

PCTEST

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. 410.290.6652 / Fax 410.290.6654 http://www.pctest.com

MEASUREMENT REPORT FCC Part 30 5G mmWave

Applicant Name:

Samsung Electronics Co., Ltd. 129, Samsimg-ro, Yeongtong-gu, Suwon-si Gyeonggi-do, 16677, Korea Date of Testing:

02/18/2020 - 03/06/2020

Test Site/Location:

PCTEST, Columbia, MD, USA

Test Report Serial No.: 8K20012201-01.A3L

FCC ID: A3LAT1K02-A00

APPLICANT: Samsung Electronics Co., Ltd.

Model:AT1K02-A00Application Type:CertificationEUT Type:AU(AT1K02)

FCC Classification: Part 30 Fixed Transmitter (5GB)

Test Procedure(s): ANSI C63.26-2015, KDB 971168 D01 v03r01

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in §2.947. Test results reported herein relate only to the item(s) tested.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

FCC ID: A3LAT1K02-A00	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 1 of 356
8K19110701-01.A3L	02/18/2020-03/06/2020	5G Access Unit	rage 1 01 356

TABLE OF CONTENTS

1.0	INTF	RODUCTION	5
	1.1	Scope	5
	1.2	PCTEST Test Location	5
	1.3	Test Facility / Accreditations	5
2.0	PRC	DDUCT INFORMATION	6
	2.1	Equipment Description	6
	2.2	Device Capabilities	6
	2.3	Test Configuration	6
	2.4	EMI Suppression Device(s)/Modifications	9
3.0	DES	SCRIPTION OF TESTS	10
	3.1	Measurement Procedure	10
	3.2	Radiated Power and Radiated Spurious Emissions	10
4.0	MEA	ASUREMENT UNCERTAINTY	13
5.0	TES	ST EQUIPMENT CALIBRATION DATA	14
6.0	SAM	IPLE CALCULATIONS	15
7.0	TES	ST RESULTS	16
	7.1	Summary	16
	7.2	Occupied Bandwidth	17
	7.3	Equivalent Isotropic Radiated Power (EIRP) Density	46
	7.4	RF Conducted Output Power	163
	7.5	Radiated Spurious and Harmonic Emissions	170
	7.6	Band Edge Emissions	286
	7.7	Frequency Stability / Temperature Variation	350
8.0	CON	NCLUSION	353
9.0	APP	PENDIX A	354
	9.1	VDI Mixer Verification Certificate	354

FCC ID: A3LAT1K02-A00	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dago 2 of 256
8K19110701-01.A3L	02/18/2020-03/06/2020	5G Access Unit	Page 2 of 356

MEASUREMENT REPORT

FCC Part 30

					5100 D	.,		
					EIRP D	ensity		
Bandwidth (MHz)	Mode	FCC Rule Part	Antenna	Tx Frequency (MHz)	Max. Power (W/100MHz)	Max. Power (dBm/100MHz)	Emission Designator	Modulation
	TDD(1CC)	30	А	37000 - 40000	91.840	49.63	46M2G7D	QPSK
50	TDD(1CC)	30	Α	37000 - 40000	90.580	49.57	46M2W7D	16QAM
	TDD(1CC)	30	А	37000 - 40000	89.543	49.52	46M2W7D	64QAM
	TDD(1CC)	30	А	37000 - 40000	98.401	49.93	94M6G7D	QPSK
100	TDD(1CC)	30	Α	37000 - 40000	98.401	49.93	94M7W7D	16QAM
	TDD(1CC)	30	А	37000 - 40000	95.719	49.81	94M7W7D	64QAM
	TDD(8CC)	30	Α	37000 - 40000	89.749	49.53	393MG7D	QPSK
50	TDD(8CC)	30	Α	37000 - 40000	89.131	49.50	393MW7D	16QAM
	TDD(8CC)	30	Α	37000 - 40000	89.749	49.53	393MW7D	64QAM
	TDD(8CC)	30	Α	37000 - 40000	33.963	45.31	788MG7D	QPSK
100	TDD(8CC)	30	А	37000 - 40000	33.963	45.31	787MW7D	16QAM
	TDD(8CC)	30	А	37000 - 40000	34.041	45.32	787MW7D	64QAM
	TDD(1CC)	30	В	37000 - 40000	107.159	50.30	46M4G7D	QPSK
50	TDD(1CC)	30	В	37000 - 40000	106.667	50.28	46M3W7D	16QAM
	TDD(1CC)	30	В	37000 - 40000	106.913	50.29	46M3W7D	64QAM
	TDD(1CC)	30	В	37000 - 40000	102.329	50.10	94M6G7D	QPSK
100	TDD(1CC)	30	В	37000 - 40000	105.682	50.24	94M7W7D	16QAM
	TDD(1CC)	30	В	37000 - 40000	106.170	50.26	94M6W7D	64QAM
	TDD(8CC)	30	В	37000 - 40000	86.105	49.35	393MG7D	QPSK
50	TDD(8CC)	30	В	37000 - 40000	86.702	49.38	393MW7D	16QAM
	TDD(8CC)	30	В	37000 - 40000	86.304	49.36	393MW7D	64QAM
	TDD(8CC)	30	В	37000 - 40000	45.290	46.56	787MG7D	QPSK
100	TDD(8CC)	30	В	37000 - 40000	44.566	46.49	788MW7D	16QAM
	TDD(8CC)	30	В	37000 - 40000	44.463	46.48	787MW7D	64QAM
	TDD(1CC)	30	С	37000 - 40000	79.256	48.99	46M2G7D	QPSK
50	TDD(1CC)	30	С	37000 - 40000	79.438	49.00	46M2W7D	16QAM
	TDD(1CC)	30	С	37000 - 40000	79.438	49.00	46M2W7D	64QAM
	TDD(1CC)	30	С	37000 - 40000	94.406	49.75	94M7G7D	QPSK
100	TDD(1CC)	30	С	37000 - 40000	97.949	49.91	94M6W7D	16QAM
	TDD(1CC)	30	С	37000 - 40000	97.949	49.91	94M6W7D	64QAM
	TDD(8CC)	30	С	37000 - 40000	75.341	48.77	393MG7D	QPSK
50	TDD(8CC)	30	С	37000 - 40000	74.995	48.75	393MW7D	16QAM
	TDD(8CC)	30	С	37000 - 40000	75.167	48.76	393MW7D	64QAM
	TDD(8CC)	30	С	37000 - 40000	42.756	46.31	787MG7D	QPSK
100	TDD(8CC)	30	С	37000 - 40000	41.020	46.13	788MW7D	16QAM
	TDD(8CC)	30	С	37000 - 40000	40.926	46.12	788MW7D	64QAM
	TDD(1CC)	30	D	37000 - 40000	94.630	49.76	46M2G7D	QPSK
50	TDD(1CC)	30	D	37000 - 40000	94.195	49.74	46M2W7D	16QAM
	TDD(1CC)	30	D	37000 - 40000	94.413	49.75	46M2W7D	64QAM
	TDD(1CC)	30	D	37000 - 40000	92.683	49.67	94M6G7D	QPSK
100	TDD(1CC)	30	D	37000 - 40000	92.470	49.66	94M6W7D	16QAM
	TDD(1CC)	30	D	37000 - 40000	92.683	49.67	94M6W7D	64QAM
	TDD(8CC)	30	D	37000 - 40000	73.456	48.66	393MG7D	QPSK
50	TDD(8CC)	30	D	37000 - 40000	72.449	48.60	393MW7D	16QAM
	TDD(8CC)	30	D	37000 - 40000	75.514	48.78	392MW7D	64QAM
	TDD(8CC)	30	D	37000 - 40000	47.424	46.76	787MG7D	QPSK
100	TDD(8CC)	30	D	37000 - 40000	47.098	46.73	788MW7D	16QAM
	TDD(8CC)	30	D	37000 - 40000	46.666	46.69	788MW7D	64QAM

EUT Overview for Antenna A, B, C, and D

FCC ID: A3LAT1K02-A00	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 3 of 356
8K19110701-01.A3L	02/18/2020-03/06/2020	5G Access Unit	rage 3 of 330

					EIRP D	ensity		
Bandwidth (MHz)	Mode	FCC Rule Part	Antenna	Tx Frequency (MHz)	Max. Power (W/100MHz)	Max. Power (dBm/100MHz)	Emission Designator	Modulation
	TDD(1CC)	30	A+C	37000 - 40000	342.190	55.34	46M4G7D	QPSK
50	TDD(1CC)	30	A+C	37000 - 40000	340.036	55.32	46M3W7D	16QAM
	TDD(1CC)	30	A+C	37000 - 40000	337.962	55.29	46M3W7D	64QAM
	TDD(1CC)	30	A+C	37000 - 40000	192.807	52.85	94M6G7D	QPSK
100	TDD(1CC)	30	A+C	37000 - 40000	196.350	52.93	94M7W7D	16QAM
	TDD(1CC)	30	A+C	37000 - 40000	193.668	52.87	94M7W7D	64QAM
	TDD(8CC)	30	A+C	37000 - 40000	330.180	55.19	393MG7D	QPSK
50	TDD(8CC)	30	A+C	37000 - 40000	328.252	55.16	393MW7D	16QAM
	TDD(8CC)	30	A+C	37000 - 40000	329.833	55.18	393MW7D	64QAM
	TDD(8CC)	30	A+C	37000 - 40000	76.719	48.85	788MG7D	QPSK
100	TDD(8CC)	30	A+C	37000 - 40000	74.983	48.75	788MW7D	16QAM
	TDD(8CC)	30	A+C	37000 - 40000	74.967	48.75	787MW7D	64QAM
	TDD(1CC)	30	B+D	37000 - 40000	403.579	56.06	46M4G7D	QPSK
50	TDD(1CC)	30	B+D	37000 - 40000	401.725	56.04	46M3W7D	16QAM
	TDD(1CC)	30	B+D	37000 - 40000	402.651	56.05	46M3W7D	64QAM
	TDD(1CC)	30	B+D	37000 - 40000	195.012	52.90	94M7G7D	QPSK
100	TDD(1CC)	30	B+D	37000 - 40000	198.152	52.97	94M7W7D	16QAM
	TDD(1CC)	30	B+D	37000 - 40000	198.853	52.99	94M6W7D	64QAM
	TDD(8CC)	30	B+D	37000 - 40000	319.124	55.04	393MG7D	QPSK
50	TDD(8CC)	30	B+D	37000 - 40000	318.302	55.03	393MW7D	16QAM
	TDD(8CC)	30	B+D	37000 - 40000	323.637	55.10	393MW7D	64QAM
	TDD(8CC)	30	B+D	37000 - 40000	92.714	49.67	787MG7D	QPSK
100	TDD(8CC)	30	B+D	37000 - 40000	91.663	49.62	788MW7D	16QAM
	TDD(8CC)	30	B+D	37000 - 40000	91.129	49.60	788MW7D	64QAM

EUT Overview for Antenna A + C and B + D

Notes:

The highest EIRP density values are reported from 8CC continuous and non-continuous configurations.

FCC ID: A3LAT1K02-A00	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 4 of 356
8K19110701-01.A3L	02/18/2020-03/06/2020	5G Access Unit	rage 4 of 330

1.0 INTRODUCTION

1.1 Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Innovation, Science and Economic Development Canada.

1.2 PCTEST Test Location

These measurement tests were conducted at the PCTEST facility located at 7185 Oakland Mills Road, Columbia, MD 21046. The measurement facility is compliant with the test site requirements specified in ANSI C63.4-2014.

1.3 Test Facility / Accreditations

Measurements were performed at PCTEST located in Columbia, MD 21046, U.S.A.

- PCTEST is an ISO 17025-2005 accredited test facility under the American Association for Laboratory Accreditation (A2LA) with Certificate number 2041.01 for Specific Absorption Rate (SAR), Hearing Aid Compatibility (HAC) testing, where applicable, and Electromagnetic Compatibility (EMC) testing for FCC and Innovation, Science, and Economic Development Canada rules.
- PCTEST TCB is a Telecommunication Certification Body (TCB) accredited to ISO/IEC 17065-2012 by A2LA (Certificate number 2041.03) in all scopes of FCC Rules and ISED Standards (RSS).
- PCTEST facility is a registered (2451B) test laboratory with the site description on file with ISED.

FCC ID: A3LAT1K02-A00	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo F of 256
8K19110701-01.A3L	02/18/2020-03/06/2020	5G Access Unit	Page 5 of 356

2.0 PRODUCT INFORMATION

2.1 Equipment Description

The Equipment Under Test (EUT) is the **Samsung 5G Access Unit FCC ID: A3LAT1K02-A00**. The test data contained in this report pertains only to the emissions due to the EUT's 5G mmWave function.

The EUT operates as a 4X4 MIMO system that consists of four antenna arrays (denoted herein as "Antenna A", "Antenna B", "Antenna C" and "Antenna D". Each of the four antenna arrays has 256 antenna elements for a total of 1024 antenna elements. Of the 4 antenna arrays, Antenna A and Antenna C have the same polarization (135 degrees from horizontal) and Antenna B and Antenna D have the same polarization (45 degrees from horizontal). Beamforming is used with Antenna A and Antenna C and it is also used with Antenna B and Antenna D. Signal correlation is possible between the outputs of all four antenna arrays.

This unit is powered by a nominal AC voltage source.

See Section 3.2 for the antenna polarization of the 5G Access Unit and the measurement antenna.

Test Device Serial No.: EP96-05557A

2.2 Device Capabilities

This device contains the following capabilities:

TDD of mmWave

2.3 Test Configuration

The EUT was tested per the guidance of ANSI C63.26-2015 and KDB 971168 D01 v03. See Section 7.0 of this test report for a description of the radiated tests.

FCC ID: A3LAT1K02-A00	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 6 of 256
8K19110701-01.A3L	02/18/2020-03/06/2020	5G Access Unit	Page 6 of 356

microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

BW	Configuration	Channel	CC	Frequency(MHz)
		Low	CC0	37024.98
	1CC	Mid	CC0	38499.96
		High	CC0	39975.00
			CC0	37025.04
				37075.08
			CC2	37125.12
		Low	Mid CC0 38499.96 High CC0 39975.00 CC0 37025.04 CC1 37075.08 CC2 37125.12 CC3 37175.16 CC4 37225.20 CC5 37275.24 CC6 37325.28 CC7 37375.32 CC0 38325.00 CC1 38375.04 CC2 38425.08 CC2 38425.00 CC1 38375.04 CC2 38425.00 CC1 38525.16 CC2 38425.08 CC3 38575.20 CC6 38625.24 CC7 38675.28 CC0 39624.72 CC1 39674.76 CC2 3974.80 CC3 3974.80 CC4 39824.88 CC5 39874.92 CC6 39924.96 CC7 39975.00 CC7 39975.00 CC	37175.16
		LOW	CC4	38499.96 39975.00 37025.04 37075.08 37125.12 37175.16 37225.20 37275.24 37325.28 37375.32 38325.00 38375.04 38425.08 38475.12 38525.16 38575.20 38625.24 38675.28 39624.72 39674.76 39724.80 39774.84 39824.88 39874.92 39924.96 39975.00 37025.04 37217.88 37410.72 37603.56 37796.40 37989.24 38182.08 38374.92 37899.24 38182.08 38374.92 3789.24 38182.08 38374.92 3789.24 38182.08 38374.92 3789.24 38182.08 38374.92 3789.24 38182.08 38374.92 3789.24 38182.08
			CC5	37275.24
			CC6	37325.28
			CC7	37375.32
				38325.00
			CC2	
	8CC	5 A. I		
	contiguous	IVIIQ		
				•
			CC7	
				· · · · · · · · · · · · · · · · · · ·
		High		·
50MHz				· · · · · · · · · · · · · · · · · · ·
00				· · · · · · · · · · · · · · · · · · ·
		_		
		Low		
				· · · · · · · · · · · · · · · · · · ·
				·
				,
				37024.98 38499.96 39975.00 37025.04 37075.08 37125.12 37175.16 37225.20 37275.24 37375.32 38325.00 38375.04 38425.08 38475.12 38525.16 38575.20 38625.24 38675.28 39624.72 39674.76 39724.80 39774.84 39824.88 39874.92 39924.96 39975.00 37025.04 3717.88 37410.72 37603.56 37796.40 37989.24 38182.08 38374.92 3789.24 38182.08 38374.92 3789.24 38182.08 38374.92 3789.24 38182.08 38374.92 37824.96 38977.80 3798.24 38182.08 3817.80 38210.64 38403.48 38596.32 37824.96 38974.84
	8CC			
	non-contiguous	Mid		·
	non-contiguous			
				,
			CC0 39975.00 CC0 37025.04 CC1 37075.08 CC2 37125.12 CC3 37175.16 CC4 37225.20 CC5 37275.24 CC6 37325.28 CC7 37375.32 CC0 38325.00 CC1 38375.04 CC2 38425.08 CC3 38425.08 CC3 38425.08 CC3 38425.08 CC4 38525.16 CC5 38575.20 CC6 38625.24 CC7 38675.28 CC0 39624.72 CC1 39674.76 CC2 39724.80 CC3 3974.84 CC4 39824.88 CC5 39874.92 CC6 39924.96 CC7 39975.00 CC0 37025.04 CC1 37217.88 CC2 37410.72 CC3 37989.24	
				38325.00 38375.04 38425.08 38475.12 38525.16 38575.20 38625.24 38675.28 39624.72 39674.76 39724.80 39774.84 39824.88 39874.92 39924.96 39975.00 37025.04 37217.88 37410.72 37603.56 37796.40 37989.24 38182.08 38374.92 37824.96 38017.80 38210.64 38403.48 38596.32 38789.16 38982.00 39174.84 38625.12 38817.96 39010.80 39203.64 39396.48 39396.48
				1
		High		38499.96 39975.00 37025.04 37075.08 37125.12 37175.16 37225.20 37275.24 37325.28 37375.32 38325.00 38375.04 38425.08 38475.12 38525.16 38575.20 38625.24 38675.28 39624.72 39674.76 39724.80 39774.84 39824.88 39874.92 39924.96 39975.00 37025.04 37217.88 37410.72 37603.56 37796.40 37989.24 38182.08 38374.92 3789.24 38182.08 38374.92 3789.24 38182.08 38374.92 3789.24 38182.08 38374.92 3789.24 38182.08 38374.92 3789.24 38182.08 38374.92 37824.96 38975.00 37989.24 38182.08
			<u> </u>	39975.00

Table 2-1. Declared of EUT configuration Frequency list for 50MHz BW Mode

FCC ID: A3LAT1K02-A00	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogg 7 of 256
8K19110701-01.A3L	02/18/2020-03/06/2020	5G Access Unit	Page 7 of 356

BW	Configuration	Channel	CC	Frequency(MHz)
	•	Low	CC0	37050.00
	1CC	Mid	CC0	38499.96
		High	CC0	
		9	CC0	
			CC1	
			CC2	1
		_	CC3	1
		Low	CC4	
			CC5	
			CC6	
			CC7	
			CC0	
			CC1	
				1
	8CC		CC2	
		Mid	CC3	1
	contiguous		CC4	
			CC5	
			CC6	1
			CC7	
			CC0	
			CC1	
			CC2	39449.88
		High	CC3	39549.90
			CC4	39649.92
			CC5	39749.94
100MHz			CC6	39849.96
			CC7	39949.98
			CC0	1
			CC1	
			CC2	1
		Low CC3 CC4 CC5		
				39949.98 37050.00 37150.02 37250.04 37350.06 37450.08 37550.10 37650.12 37750.14 38150.04 38250.06 38350.08 38450.10 38550.12 38650.14 38750.16 38850.18 39249.84 39349.86 39449.88 39549.90 39649.92 39749.94 39849.96
			CC6 CC7 CC0	
			CC2	
	8CC		CC3	
		Mid	CC4	
	non-contiguous		CC5	
				1
			CC6	
			CC7	1
			CC0	
			CC1	
			CC2	
		High	CC3	1
		1 11911	CC4	
			CC5	39578.52
			CC6	39764.28
			CC7	39949.98

Table 2-2. Declared of EUT configuration Frequency list for 100MHz BW Mode

FCC ID: A3LAT1K02-A00	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 9 of 256
8K19110701-01.A3L	02/18/2020-03/06/2020	5G Access Unit	Page 8 of 356

2.4 EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and no modifications were made during testing.

FCC ID: A3LAT1K02-A00	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 9 of 356
8K19110701-01.A3L	02/18/2020-03/06/2020	5G Access Unit	rage 9 01 330

3.0 DESCRIPTION OF TESTS

3.1 Measurement Procedure

The measurement procedures described in the document titled "American National Standard for Compiance Testing of Transmitter Used in Licensed Radio Service" (ANSI C63.26-2015) and "Measurement Guidance for Certification of Licensed Digital Transmitters" (KDB 971168 D01 v03) were used in the measurement of the EUT.

3.2 Radiated Power and Radiated Spurious Emissions §30.202, §30.203, §30.404, §30.405

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for Final measurement and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. The test site inside the chamber is a 6m x 5.2m elliptical, obstruction-free area in accordance with Figure 5.7 of Clause 5 in ANSI C63.4-2014. Absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections for measurements above 1GHz. For measurements below 1GHz, the absorbers are removed. A raised turntable is used for radiated measurement. The turn table is a continuously rotatable, remote-controlled, metallic turntable and 2 meters (6.56 ft.) in diameter. The turn table is flush with the raised floor of the chamber in order to maintain its function as a ground plane. An 80cm tall test table made of Styrodur is placed on top of the turn table. A Styrodur pedestal is placed on top of the test table to bring the total table height to 1.5m.

The equipment under test was transmitting while connected to its integral antenna and is placed on a DUT tripod. The EUT is manipulated through all orthogonal planes representative of its typical use to achieve the highest reading on the receive spectrum analyzer. The receive measurement antenna is in the far field of the EUT per formula (2*D^2)/wavelength. For spurious emissions, the far field distances used for testing were as follows:

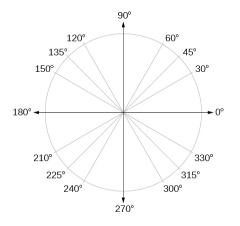
Frequency Range (GHz)	Wavelength (cm)	Far Field Distance (m)	Measurements Distance (m)
18 – 40	0.749	2.61	2.61
40 – 60	0.500	1.39	2.61
60 – 90	0.333	0.91	2.61
90 – 140	0.214	0.58	2.61
140 – 220	0.150	0.39	2.61

Table 3-1. Far-Field Distance per Frequency Range

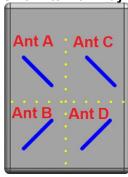
Radiated power levels are investigated with the receive antenna horizontally and vertically polarized. Additionally, the receive antenna was rotated on various angles to investigate worst case emissions on each EUT antenna array. The EUT antenna array polarization and horn antennas angle are denoted as follows:

FCC ID: A3LAT1K02-A00	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 10 of 356
8K19110701-01.A3L	02/18/2020-03/06/2020	5G Access Unit	Page 10 01 330

2020 PCTEST


V9.0 02/01/2019

It in this reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and


Horn antenna at 135 degrees

5G Access Unit Antenna Array Polarization

The maximized power level is recorded using the spectrum analyzer "Channel Power" function with the integration band set to the emissions' occupied bandwidth.

Effective Isotropic Radiated Power Sample Calculation

The measured e.i.r.p is converted to E-field in V/m. Then the distance correction is applied before converted back to calculated e.i.r.p.

Field Strength [dB μ V/m] = Measured Value [dBm] + AFCL [dB/m] + 107

= -5.28 dBm + (47.07 dB/m + 11.33 dB) + 107 = 160.12 dBuV/m

= 10^(160.12/20)/1000000 = 101.39 V/m

e.i.r.p. [dBm] = $10 * log((E-Field*D_m)^2/30) + 30dB$

 $= 10*log((101.39V/m * 2.61m)^2/30) + 30dB$

= 63.68 dBm e.i.r.p.

FCC ID: A3LAT1K02-A00	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 11 of 356
8K19110701-01.A3L	02/18/2020-03/06/2020	5G Access Unit	Fage 11 01 330

© 2020 PCTEST

V9.0 02/01/2019

All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and

Sample MIMO e.i.r.p. Calculation:

The e.i.r.p at Antenna A, Antenna B, Antenna C and Antenna D were first measured individually. The measured values were then summed in linear power units then converted back to dBm for the co-polarized antennas.

Conversion to linear value = $10^{(e.i.r.p/10)} = 10^{(54.07/10)} = 255270$ mW

MIMO e.i.r.p. = e.i.r.p._A + e.i.r.p._c

= 208369mW + 198076mW

=10*log(406445mW)

= 56.09 dBm

FCC ID: A3LAT1K02-A00	PCTEST* Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 12 of 256
8K19110701-01.A3L	02/18/2020-03/06/2020	5G Access Unit	Page 12 of 356

MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.4-2014. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95% level of confidence. The measurement uncertainty shown below meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Contribution	Expanded Uncertainty (±dB)
Conducted Bench Top Measurements	1.13
Radiated Disturbance (<1GHz)	4.98
Radiated Disturbance (>1GHz)	5.07
Radiated Disturbance (>18GHz)	5.09

FCC ID: A3LAT1K02-A00	PCTEST* Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 12 of 256	
8K19110701-01.A3L	02/18/2020-03/06/2020	5G Access Unit	Page 13 of 356	

TEST EQUIPMENT CALIBRATION DATA

Test Equipment Calibration is traceable to the National Institute of Standards and Technology (NIST). Measurements antennas used during testing were calibrated in accordance to the requirements of ANSI C63.5-2017.

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	N9030A	PXA Signal Analyzer (44GHz)	6/12/2019	Annual	6/12/2020	MY52350166
Agilent	N9030A	50GHz PXA Signal Analyzer	11/22/2019	Annual	11/22/2020	US51350301
COM-Power	AL-130R	Active Loop Antenna	8/22/2019	Annual	8/22/2020	121085
COM-Power	PAM-103	Pre-Amplifier (1-1000MHz)	5/10/2019	Annual	5/10/2020	441112
Emco	3115	Horn Antenna (1-18GHz)	3/28/2018	Biennial	3/28/2020	9704-5182
Espec	ESX-CA	Environmental Chamber	6/13/2019	Annual	6/13/2020	17620
ETS-Lindgren	3116C	DRG Horn Antenna	3/11/2019	Annual	3/11/2020	218893
Keysight Technologies	N9030A	3Hz-44GHz PXA Signal Analyzer	5/2/2019	Annual	5/2/2020	MY49430494
OML Inc.	M05RH	WR-05 Horn Antenna, 24dBi, 140 to 200GHz	10/31/2019	Annual	10/31/2020	18073001
OML Inc.	M08RH	WR-08 Horn Antenna, 24dBi, 90 to 140GHz	7/30/2018	Biennial	7/30/2020	18073001
OML Inc.	M12RH	WR-12 Horn Antenna, 24dBi, 60 to 90GHz	10/31/2019	Annual	10/31/2020	18073001
OML Inc.	M19RH	WR-19 Horn Antenna, 24dBi, 40 to 60GHz	10/31/2019	Annual	10/31/2020	18073001
Rohde & Schwarz	180-442-KF	Horn (Small)	8/21/2018	Biennial	8/21/2020	U157403-01
Rohde & Schwarz	ESU26	EMI Test Receiver (26.5GHz)	6/5/2019	Annual	6/5/2020	100342
Rohde & Schwarz	ESW44	EMI Test Recevier 2Hz to 44GHz	10/16/2019	Annual	10/16/2020	101716
Rohde & Schwarz	FSW67	Signal / Spectrum Analyzer	5/6/2019	Annual	5/6/2020	103200
Rohde & Schwarz	SFUNIT-Rx	Shielded Filter Unit	7/8/2019	Annual	7/8/2020	102133
Sunol	JB5	Bi-Log Antenna (30M - 5GHz)	4/19/2018	Biennial	4/19/2020	A051107
Virginia Diodes Inc.	SAX252	SAX Module (60 - 90GHz)	9/30/2019	Annual	9/30/2020	SAX252
Virginia Diodes Inc.	SAX253	SAX Module (90 - 140GHz)	9/30/2019	Annual	9/30/2020	SAX253
Virginia Diodes Inc.	SAX254	SAX Module (140 - 220GHz)	9/30/2019	Annual	9/30/2020	SAX254
Virginia Diodes Inc.	SAX411	SAX Module (40 - 60GHz)	10/2/2019	Annual	10/2/2020	SAX411

Table 5-1. Test Equipment

Notes:

1. For equipment listed above that has a calibration date or calibration due date that falls within the test date range, care was taken to ensure that this equipment was used after the calibration date and before the calibration due date.

FCC ID: A3LAT1K02-A00	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 14 of 256
8K19110701-01.A3L	02/18/2020-03/06/2020	5G Access Unit	Page 14 of 356

SAMPLE CALCULATIONS

Emission Designator

QPSK Modulation

Emission Designator = 800MG7D

BW = 800 MHz

G = Phase Modulation

7 = Quantized/Digital Info

D = Data transmission, telemetry, telecommand

QAM Modulation

Emission Designator = 802MW7D

BW = 802 MHz

W = Amplitude/Angle Modulated

7 = Quantized/Digital Info

D = Data transmission, telemetry, telecommand

FCC ID: A3LAT1K02-A00	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 15 of 356
8K19110701-01.A3L	02/18/2020-03/06/2020	5G Access Unit	rage 15 of 550

7.0 TEST RESULTS

7.1 Summary

Company Name: <u>Samsung Electronics Co., Ltd.</u>

FCC ID: <u>A3LAT1K02-A00</u>

FCC Classification: Part 30 Fixed Transmitter (5GB)

Mode(s): TDD

FCC Part Section(s)	Test Description	Test Limit	Test Condition	Test Result	Reference
2.1049	Occupied Bandwidth	N/A		PASS	Section 7.2
30.202	EIRP Density	EIRP Density of 75dBm/100MHz		PASS	Section 7.3
2.1046	RF Output Power	N/A		PASS	Section 7.4
2.1051 30.203	Out-of-Band Spurious Emissions	-13dBm/MHz	RADIATED	PASS	Section 7.5
2.1051 30.203	Out-of-Band Emissions at the Band Edge	-13dBm/MHz for all out-of-band emissions, -5dBm/MHz from the band edge up to 10% of the channel BW		PASS	Section 7.6
2.1055	Frequency Stability	Fundamental emissions stay within authorized frequency block		PASS	Section 7.7

Table 7-1. Summary of Radiated Test Results

Notes:

- All modes of operation and modulations were investigated. The test results shown in the following sections represent the worst case emissions.
- 2) Per 2.1057(a)(3), spurious emissions were investigated up to 200GHz.
- 3) All radiated emission measurements at the band edge edge are converted to an equivalent conductive power by subtracting the known antenna gain from the EIRP measured at each frequency of interest. These emissions are compared to the 30.203 spurious emission limits as conductive power levels.
- 4) The radiated RF output power and all out-of-band emissions in the spurious domain are evaluated to the EIRP limits.
- 5) The fundalmental band consists of 1 8 component carriers, referred as "CC" in this report. Lowest frequency CC is CC0 and highest frequency CC is CC7.
- 6) In the following tables, the term "CCs Active" refers to which component carrier is transmitting for a particular test.
- 7) CCs active 0, 4, 7 = 1 Components Carriers Active, 0-7 = 8 Component Carriers Active. 0-7(NC) = 8 Non-contiguous Compenent Carriers Active. Each component carrier's bandwidth is either of 50MHz or 100MHz.

FCC ID: A3LAT1K02-A00	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogg 16 of 256
8K19110701-01.A3L	02/18/2020-03/06/2020	5G Access Unit	Page 16 of 356

7.2 Occupied Bandwidth

§2.1049

Test Overview

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured. All modes of operation were investigated and the worst case configuration results are reported in this section.

Test Procedure Used

ANSI C63.25-2015 Section 5.4.3

Test Settings

- 1. The signal analyzer's automatic bandwidth measurement capability was used to perform the 99% occupied bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = 1 5% of the expected OBW
- 3. VBW \geq 3 x RBW
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep = auto couple
- 7. The trace was allowed to stabilize
- 8. If necessary, steps 2-7 were repeated after changing the RBW such that it would be within
 - 1 5% of the 99% occupied bandwidth observed in Step 7

Test Notes

None.

FCC ID: A3LAT1K02-A00	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 17 of 256
8K19110701-01.A3L	02/18/2020-03/06/2020	5G Access Unit	Page 17 of 356

7.2.1 Antenna A Occupied Bandwidth

Bandwidth [MHz]	Antenna	Chan.	CCs active	Modulation	OBW [MHz]
		Mid	4	QPSK	46.24
50		Mid	4	16QAM	46.18
		Mid	4	64QAM	46.23
		Mid	4	QPSK	94.60
100		Mid	4	16QAM	94.70
	Α	Mid	4	64QAM	94.65
		Mid	0-7	QPSK	393.23
50		Mid	0-7	16QAM	393.23
		Mid	0-7	64QAM	393.23
100		Mid	0-7	QPSK	788.01
		Mid	0-7	16QAM	787.56
		Mid	0-7	64QAM	787.87

Table 7-2. Antenna A Occupied Bandwidth Summary Data

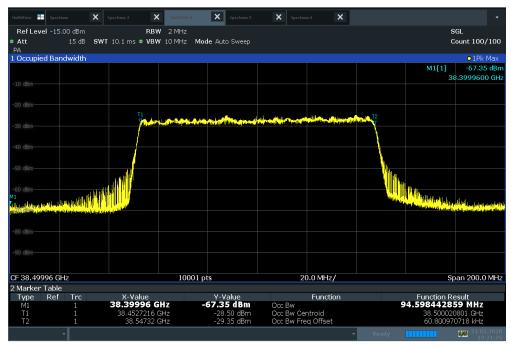
Plot 7-1. Occupied Bandwidth Plot (50MHz BW 1CC QPSK Mid Channel)

FCC ID: A3LAT1K02-A00	PCTEST° Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 18 of 356
8K19110701-01.A3L	02/18/2020-03/06/2020	5G Access Unit	rage to 01 330

17:49:16 03.03.2020

Plot 7-2. Occupied Bandwidth Plot (50MHz BW 1CC 16QAM Mid Channel)

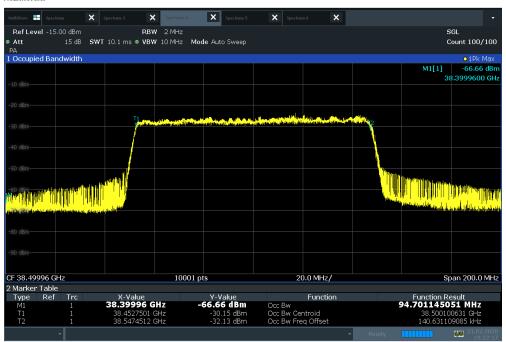
ACLRResults



17:49:48 03.03.2020

Plot 7-3. Occupied Bandwidth Plot (50MHz BW 1CC 64QAM Mid Channel)

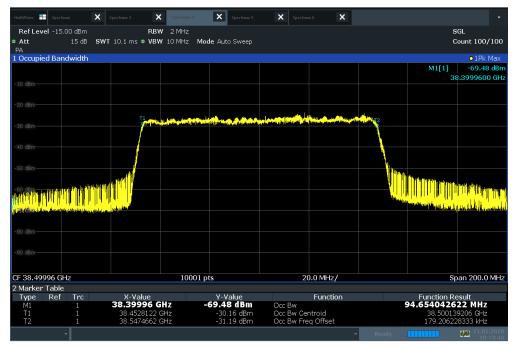
FCC ID: A3LAT1K02-A00	Proud to be part of @element	MEASUREMENT REPORT (CERTIFICATION)		Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogg 10 of 256
8K19110701-01.A3L	02/18/2020-03/06/2020	5G Access Unit		Page 19 of 356
© 2020 PCTEST				V9.0 02/01/2019



19:21:26 21.02.2020

Plot 7-4. Occupied Bandwidth Plot (100MHz BW 1CC QPSK Mid Channel)

ACLRResults


19:22:18 21.02.2020

Plot 7-5. Occupied Bandwidth Plot (100MHz BW 1CC 16QAM Mid Channel)

FCC ID: A3LAT1K02-A00	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 20 of 356
8K19110701-01.A3L	02/18/2020-03/06/2020	5G Access Unit	Page 20 01 350

19:23:40 21.02.2020

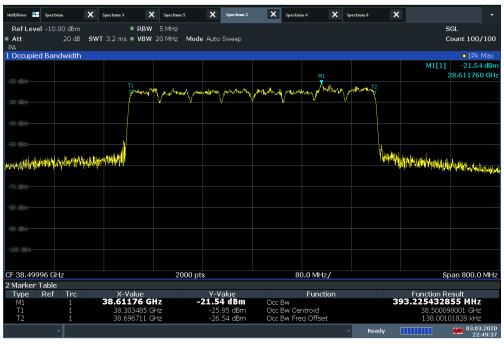
Plot 7-6. Occupied Bandwidth Plot (100MHz BW 1CC 64QAM Mid Channel)

ACLRResults

22:56:25 03.03.2020

Plot 7-7. Occupied Bandwidth Plot (50MHz BW 8CC QPSK Mid Channel)

FCC ID: A3LAT1K02-A00	PCTEST* Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 21 of 356
8K19110701-01.A3L	02/18/2020-03/06/2020	5G Access Unit	Fage 21 01 330



22:54:13 03.03.2020

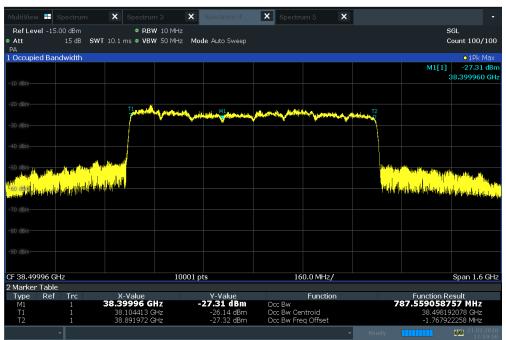
Plot 7-8. Occupied Bandwidth Plot (50MHz BW 8CC 16QAM Mid Channel)

ACLRResults

22:49:38 03.03.2020

Plot 7-9. Occupied Bandwidth Plot (50MHz BW 8CC 64QAM Mid Channel)

FCC ID: A3LAT1K02-A00	PCTEST* Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 22 of 356
8K19110701-01.A3L	02/18/2020-03/06/2020	5G Access Unit	Fage 22 01 330



18:01:15 21.02.2020

Plot 7-10. Occupied Bandwidth Plot (100MHz BW 8CC QPSK Mid Channel)

ACLRResults

17:59:51 21.02.2020

Plot 7-11. Occupied Bandwidth Plot (100MHz BW 8CC 16QAM Mid Channel)

FCC ID: A3LAT1K02-A00	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 23 of 356
8K19110701-01.A3L	02/18/2020-03/06/2020	5G Access Unit	Page 23 01 330

17:45:04 21.02.2020

Plot 7-12. Occupied Bandwidth Plot (100MHz BW 8CC 64QAM Mid Channel)

FCC ID: A3LAT1K02-A00	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)		Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogg 24 of 256
8K19110701-01.A3L	02/18/2020-03/06/2020	5G Access Unit		Page 24 of 356
© 2020 PCTEST				V9.0 02/01/2019

7.2.2 Antenna B Occupied Bandwidth

Bandwidth [MHz]	Antenna	Chan.	CCs active	Modulation	OBW [MHz]
		Mid	4	QPSK	46.39
50		Mid	4	16QAM	46.29
		Mid	4	64QAM	46.33
	D	Mid	4	QPSK	94.63
100		Mid	4	16QAM	94.67
		Mid	4	64QAM	94.63
	В	Mid	0-7	QPSK	393.01
50		Mid	0-7	16QAM	393.03
		Mid	0-7	64QAM	393.09
100		Mid	0-7	QPSK	787.85
		Mid	0-7	16QAM	788.35
		Mid	0-7	64QAM	787.66

Table 7-3. Antenna B Occupied Bandwidth Summary Data

Plot 7-13. Occupied Bandwidth Plot (50MHz BW 1CC QPSK Mid Channel)

FCC ID: A3LAT1K02-A00	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogg 25 of 256
8K19110701-01.A3L	02/18/2020-03/06/2020	5G Access Unit	Page 25 of 356

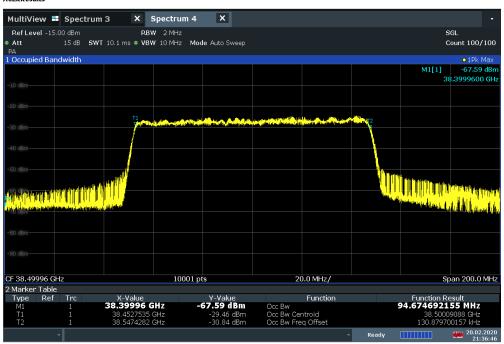
18:04:48 03.03.2020

Plot 7-14. Occupied Bandwidth Plot (50MHz BW 1CC 16QAM Mid Channel)

ACLRResults

Plot 7-15. Occupied Bandwidth Plot (50MHz BW 1CC 64QAM Mid Channel)

FCC ID: A3LAT1K02-A00	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 26 of 356
8K19110701-01.A3L	02/18/2020-03/06/2020	5G Access Unit	Page 20 01 350



21:37:23 20.02.2020

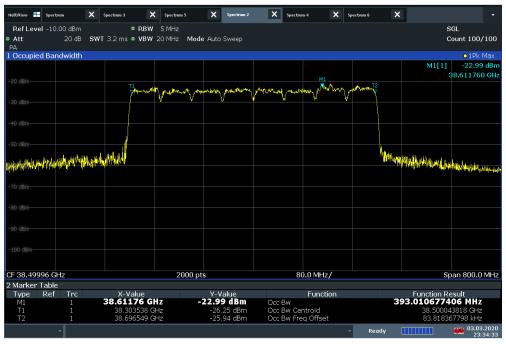
Plot 7-16. Occupied Bandwidth Plot (100MHz BW 1CC QPSK Mid Channel)

ACLRResults

21:36:47 20.02.2020

Plot 7-17. Occupied Bandwidth Plot (100MHz BW 1CC 16QAM Mid Channel)

FCC ID: A3LAT1K02-A00	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 27 of 256
8K19110701-01.A3L	02/18/2020-03/06/2020	5G Access Unit		Page 27 of 356
© 2020 PCTEST				V9.0 02/01/2019



21:24:59 20.02.2020

Plot 7-18. Occupied Bandwidth Plot (100MHz BW 1CC 64QAM Mid Channel)

ACLRResults

34:34 03.03.2020

Plot 7-19. Occupied Bandwidth Plot (50MHz BW 8CC QPSK Mid Channel)

FCC ID: A3LAT1K02-A00	PCTEST* Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 28 of 356
8K19110701-01.A3L	02/18/2020-03/06/2020	5G Access Unit	Page 20 01 300

Plot 7-20. Occupied Bandwidth Plot (50MHz BW 8CC 16QAM Mid Channel)

ACLRResults

Plot 7-21. Occupied Bandwidth Plot (50MHz BW 8CC 64QAM Mid Channel)

FCC ID: A3LAT1K02-A00	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogg 20 of 256
8K19110701-01.A3L	02/18/2020-03/06/2020	5G Access Unit		Page 29 of 356
© 2020 PCTEST				V9.0 02/01/2019

23:12:47 20.02.2020

Plot 7-22. Occupied Bandwidth Plot (100MHz BW 8CC QPSK Mid Channel)

ACLRResults

Plot 7-23. Occupied Bandwidth Plot (100MHz BW 8CC 16QAM Mid Channel)

FCC ID: A3LAT1K02-A00	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 30 of 356
8K19110701-01.A3L	02/18/2020-03/06/2020	5G Access Unit	rage 50 of 550

Plot 7-24. Occupied Bandwidth Plot (8CC 64QAM Mid Channel 100MHz BW)

FCC ID: A3LAT1K02-A00	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 21 of 256
8K19110701-01.A3L	02/18/2020-03/06/2020	5G Access Unit	Page 31 of 356

7.2.3 Antenna C Occupied Bandwidth

17:36:24 03.03.2020

Bandwidth [MHz]	Antenna	Chan.	CCs active	Modulation	OBW [MHz]
		Mid	4	QPSK	46.16
50		Mid	4	16QAM	46.17
	C	Mid	4	64QAM	46.15
		Mid	4	QPSK	94.68
100		Mid	4	16QAM	94.64
		Mid	4	64QAM	94.65
	O	Mid	0-7	QPSK	393.32
50		Mid	0-7	16QAM	393.39
		Mid	0-7	64QAM	393.06
		Mid	0-7	QPSK	787.65
100		Mid	0-7	16QAM	788.21
		Mid	0-7	64QAM	788.72

Table 7-4. Antenna C Occupied Bandwidth Summary Data

ACLRResults X Spectrum 4 altiView - Spectrum X Spectrum 5 RBW 1 MHz SGL Att 20 dB PA 1 Occupied Bandwidth 20 dB SWT 1.2 ms • VBW 3 MHz Mode Auto Sweep Count 1000/1000 01Pk Max -30.99 dBm 1001 pts 10.0 MHz/ Span 100.0 MHz CF 38,49996 GHz 2 Marker Table Type Ref Function X-Value 38.50705 GHz Y-Value -30.99 dBm Function Result 46.162882514 MHz

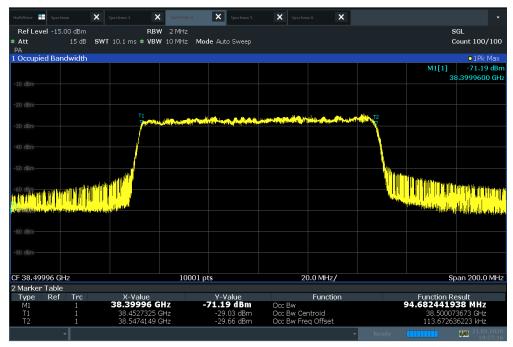
Plot 7-25. Occupied Bandwidth Plot (50MHz BW 1CC QPSK Mid Channel)

FCC ID: A3LAT1K02-A00	PCTEST* Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogg 22 of 256
8K19110701-01.A3L	02/18/2020-03/06/2020	5G Access Unit	Page 32 of 356

17:38:29 03.03.2020

Plot 7-26. Occupied Bandwidth Plot (50MHz BW 1CC 16QAM Mid Channel)

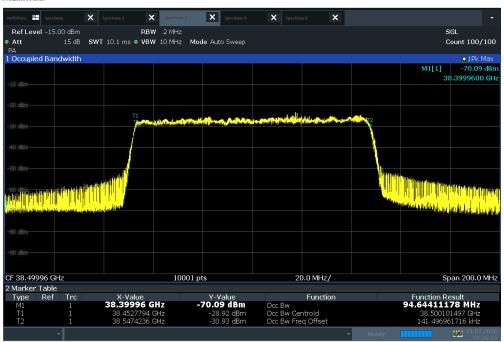
ACLRResults



17:37:13 03.03.2020

Plot 7-27. Occupied Bandwidth Plot (50MHz BW 1CC 64QAM Mid Channel)

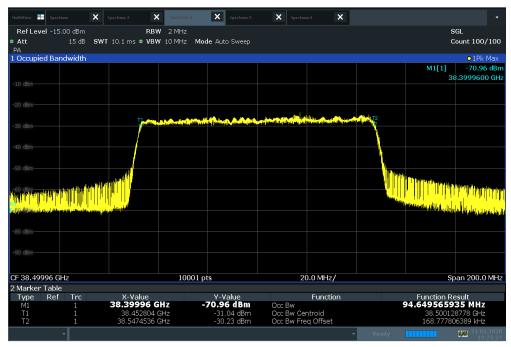
FCC ID: A3LAT1K02-A00	PCTEST* Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 33 of 356
8K19110701-01.A3L	02/18/2020-03/06/2020	5G Access Unit	rage 33 of 330



19:27:17 21.02.2020

Plot 7-28. Occupied Bandwidth Plot (100MHz BW 1CC QPSK Mid Channel)

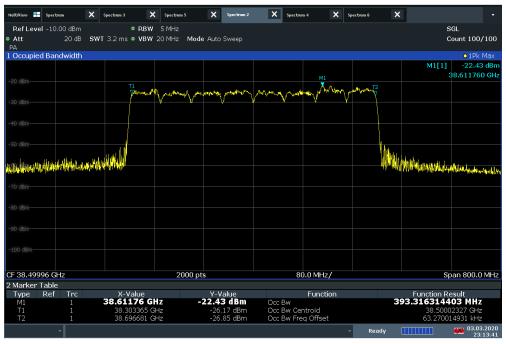
ACLRResults



19:26:35 21.02.2020

Plot 7-29. Occupied Bandwidth Plot (100MHz BW 1CC 16QAM Mid Channel)

FCC ID: A3LAT1K02-A00	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 34 of 356
8K19110701-01.A3L	02/18/2020-03/06/2020	5G Access Unit	rage 34 of 330



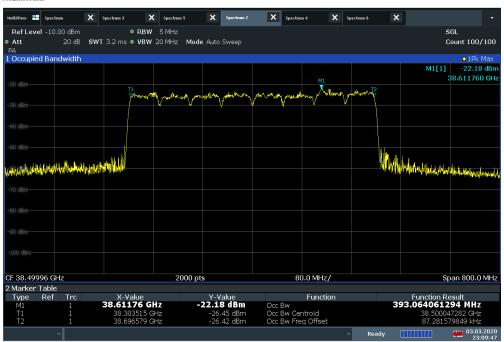
19:25:27 21.02.2020

Plot 7-30. Occupied Bandwidth Plot (100MHz BW 1CC 64QAM Mid Channel)

ACLRResults

Plot 7-31. Occupied Bandwidth Plot (50MHz BW 8CC QPSK Mid Channel)

FCC ID: A3LAT1K02-A00	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 35 of 356
8K19110701-01.A3L	02/18/2020-03/06/2020	5G Access Unit	rage 33 of 330



23:12:09 03.03.2020

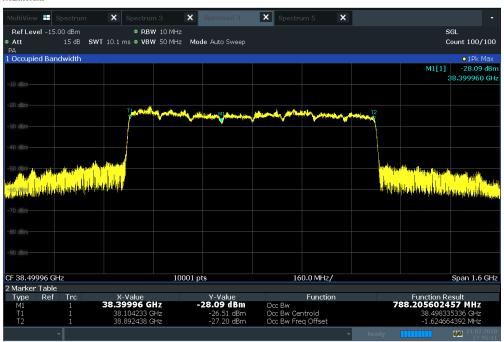
Plot 7-32. Occupied Bandwidth Plot (50MHz BW 8CC 16QAM Mid Channel)

ACLRResults


3:09:47 03.03.2020

Plot 7-33. Occupied Bandwidth Plot (50MHz BW 8CC 64QAM Mid Channel)

FCC ID: A3LAT1K02-A00	PCTEST* Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogg 26 of 256
8K19110701-01.A3L	02/18/2020-03/06/2020	5G Access Unit	Page 36 of 356


ACLRResults

17:32:17 21.02.2020

Plot 7-34. Occupied Bandwidth Plot (100MHz BW 8CC QPSK Mid Channel)

ACLRResults

17:35:41 21.02.2020

Plot 7-35. Occupied Bandwidth Plot (100MHz BW 8CC 16QAM Mid Channe)

FCC ID: A3LAT1K02-A00	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 37 of 356
8K19110701-01.A3L	02/18/2020-03/06/2020	5G Access Unit	rage 37 of 330

17:43:03 21.02.2020

Plot 7-36. Occupied Bandwidth Plot (100MHz BW 8CC 64QAM Mid Channel)

FCC ID: A3LAT1K02-A00	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dags 20 of 256
8K19110701-01.A3L	02/18/2020-03/06/2020	5G Access Unit	Page 38 of 356
© 2020 PCTEST			V9.0 02/01/2019

7.2.4 Antenna D Occupied Bandwidth

Bandwidth [MHz]	Antenna	Chan.	CCs active	Modulation	OBW [MHz]
		Mid	4	QPSK	46.25
50		Mid	4	16QAM	46.20
		Mid	4	64QAM	46.20
		Mid	4	QPSK	94.57
100		Mid	4	16QAM	94.60
		Mid	4	64QAM	94.63
	D	Mid	0-7	QPSK	393.04
50		Mid	0-7	16QAM	393.08
		Mid	0-7	64QAM	392.93
		Mid	0-7	QPSK	787.41
100		Mid	0-7	16QAM	788.19
		Mid	0-7	64QAM	788.30

Table 7-5. Antenna D Occupied Bandwidth Summary Data

Plot 7-37. Occupied Bandwidth Plot (50MHz BW 1CC QPSK Mid Channel)

FCC ID: A3LAT1K02-A00	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 39 of 356
8K19110701-01.A3L	02/18/2020-03/06/2020	5G Access Unit	raye 39 01 330

© 2020 PCTEST

All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

18:14:13 03.03.2020

Plot 7-38. Occupied Bandwidth Plot (50MHz BW 1CC 16QAM Mid Channel)

ACLRResults

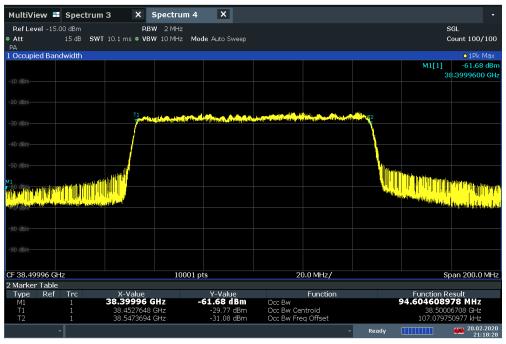
Plot 7-39. Occupied Bandwidth Plot (50MHz BW 1CC 64QAM Mid Channel)


FCC ID: A3LAT1K02-A00	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogg 40 of 256
8K19110701-01.A3L	02/18/2020-03/06/2020	5G Access Unit	Page 40 of 356

© 2020 PCTEST

V9.0 02/01/2019

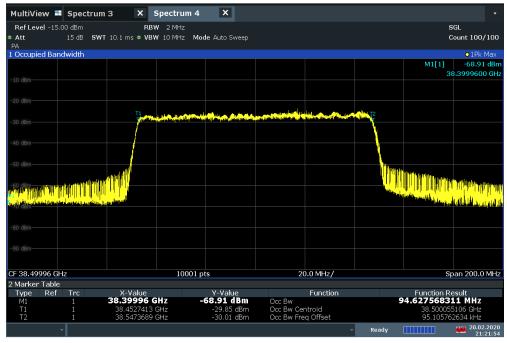
All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.



21:18:06 20.02.2020

Plot 7-40. Occupied Bandwidth Plot (100MHz BW 1CC QPSK Mid Channel)

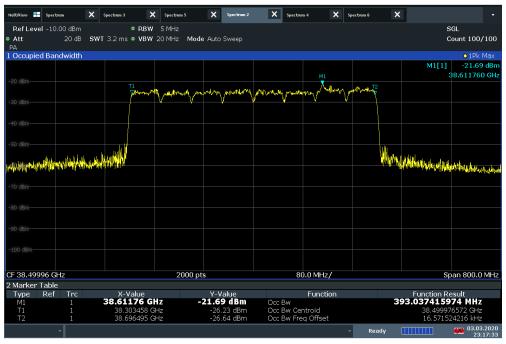
ACLRResults



21:18:28 20.02.2020

Plot 7-41. Occupied Bandwidth Plot (100MHz BW 1CC 16QAM Mid Channel)

FCC ID: A3LAT1K02-A00	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 41 of 356
8K19110701-01.A3L	02/18/2020-03/06/2020	5G Access Unit	Page 41 01 330

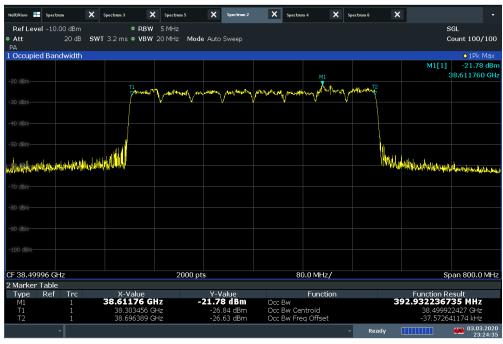


21:21:54 20.02.2020

Plot 7-42. Occupied Bandwidth Plot (100MHz BW 1CC 64QAM Mid Channel)

ACLRResults

Plot 7-43. Occupied Bandwidth Plot (50MHz BW 8CC QPSK Mid Channel)


FCC ID: A3LAT1K02-A00	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 42 of 356
8K19110701-01.A3L	02/18/2020-03/06/2020	5G Access Unit	Fage 42 01 330

Plot 7-44. Occupied Bandwidth Plot (50MHz BW 8CC 16QAM Mid Channel)

ACLRResults

Plot 7-45. Occupied Bandwidth Plot (50MHz BW 8CC 64QAM Mid Channel)

FCC ID: A3LAT1K02-A00	PCTEST* Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 43 of 356
8K19110701-01.A3L	02/18/2020-03/06/2020	5G Access Unit	Fage 45 01 550

11:14:23 05.03.2020

Plot 7-46. Occupied Bandwidth Plot (100MHz BW 8CC QPSK Mid Channel)

ACLRResults

23:06:48 20.02.2020

Plot 7-47. Occupied Bandwidth Plot (100MHz BW 8CC 16QAM Mid Channel)

FCC ID: A3LAT1K02-A00	PCTEST* Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogg 44 of 256
8K19110701-01.A3L	02/18/2020-03/06/2020	5G Access Unit	Page 44 of 356

23:06:48 20.02.2020

Plot 7-48. Occupied Bandwidth Plot (100MHz BW 8CC 64QAM Mid Channel)

FCC ID: A3LAT1K02-A00	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogg 45 of 256
8K19110701-01.A3L	02/18/2020-03/06/2020	5G Access Unit	Page 45 of 356

7.3 Equivalent Isotropic Radiated Power (EIRP) Density §2.1046 §30.202

Test Overview

Equivalent Isotropic Radiated Power (EIRP) measurements are performed using broadband horn antennas. All measurements are performed as RMS average measurements while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies.

The average power of the sum of all antenna elements is limited to an equivalent isotopically radiated power (EIRP) density of +75dBm/100 MHz.

Test Procedures Used

ANSI C63.26-2015 Section 5.2.4.4.1 ANSI C63.26-2015 Section 6.4

Test Settings

- 1. Radiated power measurements are performed using the signal analyzer's "channel power" measurement capability for signals with continuous operation.
- 2. RBW = 1 5% of the expected OBW
- 3. VBW \geq 3 x RBW
- 4. Span = 2x to 3x the OBW
- 5. No. of sweep points $\geq 2 \times \text{span} / \text{RBW}$
- 6. Detector = RMS
- 7. The integration bandwidth was roughly set equal to the measured (EIRP) Density of the signal for signals with continuous operation. For signals with burst transmission, the "gating" function was enabled to ensure that measurements are performed during times in which the transmitter is operating at its maximum power
- 8. Trace mode = trace averaging (RMS) over 100 sweeps
- 9. The trace was allowed to stabilize

FCC ID: A3LAT1K02-A00	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 46 of 256
8K19110701-01.A3L	02/18/2020-03/06/2020	5G Access Unit	Page 46 of 356

2020 PCTEST

V9.0 02/01/2019

It rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and

Test Notes

- 1) The EUT was tested while positioned upright and mounted on a mast at 1.5m height. The worst case emissions are reported with the EUT in this fixed position and with the modulations and active component carriers shown in the tables below.
- 2) The EIRP measurements of the co-polarized antenna arrays (Antenna A/C and Antenna B/D) were added together to address MIMO concerns referenced in ANSI C36.26-2015 Section 6.4.
- 3) Elements within the same antenna array are correlated to produce beamforming array gain.
- 4) Measurements were taken in the far field of the mmWave signal based on the formula: $R \ge 2D^2/w$ avelength.
- 5) The test case with 1 CC and 8 CC active, was selected for the worst case emission testing as it created the highest EIRP within 50MHz and 100MHz bandwidth.
- 6) Per the guidance of ANSI/TIA-603-E-2016, a half-wave dipole is then substituted in place of the EUT. For emissions above 1GHz, a horn antenna is substituted in place of the EUT. The substitute antenna is driven by a signal generator with the level of the signal generator being adjusted to obtain the same receive spectrum analyzer level previously recorded from the spurious emission from the EUT. The power of the emission is calculated using the following formula:

$$P_{d [dBm]} = P_{g [dBm]} - cable loss [dB] + antenna gain [dBd/dBi]$$

Where, P_d is the dipole equivalent power, P_g is the generator output into the substitution antenna, and the antenna gain is the gain of the substitute antenna used relative to either a half-wave dipole (dBd) or an isotropic source (dBi). The substitute level is equal to P_g [dBm] – cable loss [dB].

7) The average EIRP reported below is calculate per formula specified in d) of ANSI C63.26-2015 Section 5.2.7:

EIRP (dBm) = E (dBuV/m) + $20\log(D) - 104.8$; where D is the measurement distance (in the far field region) in m.

For this section, all EIRP density measurements were performed at a distance of 2.61m, so, the effective correction is:

EIRP (dBm) = E (dBuV/m) - 96.46dB

= Analyzer Level (dBm) + AFCL (dB/m) + 107 dB - 96.46 dB

= Analyzer Level (dBm) + AFCL (dB/m) + 10.53

*AFCL (dB/m) contains measurement antenna factor(dB/m) and cable loss(dB) as below:

Freq [GHz]	Antenna Factor [dB/m]	Cable loss [dB]	AFCL [dB]
37.05	48.54	8.68	57.22
38.50	48.8	8.37	57.17
39.95	49.15	9.80	58.95

Table 7-6. Adopted AFCL value in the calculation

FCC ID: A3LAT1K02-A00	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dog 47 of 256
8K19110701-01.A3L	02/18/2020-03/06/2020	5G Access Unit	Page 47 of 356

8) For channel bandwidths less than 100 MHz BW the EIRP must be reduced proportionally and linealy based on the bandwidth relative to 100 MHz accroding to §30.202 Power limits.

For 50MHz BW operation RBW scaling factor, Scailing Factor (dB) = $10log(BW_1/BW_2)$ = 10 * log(100/50)= 3.01 dB

9) The angle of the horn antenna was rotated to maximize and find the worst case emissions. Worst case EIRP is reported below.

FCC ID: A3LAT1K02-A00	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 48 of 356
8K19110701-01.A3L	02/18/2020-03/06/2020	5G Access Unit	Page 46 01 330

7.3.1 Antenna A EIRP Density

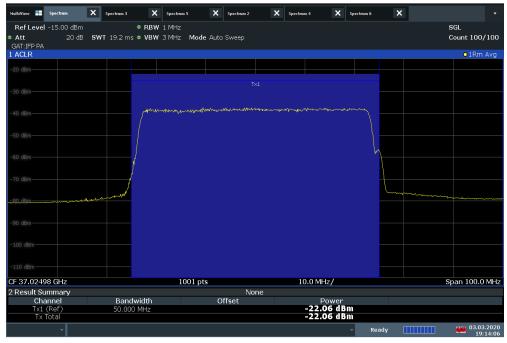
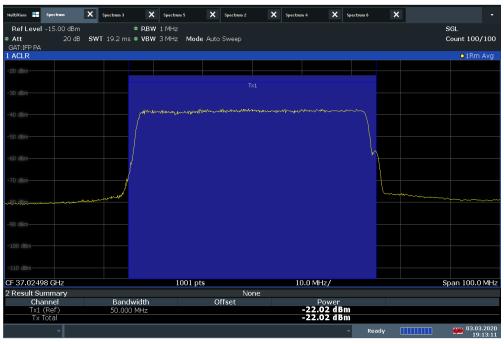

Antenna	Bandwidth	Channel	CCs active	Modulation	Horn Angle	Horn Height	Turntable Azimuth	Analyzer Level	AFCL	Average e.i.r.p. PSD	PSD Limit	Margin
	[MHz]				[degrees]	[cm]	[degrees]	[dBm]	[dB/m]	[dBm/100MHz]	[dBm/100MHz]	[dB]
		Low	0	QPSK	135.0	155	7	-22.06	57.22	48.70	75.00	-29.31
	50	Low	0	16QAM	135.0	155	7	-22.02	57.22	48.74	75.00	-29.27
		Low	0	64QAM	135.0	155	7	-22.03	57.22	48.73	75.00	-29.28
		Low	0	QPSK	135.0	155	7	-18.81	57.22	48.94	75.00	-26.06
	100	Low	0	16QAM	135.0	155	7	-18.86	57.22	48.89	75.00	-26.11
		Low	0	64QAM	135.0	155	7	-18.89	57.22	48.86	75.00	-26.14
		Mid	4	QPSK	135.0	155	7	-22.01	57.17	48.70	75.00	-29.31
	50	Mid	4	16QAM	135.0	155	7	-22.00	57.17	48.71	75.00	-29.30
		Mid	4	64QAM	135.0	155	7	-21.99	57.17	48.72	75.00	-29.29
		Mid	4	QPSK	135.0	155	7	-19.30	57.17	48.40	75.00	-26.60
	100	Mid	4	16QAM	135.0	155	7	-19.24	57.17	48.46	75.00	-26.54
		Mid	4	64QAM	135.0	155	7	-19.21	57.17	48.49	75.00	-26.51
		High	7	QPSK	135.0	155	7	-22.86	58.95	49.63	75.00	-28.38
	50	High	7	16QAM	135.0	155	7	-22.92	58.95	49.57	75.00	-28.44
		High	7	64QAM	135.0	155	7	-22.97	58.95	49.52	75.00	-28.49
		High	7	QPSK	135.0	155	7	-19.55	58.95	49.93	75.00	-25.07
	100	High	7	16QAM	135.0	155	7	-19.55	58.95	49.93	75.00	-25.07
		High	7	64QAM	135.0	155	7	-19.67	58.95	49.81	75.00	-25.19
		Low	0-7	QPSK	135.0	155	7	-24.49	57.22	46.27	75.00	-31.74
	50	Low	0-7	16QAM	135.0	155	7	-24.37	57.22	46.39	75.00	-31.62
		Low	0-7	64QAM	135.0	155	7	-24.38	57.22	46.38	75.00	-31.63
	100	Low	0-7	QPSK	135.0	155	7	-24.51	57.22	43.24	75.00	-31.76
		Low	0-7	16QAM	135.0	155	7	-24.49	57.22	43.26	75.00	-31.74
		Low	0-7	64QAM	135.0	155	7	-24.47	57.22	43.28	75.00	-31.72
		Mid	0-7	QPSK	135.0	155	7	-23.93	57.17	46.78	75.00	-31.23
	50	Mid	0-7	16QAM	135.0	155	7	-23.93	57.17	46.78	75.00	-31.23
		Mid	0-7	64QAM	135.0	155	7	-23.95	57.17	46.76	75.00	-31.25
Α		Mid	0-7	QPSK	135.0	155	7	-23.46	57.17	44.24	75.00	-30.76
	100	Mid	0-7	16QAM	135.0	155	7	-23.51	57.17	44.19	75.00	-30.81
	100	Mid	0-7	64QAM	135.0	155	7	-23.55	57.17	44.15	75.00	-30.85
		High	0-7	QPSK	135.0	155	7	-24.56	58.95	47.93	75.00	-30.08
	50	High	0-7	16QAM	135.0	155	7	-24.56	58.95	47.93	75.00	-30.08
		High	0-7	64QAM	135.0	155	7	-24.60	58.95	47.89	75.00	-30.12
		High	0-7	QPSK	135.0	155	7	-24.30	58.95	45.18	75.00	-29.82
	100	High	0-7	16QAM	135.0	155	7	-24.33	58.95	45.15	75.00	-29.85
	100	High	0-7	64QAM	135.0	155	7	-24.36	58.95	45.12	75.00	-29.88
		Low	0-7(NC)	QPSK	135.0	155	7	-23.15	57.22	47.61	75.00	-30.40
	50	Low	0-7(NC)	16QAM	135.0	155	7	-23.11	57.22	47.65	75.00	-30.36
	30	Low	0-7(NC)	64QAM	135.0	155	7	-23.11	57.22	47.66	75.00	-30.35
		Low	0-7(NC)	QPSK	135.0	155	7	-24.19	57.22	43.56	75.00	-31.44
	100	Low	0-7(NC)	16QAM	135.0	155	7	-24.19	57.22	43.43	75.00	-31.44
	100	Low	0-7(NC)	64QAM	135.0	155	7	-24.32 -24.33	57.22	43.43	75.00	-31.57
	50	Mid	0-7(NC)	QPSK	135.0	155	7	-24.33	57.22	47.20	75.00	-30.81
		Mid	0-7(NC)	16QAM	135.0	155	7	-23.49	57.17	47.22	75.00	-30.79
		Mid	0-7(NC)	64QAM	135.0	155	7	-23.49	57.17	47.27	75.00	-30.79
		Mid		QPSK	135.0		7					-30.74
	100	Mid	0-7(NC)	16QAM		155	7	-24.41 -24.42	57.17	43.29 43.28	75.00	-31.71
		Mid	0-7(NC) 0-7(NC)	64QAM	135.0 135.0	155 155	7	-24.42 -24.31	57.17 57.17	43.28	75.00 75.00	-31.72 -31.61
		High	0-7(NC)	QPSK	135.0	155	7	-22.96	58.95	49.53	75.00	-28.48
	50	High	0-7(NC)	16QAM	135.0	155	7	-22.99	58.95	49.50	75.00	-28.51
		High	0-7(NC)	64QAM	135.0	155	7	-22.96	58.95	49.53	75.00	-28.48
	4	High	0-7(NC)	QPSK	135.0	155	7	-24.17	58.95	45.31	75.00	-29.69
	100	High	0-7(NC)	16QAM	135.0	155	7	-24.17	58.95	45.31	75.00	-29.69
		High	0-7(NC)	64QAM	135.0	155	7	-24.16	58.95	45.32	75.00	-29.68

Table 7-7. Antenna A Power Density Summary Data

FCC ID: A3LAT1K02-A00	PCTEST* Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 49 of 356
8K19110701-01.A3L	02/18/2020-03/06/2020	5G Access Unit	Page 49 01 330


ACLRResults

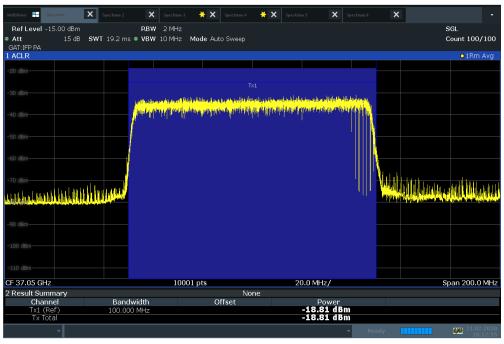
19:14:07 03.03.2020

Plot 7-49. Antenna A EIRP Density Plot (50MHz BW 1CC QPSK Low Channel)


19:13:12 03.03.2020

Plot 7-50. Antenna A EIRP Density Plot (50MHz BW 1CC 16QAM Low Channel)

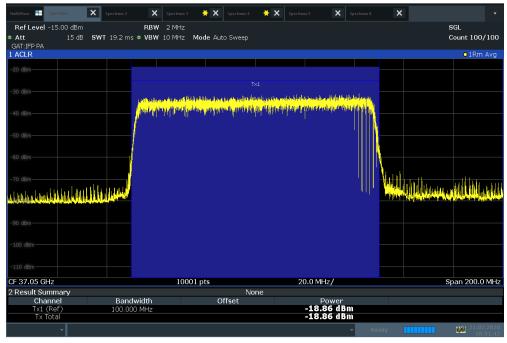
FCC ID: A3LAT1K02-A00	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 50 of 356
8K19110701-01.A3L	02/18/2020-03/06/2020	5G Access Unit	rage 50 of 550


ACLRResults

19:12:20 03.03.2020

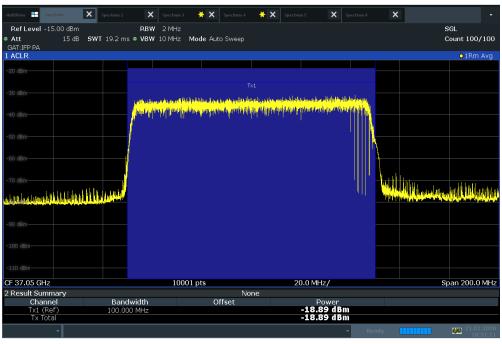
Plot 7-51. Antenna A EIRP Density Plot (50MHz BW 1CC 64QAM Low Channel)

ACLRResults


18:52:36 21.02.2020

Plot 7-52. Antenna A EIRP Density Plot (100MHz BW 1CC QPSK Low Channel)

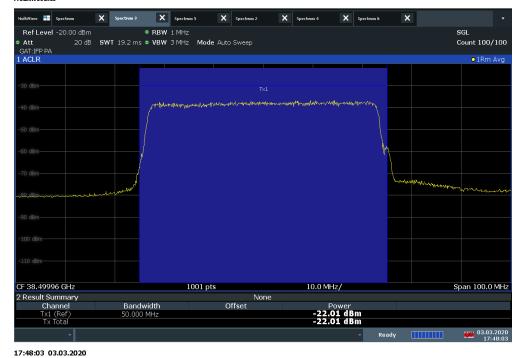
FCC ID: A3LAT1K02-A00	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 51 of 356
8K19110701-01.A3L	02/18/2020-03/06/2020	5G Access Unit	Fage 51 01 330



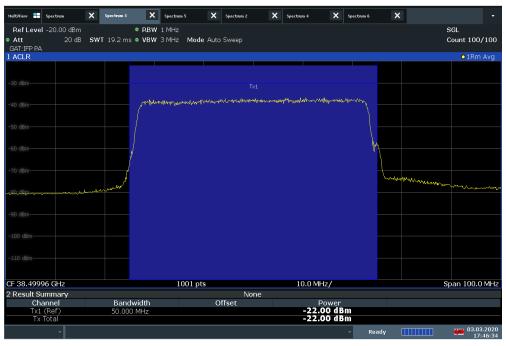
18:51:42 21.02.2020

Plot 7-53. Antenna A EIRP Density Plot (100MHz BW 1CC 16QAM Low Channel)

ACLRResults

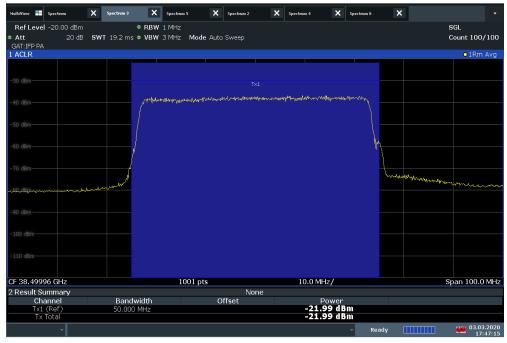

18:51:12 21.02.2020

Plot 7-54. Antenna A EIRP Density Plot (100MHz BW 1CC 64QAM Low Channel)


FCC ID: A3LAT1K02-A00	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 52 of 356
8K19110701-01.A3L	02/18/2020-03/06/2020	5G Access Unit	rage 32 of 330

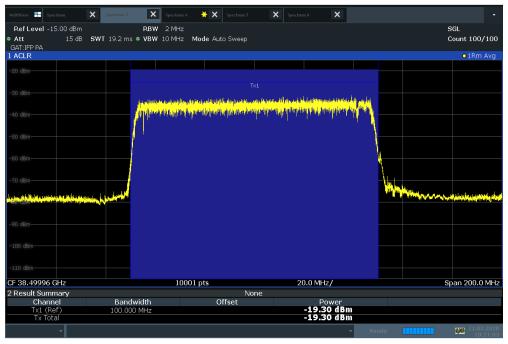
ACLRResults

Plot 7-55. Antenna A EIRP Density Plot (50MHz BW 1CC QPSK Mid Channel)



Plot 7-56. Antenna A EIRP Density Plot (50MHz BW 1CC 16QAM Mid Channel)

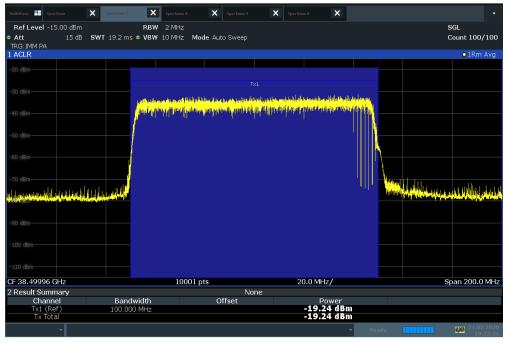
FCC ID: A3LAT1K02-A00	PCTEST* Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 53 of 356
8K19110701-01.A3L	02/18/2020-03/06/2020	5G Access Unit	rage 55 of 556


ACLRResults

17:47:16 03.03.2020

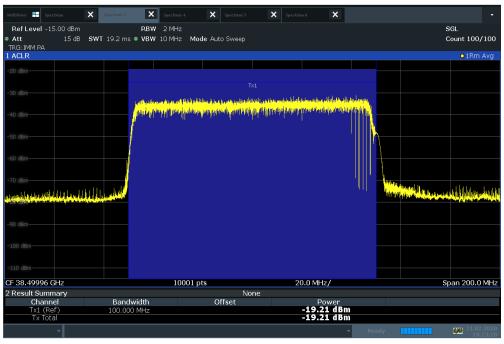
Plot 7-57. Antenna A EIRP Density Plot (50MHz BW 1CC 64QAM Mid Channel)

ACLRResults


19:21:03 21.02.2020

Plot 7-58. Antenna A EIRP Density Plot (100MHz BW 1CC QPSK Mid Channel)

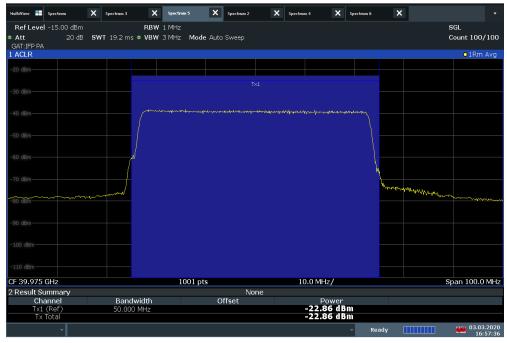
FCC ID: A3LAT1K02-A00	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 54 of 356
8K19110701-01.A3L	02/18/2020-03/06/2020	5G Access Unit	Fage 54 01 350


ACLRResults

19:22:34 21.02.2020

Plot 7-59. Antenna A EIRP Density Plot (100MHz BW 1CC 16QAM Mid Channel)

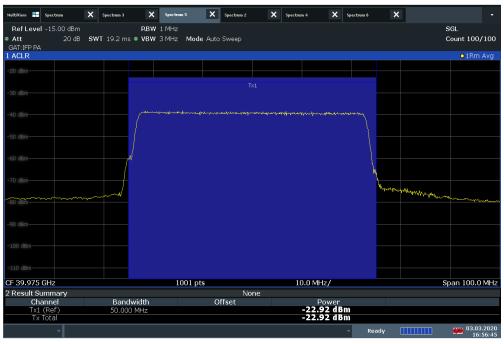
ACLRResults



19:23:20 21.02.2020

Plot 7-60. Antenna A EIRP Density Plot (100MHz BW 1CC 64QAM Mid Channel)

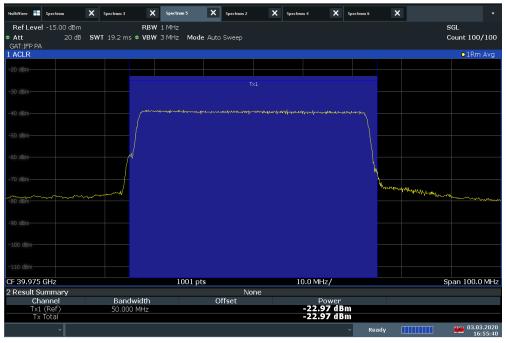
FCC ID: A3LAT1K02-A00	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 55 of 356
8K19110701-01.A3L	02/18/2020-03/06/2020	5G Access Unit	rage 55 of 550



16:57:37 03.03.2020

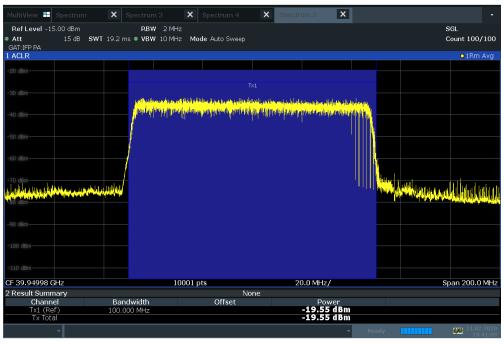
Plot 7-61. Antenna A EIRP Density Plot (50MHz BW 1CC QPSK High Channel)

ACLRResults


16:56:45 03.03.2020

Plot 7-62. Antenna A EIRP Density Plot (50MHz BW 1CC 16QAM High Channel)

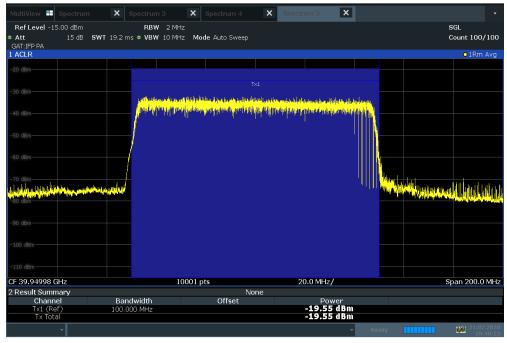
FCC ID: A3LAT1K02-A00	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 56 of 356
8K19110701-01.A3L	02/18/2020-03/06/2020	5G Access Unit	rage 50 of 550


ACLRResults

16:55:40 03.03.2020

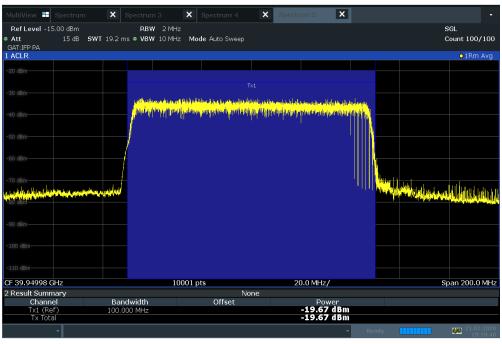
Plot 7-63. Antenna A EIRP Density Plot (50MHz BW 1CC 64QAM High Channel)

ACLRResults


19:41:09 21.02.2020

Plot 7-64. Antenna A EIRP Density Plot (100MHz BW 1CC QPSK High Channel)

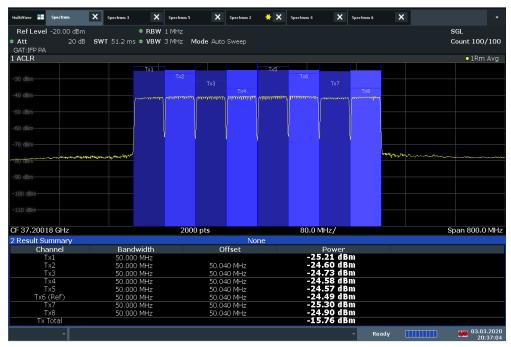
FCC ID: A3LAT1K02-A00	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 57 of 356
8K19110701-01.A3L	02/18/2020-03/06/2020	5G Access Unit	rage of 01 330


ACLRResults

19:40:24 21.02.2020

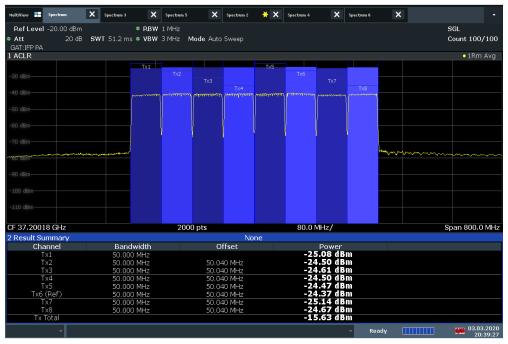
Plot 7-65. Antenna A EIRP Density Plot (100MHz BW 1CC 16QAM High Channel)

ACLRResults


19:39:41 21.02.2020

Plot 7-66. Antenna A EIRP Density Plot (100MHz BW 1CC 64QAM High Channel)

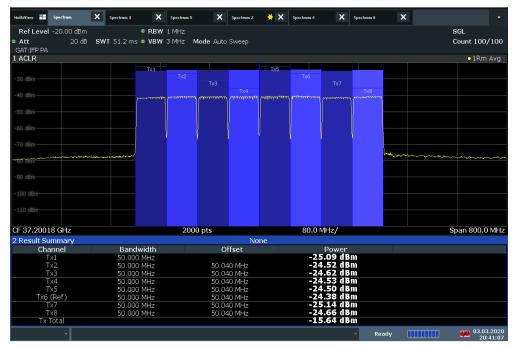
FCC ID: A3LAT1K02-A00	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 50 of 256
8K19110701-01.A3L	02/18/2020-03/06/2020	5G Access Unit	Page 58 of 356



ACLRResults

20:37:04 03.03.2020

Plot 7-67. Antenna A EIRP Density Plot (50MHz BW 8CC QPSK Low Channel)


20:39:28 03.03.2020

Plot 7-68. Antenna A EIRP Density Plot (50MHz BW 8CC 16QAM Low Channel)

FCC ID: A3LAT1K02-A00	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 50 of 256
8K19110701-01.A3L	02/18/2020-03/06/2020	5G Access Unit		Page 59 of 356
© 2020 PCTEST				V9.0 02/01/2019


ACLRResults

20:41:08 03.03.2020

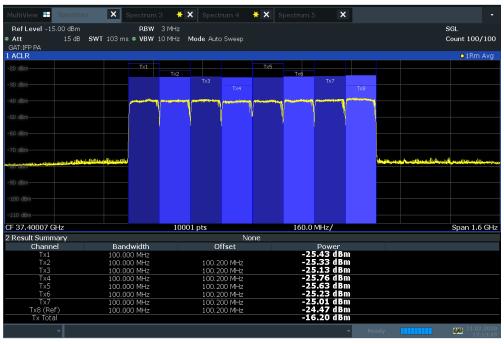
Plot 7-69. Antenna A EIRP Density Plot (50MHz BW 8CC 64QAM Low Channel)

ACLRResults

17:09:01 21.02.2020

Plot 7-70. Antenna A EIRP Density Plot (100MHz BW 8CC QPSK Low Channel)

FCC ID: A3LAT1K02-A00	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 60 of 256
8K19110701-01.A3L	02/18/2020-03/06/2020	5G Access Unit	Page 60 of 356


ACLRResults

17:11:20 21.02.2020

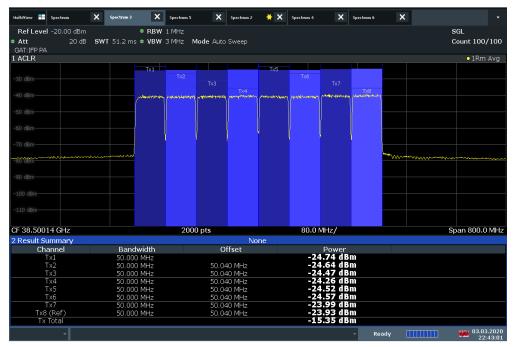
Plot 7-71. Antenna A EIRP Density Plot (100MHz BW 8CC 16QAM Low Channel)

ACLRResults

17:13:49 21.02.2020

Plot 7-72. Antenna A EIRP Density Plot (100MHz BW 8CC 64QAM Low Channel)

FCC ID: A3LAT1K02-A00	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogg 64 of 256
8K19110701-01.A3L	02/18/2020-03/06/2020	5G Access Unit	Page 61 of 356


© 2020 PCTEST

V9.0 02/01/2019

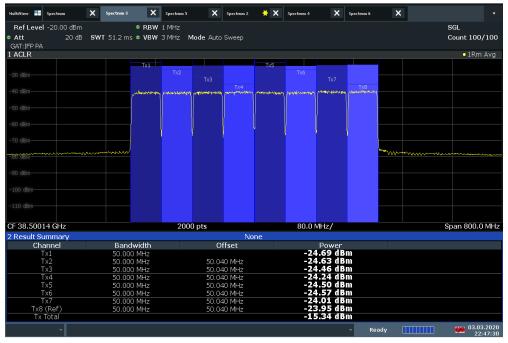
All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

ACLRResults

22:43:02 03.03.2020

Plot 7-73. Antenna A EIRP Density Plot (50MHz BW 8CC QPSK Mid Channel)

ACLRResults


22:44:57 03.03.2020

Plot 7-74. Antenna A EIRP Density Plot (50MHz BW 8CC 16QAM Mid Channel)

FCC ID: A3LAT1K02-A00	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 62 of 356
8K19110701-01.A3L	02/18/2020-03/06/2020	5G Access Unit	Fage 62 01 330

ACLRResults

22:47:31 03.03.2020

Plot 7-75. Antenna A EIRP Density Plot (50MHz BW 8CC 64QAM Mid Channel)

ACLRResults

18:03:12 21.02.2020

Plot 7-76. Antenna A EIRP Density Plot (100MHz BW 8CC QPSK Mid Channel)

FCC ID: A3LAT1K02-A00	Proud to be part of @ element	MEASUREMENT REPORT (CERTIFICATION)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 63 of 356
8K19110701-01.A3L	02/18/2020-03/06/2020	5G Access Unit	rage 03 of 330