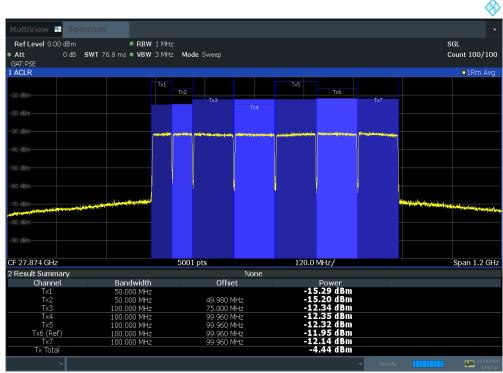
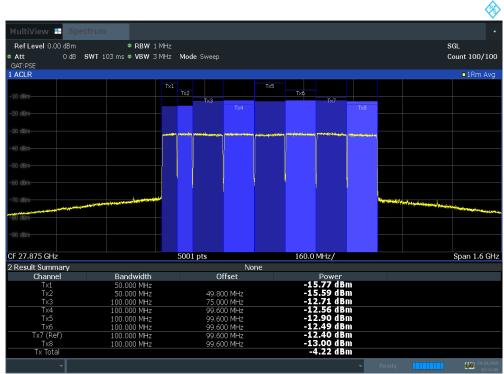

Plot 7-127. Antenna C EIRP Density Plot (50 MHz 1CC + 100 MHz 4CC BW QPSK Mid Channel)


Plot 7-128. Antenna C EIRP Density Plot (50 MHz 2CC + 100 MHz 4CC BW QPSK Mid Channel)

FCC ID: A3LAT1K01-A00	Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 07 of 210
8K20092801-R2.A3L	10/27/2020-11/13/2020	AU(AT1K01)		Page 87 of 319
© 2020 PCTEST.	•	·		PK-QP-16-09 Rev.02

Plot 7-129. Antenna C EIRP Density Plot (50 MHz 1CC + 100 MHz 5CC BW QPSK Mid Channel)

Plot 7-130. Antenna C EIRP Density Plot (50 MHz 2CC + 100 MHz 5CC BW QPSK Mid Channel)


FCC ID: A3LAT1K01-A00		MEASUREMENT REPORT (Class II Permissive Change)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 90 of 210
8K20092801-R2.A3L	10/27/2020-11/13/2020	AU(AT1K01)		Page 88 of 319
© 2020 PCTEST				PK-OP-16-09 Rev 02

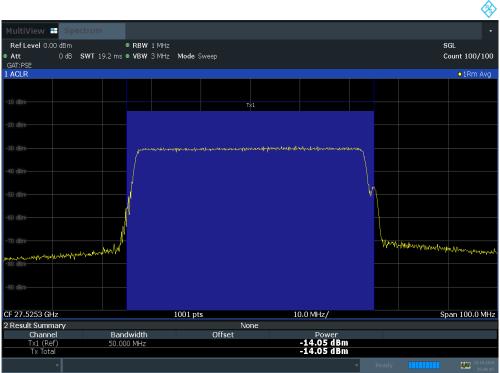
MultiView 🕂 Spect	trum						
						-	
Ref Level 0.00 dBm	RBW 1 MHz	No. Ja. Commun.					GL
● Att 0 dB S GAT:PSE	WT 83.2 ms • VBW 3 MHz	Mode Sweep				L	ount 100/100
1 ACLR							•1Rm Avg
	Tx1		Tx5				Ĭ
-10 dBm		Tx2		Тхб			
		Tx3			Tx7		
	and a second	NEMERICAN MARINEMENICAN MARIN	Antonia Antonia antonia distanti antonia di seconda di seconda di seconda di seconda di seconda di seconda di s	in present the second second	-		
50 dBm							
-60 dBm							
-70 dBm	A SATISFY AND A REAL PROPERTY OF A					A REAL PROPERTY OF A DESCRIPTION OF A DE	directures and the law provides of
and the second						1	
-80 dBm							
-90 dBm-							
CF 27.9 GHz		5001 pts		.0 MHz/			Span 1.3 GH
2 Result Summary			None				
Channel	Bandwidth	Offset		Power 15.83 dBm			
Tx1 Tx2	50.000 MHz 100.000 MHz	75.000 MHz		12.41 dBm			
Tx3	100.000 MHz	99.600 MHz		12.59 dBm			
Tx4	100.000 MHz	99.600 MHz	-	12.69 dBm			
Tx5	100.000 MHz	99.600 MHz		12.54 dBm			
Tx6 (Ref) Tx7	100.000 MHz 100.000 MHz	99.600 MHz		12.20 dBm 12.47 dBm			
Tx Total	100.000 MHz	99.600 MHz		-4.37 dBm			
							20 10 202
					- Ready		29.10.202

~

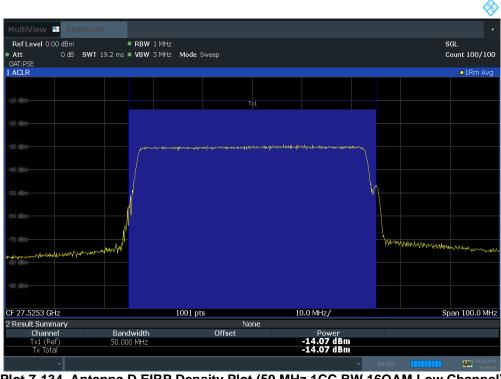
Plot 7-131. Antenna C EIRP Density Plot (50 MHz 1CC + 100 MHz 6CC BW QPSK Mid Channel)

Plot 7-132. Antenna C EIRP Density Plot (50 MHz 2CC + 100 MHz 6CC BW QPSK Mid Channel)

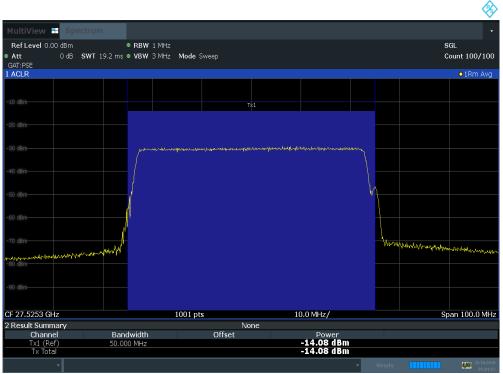
FCC ID: A3LAT1K01-A00		MEASUREMENT REPORT (Class II Permissive Change)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dege 80 of 240
8K20092801-R2.A3L	10/27/2020-11/13/2020	AU(AT1K01)		Page 89 of 319
© 2020 PCTEST				PK-OP-16-09 Rev 02

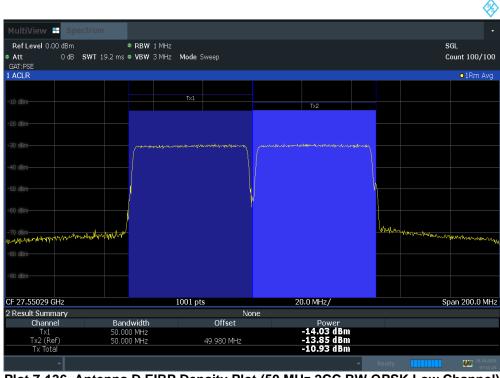

7.3.4 Antenna D EIRP Density

IMHz; IGHz; IGEnces; IGBm;	Antenna	Bandwidth	Configuration	Chan.	Frequency	Modulation	Horn Angle	Analyzer Level	Average e.i.r.p. PSD	Scaling factor	Average e.i.r.p. PSD	PSD Limit	Margin
50 1CC Low 27.550 16QAM 45.0 -14.07 45.34 3.01 48.35 75.00 -29.66 50 Low 27.550 GPSK 45.0 -14.08 45.32 3.01 48.33 75.00 -29.66 50 Low 27.550 GPSK 45.0 -13.85 45.55 3.01 48.53 75.00 -29.48 50 Low 27.550 64QAM 45.0 -13.85 45.55 3.01 48.53 75.00 -29.48 50 Low 27.550 64QAM 45.0 -14.33 45.16 3.01 48.13 75.00 -29.76 50 Mid 27.925 64QAM 45.0 -14.24 45.24 3.01 48.13 75.00 -29.76 50 Mid 27.925 64QAM 45.0 -14.24 45.24 3.01 48.13 75.00 -29.73 50 Mid 27.925 64QAM 45.0 -14.14					[GHz]		[degrees]	[dBm]		[dB]	[dBm/100MHz]	[dBm/100MHz]	[dB/100MHz]
50 Low 27,500 640AM 45.00 -14.08 45.32 3.01 48.33 75.00 -29.88 50 2CC Low 27,550 QPSK 45.00 -13.86 45.55 3.01 48.53 75.00 -29.48 50 Low 27,550 640AM 45.0 -13.86 45.52 3.01 48.453 75.00 -29.48 50 Md 27.925 OPSK 45.0 -14.25 45.24 3.01 48.45 75.00 -29.82 50 Md 27.925 GPSK 45.0 -14.33 45.16 3.01 48.17 75.00 -29.82 50 Mid 27.925 GPSK 45.0 -14.21 45.24 3.01 48.13 75.00 -29.73 50 2CC Mid 27.925 GPAAM 45.0 -14.21 45.24 3.01 48.13 75.00 -29.73 50 1CC Mid 27.925 GPAAM <td< td=""><td></td><td></td><td></td><td>Low</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>				Low									
50 2CC Low 27.550 0PSK 45.0 -13.86 45.52 3.01 48.56 75.00 -29.48 50 Low 27.550 160AM 45.0 -13.88 45.52 3.01 48.53 75.00 -29.48 50 Low 27.550 640AM 45.0 -13.83 45.47 3.01 48.13 75.00 -29.53 50 10C Md 27.925 640AM 45.0 -14.25 45.24 3.01 48.17 75.00 -29.84 50 2CC Md 27.925 640AM 45.0 -14.24 45.27 3.01 48.13 75.00 -29.76 50 2CC Md 27.925 640AM 45.0 -14.21 45.24 3.01 48.19 75.00 -29.76 50 1CC Hgh 28.300 OPSK 45.0 -14.21 45.26 3.01 48.81 75.00 -29.40 50 2CC Hgh <td></td> <td></td> <td>1CC</td> <td>Low</td> <td>27.550</td> <td>16QAM</td> <td>45.0</td> <td>-14.07</td> <td>45.34</td> <td>3.01</td> <td>48.35</td> <td>75.00</td> <td>-29.66</td>			1CC	Low	27.550	16QAM	45.0	-14.07	45.34	3.01	48.35	75.00	-29.66
50 2CC Low 27,550 640AM 45.0 -13.88 45.52 3.01 48.53 75.00 -29.43 50 Md 27,925 0PSK 45.0 -13.93 45.47 3.01 48.53 75.00 -29.76 50 Md 27.925 0PSK 45.0 -14.25 45.24 3.01 48.17 75.00 -29.76 50 Md 27.925 640AM 45.0 -14.36 45.12 3.01 48.13 75.00 -29.88 50 Md 27.925 0PSK 45.0 -14.24 45.12 3.01 48.13 75.00 -29.83 50 Md 27.925 0PSK 45.0 -14.24 45.13 3.01 48.61 75.00 -29.82 50 Md 27.925 0PSK 45.0 -14.24 45.64 3.01 48.61 75.00 -29.40 50 1CC High 28.300 160AM 45.0 -14.2				Low									
50 Low 27.550 64QAM 45.0 -13.93 45.47 3.01 48.48 75.00 -29.53 50 1CC Mid 27.925 OPSK 45.0 -14.25 45.24 3.01 48.25 75.00 -29.76 50 1CC Mid 27.925 64QAM 45.0 -14.33 45.16 3.01 48.17 75.00 -29.76 50 2CC Mid 27.925 64QAM 45.0 -14.24 45.12 3.01 48.13 75.00 -29.76 50 2CC Mid 27.925 64QAM 45.0 -14.24 45.24 3.01 48.25 75.00 -29.76 50 1CC High 28.300 160AM 45.0 -14.30 45.18 3.01 48.67 75.00 -29.40 50 1CC High 28.300 160AM 45.0 -13.99 45.83 3.01 48.84 75.00 -29.17 50				Low	27.550	QPSK	45.0	-13.85	45.55	3.01	48.56	75.00	-29.45
50 Nid 27.925 OPSK 45.0 -14.25 45.24 3.01 48.25 75.00 -29.76 50 10C Mid 27.925 16QAM 45.0 -14.33 45.16 3.01 48.13 75.00 -29.84 50 20C Mid 27.925 OPSK 45.0 -14.36 45.16 3.01 48.13 75.00 -29.84 50 20C Mid 27.925 OPSK 45.0 -14.24 45.24 3.01 48.25 75.00 -29.76 50 10C Mid 27.925 0PSK 45.0 -14.21 45.24 3.01 48.25 75.00 -29.37 50 10C High 28.300 0PSK 45.0 -14.15 45.66 3.01 48.61 75.00 -29.34 50 2CC High 28.300 0PSK 45.0 -13.99 45.83 3.01 48.84 75.00 -29.17 50 2CC </td <td></td> <td></td> <td>2CC</td> <td>Low</td> <td>27.550</td> <td>16QAM</td> <td>45.0</td> <td>-13.88</td> <td>45.52</td> <td>3.01</td> <td>48.53</td> <td>75.00</td> <td>-29.48</td>			2CC	Low	27.550	16QAM	45.0	-13.88	45.52	3.01	48.53	75.00	-29.48
50 1CC Mid 27.925 160AM 45.0 -14.33 45.16 3.01 48.17 75.00 -29.84 50 Mid 27.925 64QAM 45.0 -14.36 45.12 3.01 48.13 75.00 -29.88 50 2CC Mid 27.925 16QAM 45.0 -14.24 45.27 3.01 48.25 75.00 -29.73 50 2CC Mid 27.925 16QAM 45.0 -14.24 45.27 3.01 48.25 75.00 -29.82 50 1CC High 28.300 0PSK 45.0 -14.15 45.66 3.01 48.61 75.00 -29.34 50 1CC High 28.300 16QAM 45.0 -14.21 45.66 3.01 48.65 75.00 -29.36 50 1High 28.300 16QAM 45.0 -13.99 45.83 3.01 48.84 75.00 -29.17 50 High <				Low			45.0			3.01	48.48		
50 Nid 27.925 640AM 45.0 -14.36 45.12 3.01 48.13 75.00 -29.83 50 2CC Mid 27.925 QPSK 45.0 -14.21 45.27 3.01 48.28 75.00 -29.76 50 2CC Mid 27.925 640AM 45.0 -14.24 45.24 3.01 48.28 75.00 -29.76 50 10C High 28.300 QPSK 45.0 -14.24 45.24 3.01 48.19 75.00 -29.34 50 11CC High 28.300 160AM 45.0 -14.17 45.64 3.01 48.67 75.00 -29.40 50 2CC High 28.300 640AM 45.0 -13.99 45.83 3.01 48.84 75.00 -29.17 50 2CC High 28.300 640AM 45.0 -10.90 48.83 3.01 48.84 75.00 -22.17 100 <				Mid	27.925	QPSK	45.0	-14.25	45.24	3.01			-29.76
50 2CC Mid 27.925 QPSK 45.0 -14.21 45.27 3.01 48.28 75.00 -29.73 50 2CC Mid 27.925 16QAM 45.0 -14.24 45.24 3.01 48.25 75.00 -29.76 50 100 110 48.25 75.00 -29.82 -29.76 50 110 High 28.300 QPSK 45.0 -14.15 45.66 3.01 48.67 75.00 -29.34 50 110 High 28.300 64QAM 45.0 -14.21 45.80 3.01 48.67 75.00 -29.40 50 111 28.300 64QAM 45.0 -13.99 45.83 3.01 48.84 75.00 -29.17 50 20C High 28.300 64QAM 45.0 -13.99 45.83 3.01 48.84 75.00 -26.42 100 2NC Mid 27.925 QPSK 45.0 -10			1CC										
50 2CC Mid 27.925 16QAM 45.0 -14.24 45.24 3.01 48.25 75.00 -29.76 50 Mid 27.925 64QAM 45.0 -14.30 45.18 3.01 48.19 75.00 -29.82 50 1CC High 28.300 QPSK 45.0 -14.15 45.66 3.01 48.67 75.00 -29.30 50 1CC High 28.300 16QAM 45.0 -14.21 45.60 3.01 48.61 75.00 -29.36 50 2CC High 28.300 16QAM 45.0 -13.99 45.83 3.01 48.84 75.00 -29.17 50 2CC High 28.300 16QAM 45.0 -13.99 45.83 3.01 48.84 75.00 -29.17 50 2CC Mid 27.925 QPSK 45.0 -10.90 48.58 0.00 48.84 75.00 -26.62 100 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>													
50 Mid 27.925 64QAM 45.0 -14.30 45.18 3.01 48.19 75.00 -29.82 50 1CC High 28.300 QPSK 45.0 -14.15 45.66 3.01 48.67 75.00 -29.34 50 1CC High 28.300 64QAM 45.0 -14.17 45.64 3.01 48.65 75.00 -29.36 50 2CC High 28.300 64QAM 45.0 -13.99 45.83 3.01 48.84 75.00 -29.17 50 2CC High 28.300 64QAM 45.0 -13.99 45.83 3.01 48.84 75.00 -29.17 100 2NC Mid 27.925 QPSK 45.0 -10.90 48.58 0.00 48.84 75.00 -26.62 100 3NC Mid 27.925 QPSK 45.0 -11.04 48.44 0.00 48.98 75.00 -26.62 100 <					27.925	QPSK	45.0	-14.21	45.27	3.01	48.28	75.00	-29.73
50 High 28.300 QPSK 45.0 -14.15 45.66 3.01 48.67 75.00 -29.34 50 1CC High 28.300 16QAM 45.0 -14.21 45.60 3.01 48.61 75.00 -29.40 50 High 28.300 GPSK 45.0 -14.17 45.64 3.01 48.81 75.00 -29.36 50 2CC High 28.300 GPSK 45.0 -13.99 45.83 3.01 48.84 75.00 -29.17 50 2CC Mid 27.925 QPSK 45.0 -10.90 48.58 0.00 48.58 75.00 -26.42 100 3NC Mid 27.925 QPSK 45.0 -10.90 48.58 0.00 48.58 75.00 -26.62 100 ANC Mid 27.925 QPSK 45.0 -11.50 48.13 0.00 48.33 75.00 -27.76 100 FNC			2CC						-				
50 1CC High High 28.300 16QAM 45.0 -14.21 45.60 3.01 48.61 75.00 -29.40 50 2CC High 28.300 64QAM 45.0 -14.17 45.64 3.01 48.65 75.00 -29.36 50 2CC High 28.300 QPSK 45.0 -13.99 45.83 3.01 48.84 75.00 -29.17 50 2CC High 28.300 64QAM 45.0 -13.99 45.83 3.01 48.84 75.00 -29.17 100 2NC Mid 27.925 QPSK 45.0 -10.90 48.58 0.00 48.58 75.00 -26.56 100 3NC Mid 27.925 QPSK 45.0 -11.35 48.13 0.00 48.13 75.00 -26.62 100 5NC Mid 27.925 QPSK 45.0 -11.35 48.13 0.00 48.13 75.00 -26.62		50		Mid	27.925	64QAM	45.0	-14.30	45.18	3.01	48.19	75.00	-29.82
50 High 28.300 64QAM 45.0 -14.17 45.64 3.01 48.65 75.00 -29.36 50 2CC High 28.300 QPSK 45.0 -13.99 45.83 3.01 48.84 75.00 -29.17 50 2CC High 28.300 16QAM 45.0 -13.99 45.83 3.01 48.84 75.00 -29.17 50 2CC Mid 27.925 QPSK 45.0 -10.90 48.58 3.01 48.84 75.00 -29.17 100 3NC Mid 27.925 QPSK 45.0 -10.90 48.58 0.00 48.84 75.00 -26.62 100 3NC Mid 27.925 QPSK 45.0 -11.04 48.44 0.00 48.13 75.00 -26.02 100 5NC Mid 27.925 QPSK 45.0 -11.24 47.24 0.00 48.46 75.00 -20.66 50M x1 + 100M x1 <td></td> <td></td> <td></td> <td>High</td> <td></td> <td></td> <td>45.0</td> <td>-14.15</td> <td></td> <td></td> <td>48.67</td> <td></td> <td>-29.34</td>				High			45.0	-14.15			48.67		-29.34
50 High 28.300 QPSK 45.0 -13.99 45.83 3.01 48.84 75.00 -29.17 50 2CC High 28.300 16QAM 45.0 -13.99 45.83 3.01 48.84 75.00 -29.17 100 2NC Mid 27.925 QPSK 45.0 -10.90 48.58 0.00 48.58 75.00 -29.17 100 3NC Mid 27.925 QPSK 45.0 -10.90 48.68 0.00 48.44 75.00 -26.42 100 3NC Mid 27.925 QPSK 45.0 -11.04 48.44 0.00 48.44 75.00 -26.02 100 4NC Mid 27.925 QPSK 45.0 -11.35 48.43 0.00 48.13 75.00 -26.02 100 5NC Mid 27.925 QPSK 45.0 -11.24 47.24 0.00 46.46 75.00 -20.0 -27.76 <			1CC	High	28.300								-29.40
50 2CC High 28.300 16QAM 45.0 -13.99 45.83 3.01 48.84 75.00 -29.17 50 100 2NC Mid 27.925 QPSK 45.0 -10.90 48.58 0.00 48.58 75.00 -26.42 100 3NC Mid 27.925 QPSK 45.0 -10.90 48.58 0.00 48.58 75.00 -26.62 100 4NC Mid 27.925 QPSK 45.0 -11.04 48.44 0.00 48.43 75.00 -26.62 100 4NC Mid 27.925 QPSK 45.0 -11.35 48.13 0.00 48.13 75.00 -26.62 100 5NC Mid 27.925 QPSK 45.0 -11.35 48.13 0.00 48.13 75.00 -26.87 100 6NC Mid 27.925 QPSK 45.0 -11.35 48.43 0.00 48.434 75.00 -28.64				High	28.300	64QAM	45.0	-14.17	45.64	3.01	48.65	75.00	-29.36
D High 28.300 64QAM 45.0 -13.98 45.83 3.01 48.84 75.00 -29.17 100 2NC Mid 27.925 QPSK 45.0 -10.90 48.58 0.00 48.58 75.00 -26.42 100 3NC Mid 27.925 QPSK 45.0 -11.04 48.44 0.00 48.44 75.00 -26.56 100 4NC Mid 27.925 QPSK 45.0 -10.50 48.98 0.00 48.98 75.00 -26.02 100 5NC Mid 27.925 QPSK 45.0 -11.35 48.13 0.00 48.13 75.00 -26.02 100 6NC Mid 27.925 QPSK 45.0 -11.35 48.13 0.00 48.44 75.00 -26.76 100 7NC Mid 27.925 QPSK 45.0 -11.454 44.94 3.01 47.95 75.00 -26.66 50M x2 + 100M x1 Mid </td <td></td> <td></td> <td></td> <td>High</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>				High									
D 100 2NC Mid 27.925 QPSK 45.0 -10.90 48.58 0.00 48.58 75.00 -26.42 100 3NC Mid 27.925 QPSK 45.0 -11.04 48.44 0.00 48.44 75.00 -26.62 100 4NC Mid 27.925 QPSK 45.0 -11.05 48.98 0.00 48.98 75.00 -26.62 100 5NC Mid 27.925 QPSK 45.0 -11.35 48.13 0.00 48.98 75.00 -26.87 100 6NC Mid 27.925 QPSK 45.0 -13.03 46.46 0.00 46.46 75.00 -28.67 100 7NC Mid 27.925 QPSK 45.0 -14.54 44.94 3.01 47.95 75.00 -28.64 50M x1 + 100M x1 Mid 27.925 QPSK 45.0 -10.68 48.80 0.00 48.84 75.00 -26.66			2CC										
100 2NC Mid 27.925 QPSK 45.0 -10.90 48.58 0.00 48.58 75.00 -26.42 100 3NC Mid 27.925 QPSK 45.0 -11.04 48.44 0.00 48.44 75.00 -26.66 100 4NC Mid 27.925 QPSK 45.0 -11.35 48.13 0.00 48.98 75.00 -26.62 100 5NC Mid 27.925 QPSK 45.0 -11.35 48.13 0.00 48.98 75.00 -26.62 100 6NC Mid 27.925 QPSK 45.0 -12.24 47.24 0.00 47.24 75.00 -27.76 100 7NC Mid 27.925 QPSK 45.0 -14.54 44.94 3.01 47.95 75.00 -26.66 50M x1 + 100M x1 Mid 27.925 QPSK 45.0 -10.88 48.60 0.00 48.80 75.00 -26.21 50M x2 +	D			High			45.0	-13.98	45.83	3.01	48.84	75.00	-29.17
100 4NC Mid 27.925 QPSK 45.0 -10.50 48.98 0.00 48.98 75.00 -26.02 100 5NC Mid 27.925 QPSK 45.0 -11.35 48.13 0.00 48.13 75.00 -26.02 100 6NC Mid 27.925 QPSK 45.0 -12.24 47.24 0.00 47.24 75.00 -27.76 100 7NC Mid 27.925 QPSK 45.0 -13.03 46.46 0.00 46.46 75.00 -27.76 100 7NC Mid 27.925 QPSK 45.0 -14.54 44.94 3.01 47.95 75.00 -28.54 50M x1 + 100M x1 Mid 27.925 QPSK 45.0 -10.88 48.60 0.00 48.84 75.00 -26.66 50M x1 + 100M x2 Mid 27.925 QPSK 45.0 -10.68 48.80 0.00 48.94 75.00 -26.20 50M x1 + 100M x3	D			Mid	27.925		45.0	-10.90	48.58	0.00	48.58		-26.42
100 5NC Mid 27.925 QPSK 45.0 -11.35 48.13 0.00 48.13 75.00 -26.87 100 6NC Mid 27.925 QPSK 45.0 -12.24 47.24 0.00 47.24 75.00 -27.76 100 7NC Mid 27.925 QPSK 45.0 -13.03 46.46 0.00 46.46 75.00 -28.54 50M x1 + 100M x1 Mid 27.925 QPSK 45.0 -14.54 44.94 3.01 47.95 75.00 -30.06 50M x2 + 100M x1 Mid 27.925 QPSK 45.0 -11.15 48.34 0.00 48.34 75.00 -26.66 50M x2 + 100M x2 Mid 27.925 QPSK 45.0 -10.88 48.60 0.00 48.60 75.00 -26.40 50M x2 + 100M x2 Mid 27.925 QPSK 45.0 -10.68 48.80 0.00 48.80 75.00 -26.20 50M x2 + 100M x3 <t< td=""><td></td><td>100</td><td></td><td>Mid</td><td>27.925</td><td>QPSK</td><td>45.0</td><td>-11.04</td><td>48.44</td><td>0.00</td><td>48.44</td><td>75.00</td><td>-26.56</td></t<>		100		Mid	27.925	QPSK	45.0	-11.04	48.44	0.00	48.44	75.00	-26.56
100 6NC Mid 27.925 QPSK 45.0 -12.24 47.24 0.00 47.24 75.00 -27.76 100 7NC Mid 27.925 QPSK 45.0 -13.03 46.46 0.00 46.46 75.00 -28.54 50M x1 + 100M x1 Mid 27.925 QPSK 45.0 -14.54 44.94 3.01 47.95 75.00 -30.06 50M x2 + 100M x1 Mid 27.925 QPSK 45.0 -11.15 48.34 0.00 48.34 75.00 -26.66 50M x1 + 100M x2 Mid 27.925 QPSK 45.0 -10.88 48.60 0.00 48.30 75.00 -26.40 50M x2 + 100M x2 Mid 27.925 QPSK 45.0 -10.69 48.79 0.00 48.80 75.00 -26.20 50M x1 + 100M x3 Mid 27.925 QPSK 45.0 -10.55 48.94 0.00 48.42 75.00 -26.20 50M x2 + 100M x3 Mid <td></td> <td></td> <td></td> <td>Mid</td> <td>27.925</td> <td></td> <td>45.0</td> <td>-10.50</td> <td>48.98</td> <td>0.00</td> <td></td> <td></td> <td>-26.02</td>				Mid	27.925		45.0	-10.50	48.98	0.00			-26.02
100 7NC Mid 27.925 QPSK 45.0 -13.03 46.46 0.00 46.46 75.00 -28.54 50M x1 + 100M x1 Mid 27.925 QPSK 45.0 -14.54 44.94 3.01 47.95 75.00 -30.06 50M x2 + 100M x1 Mid 27.925 QPSK 45.0 -11.15 48.34 0.00 48.34 75.00 -26.66 50M x1 + 100M x2 Mid 27.925 QPSK 45.0 -10.88 48.60 0.00 48.79 75.00 -26.40 50M x1 + 100M x2 Mid 27.925 QPSK 45.0 -10.69 48.79 0.00 48.79 75.00 -26.20 50M x1 + 100M x3 Mid 27.925 QPSK 45.0 -10.68 48.80 0.00 48.80 75.00 -26.20 50M x2 + 100M x3 Mid 27.925 QPSK 45.0 -11.06 48.42 0.00 48.42 75.00 -26.66 50M x1 + 100M x4 Mid		100	5NC	Mid	27.925	QPSK	45.0	-11.35	48.13	0.00	48.13	75.00	-26.87
50M x1 + 100M x1 Mid 27.925 QPSK 45.0 -14.54 44.94 3.01 47.95 75.00 -30.06 50M x2 + 100M x1 Mid 27.925 QPSK 45.0 -11.15 48.34 0.00 48.34 75.00 -26.66 50M x2 + 100M x2 Mid 27.925 QPSK 45.0 -10.88 48.60 0.00 48.34 75.00 -26.66 50M x2 + 100M x2 Mid 27.925 QPSK 45.0 -10.69 48.79 0.00 48.79 75.00 -26.40 50M x2 + 100M x2 Mid 27.925 QPSK 45.0 -10.69 48.79 0.00 48.79 75.00 -26.20 50M x1 + 100M x3 Mid 27.925 QPSK 45.0 -10.55 48.94 0.00 48.94 75.00 -26.20 50M x2 + 100M x3 Mid 27.925 QPSK 45.0 -11.06 48.42 0.00 48.94 75.00 -26.58 50M x2 + 100M x4 Mid 2		100		Mid	27.925	QPSK	45.0	-12.24	47.24	0.00	47.24	75.00	-27.76
50M x2 + 100M x1 Mid 27.925 QPSK 45.0 -11.15 48.34 0.00 48.34 75.00 -26.66 50M x1 + 100M x2 Mid 27.925 QPSK 45.0 -10.88 48.60 0.00 48.60 75.00 -26.66 50M x1 + 100M x2 Mid 27.925 QPSK 45.0 -10.69 48.79 0.00 48.60 75.00 -26.40 50M x2 + 100M x2 Mid 27.925 QPSK 45.0 -10.69 48.79 0.00 48.79 75.00 -26.21 50M x1 + 100M x3 Mid 27.925 QPSK 45.0 -10.68 48.80 0.00 48.94 75.00 -26.20 50M x2 + 100M x3 Mid 27.925 QPSK 45.0 -11.05 48.94 0.00 48.94 75.00 -26.66 50M x1 + 100M x4 Mid 27.925 QPSK 45.0 -11.28 48.20 0.00 48.42 75.00 -26.58 50M x1 + 100M x4 Mid 2		100	7NC	Mid	27.925		45.0	-13.03		0.00	46.46	75.00	-28.54
50M x1 + 100M x2 Mid 27.925 QPSK 45.0 -10.88 48.60 0.00 48.60 75.00 -26.40 50M x2 + 100M x2 Mid 27.925 QPSK 45.0 -10.69 48.79 0.00 48.79 75.00 -26.40 50M x2 + 100M x2 Mid 27.925 QPSK 45.0 -10.69 48.79 0.00 48.79 75.00 -26.21 50M x1 + 100M x3 Mid 27.925 QPSK 45.0 -10.68 48.80 0.00 48.80 75.00 -26.20 50M x2 + 100M x3 Mid 27.925 QPSK 45.0 -10.55 48.94 0.00 48.94 75.00 -26.06 50M x1 + 100M x4 Mid 27.925 QPSK 45.0 -11.06 48.42 0.00 48.42 75.00 -26.58 50M x2 + 100M x4 Mid 27.925 QPSK 45.0 -11.28 48.20 0.00 48.42 75.00 -27.73 50M x1 + 100M x5 Mid 2			50M x1 + 100M x1	Mid				-14.54		3.01			
50M x2 + 100M x2 Mid 27.925 QPSK 45.0 -10.69 48.79 0.00 48.79 75.00 -26.21 50M x1 + 100M x3 Mid 27.925 QPSK 45.0 -10.68 48.80 0.00 48.80 75.00 -26.20 50M x2 + 100M x3 Mid 27.925 QPSK 45.0 -10.55 48.94 0.00 48.94 75.00 -26.06 50M x2 + 100M x3 Mid 27.925 QPSK 45.0 -10.55 48.94 0.00 48.94 75.00 -26.06 50M x1 + 100M x4 Mid 27.925 QPSK 45.0 -11.06 48.42 0.00 48.42 75.00 -26.58 50M x2 + 100M x4 Mid 27.925 QPSK 45.0 -11.28 48.20 0.00 48.42 75.00 -26.80 50M x2 + 100M x5 Mid 27.925 QPSK 45.0 -11.87 47.61 0.00 47.61 75.00 -27.74 50M x1 + 100M x5 Mid 2			50M x2 + 100M x1	Mid	27.925	QPSK	45.0	-11.15	48.34	0.00	48.34	75.00	-26.66
50M x1 + 100M x3 Mid 27.925 QPSK 45.0 -10.68 48.80 0.00 48.80 75.00 -26.20 50M x2 + 100M x3 Mid 27.925 QPSK 45.0 -10.55 48.94 0.00 48.80 75.00 -26.06 50M x1 + 100M x4 Mid 27.925 QPSK 45.0 -10.66 48.42 0.00 48.42 75.00 -26.66 50M x1 + 100M x4 Mid 27.925 QPSK 45.0 -11.06 48.42 0.00 48.42 75.00 -26.68 50M x2 + 100M x4 Mid 27.925 QPSK 45.0 -11.28 48.20 0.00 48.20 75.00 -26.80 50M x1 + 100M x5 Mid 27.925 QPSK 45.0 -11.87 47.61 0.00 47.61 75.00 -27.39 50M x2 + 100M x5 Mid 27.925 QPSK 45.0 -12.23 47.26 0.00 47.61 75.00 -27.74 50M x1 + 100M x6 Mid 2			50M x1 + 100M x2	Mid	27.925	QPSK	45.0	-10.88	48.60	0.00	48.60	75.00	-26.40
50 50M x2 + 100M x3 Mid 27.925 QPSK 45.0 -10.55 48.94 0.00 48.94 75.00 -26.06 50M x1 + 100M x4 Mid 27.925 QPSK 45.0 -11.06 48.42 0.00 48.42 75.00 -26.68 50M x2 + 100M x4 Mid 27.925 QPSK 45.0 -11.28 48.20 0.00 48.42 75.00 -26.80 50M x2 + 100M x5 Mid 27.925 QPSK 45.0 -11.87 47.61 0.00 47.61 75.00 -27.39 50M x2 + 100M x5 Mid 27.925 QPSK 45.0 -11.23 47.26 0.00 47.61 75.00 -27.39 50M x1 + 100M x6 Mid 27.925 QPSK 45.0 -12.23 47.26 0.00 47.61 75.00 -27.74 50M x1 + 100M x6 Mid 27.925 QPSK 45.0 -12.53 46.96 0.00 46.96 75.00 -28.04			50M x2 + 100M x2	Mid	27.925	QPSK	45.0	-10.69	48.79	0.00	48.79	75.00	-26.21
50 50M x1 + 100M x4 Mid 27.925 QPSK 45.0 -11.06 48.42 0.00 48.42 75.00 -26.58 50M x2 + 100M x4 Mid 27.925 QPSK 45.0 -11.28 48.20 0.00 48.42 75.00 -26.58 50M x2 + 100M x4 Mid 27.925 QPSK 45.0 -11.28 48.20 0.00 48.20 75.00 -26.80 50M x1 + 100M x5 Mid 27.925 QPSK 45.0 -11.87 47.61 0.00 47.61 75.00 -27.39 50M x2 + 100M x5 Mid 27.925 QPSK 45.0 -12.23 47.26 0.00 47.26 75.00 -27.74 50M x1 + 100M x6 Mid 27.925 QPSK 45.0 -12.53 46.96 0.00 46.96 75.00 -28.04			50M x1 + 100M x3	Mid	27.925	QPSK	45.0	-10.68	48.80	0.00	48.80	75.00	-26.20
50M x1 + 100M x4 Mid 27.925 QPSK 45.0 -11.06 48.42 0.00 48.42 75.00 -26.58 50M x2 + 100M x4 Mid 27.925 QPSK 45.0 -11.28 48.20 0.00 48.42 75.00 -26.58 50M x2 + 100M x5 Mid 27.925 QPSK 45.0 -11.28 48.20 0.00 48.20 75.00 -26.80 50M x1 + 100M x5 Mid 27.925 QPSK 45.0 -11.87 47.61 0.00 47.61 75.00 -27.39 50M x2 + 100M x5 Mid 27.925 QPSK 45.0 -12.23 47.26 0.00 47.61 75.00 -27.74 50M x1 + 100M x6 Mid 27.925 QPSK 45.0 -12.53 46.96 0.00 46.96 75.00 -28.04		50	50M x2 + 100M x3	Mid	27.925	QPSK	45.0	-10.55	48.94	0.00	48.94	75.00	-26.06
50M x1 + 100M x5 Mid 27.925 QPSK 45.0 -11.87 47.61 0.00 47.61 75.00 -27.39 50M x2 + 100M x5 Mid 27.925 QPSK 45.0 -12.23 47.26 0.00 47.61 75.00 -27.74 50M x1 + 100M x6 Mid 27.925 QPSK 45.0 -12.53 46.96 0.00 46.96 75.00 -28.04			50M x1 + 100M x4	Mid	27.925	QPSK	45.0	-11.06	48.42	0.00	48.42	75.00	-26.58
50M x2 + 100M x5 Mid 27.925 QPSK 45.0 -12.23 47.26 0.00 47.26 75.00 -27.74 50M x1 + 100M x6 Mid 27.925 QPSK 45.0 -12.53 46.96 0.00 46.96 75.00 -28.04			50M x2 + 100M x4	Mid	27.925	QPSK	45.0	-11.28	48.20	0.00	48.20	75.00	-26.80
50M x1 + 100M x6 Mid 27.925 QPSK 45.0 -12.53 46.96 0.00 46.96 75.00 -28.04			50M x1 + 100M x5	Mid	27.925	QPSK	45.0	-11.87	47.61	0.00	47.61	75.00	-27.39
			50M x2 + 100M x5	Mid	27.925	QPSK	45.0	-12.23	47.26	0.00	47.26	75.00	-27.74
50M x2 + 100M x6 Mid 27.925 QPSK 45.0 -15.88 43.60 3.01 46.61 75.00 -31.40			50M x1 + 100M x6	Mid	27.925	QPSK	45.0	-12.53	46.96	0.00	46.96	75.00	-28.04
			50M x2 + 100M x6	Mid	27.925	QPSK	45.0	-15.88	43.60	3.01	46.61	75.00	-31.40

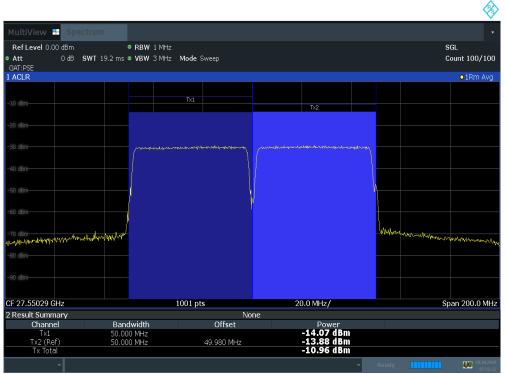

Table 7-10. Antenna D EIRP Density Summary Data

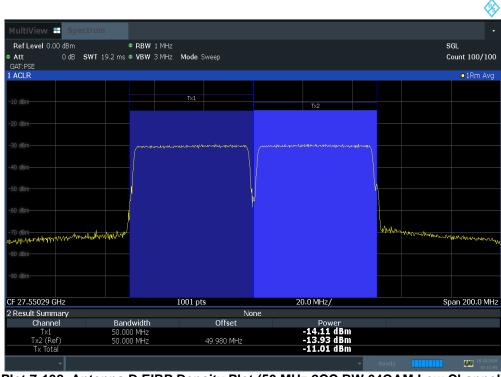
FCC ID: A3LAT1K01-A00	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Baga 00 of 210
8K20092801-R2.A3L	10/27/2020-11/13/2020	AU(AT1K01)	Page 90 of 319
A ANNA DOTEOT			DK OD 46 00 Dev 02


Plot 7-133. Antenna D EIRP Density Plot (50 MHz 1CC BW QPSK Low Channel)

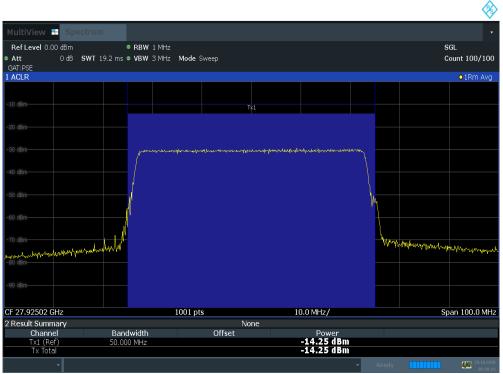

Plot 7-134. Antenna D EIRP Density Plot (50 MHz 1CC BW 16QAM Low Channel)

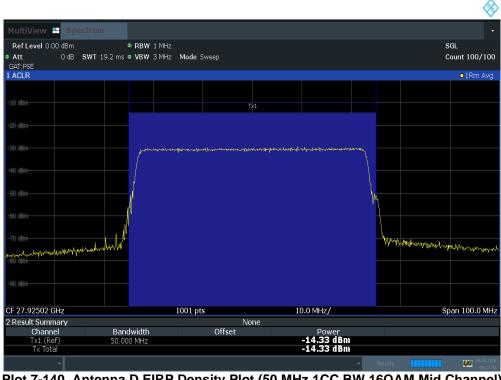
FCC ID: A3LAT1K01-A00	PCTEST* Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 01 of 210
8K20092801-R2.A3L	10/27/2020-11/13/2020	AU(AT1K01)		Page 91 of 319
© 2020 BCTEST	•			PK-OP-16-00 Pov 02


Plot 7-135. Antenna D EIRP Density Plot (50 MHz 1CC BW 64QAM Low Channel)

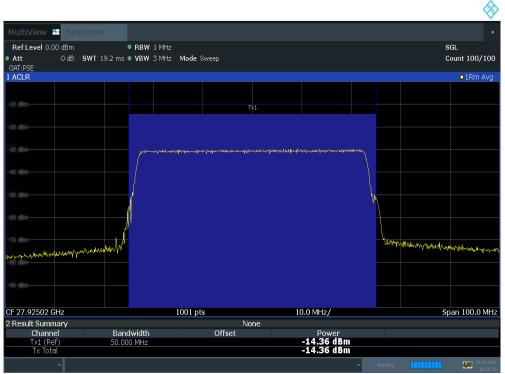

Plot 7-136. Antenna D EIRP Density Plot (50 MHz 2CC BW QPSK Low Channel)

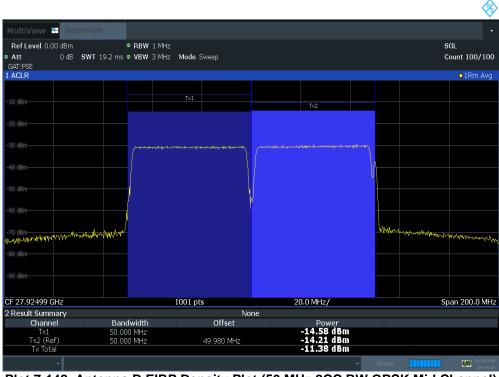
FCC ID: A3LAT1K01-A00	Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 02 of 210
8K20092801-R2.A3L	10/27/2020-11/13/2020	AU(AT1K01)		Page 92 of 319
© 2020 PCTEST				PK-OP-16-09 Rev 02


Plot 7-137. Antenna D EIRP Density Plot (50 MHz 2CC BW 16QAM Low Channel)

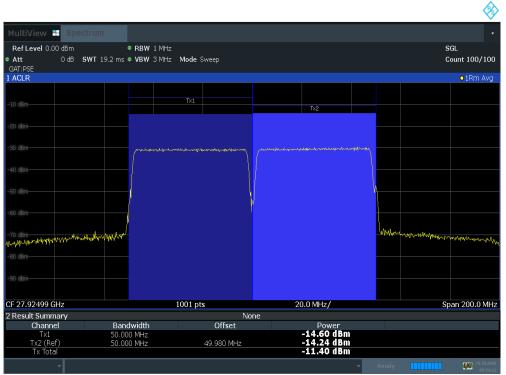

Plot 7-138. Antenna D EIRP Density Plot (50 MHz 2CC BW 64QAM Low Channel)

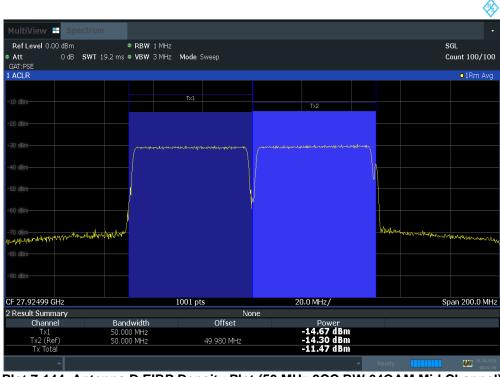
FCC ID: A3LAT1K01-A00	PCTEST* Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 02 of 210
8K20092801-R2.A3L	10/27/2020-11/13/2020	AU(AT1K01)		Page 93 of 319
© 2020 DOTEST				PK-OP-16-00 Poy 02


Plot 7-139. Antenna D EIRP Density Plot (50 MHz 1CC BW QPSK Mid Channel)

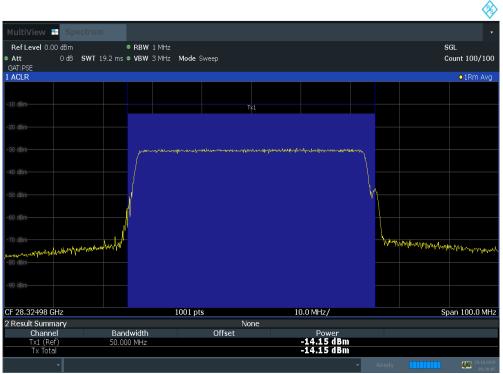

Plot 7-140. Antenna D EIRP Density Plot (50 MHz 1CC BW 16QAM Mid Channel)

FCC ID: A3LAT1K01-A00	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dama 04 at 040
8K20092801-R2.A3L	10/27/2020-11/13/2020	AU(AT1K01)		Page 94 of 319
© 2020 PCTEST.	-	·		PK-QP-16-09 Rev.02


Plot 7-141. Antenna D EIRP Density Plot (50 MHz 1CC BW 64QAM Mid Channel)

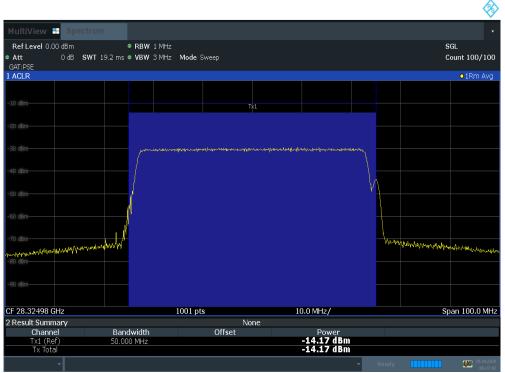

Plot 7-142. Antenna D EIRP Density Plot (50 MHz 2CC BW QPSK Mid Channel)

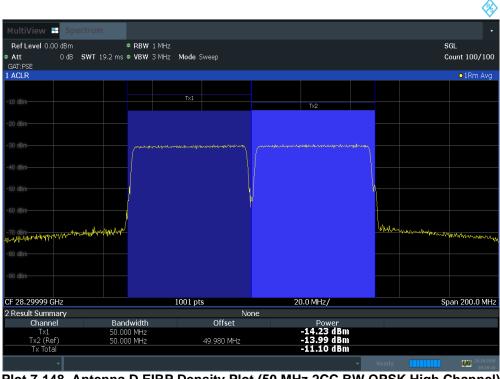
FCC ID: A3LAT1K01-A00	PCTEST* Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 95 of 319
8K20092801-R2.A3L	10/27/2020-11/13/2020	AU(AT1K01)		Page 95 01 319
© 2020 PCTEST	•	•		PK-OP-16-00 Pov 02


Plot 7-143. Antenna D EIRP Density Plot (50 MHz 2CC BW 16QAM Mid Channel)

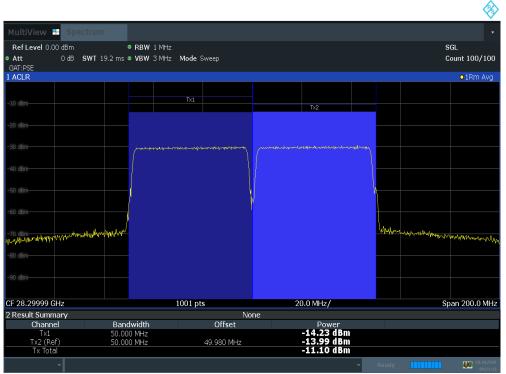

Plot 7-144. Antenna D EIRP Density Plot (50 MHz 2CC BW 64QAM Mid Channel)

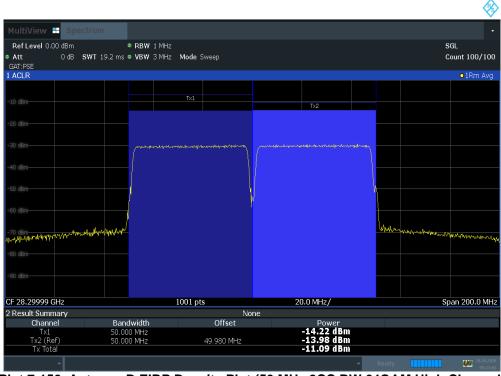
FCC ID: A3LAT1K01-A00	PCTEST* Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 00 of 210
8K20092801-R2.A3L	10/27/2020-11/13/2020	AU(AT1K01)		Page 96 of 319
© 2020 PCTEST	•	•		PK-OP-16-00 Poy 02


Plot 7-145. Antenna D EIRP Density Plot (50 MHz 1CC BW QPSK High Channel)

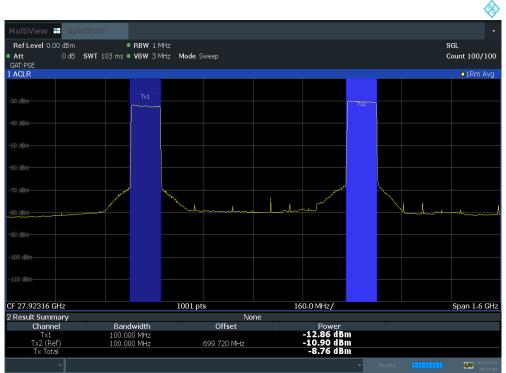

Plot 7-146. Antenna D EIRP Density Plot (50 MHz 1CC BW 16QAM High Channel)

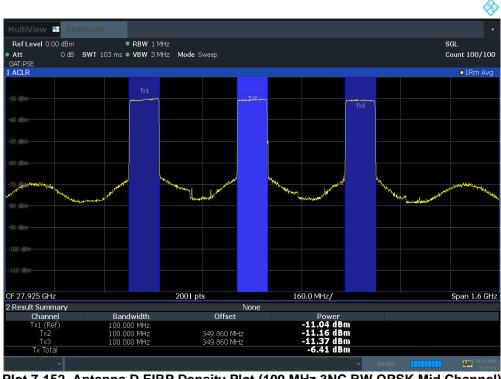
FCC ID: A3LAT1K01-A00	MEASUREMENT REPORT (Class II Permissive Change)		SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 07 of 210
8K20092801-R2.A3L	10/27/2020-11/13/2020 AU(AT1K01)			Page 97 of 319
© 2020 DOTEST	•	•		PK-OP-16-00 Pov 02


Plot 7-147. Antenna D EIRP Density Plot (50 MHz 1CC BW 64QAM High Channel)

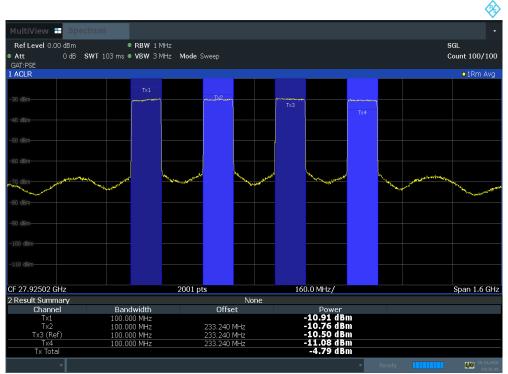

Plot 7-148. Antenna D EIRP Density Plot (50 MHz 2CC BW QPSK High Channel)

FCC ID: A3LAT1K01-A00	Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dama 00 of 010
8K20092801-R2.A3L	10/27/2020-11/13/2020	11/13/2020 AU(AT1K01)		Page 98 of 319
© 2020 PCTEST.	•	•		PK-QP-16-09 Rev.02


Plot 7-149. Antenna D EIRP Density Plot (50 MHz 2CC BW 16QAM High Channel)

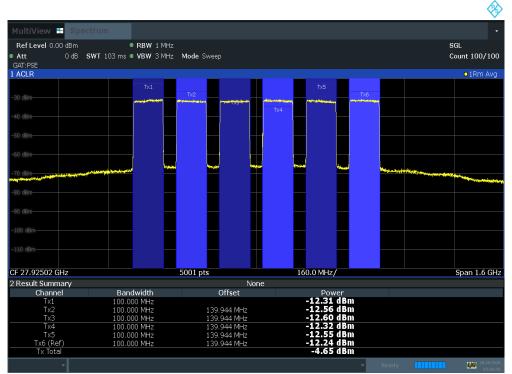

Plot 7-150. Antenna D EIRP Density Plot (50 MHz 2CC BW 64QAM High Channel)

FCC ID: A3LAT1K01-A00	Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 00 of 210
8K20092801-R2.A3L	10/27/2020-11/13/2020	AU(AT1K01)		Page 99 of 319
© 2020 PCTEST				PK-OP-16-09 Rev 02


Plot 7-151. Antenna D EIRP Density Plot (100 MHz 2NC BW QPSK Mid Channel)

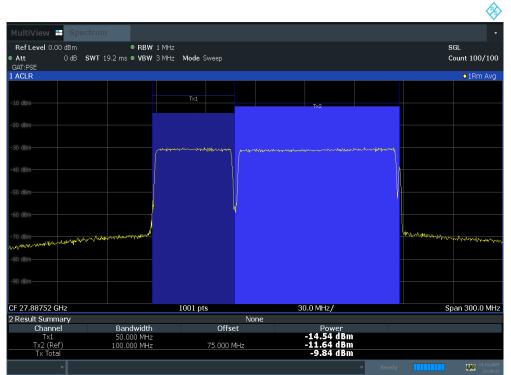

Plot 7-152. Antenna D EIRP Density Plot (100 MHz 3NC BW QPSK Mid Channel)

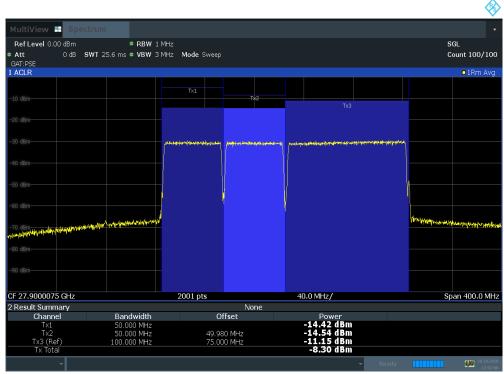
FCC ID: A3LAT1K01-A00	MEASUREMENT REPORT (Class II Permissive Change)		SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 100 of 210
8K20092801-R2.A3L	10/27/2020-11/13/2020 AU(AT1K01)			Page 100 of 319
© 2020 DOTEST				PK-OP-16-00 Pov 02


Plot 7-153. Antenna D EIRP Density Plot (100 MHz 4NC BW QPSK Mid Channel)

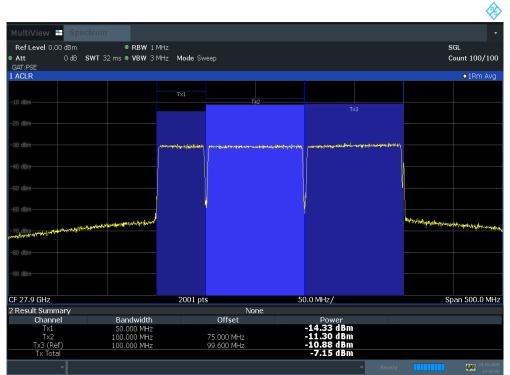

Plot 7-154. Antenna D EIRP Density Plot (100 MHz 5NC BW QPSK Mid Channel)

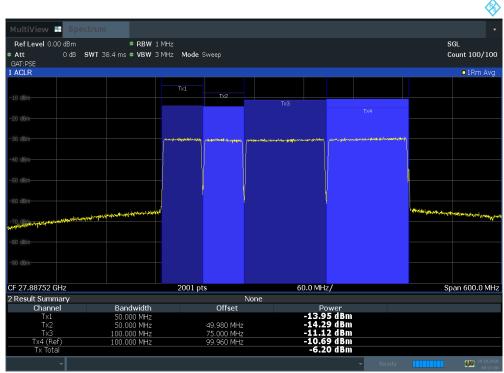
FCC ID: A3LAT1K01-A00	MEASUREMENT REPORT (Class II Permissive Change)		SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 101 of 210
8K20092801-R2.A3L	10/27/2020-11/13/2020	AU(AT1K01)		Page 101 of 319
© 2020 DOTEST				PK-OP-16-00 Pov 02


Plot 7-155. Antenna D EIRP Density Plot (100 MHz 6NC BW QPSK Mid Channel)

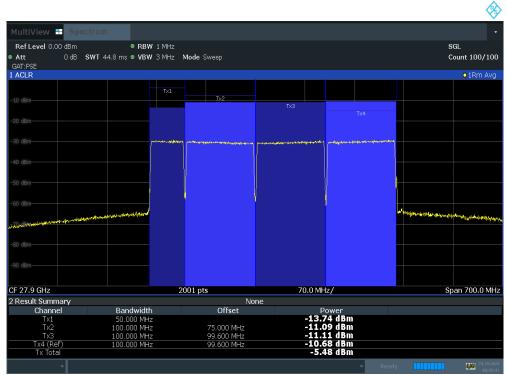

Plot 7-156. Antenna D EIRP Density Plot (100 MHz 7NC BW QPSK Mid Channel)

FCC ID: A3LAT1K01-A00	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dama 400 at 240
8K20092801-R2.A3L	10/27/2020-11/13/2020	020-11/13/2020 AU(AT1K01)		Page 102 of 319
© 2020 PCTEST.	-	·		PK-QP-16-09 Rev.02


Plot 7-157. Antenna D EIRP Density Plot (50 MHz 1CC + 100 MHz 1CC BW QPSK Mid Channel)


Plot 7-158. Antenna D EIRP Density Plot (50 MHz 2CC + 100 MHz 1CC BW QPSK Mid Channel)

FCC ID: A3LAT1K01-A00	MEASUREMENT REPORT (Class II Permissive Change)		SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 102 of 210
8K20092801-R2.A3L	10/27/2020-11/13/2020	7/2020-11/13/2020 AU(AT1K01)		Page 103 of 319
© 2020 PCTEST	•	•		PK-OP-16-09 Rev 02


Plot 7-159. Antenna D EIRP Density Plot (50 MHz 1CC + 100 MHz 2CC BW QPSK Mid Channel)

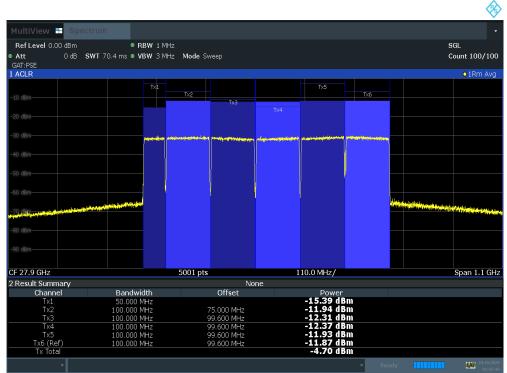

Plot 7-160. Antenna D EIRP Density Plot (50 MHz 2CC + 100 MHz 2CC BW QPSK Mid Channel)

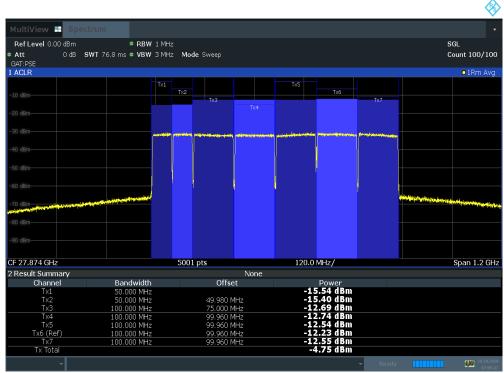
FCC ID: A3LAT1K01-A00	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		De
8K20092801-R2.A3L	10/27/2020-11/13/2020	/2020-11/13/2020 AU(AT1K01)		Page 104 of 319
© 2020 PCTEST.	-	·		PK-QP-16-09 Rev.02

Plot 7-161. Antenna D EIRP Density Plot (50 MHz 1CC + 100 MHz 3CC BW QPSK Mid Channel)

Plot 7-162. Antenna D EIRP Density Plot (50 MHz 2CC + 100 MHz 3CC BW QPSK Mid Channel)

FCC ID: A3LAT1K01-A00	Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 105 of 210
8K20092801-R2.A3L	10/27/2020-11/13/2020	020-11/13/2020 AU(AT1K01)		Page 105 of 319
© 2020 PCTEST.	•	·		PK-QP-16-09 Rev.02

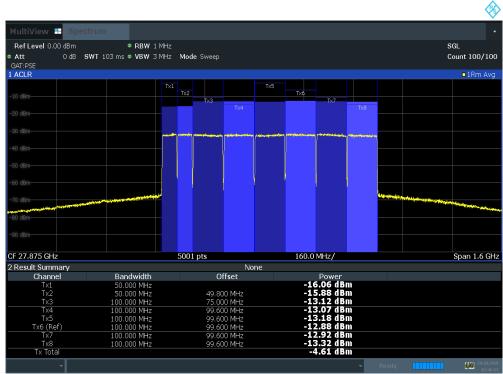

Plot 7-163. Antenna D EIRP Density Plot (50 MHz 1CC + 100 MHz 4CC BW QPSK Mid Channel)


Plot 7-164. Antenna D EIRP Density Plot (50 MHz 2CC + 100 MHz 4CC BW QPSK Mid Channel)

FCC ID: A3LAT1K01-A00	Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 106 of 210
8K20092801-R2.A3L	10/27/2020-11/13/2020	0-11/13/2020 AU(AT1K01)		Page 106 of 319
© 2020 PCTEST.	•	·		PK-QP-16-09 Rev.02

Plot 7-165. Antenna D EIRP Density Plot (50 MHz 1CC + 100 MHz 5CC BW QPSK Mid Channel)

Plot 7-166. Antenna D EIRP Density Plot (50 MHz 2CC + 100 MHz 5CC BW QPSK Mid Channel)


FCC ID: A3LAT1K01-A00	PCTEST* Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 107 of 210
8K20092801-R2.A3L	10/27/2020-11/13/2020	D-11/13/2020 AU(AT1K01)		Page 107 of 319
© 2020 PCTEST.	•	·		PK-QP-16-09 Rev.02

MultiView 🕂 Spect	trum						•
Ref Level 0.00 dBm	• RBW 1 MHz					S	GL
	WT 83.2 ms • VBW 3 MHz	Mode Sweep					ount 100/100
GAT:PSE							
1 ACLR							o1Rm Avg
-10 dBm	Т	x2		Тхб			
		Tx3	Tx4		Tx7		
-20 dBm							
-30 dBm-	مرجمهاهيار وبالإسمامير	and a subsection of the subsec	And the second s		-		
-40 dBm							
-50 dBm-							
SU UBIII							
-60 dBm-							
	in a second				ations.	Manual and a	
-70 dBm	NAME AND ADDRESS OF TAXABLE PARTY OF TAXABLE PARTY.				Hide AL .	Magnaphic provides and and a second second second	and the interest of the second
-80 dBm							
-90 dBm							
CF 27.9 GHz		5001 pts	130	.0 MHz/			Span 1.3 GHz
2 Result Summary			Jone				
Channel	Bandwidth	Offset		Power			
Tx1	50.000 MHz	75 000 111	-	16.15 dBm			
Tx2 Tx3	100.000 MHz 100.000 MHz	75.000 MHz 99.600 MHz		12.66 dBm 12.98 dBm			
Tx3	100.000 MHz	99.600 MHz		13.11 dBm			
Tx5	100.000 MHz	99.600 MHz	-	12.76 dBm			
Tx6 (Ref)	100.000 MHz	99.600 MHz		12.53 dBm			
Tx7	100.000 MHz	99.600 MHz		12.94 dBm			
Tx Total				-4.72 dBm			
							29.10.2020

~

Plot 7-167. Antenna D EIRP Density Plot (50 MHz 1CC + 100 MHz 6CC BW QPSK Mid Channel)

Plot 7-168. Antenna D EIRP Density Plot (50 MHz 2CC + 100 MHz 6CC BW QPSK Mid Channel)

FCC ID: A3LAT1K01-A00	PCTEST Proud to be part of @ everyent	MEASUREMENT REPORT (Class II Permissive Change)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dega 100 of 210	
8K20092801-R2.A3L	10/27/2020-11/13/2020	2020-11/13/2020 AU(AT1K01)		Page 108 of 319	
© 2020 PCTEST		•		PK-OP-16-09 Rev 02	

7.3.5 **MIMO EIRP Density**

	[MHz]		Chan.	Frequency	Modulation	Average e.i.r.p. PSD	PSD Limit	Margin
				[GHz]		[dBm/100MHz]	[dBm/100MHz]	[dB/100MHz]
	50		Low	27.550	QPSK	51.97	75.00	-23.03
i E	50	1CC	Low	27.550	16QAM	51.92	75.00	-23.08
i E	50		Low	27.550	64QAM	51.93	75.00	-23.07
	50		Low	27.550	QPSK	52.16	75.00	-22.84
	50	2CC	Low	27.550	16QAM	52.26	75.00	-22.74
50 50 50 50 50 50 50 50 50 50 50 50 50	50		Low	27.550	64QAM	52.30	75.00	-22.70
	50		Mid	27.925	QPSK	51.82	75.00	-23.18
	50	1CC	Mid	27.925	16QAM	51.76	75.00	-23.24
	50		Mid	27.925	64QAM	51.55	75.00	-23.45
	50		Mid	27.925	QPSK	51.64	75.00	-23.36
	50	2CC	Mid	27.925	16QAM	51.61	75.00	-23.39
	50		Mid	27.925	64QAM	51.51	75.00	-23.49
	50		High	28.300	QPSK	52.22	75.00	-22.78
	50	1CC	High	28.300	16QAM	52.09	75.00	-22.91
	50		High	28.300	64QAM	52.16	75.00	-22.84
	50		High	28.300	QPSK	52.31	75.00	-22.69
	50	2CC	High	28.300	16QAM	52.24	75.00	-22.76
	50		High	28.300	64QAM	52.12	75.00	-22.88
A+C	100	2NC	Mid	27.925	QPSK	52.13	75.00	-22.87
	100	3NC	Mid	27.925	QPSK	51.56	75.00	-23.44
i E	100	4NC	Mid	27.925	QPSK	52.39	75.00	-22.61
	100	5NC	Mid	27.925	QPSK	51.83	75.00	-23.17
l E	100	6NC	Mid	27.925	QPSK	50.58	75.00	-24.42
	100	7NC	Mid	27.925	QPSK	49.97	75.00	-25.03
i F		50M x1 + 100M x1	Mid	27.925	QPSK	51.41	75.00	-23.59
		50M x2 + 100M x1	Mid	27.925	QPSK	51.36	75.00	-23.64
		50M x1 + 100M x2	Mid	27.925	QPSK	52.05	75.00	-22.95
		50M x2 + 100M x2	Mid	27.925	QPSK	52.30	75.00	-22.70
		50M x1 + 100M x3	Mid	27.925	QPSK	52.37	75.00	-22.63
	50	50M x2 + 100M x3	Mid	27.925	QPSK	52.47	75.00	-22.53
	50 -	50M x1 + 100M x4	Mid	27.925	QPSK	52.00	75.00	-23.00
		50M x2 + 100M x4	Mid	27.925	QPSK	51.44	75.00	-23.56
		50M x1 + 100M x5	Mid	27.925	QPSK	50.96	75.00	-24.04
		50M x2 + 100M x5	Mid	27.925	QPSK	50.70	75.00	-24.30
		50M x1 + 100M x6	Mid	27.925	QPSK	50.54	75.00	-24.46
		50M x2 + 100M x6	Mid	27.925	QPSK	50.08	75.00	-24.92

Table 7-11. MIMO EIRP Density Summary Data (Antenna A + C)

Test Report S/N: Test Dates: EUT Type: Page 109 of 319	FCC ID: A3LAT1K01-A00	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Quality Manager	
Page 109 01 319	Test Report S/N:	Test Dates:	EUT Type:	Dage 100 of 210	
8K20092801-R2.A3L 10/27/2020-11/13/2020 AU(AT1K01)	8K20092801-R2.A3L	10/27/2020-11/13/2020	AU(AT1K01)	Page 109 01 3 19	

Antenna	Bandwidth	Configuration	Chan.	Frequency	Modulation	Average e.i.r.p. PSD	PSD Limit	Margin
	[MHz]			[GHz]		[dBm/100MHz]	[dBm/100MHz]	[dB/100MHz]
	50		Low	27.550	QPSK	51.50	75.00	-23.50
	50	1CC	Low	27.550	16QAM	51.51	75.00	-23.49
	50		Low	27.550	64QAM	51.52	75.00	-23.48
	50		Low	27.550	QPSK	51.60	75.00	-23.40
	50	2CC	Low	27.550	16QAM	51.68	75.00	-23.32
	50		Low	27.550	64QAM	51.69	75.00	-23.31
	50		Mid	27.925	QPSK	51.27	75.00	-23.73
	50	1CC	Mid	27.925	16QAM	51.31	75.00	-23.69
	50		Mid	27.925	64QAM	51.31	75.00	-23.69
50 50 50 50 50 50 50 50 50	50		Mid	27.925	QPSK	51.19	75.00	-23.81
	50	2CC	Mid	27.925	16QAM	51.30	75.00	-23.70
	50		Mid	27.925	64QAM	51.26	75.00	-23.74
	50		High	28.300	QPSK	51.75	75.00	-23.25
	50	1CC	High	28.300	16QAM	51.73	75.00	-23.27
	50		High	28.300	64QAM	51.77	75.00	-23.23
	50		High	28.300	QPSK	51.78	75.00	-23.22
	50	2CC	High	28.300	16QAM	51.83	75.00	-23.17
	50		High	28.300	64QAM	51.87	75.00	-23.13
B + D	100	2NC	Mid	27.925	QPSK	51.68	75.00	-23.32
	100	3NC	Mid	27.925	QPSK	51.43	75.00	-23.57
	100	4NC	Mid	27.925	QPSK	52.02	75.00	-22.98
	100	5NC	Mid	27.925	QPSK	51.11	75.00	-23.89
	100	6NC	Mid	27.925	QPSK	50.21	75.00	-24.79
	100	7NC	Mid	27.925	QPSK	49.47	75.00	-25.53
		50M x1 + 100M x1	Mid	27.925	QPSK	50.97	75.00	-24.03
		50M x2 + 100M x1	Mid	27.925	QPSK	51.40	75.00	-23.60
		50M x1 + 100M x2	Mid	27.925	QPSK	51.59	75.00	-23.41
		50M x2 + 100M x2	Mid	27.925	QPSK	51.79	75.00	-23.21
		50M x1 + 100M x3	Mid	27.925	QPSK	51.87	75.00	-23.13
	50	50M x2 + 100M x3	Mid	27.925	QPSK	52.00	75.00	-23.00
	50	50M x1 + 100M x4	Mid	27.925	QPSK	51.45	75.00	-23.55
		50M x2 + 100M x4	Mid	27.925	QPSK	51.14	75.00	-23.86
		50M x1 + 100M x5	Mid	27.925	QPSK	50.62	75.00	-24.38
		50M x2 + 100M x5	Mid	27.925	QPSK	50.26	75.00	-24.74
		50M x1 + 100M x6	Mid	27.925	QPSK	49.97	75.00	-25.03
		50M x2 + 100M x6	Mid	27.925	QPSK	49.61	75.00	-25.39
-		Table 7-12. MIM						

FCC ID: A3LAT1K01-A00		MEASUREMENT REPORT (Class II Permissive Change)	UNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 110 of 210
8K20092801-R2.A3L	10/27/2020-11/13/2020	AU(AT1K01)		Page 110 of 319

Antenna	Bandwidth	Configuration	Chan.	Frequency	Modulation	Average e.i.r.p. PSD	PSD Limit	Margin
	[MHz]			[GHz]		[dBm/100MHz]	[dBm/100MHz]	[dB/100MHz]
	50		Low	27.550	QPSK	54.75	75.00	-20.25
	50	1CC	Low	27.550	16QAM	54.73	75.00	-20.27
	50		Low	27.550	64QAM	54.74	75.00	-20.26
	50		Low	27.550	QPSK	54.90	75.00	-20.10
	50	2CC	Low	27.550	16QAM	54.99	75.00	-20.01
	50		Low	27.550	64QAM	55.01	75.00	-19.99
	50		Mid	27.925	QPSK	54.57	75.00	-20.43
	50	1CC	Mid	27.925	16QAM	54.55	75.00	-20.45
	50		Mid	27.925	64QAM	54.44	75.00	-20.56
	50		Mid	27.925	QPSK	54.43	75.00	-20.57
	50	2CC	Mid	27.925	16QAM	54.47	75.00	-20.53
	50		Mid	27.925	64QAM	54.39	75.00	-20.61
	50		High	28.300	QPSK	55.00	75.00	-20.00
	50	1CC	High	28.300	16QAM	54.93	75.00	-20.07
	50		High	28.300	64QAM	54.98	75.00	-20.02
	50		High	28.300	QPSK	55.06	75.00	-19.94
	50	2CC	High	28.300	16QAM	55.05	75.00	-19.95
	50		High	28.300	64QAM	55.01	75.00	-19.99
A + B + C + D	100	2NC	Mid	27.925	QPSK	54.92	75.00	-20.08
	100	3NC	Mid	27.925	QPSK	54.50	75.00	-20.50
	100	4NC	Mid	27.925	QPSK	55.22	75.00	-19.78
	100	5NC	Mid	27.925	QPSK	54.49	75.00	-20.51
	100	6NC	Mid	27.925	QPSK	53.41	75.00	-21.59
	100	7NC	Mid	27.925	QPSK	52.73	75.00	-22.27
		50M x1 + 100M x1	Mid	27.925	QPSK	54.20	75.00	-20.80
		50M x2 + 100M x1	Mid	27.925	QPSK	54.39	75.00	-20.61
		50M x1 + 100M x2	Mid	27.925	QPSK	54.84	75.00	-20.16
		50M x2 + 100M x2	Mid	27.925	QPSK	55.06	75.00	-19.94
		50M x1 + 100M x3	Mid	27.925	QPSK	55.14	75.00	-19.86
		50M x2 + 100M x3	Mid	27.925	QPSK	55.25	75.00	-19.75
	50	50M x1 + 100M x4	Mid	27.925	QPSK	54.75	75.00	-20.25
		50M x2 + 100M x4	Mid	27.925	QPSK	54.30	75.00	-20.70
		50M x1 + 100M x5	Mid	27.925	QPSK	53.81	75.00	-21.19
		50M x2 + 100M x5	Mid	27.925	QPSK	53.50	75.00	-21.50
		50M x1 + 100M x6	Mid	27.925	QPSK	53.28	75.00	-21.72
		50M x2 + 100M x6	Mid	27.925	QPSK	52.87	75.00	-22.13
L	T . I . I							

Table 7-13. MIMO EIRP Density Summary Data (Antenna A + B + C + D)

Test Report S/N: Test Dates: EUT Type:	FCC ID: A3LAT1K01-A00	CC ID: A3LAT1K01-A00		SAMSUNG	Approved by: Quality Manager	
Test Dates. Lot Type.	Test Report S/N:	est Report S/N: Test Dates:	EUT Type:		Dage 111 of 210	
8K20092801-R2.A3L 10/27/2020-11/13/2020 AU(AT1K01)	8K20092801-R2.A3L	20092801-R2.A3L 10/27/2020-1	2020 AU(AT1K01)		Page 111 of 319	

7.4 RF Conducted Output Power §2.1046

Test Overview

RF conducted output power measurements are performed using broadband horn antennas. The conducted power is determined by maximizing the full spectrum EIRP for all component carrier configurations and then subtracting the known antenna gain from the EIRP. All measurements are performed as RMS average measurements while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies.

Test Procedures Used

ANSI C63.26-2015 Section 5.2.4.4.1 ANSI C63.26-2015 Section 6.4

Test Settings

- 1. Radiated power measurements are performed using the signal analyzer's "channel power" measurement capability for signals with continuous operation.
- 2. RBW = 1 5 % of the expected OBW
- 3. VBW \geq 3 x RBW
- 4. Span = 2x to 3x the OBW
- 5. No. of sweep points \geq 2 x span / RBW
- 6. Detector = RMS
- 7. The integration bandwidth was roughly set equal to the measured RF Conducted Output Power of the signal for signals with continuous operation. For signals with burst transmission, the "gating" function was enabled to ensure that measurements are performed during times in which the transmitter is operating at its

maximum power

- 8. Trace mode = trace averaging (RMS) over 100 sweeps
- 9. The trace was allowed to stabilize

FCC ID: A3LAT1K01-A00	Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 112 of 210
8K20092801-R2.A3L	10/27/2020-11/13/2020	AU(AT1K01)	Page 112 of 319
© 2020 PCTEST.	•		PK-QP-16-09 Rev.02

- 1) The EUT was tested while positioned upright and mounted on a mast at 1.5 m height. The worst case emissions are reported with the EUT in this fixed position and with the modulations and active component carriers shown in the tables below.
- 2) Elements within the same antenna array are correlated to produce beamforming array gain.
- 3) Measurements were taken in the far field of the mmWave signal based on the formula: $R \ge 2D^2/wavelength$.
- 4) The test case with 1 CC active, "CC0" representing the component carrier with the lowest frequency, was selected for the worst case emission testing as it created the highest EIRP within 50 MHz and 100 MHz bandwidth.
- 5) The average EIRP reported below is calculated per formula specific in d) of ANSI C63.26-2015 Section 5.2.7:

EIRP (dBm) = E (dB μ V/m) + 20log(D) -104.8; where D is the measurement distance (in the far field region) in m.

For this section, all EIRP density measurements were performed at a distance of 3.20 m, so the effective correction is:

EIRP (dBm) = E (dBuV/m) - 94.72 dB

= Analyzer Level (dBm) + AFCL (dB/m) + 107 dB - 94.72 dB

- = Analyzer Level (dBm) + AFCL (dB/m) + 12.28 dB
- 6) The conducted average power over the full channel BW is calculated as follows: Conducted Average Power (dBm) = Average EIRP (dBm) – Antenna Gain (dBi)
 * Summed Across All Antennas are calculated based on dBm/100MHz. Thus, 50 MHz bandwidth component carrier is adopted with 3.01 dB scaling factor.
- 7) Per ANSI C63.26-2015 Section 6.4, individual EIRPs are also summed before compared to the limit.
- 8) The angle of the horn antenna was rotated to maximize and find the worst case emissions. Worst case EIRP is reported below.
- 9) 7.3 Equivalent Isotropic Radiated Power (EIRP) Density plots cover for 7.4 Conducted Output Power plot.

FCC ID: A3LAT1K01-A00	Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dogo 112 of 210	
8K20092801-R2.A3L	10/27/2020-11/13/2020	AU(AT1K01)		Page 113 of 319	
© 2020 BCTEST	•			PK-OP-16-00 Poy 02	

7.4.1 Antenna A Conducted Power

Antenna	Bandwidth	Configuration	Chan.	Modulation	Analyzer Level	AFCL	EUT Antenna Gain	Average e.i.r.p.	Conducted Average Power
	[MHz]				[dBm]	[dB/m]	[dBi]	[dBm]	[dBm]
	50		Low	QPSK	-13.34	59.40	28.12	33.76	17.94
	50	1CC	Low	16QAM	-13.40	59.40	28.12	33.70	17.88
	50		Low	64QAM	-13.32	59.40	28.12	33.78	17.96
	50		Low	QPSK	-13.01	59.40	28.12	34.09	18.27
	50	2CC	Low	16QAM	-13.00	59.40	28.12	34.10	18.28
	50		Low	64QAM	-12.93	59.40	28.12	34.17	18.35
	50		Mid	QPSK	-13.66	59.48	28.20	33.52	17.63
	50	1CC	Mid	16QAM	-13.71	59.48	28.20	33.47	17.57
	50		Mid	64QAM	-14.06	59.48	28.20	33.12	17.22
50 50 50 50 50 50 50 50	50		Mid	QPSK	-13.73	59.48	28.20	33.45	17.55
	50	2CC	Mid	16QAM	-13.76	59.48	28.20	33.42	17.52
	50		Mid	64QAM	-13.75	59.48	28.20	33.43	17.54
	50		High	QPSK	-13.52	59.81	28.33	33.99	17.97
	50	1CC	High	16QAM	-13.50	59.81	28.33	34.01	17.99
	50		High	64QAM	-13.46	59.81	28.33	34.05	18.03
	50		High	QPSK	-13.43	59.81	28.33	34.08	18.05
	50	2CC	High	16QAM	-13.48	59.81	28.33	34.03	18.00
	50		High	64QAM	-13.44	59.81	28.33	34.07	18.05
A	100	2NC	Mid	QPSK	-10.17	59.48	28.20	37.01	21.12
	100	3NC	Mid	QPSK	-10.79	59.48	28.20	36.39	20.50
	100	4NC	Mid	QPSK	-9.79	59.48	28.20	37.39	21.50
	100	5NC	Mid	QPSK	-10.42	59.48	28.20	36.76	20.87
	100	6NC	Mid	QPSK	-11.70	59.48	28.20	35.48	19.58
	100	7NC	Mid	QPSK	-12.34	59.48	28.20	34.84	18.94
		50M x1 + 100M x1	Mid	QPSK	-13.89	59.48	28.20	33.29	17.40
		50M x2 + 100M x1	Mid	QPSK	-11.03	59.48	28.20	36.15	20.25
		50M x1 + 100M x2	Mid	QPSK	-10.25	59.48	28.20	36.93	21.03
		50M x2 + 100M x2	Mid	QPSK	-10.03	59.48	28.20	37.15	21.25
		50M x1 + 100M x3	Mid	QPSK	-12.89	59.48	28.20	34.29	18.40
	50 . 400	50M x2 + 100M x3	Mid	QPSK	-12.77	59.48	28.20	34.41	18.51
	50 + 100	50M x1 + 100M x4	Mid	QPSK	-10.16	59.48	28.20	37.02	21.12
		50M x2 + 100M x4	Mid	QPSK	-10.88	59.48	28.20	36.30	20.41
		50M x1 + 100M x5	Mid	QPSK	-11.23	59.48	28.20	35.95	20.05
		50M x2 + 100M x5	Mid	QPSK	-11.64	59.48	28.20	35.54	19.64
		50M x1 + 100M x6	Mid	QPSK	-11.73	59.48	28.20	35.45	19.55
		50M x2 + 100M x6	Mid	QPSK	-15.43	59.48	28.20	31.75	15.85
L	1	Table 7-1/ Ante							

Table 7-14. Antenna A Conducted Power Summary Data

FCC ID: A3LAT1K01-A00	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 114 of 210
8K20092801-R2.A3L	10/27/2020-11/13/2020	AU(AT1K01)	Page 114 of 319	

7.4.2 Antenna B Conducted Power

Antenna	Bandwidth	Configuration	Chan.	Modulation	Analyzer Level	AFCL	EUT Antenna Gain	Average e.i.r.p.	Conducted Average Power
	[MHz]				[dBm]	[dB/m]	[dBi]	[dBm]	[dBm]
	50		Low	QPSK	-13.80	59.40	28.12	33.30	17.48
	50	1CC	Low	16QAM	-13.77	59.40	28.12	33.33	17.51
	50		Low	64QAM	-13.72	59.40	28.12	33.38	17.56
	50	2CC	Low	QPSK	-13.80	59.40	28.12	33.30	17.48
	50		Low	16QAM	-13.60	59.40	28.12	33.50	17.68
	50		Low	64QAM	-13.55	59.40	28.12	33.55	17.73
	50		Mid	QPSK	-14.22	59.48	28.20	32.96	17.06
	50	1CC	Mid	16QAM	-14.07	59.48	28.20	33.11	17.21
	50		Mid	64QAM	-14.03	59.48	28.20	33.15	17.25
	50		Mid	QPSK	-14.41	59.48	28.20	32.77	16.87
	50	2CC	Mid	16QAM	-14.17	59.48	28.20	33.01	17.11
	50		Mid	64QAM	-14.19	59.48	28.20	32.99	17.09
	50		High	QPSK	-14.01	59.81	28.33	33.50	17.48
	50	1CC	High	16QAM	-14.00	59.81	28.33	33.51	17.49
	50		High	64QAM	-13.96	59.81	28.33	33.55	17.52
	50		High	QPSK	-14.12	59.81	28.33	33.39	17.36
	50	2CC	High	16QAM	-14.02	59.81	28.33	33.49	17.47
	50		High	64QAM	-13.94	59.81	28.33	33.57	17.54
В	100	2NC	Mid	QPSK	-10.72	59.48	28.20	36.46	20.57
	100	3NC	Mid	QPSK	-11.08	59.48	28.20	36.10	20.20
	100	4NC	Mid	QPSK	-10.45	59.48	28.20	36.73	20.84
	100	5NC	Mid	QPSK	-11.42	59.48	28.20	35.76	19.86
	100	6NC	Mid	QPSK	-12.33	59.48	28.20	34.85	18.96
	100	7NC	Mid	QPSK	-13.03	59.48	28.20	34.15	18.26
		50M x1 + 100M x1	Mid	QPSK	-14.53	59.48	28.20	32.65	16.75
		50M x2 + 100M x1	Mid	QPSK	-11.05	59.48	28.20	36.13	20.24
		50M x1 + 100M x2	Mid	QPSK	-10.93	59.48	28.20	36.25	20.36
		50M x2 + 100M x2	Mid	QPSK	-10.72	59.48	28.20	36.46	20.56
		50M x1 + 100M x3	Mid	QPSK	-13.57	59.48	28.20	33.61	17.71
	50	50M x2 + 100M x3	Mid	QPSK	-13.46	59.48	28.20	33.72	17.83
	50	50M x1 + 100M x4	Mid	QPSK	-11.02	59.48	28.20	36.16	20.26
		50M x2 + 100M x4	Mid	QPSK	-11.43	59.48	28.20	35.75	19.86
		50M x1 + 100M x5	Mid	QPSK	-11.87	59.48	28.20	35.31	19.41
		50M x2 + 100M x5	Mid	QPSK	-12.24	59.48	28.20	34.94	19.04
		50M x1 + 100M x6	Mid	QPSK	-12.51	59.48	28.20	34.67	18.77
		50M x2 + 100M x6	Mid	QPSK	-15.90	59.48	28.20	31.28	15.38
L		Table 7-15 Ante						0.120	

Table 7-15. Antenna B Conducted Power Summary Data

FCC ID: A3LAT1K01-A00	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 115 of 210
8K20092801-R2.A3L	10/27/2020-11/13/2020	AU(AT1K01)	Page 115 of 319

7.4.3 Antenna C Conducted Power

Antenna	Bandwidth	Configuration	Chan.	Modulation	Analyzer Level	AFCL	EUT Antenna Gain	Average e.i.r.p.	Conducted Average Power
	[MHz]				[dBm]	[dB/m]	[dBi]	[dBm]	[dBm]
	50		Low	QPSK	-13.57	59.40	28.12	33.53	17.71
	50	1CC	Low	16QAM	-13.60	59.40	28.12	33.50	17.68
	50		Low	64QAM	-13.68	59.40	28.12	33.42	17.60
	50		Low	QPSK	-13.52	59.40	28.12	33.58	17.76
	50	2CC	Low	16QAM	-13.33	59.40	28.12	33.77	17.96
	50		Low	64QAM	-13.33	59.40	28.12	33.77	17.96
	50		Mid	QPSK	-13.70	59.48	28.20	33.48	17.58
	50	1CC	Mid	16QAM	-13.77	59.48	28.20	33.41	17.52
	50		Mid	64QAM	-13.85	59.48	28.20	33.33	17.43
	50		Mid	QPSK	-14.00	59.48	28.20	33.18	17.29
	50	2CC	Mid	16QAM	-14.04	59.48	28.20	33.14	17.25
	50		Mid	64QAM	-14.26	59.48	28.20	32.92	17.02
	50		High	QPSK	-13.71	59.81	28.33	33.80	17.77
	50	1CC	High	16QAM	-14.00	59.81	28.33	33.51	17.49
	50		High	64QAM	-13.90	59.81	28.33	33.61	17.58
	50		High	QPSK	-13.62	59.81	28.33	33.89	17.86
	50	2CC	High	16QAM	-13.71	59.81	28.33	33.80	17.78
С	50		High	64QAM	-14.01	59.81	28.33	33.50	17.47
C	100	2NC	Mid	QPSK	-10.58	59.48	28.20	36.60	20.71
	100	3NC	Mid	QPSK	-11.09	59.48	28.20	36.09	20.19
	100	4NC	Mid	QPSK	-10.45	59.48	28.20	36.73	20.83
	100	5NC	Mid	QPSK	-10.93	59.48	28.20	36.25	20.36
	100	6NC	Mid	QPSK	-12.15	59.48	28.20	35.03	19.13
	100	7NC	Mid	QPSK	-12.72	59.48	28.20	34.46	18.56
		50M x1 + 100M x1	Mid	QPSK	-14.32	59.48	28.20	32.86	16.97
		50M x2 + 100M x1	Mid	QPSK	-11.25	59.48	28.20	35.93	20.03
		50M x1 + 100M x2	Mid	QPSK	-10.64	59.48	28.20	36.54	20.64
		50M x2 + 100M x2	Mid	QPSK	-10.37	59.48	28.20	36.81	20.91
		50M x1 + 100M x3	Mid	QPSK	-10.38	59.48	28.20	36.80	20.90
	50	50M x2 + 100M x3	Mid	QPSK	-10.31	59.48	28.20	36.87	20.98
	50	50M x1 + 100M x4	Mid	QPSK	-10.85	59.48	28.20	36.33	20.43
		50M x2 + 100M x4	Mid	QPSK	-11.23	59.48	28.20	35.95	20.05
		50M x1 + 100M x5	Mid	QPSK	-11.85	59.48	28.20	35.33	19.43
		50M x2 + 100M x5	Mid	QPSK	-11.95	59.48	28.20	35.23	19.34
		50M x1 + 100M x6	Mid	QPSK	-12.20	59.48	28.20	34.98	19.09
		50M x2 + 100M x6	Mid	QPSK	-12.40	59.48	28.20	34.78	18.89
1	1	Table 7-16 Ante							

Table 7-16. Antenna C Conducted Power Summary Data

FCC ID: A3LAT1K01-A00	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 116 of 210
8K20092801-R2.A3L	10/27/2020-11/13/2020	AU(AT1K01)		Page 116 of 319

7.4.4 Antenna D Conducted Power

Antenna	Bandwidth	Configuration	Chan.	Modulation	Analyzer Level	AFCL	EUT Antenna Gain	Average e.i.r.p.	Conducted Average Power
	[MHz]				[dBm]	[dB/m]	[dBi]	[dBm]	[dBm]
	50		Low	QPSK	-14.05	59.40	28.12	33.05	17.23
	50	1CC	Low	16QAM	-14.07	59.40	28.12	33.03	17.22
	50		Low	64QAM	-14.08	59.40	28.12	33.02	17.20
	50		Low	QPSK	-13.85	59.40	28.12	33.25	17.43
	50	2CC	Low	16QAM	-13.88	59.40	28.12	33.22	17.40
	50		Low	64QAM	-13.93	59.40	28.12	33.17	17.35
	50		Mid	QPSK	-14.25	59.48	28.20	32.93	17.04
	50	1CC	Mid	16QAM	-14.33	59.48	28.20	32.85	16.96
	50		Mid	64QAM	-14.36	59.48	28.20	32.82	16.92
	50		Mid	QPSK	-14.21	59.48	28.20	32.97	17.07
	50	2CC	Mid	16QAM	-14.24	59.48	28.20	32.94	17.04
	50		Mid	64QAM	-14.30	59.48	28.20	32.88	16.98
	50		High	QPSK	-14.15	59.81	28.33	33.36	17.33
	50	1CC	High	16QAM	-14.21	59.81	28.33	33.30	17.28
	50		High	64QAM	-14.17	59.81	28.33	33.34	17.32
	50		High	QPSK	-13.99	59.81	28.33	33.52	17.50
	50	2CC	High	16QAM	-13.99	59.81	28.33	33.52	17.50
D	50		High	64QAM	-13.98	59.81	28.33	33.53	17.50
	100	2NC	Mid	QPSK	-10.90	59.48	28.20	36.28	20.38
	100	3NC	Mid	QPSK	-11.04	59.48	28.20	36.14	20.24
	100	4NC	Mid	QPSK	-10.50	59.48	28.20	36.68	20.78
	100	5NC	Mid	QPSK	-11.35	59.48	28.20	35.83	19.93
	100	6NC	Mid	QPSK	-12.24	59.48	28.20	34.94	19.04
	100	7NC	Mid	QPSK	-13.03	59.48	28.20	34.15	18.26
		50M x1 + 100M x1	Mid	QPSK	-14.54	59.48	28.20	32.64	16.74
		50M x2 + 100M x1	Mid	QPSK	-11.15	59.48	28.20	36.03	20.14
		50M x1 + 100M x2	Mid	QPSK	-10.88	59.48	28.20	36.30	20.40
		50M x2 + 100M x2	Mid	QPSK	-10.69	59.48	28.20	36.49	20.59
		50M x1 + 100M x3	Mid	QPSK	-10.68	59.48	28.20	36.50	20.60
	50	50M x2 + 100M x3	Mid	QPSK	-10.55	59.48	28.20	36.63	20.74
	50	50M x1 + 100M x4	Mid	QPSK	-11.06	59.48	28.20	36.12	20.22
		50M x2 + 100M x4	Mid	QPSK	-11.28	59.48	28.20	35.90	20.00
		50M x1 + 100M x5	Mid	QPSK	-11.87	59.48	28.20	35.31	19.41
		50M x2 + 100M x5	Mid	QPSK	-12.23	59.48	28.20	34.95	19.06
		50M x1 + 100M x6	Mid	QPSK	-12.53	59.48	28.20	34.65	18.76
		50M x2 + 100M x6	Mid	QPSK	-15.88	59.48	28.20	31.30	15.40
L	1	Table 7-17 Ante							

Table 7-17. Antenna D Conducted Power Summary Data

FCC ID: A3LAT1K01-A00	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 117 of 210
8K20092801-R2.A3L	10/27/2020-11/13/2020	AU(AT1K01)		Page 117 of 319

7.5 Radiated Spurious and Harmonic Emissions §2.1051 §30.203

Test Overview

The spectrum is scanned from 30 MHz to 100 GHz for n261. All out of band emissions are measured in a radiated setup while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All modulations were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.

The conductive power or total radiated power of any emissions outside a licensee's frequency block shall be -13 dBm / 1 MHz.

Test Procedure Used

ANSI C63.26-2015 Section 5.7.4 ANSI C63.26-2015 Section 6.4 KDB 842590 D01 v01r01 Section 4.4.2 and Section 4.4.3

Test Settings

- 1. Start frequency was set to 30 MHz and stop frequency was set to 100 GHz for n261. Several plots are used to show investigations in this entire span.
- 2. Detector = RMS
- 3. Trace mode = trace average
- 4. Sweep time = auto couple
- 5. Number of sweep points $\geq 2 \times \text{Span/RBW}$
- 6. The trace was allowed to stabilize
- 7. RBW = 1 MHz, VBW = 3 MHz

Test Notes

- 1) The EUT was tested while positioned upright and mounted on a mast 1.5 m height. The worst case emissions are reported with the EUT in this fixed position and with the modulations and active component carriers shown in the tables below.
- 2) All radiated spurious emissions were measured as EIRP to compare with the §30.203 TRP limits.
- 3) Emissions below 18 GHz were measured at a 3 meter test distance, while emissions above 18 GHz were measured at the appropriate far field distance. The far field of the mmWave signal is based on formula; R > 2D^2/wavelength, where D is the larger between the dimension of the measurement antenna and the transmitting antenna of the EUT. In this case, D is the largest dimension of the measurement antenna.
- 4) Out-band Emission of 10% channel bandwidth are exempted on Radiated Spurious and Harmonic Emissions test case.
- 5) The plots from 18-100 GHz show corrected average EIRP levels. The average EIRP reported below is calculated per section 5.2.7 of ANSI C63.26-2015 which states: EIRP (dBm) = E (dBµV/m) + 20log(D) 104.8; where D is the measurement distance (in the far field region) in m. The field strength E is calculated E (dBµV/m) = Spectrum Analyzer Level (dBm) + Antenna Factor (dB/m) + Cable Loss (dB) + Duty Cycle (dB)+ Harmonic Mixer Conversion Loss (dB) + 107. All appropriate Antenna Factor and Cable Loss have been applied in the spectrum analyzer for each measurement. For measurements > 40 GHz, Harmonic Mixer Conversion Loss was also applied to the spectrum analyzer.

FCC ID: A3LAT1K01-A00	PCTEST* Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 118 of 319
8K20092801-R2.A3L	10/27/2020-11/13/2020	AU(AT1K01)	Page	
© 2020 PCTEST.	•	·		PK-QP-16-09 Rev.02

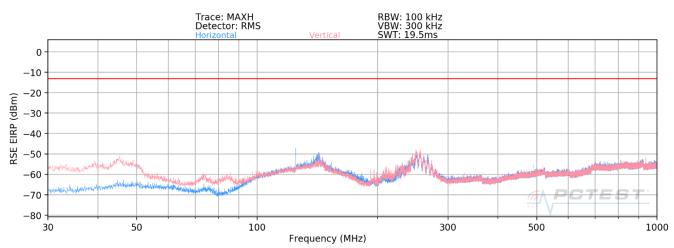
Frequency Range [GHz]	Wavelength [cm]	Far Field Distance [m]	Measurements Distance [m]
18 to 40	0.749	3.19	3.20
40 to 60	0.500	1.39	1.50
60 to 90	0.333	0.91	1.50
90 to 100	0.214	0.58	1.50

Table 7-18. Far-field Distance & Measurement Distance per Frequency Rage

Frequency Range [GHz]	Calculated Measurement D * E [dB]	Duty Cycle [dB]	Reference offset [dB]
18 to 40	12.30	1.37	13.67
40 to 100	5.73	1.37	7.10

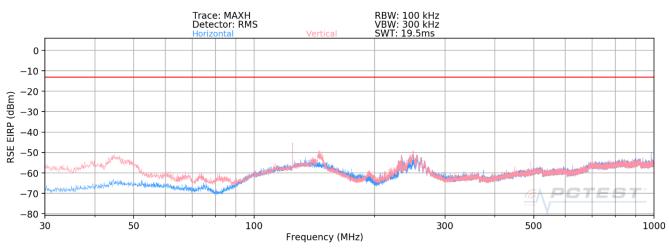
Table 7-19. Far-field Distance & Measurement Distance per Frequency Rage

- 6) Emissions > 40 GHz were measured using a harmonic mixer with the spectrum analyzer.
- 7) The "-" shown in the following RSE tables are used to denote a noise floor measurement.
- 8) Spurious emissions were measured with all EUT antennas transmitting simultaneously.
- 9) Some testing configurations exceed the limit which requires to investigate of TRP method according to 4.4 Unwanted Emission Measurements of KDB 842590 D01.

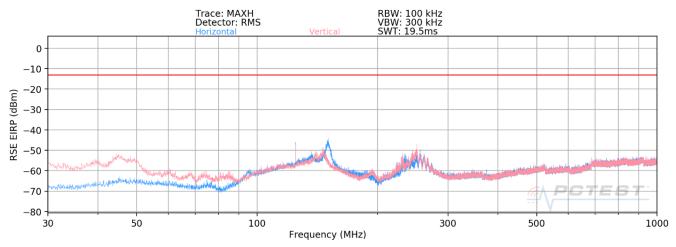

TRP Measurement Procedure

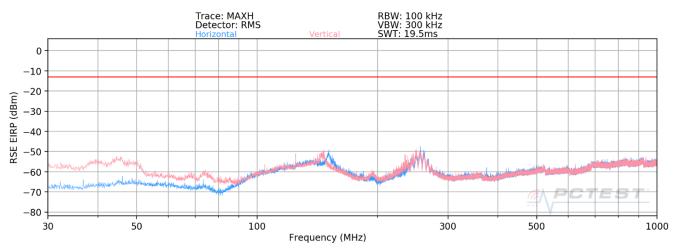
If the recorded EIRP value was close or above the TRP limit, a Two Cut TRP measurement was done according to KDB 842590 D01 v01 Section 4.4.3.3.2

- Align the EUT with a chosen xy-plane and the xz-plane of the antenna measurement coordinate system. NOTE 1 For harmonics and spurious emission frequencies which are beamforming as identified in exploratory scan, it may be required to align the orthogonal cuts to include the peak based on exploratory scans.
- 2) Measure the EUT dimensions, i.e., depth (d), width (w), and height (h); see Figure A.1 in Appendix A.
- 3) Calculate the spherical and cylindrical diameters (D and Dcyl) using Equations (A.1) and (A.2) (see Appendix
- 4) For the highest frequency (smallest wavelength) of the frequency band measured, calculate the reference angular steps $\Delta\theta\theta$ ref and $\Delta\phi\phi$ ref using Equations (A.3) and (A.4).
- 5) Set the grid spatial sampling step $\Delta\theta\theta \leq \Delta\theta\theta$ ref for the vertical angle and $\Delta\phi\phi \leq \Delta\phi\phi$ ref for the horizontal cut.
- 6) For each emission frequency, measure the EIRP (as a sum of two orthogonal polarizations) at each spatial sampling step on the selected grid.
- 7) For each emission frequency, calculate the average EIRP for both the cuts separately, and then take the average of these two average values.
- 8) Add 2 dB as a correction factor to the averaged value computed in step g).

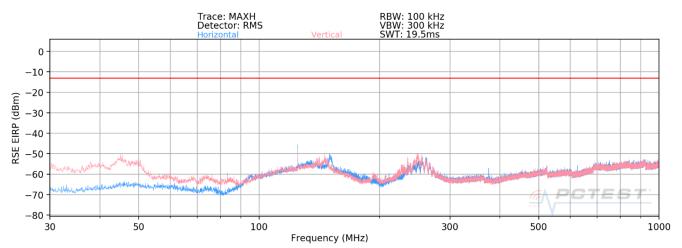

FCC ID: A3LAT1K01-A00	Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dama 440 at 240
8K20092801-R2.A3L	10/27/2020-11/13/2020	P(AT1K01)		Page 119 of 319
© 2020 PCTEST.	•			PK-QP-16-09 Rev.02

7.5.1 Radiated Spurious Emissions Plots (30 MHz to 1 GHz)


Plot 7-169. Radiated Spurious Plot 30 MHz - 1 GHz (100 MHz 4CC NC BW QPSK Mid Channel)


Plot 7-170. Radiated Spurious Plot 30 MHz - 1 GHz (50 MHz 2CC + 100 MHz 3CC BW QPSK Mid Channel)

FCC ID: A3LAT1K01-A00	Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 120 of 319
8K20092801-R2.A3L	10/27/2020-11/13/2020	AU(AT1K01)	Page 1	
© 2020 PCTEST.	•	·		PK-QP-16-09 Rev.02



Plot 7-171. Radiated Spurious Plot 30 MHz - 1 GHz (50 MHz 2CC + 100 MHz 3CC NC BW QPSK Mid Channel)

Plot 7-172. Radiated Spurious Plot 30 MHz - 1 GHz (50 MHz 2CC + 100 MHz 6CC BW QPSK Mid Channel)

Plot 7-173. Radiated Spurious Plot 30 MHz - 1 GHz (50 MHz 2CC + 100 MHz 6CC NC BW QPSK Mid Channel)

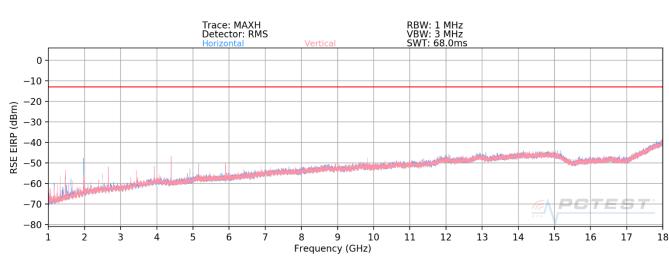
FCC ID: A3LAT1K01-A00		MEASUREMENT REPORT (Class II Permissive Change)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dama 404 af 040	
8K20092801-R2.A3L	10/27/2020-11/13/2020	AU(AT1K01)	Page 121 o		
© 2020 PCTEST.		•		PK-QP-16-09 Rev.02	

Spurious Emissions EIRP Sample Calculation (n261)

The raw radiated spurious level is converted to field strength in dBµV/m. Then, the RSE EIRP level is calculated by applying the additional factors shown below for a test distance of 3 meters.

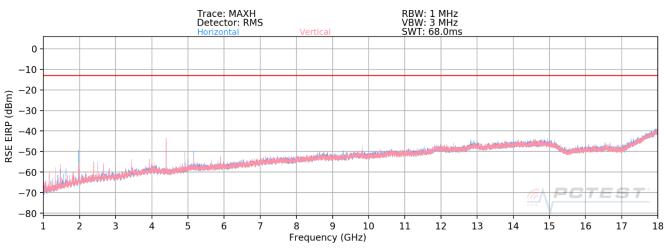
Frequency [MHz]	Channel	Bandwidth [MHz]	CC Active	Antenna Polarization [H/V]	Modulation	Antenna Height [cm]	Turntable Azimuth [degree]	Spurious Emission Level [dBm]	Margin [dB]
149.97	Low	100	4NC	Н	QPSK	279	4	-51.34	-38.34
46.02	Low	100	4NC	V	QPSK	264	355	-53.49	-40.49
124.97	Mid	100	4NC	н	QPSK	243	20	-47.47	-34.47
44.12	Mid	100	4NC	V	QPSK	247	41	-53.66	-40.66
124.97	High	100	4NC	н	QPSK	246	351	-46.06	-33.06
30.28	High	100	4NC	V	QPSK	256	0	-56.06	-43.06
125.00	Low	50 + 100	2CC + 3CC	Н	QPSK	245	0	-43.48	-30.48
45.15	Low	50 + 100	2CC + 3CC	V	QPSK	235	0	-52.08	-39.08
125.00	Mid	50 + 100	2CC + 3CC	Н	QPSK	246	1	-44.02	-31.02
44.82	Mid	50 + 100	2CC + 3CC	V	QPSK	235	13	-52.05	-39.05
125.00	High	50 + 100	2CC + 3CC	н	QPSK	248	351	-43.13	-30.13
44.78	High	50 + 100	2CC + 3CC	V	QPSK	238	354	-52.93	-39.93
44.80	Low	50 + 100	2NC + 3NC	V	QPSK	235	6	-52.16	-39.16
125.00	Low	50 + 100	2NC + 3NC	н	QPSK	243	0	-44.08	-31.08
149.97	Mid	50 + 100	2NC + 3NC	Н	QPSK	251	8	-46.19	-33.19
45.12	Mid	50 + 100	2NC + 3NC	V	QPSK	237	15	-50.40	-37.40
150.22	High	50 + 100	2NC + 3NC	н	QPSK	279	11	-49.69	-36.69
45.72	High	50 + 100	2NC + 3NC	V	QPSK	264	6	-53.20	-40.20
193.77	Low	50 + 100	2CC + 6CC	V	QPSK		-	-59.98	-46.98
149.42	Low	50 + 100	2CC + 6CC	Н	QPSK	-	-	-54.25	-41.25
261.43	Mid	50 + 100	2CC + 6CC	Н	QPSK	266	6	-50.63	-37.63
45.23	Mid	50 + 100	2CC + 6CC	V	QPSK	265	1	-52.79	-39.79
124.99	High	50 + 100	2CC + 6CC	н	QPSK	263	1	-45.64	-32.64
30.16	High	50 + 100	2CC + 6CC	V	QPSK	265	3	-56.01	-43.01
124.99	Low	50 + 100	2NC + 6NC	Н	QPSK	263	354	-44.56	-31.56
30.32	Low	50 + 100	2NC + 6NC	V	QPSK	262	353	-57.44	-44.44
124.99	Mid	50 + 100	2NC + 6NC	Н	QPSK	257	356	-44.69	-31.69
30.07	Mid	50 + 100	2NC + 6NC	V	QPSK	258	10	-56.29	-43.29
125.00	High	50 + 100	2NC + 6NC	Н	QPSK	261	351	-43.42	-30.42

RSE EIRP (dBm) = Analyzer Level (dBm) + AFCL (dB/m) + 107 + 20Log(Dm) - 104.8

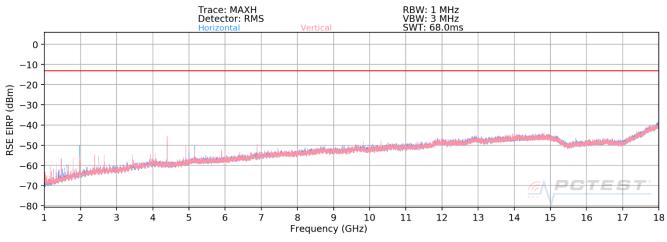

Table 7-20. Spurious Emissions (30 MHz - 1GHz)

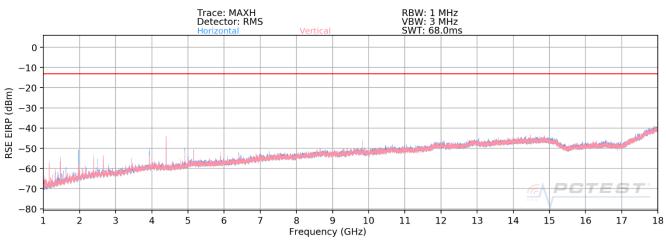
<u>Notes</u>

The RSE EIRP level is taken directly from the spectrum analyzer which includes the appropriate antenna factors, and cable losses. Measurements were performed at a distance of 3 meter.

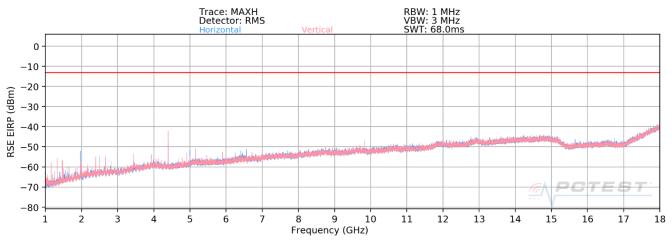

FCC ID: A3LAT1K01-A00	Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 122 of 319
8K20092801-R2.A3L	10/27/2020-11/13/2020	AU(AT1K01)		
© 2020 PCTEST.	•	·		PK-QP-16-09 Rev.02

7.5.2 Radiated Spurious Emissions Plots (1 GHz to 18 GHz)




Plot 7-175. Radiated Spurious Plot 1 GHz - 18 GHz (50 MHz 2CC + 100 MHz 3CC BW QPSK Mid Channel)

FCC ID: A3LAT1K01-A00	Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dama 400 at 040
8K20092801-R2.A3L	10/27/2020-11/13/2020	AU(AT1K01)		Page 123 of 319
© 2020 PCTEST.	•			PK-QP-16-09 Rev.02



Plot 7-176. Radiated Spurious Plot 1 GHz - 18 GHz (50 MHz 2CC + 100 MHz 3CC NC BW QPSK Mid Channel)

Plot 7-178. Radiated Spurious Plot 1 GHz - 18 GHz (50 MHz 2CC + 100 MHz 6CC NC BW QPSK Mid Channel)

FCC ID: A3LAT1K01-A00	Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dama 404 af 040
8K20092801-R2.A3L	10/27/2020-11/13/2020	AU(AT1K01)		Page 124 of 319
© 2020 PCTEST.	•			PK-QP-16-09 Rev.02

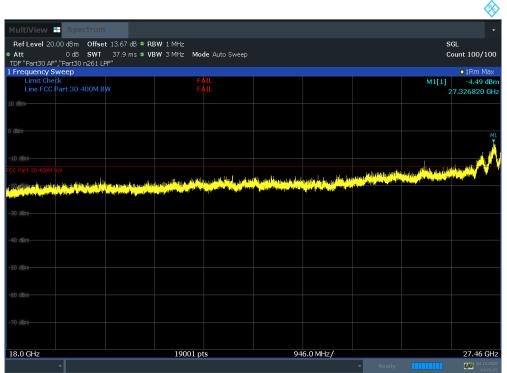
Spurious Emissions EIRP Sample Calculation (n261)

The raw radiated spurious level is converted to field strength in dBµV/m. Then, the RSE EIRP level is calculated by applying the additional factors shown below for a test distance of 3 meters.

Frequency [MHz]	Channel	Bandwidth [MHz]	CC Active	Antenna Polarization [H/V]	Modulation	Antenna Height [cm]	Turntable Azimuth [degree]	Spurious Emission Level [dBm]	Margin [dB]
1474.62	Low	100	4NC	н	QPSK	250	0	-55.01	-42.0
1472.62	Low	100	4NC	V	QPSK	250	0	-51.12	-38.1
1465.61	Mid	100	4NC	н	QPSK	253	0	-53.09	-40.1
4396.83	Mid	100	4NC	V	QPSK	235	6	-49.23	-36.2
1474.57	High	100	4NC	Н	QPSK	279	25	-47.44	-34.4
1474.57	High	100	4NC	V	QPSK	264	29	-55.54	-42.5
1474.57	Low	50 + 100	2CC + 3CC	Н	QPSK	282	28	-45.73	-32.7
1474.57	Low	50 + 100	2CC + 3CC	V	QPSK	250	27	-49.47	-36.5
1474.57	Mid	50 + 100	2CC + 3CC	Н	QPSK	280	27	-48.55	-35.5
1474.57	Mid	50 + 100	2CC + 3CC	V	QPSK	265	12	-61.36	-48.4
1474.57	High	50 + 100	2CC + 3CC	Н	QPSK	237	15	-51.22	-38.2
4396.77	High	50 + 100	2CC + 3CC	V	QPSK	250	359	-45.78	-32.8
1474.57	Low	50 + 100	2NC + 3NC	V	QPSK	203	11	-53.85	-40.8
1474.57	Low	50 + 100	2NC + 3NC	Н	QPSK	220	355	-56.54	-43.5
1474.57	Mid	50 + 100	2NC + 3NC	Н	QPSK	221	28	-48.02	-35.0
1474.57	Mid	50 + 100	2NC + 3NC	V	QPSK	236	13	-57.57	-44.6
1474.57	High	50 + 100	2NC + 3NC	н	QPSK	242	16	-52.01	-39.0
1474.57	High	50 + 100	2NC + 3NC	V	QPSK	232	1	-59.39	-46.4
1474.57	Low	50 + 100	2CC + 6CC	V	QPSK	238	14	-57.05	-44.0
1474.57	Low	50 + 100	2CC + 6CC	Н	QPSK	222	20	-47.48	-34.5
1474.57	Mid	50 + 100	2CC + 6CC	Н	QPSK	235	352	-52.58	-39.6
1474.57	Mid	50 + 100	2CC + 6CC	V	QPSK	242	357	-49.40	-36.4
1474.57	High	50 + 100	2CC + 6CC	Н	QPSK	236	17	-56.41	-43.4
1474.57	High	50 + 100	2CC + 6CC	V	QPSK	240	359	-50.65	-37.6
1474.57	Low	50 + 100	2NC + 6NC	Н	QPSK	228	22	-52.53	-39.5
1474.57	Low	50 + 100	2NC + 6NC	V	QPSK	232	25	-54.78	-41.8
1474.57	Mid	50 + 100	2NC + 6NC	Н	QPSK	219	10	-47.31	-34.3
1474.57	Mid	50 + 100	2NC + 6NC	V	QPSK	235	15	-56.95	-43.9
1474.56	High	50 + 100	2NC + 6NC	Н	QPSK	249	21	-47.06	-34.1
1474.46	High	50 + 100	2NC + 6NC	V	QPSK	236	13	-56.54	-43.5

RSE EIRP (dBm) = Analyzer Level (dBm) + AFCL (dB/m) + 107 + 20Log(Dm) - 104.8

Table 7-21. Spurious Emissions (1 GHz to 18 GHz)

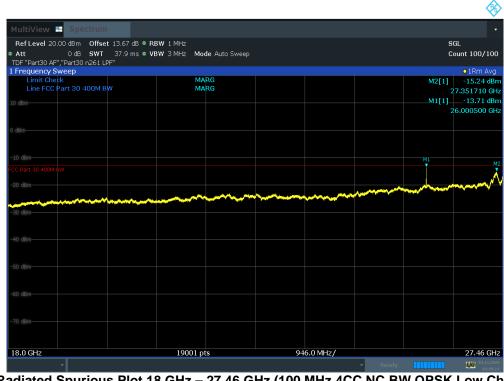

<u>Notes</u>

The RSE EIRP level is taken directly from the spectrum analyzer which includes the appropriate antenna factors, and cable losses. Measurements were performed at a distance of 3 meter.


FCC ID: A3LAT1K01-A00	PCTEST* Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 105 of 210	
8K20092801-R2.A3L	10/27/2020-11/13/2020	AU(AT1K01)		Page 125 of 319	
© 2020 PCTEST.	•			PK-QP-16-09 Rev.02	

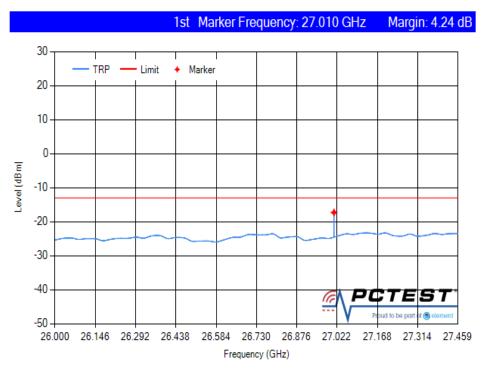
7.5.3 Radiated Spurious Emissions Plots (18 GHz to 27.5 GHz)

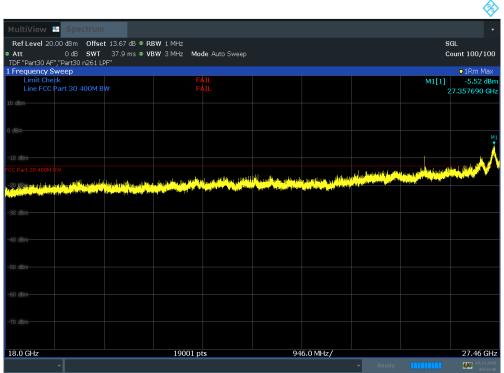
Plot 7-179. Radiated Spurious Plot 18 GHz – 27.46 GHz (100 MHz 4CC NC BW QPSK Low Channel Pol. H)


Plot 7-180. Radiated Spurious Plot 18 GHz – 27.46 GHz (100 MHz 4CC NC BW QPSK Low Channel Pol. H) Fin

FCC ID: A3LAT1K01-A00	PCTEST* Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dogo 126 of 210	
8K20092801-R2.A3L	10/27/2020-11/13/2020	AU(AT1K01)		Page 126 of 319	
© 2020 PCTEST.	•			PK-QP-16-09 Rev.02	

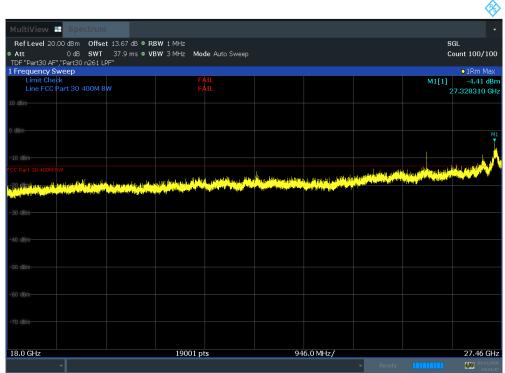
MultiView 🖶 Spectrum				•
Ref Level 20.00 dBm Offset 13.67 dB • RI	RW 1 MHz		<	GL
	3W 3 MHz Mode Auto Sweep			ount 100/100
TDF "Part30 AF", "Part30 n261 LPF"				
1 Frequency Sweep				IRm Max
Limit Check Line FCC Part 30 400M BW	FAIL		M1[1]	-7.56 dBm
Life FCC Part S0 400M BW	FAIL			27.342250 GHz
10 dBm				
0 dBm-				
o ubin				
				X
-10 dBm				
FCC Part 30 400M BW			أأعطيه والاستأثأته للترجيب فيطلقه والمتعاجب	
استقاربها بالقرير المتر والاستحداد ومتمر الألب ويراجع والمترج وحرا		وفرأ فأدرده معمقة باسرة كمتناها وربد فعلموه فالا	in the second state of the second state of the second state	and the particular of the state
The second se	the second state of the se	Read and the second state of the		
-30 dBm-				
-40 dBm-				
40 0011				
-50 dBm-				
-60 dBm				
-70 dBm-				
18.0 GHz	19001 pts	946.0 MHz/		27.46 GHz
÷			🝷 Ready	03.11.2020


Plot 7-181. Radiated Spurious Plot 18 GHz – 27.46 GHz (100 MHz 4CC NC BW QPSK Low Channel Pol. V)


Plot 7-182. Radiated Spurious Plot 18 GHz – 27.46 GHz (100 MHz 4CC NC BW QPSK Low Channel Pol. V) Fin

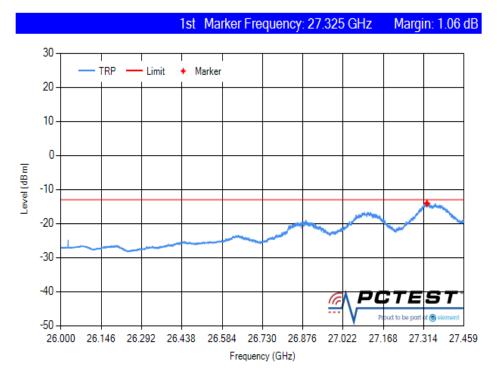
FCC ID: A3LAT1K01-A00	PCTEST* Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dama 407 of 040
8K20092801-R2.A3L	10/27/2020-11/13/2020	AU(AT1K01)		Page 127 of 319
© 2020 PCTEST.	•			PK-QP-16-09 Rev.02

Plot 7-183. Radiated Spurious Plot 26 GHz – 27.46 GHz (100 MHz 4CC NC BW QPSK Low TRP)

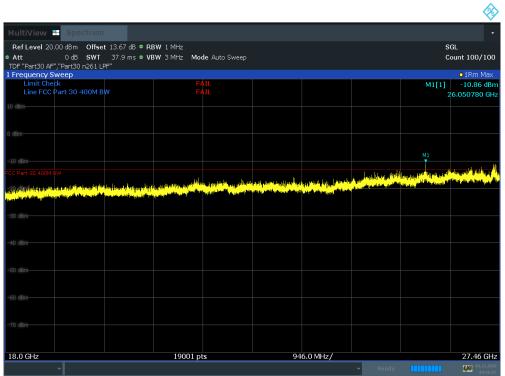

Plot 7-184. Radiated Spurious Plot 18 GHz – 27.46 GHz (100 MHz 4CC NC BW QPSK Mid Channel Pol. H)

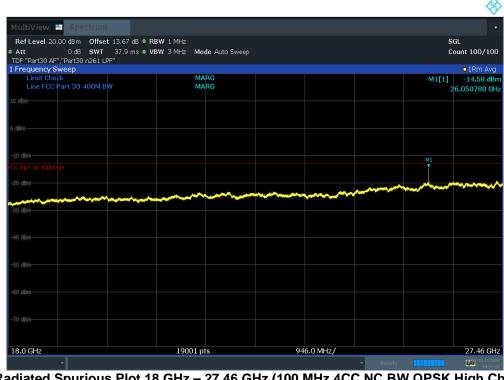
FCC ID: A3LAT1K01-A00	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dama 400 -4 040
8K20092801-R2.A3L	10/27/2020-11/13/2020	AU(AT1K01)		Page 128 of 319
© 2020 PCTEST.	-	·		PK-QP-16-09 Rev.02


Plot 7-185. Radiated Spurious Plot 18 GHz – 27.46 GHz (100 MHz 4CC NC BW QPSK Mid Channel Pol. H) Fin


Plot 7-186. Radiated Spurious Plot 18 GHz – 27.46 GHz (100 MHz 4CC NC BW QPSK Mid Channel Pol. V)

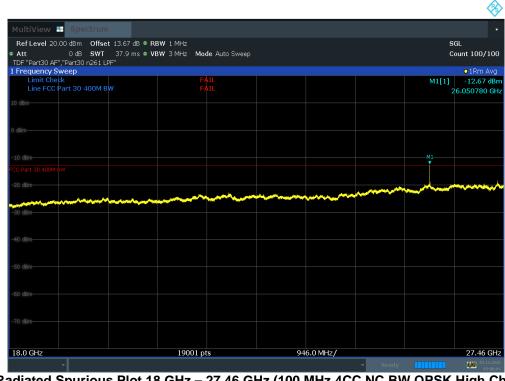
FCC ID: A3LAT1K01-A00	PCTEST Proud to be part of @ everyent	MEASUREMENT REPORT (Class II Permissive Change)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 120 of 210
8K20092801-R2.A3L	10/27/2020-11/13/2020	AU(AT1K01)		Page 129 of 319
© 2020 PCTEST		•		PK-OP-16-09 Rev 02


Plot 7-187. Radiated Spurious Plot 18 GHz – 27.46 GHz (100 MHz 4CC NC BW QPSK Mid Channel Pol. V) Fin


Plot 7-188. Radiated Spurious Plot 26 GHz – 27.46 GHz (100 MHz 4CC NC BW QPSK Mid TRP)

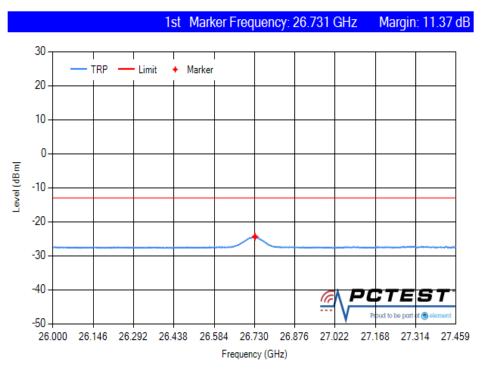
FCC ID: A3LAT1K01-A00	PCTEST* Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 120 of 210
8K20092801-R2.A3L	10/27/2020-11/13/2020	AU(AT1K01)		Page 130 of 319
© 2020 PCTEST.		·		PK-QP-16-09 Rev.02

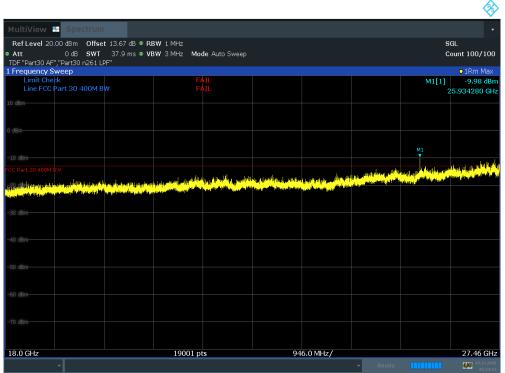
Plot 7-189. Radiated Spurious Plot 18 GHz – 27.46 GHz (100 MHz 4CC NC BW QPSK High Channel Pol. H)


Plot 7-190. Radiated Spurious Plot 18 GHz – 27.46 GHz (100 MHz 4CC NC BW QPSK High Channel Pol. H) Fin

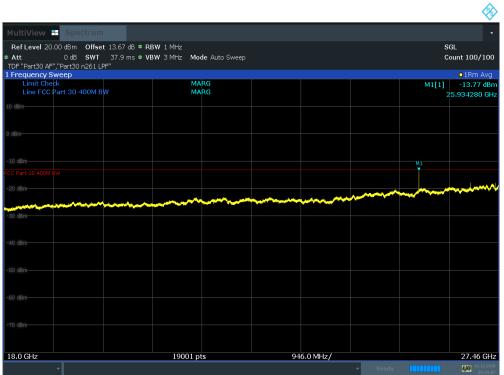
FCC ID: A3LAT1K01-A00	Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	SAMSUNG	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 121 of 210	
8K20092801-R2.A3L	10/27/2020-11/13/2020	AU(AT1K01)		Page 131 of 319	
© 2020 DOTEST				PK-OP-16-00 Pov 02	

MultiView 🖶 Spectrum				•
Ref Level 20.00 dBm Offset 13.67 dB • F	RW 1 MHz			SGL
	BW 3 MHz Mode Auto Sweep			Count 100/100
TDF "Part30 AF", "Part30 n261 LPF"				
1 Frequency Sweep Limit Check	EATI			• 1Rm Max
Line FCC Part 30 400M BW	FAIL			M1[1] -9.08 dBm 26.050780 GHz
				26.050780 662
10 dBm				
0 dBm				
				M1
-10 dBm-				▼.
FCC Part 30 400M BW				the second state of the second s
PCC Part 30 400M BW	ليعتب بالالالالالي المحارب	di data bila di anti ang ang ang ang ang ang ang ang dabika i	أفريا والمعاقلين أمالا ماطله ورعلي	
		والمتحديد والمراقة فأربغ وتسطيعه والمحا فالتقاد ومعافله	A DESCRIPTION OF THE OWNER OWNER OF THE OWNER OWNER OF THE OWNER OWNE	
here and the second				
-30 dBm				
-40 dBm				
-50 dBm				
~ ~				
-60 dBm				
-70 dBm				
18.0 GHz	19001 pts	946.0 MHz/		27.46 GHz
÷			👻 Ready 🚺	03.11.2020


Plot 7-191. Radiated Spurious Plot 18 GHz – 27.46 GHz (100 MHz 4CC NC BW QPSK High Channel Pol. V)


Plot 7-192. Radiated Spurious Plot 18 GHz – 27.46 GHz (100 MHz 4CC NC BW QPSK High Channel Pol. V) Fin

FCC ID: A3LAT1K01-A00	Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 122 of 210
8K20092801-R2.A3L	10/27/2020-11/13/2020	AU(AT1K01)		Page 132 of 319
© 2020 PCTEST.	-	·		PK-QP-16-09 Rev.02

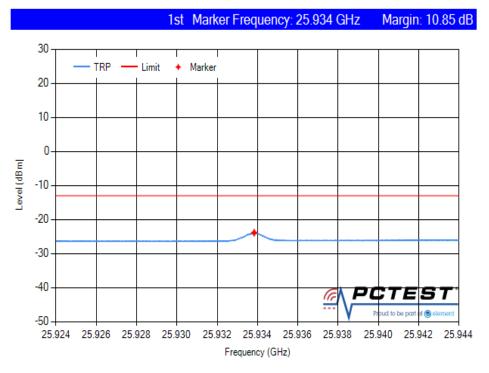

Plot 7-193. Radiated Spurious Plot 26 GHz – 27.46 GHz (100 MHz 4CC NC BW QPSK High TRP)


Plot 7-194. Radiated Spurious Plot 18 GHz – 27.46 GHz (50 MHz 2CC + 100 MHz 3CC BW QPSK Low Channel Pol. H)

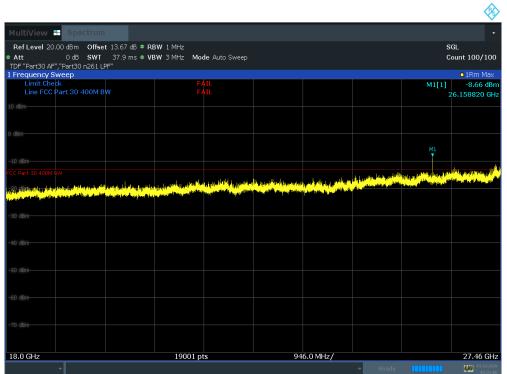
FCC ID: A3LAT1K01-A00	Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 122 of 210
8K20092801-R2.A3L	10/27/2020-11/13/2020	AU(AT1K01)		Page 133 of 319
© 2020 PCTEST.	•	•		PK-QP-16-09 Rev.02

Plot 7-195. Radiated Spurious Plot 18 GHz - 27.46 GHz (50 MHz 2CC + 100 MHz 3CC BW QPSK Low Channel Pol. H) Fin

Plot 7-196. Radiated Spurious Plot 18 GHz – 27.46 GHz (50 MHz 2CC + 100 MHz 3CC BW QPSK Low Channel Pol. V)

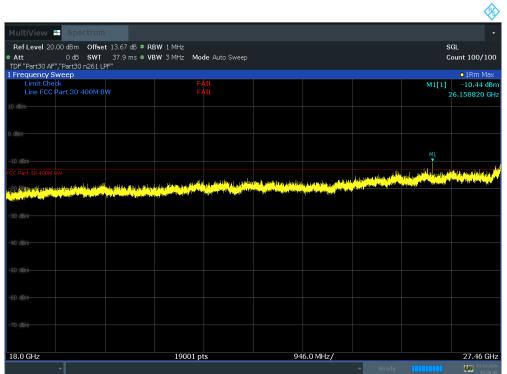

FCC ID: A3LAT1K01-A00	Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dama 404 af 040
8K20092801-R2.A3L	10/27/2020-11/13/2020	AU(AT1K01)		Page 134 of 319
© 2020 PCTEST.	-	·		PK-QP-16-09 Rev.02

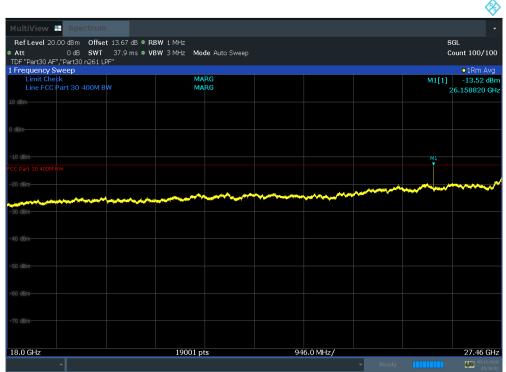
PK-QP-16-09 Rev.02


Plot 7-197. Radiated Spurious Plot 18 GHz – 27.46 GHz (50 MHz 2CC + 100 MHz 3CC BW QPSK Low Channel Pol. V) Fin

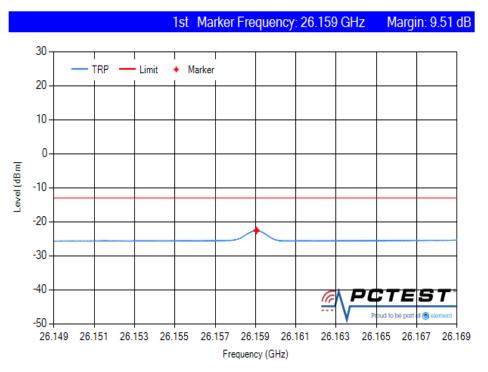
Plot 7-198. Radiated Spurious Plot 25.92 GHz – 25.95 GHz (50 MHz 2CC + 100 MHz 3CC BW QPSK Low TRP)

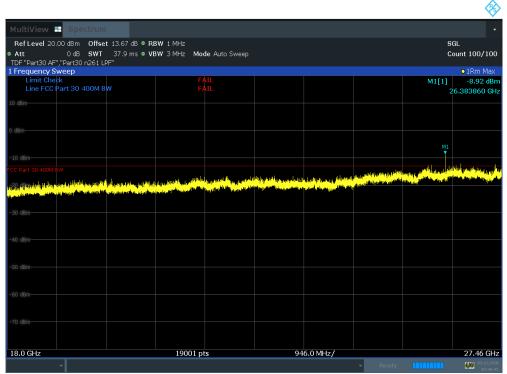
FCC ID: A3LAT1K01-A00	Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 125 of 210
8K20092801-R2.A3L	10/27/2020-11/13/2020	AU(AT1K01)		Page 135 of 319
© 2020 PCTEST.	•	·		PK-QP-16-09 Rev.02


Plot 7-199. Radiated Spurious Plot 18 GHz – 27.46 GHz (50 MHz 2CC + 100 MHz 3CC BW QPSK Mid Channel Pol. H)

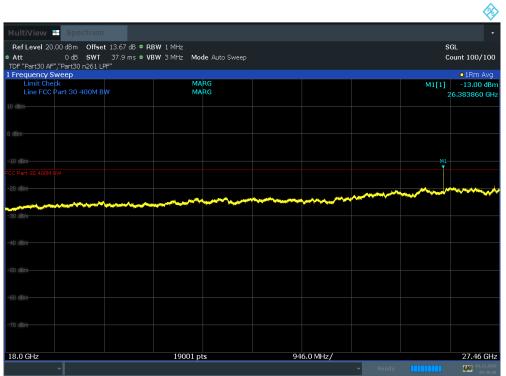

Plot 7-200. Radiated Spurious Plot 18 GHz – 27.46 GHz (50 MHz 2CC + 100 MHz 3CC BW QPSK Mid Channel Pol. H) Fin

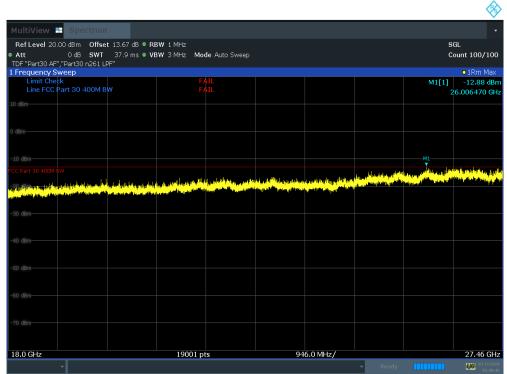
FCC ID: A3LAT1K01-A00	PCTEST* Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dama 400 at 040
8K20092801-R2.A3L	10/27/2020-11/13/2020	AU(AT1K01)		Page 136 of 319
© 2020 PCTEST.	•			PK-QP-16-09 Rev.02


Plot 7-201. Radiated Spurious Plot 18 GHz – 27.46 GHz (50 MHz 2CC + 100 MHz 3CC BW QPSK Mid Channel Pol. V)

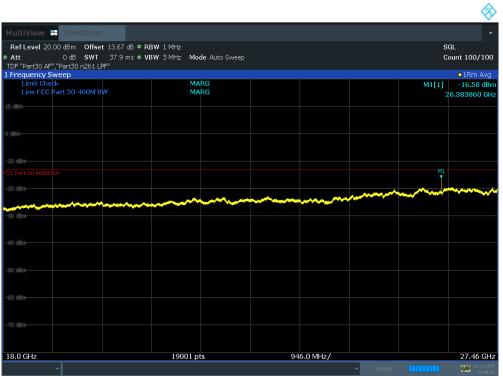

Plot 7-202. Radiated Spurious Plot 18 GHz – 27.46 GHz (50 MHz 2CC + 100 MHz 3CC BW QPSK Mid Channel Pol. V) Fin

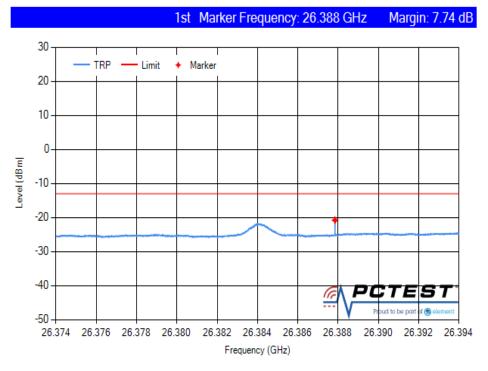
FCC ID: A3LAT1K01-A00	PCTEST* Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dama 407 at 040
8K20092801-R2.A3L	10/27/2020-11/13/2020	AU(AT1K01)		Page 137 of 319
© 2020 PCTEST.	•	•		PK-QP-16-09 Rev.02


Plot 7-203. Radiated Spurious Plot 26.14 GHz – 26.17 GHz (50 MHz 2CC + 100 MHz 3CC BW QPSK Mid TRP)


Plot 7-204. Radiated Spurious Plot 18 GHz – 27.46 GHz (50 MHz 2CC + 100 MHz 3CC BW QPSK High Channel Pol. H)

FCC ID: A3LAT1K01-A00	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 129 of 210
8K20092801-R2.A3L	10/27/2020-11/13/2020	AU(AT1K01)		Page 138 of 319
© 2020 PCTEST.	•	·		PK-QP-16-09 Rev.02


Plot 7-205. Radiated Spurious Plot 18 GHz – 27.46 GHz (50 MHz 2CC + 100 MHz 3CC BW QPSK High Channel Pol. H) Fin


Plot 7-206. Radiated Spurious Plot 18 GHz – 27.46 GHz (50 MHz 2CC + 100 MHz 3CC BW QPSK High Channel Pol. V)

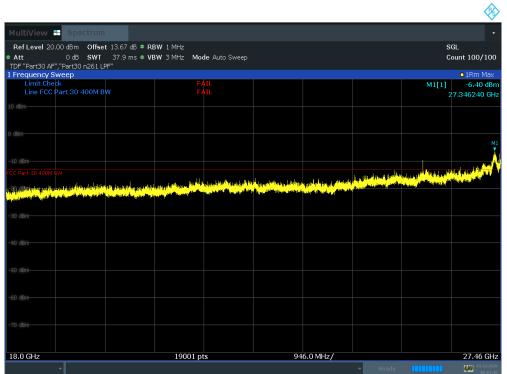
FCC ID: A3LAT1K01-A00	PCTEST* Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 120 of 210
8K20092801-R2.A3L	10/27/2020-11/13/2020	AU(AT1K01)		Page 139 of 319
© 2020 PCTEST.	•	•		PK-QP-16-09 Rev.02

Plot 7-207. Radiated Spurious Plot 18 GHz – 27.46 GHz (50 MHz 2CC + 100 MHz 3CC BW QPSK High Channel Pol. V) Fin

Plot 7-208. Radiated Spurious Plot 26.37 GHz – 26.40 GHz (50 MHz 2CC + 100 MHz 3CC BW QPSK High TRP)

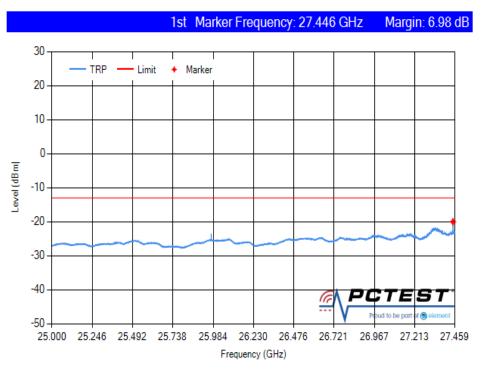
FCC ID: A3LAT1K01-A00	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 140 of 210
8K20092801-R2.A3L	10/27/2020-11/13/2020	AU(AT1K01)		Page 140 of 319
© 2020 PCTEST.				PK-QP-16-09 Rev.02

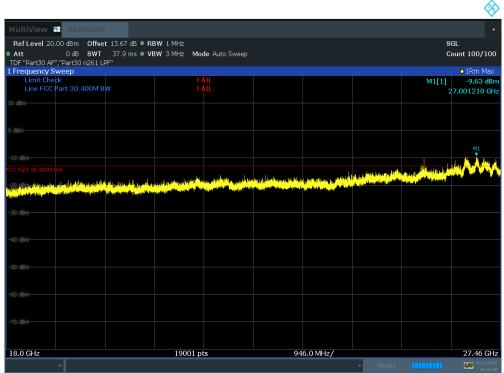
MultiView 🕂 Spectrum				•
Ref Level 20.00 dBm Offset 13.67 dB • RE	NW 1 MHz			SGL
	W 3 MHz Mode Auto Sweep			Count 100/100
TDF "Part30 AF", "Part30 n261 LPF"				
1 Frequency Sweep				o 1Rm Max
Limit Check Line FCC Part 30 400M BW	FAIL			M1[1] -6.16 dBm 27.345740 GHz
10 dBm				27.343740 002
10 dBm				
0 dBm				
				M1 Y
-10 dBm				, <u>A</u> ,
FCC Part 30 400M BW				
FCC Part 30 400M BW	والمتلوية والمركز والمركز والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والم	ووالفطور المستناه فروطه أطبق ورياه	والمحمد المحافظ والمحافظ والمطر والمعرور وال	
	and the second	Constitution and the solution of		
-30 dBm-				
-40 dBm-				
10 451				
-50 dBm-				
-60 dBm				
-70 dBm-				
18.0 GHz	19001 pts	946.0 MH	17/	27.46 GHz
				03.11.2020


Plot 7-209. Radiated Spurious Plot 18 GHz – 27.46 GHz (50 MHz 2CC + 100 MHz 3CC NC BW QPSK Low Channel Pol. H)

Plot 7-210. Radiated Spurious Plot 18 GHz – 27.46 GHz (50 MHz 2CC + 100 MHz 3CC NC BW QPSK Low Channel Pol. H) Fin

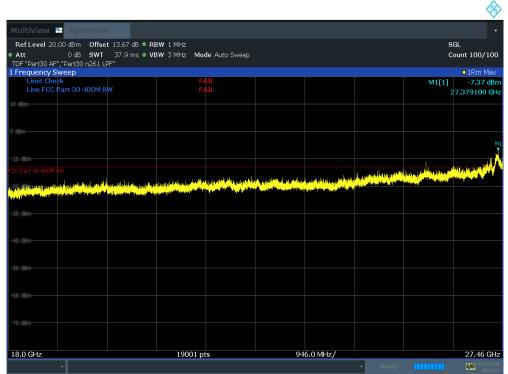
FCC ID: A3LAT1K01-A00	PCTEST* Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 141 of 210
8K20092801-R2.A3L	10/27/2020-11/13/2020	AU(AT1K01)		Page 141 of 319
© 2020 PCTEST.	•	·		PK-QP-16-09 Rev.02


Plot 7-211. Radiated Spurious Plot 18 GHz – 27.46 GHz (50 MHz 2CC + 100 MHz 3CC NC BW QPSK Low Channel Pol. V)


Plot 7-212. Radiated Spurious Plot 18 GHz – 27.46 GHz (50 MHz 2CC + 100 MHz 3CC NC BW QPSK Low Channel Pol. V) Fin

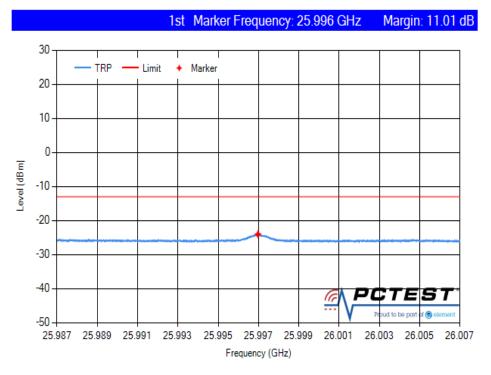
FCC ID: A3LAT1K01-A00	Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 142 of 240
8K20092801-R2.A3L	10/27/2020-11/13/2020	AU(AT1K01)		Page 142 of 319
© 2020 PCTEST.	•			PK-QP-16-09 Rev.02

Plot 7-213. Radiated Spurious Plot 25 GHz – 27.46 GHz (50 MHz 2CC + 100 MHz 3CC NC BW QPSK Low TRP)

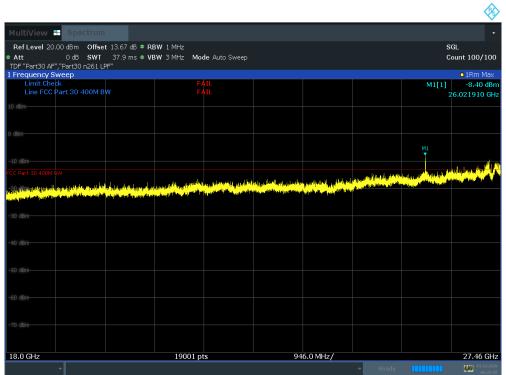

Plot 7-214. Radiated Spurious Plot 18 GHz – 27.46 GHz (50 MHz 2CC + 100 MHz 3CC NC BW QPSK Mid Channel Pol. H)

FCC ID: A3LAT1K01-A00	Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 142 of 240
8K20092801-R2.A3L	10/27/2020-11/13/2020	AU(AT1K01)		Page 143 of 319
© 2020 PCTEST.	•	·		PK-QP-16-09 Rev.02


Plot 7-215. Radiated Spurious Plot 18 GHz – 27.46 GHz (50 MHz 2CC + 100 MHz 3CC NC BW QPSK Mid Channel Pol. H) Fin

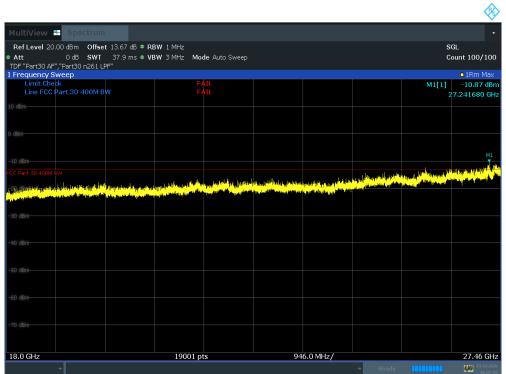

Plot 7-216. Radiated Spurious Plot 18 GHz – 27.46 GHz (50 MHz 2CC + 100 MHz 3CC NC BW QPSK Mid Channel Pol. V)

FCC ID: A3LAT1K01-A00	PCTEST* Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dama 444 at 240
8K20092801-R2.A3L	10/27/2020-11/13/2020	AU(AT1K01)		Page 144 of 319
© 2020 PCTEST.	•			PK-QP-16-09 Rev.02


Plot 7-217. Radiated Spurious Plot 18 GHz – 27.46 GHz (50 MHz 2CC + 100 MHz 3CC NC BW QPSK Mid Channel Pol. V) Fin

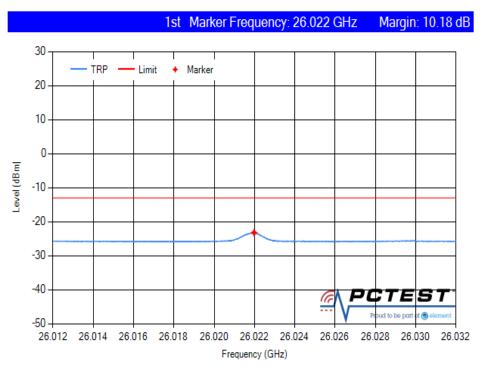
Plot 7-218. Radiated Spurious Plot 25.98 GHz – 26.10 GHz (50 MHz 2CC + 100 MHz 3CC NC BW QPSK Mid TRP)

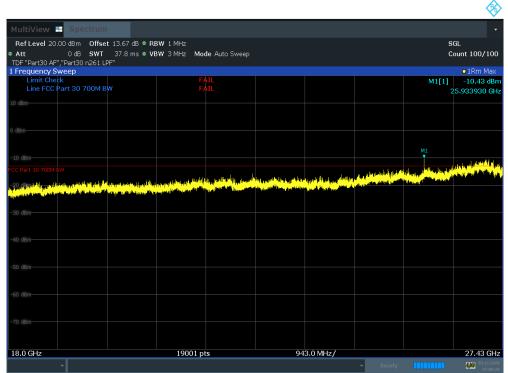
FCC ID: A3LAT1K01-A00	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 145 of 210
8K20092801-R2.A3L	10/27/2020-11/13/2020	AU(AT1K01)		Page 145 of 319
© 2020 PCTEST.	-			PK-QP-16-09 Rev.02


Plot 7-219. Radiated Spurious Plot 18 GHz – 27.46 GHz (50 MHz 2CC + 100 MHz 3CC NC BW QPSK High Channel Pol. H)


Plot 7-220. Radiated Spurious Plot 18 GHz – 27.46 GHz (50 MHz 2CC + 100 MHz 3CC NC BW QPSK High Channel Pol. H) Fin

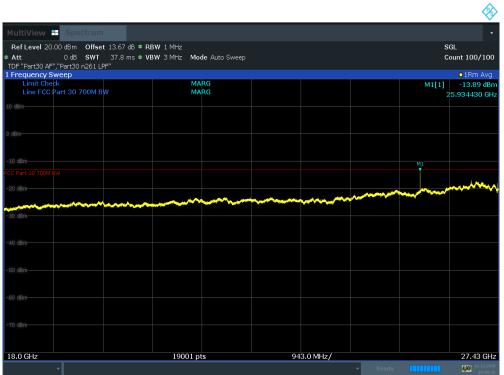
FCC ID: A3LAT1K01-A00	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dama 440 at 040
8K20092801-R2.A3L	10/27/2020-11/13/2020	AU(AT1K01)		Page 146 of 319
© 2020 PCTEST.	-	·		PK-QP-16-09 Rev.02


Plot 7-221. Radiated Spurious Plot 18 GHz – 27.46 GHz (50 MHz 2CC + 100 MHz 3CC NC BW QPSK High Channel Pol. V)

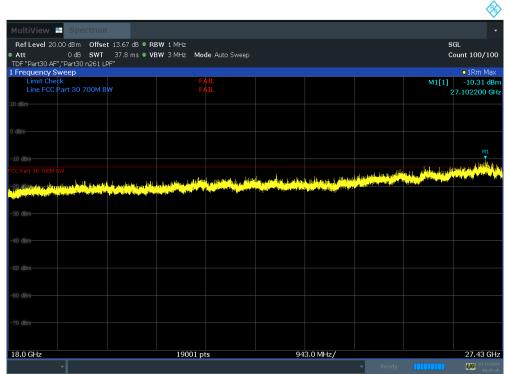

Plot 7-222. Radiated Spurious Plot 18 GHz – 27.46 GHz (50 MHz 2CC + 100 MHz 3CC NC BW QPSK High Channel Pol. V) Fin

FCC ID: A3LAT1K01-A00	PCTEST* Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dama 447 af 940
8K20092801-R2.A3L	10/27/2020-11/13/2020	AU(AT1K01)		Page 147 of 319
© 2020 PCTEST.	•			PK-QP-16-09 Rev.02

Plot 7-223. Radiated Spurious Plot 26 GHz – 26.04 GHz (50 MHz 2CC + 100 MHz 3CC NC BW QPSK High TRP)

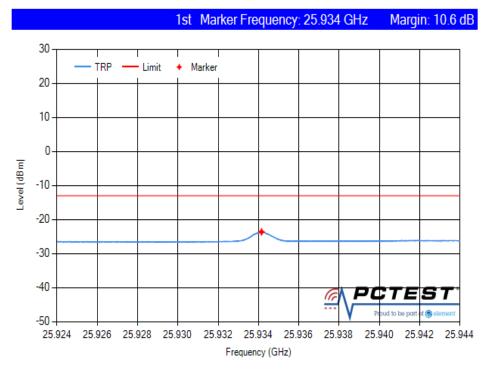


Plot 7-224. Radiated Spurious Plot 18 GHz – 27.46 GHz (50 MHz 2CC + 100 MHz 6CC BW QPSK Low Channel Pol. H)

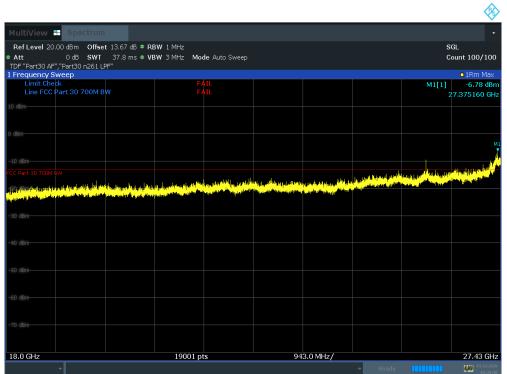

FCC ID: A3LAT1K01-A00	PCTEST Proud to be part of @ element			Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 149 of 210
8K20092801-R2.A3L	10/27/2020-11/13/2020	AU(AT1K01)		Page 148 of 319
© 2020 PCTEST.	-	·		PK-QP-16-09 Rev.02

PK-QP-16-09 Rev.02

Plot 7-225. Radiated Spurious Plot 18 GHz – 27.46 GHz (50 MHz 2CC + 100 MHz 6CC BW QPSK Low Channel Pol. H) Fin


Plot 7-226. Radiated Spurious Plot 18 GHz – 27.43 GHz (50 MHz 2CC + 100 MHz 6CC BW QPSK Low Channel Pol. V)

FCC ID: A3LAT1K01-A00	PCTEST* Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 140 of 210
8K20092801-R2.A3L	10/27/2020-11/13/2020	AU(AT1K01)		Page 149 of 319
© 2020 PCTEST.	•			PK-QP-16-09 Rev.02


Plot 7-227. Radiated Spurious Plot 18 GHz – 27.43 GHz (50 MHz 2CC + 100 MHz 6CC BW QPSK Low Channel Pol. V) Fin

Plot 7-228. Radiated Spurious Plot 25.92 GHz – 25.95 GHz (50 MHz 2CC + 100 MHz 6CC BW QPSK Low TRP)

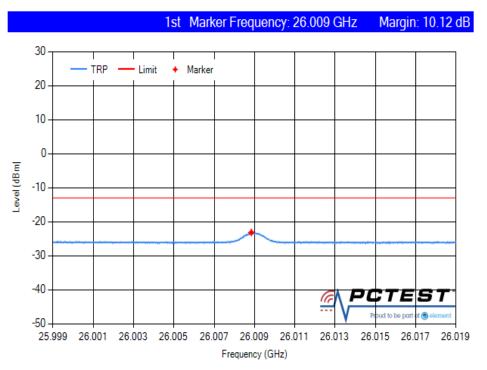
FCC ID: A3LAT1K01-A00	MEASUREMENT REPORT (Class II Permissive Change)		SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 150 of 210
8K20092801-R2.A3L	10/27/2020-11/13/2020	AU(AT1K01)		Page 150 of 319
© 2020 PCTEST.	•			PK-QP-16-09 Rev.02

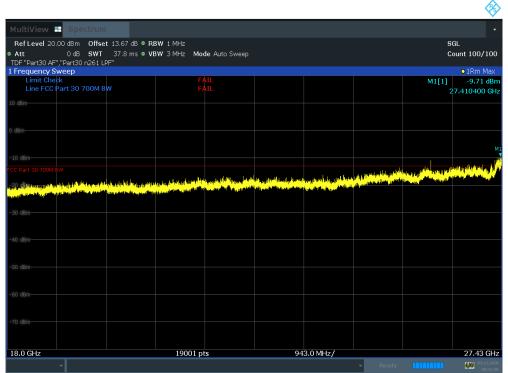
Plot 7-229. Radiated Spurious Plot 18 GHz – 27.43 GHz (50 MHz 2CC + 100 MHz 6CC BW QPSK Mid Channel Pol. H)

Plot 7-230. Radiated Spurious Plot 18 GHz – 27.43 GHz (50 MHz 2CC + 100 MHz 6CC BW QPSK Mid Channel Pol. H) Fin

FCC ID: A3LAT1K01-A00	PCTEST MEASUREMENT REPORT (Class II Permissive Change)		SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 151 of 210
8K20092801-R2.A3L	10/27/2020-11/13/2020	AU(AT1K01)		Page 151 of 319
© 2020 PCTEST.	•	·		PK-QP-16-09 Rev.02

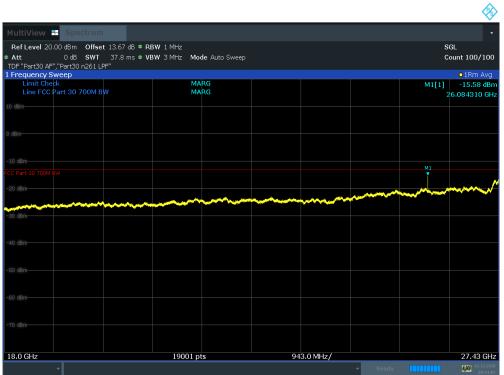
MultiView 🕂 Spectrum				•
Ref Level 20.00 dBm Offset 13.67 dB • RE	NW 1 MHz			SGL
	W 3 MHz Mode Auto Sweep			Count 100/100
TDF "Part30 AF","Part30 n261 LPF"				
1 Frequency Sweep Limit Check	r i n			o1Rm Max
Line FCC Part 30 700M BW	FAIL		M1[1] -10.04 dBm 26.008870 GHz
10 dBm				20.000070 0112
10 dBm				
0 dBm				
-10 dBm-				
FCC Part 30 700M BW				a an
FCC Part 30 700M BW SSR 600 (Paragraph Paragraph Character Charact	المتعادية والمتعالية فأراد ومتنا الأتام وماجد المتعدال وارد	المتأولة وبالمعارط فريس وخاطاته ويعاطفا والمالي	and the second substantial second	and the state of the
	and and a state of the state of			
-30 dBm-				
-40 dBm-				
-50 dBm-				
-60 dBm-				
00 abm				
-70 dBm				
18.0 GHz	19001 pts	943.0 MHz/		27.43 GHz
	19001 pts	943.0 Mi127	▼ Ready	


Plot 7-231. Radiated Spurious Plot 18 GHz – 27.43 GHz (50 MHz 2CC + 100 MHz 6CC BW QPSK Mid Channel Pol. V)

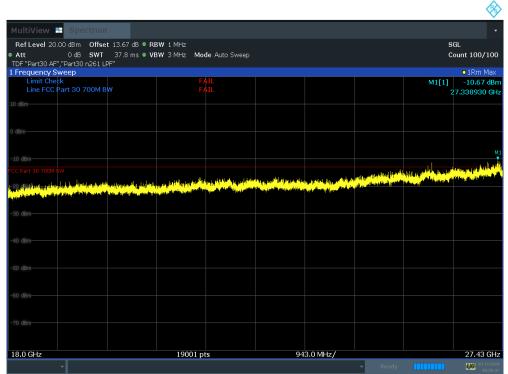

Plot 7-232. Radiated Spurious Plot 18 GHz – 27.43 GHz (50 MHz 2CC + 100 MHz 6CC BW QPSK Mid Channel Pol. V) Fin

FCC ID: A3LAT1K01-A00	Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 152 of 210
8K20092801-R2.A3L	10/27/2020-11/13/2020	AU(AT1K01)		Page 152 of 319
© 2020 PCTEST.	•			PK-QP-16-09 Rev.02

Plot 7-233. Radiated Spurious Plot 25.90 GHz – 26.02 GHz (50 MHz 2CC + 100 MHz 6CC BW QPSK Mid TRP)

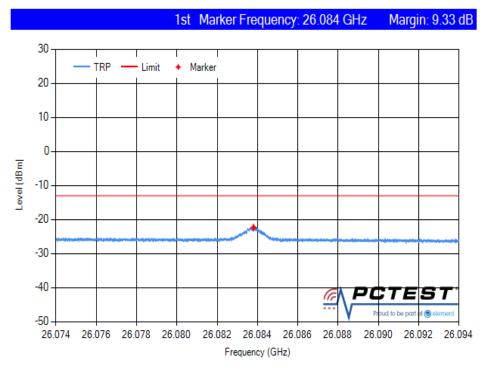

Plot 7-234. Radiated Spurious Plot 18 GHz – 27.43 GHz (50 MHz 2CC + 100 MHz 6CC BW QPSK High Channel Pol. H)

FCC ID: A3LAT1K01-A00	PCTEST* Proud to be part of @ element			Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 152 of 210
8K20092801-R2.A3L	10/27/2020-11/13/2020	AU(AT1K01)		Page 153 of 319
© 2020 PCTEST.				PK-QP-16-09 Rev.02

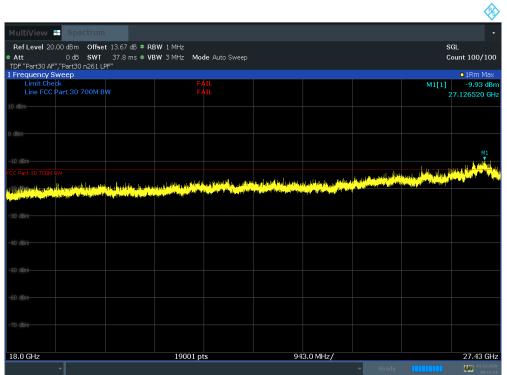

All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly.

microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

Plot 7-235. Radiated Spurious Plot 18 GHz – 27.43 GHz (50 MHz 2CC + 100 MHz 6CC BW QPSK High Channel Pol. H) Fin

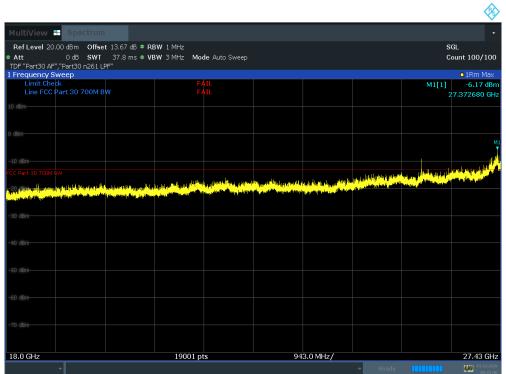

Plot 7-236. Radiated Spurious Plot 18 GHz – 27.43 GHz (50 MHz 2CC + 100 MHz 6CC BW QPSK High Channel Pol. V)

FCC ID: A3LAT1K01-A00	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 154 of 319
8K20092801-R2.A3L	10/27/2020-11/13/2020	AU(AT1K01)		
© 2020 PCTEST.	•			PK-QP-16-09 Rev.02


Plot 7-237. Radiated Spurious Plot 18 GHz – 27.43 GHz (50 MHz 2CC + 100 MHz 6CC BW QPSK High Channel Pol. V) Fin

Plot 7-238. Radiated Spurious Plot 26.07 GHz – 26.10 GHz (50 MHz 2CC + 100 MHz 6CC BW QPSK High TRP)

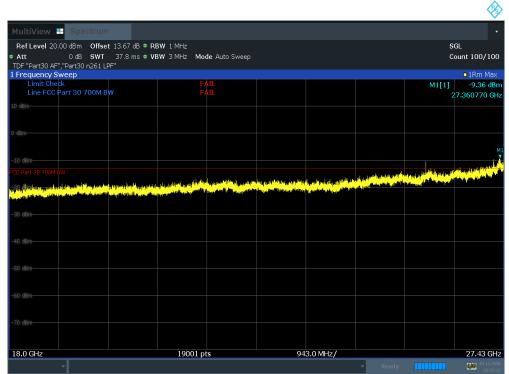
FCC ID: A3LAT1K01-A00	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 155 of 319
8K20092801-R2.A3L	10/27/2020-11/13/2020	AU(AT1K01)		
© 2020 PCTEST.	-	·		PK-QP-16-09 Rev.02


Plot 7-239. Radiated Spurious Plot 18 GHz – 27.43 GHz (50 MHz 2CC + 100 MHz 6CC NC BW QPSK Low Channel Pol. H)

Plot 7-240. Radiated Spurious Plot 18 GHz – 27.43 GHz (50 MHz 2CC + 100 MHz 6CC NC BW QPSK Low Channel Pol. H) Fin

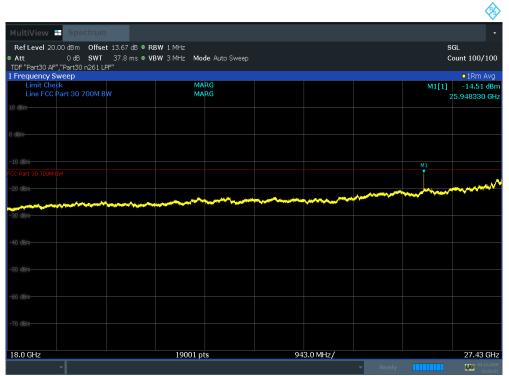
FCC ID: A3LAT1K01-A00	PCTEST* Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 156 of 319
8K20092801-R2.A3L	10/27/2020-11/13/2020	AU(AT1K01)		
© 2020 PCTEST.	•	·		PK-QP-16-09 Rev.02

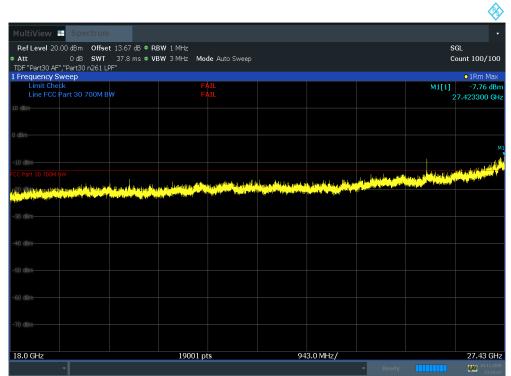
Plot 7-241. Radiated Spurious Plot 18 GHz – 27.43 GHz (50 MHz 2CC + 100 MHz 6CC NC BW QPSK Low Channel Pol. V)


Plot 7-242. Radiated Spurious Plot 18 GHz – 27.43 GHz (50 MHz 2CC + 100 MHz 6CC NC BW QPSK Low Channel Pol. V) Fin

FCC ID: A3LAT1K01-A00	PCTEST Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 157 of 319
8K20092801-R2.A3L	10/27/2020-11/13/2020	AU(AT1K01)		
© 2020 PCTEST.	•	·		PK-QP-16-09 Rev.02

1st Marker Frequency: 25.923 GHz Margin: 9 dB 30 TRP Limit Marker 20 10 0 Level (dBm) -10 -20 -30 -40 PCTEST G and to be po 18 -50 25.914 25.916 25.918 25.920 25.922 25.924 25.926 25.928 25.930 25.932 25.934 Frequency (GHz)


Plot 7-243. Radiated Spurious Plot 25.91 GHz – 25.94 GHz (50 MHz 2CC + 100 MHz 6CC NC BW QPSK Low TRP)


Plot 7-244. Radiated Spurious Plot 18 GHz – 27.43 GHz (50 MHz 2CC + 100 MHz 6CC NC BW QPSK Mid Channel Pol. H)

FCC ID: A3LAT1K01-A00	Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 158 of 319
8K20092801-R2.A3L	10/27/2020-11/13/2020	AU(AT1K01)		
© 2020 PCTEST.	•	·		PK-QP-16-09 Rev.02

Plot 7-245. Radiated Spurious Plot 18 GHz – 27.43 GHz (50 MHz 2CC + 100 MHz 6CC NC BW QPSK Mid Channel Pol. H) Fin

Plot 7-246. Radiated Spurious Plot 18 GHz – 27.43 GHz (50 MHz 2CC + 100 MHz 6CC NC BW QPSK Mid Channel Pol. V)

FCC ID: A3LAT1K01-A00	Proud to be part of @ element	MEASUREMENT REPORT (Class II Permissive Change)	SAMSUNG	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 159 of 319
8K20092801-R2.A3L	10/27/2020-11/13/2020	AU(AT1K01)		
© 2020 PCTEST.	•	•		PK-QP-16-09 Rev.02