

PCTEST KOREA CO., LTD.

(#1407) 13, Heungdeok 1-ro, Giheung-gu, Yongin-si, Gyeonggi-do 16954, Korea Tel. +82 31.660.7319 / Fax +82 31.660.7918 http://www.pctest.com

MEASUREMENT REPORT FCC Part 30 5G mmWave

Applicant Name:

Samsung Electronics Co., Ltd. 129, Samsimg-ro, Yeongtong-gu, Suwon-si Gyeonggi-do, 16677, Korea Date of Testing: 10/27/2020 – 11/18/2020 Test Site/Location: PCTEST KOREA Lab. Yongin-si, Gyeonggi-do, Korea Test Report Serial No.: 8K20092801-02-R4.A3L

FCC ID:A3LAT1K01-A10APPLICANT:Samsung Electronics Co., Ltd.

Application Type:	Class II Permissive Change
Model:	AT1K01-A10
EUT Type:	AU(AT1K01)
FCC Classification:	Part 30 Fixed Transmitter (5GB)
Test Procedure(s):	ANSI C63.26-2015, KDB 971168 D01 v03r01,
	KDB 842590 D01 v01r01

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in §2.947. Test results reported herein relate only to the item(s) tested.

This revised Test Report (S/N: 8K20092801-02-R4.A3L) supersedes and replaces the previously issued test report (S/N: 8K20092801-02-R3.A3L) on the same subject device for the same type of testing as indicated. Please discard or destroy the previously issued test report(s) and dispose of it accordingly.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

Prepared by

Reviewed by

FCC ID: A3LAT1K01-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dege 1 of 200
8K20092801-02-R4.A3L	10/27/2020-11/18/2020	AU(AT1K01)	Page 1 of 322
© 2020 PCTEST.	•		PK-QP-16-09 Rev.02

TABLE OF CONTENTS

1.0	INTR	ODUCTION	5
	1.1	Scope	5
	1.2	PCTEST KOREA Test Location	5
	1.3	Test Facility / Accreditations	5
2.0	PRO	DUCT INFORMATION	6
	2.1	Equipment Description	6
	2.2	Device Capabilities	6
	2.3	Test Configuration	6
	2.4	EMI Suppression Device(s)/Modifications	6
3.0	DESC	CRIPTION OF TESTS	7
	3.1	Measurement Procedure	7
	3.2	Radiated Power and Radiated Spurious Emissions	7
4.0	MEAS	SUREMENT UNCERTAINTY	10
5.0	TEST	EQUIPMENT CALIBRATION DATA	11
6.0	SAMF	PLE CALCULATIONS	12
7.0	TEST	RESULTS	13
	7.1	Summary	13
	7.2	Occupied Bandwidth	14
	7.3	Equivalent Isotropic Radiated Power (EIRP) Density	31
	7.4	RF Conducted Output Power	112
	7.5	Radiated Spurious and Harmonic Emissions	118
	7.6	Band Edge Emissions	286
	7.7	Frequency Stability / Temperature Variation	314
8.0	CON	CLUSION	317
9.0	APPE	NDIX A	318
	9.1	HARMONIC MIXER Verification Certificate	318
10.0	APPE	NDIX B	321
	10.1	Introduction (KDB 484596 Section 3 a)	321
	10.2	Explain the Differences (KDB 484596 Section 3 b)	321
	10.3	Spot Check Verification Data (KDB 484596 Section 3 c)	321
	10.4	Reference Section (KDB 484596 Section 3 d)	322

FCC ID: A3LAT1K01-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		
8K20092801-02-R4.A3L	10/27/2020-11/18/2020	AU(AT1K01)		raye 2 01 322
O ANAL DOTEOT				DIC OD 40.00 D

						EIRP [EIRP Density		
Antenna	Bandwidth (MHz)	CCs Active	Band	FCC Rule Part	Tx Frequency (MHz)	Max. Power (W/100MHz)	Max. Power (dBm/100MHz)	Emission Designator	Modulation
А	50	1	n261	30	27500 - 28350	85.21	49.30	46M5G7D	QPSK
А	50	1	n261	30	27500 - 28350	85.59	49.32	46M5W7D	16QAM
А	50	1	n261	30	27500 - 28350	86.42	49.37	46M4W7D	64QAM
A	50	2	n261	30	27500 - 28350	87.19	49.40	95M4G7D	QPSK
А	50	2	n261	30	27500 - 28350	87.30	49.41	95M5W7D	16QAM
А	50	2	n261	30	27500 - 28350	88.68	49.48	95M4W7D	64QAM
В	50	1	n261	30	27500 - 28350	76.09	48.81	46M3G7D	QPSK
В	50	1	n261	30	27500 - 28350	76.33	48.83	46M4W7D	16QAM
В	50	1	n261	30	27500 - 28350	76.94	48.86	46M6W7D	64QAM
В	50	2	n261	30	27500 - 28350	74.18	48.70	95M5G7D	QPSK
В	50	2	n261	30	27500 - 28350	76.08	48.81	95M4W7D	16QAM
В	50	2	n261	30	27500 - 28350	77.23	48.88	95M5W7D	64QAM
С	50	1	n261	30	27500 - 28350	81.45	49.11	46M4G7D	QPSK
С	50	1	n261	30	27500 - 28350	76.32	48.83	46M4W7D	16QAM
С	50	1	n261	30	27500 - 28350	77.98	48.92	46M4W7D	64QAM
С	50	2	n261	30	27500 - 28350	83.22	49.20	95M5G7D	QPSK
С	50	2	n261	30	27500 - 28350	81.53	49.11	95M5W7D	16QAM
С	50	2	n261	30	27500 - 28350	81.04	49.09	95M6W7D	64QAM
D	50	1	n261	30	27500 - 28350	73.64	48.67	46M5G7D	QPSK
D	50	1	n261	30	27500 - 28350	72.67	48.61	46M5W7D	16QAM
D	50	1	n261	30	27500 - 28350	73.35	48.65	46M7W7D	64QAM
D	50	2	n261	30	27500 - 28350	76.50	48.84	95M6G7D	QPSK
D	50	2	n261	30	27500 - 28350	76.48	48.84	95M4W7D	16QAM
D	50	2	n261	30	27500 - 28350	76.58	48.84	95M6W7D	64QAM

EUT Overview for Antenna A, B, C, and D

FCC ID: A3LAT1K01-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 2 of 222
8K20092801-02-R4.A3L	10/27/2020-11/18/2020	AU(AT1K01)	Fage 5 01 322
			DI/ OD 10 00 D 00

								500		EIRP [Density		
Antenna	Bandwidth (MHz)	CCs Active	Band	Rule Part	Tx Frequency (MHz)	Max. Power (W/100MHz)	Max. Power (dBm/100MHz)	Emission Designator	Modulation				
A+C	50	1	n261	30	27500 - 28350	166.66	52.22	46M5G7D	QPSK				
A+C	50	1	n261	30	27500 - 28350	161.90	52.09	46M5W7D	16QAM				
A+C	50	1	n261	30	27500 - 28350	164.39	52.16	46M4W7D	64QAM				
A+C	50	2	n261	30	27500 - 28350	170.17	52.31	95M5G7D	QPSK				
A+C	50	2	n261	30	27500 - 28350	168.31	52.26	95M5W7D	16QAM				
A+C	50	2	n261	30	27500 - 28350	169.71	52.30	95M6W7D	64QAM				
B+D	50	1	n261	30	27500 - 28350	149.73	51.75	46M5G7D	QPSK				
B+D	50	1	n261	30	27500 - 28350	149.00	51.73	46M5W7D	16QAM				
B+D	50	1	n261	30	27500 - 28350	150.29	51.77	46M7W7D	64QAM				
B+D	50	2	n261	30	27500 - 28350	150.68	51.78	95M6G7D	QPSK				
B+D	50	2	n261	30	27500 - 28350	152.46	51.83	95M4W7D	16QAM				
B+D	50	2	n261	30	27500 - 28350	153.81	51.87	95M6W7D	64QAM				

EUT Overview for Antenna A + C and B + D

				500		EIRP [Density		
Antenna	Bandwidth (MHz)	CCs Active	Band	Rule Part	Tx Frequency (MHz)	Max. Power (W/100MHz)	Max. Power (dBm/100MHz)	Emission Designator	Modulation
A+B+C+D	50	1	n261	30	27500 - 28350	316.39	55.00	46M5G7D	QPSK
A+B+C+D	50	1	n261	30	27500 - 28350	310.91	54.93	46M5W7D	16QAM
A+B+C+D	50	1	n261	30	27500 - 28350	314.68	54.98	46M4W7D	64QAM
A+B+C+D	50	2	n261	30	27500 - 28350	320.85	55.06	95M5G7D	QPSK
A+B+C+D	50	2	n261	30	27500 - 28350	319.89	55.05	95M5W7D	16QAM
A+B+C+D	50	2	n261	30	27500 - 28350	317.14	55.01	95M6W7D	64QAM

EUT Overview for Antenna A + B + C + D

FCC ID: A3LAT1K01-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 4 of 222	
8K20092801-02-R4.A3L	10/27/2020-11/18/2020	AU(AT1K01)	Page 4 01 322	

1.0 INTRODUCTION

1.1 Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Innovation, Science and Economic Development Canada.

1.2 PCTEST KOREA Test Location

These measurement tests were conducted at the PCTEST KOREA CO., LTD. facility located at (#1407) 13, Heungdeok 1-ro, Giheung-gu, Yongin-si, Gyeonggi-do 16954, Korea.

1.3 Test Facility / Accreditations

Measurements were performed at PCTEST KOREA Lab located in Yongin-si, Gyeonggi, Korea.

- PCTEST KOREA is an ISO 17025:2005 accredited test facility under the National Institute of Standards and Technology (NIST) with Certificate number 600143-0 for Specific Absorption Rate (SAR), where applicable, and Electromagnetic Compatibility (EMC) testing for FCC and Innovation, Science, and Economic Development Canada rules.
- PCTEST KOREA facility is accredited and designated in accordance with the provision of Radio Wave Act and International Standard ISO/IEC 17025:2017 under the National Radio Research Agency.
 - Designation Number: KR0169
 - Test Firm Registration Number: 417945

FCC ID: A3LAT1K01-A10		MEASUREMENT REPORT (Class II Permissive Change)	MSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage E of 200
8K20092801-02-R4.A3L	10/27/2020-11/18/2020	AU(AT1K01)		Page 5 01 322
© 2020 PCTEST.				PK-QP-16-09 Rev.02

2.0 PRODUCT INFORMATION

2.1 Equipment Description

The Equipment Under Test (EUT) is the **Samsung 5G Access Unit FCC ID: A3LAT1K01-A10**. The test data contained in this report pertains only to the emissions due to the EUT's 5G mmWave function.

The EUT supports both 50 MHz bandwidth and 100 MHz bandwidth. The EUT supports multiple and mixed component carrier configuration which also supports for contiguous and non-contiguous transmit condition.

The present document shall be constructed per the guidelines found in KDB 484596 D01 "Referencing Test Data" v01 which can be referred from 10.0 Appendix KDB 484596.

The EUT operates as a 4X4 MIMO system that consists of four antenna arrays (denoted herein as "Antenna A", "Antenna B", "Antenna C" and "Antenna D". Each of the four antenna arrays has 256 antenna elements for a total of 1024 antenna elements. Of the 4 antenna arrays, Antenna A and Antenna C have the same polarization (135 degrees from horizontal) and Antenna B and Antenna D have the same polarization (45 degrees from horizontal). Beamforming is used with Antenna A and Antenna C and it is also used with Antenna B and Antenna D. Signal correlation is possible between the outputs of all four antenna arrays.

The unit is powered by a nominal DC voltage source.

See Section 3.2 for the antenna polarization of the 5G Access Unit and the measurement antenna.

Test Device Serial No.: S616125025

2.2 Device Capabilities

This device contains the following capabilities:

5G NR (n261) with multiple configurations of operation as below: 50 MHz bandwidth with 1 or 2 component carrier. 100 MHz bandwidth with 1 to 8 component carrier Variation of 50 MHz bandwidth + 100 MHz mixed component carrier. The device is supports QPSK, 16QAM, and 64QAM of CP-OFDM.

2.3 Test Configuration

The EUT was tested per the guidance of KDB 842590 D01 v01r01 and ANSI C63.26-2015. See Section 7.0 of this test report for a description of the radiated tests.

2.4 EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and no modifications were made during testing.

FCC ID: A3LAT1K01-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage C of 222	
8K20092801-02-R4.A3L	10/27/2020-11/18/2020	AU(AT1K01)	Page 6 of 322	
© 2020 PCTEST.			PK-QP-16-09 Rev.02	

3.0 DESCRIPTION OF TESTS

3.1 Measurement Procedure

The measurement procedures described in the document titled "American National Standard for Compliance Testing of Transmitter Used in Licensed Radio Service" (ANSI C63.26-2015) and the guidance provided in KDB 842590 D01 v01r01 were used in the measurement of the EUT.

3.2 Radiated Power and Radiated Spurious Emissions

<u>§30.202, §30.203</u>

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for Final measurement and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. The test site inside the chamber is a $8.5 \text{ m}(L) \times 6.1 \text{ m}(W) \times 5.6 \text{ m}(H)$ elliptical, obstruction-free area in accordance with Figure 5.7 of Clause 5 in ANSI C63.4-2014. Absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections for measurements above 1 GHz. For measurements below 1 GHz, the absorbers are removed. A raised turntable is used for radiated measurement. The turn table is a continuously rotatable, remote-controlled, metallic turntable and 2 meters (6.56 ft.) in diameter. The turn table is flush with the raised floor of the chamber in order to maintain its function as a ground plane. An 80 cm tall test table made of Styrodur is placed on top of the turn table. A Styrodur pedestal is placed on top of the test table to bring the total table height to 1.5 m.

Made of Styrodur is placed on top of the turn table. A Styrodur pedestal is placed on top of the test table to bring the total table height to 1.5 m for measurements above 1 GHz.

The equipment under test was transmitting while connected to its integral antenna and is placed on a turntable. The measurement antenna is in the far field of the EUT per formula $2D^2/\lambda$ where D is the larger between the dimension of the measurement antenna and the transmitting antenna of the EUT. In this case, "D" is the largest dimension of the measurement antenna. The EUT is manipulated through all orthogonal planes representative of its typical use to achieve the highest reading on the receive spectrum analyzer.

Frequency Range [GHz]	Wavelength [cm]	Far Field Distance [m]	Measurements Distance [m]
18 to 40	0.749	3.19	3.20
40 to 60	0.500	1.39	1.50
60 to 90	0.333	0.91	1.50
90 to 100	0.214	0.58	1.50

 Table 3-1. Far-Field Distance & Measurement Distance per Frequency Range

Radiated power levels are investigated with the receive antenna horizontally and vertically polarized. Additionally, the receive antenna was rotated on various angles to investigate worst case emissions on each EUT antenna array. The EUT antenna array polarization and horn antennas angle are denoted as follows:

FCC ID: A3LAT1K01-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dara 7 at 000
8K20092801-02-R4.A3L	10/27/2020-11/18/2020	AU(AT1K01)	Page 7 of 322
© 2020 PCTEST.		•	PK-QP-16-09 Rev.02

Horn antenna at 135 degrees

5G Access Unit Antenna Array Polarization

The maximized power level is recorded using the spectrum analyzer "Channel Power" function with the integration band set to the emissions' occupied bandwidth. The EIRP is calculated from the raw power level measured with the spectrum analyzer using the formulas shown below.

Effective Isotropic Radiated Power Sample Calculation

The measured e.i.r.p is converted to E-field in V/m. Then the distance correction is applied before converted back to calculated e.i.r.p.as explained in KDB 971168 D01.

Field Strength [dBµV/m]	= Measured Value (dBm) + AFCL (dB/m) + 107			
	= -13.34 dBm + (39.54 dB/m + 7.56 dB) + 107 = 140.76 dBuV/m			
	= 10^(140.76/20)/1000000			
	= 10.91 V/m			
e.i.r.p. (dBm)	= 10*log(E-Field*D _m)^2/30) + 30 dB			
	= 10*log(10.91 V/m * 3.20 m)^2/30) + 30 dB			
	= 42.67 dBm e.i.r.p.			

FCC ID: A3LAT1K01-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 9 of 222
8K20092801-02-R4.A3L	10/27/2020-11/18/2020	AU(AT1K01)	Page 8 01 322
© 2020 PCTEST			PK-OP-16-09 Rev 02

Sample MIMO e.i.r.p. Calculation:

The e.i.r.p at Antenna A, Antenna B, Antenna C and Antenna D were first measured individually. The measured values were then summed in linear power units then converted back to dBm for the co-polarized antennas.

Conversion to linear value	= 10^(e.i.r.p/10) = 10^(47.67/10) = 58479 mW
MIMO e.i.r.p.	= e.i.r.p. _A + e.i.r.p. _c
	= 58479 mW + 53088 mW
	= 10*log(111567 mW)
	= 50.48 dBm
For summation across all anten	nas,
MIMO e.i.r.p.	= e.i.r.p. _A + e.i.r.p. _B + e.i.r.p.c + e.i.r.p. _D
	= 58479 mW + 54576 mW + 53088 mW + 52360 mW
	= 10*log(218503 mW)

= 53.39 dBm

FCC ID: A3LAT1K01-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dege 0 of 200
8K20092801-02-R4.A3L	10/27/2020-11/18/2020	AU(AT1K01)		Page 9 01 322
© 2020 PCTEST.		·		PK-QP-16-09 Rev.02

4.0 MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.4-2014. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95% level of confidence. The measurement uncertainty shown below meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Contribution	Expanded Uncertainty (±dB)
Conducted Bench Top Measurements	2.51
Radiated Disturbance (<1 GHz)	3.29
Radiated Disturbance (>1 GHz)	4.94

FCC ID: A3LAT1K01-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	AMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 10 of 222
8K20092801-02-R4.A3L	10/27/2020-11/18/2020	AU(AT1K01)		Page 10 01 322
© 2020 PCTEST.				PK-QP-16-09 Rev.02

5.0 TEST EQUIPMENT CALIBRATION DATA

Test Equipment Calibration is traceable to the National Institute of Standards and Technology (NIST). Measurements antennas used during testing were calibrated in accordance to the requirements of ANSI C63.5-2017.

Manufacture	Model	Description	Cal Date	Cal interval	Cal Due	Serial Number
Rohde & Schwarz	FSW43	Signal & Spectrum Analyzer	09/17/2020	Annual	09/16/2021	101250
KIKISUI	PWR1201ML	DC POWER SUPPLY	05/20/2020	Annual	05/19/2021	ZL000973
SUKSAN TECHNOLOGY	SE-CT-10	Temperature Chamber	09/17/2020	Annual	09/16/2021	191021
Schwarzbeck	VULB9162	Broadband TRILOG Antenna	07/09/2019	Biennial	07/08/2021	9162-217
Sunol sciences	DRH-118	Horn Antenna	08/09/2019	Biennial	08/08/2021	A102416-1
Schwarzbeck	BBHA 9170	Horn Antenna	09/02/2020	Biennial	09/01/2022	1037
MIWV	261F-25/387	Horn Antenna	06/10/2020	Annual	06/09/2021	2019
MIWV	261U-25/383	Horn Antenna	06/01/2020	Annual	05/31/2021	2019
MIWV	261G-25/387	Horn Antenna	06/10/2020	Annual	06/09/2021	-
Radiometer Physics	FS-Z140	Harmonic Mixer	03/13/2020	Annual	03/12/2021	101135
Radiometer Physics	FS-Z60	Harmonic Mixer	03/13/2020	Annual	03/12/2021	100981
Rohde & Schwarz	*FS-Z90	Harmonic Mixer	10/21/2020	Annual	10/20/2021	101860

Table 5-1. Test Equipment

Notes:

For equipment listed above that has a calibration date or calibration due date that falls within the test date range, care was taken to ensure that this equipment was used after the calibration date and before the calibration due date.

*FS-Z90 had been used on 11/04/2020. Thus, usage of FS-Z90 is in accredited calibration period.

FCC ID: A3LAT1K01-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 11 of 222
8K20092801-02-R4.A3L	10/27/2020-11/18/2020	AU(AT1K01)	Page 11 of 322
© 2020 PCTEST.			PK-QP-16-09 Rev.02

6.0 SAMPLE CALCULATIONS

Emission Designator

QPSK Modulation

Emission Designator = 800MG7D

BW = 800 MHz

G = Phase Modulation

7 = Quantized/Digital Info

D = Data transmission, telemetry, telecommand

QAM Modulation

Emission Designator = 802MW7D

BW = 802 MHz W = Amplitude/Angle Modulated 7 = Quantized/Digital Info D = Data transmission, telemetry, telecommand

FCC ID: A3LAT1K01-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 10 of 222
8K20092801-02-R4.A3L	10/27/2020-11/18/2020	AU(AT1K01)		Page 12 01 322
© 2020 PCTEST.				PK-QP-16-09 Rev.02

7.0 TEST RESULTS

7.1 Summary

Company Name:	Samsung Electronics Co., Ltd.		
FCC ID:	A3LAT1K01-A10		
FCC Classification:	Part 30 Fixed Transmitter (5GB)		
Mode(s):	TDD		

FCC Part Section(s)	Test Description	Test Limit	Test Condition	Test Result	Reference
2.1049	Occupied Bandwidth	N/A	RADIATED	PASS	Section 7.2
30.202	Equivalent Isotropic Radiated Power Density	75 dBm/100MHz		PASS	Section 7.3
2.1046	RF Output Power	N/A		PASS	Section 7.4
2.1051 30.203	Out-of-Band Spurious Emissions	-13 dBm/MHz for all out-of- band emissions		PASS	Section 7.5
2.1051 30.203	Out-of-Band Emissions at the Band Edge	-13 dBm/MHz for all out-of-band emissions, -5 dBm/MHz from the band edge up to 10 % of the channel BW		PASS	Section 7.6
2.1055	Frequency Stability	Fundamental emissions stay within authorized frequency block		PASS	Section 7.7

Table 7-1. Summary of Radiated Test Results

Notes:

- 1) All modes of operation and modulations were investigated. The test results shown in the following sections represent the worst case emissions.
- 2) Per 2.1057(a)(3), spurious emissions were investigated up to 100 GHz for n261.
- 3) All radiated emission measurements at the band edge are converted to an equivalent conductive power by subtracting the known antenna gain from the EIRP measured at each frequency of interest. These emissions are compared to the 30.203 spurious emission limits as conductive power levels.
- 4) The radiated RF output power and all out-of-band emissions in the spurious domain are evaluated to the EIRP limits.
- 5) The fundamental band consists of 1 8 component carriers, referred as "CC" in this report.
- 6) In the following tables, the term "CCs Active" refers to which component carrier is transmitting for a particular test.
- 7) CCs active 0, 4, 7 = 1 Components Carriers Active Channel, 0-7 = 8 Component Carriers Active. 0-7(NC) = 8 Non-contiguous Component Carriers Active. Each component carrier's bandwidth is either of 50 MHz or 100 MHz BW.
- A3LAT1K01-A10 test result is referenced from A3LAT1K01-A00 test result which only difference power type as AC and DC. Power condition is not affected to declared RF specification which had been verified with manufacturer and testing laboratory.

FCC ID: A3LAT1K01-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 12 of 200
8K20092801-02-R4.A3L	10/27/2020-11/18/2020	AU(AT1K01)		Page 13 01 322
© 2020 PCTEST.		•		PK-QP-16-09 Rev.02

7.2 Occupied Bandwidth §2.1049

Test Overview

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 % of the total mean power radiated by a given emission shall be measured. All modes of operation were investigated and the worst case configuration results are reported in this section.

Test Procedure Used

ANSI C63.25-2015 Section 5.4.3 KDB 842590 D01 v01r01 Section 4.3

Test Settings

- 1. The signal analyzer's automatic bandwidth measurement capability was used to perform the 99 % occupied bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = 1 5 % of the expected OBW
- 3. VBW \geq 3 x RBW
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep = auto couple
- 7. The trace was allowed to stabilize
- 8. If necessary, steps 2 7 were repeated after changing the RBW such that it would be within 1 5 % of the

99 % occupied bandwidth observed in Step 7

Test Notes

A3LAT1K01-A10 test result is referenced as A3LAT1K01-A00 result which is difference of power type between AC(A3LAT1K01-A00) source and DC(A3LAT1K01-A10) source. Power supply condition is not affected to declared RF specification.

FCC ID: A3LAT1K01-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 14 of 222
8K20092801-02-R4.A3L	10/27/2020-11/18/2020	AU(AT1K01)	Page 14 01 322
© 2020 PCTEST.			PK-QP-16-09 Rev.02

7.2.1 Antenna A Occupied Bandwidth

Bandwidth [MHz]	Channel	Antenna	CCs active	Modulation	OBW [MHz]			
50	Mid			QPSK	46.47			
			1	16QAM	46.47			
				64QAM	46.45			
			A	A	~			QPSK
			2	16QAM	95.48			
				64QAM	95.42			

Table 7-2. Antenna A Occupied Bandwidth Summary Data

Plot 7-1. Occupied Bandwidth Plot (50 MHz 1CC BW QPSK Mid Channel)

FCC ID: A3LAT1K01-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 15 of 222
8K20092801-02-R4.A3L	10/27/2020-11/18/2020	AU(AT1K01)		Page 15 01 322
© 2020 PCTEST.				PK-QP-16-09 Rev.02

Plot 7-2. Occupied Bandwidth Plot (50 MHz 1CC BW 16QAM Mid Channel)

Plot 7-3. Occupied Bandwidth Plot (50 MHz 1CC BW 64QAM Mid Channel)

FCC ID: A3LAT1K01-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	
8K20092801-02-R4.A3L	10/27/2020-11/18/2020	AU(AT1K01)	Page 16 of 322
© 2020 PCTEST.	•		PK-QP-16-09 Rev.02

Plot 7-4. Occupied Bandwidth Plot (50 MHz 2CC BW QPSK Mid Channel)

Plot 7-5. Occupied Bandwidth Plot (50 MHz 2CC BW 16QAM Mid Channel)

FCC ID: A3LAT1K01-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dega 17 of 200
8K20092801-02-R4.A3L	10/27/2020-11/18/2020	AU(AT1K01)	Page 17 01 322
© 2020 PCTEST.	•	·	PK-QP-16-09 Rev.02

Plot 7-6. Occupied Bandwidth Plot (50 MHz 2CC BW 64QAM Mid Channel)

FCC ID: A3LAT1K01-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 19 of 222
8K20092801-02-R4.A3L	10/27/2020-11/18/2020	AU(AT1K01)	Page 18 of 322
© 2020 PCTEST.			PK-QP-16-09 Rev.02

7.2.2 Antenna B Occupied Bandwidth

Bandwidth [MHz]	Channel	Antenna	CCs active	Modulation	OBW [MHz]			
50	Mid	Р		QPSK	46.34			
			1	16QAM	46.40			
				64QAM	46.61			
			D	В	В			QPSK
			2	16QAM	95.42			
				64QAM	95.49			

Table 7-3. Antenna B Occupied Bandwidth Summary Data

Plot 7-7. Occupied Bandwidth Plot (50 MHz 1CC BW QPSK Mid Channel)

FCC ID: A3LAT1K01-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	ISUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 10 of 222
8K20092801-02-R4.A3L	10/27/2020-11/18/2020	AU(AT1K01)		Page 19 01 322
© 2020 PCTEST.	•			PK-QP-16-09 Rev.02

Plot 7-8. Occupied Bandwidth Plot (50 MHz 1CC BW 16QAM Mid Channel)

Plot 7-9. Occupied Bandwidth Plot (50 MHz 1CC BW 64QAM Mid Channel)

FCC ID: A3LAT1K01-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dama 00 of 000
8K20092801-02-R4.A3L	10/27/2020-11/18/2020	AU(AT1K01)	Page 20 of 322
© 2020 PCTEST.	•		PK-QP-16-09 Rev.02

Plot 7-10. Occupied Bandwidth Plot (50 MHz 2CC BW QPSK Mid Channel)

Plot 7-11. Occupied Bandwidth Plot (50 MHz 2CC BW 16QAM Mid Channel)

FCC ID: A3LAT1K01-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	UNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 01 of 222
8K20092801-02-R4.A3L	10/27/2020-11/18/2020	AU(AT1K01)		Page 21 of 322
© 2020 PCTEST.				PK-QP-16-09 Rev.02

Plot 7-12. Occupied Bandwidth Plot (50 MHz 2CC BW 64QAM Mid Channel)

FCC ID: A3LAT1K01-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dega 22 of 222
8K20092801-02-R4.A3L	10/27/2020-11/18/2020	AU(AT1K01)	Page 22 of 322
© 2020 PCTEST.			PK-QP-16-09 Rev.02

7.2.3 Antenna C Occupied Bandwidth

Bandwidth [MHz]	Channel	Antenna	CCs active	Modulation	OBW [MHz]
50				46.43	
			1	16QAM	46.43
	Mid	C		64QAM	46.44
	IVIIC		QI	QPSK	95.50
			2	16QAM	95.51
				64QAM	95.59

Table 7-4. Antenna C Occupied Bandwidth Summary Data

Plot 7-13. Occupied Bandwidth Plot (50 MHz 1CC BW QPSK Mid Channel)

FCC ID: A3LAT1K01-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 22 of 222
8K20092801-02-R4.A3L	10/27/2020-11/18/2020	AU(AT1K01)	Page 23 01 322
© 2020 PCTEST.	•		PK-QP-16-09 Rev.02

Plot 7-14. Occupied Bandwidth Plot (50 MHz 1CC BW 16QAM Mid Channel)

Plot 7-15. Occupied Bandwidth Plot (50 MHz 1CC BW 64QAM Mid Channel)

FCC ID: A3LAT1K01-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 24 of 222
8K20092801-02-R4.A3L	10/27/2020-11/18/2020	AU(AT1K01)	Page 24 of 322
© 2020 PCTEST.	•	·	PK-QP-16-09 Rev.02

Plot 7-16. Occupied Bandwidth Plot (50 MHz 2CC BW QPSK Mid Channel)

Plot 7-17. Occupied Bandwidth Plot (50 MHz 2CC BW 16QAM Mid Channel)

FCC ID: A3LAT1K01-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 25 of 222
8K20092801-02-R4.A3L	10/27/2020-11/18/2020	AU(AT1K01)	Page 25 of 322
© 2020 PCTEST.	•	·	PK-QP-16-09 Rev.02

Plot 7-18. Occupied Bandwidth Plot (50 MHz 2CC BW 64QAM Mid Channel)

FCC ID: A3LAT1K01-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Barra 26 of 222
8K20092801-02-R4.A3L	10/27/2020-11/18/2020	AU(AT1K01)	Page 26 of 322
© 2020 PCTEST.			PK-QP-16-09 Rev.02

7.2.4 Antenna D Occupied Bandwidth

Bandwidth [MHz]	Channel	Antenna	CCs active	Modulation	OBW [MHz]
50	Mid		QPSK	46.46	
			1	16QAM	46.45
		р		64QAM 4 QPSK 9	46.74
		U			95.56
			2	16QAM	95.42
				64QAM	95.57

Table 7-5. Antenna D Occupied Bandwidth Summary Data

Plot 7-19. Occupied Bandwidth Plot (50 MHz 1CC BW QPSK Mid Channel)

FCC ID: A3LAT1K01-A10	Proud to be part of the element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dega 07 of 200
8K20092801-02-R4.A3L	10/27/2020-11/18/2020	AU(AT1K01)	Page 27 01 322
© 2020 PCTEST.			PK-QP-16-09 Rev.02

Plot 7-20. Occupied Bandwidth Plot (50 MHz 1CC BW 16QAM Mid Channel)

Plot 7-21. Occupied Bandwidth Plot (50 MHz 1CC BW 64QAM Mid Channel)

FCC ID: A3LAT1K01-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 28 of 222
8K20092801-02-R4.A3L	10/27/2020-11/18/2020	AU(AT1K01)	Page 28 of 322
© 2020 PCTEST.	•	·	PK-QP-16-09 Rev.02

Plot 7-22. Occupied Bandwidth Plot (50 MHz 2CC BW QPSK Mid Channel)

Plot 7-23. Occupied Bandwidth Plot (50 MHz 2CC BW 16QAM Mid Channel)

FCC ID: A3LAT1K01-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 20 of 222
8K20092801-02-R4.A3L	10/27/2020-11/18/2020	AU(AT1K01)	Page 29 of 322
© 2020 PCTEST.	•	-	PK-QP-16-09 Rev.02

Plot 7-24. Occupied Bandwidth Plot (50 MHz 2CC BW 64QAM Mid Channel)

FCC ID: A3LAT1K01-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 20 of 222
8K20092801-02-R4.A3L	10/27/2020-11/18/2020	AU(AT1K01)	Page 30 of 322
© 2020 PCTEST.			PK-QP-16-09 Rev.02

7.3 Equivalent Isotropic Radiated Power (EIRP) Density §2.1046 §30.202

Test Overview

Equivalent Isotropic Radiated Power (EIRP) measurements are performed using broadband horn antennas. All measurements are performed as RMS average measurements while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies.

The average power of the sum of all antenna elements is limited to an equivalent isotopically radiated power (EIRP) density of +75 dBm / 100 MHz.

Test Procedures Used

ANSI C63.26-2015 Section 5.2.4.4.1 ANSI C63.26-2015 Section 6.4 KDB 842590 D01 v01r01 Section 4.2

Test Settings

- 1. Radiated power measurements are performed using the signal analyzer's "channel power" measurement capability for signals with continuous operation.
- 2. RBW = 1 5 % of the expected OBW, not to exceed 1 MHz
- 3. VBW \ge 3 x RBW
- 4. Span = 2x to 3x the OBW
- 5. No. of sweep points \geq 2 x span / RBW
- 6. Detector = RMS
- 7. The integration bandwidth was roughly set equal to the measured (EIRP) Density of the signal for signals with continuous operation. For signals with burst transmission, the "gating" function was enabled to ensure that measurements are performed during times in which the transmitter is operating at its maximum power
- 8. Trace mode = trace averaging (RMS) over 100 sweeps
- 9. The trace was allowed to stabilize

FCC ID: A3LAT1K01-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 21 of 222
8K20092801-02-R4.A3L	10/27/2020-11/18/2020	AU(AT1K01)		Page 31 of 322
© 2020 PCTEST.		·		PK-QP-16-09 Rev.02

- 1) The EUT was tested while positioned upright and mounted on a mast at 1.5 m height. The worst case emissions are reported with the EUT in this fixed position and with the modulations and active component carriers shown in the tables below.
- 2) The EIRP measurements of the co-polarized antenna arrays (Antenna A/C and Antenna B/D) were added together to address MIMO concerns referenced in ANSI C63.26-2015 Section 6.4.
- 3) Elements within the same antenna array are correlated to produce beamforming array gain. During testing, only one antenna array was active.
- 4) Measurements were taken in the far field of the mmWave signal based on the formula: $R \ge 2D^2/wavelength$.
- 5) The test case with from 1CC to 8CC active, was selected for the worst case emission testing as it created the highest EIRP within 50 MHz, 100 MHz, and 50 MHz + 100 MHz Mixed bandwidth carrier configurations.
- 6) The average EIRP reported below is calculate per section 5.2.7 of ANSI C63.26-2015 which states: EIRP (dBm) = E (dBuV/m) + 20log(D) – 104.8; where D is the measurement distance (in the far field region) in m. For this section, all EIRP density measurements were performed at a distance of 3.20 m, so, the effective correction is: EIRP (dBm) = E (dBuV/m) – 94.72 dB

= Analyzer Level (dBm) + AFCL (dB/m) + 107 dB - 94.72 dB

= Analyzer Level (dBm) + AFCL (dB/m) + 12.28

*AFCL (dB/m) contains measurement antenna factor(dB/m) and cable loss(dB) as below:

Frequency	Antenna Factor	Cable loss	AFCL
[GHz]	(dB/m)	[dB]	(dB/m)
27.50	39.54	7.56	47.10
27.93	39.54	7.64	47.18
28.35	39.74	7.77	47.51

Table 7-6. Adopted AFCL value in the calculation

- 7) For channel bandwidths less than 100 MHz BW the EIRP must be reduced proportionally and linearly based on the bandwidth relative to 100 MHz BW according to §30.202(a) Power limits. Thus, 50 MHz BW test case value is added 3.01 dB scaling factor which included in EIRP overview. *EIRP density value is in Red, if 50 MHz bandwidth with 3.01 dB scaling factor is higher than 100 MHz bandwidth in mixed component carrier configurations.
- 8) The angle of the horn antenna was rotated to maximize and find the worst case emissions. Worst case EIRP is reported below.
- A3LAT1K01-A10 test result is referenced as A3LAT1K01-A00 result which is difference of power type between AC(A3LAT1K01-A00) source and DC(A3LAT1K01-A10) source. Power supply condition is not affected to declared RF specification.

FCC ID: A3LAT1K01-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Barra 22 of 222
8K20092801-02-R4.A3L	10/27/2020-11/18/2020	AU(AT1K01)	Page 32 01 322
© 2020 PCTEST.	•		PK-QP-16-09 Rev.02

7.3.1 Antenna A EIRP Density

Antenna	Bandwidth	Configuration	Chan.	Frequency	Modulation	Horn Angle	Analyzer Level	Average e.i.r.p. PSD	Scaling factor	Average e.i.r.p. PSD	PSD Limit	Margin
	[MHz]			[GHz]		[degrees]	[dBm]	[dBm]	[dB]	[dBm/100MHz]	[dBm/100MHz]	[dB/100MHz]
	50		Low	27.550	QPSK	135.0	-13.34	46.06	3.01	49.07	75.00	-28.94
	50	1CC	Low	27.550	16QAM	135.0	-13.40	46.00	3.01	49.01	75.00	-29.00
	50		Low	27.550	64QAM	135.0	-13.32	46.08	3.01	49.09	75.00	-28.92
	50		Low	27.550	QPSK	135.0	-13.01	46.39	3.01	49.40	75.00	-28.61
	50	2CC	Low	27.550	16QAM	135.0	-13.00	46.40	3.01	49.41	75.00	-28.60
	50		Low	27.550	64QAM	135.0	-12.93	46.47	3.01	49.48	75.00	-28.53
	50		Mid	27.925	QPSK	135.0	-13.66	45.83	3.01	48.84	75.00	-29.17
	50	1CC	Mid	27.925	16QAM	135.0	-13.71	45.77	3.01	48.78	75.00	-29.23
	50		Mid	27.925	64QAM	135.0	-14.06	45.42	3.01	48.43	75.00	-29.58
	50		Mid	27.925	QPSK	135.0	-13.73	45.75	3.01	48.76	75.00	-29.25
	50	2CC	Mid	27.925	16QAM	135.0	-13.76	45.72	3.01	48.73	75.00	-29.28
	50		Mid	27.925	64QAM	135.0	-13.75	45.74	3.01	48.75	75.00	-29.26
	50		High	28.300	QPSK	135.0	-13.52	46.29	3.01	49.30	75.00	-28.71
	50	50 1CC 50	High	28.300	16QAM	135.0	-13.50	46.31	3.01	49.32	75.00	-28.69
	50		High	28.300	64QAM	135.0	-13.46	46.36	3.01	49.37	75.00	-28.64
	50	2CC	High	28.300	QPSK	135.0	-13.43	46.38	3.01	49.39	75.00	-28.62
	50		High	28.300	16QAM	135.0	-13.48	46.33	3.01	49.34	75.00	-28.67
•	50		High	28.300	64QAM	135.0	-13.44	46.37	3.01	49.38	75.00	-28.63
A	100	2NC	Mid	27.925	QPSK	135.0	-10.17	49.32	0.00	49.32	75.00	-25.68
	100	3NC	Mid	27.925	QPSK	135.0	-10.79	48.70	0.00	48.70	75.00	-26.30
	100	4NC	Mid	27.925	QPSK	135.0	-9.79	49.70	0.00	49.70	75.00	-25.30
	100	5NC	Mid	27.925	QPSK	135.0	-10.42	49.07	0.00	49.07	75.00	-25.93
	100	6NC	Mid	27.925	QPSK	135.0	-11.70	47.78	0.00	47.78	75.00	-27.22
	100	7NC	Mid	27.925	QPSK	135.0	-12.34	47.14	0.00	47.14	75.00	-27.86
50 + 100		50M x1 + 100M x1	Mid	27.925	QPSK	135.0	-13.89	45.60	3.01	48.61	75.00	-29.40
		50M x2 + 100M x1	Mid	27.925	QPSK	135.0	-11.03	48.45	0.00	48.45	75.00	-26.55
		50M x1 + 100M x2	Mid	27.925	QPSK	135.0	-10.25	49.23	0.00	49.23	75.00	-25.77
		50M x2 + 100M x2	Mid	27.925	QPSK	135.0	-10.03	49.45	0.00	49.45	75.00	-25.55
		50M x1 + 100M x3	Mid	27.925	QPSK	135.0	-12.89	46.60	3.01	49.61	75.00	-28.40
		50M x2 + 100M x3	Mid	27.925	QPSK	135.0	-12.77	46.71	3.01	49.72	75.00	-28.29
	50 + 100	50M x1 + 100M x4	Mid	27.925	QPSK	135.0	-10.16	49.32	0.00	49.32	75.00	-25.68
		50M x2 + 100M x4	Mid	27.925	QPSK	135.0	-10.88	48.61	0.00	48.61	75.00	-26.39
		50M x1 + 100M x5	Mid	27.925	QPSK	135.0	-11.23	48.25	0.00	48.25	75.00	-26.75
		50M x2 + 100M x5	Mid	27.925	QPSK	135.0	-11.64	47.84	0.00	47.84	75.00	-27.16
		50M x1 + 100M x6	Mid	27.925	QPSK	135.0	-11.73	47.75	0.00	47.75	75.00	-27.25
		50M x2 + 100M x6	Mid	27.925	QPSK	135.0	-15.43	44.05	3.01	47.06	75.00	-30.95

Table 7-7. Antenna A EIRP Density Summary Data

FCC ID: A3LAT1K01-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	
8K20092801-02-R4.A3L	10/27/2020-11/18/2020	AU(AT1K01)	Page 33 01 322
O ANAL DOTEOT			DK OD 40 00 D 00

Plot 7-25. Antenna A EIRP Density Plot (50 MHz 1CC BW QPSK Low Channel)

Plot 7-26. Antenna A EIRP Density Plot (50 MHz 1CC BW 16QAM Low Channel)

FCC ID: A3LAT1K01-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	UNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 24 of 222
8K20092801-02-R4.A3L	10/27/2020-11/18/2020	AU(AT1K01)		Page 34 01 322
@ 2020 PCTEST				PK-OP-16-00 Poy 02

Plot 7-27. Antenna A EIRP Density Plot (50 MHz 1CC BW 64QAM Low Channel)

Plot 7-28. Antenna A EIRP Density Plot (50 MHz 2CC BW QPSK Low Channel)

FCC ID: A3LAT1K01-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 25 of 222	
8K20092801-02-R4.A3L	10/27/2020-11/18/2020	AU(AT1K01)	Page 35 01 322	
© 2020 DOTECT			DK OD 16 00 Dov 02	

Plot 7-29. Antenna A EIRP Density Plot (50 MHz 2CC BW 16QAM Low Channel)

Plot 7-30. Antenna A EIRP Density Plot (50 MHz 2CC BW 64QAM Low Channel)

FCC ID: A3LAT1K01-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 26 of 222	
8K20092801-02-R4.A3L	10/27/2020-11/18/2020	AU(AT1K01)	Fage SO UI SZZ	
			DK OD 16 00 Boy 02	

Plot 7-31. Antenna A EIRP Density Plot (50 MHz 1CC BW QPSK Mid Channel)

Plot 7-32. Antenna A EIRP Density Plot (50 MHz 1CC BW 16QAM Mid Channel)

FCC ID: A3LAT1K01-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 27 of 222
8K20092801-02-R4.A3L	10/27/2020-11/18/2020	AU(AT1K01)	raye 31 UI 322
© 2020 DOTEST			PK_OP_16_00 Pov 02

Plot 7-33. Antenna A EIRP Density Plot (50 MHz 1CC BW 64QAM Mid Channel)

Plot 7-34. Antenna A EIRP Density Plot (50 MHz 2CC BW QPSK Mid Channel)

FCC ID: A3LAT1K01-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 20 of 222
8K20092801-02-R4.A3L	10/27/2020-11/18/2020	AU(AT1K01)	raye so ui 322
© 2020 DOTECT			DK OD 16 00 Dov 02

Plot 7-35. Antenna A EIRP Density Plot (50 MHz 2CC BW 16QAM Mid Channel)

Plot 7-36. Antenna A EIRP Density Plot (50 MHz 2CC BW 64QAM Mid Channel)

FCC ID: A3LAT1K01-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 20 of 222
8K20092801-02-R4.A3L	10/27/2020-11/18/2020	AU(AT1K01)	Page 39 01 322
© 2020 PCTEST			PK-OP-16-09 Rev 02

Plot 7-37. Antenna A EIRP Density Plot (50 MHz 1CC BW QPSK High Channel)

Plot 7-38. Antenna A EIRP Density Plot (50 MHz 1CC BW 16QAM High Channel)

FCC ID: A3LAT1K01-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 40 of 222
8K20092801-02-R4.A3L	10/27/2020-11/18/2020	AU(AT1K01)	raye 40 01 322
@ 2020 DOTECT			DK OD 16 00 Boy 02

Plot 7-39. Antenna A EIRP Density Plot (50 MHz 1CC BW 64QAM High Channel)

Plot 7-40. Antenna A EIRP Density Plot (50 MHz 2CC BW QPSK High Channel)

FCC ID: A3LAT1K01-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 41 of 222
8K20092801-02-R4.A3L	10/27/2020-11/18/2020	AU(AT1K01)	Fage 41 01 322
© 2020 DOTECT			DK OD 16 00 Boy 02

Plot 7-41. Antenna A EIRP Density Plot (50 MHz 2CC BW 16QAM High Channel)

Plot 7-42. Antenna A EIRP Density Plot (50 MHz 2CC BW 64QAM High Channel)

FCC ID: A3LAT1K01-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 42 of 222
8K20092801-02-R4.A3L	10/27/2020-11/18/2020	AU(AT1K01)	raye 42 01 322
			DK OD 16 00 Dov 02

Plot 7-43. Antenna A EIRP Density Plot (100 MHz 2NC BW QPSK Mid Channel)

Plot 7-44. Antenna A EIRP Density Plot (100 MHz 3NC BW QPSK Mid Channel)

FCC ID: A3LAT1K01-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 42 of 222
8K20092801-02-R4.A3L	10/27/2020-11/18/2020	AU(AT1K01)	Page 43 01 322
© 2020 PCTEST			PK-OP-16-09 Rev 02

Plot 7-45. Antenna A EIRP Density Plot (100 MHz 4NC BW QPSK Mid Channel)

Plot 7-46. Antenna A EIRP Density Plot (100 MHz 5NC BW QPSK Mid Channel)

FCC ID: A3LAT1K01-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 44 of 222
8K20092801-02-R4.A3L	10/27/2020-11/18/2020	AU(AT1K01)	Faye 44 01 322
© 2020 DOTEST			PK_OP_16_00 Pov 02

Plot 7-47. Antenna A EIRP Density Plot (100 MHz 6NC BW QPSK Mid Channel)

Plot 7-48. Antenna A EIRP Density Plot (100 MHz 7NC BW QPSK Mid Channel)

FCC ID: A3LAT1K01-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	SUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 45 of 222
8K20092801-02-R4.A3L	10/27/2020-11/18/2020	AU(AT1K01)		Page 45 01 322
© 2020 PCTEST				PK-OP-16-09 Rev 02

Plot 7-49. Antenna A EIRP Density Plot (50 MHz 1CC + 100 MHz 1CC BW QPSK Mid Channel)

Plot 7-50. Antenna A EIRP Density Plot (50 MHz 2CC + 100 MHz 1CC BW QPSK Mid Channel)

FCC ID: A3LAT1K01-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 46 of 222
8K20092801-02-R4.A3L	10/27/2020-11/18/2020	AU(AT1K01)	Page 46 01 322
© 2020 PCTEST			PK-OP-16-09 Rev 02

					(*)
MultiView 🗄 Sp	pectrum				•
Ref Level 0.00 dBm	• RBW 1 MH;	z			SGL
● Att 0 dB	SWT 32 ms • VBW 3 MH;	z Mode Sweep			Count 100/100
GAT:PSE					
1 ACLR					●1Rm Avg
-10 dBm-		1×1	Tx2		
10 0.011					
-20 dBm-					
20 0011					
-20 dbm		and a state of the second second second	and the second		445
-30 UBIII	le la				
-40 dBm-					
-50 dBm-					
				1	
-60 dBm-				1	
	washing the second states of the second				Mary Andreas and
-70 dBm	A Share				a start and the start of start building on the start start start
Assessing to a second					
-80 dBm					
-90 dBm-					
CE 27.0 GHz		2001 pts	5	0 0 MHz/	Spap 500.0 MHz
2 Docult Summon		2001 pts	Nono		3pan 300.0 Minz
Z Result Summary Channel	Bandwidth	Offse	t	Dower	
Tx1	50.000 MHz	01130		-13.51 dBm	
Tx2	100.000 MHz	75.000 M	Hz	-10.45 dBm	
Tx3 (Ref)	100.000 MHz	99.600 M	Hz	-10.25 dBm	
TX lotal				-6.40 abm	
				- Poad	28.10.2020

Plot 7-51. Antenna A EIRP Density Plot (50 MHz 1CC + 100 MHz 2CC BW QPSK Mid Channel)

Plot 7-52. Antenna A EIRP Density Plot (50 MHz 2CC + 100 MHz 2CC BW QPSK Mid Channel)

FCC ID: A3LAT1K01-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 47 of 202
8K20092801-02-R4.A3L	10/27/2020-11/18/2020	AU(AT1K01)	Page 47 01 322
© 2020 PCTEST			PK-OP-16-09 Rev 02

Plot 7-53. Antenna A EIRP Density Plot (50 MHz 1CC + 100 MHz 3CC BW QPSK Mid Channel)

Plot 7-54. Antenna A EIRP Density Plot (50 MHz 2CC + 100 MHz 3CC BW QPSK Mid Channel)

FCC ID: A3LAT1K01-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 49 of 222
8K20092801-02-R4.A3L	10/27/2020-11/18/2020	AU(AT1K01)	Page 48 of 322
© 2020 PCTEST.	•		PK-QP-16-09 Rev.02

Plot 7-55. Antenna A EIRP Density Plot (50 MHz 1CC + 100 MHz 4CC BW QPSK Mid Channel)

Plot 7-56. Antenna A EIRP Density Plot (50 MHz 2CC + 100 MHz 4CC BW QPSK Mid Channel)

FCC ID: A3LAT1K01-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 40 of 222
8K20092801-02-R4.A3L	10/27/2020-11/18/2020	AU(AT1K01)	Page 49 01 322
© 2020 PCTEST.	•		PK-QP-16-09 Rev.02

Plot 7-57. Antenna A EIRP Density Plot (50 MHz 1CC + 100 MHz 5CC BW QPSK Mid Channel)

Plot 7-58. Antenna A EIRP Density Plot (50 MHz 2CC + 100 MHz 5CC BW QPSK Mid Channel)

FCC ID: A3LAT1K01-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 50 of 222	
8K20092801-02-R4.A3L	10/27/2020-11/18/2020	AU(AT1K01)	Page 50 of 322	
© 2020 PCTEST			PK-OP-16-09 Rev 02	


										~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
MultiView	Spectrum									•
Ref Level 0.00	OdBm •	RBW 1 MHz							S	GL
Att	0 dB <b>SWT</b> 83.2 ms 单	VBW 3 MHz Mod	de Sweep						C	ount 100/100
GAT:PSE										
I AULR										OIRM AVg
		Tx1			Tx5	Tv6				
-10 dBm		182	ТхЗ			TAO	Tx7			
-20 dBm-										
20 0011										
-30 dBm		and a state of the second state in the	The lands of the data with the second	with the second sector sector		a Ministration of Marcine	With the second second			
-40 dBm-			1							
Inc. Jan										
-50 dBm-										
-60 dBm										
-70 dBm-	na tea de la casa - e la casa de l	<u> </u>						anter a fait a state of the sta	and the second states	When and the second second
Versiender Managementer										
-80 dBm-										
-90 dBm-										
Jo dom										
		5001	ote		120 (					Shop 1.2 CHz
2 Pesult Summ	201		i pis	None	150.	5 1411 127				opan 1.5 GHz
Channe	el Bandw	vidth	Offse	t		Power				
Tx1	50.000	MHz		-	-1	.5.37 dBn	n			
Tx2	100.000	) MHz	75.000 M	Hz	-1	1.86 dBn	n			
Tx3	100.000	) MHz	99.600 M	Hz		2.21 dBn	1			
TX4	100.000	) MHz	99.600 M	HZ Hz		2.20 dBn	n –			
Tx6 (Ref	) 100.000	) MHz	99.600 M	Hz	-1	1.73 dBn	n			
Tx7	100.000	) MHz	99.600 M	Hz	-	1.94 dBn	n			
Tx Tota						3.93 dBn	n			
										29.10.2020

~

Plot 7-59. Antenna A EIRP Density Plot (50 MHz 1CC + 100 MHz 6CC BW QPSK Mid Channel)



Plot 7-60. Antenna A EIRP Density Plot (50 MHz 2CC + 100 MHz 6CC BW QPSK Mid Channel)

FCC ID: A3LAT1K01-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:	Daga 51 of 202	
8K20092801-02-R4.A3L	10/27/2020-11/18/2020	AU(AT1K01)	Page 51 of 322	
© 2020 PCTEST			PK-OP-16-09 Rev 02	



## 7.3.2 Antenna B EIRP Density

IM-Iz)         (GHz)         (degrees)         (dBm)	Antenna	Bandwidth	Configuration	Chan.	Frequency	Modulation	Horn Angle	Analyzer Level	Average e.i.r.p. PSD	Scaling factor	Average e.i.r.p. PSD	PSD Limit	Margin
50         1CC         Low         27.550         QPSK         45.0         -13.80         45.60         3.01         48.61         75.00           50         1CC         Low         27.550         64QAM         45.0         -13.77         45.68         3.01         48.64         75.00           50         Low         27.550         0PSK         45.0         -13.72         45.68         3.01         48.61         75.00           50         2CC         Low         27.550         0PSK         45.0         -13.80         45.60         3.01         48.61         75.00           50         2CC         Low         27.550         64QAM         45.0         -13.55         45.85         3.01         48.86         75.00           50         1CC         Mid         27.925         OPSK         45.0         -14.03         45.45         3.01         48.27         75.00           50         2CC         Mid         27.925         16QAM         45.0         -14.41         45.07         3.01         48.08         75.00           50         2CC         Mid         27.925         16QAM         45.0         -14.11         45.07         3.01		[MHz]			[GHz]		[degrees]	[dBm]	[dBm]	[dB]	[dBm/100MHz]	[dBm/100MHz]	[dB/100MHz]
50         1CC         Low         27.550         16QAM         45.0         -13.77         45.63         3.01         48.64         75.00           50         Low         27.550         64QAM         45.0         -13.72         45.68         3.01         48.69         75.00           50         2CC         Low         27.550         16QAM         45.0         -13.80         45.60         3.01         48.61         75.00           50         Low         27.550         16QAM         45.0         -13.80         45.80         3.01         48.86         75.00           50         Low         27.550         64QAM         45.0         -14.22         45.26         3.01         48.86         75.00           50         1CC         Mid         27.925         64QAM         45.0         -14.07         45.41         3.01         48.42         75.00           50         2CC         Mid         27.925         64QAM         45.0         -14.03         45.45         3.01         48.46         75.00           50         2CC         Mid         27.925         64QAM         45.0         -14.01         45.82         3.01         48.83         75.00 <td></td> <td>50</td> <td></td> <td>Low</td> <td>27.550</td> <td>QPSK</td> <td>45.0</td> <td>-13.80</td> <td>45.60</td> <td>3.01</td> <td>48.61</td> <td>75.00</td> <td>-29.40</td>		50		Low	27.550	QPSK	45.0	-13.80	45.60	3.01	48.61	75.00	-29.40
50         Low         27.550         64QAM         45.0         -13.72         45.68         3.01         48.69         75.00           50         2CC         Low         27.550         16QAM         45.0         -13.80         45.60         3.01         48.61         75.00           50         2CC         Low         27.550         16QAM         45.0         -13.80         45.80         3.01         48.81         75.00           50         1CC         Mid         27.925         16QAM         45.0         -14.22         45.26         3.01         48.81         75.00           50         1CC         Mid         27.925         16QAM         45.0         -14.07         45.41         3.01         48.82         75.00           50         1CC         Mid         27.925         16QAM         45.0         -14.07         45.41         3.01         48.42         75.00           50         2CC         Mid         27.925         16QAM         45.0         -14.17         45.31         3.01         48.81         75.00           50         2CC         Mid         27.925         16QAM         45.0         -14.01         45.80         3.01		50	1CC	Low	27.550	16QAM	45.0	-13.77	45.63	3.01	48.64	75.00	-29.37
50         2CC         Low         27.550         QPSK         45.0         -13.80         45.60         3.01         48.61         75.00           50         Low         27.550         64QAM         45.0         -13.60         45.80         3.01         48.81         75.00           50         10C         Mid         27.550         64QAM         45.0         -14.22         45.26         3.01         48.81         75.00           50         11CC         Mid         27.925         16QAM         45.0         -14.07         45.45         3.01         48.42         75.00           50         10C         Mid         27.925         16QAM         45.0         -14.07         45.45         3.01         48.46         75.00           50         2CC         Mid         27.925         16QAM         45.0         -14.07         45.45         3.01         48.86         75.00           50         2CC         Mid         27.925         64QAM         45.0         -14.01         45.29         3.01         48.83         75.00           50         1CC         High         28.300         16QAM         45.0         -14.01         45.85         3.01		50		Low	27.550	64QAM	45.0	-13.72	45.68	3.01	48.69	75.00	-29.32
50         2CC         Low         27,550         16QAM         45.0         -13,60         45.80         3.01         48.81         75.00           50         Low         27,550         64QAM         45.0         -13,55         45.85         3.01         48.86         75.00           50         1CC         Mid         27,925         QPSK         45.0         -14.22         45.26         3.01         48.27         75.00           50         1CC         Mid         27.925         6QAAM         45.0         -14.07         45.41         3.01         48.42         75.00           50         1CC         Mid         27.925         6QAAM         45.0         -14.01         45.01         448.80         75.00           50         2CC         Mid         27.925         6QAAM         45.0         -14.17         45.31         3.01         48.32         75.00           50         1CC         High         28.300         QPSK         45.0         -14.01         45.82         3.01         48.81         75.00           50         1CC         High         28.300         64QAM         45.0         -14.01         45.85         3.01         48.81		50		Low	27.550	QPSK	45.0	-13.80	45.60	3.01	48.61	75.00	-29.40
B S S S S S S S S S		50	2CC	Low	27.550	16QAM	45.0	-13.60	45.80	3.01	48.81	75.00	-29.20
B 50         1CC         Mid         27.925         QPSK         45.0         -14.22         45.26         3.01         48.27         75.00           50         10C         Mid         27.925         16QAM         45.0         -14.07         45.41         3.01         48.42         75.00           50         10C         Mid         27.925         QPSK         45.0         -14.07         45.45         3.01         48.42         75.00           50         2CC         Mid         27.925         QPSK         45.0         -14.41         45.07         3.01         48.42         75.00           50         Mid         27.925         16QAM         45.0         -14.17         45.31         3.01         48.32         75.00           50         1CC         High         28.300         QPSK         45.0         -14.01         45.80         3.01         48.81         75.00           50         1CC         High         28.300         GPSK         45.0         -14.01         45.80         3.01         48.86         75.00           50         2CC         High         28.300         GPSK         45.0         -14.02         45.80         3.01		50		Low	27.550	64QAM	45.0	-13.55	45.85	3.01	48.86	75.00	-29.15
B 50 50 50 50 50 50 50 5		50		Mid	27.925	QPSK	45.0	-14.22	45.26	3.01	48.27	75.00	-29.74
B         50         Mid         27.925         64QAM         45.0         -14.03         45.45         3.01         48.46         75.00           50         2CC         Mid         27.925         QPSK         45.0         -14.41         45.07         3.01         48.08         75.00           50         2CC         Mid         27.925         64QAM         45.0         -14.17         45.31         3.01         48.32         75.00           50         1CC         High         28.300         QPSK         45.0         -14.17         45.31         3.01         48.32         75.00           50         1CC         High         28.300         QPSK         45.0         -14.01         45.80         3.01         48.83         75.00           50         1CC         High         28.300         GAQAM         45.0         -14.01         45.85         3.01         48.86         75.00           50         2CC         High         28.300         GAQAM         45.0         -14.02         45.80         3.01         48.86         75.00           50         2CC         High         28.300         GAQAM         45.0         -14.02         45.80		50	1CC	Mid	27.925	16QAM	45.0	-14.07	45.41	3.01	48.42	75.00	-29.59
B 50         2CC         Mid         27.925         QPSK         45.0         -14.41         45.07         3.01         48.08         75.00           50         30         Mid         27.925         64QAM         45.0         -14.17         45.31         3.01         48.32         75.00           50         Mid         27.925         64QAM         45.0         -14.19         45.29         3.01         48.30         75.00           50         1CC         High         28.300         QPSK         45.0         -14.01         45.82         3.01         48.33         75.00           50         1CC         High         28.300         QPSK         45.0         -14.00         45.82         3.01         48.83         75.00           50         1CC         High         28.300         QPSK         45.0         -14.12         45.69         3.01         48.70         75.00           50         2CC         High         28.300         I6QAM         45.0         -14.02         45.87         3.01         48.88         75.00           100         2NC         Mid         27.925         QPSK         45.0         -11.02         48.77         0.00 <td></td> <td>50</td> <td></td> <td>Mid</td> <td>27.925</td> <td>64QAM</td> <td>45.0</td> <td>-14.03</td> <td>45.45</td> <td>3.01</td> <td>48.46</td> <td>75.00</td> <td>-29.55</td>		50		Mid	27.925	64QAM	45.0	-14.03	45.45	3.01	48.46	75.00	-29.55
B 100 2CC Mid 27.925 16QAM 45.0 -14.17 45.31 3.01 48.32 75.00 50 Mid 27.925 64QAM 45.0 -14.01 45.29 3.01 48.30 75.00 50 1CC High 28.300 QPSK 45.0 -14.01 45.80 3.01 48.81 75.00 50 1CC High 28.300 64QAM 45.0 -14.00 45.82 3.01 48.83 75.00 50 11CC High 28.300 64QAM 45.0 -14.00 45.82 3.01 48.83 75.00 50 2CC High 28.300 64QAM 45.0 -14.02 45.80 3.01 48.86 75.00 50 2CC High 28.300 16QAM 45.0 -14.02 45.80 3.01 48.81 75.00 50 2CC Mid 27.925 QPSK 45.0 -14.02 45.80 3.01 48.88 75.00 100 2NC Mid 27.925 QPSK 45.0 -11.02 45.80 3.01 48.88 75.00 100 3NC Mid 27.925 QPSK 45.0 -11.02 45.80 3.01 48.80 75.00 100 4NC Mid 27.925 QPSK 45.0 -11.08 48.40 0.00 48.77 75.00 100 5NC Mid 27.925 QPSK 45.0 -11.08 48.40 0.00 48.60 75.00 100 5NC Mid 27.925 QPSK 45.0 -11.045 49.04 0.00 48.00 75.00 100 5NC Mid 27.925 QPSK 45.0 -11.045 49.04 0.00 48.40 75.00 100 5NC Mid 27.925 QPSK 45.0 -11.03 46.46 0.00 46.46 75.00 100 5NC Mid 27.925 QPSK 45.0 -11.03 46.46 0.00 48.66 75.00 100 5NC Mid 27.925 QPSK 45.0 -11.03 46.46 0.00 48.66 75.00 50M x1 + 100M x1 Mid 27.925 QPSK 45.0 -11.03 46.46 0.00 48.66 75.00 50M x2 + 100M x1 Mid 27.925 QPSK 45.0 -11.03 46.46 0.00 48.66 75.00 50M x2 + 100M x1 Mid 27.925 QPSK 45.0 -11.03 46.46 0.00 48.66 75.00 50M x2 + 100M x1 Mid 27.925 QPSK 45.0 -11.03 46.46 0.00 48.66 75.00 50M x2 + 100M x1 Mid 27.925 QPSK 45.0 -11.03 48.40 0.00 48.44 75.00 50M x2 + 100M x1 Mid 27.925 QPSK 45.0 -11.03 48.66 0.00 48.66 75.00 50M x2 + 100M x1 Mid 27.925 QPSK 45.0 -11.03 48.66 0.00 48.66 75.00 50M x2 + 100M x2 Mid 27.925 QPSK 45.0 -11.03 48.66 0.00 48.66 75.00 50M x2 + 100M x3 Mid 27.925 QPSK 45.0 -11.03 48.66 0.00 48.66 75.00 50M x2 + 100M x3 Mid 27.925 QPSK 45.0 -11.03 48.66 0.00 48.66 75.00 50M x2 + 100M x4 Mid 27.925 QPSK 45.0 -11.02 48.76 0.00 48.76 75.00 50M x2 + 100M x4 Mid 27.925 QPSK 45.0 -13.36 46.03 3.01 49.04 75.00 50M x2 + 100M x4 Mid 27.925 QPSK 45.0 -13.46 46.03 3.01 49.04 75.00		50		Mid	27.925	QPSK	45.0	-14.41	45.07	3.01	48.08	75.00	-29.93
B 50 50 50 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC 1CC		50	2CC	Mid	27.925	16QAM	45.0	-14.17	45.31	3.01	48.32	75.00	-29.69
50         High         28.300         QPSK         45.0         -14.01         45.80         3.01         48.81         75.00           50         1CC         High         28.300         16QAM         45.0         -14.00         45.82         3.01         48.83         75.00           50         High         28.300         64QAM         45.0         -14.00         45.85         3.01         48.86         75.00           50         Provide         High         28.300         QPSK         45.0         -14.12         45.69         3.01         48.81         75.00           50         Provide         High         28.300         64QAM         45.0         -14.12         45.89         3.01         48.81         75.00           50         Provide         High         28.300         64QAM         45.0         -10.22         48.77         0.00         48.77         75.00           100         2NC         Mid         27.925         QPSK         45.0         -10.72         48.77         0.00         48.77         75.00           100         ANC         Mid         27.925         QPSK         45.0         -10.45         49.04         0.00		50		Mid	27.925	64QAM	45.0	-14.19	45.29	3.01	48.30	75.00	-29.71
50         1CC         High         28.300         16QAM         45.0         -14.00         45.82         3.01         48.83         75.00           50         High         28.300         64QAM         45.0         -13.96         45.85         3.01         48.86         75.00           50         Provided High         28.300         QPSK         45.0         -14.12         45.69         3.01         48.70         75.00           50         Provided High         28.300         16QAM         45.0         -14.02         45.80         3.01         48.70         75.00           50         Provided High         28.300         16QAM         45.0         -10.22         45.80         3.01         48.81         75.00           100         2NC         Mid         27.925         QPSK         45.0         -10.72         48.77         0.00         48.77         75.00           100         3NC         Mid         27.925         QPSK         45.0         -11.08         48.40         0.00         48.40         75.00           100         5NC         Mid         27.925         QPSK         45.0         -11.42         48.06         0.00         48.66 <t< td=""><td></td><td>50</td><td></td><td>High</td><td>28.300</td><td>QPSK</td><td>45.0</td><td>-14.01</td><td>45.80</td><td>3.01</td><td>48.81</td><td>75.00</td><td>-29.20</td></t<>		50		High	28.300	QPSK	45.0	-14.01	45.80	3.01	48.81	75.00	-29.20
50         High         28.300         64QAM         45.0         -13.96         45.85         3.01         48.86         75.00           50         2CC         High         28.300         QPSK         45.0         -14.12         45.69         3.01         48.70         75.00           50         2CC         High         28.300         GPSK         45.0         -14.12         45.89         3.01         48.70         75.00           50         2CC         Migh         28.300         16QAM         45.0         -13.94         45.87         3.01         48.81         75.00           100         2NC         Mid         27.925         QPSK         45.0         -10.72         48.77         0.00         48.77         75.00           100         3NC         Mid         27.925         QPSK         45.0         -10.45         49.04         0.00         48.40         75.00           100         4NC         Mid         27.925         QPSK         45.0         -11.42         48.06         0.00         48.06         75.00           100         5NC         Mid         27.925         QPSK         45.0         -11.23         47.16         0.00		50	1CC	High	28.300	16QAM	45.0	-14.00	45.82	3.01	48.83	75.00	-29.18
50         High         28.300         QPSK         45.0         -14.12         45.69         3.01         48.70         75.00           50         2CC         High         28.300         16QAM         45.0         -14.02         45.80         3.01         48.70         75.00           50         50         2CC         High         28.300         64QAM         45.0         -14.02         45.80         3.01         48.81         75.00           100         2NC         Mid         27.925         QPSK         45.0         -10.72         48.77         0.00         48.77         75.00           100         3NC         Mid         27.925         QPSK         45.0         -11.08         48.40         0.00         48.40         75.00           100         4NC         Mid         27.925         QPSK         45.0         -11.45         49.04         0.00         48.40         75.00           100         5NC         Mid         27.925         QPSK         45.0         -11.42         48.06         0.00         48.40         75.00           100         6NC         Mid         27.925         QPSK         45.0         -11.33         47.16		50		High	28.300	64QAM	45.0	-13.96	45.85	3.01	48.86	75.00	-29.15
50         2CC         High         28.300         16QAM         45.0         -14.02         45.80         3.01         48.81         75.00           50         High         28.300         64QAM         45.0         -13.94         45.87         3.01         48.88         75.00           100         2NC         Mid         27.925         QPSK         45.0         -10.72         48.77         0.00         48.77         75.00           100         3NC         Mid         27.925         QPSK         45.0         -10.72         48.77         0.00         48.40         75.00           100         4NC         Mid         27.925         QPSK         45.0         -10.45         49.04         0.00         48.06         75.00           100         4NC         Mid         27.925         QPSK         45.0         -11.42         48.06         0.00         48.06         75.00           100         5NC         Mid         27.925         QPSK         45.0         -12.33         47.16         0.00         47.16         75.00           100         7NC         Mid         27.925         QPSK         45.0         -14.53         44.95         3.01		50		High	28.300	QPSK	45.0	-14.12	45.69	3.01	48.70	75.00	-29.31
B         50         High         28.300         64QAM         45.0         -13.94         45.87         3.01         48.88         75.00           100         2NC         Mid         27.925         QPSK         45.0         -10.72         48.77         0.00         48.77         75.00           100         3NC         Mid         27.925         QPSK         45.0         -10.72         48.77         0.00         48.77         75.00           100         3NC         Mid         27.925         QPSK         45.0         -11.08         48.40         0.00         48.40         75.00           100         4NC         Mid         27.925         QPSK         45.0         -11.42         48.06         0.00         48.06         75.00           100         5NC         Mid         27.925         QPSK         45.0         -11.42         48.06         0.00         48.06         75.00           100         6NC         Mid         27.925         QPSK         45.0         -13.03         46.46         0.00         46.46         75.00           100         7NC         Mid         27.925         QPSK         45.0         -11.05         48.44		50	2CC	High	28.300	16QAM	45.0	-14.02	45.80	3.01	48.81	75.00	-29.20
B         100         2NC         Mid         27.925         QPSK         45.0         -10.72         48.77         0.00         48.77         75.00           100         3NC         Mid         27.925         QPSK         45.0         -11.08         48.40         0.00         48.40         75.00           100         4NC         Mid         27.925         QPSK         45.0         -10.45         49.04         0.00         48.40         75.00           100         5NC         Mid         27.925         QPSK         45.0         -10.45         49.04         0.00         49.04         75.00           100         5NC         Mid         27.925         QPSK         45.0         -11.42         48.06         0.00         48.06         75.00           100         6NC         Mid         27.925         QPSK         45.0         -12.33         47.16         0.00         46.46         75.00           100         7NC         Mid         27.925         QPSK         45.0         -14.53         44.95         3.01         47.96         75.00           50M x1 + 100M x1         Mid         27.925         QPSK         45.0         -11.05         48		50		High	28.300	64QAM	45.0	-13.94	45.87	3.01	48.88	75.00	-29.13
100         3NC         Mid         27.925         QPSK         45.0         -11.08         48.40         0.00         48.40         75.00           100         4NC         Mid         27.925         QPSK         45.0         -10.45         49.04         0.00         49.04         75.00           100         5NC         Mid         27.925         QPSK         45.0         -10.45         49.04         0.00         49.04         75.00           100         5NC         Mid         27.925         QPSK         45.0         -11.42         48.06         0.00         48.06         75.00           100         6NC         Mid         27.925         QPSK         45.0         -12.33         47.16         0.00         47.16         75.00           100         7NC         Mid         27.925         QPSK         45.0         -13.03         46.46         0.00         46.46         75.00           50M x1 + 100M x1         Mid         27.925         QPSK         45.0         -11.05         48.44         0.00         48.44         75.00           50M x2 + 100M x2         Mid         27.925         QPSK         45.0         -10.72         48.76         0.00 </td <td>В</td> <td>100</td> <td>2NC</td> <td>Mid</td> <td>27.925</td> <td>QPSK</td> <td>45.0</td> <td>-10.72</td> <td>48.77</td> <td>0.00</td> <td>48.77</td> <td>75.00</td> <td>-26.23</td>	В	100	2NC	Mid	27.925	QPSK	45.0	-10.72	48.77	0.00	48.77	75.00	-26.23
100         4NC         Mid         27.925         QPSK         45.0         -10.45         49.04         0.00         49.04         75.00           100         5NC         Mid         27.925         QPSK         45.0         -11.42         48.06         0.00         48.06         75.00           100         6NC         Mid         27.925         QPSK         45.0         -12.33         47.16         0.00         48.06         75.00           100         6NC         Mid         27.925         QPSK         45.0         -12.33         47.16         0.00         47.16         75.00           100         7NC         Mid         27.925         QPSK         45.0         -13.03         46.46         0.00         46.46         75.00           50M x1 + 100M x1         Mid         27.925         QPSK         45.0         -11.05         48.44         0.00         48.44         75.00           50M x2 + 100M x2         Mid         27.925         QPSK         45.0         -10.72         48.76         0.00         48.76         75.00           50M x2 + 100M x2         Mid         27.925         QPSK         45.0         -10.72         48.76         0.00		100	3NC	Mid	27.925	QPSK	45.0	-11.08	48.40	0.00	48.40	75.00	-26.60
100         5NC         Mid         27.925         QPSK         45.0         -11.42         48.06         0.00         48.06         75.00           100         6NC         Mid         27.925         QPSK         45.0         -12.33         47.16         0.00         48.06         75.00           100         7NC         Mid         27.925         QPSK         45.0         -12.33         47.16         0.00         47.16         75.00           100         7NC         Mid         27.925         QPSK         45.0         -13.03         46.46         0.00         46.46         75.00           50M x1 + 100M x1         Mid         27.925         QPSK         45.0         -14.53         44.95         3.01         47.96         75.00           50M x2 + 100M x1         Mid         27.925         QPSK         45.0         -11.05         48.44         0.00         48.44         75.00           50M x2 + 100M x2         Mid         27.925         QPSK         45.0         -10.72         48.76         0.00         48.76         75.00           50M x2 + 100M x3         Mid         27.925         QPSK         45.0         -13.57         45.91         3.01		100	4NC	Mid	27.925	QPSK	45.0	-10.45	49.04	0.00	49.04	75.00	-25.96
100         6NC         Mid         27.925         QPSK         45.0         -12.33         47.16         0.00         47.16         75.00           100         7NC         Mid         27.925         QPSK         45.0         -13.03         46.46         0.00         46.46         75.00           50M x1 + 100M x1         Mid         27.925         QPSK         45.0         -14.53         44.95         3.01         47.96         75.00           50M x2 + 100M x1         Mid         27.925         QPSK         45.0         -11.05         48.44         0.00         48.44         75.00           50M x2 + 100M x2         Mid         27.925         QPSK         45.0         -10.93         48.56         0.00         48.56         75.00           50M x2 + 100M x2         Mid         27.925         QPSK         45.0         -10.72         48.76         0.00         48.76         75.00           50M x2 + 100M x3         Mid         27.925         QPSK         45.0         -10.72         48.76         0.00         48.76         75.00           50M x2 + 100M x3         Mid         27.925         QPSK         45.0         -13.46         46.03         3.01         48.904		100	5NC	Mid	27.925	QPSK	45.0	-11.42	48.06	0.00	48.06	75.00	-26.94
100         7NC         Mid         27.925         QPSK         45.0         -13.03         46.46         0.00         46.46         75.00           50M x1 + 100M x1         Mid         27.925         QPSK         45.0         -14.53         44.95         3.01         47.96         75.00           50M x2 + 100M x1         Mid         27.925         QPSK         45.0         -11.05         48.44         0.00         48.44         75.00           50M x1 + 100M x2         Mid         27.925         QPSK         45.0         -10.93         48.56         0.00         48.66         75.00           50M x2 + 100M x2         Mid         27.925         QPSK         45.0         -10.72         48.76         0.00         48.76         75.00           50M x1 + 100M x3         Mid         27.925         QPSK         45.0         -11.72         48.76         0.00         48.76         75.00           50M x2 + 100M x3         Mid         27.925         QPSK         45.0         -13.47         45.01         48.92         75.00           50M x2 + 100M x3         Mid         27.925         QPSK         45.0         -13.46         46.03         3.01         49.04         75.00		100	6NC	Mid	27.925	QPSK	45.0	-12.33	47.16	0.00	47.16	75.00	-27.84
50M x1 + 100M x1         Mid         27.925         QPSK         45.0         -14.53         44.95         3.01         47.96         75.00           50M x2 + 100M x1         Mid         27.925         QPSK         45.0         -11.05         48.44         0.00         48.44         75.00           50M x1 + 100M x2         Mid         27.925         QPSK         45.0         -10.93         48.56         0.00         48.44         75.00           50M x2 + 100M x2         Mid         27.925         QPSK         45.0         -10.93         48.56         0.00         48.76         75.00           50M x2 + 100M x2         Mid         27.925         QPSK         45.0         -10.72         48.76         0.00         48.76         75.00           50M x1 + 100M x3         Mid         27.925         QPSK         45.0         -13.57         45.91         3.01         48.92         75.00           50         50M x1 + 100M x3         Mid         27.925         QPSK         45.0         -13.46         46.03         3.01         49.04         75.00           50         50M x1 + 100M x4         Mid         27.925         QPSK         45.0         -11.02         48.46         0.00		100	7NC	Mid	27.925	QPSK	45.0	-13.03	46.46	0.00	46.46	75.00	-28.54
50M x2 + 100M x1         Mid         27.925         QPSK         45.0         -11.05         48.44         0.00         48.44         75.00           50M x1 + 100M x2         Mid         27.925         QPSK         45.0         -10.93         48.56         0.00         48.44         75.00           50M x2 + 100M x2         Mid         27.925         QPSK         45.0         -10.72         48.76         0.00         48.76         75.00           50M x1 + 100M x3         Mid         27.925         QPSK         45.0         -13.57         45.91         3.01         48.92         75.00           50M x1 + 100M x3         Mid         27.925         QPSK         45.0         -13.46         46.03         3.01         48.92         75.00           50M x1 + 100M x4         Mid         27.925         QPSK         45.0         -13.46         46.03         3.01         49.04         75.00			50M x1 + 100M x1	Mid	27.925	QPSK	45.0	-14.53	44.95	3.01	47.96	75.00	-30.05
50M x1 + 100M x2         Mid         27.925         QPSK         45.0         -10.93         48.56         0.00         48.56         75.00           50M x2 + 100M x2         Mid         27.925         QPSK         45.0         -10.72         48.76         0.00         48.76         75.00           50M x2 + 100M x2         Mid         27.925         QPSK         45.0         -10.72         48.76         0.00         48.76         75.00           50M x1 + 100M x3         Mid         27.925         QPSK         45.0         -13.57         45.91         3.01         48.92         75.00           50M x2 + 100M x3         Mid         27.925         QPSK         45.0         -13.46         46.03         3.01         49.04         75.00           50M x1 + 100M x4         Mid         27.925         QPSK         45.0         -11.02         48.46         0.00         48.46         75.00			50M x2 + 100M x1	Mid	27.925	QPSK	45.0	-11.05	48.44	0.00	48.44	75.00	-26.56
50M x2 + 100M x2         Mid         27.925         QPSK         45.0         -10.72         48.76         0.00         48.76         75.00           50M x1 + 100M x3         Mid         27.925         QPSK         45.0         -13.57         45.91         3.01         48.92         75.00           50M x2 + 100M x3         Mid         27.925         QPSK         45.0         -13.46         46.03         3.01         49.04         75.00           50M x1 + 100M x4         Mid         27.925         QPSK         45.0         -11.02         48.46         0.00         48.46         75.00	50		50M x1 + 100M x2	Mid	27.925	QPSK	45.0	-10.93	48.56	0.00	48.56	75.00	-26.44
50         50M x1 + 100M x3         Mid         27.925         QPSK         45.0         -13.57         45.91         3.01         48.92         75.00           50         50M x2 + 100M x3         Mid         27.925         QPSK         45.0         -13.46         46.03         3.01         49.04         75.00           50M x1 + 100M x4         Mid         27.925         QPSK         45.0         -11.02         48.46         0.00         48.46         75.00			50M x2 + 100M x2	Mid	27.925	QPSK	45.0	-10.72	48.76	0.00	48.76	75.00	-26.24
50 50M x2 + 100M x3 Mid 27.925 QPSK 45.0 -13.46 46.03 3.01 49.04 75.00 50M x1 + 100M x4 Mid 27.925 QPSK 45.0 -11.02 48.46 0.00 48.46 75.00			50M x1 + 100M x3	Mid	27.925	QPSK	45.0	-13.57	45.91	3.01	48.92	75.00	-29.09
50 50M x1 + 100M x4 Mid 27.925 QPSK 45.0 -11.02 48.46 0.00 48.46 75.00			50M x2 + 100M x3	Mid	27.925	QPSK	45.0	-13.46	46.03	3.01	49.04	75.00	-28.97
		50	50M x1 + 100M x4	Mid	27.925	QPSK	45.0	-11.02	48.46	0.00	48.46	75.00	-26.54
50M x2 + 100M x4 Mid 27.925 QPSK 45.0 -11.43 48.06 0.00 48.06 75.00			50M x2 + 100M x4	Mid	27.925	QPSK	45.0	-11.43	48.06	0.00	48.06	75.00	-26.94
50M x1 + 100M x5 Mid 27.925 QPSK 45.0 -11.87 47.61 0.00 47.61 75.00			50M x1 + 100M x5	Mid	27.925	QPSK	45.0	-11.87	47.61	0.00	47.61	75.00	-27.39
50M x2 + 100M x5 Mid 27.925 OPSK 45.0 -12.24 47.24 0.00 47.24 75.00			50M x2 + 100M x5	Mid	27.925	OPSK	45.0	-12.24	47.24	0.00	47.24	75.00	-27.76
50M x1 + 100M x6 Mid 27.925 QPSK 45.0 -12.51 46.97 0.00 46.97 75.00			50M x1 + 100M x6	Mid	27.925	QPSK	45.0	-12.51	46.97	0.00	46.97	75.00	-28.03
50M x2 + 100M x6 Mid 27.925 QPSK 45.0 -15.90 43.58 3.01 46.59 75.00			50M x2 + 100M x6	Mid	27.925	QPSK	45.0	-15.90	43.58	3.01	46.59	75.00	-31.42

Table 7-8. Antenna B EIRP Density Summary Data

FCC ID: A3LAT1K01-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 52 of 222
8K20092801-02-R4.A3L	10/27/2020-11/18/2020	AU(AT1K01)		Page 52 01 322
C ANAL DOTEOT				DK OD 40.00 D





Plot 7-61. Antenna B EIRP Density Plot (50 MHz 1CC BW QPSK Low Channel)



Plot 7-62. Antenna B EIRP Density Plot (50 MHz 1CC BW 16QAM Low Channel)

FCC ID: A3LAT1K01-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 52 of 222
8K20092801-02-R4.A3L	10/27/2020-11/18/2020	AU(AT1K01)	Page 53 01 322
© 2020 DOTEST			PK_OP_16_00 Pov 02





Plot 7-63. Antenna B EIRP Density Plot (50 MHz 1CC BW 64QAM Low Channel)



Plot 7-64. Antenna B EIRP Density Plot (50 MHz 2CC BW QPSK Low Channel)

FCC ID: A3LAT1K01-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 54 of 222
8K20092801-02-R4.A3L	10/27/2020-11/18/2020	AU(AT1K01)	raye 34 01 322
@ 2020 DOTECT			DK OD 16 00 Dov 02





Plot 7-65. Antenna B EIRP Density Plot (50 MHz 2CC BW 16QAM Low Channel)



Plot 7-66. Antenna B EIRP Density Plot (50 MHz 2CC BW 64QAM Low Channel)

FCC ID: A3LAT1K01-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dama EE of 222
8K20092801-02-R4.A3L	10/27/2020-11/18/2020	AU(AT1K01)	Fage 55 01 322
@ 2020 DOTECT			DK OD 16 00 Boy 02





Plot 7-67. Antenna B EIRP Density Plot (50 MHz 1CC BW QPSK Mid Channel)



Plot 7-68. Antenna B EIRP Density Plot (50 MHz 1CC BW 16QAM Mid Channel)

FCC ID: A3LAT1K01-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga EC of 222
8K20092801-02-R4.A3L	10/27/2020-11/18/2020	AU(AT1K01)	Page 56 01 322
© 2020 PCTEST			PK-OP-16-09 Rev 02





Plot 7-69. Antenna B EIRP Density Plot (50 MHz 1CC BW 64QAM Mid Channel)



Plot 7-70. Antenna B EIRP Density Plot (50 MHz 2CC BW QPSK Mid Channel)

FCC ID: A3LAT1K01-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dega 57 of 222
8K20092801-02-R4.A3L	10/27/2020-11/18/2020	AU(AT1K01)	Page 57 of 322
© 2020 DOTECT			DK OD 16 00 Boy 02





Plot 7-71. Antenna B EIRP Density Plot (50 MHz 2CC BW 16QAM Mid Channel)



Plot 7-72. Antenna B EIRP Density Plot (50 MHz 2CC BW 64QAM Mid Channel)

FCC ID: A3LAT1K01-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 59 of 222
8K20092801-02-R4.A3L	10/27/2020-11/18/2020	AU(AT1K01)	Fage 50 01 322
© 2020 DOTECT			DK OD 16 00 Boy 02





Plot 7-73. Antenna B EIRP Density Plot (50 MHz 1CC BW QPSK High Channel)



Plot 7-74. Antenna B EIRP Density Plot (50 MHz 1CC BW 16QAM High Channel)

FCC ID: A3LAT1K01-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Quality Manage	er
Test Report S/N:	Test Dates:	EUT Type:	Daga 50 of 222	
8K20092801-02-R4.A3L	10/27/2020-11/18/2020	AU(AT1K01)	Page 59 of 322	
© 2020 PCTEST.	•	•	PK-QP-16-	09 Rev.02





Plot 7-75. Antenna B EIRP Density Plot (50 MHz 1CC BW 64QAM High Channel)



Plot 7-76. Antenna B EIRP Density Plot (50 MHz 2CC BW QPSK High Channel)

FCC ID: A3LAT1K01-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 60 of 222
8K20092801-02-R4.A3L	10/27/2020-11/18/2020	AU(AT1K01)	Fage 00 01 322
© 2020 DOTECT			DK OD 16 00 Boy 02





Plot 7-77. Antenna B EIRP Density Plot (50 MHz 2CC BW 16QAM High Channel)



Plot 7-78. Antenna B EIRP Density Plot (50 MHz 2CC BW 64QAM High Channel)

FCC ID: A3LAT1K01-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 61 of 200
8K20092801-02-R4.A3L	10/27/2020-11/18/2020	AU(AT1K01)	Fage 61 01 322
© 2020 DOTECT			DK OD 16 00 Boy 02





Plot 7-79. Antenna B EIRP Density Plot (100 MHz 2NC BW QPSK Mid Channel)



Plot 7-80. Antenna B EIRP Density Plot (100 MHz 3NC BW QPSK Mid Channel)

FCC ID: A3LAT1K01-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 62 of 222
8K20092801-02-R4.A3L	10/27/2020-11/18/2020	AU(AT1K01)	Faye 02 01 322
© 2020 DOTEST			PK_OP_16_00 Pov 02





Plot 7-81. Antenna B EIRP Density Plot (100 MHz 4NC BW QPSK Mid Channel)



Plot 7-82. Antenna B EIRP Density Plot (100 MHz 5NC BW QPSK Mid Channel)

FCC ID: A3LAT1K01-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 62 of 200
8K20092801-02-R4.A3L	10/27/2020-11/18/2020	AU(AT1K01)	Fage 03 01 322
© 2020 DOTECT			DK OD 16 00 Boy 02





Plot 7-83. Antenna B EIRP Density Plot (100 MHz 6NC BW QPSK Mid Channel)



Plot 7-84. Antenna B EIRP Density Plot (100 MHz 7NC BW QPSK Mid Channel)

FCC ID: A3LAT1K01-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 64 of 202
8K20092801-02-R4.A3L	10/27/2020-11/18/2020	AU(AT1K01)	Page 64 01 322
© 2020 PCTEST			PK-OP-16-09 Rev 02





Plot 7-85. Antenna B EIRP Density Plot (50 MHz 1CC + 100 MHz 1CC BW QPSK Mid Channel)



Plot 7-86. Antenna B EIRP Density Plot (50 MHz 2CC + 100 MHz 1CC BW QPSK Mid Channel)

FCC ID: A3LAT1K01-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 65 of 222
8K20092801-02-R4.A3L	10/27/2020-11/18/2020	AU(AT1K01)	Page 65 01 322
© 2020 PCTEST			PK-OP-16-09 Rev 02





Plot 7-87. Antenna B EIRP Density Plot (50 MHz 1CC + 100 MHz 2CC BW QPSK Mid Channel)



Plot 7-88. Antenna B EIRP Density Plot (50 MHz 2CC + 100 MHz 2CC BW QPSK Mid Channel)

FCC ID: A3LAT1K01-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Baga 66 at 222
8K20092801-02-R4.A3L	10/27/2020-11/18/2020	AU(AT1K01)	Page 66 01 322
© 2020 PCTEST			PK-OP-16-09 Rev 02





Plot 7-89. Antenna B EIRP Density Plot (50 MHz 1CC + 100 MHz 3CC BW QPSK Mid Channel)



Plot 7-90. Antenna B EIRP Density Plot (50 MHz 2CC + 100 MHz 3CC BW QPSK Mid Channel)

FCC ID: A3LAT1K01-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	
8K20092801-02-R4.A3L	10/27/2020-11/18/2020	AU(AT1K01)	Page 67 of 322
© 2020 PCTEST.	•		PK-QP-16-09 Rev.02





Plot 7-91. Antenna B EIRP Density Plot (50 MHz 1CC + 100 MHz 4CC BW QPSK Mid Channel)



Plot 7-92. Antenna B EIRP Density Plot (50 MHz 2CC + 100 MHz 4CC BW QPSK Mid Channel)

FCC ID: A3LAT1K01-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 68 of 222
8K20092801-02-R4.A3L	10/27/2020-11/18/2020	AU(AT1K01)	Page 68 of 322
© 2020 PCTEST.	•		PK-QP-16-09 Rev.02





Plot 7-93. Antenna B EIRP Density Plot (50 MHz 1CC + 100 MHz 5CC BW QPSK Mid Channel)



Plot 7-94. Antenna B EIRP Density Plot (50 MHz 2CC + 100 MHz 5CC BW QPSK Mid Channel)

FCC ID: A3LAT1K01-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dama 60 of 222
8K20092801-02-R4.A3L	10/27/2020-11/18/2020	AU(AT1K01)	Page 69 01 322
© 2020 PCTEST			PK-OP-16-09 Rev 02



			×*
MultiView 🗄 Spectrum			•
Ref Level 0.00 dBm •	RBW 1 MHz		SGL
• Att 0 dB SWT 83.2 ms •	VBW 3 MHz Mode Sweep		Count 100/100
GAT:PSE			
1 ACLR			o 1Rm Avg
-10 dBm	Tx2	Tx6	Tu7
	1×3	Tx4	187
-20 dBm-			
-30 dBm-	new particular production production of the second s	• ()	and the state of the
-40 dBm-			
10 4011			
-50 dBm-			
-60 dBm			
-70 dBm			The second beneficial in the second
-SU dBm-			
-90 dBm			
55 dbm			
	E001 pto	120 0 MUS (	Coop 1.2 Clip
2 Deput Summer	5001 pts	Nana	span 1.5 GHz
Chappel Randu	uidth Offent	None	
Tx1 50.000	MHz Offset	-16.09 dBm	
Tx2 100.000	MHz 75.000 MH	z -12.58 dBm	
Tx3 100.000	MHz 99.600 MH	z -12.98 dBm	
Tx4 100.000	MHz 99.600 MH	z -13.15 dBm	
TX5 100.000	MHz 99.600 MH	-12.86 dBm	
Tx7 100.000	MHZ 99.600 MH	z -12.51 uBil	
Tx Total	59:000 Mi	-4.70 dBm	

~

Plot 7-95. Antenna B EIRP Density Plot (50 MHz 1CC + 100 MHz 6CC BW QPSK Mid Channel)



Plot 7-96. Antenna B EIRP Density Plot (50 MHz 2CC + 100 MHz 6CC BW QPSK Mid Channel)

FCC ID: A3LAT1K01-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 70 of 222
8K20092801-02-R4.A3L	10/27/2020-11/18/2020	AU(AT1K01)	Page 70 01 322
© 2020 PCTEST			PK-OP-16-09 Rev 02



## 7.3.3 Antenna C EIRP Density

Antenna	Banuwidun	Configuration	Chan.	Frequency	Modulation	Horn Angle	Analyzer Level	Average e.i.r.p. PSD	Scaling factor	Average e.i.r.p. PSD	PSD Limit	Margin
	[MHz]			[GHz]		[degrees]	[dBm]	[dBm]	[dB]	[dBm/100MHz]	[dBm/100MHz]	[dB/100MHz]
	50		Low	27.550	QPSK	135.0	-13.57	45.83	3.01	48.84	75.00	-29.17
	50	1CC	Low	27.550	16QAM	135.0	-13.60	45.80	3.01	48.81	75.00	-29.20
	50		Low	27.550	64QAM	135.0	-13.68	45.72	3.01	48.73	75.00	-29.28
_	50		Low	27.550	QPSK	135.0	-13.52	45.88	3.01	48.89	75.00	-29.12
_	50	2CC	Low	27.550	16QAM	135.0	-13.33	46.08	3.01	49.09	75.00	-28.92
	50		Low	27.550	64QAM	135.0	-13.33	46.08	3.01	49.09	75.00	-28.92
	50		Mid	27.925	QPSK	135.0	-13.70	45.78	3.01	48.79	75.00	-29.22
	50	1CC	Mid	27.925	16QAM	135.0	-13.77	45.72	3.01	48.73	75.00	-29.28
	50		Mid	27.925	64QAM	135.0	-13.85	45.63	3.01	48.64	75.00	-29.37
	50		Mid	27.925	QPSK	135.0	-14.00	45.49	3.01	48.50	75.00	-29.51
	50	2CC	Mid	27.925	16QAM	135.0	-14.04	45.45	3.01	48.46	75.00	-29.55
	50		Mid	27.925	64QAM	135.0	-14.26	45.22	3.01	48.23	75.00	-29.78
	50		High	28.300	QPSK	135.0	-13.71	46.10	3.01	49.11	75.00	-28.90
	50	1CC	High	28.300	16QAM	135.0	-14.00	45.82	3.01	48.83	75.00	-29.18
	50		High	28.300	64QAM	135.0	-13.90	45.91	3.01	48.92	75.00	-29.09
	50		High	28.300	QPSK	135.0	-13.62	46.19	3.01	49.20	75.00	-28.81
	50	2CC	High	28.300	16QAM	135.0	-13.71	46.10	3.01	49.11	75.00	-28.90
	50		High	28.300	64QAM	135.0	-14.01	45.80	3.01	48.81	75.00	-29.20
	100	2NC	Mid	27.925	QPSK	135.0	-10.58	48.91	0.00	48.91	75.00	-26.09
	100	3NC	Mid	27.925	QPSK	135.0	-11.09	48.39	0.00	48.39	75.00	-26.61
	100	4NC	Mid	27.925	QPSK	135.0	-10.45	49.03	0.00	49.03	75.00	-25.97
	100	5NC	Mid	27.925	QPSK	135.0	-10.93	48.56	0.00	48.56	75.00	-26.44
	100	6NC	Mid	27.925	QPSK	135.0	-12.15	47.33	0.00	47.33	75.00	-27.67
	100	7NC	Mid	27.925	QPSK	135.0	-12.72	46.76	0.00	46.76	75.00	-28.24
		50M x1 + 100M x1	Mid	27.925	QPSK	135.0	-14.32	45.17	3.01	48.18	75.00	-29.83
	50M x2 + 100M x1  50M x1 + 100M x2  50M x2 + 100M x2  50M x1 + 100M x3  50M x1 + 100M x2  50M x1 + 100M x2  50M x2 + 100M x1  50M x2 + 100M x2  50M x2 + 100M x3  50M x2 + 100M x2 + 100M x2  50M x2 + 100M x2 + 1	Mid	27.925	QPSK	135.0	-11.25	48.23	0.00	48.23	75.00	-26.77	
		50M x1 + 100M x2	Mid	27.925	QPSK	135.0	-10.64	48.84	0.00	48.84	75.00	-26.16
		50M x2 + 100M x2	Mid	27.925	QPSK	135.0	-10.37	49.11	0.00	49.11	75.00	-25.89
		50M x1 + 100M x3	Mid	27.925	QPSK	135.0	-10.38	49.10	0.00	49.10	75.00	-25.90
		50M x2 + 100M x3	Mid	27.925	QPSK	135.0	-10.31	49.18	0.00	49.18	75.00	-25.82
	50	50M x1 + 100M x4	Mid	27.925	QPSK	135.0	-10.85	48.63	0.00	48.63	75.00	-26.37
		50M x2 + 100M x4	Mid	27.925	QPSK	135.0	-11.23	48.25	0.00	48.25	75.00	-26.75
		50M x1 + 100M x5	Mid	27.925	QPSK	135.0	-11.85	47.63	0.00	47.63	75.00	-27.37
		50M x2 + 100M x5	Mid	27.925	QPSK	135.0	-11.95	47.54	0.00	47.54	75.00	-27.46
		50M x1 + 100M x6	Mid	27.925	QPSK	135.0	-12.20	47.29	0.00	47.29	75.00	-27.71
		50M x2 + 100M x6	Mid	27.925	QPSK	135.0	-12.40	47.09	0.00	47.09	75.00	-27.91

Table 7-9. Antenna C EIRP Density Summary Data

FCC ID: A3LAT1K01-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 71 of 222
8K20092801-02-R4.A3L	10/27/2020-11/18/2020	AU(AT1K01)		Page 71 01 322
C ANAL DOTEOT				DK OD 40 00 D 00





Plot 7-97. Antenna C EIRP Density Plot (50 MHz 1CC BW QPSK Low Channel)



Plot 7-98. Antenna C EIRP Density Plot (50 MHz 1CC BW 16QAM Low Channel)

FCC ID: A3LAT1K01-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 70 of 200
8K20092801-02-R4.A3L	10/27/2020-11/18/2020	AU(AT1K01)	Page 72 01 322
© 2020 DOTEST			PK_OP_16_00 Pov 02




Plot 7-99. Antenna C EIRP Density Plot (50 MHz 1CC BW 64QAM Low Channel)



Plot 7-100. Antenna C EIRP Density Plot (50 MHz 2CC BW QPSK Low Channel)

FCC ID: A3LAT1K01-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 72 of 222
8K20092801-02-R4.A3L	10/27/2020-11/18/2020	AU(AT1K01)	Page 73 01 322
© 2020 DOTEST			PK-OP-16-00 Poy 02





Plot 7-101. Antenna C EIRP Density Plot (50 MHz 2CC BW 16QAM Low Channel)



Plot 7-102. Antenna C EIRP Density Plot (50 MHz 2CC BW 64QAM Low Channel)

FCC ID: A3LAT1K01-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 74 of 222
8K20092801-02-R4.A3L	10/27/2020-11/18/2020	AU(AT1K01)	Page 74 01 322
© 2020 DOTEST			PK-OP-16-00 Poy 02





Plot 7-103. Antenna C EIRP Density Plot (50 MHz 1CC BW QPSK Mid Channel)



Plot 7-104. Antenna C EIRP Density Plot (50 MHz 1CC BW 16QAM Mid Channel)

FCC ID: A3LAT1K01-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 75 of 222
8K20092801-02-R4.A3L	10/27/2020-11/18/2020	AU(AT1K01)	Page 75 of 322
© 2020 PCTEST.	•		PK-QP-16-09 Rev.02





Plot 7-105. Antenna C EIRP Density Plot (50 MHz 1CC BW 64QAM Mid Channel)



Plot 7-106. Antenna C EIRP Density Plot (50 MHz 2CC BW QPSK Mid Channel)

FCC ID: A3LAT1K01-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 76 of 200
8K20092801-02-R4.A3L	10/27/2020-11/18/2020	AU(AT1K01)	Page 76 01 322
© 2020 DOTEST			PK-OP-16-00 Pov 02





Plot 7-107. Antenna C EIRP Density Plot (50 MHz 2CC BW 16QAM Mid Channel)



Plot 7-108. Antenna C EIRP Density Plot (50 MHz 2CC BW 64QAM Mid Channel)

FCC ID: A3LAT1K01-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 77 of 222
8K20092801-02-R4.A3L	10/27/2020-11/18/2020	AU(AT1K01)	raye 11 01 322
© 2020 DOTECT			DK OD 16 00 Dov 02





Plot 7-109. Antenna C EIRP Density Plot (50 MHz 1CC BW QPSK High Channel)



Plot 7-110. Antenna C EIRP Density Plot (50 MHz 1CC BW 16QAM High Channel)

FCC ID: A3LAT1K01-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dago 79 of 222
8K20092801-02-R4.A3L	10/27/2020-11/18/2020	AU(AT1K01)	Fage 76 01 322
© 2020 DOTEST			PK_OP_16_00 Pov 02





Plot 7-111. Antenna C EIRP Density Plot (50 MHz 1CC BW 64QAM High Channel)



Plot 7-112. Antenna C EIRP Density Plot (50 MHz 2CC BW QPSK High Channel)

FCC ID: A3LAT1K01-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 70 of 222
8K20092801-02-R4.A3L	10/27/2020-11/18/2020	AU(AT1K01)	Fage 79 01 322
© 2020 DOTECT			DK OD 16 00 Boy 02





Plot 7-113. Antenna C EIRP Density Plot (50 MHz 2CC BW 16QAM High Channel)



Plot 7-114. Antenna C EIRP Density Plot (50 MHz 2CC BW 64QAM High Channel)

FCC ID: A3LAT1K01-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 90 of 222
8K20092801-02-R4.A3L	10/27/2020-11/18/2020	AU(AT1K01)	Fage 80 01 322
© 2020 DOTECT			DK OD 16 00 Boy 02





Plot 7-115. Antenna C EIRP Density Plot (100 MHz 2NC BW QPSK Mid Channel)



Plot 7-116. Antenna C EIRP Density Plot (100 MHz 3NC BW QPSK Mid Channel)

FCC ID: A3LAT1K01-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 91 of 222
8K20092801-02-R4.A3L	10/27/2020-11/18/2020	AU(AT1K01)	Fage 81 01 322
@ 2020 DOTECT			DK OD 16 00 Boy 02





Plot 7-117. Antenna C EIRP Density Plot (100 MHz 4NC BW QPSK Mid Channel)



Plot 7-118. Antenna C EIRP Density Plot (100 MHz 5NC BW QPSK Mid Channel)

FCC ID: A3LAT1K01-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 92 of 222
8K20092801-02-R4.A3L	10/27/2020-11/18/2020	AU(AT1K01)	Fage 62 01 322
© 2020 DOTECT			DK OD 16 00 Boy 02





Plot 7-119. Antenna C EIRP Density Plot (100 MHz 6NC BW QPSK Mid Channel)



Plot 7-120. Antenna C EIRP Density Plot (100 MHz 7NC BW QPSK Mid Channel)

FCC ID: A3LAT1K01-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 02 of 222
8K20092801-02-R4.A3L	10/27/2020-11/18/2020	AU(AT1K01)	Page 83 of 322
© 2020 PCTEST.	•	-	PK-QP-16-09 Rev.02





Plot 7-121. Antenna C EIRP Density Plot (50 MHz 1CC + 100 MHz 1CC BW QPSK Mid Channel)



Plot 7-122. Antenna C EIRP Density Plot (50 MHz 2CC + 100 MHz 1CC BW QPSK Mid Channel)

FCC ID: A3LAT1K01-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 84 of 222
8K20092801-02-R4.A3L	10/27/2020-11/18/2020	AU(AT1K01)	Page 84 01 322
@ 2020 DOTEST			PK_OP_16_00 Pov 02



								(*)
MultiView 🕂 Sp	ectrum							•
Ref Level 0.00 dBm	• RBW 1 MH	Ηz					S	GL
● Att 0 dB	SWT 32 ms • VBW 3 MH	Hz Mode Swe	ер				C	ount 100/100
GAT:PSE								
1 ACLR								●1Rm Avg
-10 dBm-			T¥2					
10 0011								
-20 dBm-								
20 0011								
-20 dBm-		en andere de la constate de la const						
-30 UBIII	ſ		and all the state of the second s	and a second	and the second se			
					(			
-40 dBm								
-50 dBm-								
-60 dBm-								
	1						My hope days at a	
-70 dBm	AND A DESCRIPTION OF A						a second s	man the property and the second second
About the second se								
-80 dBm								
-90 dBm								
CE 27 9 GHz		2001 pts		50	0 MHz/		Sn	an 500 0 MHz
2 Decult Summany		2001 pts	None		10 1411 127		59	
Channel	Bandwidth		Offset		Power			
Tx1	50.000 MHz				-13.98 dBm			
Tx2	100.000 MHz		75.000 MHz		-10.85 dBm			
Tx3 (Ref)	100.000 MHz		99.600 MHz		-10.64 dBm			
					-0.81 (IBIII			
						v Roadu		28.10.2020

Plot 7-123. Antenna C EIRP Density Plot (50 MHz 1CC + 100 MHz 2CC BW QPSK Mid Channel)



Plot 7-124. Antenna C EIRP Density Plot (50 MHz 2CC + 100 MHz 2CC BW QPSK Mid Channel)

FCC ID: A3LAT1K01-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 05 of 222	
8K20092801-02-R4.A3L	(20092801-02-R4.A3L 10/27/2020-11/18/2020 AU(AT1K01)		Page 85 01 322	
© 2020 PCTEST			PK-OP-16-09 Rev 02	





Plot 7-125. Antenna C EIRP Density Plot (50 MHz 1CC + 100 MHz 3CC BW QPSK Mid Channel)



Plot 7-126. Antenna C EIRP Density Plot (50 MHz 2CC + 100 MHz 3CC BW QPSK Mid Channel)

FCC ID: A3LAT1K01-A10	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 96 of 222	
8K20092801-02-R4.A3L	10/27/2020-11/18/2020	AU(AT1K01)	Page 86 of 322	
© 2020 PCTEST.	•		PK-QP-16-09 Rev.02	