MEASUREMENT REPORT FCC Part 30 5G mmWave

Applicant Name:
Samsung Electronics Co., Ltd.
129, Samsung-ro,
Yeongtong-gu, Suwon-si
Gyeonggi-do, 16677, Korea

Date of Testing:

09/10/2020-10/08/2020
Test Site/Location:
PCTEST KOREA Lab. Yongin-si, Gyeonggi-do, Korea
Test Report Serial No.:
8K20090901-02-R2.A3L

FCC ID:
 APPLICANT:
 A3LAT1K04-B10
 Samsung Electronics Co., Ltd.

Application Type:
Model:
EUT Type:
FCC Classification:
Test Procedure(s):

Certification
AT1K04-B10
5G Access Unit
Part 30 Fixed Transmitter (5GB)
ANSI C63.26-2015, KDB 971168 D01 v03r01,
KDB 842590 D01 v01r01

Abstract

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in $\S 2.947$. Test results reported herein relate only to the item(s) tested.

This revised Test Report (S/N: 8K20090901-02-R2.A3L) supersedes and replaces the previously issued test report (S/N: 8K20090901-02R1.A3L) on the same subject device for the same type of testing as indicated. Please discard or destroy the previously issued test report(s) and dispose of it accordingly.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

FCC ID: A3LAT1K04-B10	FCTEST	MEASUREMENT REPORT (CERTIFICATION)	Snmsuna	Approved by: Quality Manager
Test Report S/N: 8K20090901-02-R2.A3L	Test Dates: 09/10/2020-10/08/2020	EUT Type: 5G Access Unit		Page 1 of 469

TABLEOF CONTENTS

1.0 INTRODUCTION 5
1.1 Scope 5
1.2 PCTEST KOREA Test Location 5
1.3 Test Facility / Accreditations 5
2.0 PRODUCT INFORMATION 6
2.1 Equipment Description 6
2.2 Device Capabilities 6
2.3 Test Configuration 6
2.4 EMI Suppression Device(s)/Modifications 20
3.0 DESCRIPTION OF TESTS 21
3.1 Measurement Procedure 21
3.2 Radiated Power and Radiated Spurious Emissions 21
4.0 MEASUREMENT UNCERTAINTY 24
5.0 TEST EQUIPMENT CALIBRATION DATA 25
6.0 SAMPLE CALCULATIONS 26
7.0 TEST RESULTS 27
7.1 Summary 27
7.2 Occupied Bandwidth 28
7.3 Equivalent Isotropic Radiated Power (EIRP) Density 57
7.4 RF Conducted Output Power 182
7.5 Radiated Spurious and Harmonic Emissions 189
7.6 Band Edge Emissions 422
7.7 Frequency Stability / Temperature Variation 461
8.0 CONCLUSION 464
9.0 APPENDIX A 465
9.1 HARMONIC MIXER Verification Certificate 465
10.0 APPENDIX B 468
10.1 Introduction (KDB 484596 Section 3 a) 468
10.2 Explain the Differences (KDB 484596 Section 3 b) 468
10.3 Spot Check Verification Data (KDB 484596 Section 3 c) 468
10.4 Reference Section (KDB 484596 Section 3 d) 469

FCC ID: A3LAT1K04-B10	fryTEST	MEASUREMENT REPORT (CERTIFICATION)	SnMSUNE	Approved by: Quality Manager
Test Report S/N: 8K20090901-02-R2.A3L	Test Dates: 09/10/2020-10/08/2020	EUT Type: 5G Access Unit		Page 2 of 469

FCC Part 30

Bandwidth (MHz)	Mode	FCC RulePart	Antenna	Tx Frequency(MHz)	EIRP Density		Emission Designator	Modulation
					Max. Power (W/100MHz)	Max. Power (dBm/100MHz)		
50	TDD(1CC)	30	A	27500-28350	65.31	48.15	46M6G7D	QPSK
	TDD(1CC)	30	A	27500-28350	63.53	48.03	46M5W7D	16QAM
	TDD(1CC)	30	A	27500-28350	65.01	48.13	46M5W7D	64QAM
100	TDD(1CC)	30	A	27500-28350	61.09	47.86	95M0G7D	QPSK
	TDD(1CC)	30	A	27500-28350	59.70	47.76	94M5W7D	16QAM
	TDD(1CC)	30	A	27500-28350	60.12	47.79	94M6W7D	64QAM
50	TDD(2CC)	30	A	27500-28350	58.61	47.68	95M4G7D	QPSK
	TDD(2CC)	30	A	27500-28350	58.34	47.66	95M5W7D	16QAM
	TDD(2CC)	30	A	27500-28350	59.02	47.71	95M5W7D	64QAM
100	TDD(8CC)	30	A	27500-28350	37.58	45.75	786MG7D	QPSK
	TDD(8CC)	30	A	27500-28350	36.22	45.59	787MW7D	16QAM
	TDD(8CC)	30	A	27500-28350	36.22	45.59	786MW7D	64QAM
50	TDD(1CC)	30	B	27500-28350	59.16	47.72	46M4G7D	QPSK
	TDD(1CC)	30	B	27500-28350	57.68	47.61	46M0W7D	16QAM
	TDD(1CC)	30	B	27500-28350	58.75	47.69	46M2W7D	64QAM
100	TDD(1CC)	30	B	27500-28350	59.43	47.74	94M4G7D	QPSK
	TDD(1CC)	30	B	27500-28350	58.75	47.69	94M3W7D	16QAM
	TDD(1CC)	30	B	27500-28350	59.57	47.75	94M7W7D	64QAM
50	TDD(2CC)	30	B	27500-28350	61.66	47.90	95M5G7D	QPSK
	TDD(2CC)	30	B	27500-28350	61.09	47.86	95M5W7D	16QAM
	TDD(2CC)	30	B	27500-28350	60.67	47.83	95M5W7D	64QAM
100	TDD(8CC)	30	B	27500-28350	36.06	45.57	786MG7D	QPSK
	TDD(8CC)	30	B	27500-28350	36.06	45.57	787MW7D	16QAM
	TDD(8CC)	30	B	27500-28350	36.06	45.57	786MW7D	64QAM
50	TDD(1CC)	30	C	27500-28350	62.23	47.94	46M3G7D	QPSK
	TDD(1CC)	30	C	27500-28350	61.24	47.87	46M0W7D	16QAM
	TDD(1CC)	30	C	27500-28350	61.24	47.87	46M0W7D	64QAM
100	TDD(1CC)	30	C	27500-28350	63.97	48.06	94M4G7D	QPSK
	TDD(1CC)	30	C	27500-28350	62.81	47.98	94M4W7D	16QAM
	TDD(1CC)	30	C	27500-28350	63.68	48.04	94M5W7D	64QAM
50	TDD(2CC)	30	C	27500-28350	64.42	48.09	95M3G7D	QPSK
	TDD(2CC)	30	C	27500-28350	63.10	48.00	95M4W7D	16QAM
	TDD(2CC)	30	C	27500-28350	61.66	47.90	95M4W7D	64QAM
100	TDD(8CC)	30	C	27500-28350	36.39	45.61	786MG7D	QPSK
	TDD(8CC)	30	C	27500-28350	36.31	45.60	787MW7D	16QAM
	TDD(8CC)	30	C	27500-28350	35.73	45.53	786MW7D	64QAM
50	TDD(1CC)	30	D	27500-28350	61.80	47.91	46M5G7D	QPSK
	TDD(1CC)	30	D	27500-28350	59.02	47.71	46M2W7D	16QAM
	TDD(1CC)	30	D	27500-28350	60.95	47.85	46M2W7D	64QAM
100	TDD(1CC)	30	D	27500-28350	55.98	47.48	94M9G7D	QPSK
	TDD(1CC)	30	D	27500-28350	55.21	47.42	94M5W7D	16QAM
	TDD(1CC)	30	D	27500-28350	55.85	47.47	94M6W7D	64QAM
50	TDD(2CC)	30	D	27500-28350	62.52	47.96	95M6G7D	QPSK
	TDD(2CC)	30	D	27500-28350	61.66	47.90	95M5W7D	16QAM
	TDD(2CC)	30	D	27500-28350	61.38	47.88	95M5W7D	64QAM
100	TDD(8CC)	30	D	27500-28350	35.40	45.49	786MG7D	QPSK
	TDD(8CC)	30	D	27500-28350	35.97	45.56	787MW7D	16QAM
	TDD(8CC)	30	D	27500-28350	36.73	45.65	786MW7D	64QAM

EUT Overview for Antenna A, B, C, and D

FCC ID: A3LAT1K04-B10	(r)PCTEST	MEASUREMENT REPORT (CERTIFICATION)	Snmsune	Approved by: Quality Manager
Test Report S/N: 8K20090901-02-R2.A3L	Test Dates: 09/10/2020-10/08/2020	EUT Type: 5G Access Unit		Page 3 of 469

Bandwidth (MHz)	Mode	FCC Rule Part	Antenna	Tx Frequency (MHz)	EIRP Density		Emission Designator	Modulation
					Max. Power (W/100MHz)	$\begin{gathered} \text { Max. Power } \\ (\mathrm{dBm} / 100 \mathrm{MHz}) \end{gathered}$		
50	TDD(1CC)	30	A+C	27500-28350	127.54	51.06	46M6G7D	QPSK
	TDD(1CC)	30	A+C	27500-28350	124.77	50.96	46M5W7D	16QAM
	TDD(1CC)	30	A+C	27500-28350	126.25	51.01	46M5W7D	64QAM
100	TDD(1CC)	30	A+C	27500-28350	125.07	50.97	95M0G7D	QPSK
	TDD(1CC)	30	A+C	27500-28350	122.51	50.88	94M5W7D	16QAM
	TDD(1CC)	30	A+C	27500-28350	123.80	50.93	94M6W7D	64QAM
50	TDD(2CC)	30	A+C	27500-28350	123.03	50.90	95M4G7D	QPSK
	TDD(2CC)	30	A+C	27500-28350	121.44	50.84	95M5W7D	16QAM
	TDD(2CC)	30	A+C	27500-28350	120.68	50.82	95M5W7D	64QAM
100	TDD(8CC)	30	A+C	27500-28350	73.98	48.69	786MG7D	QPSK
	TDD(8CC)	30	A+C	27500-28350	72.53	48.61	787MW7D	16QAM
	TDD(8CC)	30	A+C	27500-28350	71.95	48.57	786MW7D	64QAM
50	TDD(1CC)	30	$B+D$	27500-28350	120.96	50.83	46M4G7D	QPSK
	TDD(1CC)	30	$B+D$	27500-28350	116.70	50.67	46M0W7D	16QAM
	TDD(1CC)	30	$B+D$	27500-28350	119.70	50.78	46M2W7D	64QAM
100	TDD(1CC)	30	$B+D$	27500-28350	115.40	50.62	94M4G7D	QPSK
	TDD(1CC)	30	$B+D$	27500-28350	113.96	50.57	94M3W7D	16QAM
	TDD(1CC)	30	$B+D$	27500-28350	115.41	50.62	94M7W7D	64QAM
50	TDD(2CC)	30	$B+D$	27500-28350	124.18	50.94	95M5G7D	QPSK
	TDD(2CC)	30	$B+D$	27500-28350	122.75	50.89	95M5W7D	16QAM
	TDD(2CC)	30	$B+D$	27500-28350	122.05	50.87	95M5W7D	64QAM
100	TDD(8CC)	30	$B+D$	27500-28350	71.46	48.54	786MG7D	QPSK
	TDD(8CC)	30	$B+D$	27500-28350	72.03	48.58	787MW7D	16QAM
	TDD(8CC)	30	B+D	27500-28350	72.79	48.62	786MW7D	64QAM

EUT Overview for Antenna A + C and B + D

Bandwidth (MHz)	Mode	FCC Rule Part	Antenna	Tx Frequency (MHz)	EIRP Density		Emission Designator	Modulation
					Max. Power (W/100MHz)	Max. Power $(\mathrm{dBm} / 100 \mathrm{MHz})$		
50	TDD(1CC)	30	$A+B+C+D$	27500-28350	248.50	53.95	46M6G7D	QPSK
	TDD(1CC)	30	A+B+C+D	27500-28350	241.46	53.83	46M5W7D	16QAM
	TDD(1CC)	30	$A+B+C+D$	27500-28350	245.95	53.91	46M5W7D	64QAM
100	TDD(1CC)	30	$A+B+C+D$	27500-28350	240.47	53.81	95M0G7D	QPSK
	TDD(1CC)	30	$A+B+C+D$	27500-28350	236.47	53.74	94M5W7D	16QAM
	TDD(1CC)	30	$A+B+C+D$	27500-28350	239.21	53.79	94M7W7D	64QAM
50	TDD(2CC)	30	A+B+C+D	27500-28350	247.21	53.93	95M5G7D	QPSK
	TDD(2CC)	30	A+B+C+D	27500-28350	244.19	53.88	95M5W7D	16QAM
	TDD(2CC)	30	$A+B+C+D$	27500-28350	242.73	53.85	95M5W7D	64QAM
100	TDD(8CC)	30	A+B+C+D	27500-28350	145.43	51.63	786MG7D	QPSK
	TDD(8CC)	30	$A+B+C+D$	27500-28350	144.56	51.60	787MW7D	16QAM
	TDD(8CC)	30	$A+B+C+D$	27500-28350	144.74	51.61	786MW7D	64QAM

EUT Overview for Antenna A + B + C + D

FCC ID: A3LAT1K04-B10	froPTEST	MEASUREMENT REPORT (CERTIFICATION)	Snmsune	Approved by: Quality Manager
Test Report S/N: 8K20090901-02-R2.A3L	Test Dates: 09/10/2020-10/08/2020	EUT Type: 5G Access Unit		Page 4 of 469

\qquad 9/10/2020-10/08/2020

5G Access Unit

1.0 INTRODUCTION

1.1 Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Innovation, Science and Economic Development Canada.

$1.2 \quad$ PCTEST KOREA Test Location

These measurement tests were conducted at the PCTEST KOREA CO., LTD. facility located at (\#1407) 13, Heungdeok 1-ro, Giheung-gu, Yongin-si, Gyeonggi-do 16954, Korea.

1.3 Test Facility / Accreditations

Measurements were performed at PCTEST KOREA Lab located in Yongin-si, Gyeonggi, Korea.

- PCTEST KOREA is an ISO 17025:2005 accredited test facility under the National Institute of Standards and Technology (NIST) with Certificate number 600143-0 for Specific Absorption Rate (SAR), where applicable, and Electromagnetic Compatibility (EMC) testing for FCC and Innovation, Science, and Economic Development Canada rules.
- PCTEST KOREA facility is accredited and designated in accordance with the provision of Radio Wave Act and International Standard ISO/IEC 17025:2017 under the National Radio Research Agency.
- Designation Number: KR0169
- Test Firm Registration Number: 417945

Scope	FCC Rule Parts	Maximum Assessed Frequency in MHz
Intentional Radiators	FCC Part 15, Subpart C	220,000
U-NII without DFS Intentional Radiators	FCC Part 15, Subpart E	40,000
U-NII with DFS Intentional Radiators	FCC Part 15, Subpart E	40,000
UWB Intentional Radiators	FCC Part 15, Subpart F	200,000
Commercial Mobile Services	Part 22 (cellular), Part 24, Part 25 (below 3 GHz), Part 27	220,000
General Mobile Radio Service	Part 22 (non-cellular), Part 90 (below 3GHz), Part 95 (below 3GHz), Part 97 (below 3GHz), Part 101 (below 3GHz)	220,000
Citizens Broadband Radio Services	Part 96	220,000
Microwave and Millimeter Bands Radio Services	Part 25 (below 3GHz), Part 30, Part 74, Part 90 (above 3 GHz), Part 95 (above 3 GHz), Part 97 (above 3 GHz), Part 101	220,000
RF Exposure		6,000
Signal Boosters	Part 20, Part 90	220,000

FCC ID: A3LAT1K04-B10		MEASUREMENT REPORT (CERTIFICATION)	Snmsune	Approved by: Quality Manager
Test Report S/N: 8K20090901-02-R2.A3L	Test Dates: 09/10/2020-10/08/2020	EUT Type: 5G Access Unit		Page 5 of 469

2.0 PRODUCT INFORMATION

2.1 Equipment Description

This device supports 1 to 2 component carriers(contiguous/non-contiguous) of 50 MHz bandwidth, 1 to 8 component carriers(contiguous/non-contiguous) of 100 MHz bandwidth and 2 to 8 component carriers(contiguous/non-contiguous) of mixed bandwidth ($50 \mathrm{MHz}+100 \mathrm{MHz}$).

The Equipment Under Test (EUT) is the Samsung 5G Access Unit FCC ID: A3LAT1K04-B10. The test data contained in this report pertains only to the emissions due to the EUT's 5 G mmWave function.

The present document shall be constructed per the guidelines found in KDB 484596 D01 "Referencing Test Data" v01 which can be referred from 10.0 Appendix KDB 484596.

The EUT operates as a 4 X4 MIMO system that consists of four antenna arrays (denoted herein as "Antenna A", "Antenna B", "Antenna C" and "Antenna D". Each of the four antenna arrays has 256 antenna elements for a total of 1024 antenna elements. Of the 4 antenna arrays, Antenna A and Antenna C have the same polarization (135 degrees from horizontal) and Antenna B and Antenna D have the same polarization (45 degrees from horizontal). Beamforming is used with Antenna A and Antenna C and it is also used with Antenna B and Antenna D. Signal correlation is possible between the outputs of all four antenna arrays.

This unit is powered by a nominal AC voltage source.
See Section 3.2 for the antenna polarization of the 5G Access Unit and the measurement antenna.
Test Device Serial No.: S616627399

2.2 Device Capabilities

This device contains the following capabilities:
TDD of mmWave

2.3 Test Configuration

The EUT was tested per the guidance of ANSI C63.26-2015 and KDB 971168 D01 v03r01. See Section 7.0 of this test report for a description of the radiated tests.

FCC ID: A3LAT1K04-B10		MEASUREMENT REPORT (CERTIFICATION)	Snmsung	Approved by: Quality Manager
Test Report S/N: 8K20090901-02-R2.A3L	Test Dates: 09/10/2020-10/08/2020	EUT Type: 5G Access Unit		Page 6 of 469

BW	Configuration	Channel	CC	Frequency [MHz]
50 MHz	1CC	Low	CCO	27525.30
		Mid	CCO	27925.02
		High	CCO	28324.98
	$\begin{aligned} & \text { contiguous } \\ & 2 \mathrm{CC} \end{aligned}$	Low	CCO	27525.30
			CC1	27575.28
		Mid	CC0	27900.00
			CC1	27949.98
		High	CC0	28275.00
			CC1	28324.98
	Non-contiguous 2CC	Low	CCO	27525.30
			CC1	28275.00
		Mid	CC0	27550.20
			CC1	28299.90
		High	CC0	27575.28
			CC1	28324.98

Table 2-1. Declared of EUT configuration Frequency list for 50 MHz BW Mode

			CC4	27949.86
			CCO	27725.10
			CC1	27825.06
		Mid	CC2	27925.02
			CC3	28024.98
	contiguous		CC4	28124.94
			CC0	27900.18
			CC1	28000.14
		High	CC2	28100.10
			CC3	28200.06
			CC4	28300.02
			CC0	27550.02
			CC1	27649.98
			CC2	27749.94
		Low	CC3	27849.90
			CC4	27949.86
			CC5	28049.82
			CC0	27675.12
			CC1	27775.08
	contiguous		CC2	27875.04
		Mid	CC3	27975.00
			CC4	28074.96
			CC5	28174.92
			CCO	27800.22
			CC1	27900.18
			CC2	28000.14
		High	CC3	28100.10
			CC4	28200.06
			CC5	28300.02
			CC0	27550.02
			CC1	27649.98
			CC2	27749.94
		Low	CC3	27849.90
			CC4	27949.86
			CC5	28049.82
			CC6	28149.78
			CC0	27625.14
			CC1	27725.10
	contiguous		CC2	27825.06
	7CC	Mid	CC3	27925.02
			CC4	28024.98
			CC5	28124.94
			CC6	28224.90
			CC0	27700.26
			CC1	27800.22
			CC2	27900.18
		High	CC3	28000.14
			CC4	28100.10
			CC5	28200.06
			CC6	28300.02
			CC0	27550.02
	contiguous		CC1	27649.98
	8CC	Low	CC2	27749.94
			CC3	27849.90
			CC4	27949.86

FCC ID: A3LAT1K04-B10		MEASUREMENT REPORT (CERTIFICATION)	SMMSUNA	Approved by: Quality Manager
Test Report S/N: 8K20090901-02-R2.A3L	Test Dates: 09/10/2020-10/08/2020	EUT Type: 5G Access Unit		Page 8 of 469

			CC5	28049.82
			CC6	28149.78
			CC7	28249.74
			CC0	27575.16
			CC1	27675.12
			CC2	27775.08
		Mid	CC3	27875.04
		Mid	CC4	27975.00
	contiguous		CC5	28074.96
	8CC		CC6	28174.92
			CC7	28274.88
			CC0	27600.30
			CC1	27700.26
			CC2	27800.22
		High	CC3	27900.18
		High	CC4	28000.14
			CC5	28100.10
			CC6	28200.06
			CC7	28300.02
		Low	CC0	27550.02
		Low	CC1	28249.74
	Non-contiguous	Mid	CCO	27575.16
		Mid	CC1	28274.88
		High	CC0	27600.30
		High	CC1	28300.02
			CC0	27550.02
		Low	CC1	27899.88
			CC2	28249.74
	Non-contiguous		CC0	27575.16
	3CC	Mid	CC1	27925.02
			CC2	28274.88
			CCO	27600.30
		High	CC1	27950.16
			CC2	28300.02
			CC0	27550.02
		Low	CC1	27783.30
		ow	CC2	28016.52
			CC3	28249.74
			CCO	27575.16
	Non-contiguous	Mid	CC1	27808.44
		Mid	CC2	28041.66
			CC3	28274.88
			CCO	27600.30
		High	CC1	27833.58
		High	CC2	28066.80
			CC3	28300.02
	Non-contiguous 5CC		CCO	27550.02
			CC1	27724.92
		Low	CC2	27899.88
			CC3	28074.84
			CC4	28249.74
		Mid	CC0	27575.16
			CC1	27750.06
			CC2	27925.02
			CC3	28099.98

FCC ID: A3LAT1K04-B10		MEASUREMENT REPORT (CERTIFICATION)	Snmsung	Approved by: Quality Manager
Test Report S/N: 8K20090901-02-R2.A3L	Test Dates: 09/10/2020-10/08/2020	EUT Type: 5G Access Unit		Page 9 of 469

			CC4	28274.88
			CCO	27600.30
			CC1	27775.20
		High	CC2	27950.16
			CC3	28125.06
			CC4	28300.02
			CCO	27550.02
			CC1	27689.94
		Low	CC2	27829.92
		Low	CC3	27969.90
			CC4	28109.82
			CC5	28249.74
			CCO	27575.16
			CC1	27715.08
	Non-contiguous		CC2	27855.06
		Mid	CC3	27995.04
			CC4	28134.96
			CC5	28274.88
			CCO	27600.30
			CC1	27740.22
			CC2	27880.20
		High	CC3	28020.18
			CC4	28160.10
			CC5	28300.02
			CCO	27550.02
			CC1	27666.60
			CC2	27783.24
		Low	CC3	27899.88
			CC4	28016.52
			CC5	28133.16
			CC6	28249.74
			CC0	27575.16
			CC1	27691.74
	Non-contiguous		CC2	27808.38
	7CC	Mid	CC3	27925.02
			CC4	28041.66
			CC5	28158.30
			CC6	28274.88
			CCO	27600.30
			CC1	27716.88
			CC2	27833.52
		High	CC3	27950.16
			CC4	28066.80
			CC5	28183.44
			CC6	28300.02

Table 2-2. Declared of EUT configuration Frequency list for 100 MHz BW Mode

FCC ID: A3LAT1K04-B10		MEASUREMENT REPORT (CERTIFICATION)	Snmsung	Approved by: Quality Manager
Test Report S/N: 8K20090901-02-R2.A3L	Test Dates: 09/10/2020-10/08/2020	EUT Type: 5G Access Unit		Page 10 of 469

FCC ID: A3LAT1K04-B10		MEASUREMENT REPORT (CERTIFICATION)	snmsuna	Approved by: Quality Manager
Test Report S/N: 8K20090901-02-R2.A3L	Test Dates: 09/10/2020-10/08/2020	EUT Type: 5G Access Unit		Page 11 of 469

FCC ID: A3LAT1K04-B10		MEASUREMENT REPORT (CERTIFICATION)	SMMSUNA	Approved by: Quality Manager
Test Report S/N: 8K20090901-02-R2.A3L	Test Dates: 09/10/2020-10/08/2020	EUT Type: 5G Access Unit		Page 12 of 469

FCC ID: A3LAT1K04-B10		MEASUREMENT REPORT (CERTIFICATION)	SnMSUNE	Approved by: Quality Manager
Test Report S/N: 8K20090901-02-R2.A3L	Test Dates: 09/10/2020-10/08/2020	EUT Type: 5G Access Unit		Page 13 of 469

$\begin{gathered} 50 \mathrm{MHz} \\ \stackrel{+}{\mathrm{MHz}} \\ 100 \end{gathered}$			CCO	27900.18
			CC1	28000.14
			CC2	28100.10
			CC3	28200.06
			CC4	28300.02
			CC0	27525.30
			CC1	27575.28
				idth
		Low	CC0	27650.28
			CC1	27750.24
			CC2	27850.20
			CC3	27950.16
			CC4	28050.12
			CC0	27650.04
			CC1	27700.02
	contiguous			idth
	50 MHz 2 CC	Mid	CCO	27775.02
	$100 \mathrm{MHz} \mathrm{5CC}$		CC1	27874.98
			CC2	27974.94
			CC3	28074.90
			CC4	28174.86
			CC0	27775.20
			CC1	27825.18
				idth
		High	CC0	27900.18
			CC1	28000.14
			CC2	28100.10
			CC3	28200.06
			CC4	28300.02
	contiguous 50 MHz 1CC 100 MHz 6CC			
			CC0	27525.30
				idth
			CCO	27600.30
		Low	CC1	27700.26
			CC2	27800.22
			CC3	27900.18
			CC4	28000.14
			CC5	28100.10
			CC0	27625.02
				idth
			CCO	27700.02
		Mid	CC1	27799.98
			CC2	27899.94
			CC3	27999.90
			CC4	28099.86
			CC5	28199.82
		High	50 MHz Bandwidth	
			CCO	27725.22
			100 MHz Bandwidth	
			CC0	27800.22
			CC1	27900.18

FCC ID: A3LAT1K04-B10		MEASUREMENT REPORT (CERTIFICATION)	SMMSUNA	Approved by: Quality Manager
Test Report S/N: 8K20090901-02-R2.A3L	Test Dates: 09/10/2020-10/08/2020	EUT Type: 5G Access Unit		Page 14 of 469

FCC ID: A3LAT1K04-B10		MEASUREMENT REPORT (CERTIFICATION)	SnMSUNE	Approved by: Quality Manager
Test Report S/N: 8K20090901-02-R2.A3L	Test Dates: 09/10/2020-10/08/2020	EUT Type: 5G Access Unit		Page 15 of 469

FCC ID: A3LAT1K04-B10		MEASUREMENT REPORT (CERTIFICATION)	SMMSUNA	Approved by: Quality Manager
Test Report S/N: 8K20090901-02-R2.A3L	Test Dates: 09/10/2020-10/08/2020	EUT Type: 5G Access Unit		Page 16 of 469

$\begin{gathered} 50 \mathrm{MHz} \\ \stackrel{+}{\mathrm{MHz}} \\ 100 \mathrm{C} \end{gathered}$			CC1	28058.58
			CC2	28300.02
	Non-contiguous 50 MHz 2CC 100 MHz 3CC	Low	50 MHz Bandwidth	
			CC0	27525.30
			CC1	27706.38
				idth
			CC0	27887.52
			CC1	28068.66
			CC2	28249.74
				dth
			CCO	27550.44
			CC1	27731.52
		Mid		idth
			CC0	27912.66
			CC1	28093.80
			CC2	28274.88
			CCO	27575.58
			CC1	27756.66
		High		idth
			CCO	27937.80
			CC1	28118.94
			CC2	28300.02
			CC0	27525.30
				idth
		Low	CC0	27706.38
			CC1	27887.52
			CC2	28068.66
			CC3	28249.74
			CCO	27550.02
	Non-contiguous			idth
	$50 \mathrm{MHz} \mathrm{1CC}$	Mid	CC0	27731.10
	$100 \mathrm{MHz} \mathrm{4CC}$		CC1	27912.24
			CC2	28093.38
			CC3	28274.46
			CC0	27575.58
				idth
		High	CCO	27756.66
			CC1	27937.80
			CC2	28118.94
			CC3	28300.02
			CC0	27525.30
			CC1	27670.20
		Low		idth
	Non-contiguous	Low	CC0	27815.10
	50 MHz 2 CC		CC1	27960.00
	$100 \mathrm{MHz} \mathrm{4CC}$		CC2	28104.90
			CC3	28249.74
				dth
		Mid	CC0	27550.02
			CC1	27694.92

FCC ID: A3LAT1K04-B10		MEASUREMENT REPORT (CERTIFICATION)	Snmsung	Approved by: Quality Manager
Test Report S/N: 8K20090901-02-R2.A3L	Test Dates: 09/10/2020-10/08/2020	EUT Type: 5G Access Unit		Page 17 of 469

$\begin{gathered} 50 \mathrm{MHz} \\ +\stackrel{+}{\mathrm{MHz}} \end{gathered}$				idth
			CCO	27839.82
			CC1	27984.72
			CC2	28129.62
			CC3	28274.46
			CCO	27575.58
			CC1	27720.48
				idth
		High	CCO	27865.38
			CC1	28010.28
			CC2	28155.18
			CC3	28300.02
			CCO	27525.3
				idth
			CCO	27670.20
		Low	CC1	27815.10
			CC2	27960.00
			CC3	28104.90
			CC4	28249.74
			CCO	27550.02
				idth
		Mid	CCO	27694.92
		Mid	CC1	27839.82
			CC2	27984.72
			CC3	28129.62
			CC4	28274.46
			CCO	27575.58
				idth
			CCO	27720.48
		gh	CC1	27865.38
			CC2	28010.28
			CC3	28155.18
			CC4	28300.02
	Non-contiguous 50 MHz 2 CC 100 MHz 5 CC			
			CCO	27525.30
			CC1	27646.08
				idth
		Low	CCO	27766.80
			CC1	27887.52
			CC2	28008.24
			CC3	28128.96
			CC4	28249.74
		Mid	50 MHz Bandwidth	
			CCO	27550.02
			CC1	27670.80
			100 MHz Bandwidth	
			CCO	27791.52
			CC1	27912.24
			CC2	28032.96
			CC3	28153.68
			CC4	28274.46

FCC ID: A3LAT1K04-B10		MEASUREMENT REPORT (CERTIFICATION)	SMMSUNA	Approved by: Quality Manager
Test Report S/N: 8K20090901-02-R2.A3L	Test Dates: 09/10/2020-10/08/2020	EUT Type: 5G Access Unit		Page 18 of 469

$\begin{gathered} 50 \mathrm{MHz} \\ \stackrel{+}{\mathrm{MHz}} \\ 100 \end{gathered}$			50 MHz Bandwidth	
		High	CCO	27575.58
			CC1	27696.36
			100 MHz Bandwidth	
			CC0	27817.08
			CC1	27937.80
			CC2	28058.52
			CC3	28179.24
			CC4	28300.02
	Non-contiguous 50 MHz 1 CC 100 MHz 6CC	Low	50 MHz Bandwidth	
			CCO	27525.30
			100 MHz Bandwidth	
			CC0	27646.08
			CC1	27766.80
			CC2	27887.52
			CC3	28008.24
			CC4	28128.96
			CC5	28249.74
			CC0	27550.02
			100 MHz Bandwidth	
			CCO	27670.80
		Mid	CC1	27791.52
			CC2	27912.24
			CC3	28032.96
			CC4	28153.68
			CC5	28274.46
		High	50 MHz Bandwidth	
			CC0	27575.58
			100 MHz Bandwidth	
			CC0	27696.36
			CC1	27817.08
			CC2	27937.80
			CC3	28058.52
			CC4	28179.24
			CC5	28300.02
	Non-contiguous 50 MHz 2CC 100 MHz 6CC	Low	50 MHz Bandwidth	
			CC0	27525.30
			CC1	27600.30
			100 MHz Bandwidth	
			CCO	27700.26
			CC1	27800.22
			CC2	27900.18
			CC3	27900.18
			CC4	28100.10
			CC5	28249.74
		Mid	50 MHz Bandwidth	
			CC0	27625.02
			CC1	27700.02
				idth
			CCO	27799.98
			CC1	27899.94
			CC2	27999.90
			CC3	28099.86
			CC4	28199.82

FCC ID: A3LAT1K04-B10		MEASUREMENT REPORT (CERTIFICATION)	SMMSUNA	Approved by: Quality Manager
Test Report S/N: 8K20090901-02-R2.A3L	Test Dates: 09/10/2020-10/08/2020	EUT Type: 5G Access Unit		Page 19 of 469

$\begin{gathered} 50 \mathrm{MHz} \\ \stackrel{+}{\mathrm{MHz}} \\ 100 \end{gathered}$		CC5	28274.82
	High	50 MHz Bandwidth	
		CCO	27725.22
		CC1	27800.22
			idth
		CCO	27900.18
		CC1	28000.14
		CC2	28100.10
		CC3	28200.06
		CC4	28300.02
		CC5	28300.02

Table 2-3. Declared of EUT configuration Frequency list for $50 \mathrm{MHz}+100 \mathrm{MHz}$ BW Mode

2.4 EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and no modifications were made during testing.

FCC ID: A3LAT1K04-B10	fryTEST	MEASUREMENT REPORT (CERTIFICATION)	SnMSUNE	Approved by: Quality Manager
Test Report S/N: 8K20090901-02-R2.A3L	Test Dates: 09/10/2020-10/08/2020	EUT Type: 5G Access Unit		Page 20 of 469

3.0 DESCRIPTION OF TESTS

3.1 Measurement Procedure

The measurement procedures described in the document titled "American National Standard for Compliance Testing of Transmitter Used in Licensed Radio Service" (ANSI C63.26-2015) and the guidance provided in KDB 842590 D01 v01r01 were used in the measurement of the EUT.

3.2 Radiated Power and Radiated Spurious Emissions
 §30.202, §30.203, §30.404, §30.405

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for Final measurement and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. The test site inside the chamber is a $8.5 \mathrm{~m}(\mathrm{~L}) \times 6.1 \mathrm{~m}(\mathrm{~W})$ $x 5.6 \mathrm{~m}(\mathrm{H})$ elliptical, obstruction-free area in accordance with Figure 5.7 of Clause 5 in ANSI C63.4-2014. Absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections for measurements above 1 GHz . For measurements below 1 GHz , the absorbers are removed. A raised turntable is used for radiated measurement. The turn table is a continuously rotatable, remote-controlled, metallic turntable and 2 meters (6.56 ft .) in diameter. The turn table is flush with the raised floor of the chamber in order to maintain its function as a ground plane. An 80 cm tall test table made of Styrodur is placed on top of the turn table. A Styrodur pedestal is placed on top of the test table to bring the total table height to 1.5 m .

Made of Styrodur is placed on top of the turn table. A Styrodur pedestal is placed on top of the test table to bring the total table height to 1.5 m for measurements above 1 GHz .

The equipment under test was transmitting while connected to its integral antenna and is placed on a turntable. The measurement antenna is in the far field of the EUT per formula $2 D^{2} / \lambda$ where D is the larger between the dimension of the measurement antenna and the transmitting antenna of the EUT. In this case, "D" is the largest dimension of the measurement antenna. The EUT is manipulated through all orthogonal planes representative of its typical use to achieve the highest reading on the receive spectrum analyzer.

Frequency Range $[\mathbf{G H z}]$	Wavelength $[\mathbf{c m}]$	Far Field Distance $[\mathbf{m}]$	Measurements Distance $[\mathbf{m}]$
18 to 40	0.749	3.19	3.19
40 to 60	0.500	1.39	3.19
60 to 90	0.333	0.91	3.19
90 to 100	0.214	0.58	2.00

Table 3-1. Far-Field Distance \& Measurement Distance per Frequency Range
Radiated power levels are investigated with the receive antenna horizontally and vertically polarized. Additionally, the receive antenna was rotated on various angles to investigate worst case emissions on each EUT antenna array. The EUT antenna array polarization and horn antennas angle are denoted as follows:

FCC ID: A3LAT1K04-B10		MEASUREMENT REPORT (CERTIFICATION)	Snmsung	Approved by: Quality Manager
Test Report S/N: 8K20090901-02-R2.A3L	Test Dates: 09/10/2020-10/08/2020	EUT Type: 5G Access Unit		Page 21 of 469

All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

Horn antenna at 45 degrees

5G Access Unit Antenna Array Polarization

The maximized power level is recorded using the spectrum analyzer "Channel Power" function with the integration band set to the emissions' occupied bandwidth. The EIRP is calculated from the raw power level measured with the spectrum analyzer using the formulas shown below.

Effective Isotropic Radiated Power Sample Calculation

The measured e.i.r.p is converted to E-field in V/m. Then the distance correction is applied before converted back to calculated e.i.r.p.as explained in KDB 971168 D01 D01 v03r01.

Field Strength $[\mathrm{dB} \mu \mathrm{V} / \mathrm{m}]=$ Measured Value $[\mathrm{dBm}]+\mathrm{AFCL}[\mathrm{dB} / \mathrm{m}]+107$
$=-5.28 \mathrm{dBm}+(47.07 \mathrm{~dB} / \mathrm{m}+11.33 \mathrm{~dB})+107=160.12 \mathrm{dBuV} / \mathrm{m}$
$=10^{\wedge}(160.12 / 20) / 1000000=101.39 \mathrm{~V} / \mathrm{m}$
e.i.r.p. [dBm]

$$
\begin{aligned}
& =10^{*} \log \left(\left(\mathrm{E}-\text { Field}{ }^{*} \mathrm{D}_{\mathrm{m}}\right)^{\wedge} 2 / 30\right)+30 \mathrm{~dB} \\
& =10^{\star} \log \left((101.39 \mathrm{~V} / \mathrm{m} * 3.19 \mathrm{~m})^{\wedge} 2 / 30\right)+30 \mathrm{~dB} \\
& =65.42 \mathrm{dBm} \text { e.i.r.p. }
\end{aligned}
$$

FCC ID: A3LAT1K04-B10		MEASUREMENT REPORT (CERTIFICATION)	SnMSUNE	Approved by: Quality Manager
Test Report S/N: 8K20090901-02-R2.A3L	Test Dates: 09/10/2020-10/08/2020	EUT Type: 5G Access Unit		Page 22 of 469

Sample MIMO e.i.r.p. Calculation:

The e.i.r.p at Antenna A, Antenna B, Antenna C and Antenna D were first measured individually. The measured values were then summed in linear power units then converted back to dBm for the co-polarized antennas.

Conversion to linear value $\quad=10^{\wedge}($ e.i.r.p/10 $)=10^{\wedge}(47.67 / 10)=58479 \mathrm{~mW}$
MIMO e.i.r.p.
$=$ e.i.r.p.A + e.i.r.p.c
$=58479 \mathrm{~mW}+53088 \mathrm{~mW}$
$=10^{*} \log (111567 \mathrm{~mW})$
$=50.48 \mathrm{dBm}$

For summation across all antennas,
MIMO e.i.r.p.

$$
\begin{aligned}
& =\text { e.i.r.p.A }+ \text { e.i.r.p.B }+ \text { e.i.r.p.c }+ \text { e.i.r.p.D } \\
& =58479 \mathrm{~mW}+54576 \mathrm{~mW}+53088 \mathrm{~mW}+52360 \mathrm{~mW} \\
& =10^{*} \log (218503 \mathrm{~mW}) \\
& =53.39 \mathrm{dBm}
\end{aligned}
$$

FCC ID: A3LAT1K04-B10	fryTEST	MEASUREMENT REPORT (CERTIFICATION)	SnMSUNE	Approved by: Quality Manager
Test Report S/N: 8K20090901-02-R2.A3L	Test Dates: 09/10/2020-10/08/2020	EUT Type: 5G Access Unit		Page 23 of 469

4.0 MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.4-2014. All measurement uncertainty values are shown with a coverage factor of $k=2$ to indicate a 95% level of confidence. The measurement uncertainty shown below meets or exceeds the Ucispr measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Contribution	Expanded Uncertainty ($\pm \mathrm{dB}$)
Conducted Bench Top Measurements	2.51
Radiated Disturbance $(<1 \mathrm{GHz})$	3.29
Radiated Disturbance $(>1 \mathrm{GHz})$	4.94

FCC ID: A3LAT1K04-B10		MEASUREMENT REPORT (CERTIFICATION)	SAMSUNE	Approved by: Quality Manager
Test Report S/N: 8K20090901-02-R2.A3L	Test Dates: 09/10/2020-10/08/2020	EUT Type: 5G Access Unit		Page 24 of 469

5.0 TEST EQUIPMENT CALIBRATION DATA

Test Equipment Calibration is traceable to the National Institute of Standards and Technology (NIST).
Measurements antennas used during testing were calibrated in accordance to the requirements of ANSI C63.52017.

Manufacture	Model	Description	Cal Date	Cal interval	Cal Due	Serial Number
 Schwarz	FSW43	Signal \& Spectrum Analyzer	$09 / 17 / 2020$	Annual	$09 / 16 / 2021$	101250
KIKISUI	PWR1201ML	DC POWER SUPPLY	$05 / 20 / 2020$	Annual	$05 / 19 / 2021$	ZL000973
SUKSAN TECHNOLOGY	SE-CT-10	Temperature Chamber	$09 / 17 / 2020$	Annual	$09 / 16 / 2021$	191021
Schwarzbeck	VULB9162	Broadband TRILOG Antenna	$07 / 09 / 2019$	Biennial	$07 / 08 / 2021$	$9162-217$
Sunol sciences	DRH-118	Horn Antenna	$08 / 09 / 2019$	Biennial	$08 / 08 / 2021$	A102416-1
Schwarzbeck	BBHA 9170	Horn Antenna	$09 / 02 / 2020$	Biennial	$09 / 01 / 2022$	1037
MIWV	261 F-25/387	Horn Antenna	$06 / 10 / 2020$	Annual	$06 / 09 / 2021$	2019
MIWV	261 U-25/383	Horn Antenna	$06 / 01 / 2020$	Annual	$05 / 31 / 2021$	2019
MIWV	$261 G-25 / 387$	Horn Antenna	$06 / 10 / 2020$	Annual	$06 / 09 / 2021$	-
Radiometer Physics	FS-Z140	Harmonic Mixer	$03 / 13 / 2020$	Annual	$03 / 12 / 2021$	101135
Radiometer Physics	FS-Z60	Harmonic Mixer	$03 / 13 / 2020$	Annual	$03 / 12 / 2021$	100981
 Schwarz	FS-Z90	Harmonic Mixer	$10 / 23 / 2019$	Annual	$10 / 22 / 2020$	101860

Table 5-1. Test Equipment

Notes:

For equipment listed above that has a calibration date or calibration due date that falls within the test date range, care was taken to ensure that this equipment was used after the calibration date and before the calibration due date.

FCC ID: A3LAT1K04-B10		MEASUREMENT REPORT (CERTIFICATION)	SIMSUN:	Approved by: Quality Manager
Test Report S/N: 8K20090901-02-R2.A3L	Test Dates: 09/10/2020-10/08/2020	EUT Type: 5G Access Unit		Page 25 of 469

6.0 SAMPLE CALCULATIONS

Emission Designator

QPSK Modulation

Emission Designator $=80 \mathrm{MOG7D}$

$\mathrm{BW}=800 \mathrm{MHz}$
$\mathrm{G}=$ Phase Modulation
7 = Quantized/Digital Info
$\mathrm{D}=$ Data transmission, telemetry, telecommand

QAM Modulation

Emission Designator $=80 \mathrm{M} 2 \mathrm{~W} 7 \mathrm{D}$
$B W=802 \mathrm{MHz}$
W = Amplitude/Angle Modulated
7 = Quantized/Digital Info
D = Data transmission, telemetry, telecommand

FCC ID: A3LAT1K04-B10		MEASUREMENT REPORT (CERTIFICATION)	SnMsung	Approved by: Quality Manager
Test Report S/N: 8K20090901-02-R2.A3L	Test Dates: 09/10/2020-10/08/2020	EUT Type: 5G Access Unit		Page 26 of 469

7.0 TEST RESULTS

7.1 Summary

Company Name:	Samsung Electronics Co., Ltd.
FCC ID:	$\underline{\text { A3LAT1K04-B00 }}$
FCC Classification:	Part 30 Fixed Transmitter (5GB)
Mode(s):	$\underline{\text { TDD }}$

FCC Part Section(s)	Test Description	Test Limit	Test Condition	Test Result	Reference
2.1049	Occupied Bandwidth	N/A	RADIATED	PASS	Section 7.2
30.202	EIRP Density	EIRP Density of $75 \mathrm{dBm} / 100 \mathrm{MHz}$		PASS	Section 7.3
2.1046	RF Output Power	N/A		PASS	Section 7.4
$\begin{aligned} & 2.1051 \\ & 30.203 \end{aligned}$	Out-of-Band Spurious Emissions	$-13 \mathrm{dBm} / \mathrm{MHz}$		PASS	Section 7.5
$\begin{aligned} & 2.1051 \\ & 30.203 \end{aligned}$	Out-of-Band Emissions at the Band Edge	$-13 \mathrm{dBm} / \mathrm{MHz}$ for all out-of-band emissions, $-5 \mathrm{dBm} / \mathrm{MHz}$ from the band edge up to 10% of the channel BW		PASS	Section 7.6
2.1055	Frequency Stability	Fundamental emissions stay within authorized frequency block		PASS	Section 7.7

Table 7-1. Summary of Radiated Test Results

Notes:

1) All modes of operation and modulations were investigated. The test results shown in the following sections represent the worst case emissions.
2) Per 2.1057 (a)(3), spurious emissions were investigated up to 100 GHz for n 261 .
3) All radiated emission measurements at the band edge are converted to an equivalent conductive power by subtracting the known antenna gain from the EIRP measured at each frequency of interest. These emissions are compared to the 30.203 spurious emission limits as conductive power levels.
4) The radiated RF output power and all out-of-band emissions in the spurious domain are evaluated to the EIRP limits.
5) The fundamental band consists of $1-8$ component carriers, referred as "CC" in this report. Lowest frequency CC is CCO and highest frequency CC is CC7.
6) In the following tables, the term "CCs Active" refers to which component carrier is transmitting for a particular test.
7) CCs active 0, 4, $7=1$ Components Carriers Active, 0-7 $=8$ Component Carriers Active. 0-7(NC) $=8$ Noncontiguous Component Carriers Active. Each component carrier's bandwidth is either of 50 MHz or 100 MHz .
8) A3LAT1K04-B10 test result is referenced from A3LAT1K04-B00 test result which only AC and DC power supply type. Power condition is not affected to RF specification which had been checked from manufacturer and testing laboratory in PCTEST.

FCC ID: A3LAT1K04-B10		MEASUREMENT REPORT (CERTIFICATION)	Snmsune	Approved by: Quality Manager
Test Report S/N: 8K20090901-02-R2.A3L	Test Dates: 09/10/2020-10/08/2020	EUT Type: 5G Access Unit		Page 27 of 469

7.2 Occupied Bandwidth
 $\$ 2.1049$

Test Overview

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5% of the total mean power radiated by a given emission shall be measured. All modes of operation were investigated and the worst case configuration results are reported in this section.

Test Procedure Used

ANSI C63.25-2015 Section 5.4.3
KDB 842590 D01 v01r01 Section 4.3

Test Settings

1. The signal analyzer's automatic bandwidth measurement capability was used to perform the 99% occupied bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
2. RBW $=1-5 \%$ of the expected OBW
3. $V B W \geq 3 \times R B W$
4. \quad Detector $=$ Peak
5. Trace mode $=\max$ hold
6. Sweep $=$ auto couple
7. The trace was allowed to stabilize
8. If necessary, steps $2-7$ were repeated after changing the RBW such that it would be within $1-5 \%$ of the 99 \% occupied bandwidth observed in Step 7

Test Notes

A3LAT1K04-B10 test result is referenced as A3LAT1K04-B00 result which only difference of power type as AC and DC which supply condition no affect to RF specification.

FCC ID: A3LAT1K04-B10		MEASUREMENT REPORT (CERTIFICATION)	Snmsung	Approved by: Quality Manager
Test Report S/N: 8K20090901-02-R2.A3L	Test Dates: 09/10/2020-10/08/2020	EUT Type: 5G Access Unit		Page 28 of 469

7.2.1 Antenna A Occupied Bandwidth

EUT Operating	Antenna	Configuration	CCs Active	Channel	Modulation	$\begin{gathered} \mathrm{OBW} \\ {[\mathrm{MHz}]} \end{gathered}$
50 MHz	A	1CC	0	Mid	QPSK	46.64
		1CC	0	Mid	16QAM	46.51
		1CC	0	Mid	64QAM	46.58
		2CC	0-1	Mid	QPSK	95.48
		2CC	0-1	Mid	16QAM	95.59
		2CC	0-1	Mid	64QAM	95.52
100 MHz		1CC	0	Mid	QPSK	95.06
		1CC	0	Mid	16QAM	94.52
		1CC	0	Mid	64QAM	94.60
		8CC	0-7	Mid	QPSK	786.63
		8CC	0-7	Mid	16QAM	787.72
		8CC	0-7	Mid	64QAM	786.29

Table 7-2. Antenna A Occupied Bandwidth Summary Data

FCC ID: A3LAT1K04-B10		MEASUREMENT REPORT (CERTIFICATION)	Snmsung	Approved by: Quality Manager
Test Report S/N: 8K20090901-02-R2.A3L	Test Dates: 09/10/2020-10/08/2020	EUT Type: 5G Access Unit		Page 29 of 469

ACLRResults

Plot 7-1. OBW (Ant A 50 MHz BW 1CC QPSK Mid)

ACLRResults

Plot 7-2. OBW (Ant A 50 MHz BW 1CC 16QAM Mid)

FCC ID: A3LAT1K04-B10	芹 PCTEST	MEASUREMENT REPORT (CERTIFICATION)	Snmsunf	Approved by: Quality Manager
Test Report S/N: 8K20090901-02-R2.A3L	Test Dates: 09/10/2020-10/08/2020	EUT Type: 5G Access Unit		Page 30 of 469

ACLRResults

Plot 7-3. OBW (Ant A 50 MHz BW 1CC 64QAM Mid)

ACLRResults

Plot 7-4. OBW (Ant A 50 MHz BW 2CC QPSK Mid)

FCC ID: A3LAT1K04-B10	甭 PCTEST	MEASUREMENT REPORT (CERTIFICATION)	snmsunf	Approved by: Quality Manager
Test Report S/N: 8K20090901-02-R2.A3L	Test Dates: 09/10/2020-10/08/2020	EUT Type: 5G Access Unit		Page 31 of 469

ACLRResults

Plot 7-5. OBW (Ant A 50 MHz BW 2CC 16QAM Mid)

ACLRResults

Plot 7-6. OBW (Ant A 50 MHz BW 2CC 64QAM Mid)

FCC ID: A3LAT1K04-B10		MEASUREMENT REPORT (CERTIFICATION)	Snmsung	Approved by: Quality Manager
Test Report S/N: 8K20090901-02-R2.A3L	Test Dates: 09/10/2020-10/08/2020	EUT Type: 5G Access Unit		Page 32 of 469

ACLRResults

Plot 7-7. OBW (Ant A 100 MHz BW 1CC QPSK Mid)

ACLRResults

Plot 7-8. OBW (Ant A 100 MHz BW 1CC 16QAM Mid)

FCC ID: A3LAT1K04-B10	芹 PCTEST	MEASUREMENT REPORT (CERTIFICATION)	snmsunf	Approved by: Quality Manager
Test Report S/N: 8K20090901-02-R2.A3L	Test Dates: 09/10/2020-10/08/2020	EUT Type: 5G Access Unit		Page 33 of 469

ACLRResults

Plot 7-9. OBW (Ant A 100 MHz BW 1CC 64QAM Mid)

Plot 7-10. OBW (Ant A 100 MHz BW 8CC QPSK Mid)

FCC ID: A3LAT1K04-B10	旆 PCTEST	MEASUREMENT REPORT (CERTIFICATION)	Snmsune	Approved by: Quality Manager
Test Report S/N: 8K20090901-02-R2.A3L	Test Dates: 09/10/2020-10/08/2020	EUT Type: 5G Access Unit		Page 34 of 469

Plot 7-11. OBW (Ant A 100 MHz BW 8CC 16QAM Mid)

Plot 7-12. OBW (Ant A 100 MHz BW 8CC 64QAM Mid)

FCC ID: A3LAT1K04-B10	旆 PCTEST	MEASUREMENT REPORT (CERTIFICATION)	Snmsune	Approved by: Quality Manager
Test Report S/N: 8K20090901-02-R2.A3L	Test Dates: 09/10/2020-10/08/2020	EUT Type: 5G Access Unit		Page 35 of 469

7.2.2 Antenna B Occupied Bandwidth

EUT Operating	Antenna	Configuration	CCs Active	Channel	Modulation	$\begin{gathered} \mathrm{OBW} \\ {[\mathrm{MHz}]} \end{gathered}$
50 MHz	B	1CC	0	Mid	QPSK	46.40
		1CC	0	Mid	16QAM	46.04
		1CC	0	Mid	64QAM	46.21
		2CC	0-1	Mid	QPSK	95.57
		2CC	0-1	Mid	16QAM	95.52
		2CC	0-1	Mid	64QAM	95.57
100 MHz		1CC	0	Mid	QPSK	94.48
		1CC	0	Mid	16QAM	94.37
		1CC	0	Mid	64QAM	94.71
		8CC	0-7	Mid	QPSK	786.09
		8CC	0-7	Mid	16QAM	787.19
		8CC	0-7	Mid	64QAM	786.23

Table 7-3. Antenna B Occupied Bandwidth Summary Data

| FCC ID: A3LAT1K04-B10 | PCTEST | MEASUREMENT REPORT
 (CERTIFICATION) | Approved by: |
| :--- | :--- | :--- | :--- | :--- |
| Quality Manager | | | |

ACLRResults

Plot 7-13. OBW (Ant B 50 MHz BW 1CC QPSK Mid)

ACLRResults

Plot 7-14. OBW (Ant B 50 MHz BW 1CC 16QAM Mid)

FCC ID: A3LAT1K04-B10		MEASUREMENT REPORT (CERTIFICATION)	snmsung	Approved by: Quality Manager
Test Report S/N: 8K20090901-02-R2.A3L	Test Dates: 09/10/2020-10/08/2020	EUT Type: 5G Access Unit		Page 37 of 469

ACLRResults

Plot 7-15. OBW (Ant B 50 MHz BW 1CC 64QAM Mid)

ACLRResults

Plot 7-16. OBW (Ant B 50 MHz BW 2CC QPSK Mid)

FCC ID: A3LAT1K04-B10	芹 PCTEST	MEASUREMENT REPORT (CERTIFICATION)	snmsunf	Approved by: Quality Manager
Test Report S/N: 8K20090901-02-R2.A3L	Test Dates: 09/10/2020-10/08/2020	EUT Type: 5G Access Unit		Page 38 of 469

ACLRResults

Plot 7-17. OBW (Ant B 50 MHz BW 2CC 16QAM Mid)

ACLRResults

Plot 7-18. OBW (Ant B 50 MHz BW 2CC 64QAM Mid)

FCC ID: A3LAT1K04-B10		MEASUREMENT REPORT (CERTIFICATION)	Snmsung	Approved by: Quality Manager
Test Report S/N: 8K20090901-02-R2.A3L	Test Dates: 09/10/2020-10/08/2020	EUT Type: 5G Access Unit		Page 39 of 469

ACLRResults

Plot 7-19. OBW (Ant B 100 MHz BW 1CC QPSK Mid)

ACLRResults

Plot 7-20. OBW (Ant B 100 MHz BW 1CC 16QAM Mid)

FCC ID: A3LAT1K04-B10	旆 PCTEST	MEASUREMENT REPORT (CERTIFICATION)	Snmsunf	Approved by: Quality Manager
Test Report S/N: 8K20090901-02-R2.A3L	Test Dates: 09/10/2020-10/08/2020	EUT Type: 5G Access Unit		Page 40 of 469

ACLRResults

Plot 7-21. OBW (Ant B 100 MHz BW 1CC 64QAM Mid)

Plot 7-22. OBW (Ant B 100 MHz BW 8CC QPSK Mid)

FCC ID: A3LAT1K04-B10	旆 PCTEST	MEASUREMENT REPORT (CERTIFICATION)	Snmsune	Approved by: Quality Manager
Test Report S/N: 8K20090901-02-R2.A3L	Test Dates: 09/10/2020-10/08/2020	EUT Type: 5G Access Unit		Page 41 of 469

Plot 7-23. OBW (Ant B 100 MHz BW 8CC 16QAM Mid)

Plot 7-24. OBW (Ant B 100 MHz BW 8CC 64QAM Mid)

FCC ID: A3LAT1K04-B10	旆 PCTEST	MEASUREMENT REPORT (CERTIFICATION)	Snmsunf	Approved by: Quality Manager
Test Report S/N: 8K20090901-02-R2.A3L	Test Dates: 09/10/2020-10/08/2020	EUT Type: 5G Access Unit		Page 42 of 469

7.2.3 Antenna C Occupied Bandwidth

EUT Operating	Antenna	Configuration	CCs Active	Channel	Modulation	$\begin{gathered} \mathrm{OBW} \\ {[\mathrm{MHz}]} \end{gathered}$
50 MHz	C	1CC	0	Mid	QPSK	46.36
		1CC	0	Mid	16QAM	46.03
		1CC	0	Mid	64QAM	46.05
		2CC	0-1	Mid	QPSK	95.33
		2CC	0-1	Mid	16QAM	95.46
		2CC	0-1	Mid	64QAM	95.48
100 MHz		1CC	0	Mid	QPSK	94.47
		1CC	0	Mid	16QAM	94.45
		1CC	0	Mid	64QAM	94.57
		8CC	0-7	Mid	QPSK	786.94
		8CC	0-7	Mid	16QAM	787.68
		8CC	0-7	Mid	64QAM	786.62

Table 7-4. Antenna C Occupied Bandwidth Summary Data

FCC ID: A3LAT1K04-B10		MEASUREMENT REPORT (CERTIFICATION)	snmsuna	Approved by: Quality Manager
Test Report S/N: 8K20090901-02-R2.A3L	Test Dates: 09/10/2020-10/08/2020	EUT Type: 5G Access Unit		Page 43 of 469

ACLRResults

Plot 7-25. OBW (Ant C 50 MHz BW 1CC QPSK Mid)

ACLRResults

Plot 7-26. OBW (Ant C 50 MHz BW 1CC 16QAM Mid)

FCC ID: A3LAT1K04-B10		MEASUREMENT REPORT (CERTIFICATION)	Snmsunf	Approved by: Quality Manager
Test Report S/N: 8K20090901-02-R2.A3L	Test Dates: 09/10/2020-10/08/2020	EUT Type: 5G Access Unit		Page 44 of 469

ACLRResults

Plot 7-27. OBW (Ant C 50 MHz BW 1CC 64QAM Mid)

ACLRResults

Plot 7-28. OBW (Ant C 50 MHz BW 2CC QPSK Mid)

FCC ID: A3LAT1K04-B10		MEASUREMENT REPORT (CERTIFICATION)	Snmsunf	Approved by: Quality Manager
Test Report S/N: 8K20090901-02-R2.A3L	Test Dates: 09/10/2020-10/08/2020	EUT Type: 5G Access Unit		Page 45 of 469

ACLRResults

Plot 7-29. OBW (Ant C 50 MHz BW 2CC 16QAM Mid)

ACLRResults

Plot 7-30. OBW (Ant C 50 MHz BW 2CC 64QAM Mid)

FCC ID: A3LAT1K04-B10	旆 PCTEST	MEASUREMENT REPORT (CERTIFICATION)	Snmsunf	Approved by: Quality Manager
Test Report S/N: 8K20090901-02-R2.A3L	Test Dates: 09/10/2020-10/08/2020	EUT Type: 5G Access Unit		Page 46 of 469

ACLRResults

Plot 7-31. OBW (Ant C 100 MHz BW 1CC QPSK Mid)

ACLRResults

Plot 7-32. OBW (Ant C 100 MHz BW 1CC 16QAM Mid)

FCC ID: A3LAT1K04-B10		MEASUREMENT REPORT (CERTIFICATION)	snmsung	Approved by: Quality Manager
Test Report S/N: 8K20090901-02-R2.A3L	Test Dates: 09/10/2020-10/08/2020	EUT Type: 5G Access Unit		Page 47 of 469

ACLRResults

Plot 7-33. OBW (Ant C 100 MHz BW 1CC 64QAM Mid)

Plot 7-34. OBW (Ant C 100 MHz BW 8CC QPSK Mid)

FCC ID: A3LAT1K04-B10	旆 PCTEST	MEASUREMENT REPORT (CERTIFICATION)	Snmsune	Approved by: Quality Manager
Test Report S/N: 8K20090901-02-R2.A3L	Test Dates: 09/10/2020-10/08/2020	EUT Type: 5G Access Unit		Page 48 of 469

Plot 7-35. OBW (Ant C 100 MHz BW 8CC 16QAM Mid)

Plot 7-36. OBW (Ant C 100 MHz BW 8CC 64QAM Mid)

FCC ID: A3LAT1K04-B10	旆 PCTEST	MEASUREMENT REPORT (CERTIFICATION)	Snmsune	Approved by: Quality Manager
Test Report S/N: 8K20090901-02-R2.A3L	Test Dates: 09/10/2020-10/08/2020	EUT Type: 5G Access Unit		Page 49 of 469

7.2.4 Antenna D Occupied Bandwidth

EUT Operating	Antenna	Configuration	CCs Active	Channel	Modulation	$\begin{gathered} \mathrm{OBW} \\ {[\mathrm{MHz}]} \end{gathered}$
50 MHz	D	1CC	0	Mid	QPSK	46.54
		1CC	0	Mid	16QAM	46.21
		1CC	0	Mid	64QAM	46.25
		2CC	0-1	Mid	QPSK	95.67
		2CC	0-1	Mid	16QAM	95.58
		2CC	0-1	Mid	64QAM	95.54
100 MHz		1CC	0	Mid	QPSK	94.91
		1CC	0	Mid	16QAM	94.50
		1CC	0	Mid	64QAM	94.61
		8CC	0-7	Mid	QPSK	786.63
		8CC	0-7	Mid	16QAM	787.48
		8CC	0-7	Mid	64QAM	786.40

Table 7-5. Antenna D Occupied Bandwidth Summary Data

FCC ID: A3LAT1K04-B10		MEASUREMENT REPORT (CERTIFICATION)	SnMSUNE	Approved by: Quality Manager
Test Report S/N: 8K20090901-02-R2.A3L	Test Dates: 09/10/2020-10/08/2020	EUT Type: 5G Access Unit		Page 50 of 469

ACLRResults

Plot 7-37. OBW (Ant D 50 MHz BW 1CC QPSK Mid)

ACLRResults

Plot 7-38. OBW (Ant D 50 MHz BW 1CC 16QAM Mid)

FCC ID: A3LAT1K04-B10	甭 PCTEST	MEASUREMENT REPORT (CERTIFICATION)	snmsunf	Approved by: Quality Manager
Test Report S/N: 8K20090901-02-R2.A3L	Test Dates: 09/10/2020-10/08/2020	EUT Type: 5G Access Unit		Page 51 of 469

ACLRResults

Plot 7-39. OBW (Ant D 50 MHz BW 1CC 64QAM Mid)

ACLRResults

Plot 7-40. OBW (Ant D 50 MHz BW 2CC QPSK Mid)

FCC ID: A3LAT1K04-B10	芹 PCTEST	MEASUREMENT REPORT (CERTIFICATION)	snmsunf	Approved by: Quality Manager
Test Report S/N: 8K20090901-02-R2.A3L	Test Dates: 09/10/2020-10/08/2020	EUT Type: 5G Access Unit		Page 52 of 469

ACLRResults

Plot 7-41. OBW (Ant D 50 MHz BW 2CC 16QAM Mid)

ACLRResults

Plot 7-42. OBW (Ant D 50 MHz BW 2CC 64QAM Mid)

FCC ID: A3LAT1K04-B10		MEASUREMENT REPORT (CERTIFICATION)	Snmsung	Approved by: Quality Manager
Test Report S/N: 8K20090901-02-R2.A3L	Test Dates: 09/10/2020-10/08/2020	EUT Type: 5G Access Unit		Page 53 of 469

ACLRResults

Plot 7-43. OBW (Ant D 100 MHz BW 1CC QPSK Mid)

ACLRResults

Plot 7-44. OBW (Ant D 100 MHz BW 1CC 16QAM Mid)

FCC ID: A3LAT1K04-B10	甭 PCTEST	MEASUREMENT REPORT (CERTIFICATION)	snmsunf	Approved by: Quality Manager
Test Report S/N: 8K20090901-02-R2.A3L	Test Dates: 09/10/2020-10/08/2020	EUT Type: 5G Access Unit		Page 54 of 469

ACLRResults

Plot 7-45. OBW (Ant D 100 MHz BW 1CC 64QAM Mid)

Plot 7-46. OBW (Ant D 100 MHz BW 8CC QPSK Mid)

FCC ID: A3LAT1K04-B10		MEASUREMENT REPORT (CERTIFICATION)	Snmsung	Approved by: Quality Manager
Test Report S/N: 8K20090901-02-R2.A3L	Test Dates: 09/10/2020-10/08/2020	EUT Type: 5G Access Unit		Page 55 of 469

Plot 7-47. OBW (Ant D 100 MHz BW 8CC 16QAM Mid)

Plot 7-48. OBW (Ant D 100 MHz BW 8CC 64QAM Mid)

FCC ID: A3LAT1K04-B10	旆 PCTEST	MEASUREMENT REPORT (CERTIFICATION)	Snmsune	Approved by: Quality Manager
Test Report S/N: 8K20090901-02-R2.A3L	Test Dates: 09/10/2020-10/08/2020	EUT Type: 5G Access Unit		Page 56 of 469

7.3 Equivalent Isotropic Radiated Power (EIRP) Density
 $\$ 2.1046 \$ 30.202$

Test Overview

Equivalent Isotropic Radiated Power (EIRP) measurements are performed using broadband horn antennas. All measurements are performed as RMS average measurements while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies.

The average power of the sum of all antenna elements is limited to an equivalent isotopically radiated power (EIRP) density of $+75 \mathrm{dBm} / 100 \mathrm{MHz}$.

Test Procedures Used

ANSI C63.26-2015 Section 5.2.4.4.1
ANSI C63.26-2015 Section 6.4
KDB 842590 D01 v01r01 Section 4.2

Test Settings

1. Radiated power measurements are performed using the signal analyzer's "channel power" measurement capability for signals with continuous operation.
2. RBW $=1-5 \%$ of the expected OBW
3. VBW $\geq 3 \times$ RBW
4. Span $=2 x$ to $3 x$ the OBW
5. No. of sweep points $\geq 2 \times$ span / RBW
6. \quad Detector $=$ RMS
7. The integration bandwidth was roughly set equal to the measured (EIRP) Density of the signal for signals with continuous operation. For signals with burst transmission, the "gating" function was enabled to ensure that measurements are performed during times in which the transmitter is operating at its maximum power
8. Trace mode $=$ trace averaging (RMS) over 100 sweeps
9. The trace was allowed to stabilize

FCC ID: A3LAT1K04-B10		MEASUREMENT REPORT (CERTIFICATION)	Snmsung	Approved by: Quality Manager
Test Report S/N: 8K20090901-02-R2.A3L	Test Dates: 09/10/2020-10/08/2020	EUT Type: 5G Access Unit		Page 57 of 469

Test Notes

1) The EUT was tested while positioned upright and mounted on a mast at 1.5 m height. The worst case emissions are reported with the EUT in this fixed position and with the modulations and active component carriers shown in the tables below.
2) The EIRP measurements of the co-polarized antenna arrays (Antenna A/C and Antenna B/D) were added together to address MIMO concerns referenced in ANSI C63.26-2015 Section 6.4.
3) Elements within the same antenna array are correlated to produce beamforming array gain.
4) Measurements were taken in the far field of the mmWave signal based on the formula: $R \geq$ 2D^2/wavelength.
5) The test case with 1 CC and 8 CC active, was selected for the worst case emission testing as it created the highest EIRP within $50 \mathrm{MHz}, 100 \mathrm{MHz}$, and $50 \mathrm{MHz}+100 \mathrm{MHz}$ Mixed bandwidth.
6) The average EIRP reported below is calculate per formula specified in d) of ANSI C63.26-2015 Section 5.2.7:
$\operatorname{EIRP}(\mathrm{dBm})=\mathrm{E}(\mathrm{dBuV} / \mathrm{m})+20 \log (\mathrm{D})-104.8$; where D is the measurement distance (in the far field region) in m.

For this section, all EIRP density measurements were performed at a distance of 3.19 m , so, the effective correction is:
$\operatorname{EIRP}(\mathrm{dBm})=\mathrm{E}(\mathrm{dBuV} / \mathrm{m})-94.72 \mathrm{~dB}$
$=$ Analyzer Level $(\mathrm{dBm})+$ AFCL $(\mathrm{dB} / \mathrm{m})+107 \mathrm{~dB}-94.72 \mathrm{~dB}$
$=$ Analyzer Level $(\mathrm{dBm})+$ AFCL $(\mathrm{dB} / \mathrm{m})+12.28$
*AFCL (dB / m) contains measurement antenna factor $(\mathrm{dB} / \mathrm{m})$ and cable loss(dB) as below:

Frequency $[\mathrm{GHz}]$	Antenna Factor $[\mathrm{dB} / \mathrm{m}]$	Cable loss $[\mathrm{dB}]$	AFCL $[\mathrm{dB}]$
27.5	39.54	5.83	45.37
27.93	39.53	5.93	45.46
28.35	39.74	6.07	45.81

Table 7-6. Adopted AFCL value in the calculation
7) For channel bandwidths less than 100 MHz BW the EIRP must be reduced proportionally and lineary based on the bandwidth relative to 100 MHz according to $\S 30.202$ Power limits.

For 50 MHz BW operation RBW scaling factor,
Scaling Factor $(\mathrm{dB})=10 \log \left(\mathrm{BW}_{1} / \mathrm{BW}_{2}\right)=10 * \log (100 / 50)$
$=3.01 \mathrm{~dB}$

- Mixed test mode has been re-calculated for 50 MHz BW with scaling factor(3.01 dB). Thus, 50 MHz and 100 MHz BW carriers are compared and reported.

8) The angle of the horn antenna was rotated to maximize and find the worst case emissions. Worst case EIRP is reported below.
9) A3LAT1K04-B10 test result is referenced as A3LAT1K04-B00 result which only difference of power type as $A C$ and DC which supply condition no affect to RF specification.

FCC ID: A3LAT1K04-B10		MEASUREMENT REPORT (CERTIFICATION)	Snmsune	Approved by: Quality Manager
Test Report S/N: 8K20090901-02-R2.A3L	Test Dates: 09/10/2020-10/08/2020	EUT Type: 5G Access Unit		Page 58 of 469

7.3.1 Antenna A EIRP Density

Bandwidth [MHz]	Configuration	Cha nnel	$\begin{aligned} & \text { CCs } \\ & \text { active } \end{aligned}$	Modulation	Horn Angle [degrees]	Horn Height [cm]	Turntable Azimuth [degrees]	Analyzer Level [dBm]	$\begin{aligned} & \mathrm{AFCL} \\ & {[\mathrm{dBm}]} \end{aligned}$	Average e.i.r.p. PSD $[\mathrm{dBm} / 100 \mathrm{MHz}]$	PSD Limit [dBm/100MHz]	Margin [dB]
50	1 CC	Low	0	QPSK	135.0	156	54	-12.99	45.37	47.67	75.00	27.33
		Low	0	16QAM	135.0	156	54	-13.10	45.37	47.56	75.00	27.44
		Low	0	64QAM	135.0	156	54	-12.99	45.37	47.67	75.00	27.33
	2 CC	Low	0-1	QPSK	135.0	156	54	-12.85	45.37	47.81	75.00	27.19
		Low	0-1	16QAM	135.0	156	54	-12.83	45.37	47.83	75.00	27.17
		Low	0-1	64QAM	135.0	156	54	-12.83	45.37	47.83	75.00	27.17
	1 CC	Mid	4	QPSK	135.0	156	54	-13.14	45.46	47.61	75.00	27.39
		Mid	4	16QAM	135.0	156	54	-13.31	45.46	47.44	75.00	27.56
		Mid	4	64QAM	135.0	156	54	-13.17	45.46	47.58	75.00	27.42
	2 CC	Mid	0-1	QPSK	135.0	156	54	-13.12	45.46	47.63	75.00	27.37
		Mid	0-1	16QAM	135.0	156	54	-13.09	45.46	47.66	75.00	27.34
		Mid	0-1	64QAM	135.0	156	54	-13.05	45.46	47.7	75.00	27.30
	1 CC	High	7	QPSK	135.0	156	54	-12.95	45.81	48.15	75.00	26.85
		High	7	16QAM	135.0	156	54	-13.07	45.81	48.03	75.00	26.97
		High	7	64QAM	135.0	156	54	-12.97	45.81	48.13	75.00	26.87
	2 CC	High	0-1	QPSK	135.0	156	54	-12.86	45.81	45.94	75.00	26.76
		High	0-1	16QAM	135.0	156	54	-12.95	45.81	46.01	75.00	26.85
		High	0-1	64QAM	135.0	156	54	-12.94	45.81	46.03	75.00	26.84
100	1 CC	Low	0	QPSK	135.0	156	54	-9.98	45.37	47.67	75.00	27.33
		Low	0	16QAM	135.0	156	54	-10.05	45.37	47.60	75.00	27.40
		Low	0	64QAM	135.0	156	54	-9.99	45.37	47.66	75.00	27.34
	8 CC	Low	0-7	QPSK	135.0	156	54	-12.01	45.37	45.64	75.00	29.36
		Low	0-7	16QAM	135.0	156	54	-12.06	45.37	45.59	75.00	29.41
		Low	0-7	64QAM	135.0	156	54	-12.06	45.37	45.59	75.00	29.41
	1 CC	Mid	4	QPSK	135.0	156	54	-10.50	45.46	47.24	75.00	27.76

FCC ID: A3LAT1K04-B10		MEASUREMENT REPORT (CERTIFICATION)	snmsuna	Approved by: Quality Manager
Test Report S/N: 8K20090901-02-R2.A3L	Test Dates: 09/10/2020-10/08/2020	EUT Type: 5G Access Unit		Page 59 of 469

FCC ID: A3LAT1K04-B10	fryTEST	MEASUREMENT REPORT (CERTIFICATION)	SnMSUNE	Approved by: Quality Manager
Test Report S/N: 8K20090901-02-R2.A3L	Test Dates: 09/10/2020-10/08/2020	EUT Type: 5G Access Unit		Page 60 of 469

50 MHz + 100 MHz Mix	50 M 1 CC + 100 M 6 CC	50 M 2 CC + 100 M 6 CC	High	$0-6$	QPSK	135.0	156	54	-11.56	45.81	46.53

Table 7-7. Antenna A EIRP Density Summary Data

FCC ID: A3LAT1K04-B10		MEASUREMENT REPORT (CERTIFICATION)	snmsuna	Approved by: Quality Manager
Test Report S/N: 8K20090901-02-R2.A3L	Test Dates: 09/10/2020-10/08/2020	EUT Type: 5G Access Unit		Page 61 of 469

Plot 7-49. EIRP Density (Ant A 50 MHz BW 1CC QPSK Low)

Plot 7-50. EIRP Density (Ant A 50 MHz BW 1CC 16QAM Low)

FCC ID: A3LAT1K04-B10		MEASUREMENT REPORT (CERTIFICATION)	SnMSUN:	Approved by: Quality Manager
Test Report S/N: 8K20090901-02-R2.A3L	Test Dates: 09/10/2020-10/08/2020	EUT Type: 5G Access Unit		Page 62 of 469

Plot 7-51. EIRP Density (Ant A 50 MHz BW 1CC 64QAM Low)

Plot 7-52. EIRP Density (Ant A 50 MHz BW 2CC QPSK Low)

FCC ID: A3LAT1K04-B10	FCTEST	MEASUREMENT REPORT (CERTIFICATION)	SnMSUN:	Approved by: Quality Manager
Test Report S/N: 8K20090901-02-R2.A3L	Test Dates: 09/10/2020-10/08/2020	EUT Type: 5G Access Unit		Page 63 of 469

Plot 7-53. EIRP Density (Ant A 50 MHz BW 2CC 16QAM Low)

Plot 7-54. EIRP Density (Ant A 50 MHz BW 2CC 64QAM Low)

FCC ID: A3LAT1K04-B10		MEASUREMENT REPORT (CERTIFICATION)	Snmsung	Approved by: Quality Manager
Test Report S/N: 8K20090901-02-R2.A3L	Test Dates: 09/10/2020-10/08/2020	EUT Type: 5G Access Unit		Page 64 of 469

Plot 7-55. EIRP Density (Ant A 50 MHz BW 1CC QPSK Mid)

Plot 7-56. EIRP Density (Ant A 50 MHz BW 1CC 16QAM Mid)

FCC ID: A3LAT1K04-B10		MEASUREMENT REPORT (CERTIFICATION)	Snmsung	Approved by: Quality Manager
Test Report S/N: 8K20090901-02-R2.A3L	Test Dates: 09/10/2020-10/08/2020	EUT Type: 5G Access Unit		Page 65 of 469

Plot 7-57. EIRP Density (Ant A 50 MHz BW 1CC 64QAM Mid)

Plot 7-58. EIRP Density (Ant A 50 MHz BW 2CC QPSK Mid)

FCC ID: A3LAT1K04-B10		MEASUREMENT REPORT (CERTIFICATION)	SnMSUNE	Approved by: Quality Manager
Test Report S/N: 8K20090901-02-R2.A3L	Test Dates: 09/10/2020-10/08/2020	EUT Type: 5G Access Unit		Page 66 of 469

Plot 7-59. EIRP Density (Ant A 50 MHz BW 2CC 16QAM Mid)

Plot 7-60. EIRP Density (Ant A 50 MHz BW 2CC 64QAM Mid)

FCC ID: A3LAT1K04-B10		MEASUREMENT REPORT (CERTIFICATION)	Snmsung	Approved by: Quality Manager
Test Report S/N: 8K20090901-02-R2.A3L	Test Dates: 09/10/2020-10/08/2020	EUT Type: 5G Access Unit		Page 67 of 469

Plot 7-61. EIRP Density (Ant A 50 MHz BW 1CC QPSK High)

Plot 7-62. EIRP Density (Ant A 50 MHz BW 1CC 16QAM High)

FCC ID: A3LAT1K04-B10		MEASUREMENT REPORT (CERTIFICATION)	SnMSUN:	Approved by: Quality Manager
Test Report S/N: 8K20090901-02-R2.A3L	Test Dates: 09/10/2020-10/08/2020	EUT Type: 5G Access Unit		Page 68 of 469

Plot 7-63. EIRP Density (Ant A 50 MHz BW 1CC 64QAM High)

Plot 7-64. EIRP Density (Ant A 50 MHz BW 2CC QPSK High)

FCC ID: A3LAT1K04-B10		MEASUREMENT REPORT (CERTIFICATION)	Snmsung	Approved by: Quality Manager
Test Report S/N: 8K20090901-02-R2.A3L	Test Dates: 09/10/2020-10/08/2020	EUT Type: 5G Access Unit		Page 69 of 469

Plot 7-65. EIRP Density (Ant A 50 MHz BW 2CC 16QAM High)

Plot 7-66. EIRP Density (Ant A 50 MHz BW 2CC 64QAM High)

FCC ID: A3LAT1K04-B10		MEASUREMENT REPORT (CERTIFICATION)	SnMSUNE	Approved by: Quality Manager
Test Report S/N: 8K20090901-02-R2.A3L	Test Dates: 09/10/2020-10/08/2020	EUT Type: 5G Access Unit		Page 70 of 469

Plot 7-67. EIRP Density (Ant A 100 MHz BW 1CC QPSK Low)

Plot 7-68. EIRP Density (Ant A 100 MHz BW 1CC 16QAM Low)

FCC ID: A3LAT1K04-B10		MEASUREMENT REPORT (CERTIFICATION)	snmsung	Approved by: Quality Manager
Test Report S/N: 8K20090901-02-R2.A3L	Test Dates: 09/10/2020-10/08/2020	EUT Type: 5G Access Unit		Page 71 of 469

Plot 7-69. EIRP Density (Ant A 100 MHz BW 1CC 64QAM Low)

Plot 7-70. EIRP Density (Ant A 100 MHz BW 8CC QPSK Low)

FCC ID: A3LAT1K04-B10		MEASUREMENT REPORT (CERTIFICATION)	Snmsung	Approved by: Quality Manager
Test Report S/N: 8K20090901-02-R2.A3L	Test Dates: 09/10/2020-10/08/2020	EUT Type: 5G Access Unit		Page 72 of 469

Plot 7-71. EIRP Density (Ant A 100 MHz BW 8CC 16QAM Low)

Plot 7-72. EIRP Density (Ant A 100 MHz BW 8CC 64QAM Low)

FCC ID: A3LAT1K04-B10	旆 PCTEST	MEASUREMENT REPORT (CERTIFICATION)	Snmsunf	Approved by: Quality Manager
Test Report S/N: 8K20090901-02-R2.A3L	Test Dates: 09/10/2020-10/08/2020	EUT Type: 5G Access Unit		Page 73 of 469

