | No | -27.79 | 14.79 |
|  |  | V | 36.85 | -12.83 | No |  |  |
|  | Mid | H | 36.23 | -12.03 | No | -27.15 | 14.15 |
|  |  | V | 36.23 | -14.55 | No ${ }^{1}$ |  |  |
|  | High | H | 34.20 | -11.89 | No | -30.16 | 17.16 |
|  |  | V | 34.20 | -13.49 | No ${ }^{1}$ |  |  |
| 100 MHz BW 8 CC | Low | H | 36.91 | 0.88 | No | -27.32 | 14.32 |
|  |  | V | 36.91 | -10.57 | No |  |  |
|  | Mid | H | 36.23 | -13.84 | No | -28.62 | 15.62 |
|  |  | V | 36.23 | -12.52 | No |  |  |
|  | High | H | 36.34 | -15.74 | No ${ }^{1}$ | -29.22 | 16.22 |
|  |  | V | 36.54 | -15.72 | No ${ }^{1}$ |  |  |
| 100 MHz BW 8CC NC | Low | H | 36.89 | -12.08 | No | -28.03 | 15.03 |
|  |  | V | 36.69 | -12.50 | No |  |  |
|  | Mid | H | 36.90 | -8.98 | No | -28.54 | 15.54 |
|  |  | V | 36.55 | -14.24 | No ${ }^{1}$ |  |  |
|  | High | H | 36.61 | -15.46 | No ${ }^{1}$ | -29.07 | 16.07 |
|  |  | V | 36.53 | -15.07 | No ${ }^{1}$ |  |  |

Table 7-22. Radiated Spurious Emissions ( $33 \mathrm{GHz} \mathbf{- 3 7} \mathrm{GHz}$ )

| FCC ID: A3LAT1K06-A00 | F\|PCTEST | MEASUREMENT REPORT (CERTIFICATION) | Snmsuna | Approved by: <br> Quality Manager |
| :---: | :---: | :---: | :---: | :---: |
| Test Report S/N: 8K21011301-R1.A3L | Test Dates: 01/18/2021-02/05/2021 | EUT Type: <br> AU(AT1K06) |  | Page 115 of 159 |

### 7.5.5 Radiated Spurious Emissions Plots ( 40 GHz to 60 GHz )

1st Marker Frequency: $42.309 \mathrm{GHz} \quad$ Margin: 20.19 dB


Plot 7-154. Radiated Spurious Plot 42.30 GHz (100 MHz BW 1CC QPSK Low Channel TRP)

1st Marker Frequency: $40.166 \mathrm{GHz} \quad$ Margin: 20.62 dB


Plot 7-155. Radiated Spurious Plot 40.16 GHz ( 100 MHz BW 1CC QPSK Mid Channel TRP)

| FCC ID: A3LAT1K06-A00 |  | MEASUREMENT REPORT (CERTIFICATION) | Snmsung | Approved by: <br> Quality Manager |
| :---: | :---: | :---: | :---: | :---: |
| Test Report S/N: 8K21011301-R1.A3L | Test Dates: <br> 01/18/2021-02/05/2021 | EUT Type: <br> AU(AT1K06) |  | Page 116 of 159 |

## 1st Marker Frequency: 49.400 GHz Margin: 13.02 dB



Plot 7-156. Radiated Spurious Plot 40 GHz - 60 GHz ( 100 MHz BW 1CC QPSK High Channel TRP)


Plot 7-157. Radiated Spurious Plot 40 GHz - 60 GHz ( 100 MHz 8CC CC BW QPSK Low Channel Pol. H)

| FCC ID: A3LAT1K06-A00 | 屏 PCTEST | MEASUREMENT REPORT (CERTIFICATION) | SnMSUN: | Approved by: <br> Quality Manager |
| :---: | :---: | :---: | :---: | :---: |
| Test Report S/N: <br> 8K21011301-R1.A3L | Test Dates: <br> 01/18/2021-02/05/2021 | EUT Type: <br> AU(AT1K06) |  | Page 117 of 159 |



Plot 7-158. Radiated Spurious Plot 40 GHz - 60 GHz ( 100 MHz 8CC CC BW QPSK Low Channel Pol. V)
1st Marker Frequency: $40.166 \mathrm{GHz} \quad$ Margin: 18.27 dB


Plot 7-159. Radiated Spurious Plot 40.16 GHz (100 MHz BW 8CC QPSK Mid Channel TRP)

| FCC ID: A3LAT1K06-A00 | FCTEST | MEASUREMENT REPORT (CERTIFICATION) | shmsung | Approved by: <br> Quality Manager |
| :---: | :---: | :---: | :---: | :---: |
| Test Report S/N: 8K21011301-R1.A3L | Test Dates: 01/18/2021-02/05/2021 | EUT Type: <br> AU(AT1K06) |  | Page 118 of 159 |

## 1st Marker Frequency: $49.372 \mathrm{GHz} \quad$ Margin: 12.72 dB



Plot 7-160. Radiated Spurious Plot 40 GHz - 60 GHz ( 100 MHz BW 8CC QPSK High Channel TRP)


Plot 7-161. Radiated Spurious Plot 40 GHz - 60 GHz ( 100 MHz BW 8CC NC QPSK Low Channel Pol. H)

| FCC ID: A3LAT1K06-A00 | 甭 PCTEST | MEASUREMENT REPORT (CERTIFICATION) | SnMSUNR | Approved by: Quality Manager |
| :---: | :---: | :---: | :---: | :---: |
| Test Report S/N: <br> 8K21011301-R1.A3L | $\begin{aligned} & \hline \text { Test Dates: } \\ & \text { 01/18/2021-02/05/2021 } \end{aligned}$ | EUT Type: <br> AU(AT1K06) |  | Page 119 of 159 |

## (IPCTEST



Plot 7-162. Radiated Spurious Plot 40 GHz - 60 GHz ( 100 MHz BW 8CC NC QPSK Low Channel Pol. V)


Plot 7-163. Radiated Spurious Plot 40 GHz - 60 GHz ( 100 MHz BW 8CC NC QPSK Mid Channel TRP)

| FCC ID: A3LAT1K06-A00 | FCTEST | MEASUREMENT REPORT (CERTIFICATION) | shmsung | Approved by: <br> Quality Manager |
| :---: | :---: | :---: | :---: | :---: |
| Test Report S/N: 8K21011301-R1.A3L | Test Dates: 01/18/2021-02/05/2021 | EUT Type: <br> AU(AT1K06) |  | Page 120 of 159 |

1st Marker Frequency: 49.400 GHz Margin: 12.99 dB


Plot 7-164. Radiated Spurious Plot 40 GHz - 60 GHz ( 100 MHz BW 8CC NC QPSK High Channel TRP)

| Configuration | Channel | Ant Pol. [Degree] | Frequency [GHz] | RSE EIRP <br> [dBm] | Early Exit? | TRP <br> [dBm] | Margin [dB] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $100 \mathrm{MHz} \mathrm{BW} \mathrm{1CC}$ | Low | H | 42.30 | -14.77 | No ${ }^{1}$ | -33.19 | 20.19 |
|  |  | V | 42.30 | -20.95 | Yes |  |  |
|  | Mid | H | 40.16 | -7.09 | No | -33.62 | 20.62 |
|  |  | V | 40.16 | -13.97 | No ${ }^{1}$ |  |  |
|  | High | H | 40.00 | -9.59 | No | -26.02 | 13.02 |
|  |  | V | 40.00 | -10.36 | No |  |  |
| $100 \mathrm{MHz} \mathrm{BW} \mathrm{8CC}$ | Mid | H | 40.16 | -6.42 | No | -31.27 | 18.27 |
|  |  | V | 40.16 | -9.08 | No |  |  |
|  | High | H | 40.00 | 3.60 | No | -25.72 | 12.72 |
|  |  | V | 40.00 | 8.04 | No |  |  |
| 100 MHz BW 8CC NC | Mid | H | 42.72 | -11.50 | No | -26.04 | 13.04 |
|  |  | V | 40.46 | -11.68 | No |  |  |
|  | High | H | 40.12 | -0.15 | No | -25.99 | 12.99 |
|  |  | V | 40.14 | 6.02 | No |  |  |
| 1. "Early Exit" - Less than 3 dB margin |  |  |  |  |  |  |  |

Table 7-23. Radiated Spurious Emissions ( $40 \mathrm{GHz} \mathbf{- 6 0 \mathrm { GHz } \text { ) }}$

| FCC ID: A3LAT1K06-A00 | F\|PCTEST | MEASUREMENT REPORT (CERTIFICATION) | Snmsuna | Approved by: <br> Quality Manager |
| :---: | :---: | :---: | :---: | :---: |
| Test Report S/N: 8K21011301-R1.A3L | Test Dates: 01/18/2021-02/05/2021 | EUT Type: <br> AU(AT1K06) |  | Page 121 of 159 |

## (f)PCTEST

### 7.5.6 Radiated Spurious Emissions Plots ( 60 GHz to 90 GHz )



Plot 7-165. Radiated Spurious Plot 60 GHz - 90 GHz (100 MHz BW 1CC QPSK Mid Channel Pol. H)


Plot 7-166. Radiated Spurious Plot $60 \mathrm{GHz}-90 \mathrm{GHz}$ ( 100 MHz BW 1CC QPSK Mid Channel Pol. V)

| FCC ID: A3LAT1K06-A00 |  | MEASUREMENT REPORT (CERTIFICATION) | Snmsung | Approved by: <br> Quality Manager |
| :---: | :---: | :---: | :---: | :---: |
| Test Report S/N: 8K21011301-R1.A3L | Test Dates: <br> 01/18/2021-02/05/2021 | EUT Type: AU(AT1K06) |  | Page 122 of 159 |

All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.


Plot 7-167. Radiated Spurious Plot 60 GHz - 90 GHz ( 100 MHz BW 8CC QPSK Mid Channel Pol. H)


Plot 7-168. Radiated Spurious Plot 60 GHz - 90 GHz ( 100 MHz BW 8CC QPSK Mid Channel Pol. V)

| FCC ID: A3LAT1K06-A00 | FCTEST* | MEASUREMENT REPORT <br> (CERTIFICATION) | Approved by: |
| :--- | :--- | :--- | :--- | :--- |
| Quality Manager |  |  |  |

## (f)PCTEST



Plot 7-169. Radiated Spurious Plot 60 GHz - 90 GHz ( 100 MHz BW 8CC NC QPSK Mid Channel Pol. H)


Plot 7-170. Radiated Spurious Plot 60 GHz - 90 GHz ( 100 MHz BW 8CC NC QPSK Mid Channel Pol. V)

| FCC ID: A3LAT1K06-A00 |  | MEASUREMENT REPORT (CERTIFICATION) | Snmsune | Approved by: <br> Quality Manager |
| :---: | :---: | :---: | :---: | :---: |
| Test Report S/N: 8K21011301-R1.A3L | Test Dates: <br> 01/18/2021-02/05/2021 | EUT Type: AU(AT1K06) |  | Page 124 of 159 |

## (r)PCTEST

### 7.5.7 Radiated Spurious Emissions Plots ( 90 GHz - 140 GHz )



Plot 7-171. Radiated Spurious Plot 90 GHz - 140 GHz ( 100 MHz BW 1CC QPSK Mid Channel Pol. H)


Plot 7-172. Radiated Spurious Plot 90 GHz - 140 GHz ( 100 MHz BW 1CC QPSK Mid Channel Pol. V)

| FCC ID: A3LAT1K06-A00 |  | MEASUREMENT REPORT (CERTIFICATION) | SMMSUNA | Approved by: <br> Quality Manager |
| :---: | :---: | :---: | :---: | :---: |
| Test Report S/N: 8K21011301-R1.A3L | Test Dates: <br> 01/18/2021-02/05/2021 | EUT Type: <br> AU(AT1K06) |  | Page 125 of 159 |

All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.


Plot 7-173. Radiated Spurious Plot 90 GHz - 140 GHz ( 100 MHz BW 8CC QPSK Mid Channel Pol. H)


Plot 7-174. Radiated Spurious Plot 90 GHz - 140 GHz ( 100 MHz BW 8CC QPSK Mid Channel Pol. V)

| FCC ID: A3LAT1K06-A00 | FCTEST* | MEASUREMENT REPORT <br> (CERTIFICATION) | Approved by: |
| :--- | :--- | :--- | :--- | :--- |
| Quality Manager |  |  |  |

## (r)PCTEST



Plot 7-175. Radiated Spurious Plot 90 GHz - 140 GHz ( 100 MHz BW 8CC NC QPSK Mid Channel Pol. H)


Plot 7-176. Radiated Spurious Plot 90 GHz - 140 GHz ( 100 MHz BW 8CC NC QPSK Mid Channel Pol. V)

| FCC ID: A3LAT1K06-A00 | FCTEST* | MEASUREMENT REPORT <br> (CERTIFICATION) | Approved by: |
| :--- | :--- | :--- | :--- | :--- |
| Quality Manager |  |  |  |

## Tr) PCTEST

7.5.8 Radiated Spurious Emissions Plots (140 GHz - 170 GHz )


Plot 7-177. Radiated Spurious Plot 140 GHz - 170 GHz (100 MHz BW 1CC QPSK Mid Channel Pol. H)


Plot 7-178. Radiated Spurious Plot 140 GHz - 170 GHz ( 100 MHz BW 1CC QPSK Mid Channel Pol. V)

| FCC ID: A3LAT1K06-A00 | FCTEST | MEASUREMENT REPORT (CERTIFICATION) | Snmsuna | Approved by: <br> Quality Manager |
| :---: | :---: | :---: | :---: | :---: |
| Test Report S/N: 8K21011301-R1.A3L | Test Dates: <br> 01/18/2021-02/05/2021 | EUT Type: <br> AU(AT1K06) |  | Page 128 of 159 |

All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

## (f)PCTEST



Plot 7-179. Radiated Spurious Plot 140 GHz - 170 GHz (100 MHz BW 8CC QPSK Mid Channel Pol. H)


Plot 7-180. Radiated Spurious Plot 140 GHz - 170 GHz ( 100 MHz BW 8CC QPSK Mid Channel Pol. V)

| FCC ID: A3LAT1K06-A00 | 旆 PCTEST | MEASUREMENT REPORT (CERTIFICATION) | SHMSUNA | Approved by: Quality Manager |
| :---: | :---: | :---: | :---: | :---: |
| Test Report S/N: 8K21011301-R1.A3L | Test Dates: 01/18/2021-02/05/2021 | EUT Type: <br> AU(AT1K06) |  | Page 129 of 159 |

## (f)PCTEST



Plot 7-181. Radiated Spurious Plot 140 GHz - 170 GHz ( 100 MHz BW 8CC NC QPSK Mid Channel Pol. H)


Plot 7-182. Radiated Spurious Plot 140 GHz - 170 GHz (100 MHz BW 8CC NC QPSK Mid Channel Pol. V)

| FCC ID: A3LAT1K06-A00 | froPTEST | MEASUREMENT REPORT (CERTIFICATION) | Snmsune | Approved by: <br> Quality Manager |
| :---: | :---: | :---: | :---: | :---: |
| Test Report S/N: 8K21011301-R1.A3L | Test Dates: <br> 01/18/2021-02/05/2021 | EUT Type: AU(AT1K06) |  | Page 130 of 159 |

## (r) PCTEST

7.5.9 Radiated Spurious Emissions Plots (170 GHz - 200 GHz )


Plot 7-183. Radiated Spurious Plot 170 GHz - 200 GHz (100 MHz BW 1CC QPSK Mid Channel Pol. H)


Plot 7-184. Radiated Spurious Plot 170 GHz - 200 GHz ( 100 MHz BW 1CC QPSK Mid Channel Pol. V)

| FCC ID: A3LAT1K06-A00 |  | MEASUREMENT REPORT (CERTIFICATION) | Snmsung | Approved by: <br> Quality Manager |
| :---: | :---: | :---: | :---: | :---: |
| Test Report S/N: <br> 8K21011301-R1.A3L | Test Dates: <br> 01/18/2021-02/05/2021 | EUT Type: <br> AU(AT1K06) |  | Page 131 of 159 |

All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

## (f)PCTEST



Plot 7-185. Radiated Spurious Plot 170 GHz - 200 GHz ( 100 MHz BW 8CC QPSK Mid Channel Pol. H)


Plot 7-186. Radiated Spurious Plot 170 GHz - 200 GHz ( 100 MHz BW 8CC QPSK Mid Channel Pol. V)

| FCC ID: A3LAT1K06-A00 | FCTEST* | MEASUREMENT REPORT <br> (CERTIFICATION) | Approved by: |
| :--- | :--- | :--- | :--- | :--- |
| Quality Manager |  |  |  |

## (f)PCTEST



Plot 7-187. Radiated Spurious Plot 170 GHz - 200 GHz (100 MHz BW 8CC NC QPSK Mid Channel Pol. H)


Plot 7-188. Radiated Spurious Plot 170 GHz - 200 GHz (100 MHz BW 8CC NC QPSK Mid Channel Pol. V)

| FCC ID: A3LAT1K06-A00 | FCTEST* | MEASUREMENT REPORT <br> (CERTIFICATION) | Approved by: |
| :--- | :--- | :--- | :--- | :--- |
| Quality Manager |  |  |  |

### 7.6 Band Edge Emissions

\$2.1051 §30.203

## Test Overview

All out of band emissions are measured in a radiated setup while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All modulations were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.

The minimum permissible attenuation level of any spurious emission is $\mathbf{- 1 3 \mathrm { dBm } / 1 \mathrm { MHz } \text { . However, in the }}$ bands immediately outside and adjacent to the licensee's frequency block, having a bandwidth equal to 10 percent of the channel bandwidth, the conductive power or the total radiated power of any emission shall be $-5 \mathrm{dBm} / \mathrm{MHz}$ or lower.

## Test Procedure Used

ANSI C63.26-2015 Section 5.7.3
ANSI C63.26-2015 Section 6.4
KDB 842590 D01 v01r01 Section 4.4.2.5

## Test Settings

1. Start and stop frequency were set such that both upper and lower band edges are measured.
2. Span was set large enough so as to capture all out of band emissions near the band edge
3. $\mathrm{RBW}=1 \mathrm{MHz}$
4. VBW $\geq 3 \times$ RBW
5. $\quad$ Detector $=$ RMS
6. Number of sweep points $\geq 2 \times$ Span/RBW
7. Trace mode $=$ trace average
8. Sweep time = auto couple
9. The trace was allowed to stabilize

## Test Notes

1) The EUT was tested while positioned upright and mounted on a mast 1.5 m height. The worst case emissions are reported with the EUT in this fixed position and with the modulations and active component carriers shown in the tables below.
2) All measurements in this section was performed in the radiated setup in the far field.
3) All appropriate Antenna Factor, Cable Loss, and Duty Correction factor have been applied in the spectrum analyzer for each measurement. Additionally, band Edge measurements in this section are shown as equivalent conductive powers for direct comparison to the 30.203 limit. The conductive power at the band edge is calculated by subtracting the gain of the EUT's antenna from the measured EIRP level. Antenna Gain information is shown on the following page.
4) For band edge measurement of the receive horn antenna was maximized on Antenna A were individually energized and measured while maintaining maximized position on Antenna A. These measurements were saved into a spreadsheet and their spectra were summed to determine the total conducted power for the band edge emissions level shown starting in Section 7.6.5. The same procedure was repeated with the receive horn antenna maximized on Antennas B, C, and D.

| FCC ID: A3LAT1K06-A00 |  | MEASUREMENT REPORT (CERTIFICATION) | Snmsung | Approved by: <br> Quality Manager |
| :---: | :---: | :---: | :---: | :---: |
| Test Report S/N: 8K21011301-R1.A3L | Test Dates: 01/18/2021-02/05/2021 | EUT Type: AU(AT1K06) |  | Page 134 of 159 |

5) The MIMO Band Edges were calculated by using the "measure and sum the spectra across the outputs" technique specified in Section 6.4.3.2.2 of ANSI C63.26-2015. The spectra were summed linearly and converted to dBm for comparison with the limit.
6) $10 \%$ outside of the channel bandwidth result should be referred from 7.5 Radiated Spurious and Harmonic Emissions due to EUT Antenna subtraction calculation adoption. Thus, some failure results are performed of TRP measurement adopted.

| FCC ID: A3LAT1K06-A00 |  | MEASUREMENT REPORT (CERTIFICATION) | SnMsung | Approved by: <br> Quality Manager |
| :---: | :---: | :---: | :---: | :---: |
| Test Report S/N: <br> 8K21011301-R1.A3L | Test Dates: <br> 01/18/2021-02/05/2021 | EUT Type: <br> AU(AT1K06) |  | Page 135 of 159 |

### 7.6.1 Antenna Gain Information at the Band Edge

The following antenna gain information is provided to demonstrate the antenna performance of the 37.05 GHz to 39.95 GHz band. These antenna gains were subtracted from the measured EIRP levels at the lower and upper band edge frequencies to determine an equivalent conductive power that was compared directly with the §30.203 limits.

| Frequency <br> $[\mathrm{GHz}]$ | Channel | Antenna Gain <br> $[\mathrm{dBi}]$ |
| :---: | :---: | :---: |
| 37.05 | Low | 26.57 |
| 39.95 | High | 27.00 |

Table 7-24. Antenna Gains at the Band Edges

## Sample Analyzer Offset Calculation (at 37.05 GHz)

Measurement Antenna Factor $=42.91 \mathrm{~dB} / \mathrm{m}$
Cable Loss = 13.26 dB
Far Field Distance $=2.61 \mathrm{~m}$

EUT Antenna Gain $=26.57 \mathrm{dBi}$
Duty Cycle Correction Factor $=1.41 \mathrm{~dB}$

```
Analyzer Offset \((\mathrm{dB})=\mathrm{AF}(\mathrm{dB} / \mathrm{m})+\mathrm{CL}(\mathrm{dB})+107+20 \log _{10}(\mathrm{D})-104.8 \mathrm{~dB}-\mathrm{Gain}(\mathrm{dBi})+\) Duty Correction
                        factor (dB)
                \(=42.91 \mathrm{~dB} / \mathrm{m}+13.26 \mathrm{~dB}+107+20 \log _{10}(2.61)-104.8 \mathrm{~dB}-26.57 \mathrm{dBi}+1.41 \mathrm{~dB}\)
                \(=41.55 \mathrm{~dB}\)
```

| FCC ID: A3LAT1K06-A00 |  | MEASUREMENT REPORT (CERTIFICATION) | Snmsune | Approved by: <br> Quality Manager |
| :---: | :---: | :---: | :---: | :---: |
| Test Report S/N: 8K21011301-R1.A3L | Test Dates: <br> 01/18/2021-02/05/2021 | EUT Type: AU(AT1K06) |  | Page 136 of 159 |

## Tr) PCTEST

### 7.6.2 Antenna A Conducted Band Edge Maximized on Antenna A



Plot 7-189. Band Edge (100 MHz BW 1CC QPSK Low)


Plot 7-190. Band Edge (100 MHz BW 1CC QPSK High)

| FCC ID: A3LAT1K06-A00 | F\|PCTEST | MEASUREMENT REPORT (CERTIFICATION) | SAMSUNE | Approved by: <br> Quality Manager |
| :---: | :---: | :---: | :---: | :---: |
| Test Report S/N: 8K21011301-R1.A3L | Test Dates: 01/18/2021-02/05/2021 | EUT Type: <br> AU(AT1K06) |  | Page 137 of 159 |



Plot 7-191. Band Edge (100 MHz BW 8CC QPSK Low)


Plot 7-192. Band Edge (100 MHz BW 8CC QPSK High)

| FCC ID: A3LAT1K06-A00 | FCTEST | MEASUREMENT REPORT (CERTIFICATION) | SnMSUN: | Approved by: <br> Quality Manager |
| :---: | :---: | :---: | :---: | :---: |
| Test Report S/N: <br> 8K21011301-R1.A3L | Test Dates: <br> 01/18/2021-02/05/2021 | EUT Type: <br> AU(AT1K06) |  | Page 138 of 159 |

All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.


Plot 7-193. Band Edge (100 MHz BW 8CC NC QPSK Low)


Plot 7-194. Band Edge (100 MHz BW 8CC NC QPSK High)

| FCC ID: A3LAT1K06-A00 | 芹 PCTEST | MEASUREMENT REPORT (CERTIFICATION) | snmsunf | Approved by: <br> Quality Manager |
| :---: | :---: | :---: | :---: | :---: |
| Test Report S/N: 8K21011301-R1.A3L | Test Dates: <br> 01/18/2021-02/05/2021 | EUT Type: <br> AU(AT1K06) |  | Page 139 of 159 |

All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

## Tr)PCEST

### 7.6.3 Antenna B Conducted Band Edge Maximized on Antenna B



Plot 7-195. Band Edge (100 MHz BW 1CC QPSK Low)


Plot 7-196. Band Edge (100 MHz BW 1CC QPSK High)

| FCC ID: A3LAT1K06-A00 | FCTEST* | MEASUREMENT REPORT <br> (CERTIFICATION) | Approved by: |
| :--- | :--- | :--- | :--- | :--- |
| Quality Manager |  |  |  |



Plot 7-197. Band Edge ( 100 MHz BW 8CC QPSK Low)


Plot 7-198. Band Edge (100 MHz BW 8CC QPSK High)

| FCC ID: A3LAT1K06-A00 | 旆 PCTEST | MEASUREMENT REPORT (CERTIFICATION) | Snmsunf | Approved by: <br> Quality Manager |
| :---: | :---: | :---: | :---: | :---: |
| Test Report S/N: 8K21011301-R1.A3L | Test Dates: 01/18/2021-02/05/2021 | EUT Type: AU(AT1K06) |  | Page 141 of 159 |

All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.


Plot 7-199. Band Edge (100 MHz BW 8CC NC QPSK Low)


Plot 7-200. Band Edge (100 MHz BW 8CC NC QPSK High)

| FCC ID: A3LAT1K06-A00 | 芹 PCTEST | MEASUREMENT REPORT (CERTIFICATION) | snmsunf | Approved by: <br> Quality Manager |
| :---: | :---: | :---: | :---: | :---: |
| Test Report S/N: 8K21011301-R1.A3L | Test Dates: <br> 01/18/2021-02/05/2021 | EUT Type: <br> AU(AT1K06) |  | Page 142 of 159 |

All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

## (I)PCTEST

### 7.6.4 Antenna C Conducted Band Edge Maximized on Antenna C



Plot 7-201. Band Edge (100 MHz BW 1CC QPSK Low)


Plot 7-202. Band Edge ( 100 MHz BW 1CC QPSK High)

| FCC ID: A3LAT1K06-A00 | FCTEST* | MEASUREMENT REPORT <br> (CERTIFICATION) | Approved by: |
| :--- | :--- | :--- | :--- | :--- |
| Quality Manager |  |  |  |



Plot 7-203. Band Edge (100 MHz BW 8CC QPSK Low)


Plot 7-204. Band Edge (100 MHz BW 8CC QPSK High)

| FCC ID: A3LAT1K06-A00 | 旆 PCTEST | MEASUREMENT REPORT (CERTIFICATION) | Snmsunf | Approved by: <br> Quality Manager |
| :---: | :---: | :---: | :---: | :---: |
| Test Report S/N: 8K21011301-R1.A3L | Test Dates: 01/18/2021-02/05/2021 | EUT Type: AU(AT1K06) |  | Page 144 of 159 |

All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.


Plot 7-205. Band Edge (100 MHz BW 8CC NC QPSK Low)


Plot 7-206. Band Edge (100 MHz BW 8CC NC QPSK High)

| FCC ID: A3LAT1K06-A00 | 芹 PCTEST | MEASUREMENT REPORT (CERTIFICATION) | snmsunf | Approved by: <br> Quality Manager |
| :---: | :---: | :---: | :---: | :---: |
| Test Report S/N: 8K21011301-R1.A3L | Test Dates: <br> 01/18/2021-02/05/2021 | EUT Type: <br> AU(AT1K06) |  | Page 145 of 159 |

All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

## Tr) PCTEST

### 7.6.5 Antenna D Conducted Band Edge Maximized on Antenna D



Plot 7-207. Band Edge (100 MHz BW 1CC QPSK Low)


Plot 7-208. Band Edge (100 MHz BW 1CC QPSK High)

| FCC ID: A3LAT1K06-A00 | FCTEST* | MEASUREMENT REPORT <br> (CERTIFICATION) | Approved by: |
| :--- | :--- | :--- | :--- | :--- |
| Quality Manager |  |  |  |

All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.


Plot 7-209. Band Edge (100 MHz BW 8CC QPSK Low)


Plot 7-210. Band Edge (100 MHz BW 8CC QPSK High)

| FCC ID: A3LAT1K06-A00 | 旆 PCTEST | MEASUREMENT REPORT (CERTIFICATION) | Snmsune | Approved by: Quality Manager |
| :---: | :---: | :---: | :---: | :---: |
| Test Report S/N: 8K21011301-R1.A3L | Test Dates: 01/18/2021-02/05/2021 | EUT Type: AU(AT1K06) |  | Page 147 of 159 |

All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.


Plot 7-211. Band Edge (100 MHz BW 8CC NC QPSK Low)


Plot 7-212. Band Edge (100 MHz BW 8CC NC QPSK High)

| FCC ID: A3LAT1K06-A00 | 芹 PCTEST | MEASUREMENT REPORT (CERTIFICATION) | snmsunf | Approved by: <br> Quality Manager |
| :---: | :---: | :---: | :---: | :---: |
| Test Report S/N: 8K21011301-R1.A3L | Test Dates: <br> 01/18/2021-02/05/2021 | EUT Type: <br> AU(AT1K06) |  | Page 148 of 159 |

All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

### 7.6.6 MIMO Band Edge Maximized on Antenna A/B/C/D

Frequency: $37.00 \mathrm{GHz} \quad$ Margin: 18.86 dB


Plot 7-213. Band Edge MIMO (100 MHz BW 1CC QPSK Low)


Plot 7-214. Band Edge MIMO ( 100 MHz BW 1CC QPSK High)

| FCC ID: A3LAT1K06-A00 | $\sqrt{\text { PCTESTM }}$ | MEASUREMENT REPORT (CERTIFICATION) | SnMSUNR | Approved by: <br> Quality Manager |
| :---: | :---: | :---: | :---: | :---: |
| Test Report S/N: 8K21011301-R1.A3L | Test Dates: 01/18/2021-02/05/2021 | EUT Type: AU(AT1K06) |  | Page 149 of 159 |

Frequency: $37.00 \mathrm{GHz} \quad$ Margin: 21.86 dB


Plot 7-215. Band Edge MIMO (100 MHz BW 8CC QPSK Low)


Plot 7-216. Band Edge MIMO (100 MHz BW 8CC QPSK High)

| FCC ID: A3LAT1K06-A00 | 旆 PCTEST | MEASUREMENT REPORT (CERTIFICATION) | snmsuna | Approved by: Quality Manager |
| :---: | :---: | :---: | :---: | :---: |
| Test Report S/N: 8K21011301-R1.A3L | Test Dates: 01/18/2021-02/05/2021 | EUT Type: <br> AU(AT1K06) |  | Page 150 of 159 |

Frequency: $37.00 \mathrm{GHz} \quad$ Margin: 22.28 dB


Plot 7-217. Band Edge MIMO (100 MHz BW 8CC NC QPSK Low)

Frequency: $40.00 \mathrm{GHz} \quad$ Margin: 17.7 dB


Plot 7-218. Band Edge MIMO ( 100 MHz BW 8CC NC QPSK High)

| FCC ID: A3LAT1K06-A00 |  | MEASUREMENT REPORT (CERTIFICATION) | SMMSUNA | Approved by: Quality Manager |
| :---: | :---: | :---: | :---: | :---: |
| Test Report S/N: 8K21011301-R1.A3L | Test Dates: <br> 01/18/2021-02/05/2021 | EUT Type: <br> AU(AT1K06) |  | Page 151 of 159 |

### 7.7 Frequency Stability / Temperature Variation <br> $\$ 2.1055$

## Test Overview and Limit

Frequency stability testing is performed in accordance with the guidelines of ANSI C63.26-2015. The frequency stability of the transmitter is measured by:
a.) Temperature: The temperature is varied from $-30^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$ in $10^{\circ} \mathrm{C}$ increments using an environmental chamber.
b.) Primary Supply Voltage: The primary supply voltage is varied from $85 \%$ to $115 \%$ of the nominal value for non hand-carried battery and AC powered equipment. For hand-carried, battery-powered equipment, primary supply voltage is reduced to the battery operating end point which shall be specified by the manufacturer.

## Test Procedure Used

ANSI C63.26-2015 Section 5.6
KDB 842590 D01 v01r01 Section 4.5

## Test Settings

1. The carrier frequency of the transmitter is measured at room temperature $\left(20^{\circ} \mathrm{C}\right.$ to provide a reference).
2. The equipment is turned on in a "standby" condition for fifteen minutes before applying power to the transmitter. Measurement of the carrier frequency of the transmitter is made within one minute after applying power to the transmitter.
3. Frequency measurements are made at $10^{\circ} \mathrm{C}$ intervals ranging from $-30^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$. A period of at least one hour is provided to allow stabilization of the equipment at each temperature level.

## Test Setup



Figure 7-1. Test Instrument \& Measurement Setup
The EUT was measured using horn antenna connected to a spectrum analyzer. The EUT was placed inside an environmental chamber.

## Test Notes

The Frequency Deviation column in the table below is the amount of deviation measured from the center frequency of the Reference measurement (first row).

| FCC ID: A3LAT1K06-A00 |  | MEASUREMENT REPORT (CERTIFICATION) | Snmsung | Approved by: <br> Quality Manager |
| :---: | :---: | :---: | :---: | :---: |
| Test Report S/N: 8K21011301-R1.A3L | Test Dates: 01/18/2021-02/05/2021 | EUT Type: <br> AU(AT1K06) |  | Page 152 of 159 |

## Frequency Stability Measurements

$\$ 2.1055$

| OPERATING FREQUENCY: | 38,050,000,000 | Hz |
| :---: | :---: | :---: |
| CHANNEL: | 2084999 |  |
| REFERENCE VOLTAGE: | 120.00 | VAC |


| VOLTAGE <br> (\%) | POWER <br> (VAC) | TEMP <br> ( ${ }^{\circ} \mathrm{C}$ ) | FREQUENCY <br> (Hz) | Freq. Dev. (Hz) | Deviation (\%) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 100 \% | 120.00 | + 20 (Ref) | 38,050,000,131 | 0 | 0.0000000 |
| 100 \% |  | - 30 | 38,050,000,185 | 54 | 0.0000001 |
| 100 \% |  | - 20 | 38,050,000,185 | 54 | 0.0000001 |
| 100 \% |  | -10 | 38,050,000,196 | 65 | 0.0000002 |
| 100 \% |  | 0 | 38,050,000,195 | 64 | 0.0000002 |
| 100 \% |  | + 10 | 38,050,000,262 | 131 | 0.0000003 |
| $100 \%$ |  | + 30 | 38,050,000,268 | 137 | 0.0000004 |
| 100 \% |  | + 40 | 38,050,000,144 | 13 | 0.0000000 |
| 100 \% |  | + 50 | 38,050,000,264 | 133 | 0.0000003 |
| 85 \% | 102.00 | + 20 | 38,050,000,189 | 58 | 0.0000002 |
| 115 \% | 138.00 | + 20 | 38,050,000,262 | 131 | 0.0000003 |

Table 7-25. Frequency Stability Data

## Note:

Based on the results of the frequency stability test at the center channel the frequency deviation results measured are very small. As such it is determined that the channels at the band edge would remain in-band when the maximum measured frequency deviation noted during the frequency stability tests is applied. Therefore, the device is determined to remain operating in band over the temperature and voltage range as tested.

| FCC ID: A3LAT1K06-A00 | F\|PCTEST | MEASUREMENT REPORT (CERTIFICATION) | Snmsuna | Approved by: <br> Quality Manager |
| :---: | :---: | :---: | :---: | :---: |
| Test Report S/N: <br> 8K21011301-R1.A3L | Test Dates: 01/18/2021-02/05/2021 | EUT Type: <br> AU(AT1K06) |  | Page 153 of 159 |

## Frequency Stability Measurements

§2.1055


Figure 7-2. Frequency Stability Graph

| FCC ID: A3LAT1K06-A00 |  | MEASUREMENT REPORT (CERTIFICATION) | Snmsune | Approved by: <br> Quality Manager |
| :---: | :---: | :---: | :---: | :---: |
| Test Report S/N: <br> 8K21011301-R1.A3L | Test Dates: <br> 01/18/2021-02/05/2021 | EUT Type: AU(AT1K06) |  | Page 154 of 159 |

8.0 CONCLUSION

The data collected relate only to the item(s) tested and show that the Samsung 5G Access Unit Model: AT1K06A00 complies with all the requirements of Part 30 .

| FCC ID: A3LAT1K06-A00 |  | MEASUREMENT REPORT (CERTIFICATION) | snmsuna | Approved by: Quality Manager |
| :---: | :---: | :---: | :---: | :---: |
| Test Report S/N: 8K21011301-R1.A3L | Test Dates: <br> 01/18/2021-02/05/2021 | EUT Type: <br> AU(AT1K06) |  | Page 155 of 159 |

### 9.0 APPENDIX A

### 9.1 HARMONIC MIXER Verification Certificate


CALIBRATION CERTIFICATE
경기도 여헝시 마징면 서이젼로 578밴릴 74
IH: 0316456900 FAX : 0316456969
성적서발금번호(Certificate No) : IC-2020-16953
표 짐 변 호(Calibration No) : C-2020-020404
퍼이지(page) : 1 of 3

1. 의뢰자 (Client)

- 기관영 (Name) : 피씨테스트코리아 주식회사
- 주소 (Address) : 경기도 용인시 기흥구 흥먹1로 13, 피 136 , 피137호(영덕동, 흥덕 IT 밸리)

2. 측정기 (Callitration subject)
$\diamond$ 등록번로: 380383

- 기기영 (Description) : HARMONIC MIXER
- 제작회사 잋 형식(Manufacture and Model Name) : ROHDE \& SCHWARZ / FS-Z60
- 기기번호 (Serial Number) : 100981

3. 교정 일자 (Date of Calibration) : 2020.03.13
4. 교정 환경 (Environment)

- 용도(Temperature): ( $22.4 \pm 0.4$ ) C - 습도(Humidty) : ( $46 \pm 4$ ) \% R.H.
- 교점짐소 (Location) : 고정표준실(Permanent Calibration Lab)
(주소: 경기도 이천시 마장면 서이천로 578번길 74)

5. 측정표준의 소큽성 (Traceability) ofield code : 40641 (RF SPECTRUM ANALYZER)
교정방범 잋 소급섬 서술 (Calibration method and/or brief description)
상기 기기는 고주파 스퍼트럼 분석기의 교정절차(HCT-CS-125-40641)이 따라 국가측정표준기관으로부터 츅점의 소급성이 학 보된 아래의 표준장비를 이음하여 교정 되었음.
교정에 사용한 표준장비 영세 (Ust of used standards/specifications)

| 기가명 (Description) | 지작회사 및 형식 (Marnutacturer and Model Name) | 기기번효 (Serial Number) | 차기교점예징일자 (The due date of next Calibration) | 교점 기관 (Calibration laboratory) |
| :---: | :---: | :---: | :---: | :---: |
| EXG ANALOG SIGNAL GENERATOR | KEYSIGHT | MY53270544 | 2020/10/02 | (주)에이치시티 |
|  | N5173B |  |  |  |
| EPM SERIES POWER METER | AGILENT | GB42420565 | 2020/11/02 | (주)에이치시티 |
|  | E44198 |  |  |  |
| POWER SENSOR | AGILENT | MY41092450 | 2021/01/15 | Kersight Technologies |
|  | 8487A |  |  |  |
| POWER SENSOR | KEYSIGHT | MY56330017 | 2020/12/30 | Kersight Technologies |
|  | V8486A |  |  |  |
| WR-19 MULTIPLIER SOURCE MODULE | OML | 160516-1 | 2020/09/09 | (주)에이치시티 |
|  | S19MS-A |  |  |  |

6. 교정결교 (Calibration result) ; 교정결 과 장조 (Refer to attachment)
7. 측정물훅도 (Measurement uncertainty)
: 교정결과 창조 (Refer to attrachment)
신표푸조 익 $95 \%, k=2$ (Confidence level about $95 \%, k=2$ )

위 성직서느 ㄱ⼸ㄱ제시혐기관안정혈력처(International Laboratory Accreditation Cooperation) 상 호인정쳥청(Mutual Recognition Arrangement)이 서영한 한국인정기구(KOLAS)로부티 곰잉 받든 큰야의 교징 렬과믹니다.
8. 3. 16
한국인정기구 인정
Accredited by KOLAS, Republic of KOREA
(주)에이치시티 대 표이사 President, HCT Co., Ltd.




F-02 $-02-008$ (Rev.02)

| FCC ID: A3LAT1K06-A00 | FCTEST | MEASUREMENT REPORT (CERTIFICATION) | shmsung | Approved by: <br> Quality Manager |
| :---: | :---: | :---: | :---: | :---: |
| Test Report S/N: <br> 8K21011301-R1.A3L | Test Dates: <br> 01/18/2021-02/05/2021 | EUT Type: <br> AU(AT1K06) |  | Page 156 of 159 |

All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.


과 셩젹서는 국제시형기퐌인종혐 혀체(International Laboratory Accreditation Cooperation) 상 토인종훰 정(Mutual Recognition Arrangement)에 서영한 한국인졍기구(KOLAS)로부터 공인 반르 푼야의 교졍결과 임니다.




| FCC ID: A3LAT1K06-A00 |  | MEASUREMENT REPORT (CERTIFICATION) | SMMSUNA | Approved by: <br> Quality Manager |
| :---: | :---: | :---: | :---: | :---: |
| Test Report S/N: <br> 8K21011301-R1.A3L | Test Dates: <br> 01/18/2021-02/05/2021 | EUT Type: <br> AU(AT1K06) |  | Page 157 of 159 |

All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.
교 정 성 적 서 CALIBRATION CERTIFICATE
경기도 아츤시 아깡연 서이흔로 578번길 74
IIL： $031-045-6900, \mathrm{FAX}=031-645-6969$

성적서밤급번흐（Certificate No）：1C－2020－16950
퍼이지（page）： 1 of 3
1．의뢰자（Cliert）
－기롼영（Name）：피쎄테스트코리아 주식회사
－주소（Address）：경기도 용인시 기흥구 흥억1로 13 ，피 136 ，피 137 호（영덕동，흥덕 IT 밸리）
2．측정기（Calliration Subject）
$\bigcirc$ 등록번툐： 380381
－기기명（Description）：HARMONIC MIXER
－제작회사 및 형식（Manufacturer and Model Name）：ROHDE \＆SCHWARZ／FS－Z140
－기기번흐（Serial Number）： 101135
3．교정일자（Date of Calloration）：2020．03．13
4．교정 한경（Environment）
－롤도（Tenpedure）：（ $22.4 \pm 0.4$ ）C 冬巫（Humidity）：（ $46 \pm 4$ ）\％R．H．
－교징장소（Location）：고정표준실（Permanent Calibration Lab）
（주소；경기도 이전시 마장면 서이전로 578번길 74）
5．축정표준의 소급성（Traceability）OField code ： 40641 （RF SPECTRUM ANALYZER）
교정방범 핓 소큽성 서全（Calibration method and／or brief description）
상기 기기는 고주파 스정트럼 분석기의 교점절차（HCT－CS－125－40641）에 따라 국가측정표준기관으로부터 줒정의 소급섬이 학 보된 아려의 표준장비를 이용하여 교정 되었믐．
교정에 사용한 표준장비 명세（List of used stancards／specifications）

| 기기명 （Description） | 제작회사 딫 헝식 <br> （Manufacturer and Model Name） | 기기번호 （Serial Number） | 치기교점 녜점일자 （The due date of next Calbration） | 교정기관 （Callibration laboratory） |
| :---: | :---: | :---: | :---: | :---: |
| EXG ANALOG SIGNaL GENERATOR | KEYSIGHT | MY53270544 | 2020／10／02 | （주）에이치시티 |
|  | N5173B |  |  |  |
| EPM SERIES POWER METER | AGILENT | GB42420565 | 2020／11／02 | （주）에이치시티 |
|  | E44198 |  |  |  |
| POWER SENSOR | KEYSIGHT | MY56370005 | 2020／12／30 | Keysight Technologies |
|  | W8486A |  |  |  |
| WR－08 MULTIPLIER SOURCE MODULE | OML | 164019－1 | 2020／09／09 | （주）에이치시티 |
|  | SO8MS－A |  |  |  |
|  |  |  |  |  |

6．교점결 과（Coibration result）：교정결과 감조（Refer to attachment）
7．측정 불확도（Measurement uncertainty）：교정 결과 창조（Refer to attachment）
신로 수즌 멱 $95 \%, k=2$（Corfidence level about $95 \%, k=2$ ）

 Arrangement）유 서영한 한국인정기구（KOLAS）로부터 공인 받믄 눈아의 그점결과힙UC다．

2020．03． 16
（주）에이치시티 대 표이사
Accredited by KOLAS，Republic of KOREA
President，HCT Co．，Ltd．





| FCC ID：A3LAT1K06－A00 |  | MEASUREMENT REPORT （CERTIFICATION） | SMMSUNA | Approved by： <br> Quality Manager |
| :---: | :---: | :---: | :---: | :---: |
| Test Report S／N： 8K21011301－R1．A3L | Test Dates： <br> 01／18／2021－02／05／2021 | EUT Type： AU（AT1K06） |  | Page 158 of 159 |

All rights reserved．Unless otherwise specified，no part of this report may be reproduced or utilized in any part，form or by any means，electronic or mechanical，including photocopying and microfilm，without permission in writing from PCTEST．If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof，please contact INFO＠PCTEST．COM．


1. 의뢰자 (Cliert)

- 기관명 (Name) : 피씨테스트코리아 주식회사
- 주소 (Address) : 경기도 용인시 기흥구 흥덕1로 13 , 피 136 , 피 137 호(영덕동, 흥덕 IT 밸리)

2. 대상풍목 (Measurement Item) $\quad \Delta$ HCT 등록번호 : 369547

- 기기명 (Description) : HARMONIC MIXER
- 제작회사 및 형식(Manufacturer and Mode Name) : ROHDE \& SCHWARZ / FS-Z220
- 기기번호 (Serial Number) : 101015

3. ㅊ⼋ㄱ정 일자 (Measurement date) : 2020.10.21
4. 츅정 환경 (Environment)

- 온도(Temperature) : ( $23.1 \pm 0.3$ ) C - 브도(Humidity) : ( $46 \pm 3$ ) \% R.H.


## 5. 죽정 방법 (Measurement method used)

상기 기기는 고주파 스뼉트럼 분석기의 교정절차(HCT-CS-125-40641)에 따라 국가측정표준기관으로부터 측정의 소급성이 학보 된 아래의 표준장비와 자체 점검된 장비를 사용하여 측정 되었음.

충정에 사용한 표준장비 영세 (List of used standards/specifications)

| 기기명 (Description) | 제작회사 및 형식 <br> (Manufacture and Model Neme) | 기기번호 (Serial Numba) | 차기교정예정일자 (The due date of next Calibration) | 교정기 관 <br> (Cal ibration laboratory) |
| :---: | :---: | :---: | :---: | :---: |
| IGNAL GENERATOR | KEYSIGHT | MY53270544 | 2021/06/23 | (주)에이치시티 |
| OG SIGNAL GENERATOR | N5173B |  |  |  |
| ERICKSON POWER METER | VDI | 394 V | 측정 | (주)에이치시티 |
|  | PM5 |  |  |  |
| WR-05 MULTIPLIER SOURCE MODULE | OML | 160419-1 | 측정 | (주)에이치시티 |
|  | S05MS-A |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |

6. ㅊ⼸ㄱ징 결과 (Messurement result)
: 축정걸과 참조 (Refer to attachment)
(ᄌ주) 이 흑정 걸과는 읙뢰자가 제시한 시료 및 시료명에만 한정됩니다.
The messuremen results shown in this reportrefer orly to the sample(s) measured uriess otherwise stated.

 과 우려휼UC․ This calibaton certficate is Not an accredited report by KOLAS(Korea Laboratory Accreditaton Scheme) and AZLA(American Association for Laboratory Accreditation), a ILAC MRA signatory.
7. 10. 21

(주)에이치시티 대표이사 President, HCT Co., Ltd.


수 측정결곽는 측정기의 정리정훅도에 영항은 미치는 요소굑부하, 온도, 슴도 등의 급긱한 변화가 발싱한 경우애는 무호가 옵니다. If any signif fcant instablility or other adverse factor(overload, temperature, humidity etc.) manifests itself before, during or after callbration, and is likely to affect the validity of the call bration. F-02P-02-010 (Rev.01)

| FCC ID: A3LAT1K06-A00 |  | MEASUREMENT REPORT (CERTIFICATION) | SMMSUNA | Approved by: <br> Quality Manager |
| :---: | :---: | :---: | :---: | :---: |
| Test Report S/N: 8K21011301-R1.A3L | Test Dates: <br> 01/18/2021-02/05/2021 | EUT Type: AU(AT1K06) |  | Page 159 of 159 |

All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

