
Page: 51 of 86 Report Number: F690501/RF-RTL004757-1

### 6 dB Bandwidth OFDM: 802.11g ANT1

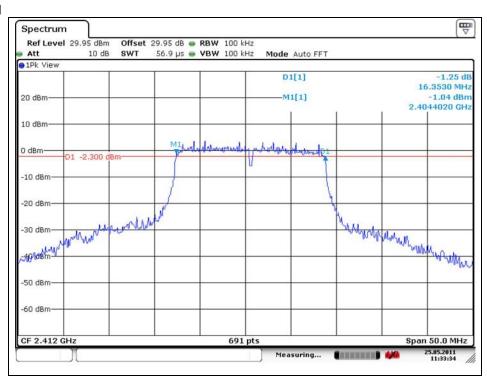
### Low Channel



#### Middle Channel



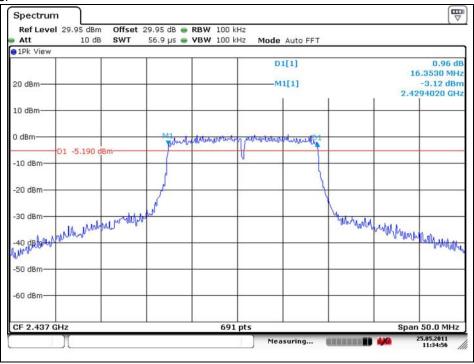



Page: 52 of 86 Report Number: F690501/RF-RTL004757-1

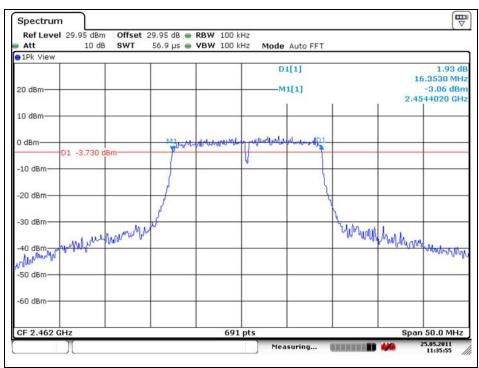
### **High Channel**



### 6 dB Bandwidth OFDM: 802.11g ANT2


### Low Channel



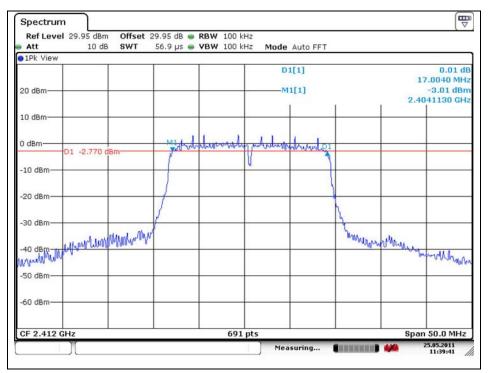



Page: 53 of 86 Report Number: F690501/RF-RTL004757-1

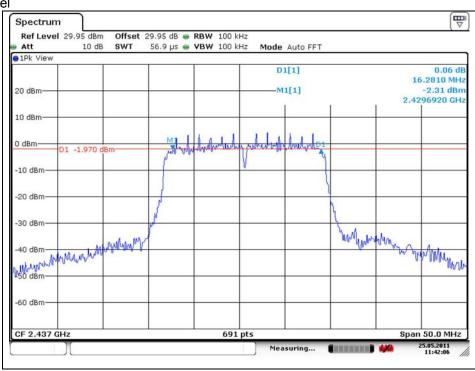
#### Middle Channel



### **High Channel**



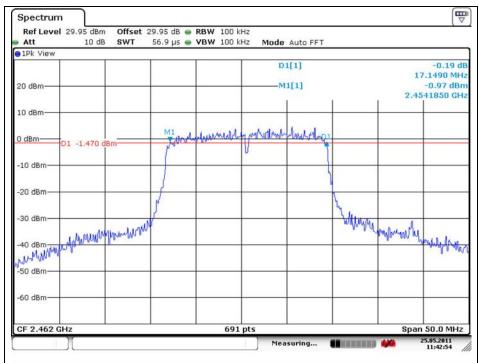




Page: 54 of 86 Report Number: F690501/RF-RTL004757-1

#### 6 dB Bandwidth OFDM: 802.11n HT20 ANT1

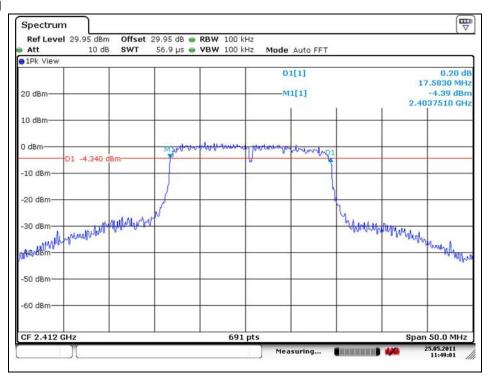
#### Low Channel




#### Middle Channel



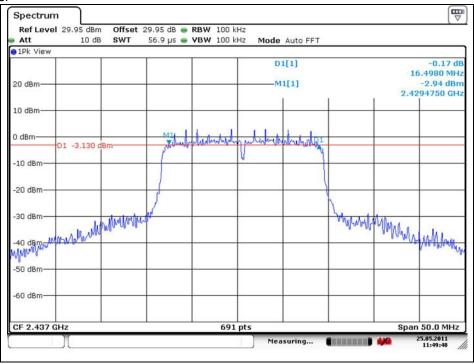



Page: 55 of 86 Report Number: F690501/RF-RTL004757-1

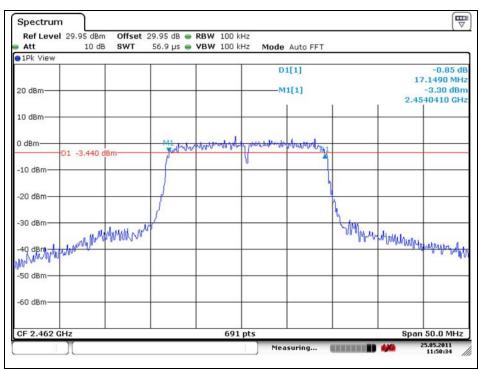
### **High Channel**



### 6 dB Bandwidth OFDM: 802.11n HT20 ANT2


#### Low Channel



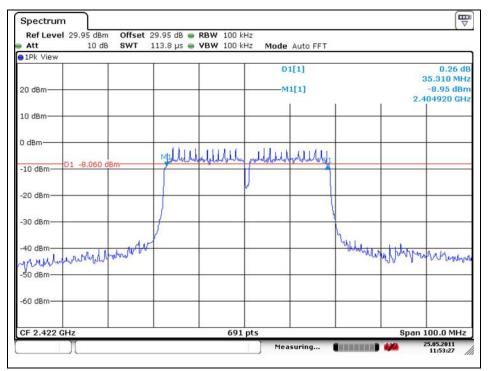



F690501/RF-RTL004757-1 Page: 56 of 86 Report Number:

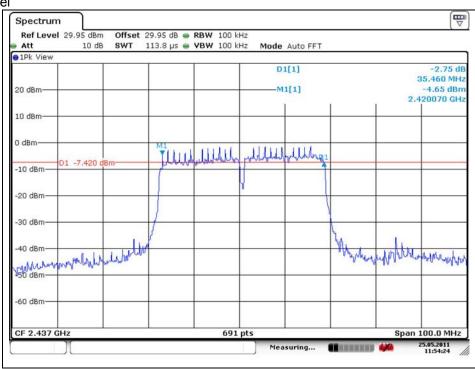
#### Middle Channel



### **High Channel**



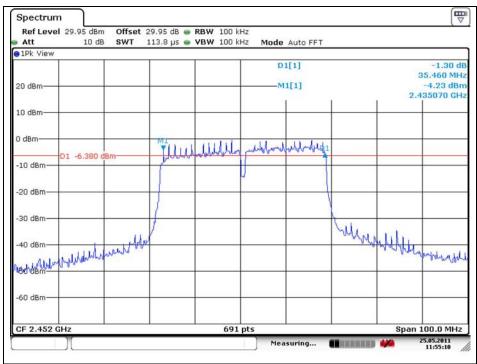




Page: 57 of 86 Report Number: F690501/RF-RTL004757-1

#### 6 dB Bandwidth OFDM: 802.11n HT40 ANT1

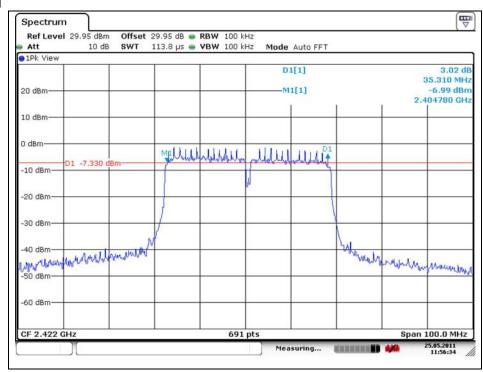
#### Low Channel




#### Middle Channel



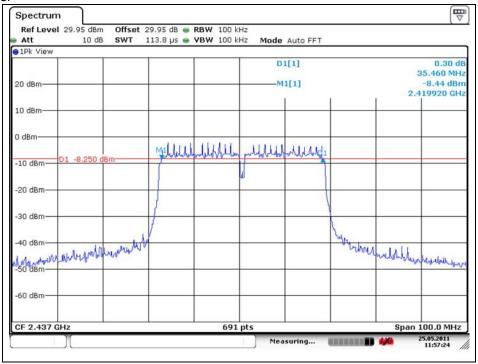



Page: 58 of 86 Report Number: F690501/RF-RTL004757-1

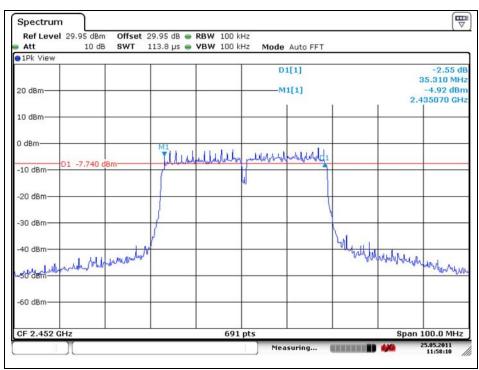
### **High Channel**



### 6 dB Bandwidth OFDM: 802.11n HT40 ANT2


#### Low Channel



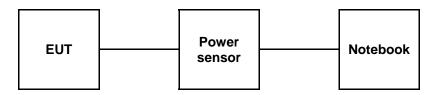



F690501/RF-RTL004757-1 Page: 59 of 86 Report Number:

### Middle Channel



### **High Channel**






Report Number: F690501/ RF-RTL004757-1 Page: 60 of 86

### 4. Maximum Peak Output Power Measurement

### 4.1. Test Setup



#### 4.2. Limit

According to §15.247(b)(3), for systems using digital modulation in the  $902 \sim 928\,$  MHz,  $2\,400 \sim 2\,483.5\,$  MHz, and  $5\,725 \sim 5\,850\,$  MHz band: 1 Watt. As an alternative to a peak power measurement, compliance with the one watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted output Power is defi ned as the total tran smit power d elivered to all ant ennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antenna elements. The average must not include any intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

According to §15.247 (b)(4), the con ducted output power limit specified in paragraph(b) of this section is based on the use of an tenna with directional gains that do not exceed d 6 dBi. Except as shown in paragraph(c) of this section, if transmitting antenna of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraph (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6dBi.

### 4.3. Test Procedure

- 1. Place the EUT on the table and set it in the transmitting mode.
- 2. Remove the antenn a from the EUT and then co nnect a low loss RF cable from the antenna port to the power sensor.
- 3. Set the power sensor as peak mode.



Report Number: F690501/ RF-RTL004757-1 Page: 61 of 86

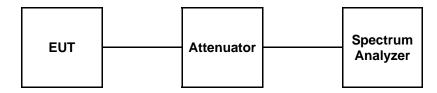
### 4.4. Test Results

| Operation Mode | Channel  | Channel<br>Frequency<br>(쌘) | Attenuator +<br>Cable offset<br>(dB) | Peak Power<br>Output<br>(dB m) | Peak Power<br>Limit<br>(dB m)    |
|----------------|----------|-----------------------------|--------------------------------------|--------------------------------|----------------------------------|
| DSSS           | Low 2    | 412                         | 30.41                                | 23.47                          |                                  |
| (802.11b)      | Middle 2 | 437                         | 30.41                                | 23.90                          |                                  |
| Ant 1          | High 2   | 462                         | 30.41                                | 26.15                          |                                  |
| DSSS           | Low 2    | 412                         | 30.41                                | 20.94                          |                                  |
| (802.11b)      | Middle 2 | 437                         | 30.41                                | 19.65                          |                                  |
| Ant 2          | High 2   | 462                         | 30.41                                | 20.82                          |                                  |
| OFDM           | Low 2    | 412                         | 30.41                                | 24.42                          |                                  |
| (802. 11g)     | Middle 2 | 437                         | 30.41                                | 24.73                          |                                  |
| Ant 1          | High 2   | 462                         | 30.41                                | 26.97                          |                                  |
| OFDM           | Low 2    | 412                         | 30.41                                | 23.53                          |                                  |
| (802. 11g)     | Middle 2 | 437                         | 30.41                                | 22.44                          |                                  |
| Ant 2          | High 2   | 462                         | 30.41                                | 24.41                          | 28.994 dB m<br>(= 30 dB m -1.006 |
| OFDM           | Low 2    | 412                         | 30.41                                | 21.67                          | dBi)                             |
| (802.11n HT20) | Middle 2 | 437                         | 30.41                                | 21.75                          |                                  |
| Ant1           | High 2   | 462                         | 30.41                                | 24.07                          |                                  |
| OFDM           | Low 2    | 412                         | 30.41                                | 21.85                          |                                  |
| (802.11n HT20) | Middle 2 | 437                         | 30.41                                | 20.73                          |                                  |
| Ant2           | High 2   | 462                         | 30.41                                | 22.32                          |                                  |
| OFDM           | Low 2    | 422                         | 30.41                                | 22.88                          |                                  |
| (802.11n HT40) | Middle 2 | 437                         | 30.41                                | 23.36                          |                                  |
| Ant1           | High 2   | 452                         | 30.41                                | 24.61                          |                                  |
| OFDM           | Low 2    | 422                         | 30.41                                | 22.02                          |                                  |
| (802.11n HT40) | Middle 2 | 437                         | 30.41                                | 21.81                          |                                  |
| Ant2           | High 2   | 452                         | 30.41                                | 22.70                          |                                  |



Report Number: F690501/ RF-RTL004757-1 Page: 62 of 86

| Operation                           | Channel  |                  | Peak  | Peak<br>Power |                       |                          |
|-------------------------------------|----------|------------------|-------|---------------|-----------------------|--------------------------|
| Mode                                | Channel  | Frequency<br>(쌘) | ANT 1 | ANT2          | Combined (Ant1+Ant 2) | Limit<br>(dB m)          |
| OFDM<br>(802.11n HT20)<br>Ant1+Ant2 | Low 2    | 412              | 21.67 | 21.85         | 24.77                 |                          |
|                                     | Middle 2 | 437              | 21.75 | 20.73         | 24.28                 |                          |
|                                     | High 2   | 462              | 24.07 | 22.32         | 26.29                 | 28.994<br>dB m           |
| OFDM<br>(802.11n HT40)<br>Ant1+Ant2 | Low 2    | 422              | 22.88 | 22.02         | 25.48                 | (= 30 dBm<br>-1.006 dBi) |
|                                     | Middle 2 | 437              | 23.36 | 21.81         | 25.66                 | 1.000 db1)               |
|                                     | High 2   | 452              | 24.61 | 22.70         | 26.77                 |                          |


<sup>\* (</sup>dB m /Chain1)/10^Log) + (dB m /Chain2)/10^Log) = Combined peak output power in  $\,\mathrm{mW}$ .



Report Number: F690501/ RF-RTL004757-1 Page: 63 of 86

### 5. POWER SPECTRAL DENSITY MEASUREMENT

### 5.1. Test Setup



### 5.2. Limit

§15.247(e) For digitally modulated system, the power spectral density conducted from the intentional radiator to the anten na shall n ot be greate r than 8  $\,\mathrm{dB}$  m in any 3  $\,\mathrm{klz}$  ba nd any time interva I of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

### 5.3. Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calib rator or a known signal from an external generator.
- 2. Position the EUT as shown in test setup without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range.
- 3. By using the Max Hold function record the separation of adjacent channels.
- 4. Repeat above procedures until all frequencies measured were complete.
- 5. The bandwidth of the fundamental frequency was measured with the spectrum analyzer using; RBW = 3 kHz, VBW = 10 kHz, Span = 300 kHz and Sweep = 100 s.



Report Number: F690501/ RF-RTL004757-1 Page: 64 of 86

### 5.4. Test Results

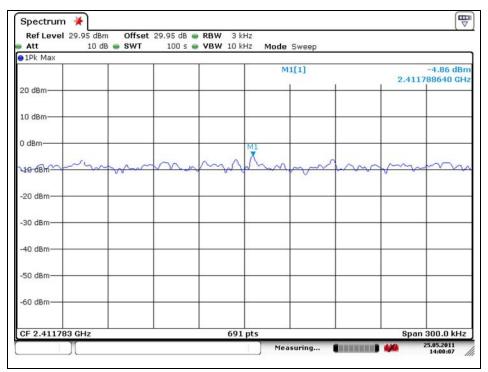
Ambient temperature :  $(24 \pm 2)$  °C Relative humidity : 47 % R.H.

| Operation Mode | Channel  | Channel Frequency | Final RF Power<br>Level in 3 社 BW<br>(dB m) | Maximum Limit<br>(dB m) |
|----------------|----------|-------------------|---------------------------------------------|-------------------------|
| DSSS           | Low 2    | 412               | -4.86                                       |                         |
| (802.11b)      | Middle 2 | 437               | -5.60                                       |                         |
| Ant 1          | High 2   | 462               | -3.69                                       |                         |
| DSSS           | Low 2    | 412               | -9.28                                       |                         |
| (802.11b)      | Middle 2 | 437               | -10.24                                      |                         |
| Ant 2          | High 2   | 462               | -10.00                                      |                         |
| OFDM           | Low 2    | 412               | -12.25                                      |                         |
| (802. 11g)     | Middle 2 | 437               | -10.88                                      |                         |
| Ant 1          | High 2   | 462               | -7.57                                       |                         |
| OFDM           | Low 2    | 412               | -11.03                                      |                         |
| (802. 11g)     | Middle 2 | 437               | -12.20                                      |                         |
| Ant 2          | High 2   | 462               | -11.72                                      | 8 dB <b>m</b>           |
| OFDM           | Low 2    | 412               | -8.96                                       | • QD III                |
| (802.11n HT20) | Middle 2 | 437               | -8.33                                       |                         |
| Ant1           | High 2   | 462               | -9.54                                       |                         |
| OFDM           | Low 2    | 412               | -16.86                                      |                         |
| (802.11n HT20) | Middle 2 | 437               | -16.84                                      |                         |
| Ant2           | High 2   | 462               | -15.31                                      |                         |
| OFDM           | Low 2    | 422               | -17.46                                      |                         |
| (802.11n HT40) | Middle 2 | 437               | -16.01                                      |                         |
| Ant1           | High 2   | 452               | -15.37                                      |                         |
| OFDM           | Low 2    | 422               | -15.03                                      |                         |
| (802.11n HT40) | Middle 2 | 437               | -16.42                                      |                         |
| Ant2           | High 2   | 452               | -14.52                                      |                         |

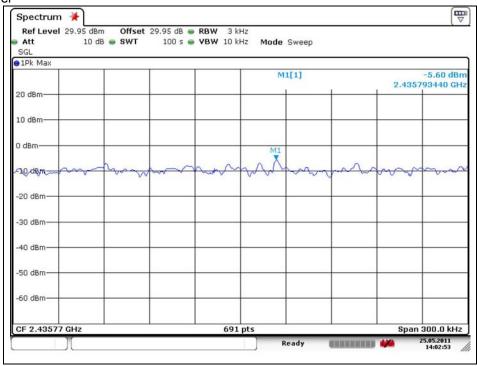


Report Number: F690501/ RF-RTL004757-1 Page: 65 of 86

| Operation                           | Channel Frequence |      | Final RF | Maximu<br>m Limit |                       |                      |
|-------------------------------------|-------------------|------|----------|-------------------|-----------------------|----------------------|
| Mode                                | Chamie            | (Mb) | ANT 1    | ANT2              | Combined (Ant1+Ant 2) | (dB m)               |
| OFDM<br>(802.11n HT20)<br>Ant1+Ant2 | Low 2             | 412  | -8.96    | -16.86            | -8.30                 |                      |
|                                     | Middle 2          | 437  | -8.33    | -16.84            | -7.75                 |                      |
|                                     | High 2            | 462  | -9.54    | -15.31            | -8.51                 | <b>8</b> dB <b>m</b> |
| OFDM<br>(802.11n HT40)<br>Ant1+Ant2 | Low 2             | 422  | -17.46   | -15.03            | -13.10                | O UD III             |
|                                     | Middle 2          | 437  | -16.01   | -16.42            | -13.19                |                      |
|                                     | High 2            | 452  | -15.37   | -14.52            | -11.94                |                      |


<sup>\* (</sup>dB m /Chain1)/10^Log) + (dB m /Chain2)/10^Log) = Combined peak output power in  $\,\mathrm{mW}.$ 

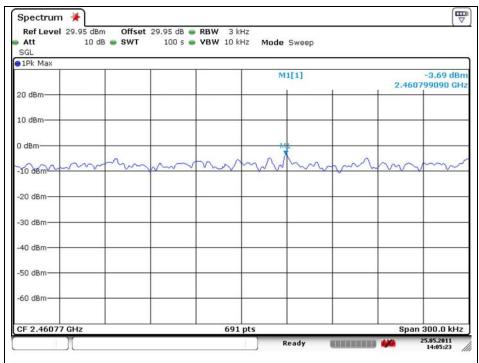



F690501/RF-RTL004757-1 Page: 66 of 86 Report Number:

### DSSS: 802.11b\_Ant 1

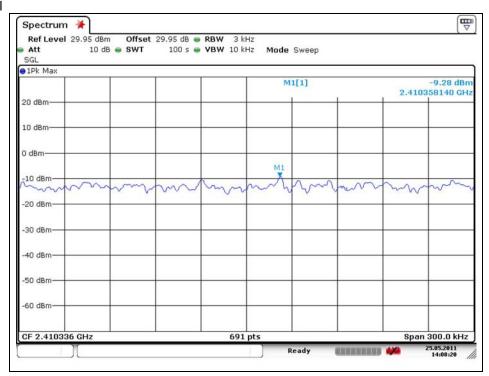
Low Channel




### Middle Channel



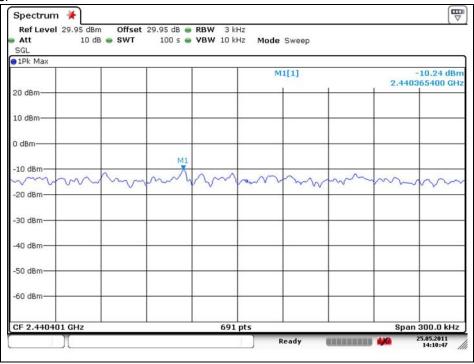



F690501/RF-RTL004757-1 Page: 67 of 86 Report Number:

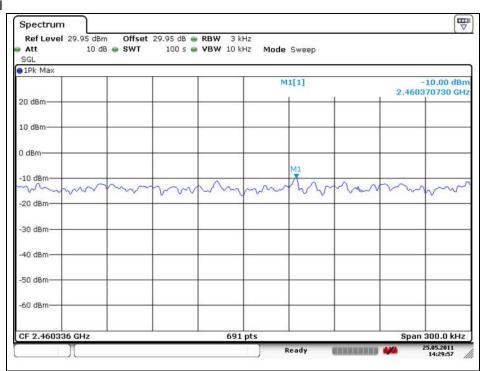
### **High Channel**



### DSSS: 802.11b\_Ant 2


Low Channel



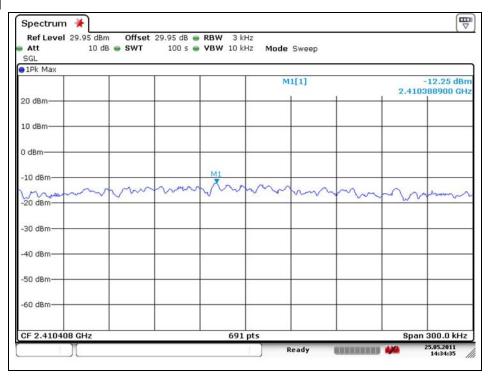



Report Number: F690501/RF-RTL004757-1 Page: 68 of 86

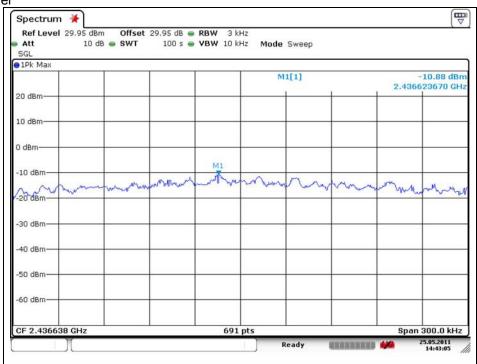
### Middle Channel



### **High Channel**



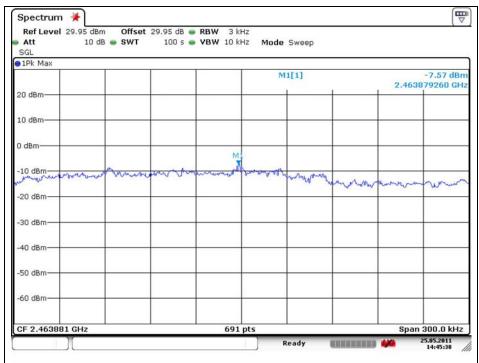




F690501/RF-RTL004757-1 Page: 69 of 86 Report Number:

### OFDM: 802.11g \_ Ant 1

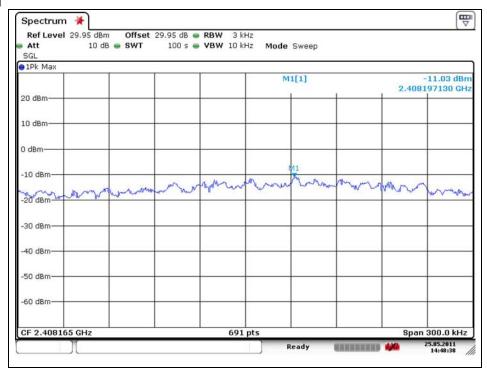
Low Channel




### Middle Channel






F690501/RF-RTL004757-1 Page: 70 of 86 Report Number:

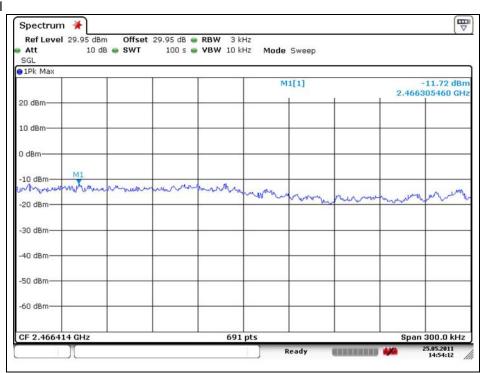
### **High Channel**



### OFDM: 802.11g \_ Ant 2

Low Channel



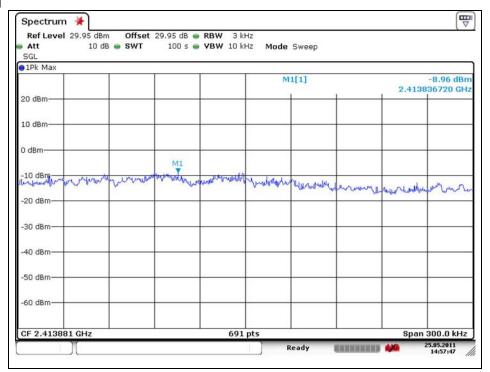



F690501/RF-RTL004757-1 Page: 71 of 86 Report Number:

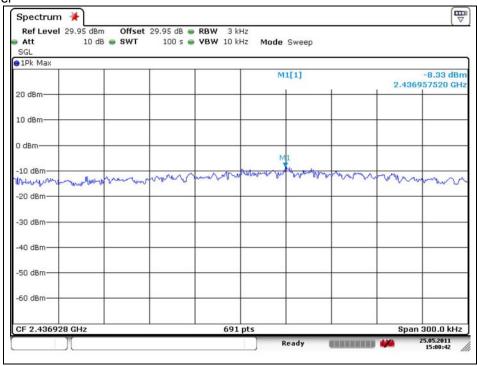
### Middle Channel



### **High Channel**



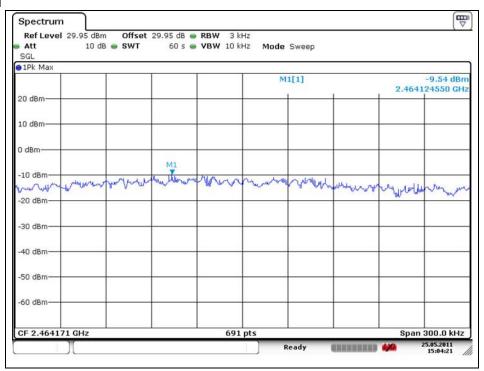




F690501/RF-RTL004757-1 Page: 72 of 86 Report Number:

### OFDM: 802.11n HT20 ANT 1

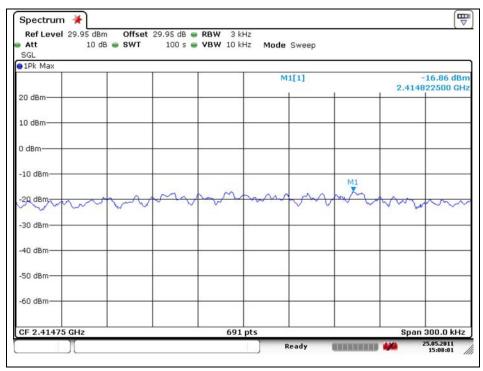
Low Channel




### Middle Channel



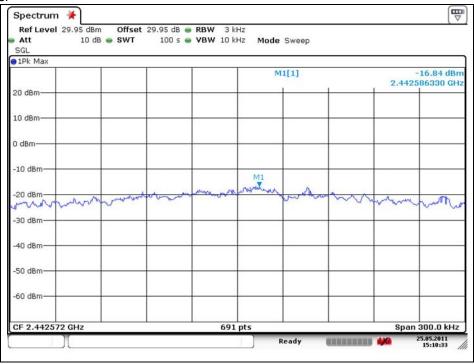



F690501/RF-RTL004757-1 Page: 73 of 86 Report Number:

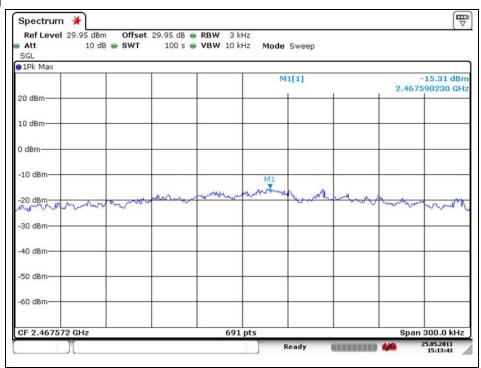
### **High Channel**



### OFDM: 802.11n HT20 ANT 2


Low Channel



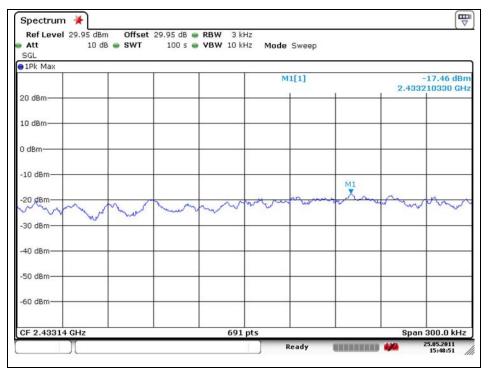



F690501/RF-RTL004757-1 Page: 74 of 86 Report Number:

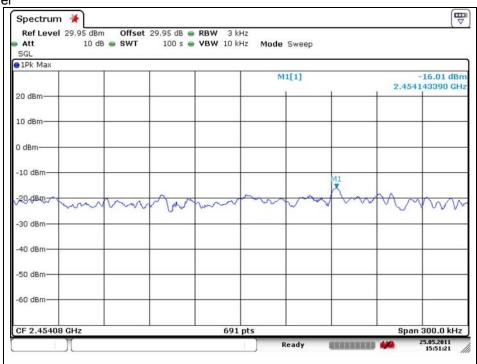
### Middle Channel



### **High Channel**



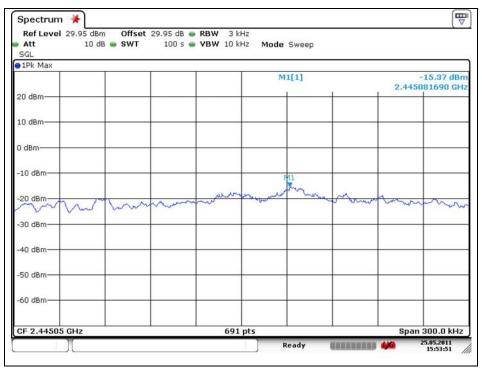




F690501/RF-RTL004757-1 Page: 75 of 86 Report Number:

### OFDM: 802.11n HT40 ANT 1

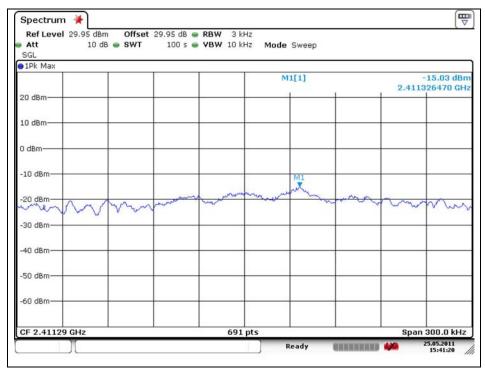
Low Channel




### Middle Channel



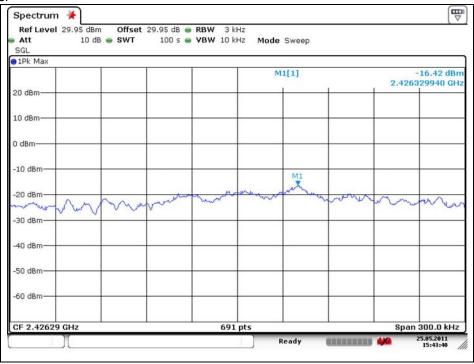



F690501/RF-RTL004757-1 Page: 76 of 86 Report Number:

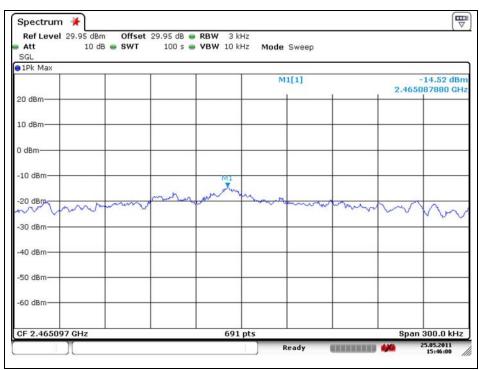
### **High Channel**



### OFDM: 802.11n HT40 ANT 2


Low Channel



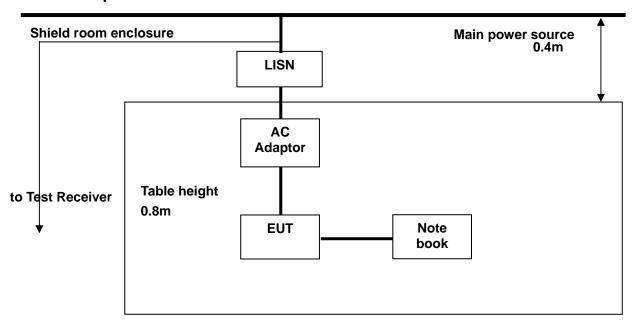



F690501/RF-RTL004757-1 Page: 77 of 86 Report Number:

### Middle Channel



### **High Channel**






Report Number: F690501/ RF-RTL004757-1 Page: 78 of 86

### 6. Transmitter AC Power Line Conducted Emission

### 6.1. Test Setup



### 6.2. Limit

According to §15.207(a) for an intention all radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 kHz, shall not exceed the limits in the following table, as measured using a 50 uH/50 ohm line impedance stabilization network(LISN).

Compliance with the provision of this p aragraph shall on the measu rement of the radio frequency voltage between each power line and ground at the power terminal. The lower applies at the boundary between the frequency ranges.

| Fraguency of Emission (IIII) | Conducted limit (dBμN) |          |  |  |
|------------------------------|------------------------|----------|--|--|
| Frequency of Emission (쌘)    | Quasi-peak             | Average  |  |  |
| 0.15 – 0.50                  | 66 - 56*               | 56 - 46* |  |  |
| 0.50 - 5.00                  | 56                     | 46       |  |  |
| 5.00 – 30.0                  | 60                     | 50       |  |  |

<sup>\*</sup> Decreases with the logarithm of the frequency.



Report Number: F690501/ RF-RTL004757-1 Page: 79 of 86

#### 6.3. Test Procedures

Radiated emissions from the EUT were measured according to the dictates of ANSI C63.4:2003

- 1. The test procedure is performed in a  $6.5m \times 3.6m \times 3.6m$  (L × W × H) shielded room. The EUT along with its peripherals were placed on a  $1.0 \text{ m(W)} \times 1.5 \text{ m(L)}$  and 0.8 m in height wooden table and the EUT was adjusted to maintain a 0.4 meter space from a vertical reference plane.
- 2. The EUT was connected to po wer mains through a line im pedance stabilization network (LISN) which provides 50 ohm coupling impedance for measuring instrument and the chassis ground was bounded to the horizontal ground plane of shielded room.
- 3. All peripherals were connected to the second LISN and the chassis ground also bounded to the horizontal ground plane of shielded room.
- 4. The excess power cable between the EUT and the LISN was bundled. The power cables of peripherals were unbundled. All connecting cables of EUT and peripherals were moved to find the maximum emission.



Report Number: F690501/ RF-RTL004757-1 Page: 80 of 86

## 6.4. Test Results (Worst case configuration\_11n\_HT40 mode)

The following table shows the highest levels of conducted emissions on both phase of Hot and Neutral line.

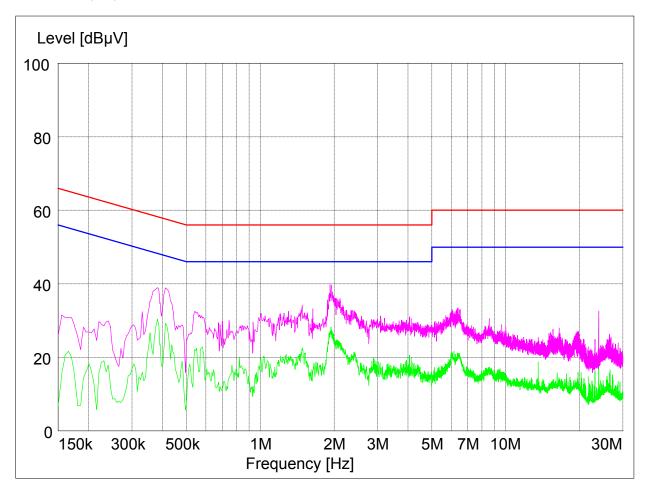
Ambient temperature :  $(24 \pm 2)$  °C Relative humidity : 47 % R.H.

Frequency range : 0.15 M-- 30 M--

Measured Bandwidth : 9 kHz

| FREQ. | LEVEL  | .(dB #V) | LINE | LIMIT  | (dBμV)  | MARG   | IN(dB)  |
|-------|--------|----------|------|--------|---------|--------|---------|
| (MHz) | Q-Peak | Average  | LINE | Q-Peak | Average | Q-Peak | Average |
| 0.38  | 37.40  | 31.70    | Н    | 58.28  | 48.28   | 20.88  | 16.58   |
| 0.41  | 36.40  | 29.80    | Н    | 57.65  | 47.65   | 21.25  | 17.85   |
| 0.54  | 31.00  | 24.00    | Н    | 56.00  | 46.00   | 25.00  | 22.00   |
| 1.01  | 28.90  | 22.00    | Н    | 56.00  | 46.00   | 27.10  | 24.00   |
| 1.95  | 32.30  | 26.80    | Н    | 56.00  | 46.00   | 23.70  | 19.20   |
| 23.96 | 30.80  | 30.40    | Н    | 60.00  | 50.00   | 29.20  | 19.60   |
| 0.31  | 34.40  | 27.60    | N    | 59.97  | 49.97   | 25.57  | 22.37   |
| 0.39  | 38.60  | 35.30    | N    | 58.17  | 48.17   | 19.57  | 12.87   |
| 1.25  | 30.50  | 25.50    | N    | 56.00  | 46.00   | 25.50  | 20.50   |
| 1.94  | 34.00  | 28.10    | N    | 56.00  | 46.00   | 22.00  | 17.90   |
| 6.02  | 27.70  | 22.40    | N    | 60.00  | 50.00   | 32.30  | 27.60   |
| 23.95 | 32.30  | 31.80    | N    | 60.00  | 50.00   | 27.70  | 18.20   |

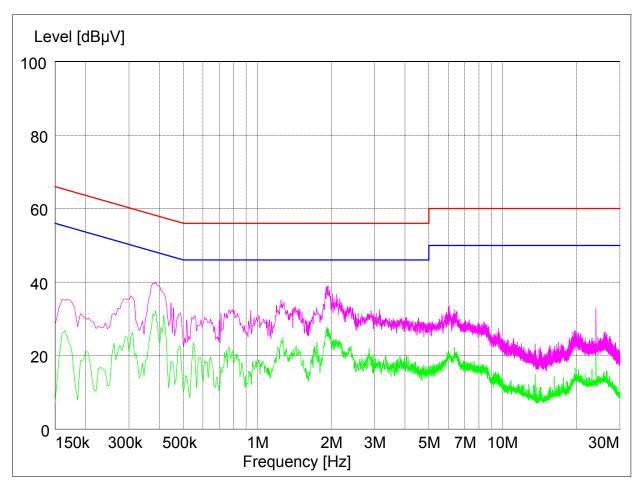
Note;


Line ( H ) : Hot Line ( N ) : Neutral



Report Number: F690501/RF-RTL004757-1 Page: 81 of 86

### **Plot of Conducted Power line**


Test mode: (Hot)





Report Number: F690501/RF-RTL004757-1 Page: 82 of 86

Test mode: (Neutral)





Report Number: F690501/ RF-RTL004757-1 Page: 83 of 86

### 7. Antenna Requirement

### 7.1. Standard Applicable

For intentional device, according to FCC 47 CFR Se ction §15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section §15.247 (b) if transmitting antennas of directional gain greater than 6 dB i are used, the power shall be reduced by the amount in dB that the gain of the antenna exceeds 6 dB i.

### 7.2. Antenna Connected Construction

Antennas used in this product is Integral type ( Main : PCB antenna, Aux : Wire antenna ) combined gain of 7.006  $\,\mathrm{dB}\,i$ . The power is reduced by the amount in 1.001  $\,\mathrm{dB}\,i$ 

| ANT1 gain                       | 4.887 dBi                                                                 |
|---------------------------------|---------------------------------------------------------------------------|
| ANT2 gain                       | 2.873 dBi                                                                 |
| Combined gain<br>(ANT 1 +ANT 2) | 7.006 dB i<br>= 10 log ( 10 <sup>4.887/10</sup> +10 <sup>2.873/10</sup> ) |



Report Number: F690501/ RF-RTL004757-1 Page: 84 of 86

# 8. RF Exposure Evaluation

# 8.1 Environmental evaluation and exposure limit according to FCC CFR 47 part 1, 1.1307(b), 1.1310

According to FCC 1.1310: The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency (RF) radiation as specified in §1.1307(b)

### LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

| Frequency<br>Range<br>(쌘) | Electric Field<br>Strength(V/m)                       | Magnetic Field<br>Strength<br>(A/m) | Power Density<br>(nW/cm²) | Average Time |  |  |  |  |
|---------------------------|-------------------------------------------------------|-------------------------------------|---------------------------|--------------|--|--|--|--|
|                           | (A) Limits for Occupational /Control Exposures        |                                     |                           |              |  |  |  |  |
| 300 – 1500                |                                                       |                                     | F/300                     | 6            |  |  |  |  |
| 1 500 – 100 000           |                                                       |                                     | 5                         | 6            |  |  |  |  |
|                           | (B) Limits for General Population/Uncontrol Exposures |                                     |                           |              |  |  |  |  |
| 300 – 1 500               |                                                       |                                     | F/1 500                   | 6            |  |  |  |  |
| 1 500 – 100 000           |                                                       |                                     | 1                         | <u>30</u>    |  |  |  |  |

# 8.1.1. Friis transmission formula: $Pd = (Pout*G)/(4*pi*R^2)$

Where Pd = power density in mW/cm²

Pout = output power to antenna in mW

G = gain of antenna in linear scale

Pi = 3.1416

R = distance between observation point and center of the radiator in cm

Pd the limit of MPE, 1 mW/cm². If we know the maximum gain of the antenn a and the total power input to the antenna, through the calculation, we will know the distance where the MPE limit is reached.



Report Number: F690501/RF-RTL004757-1 Page: 85 of 86

### 8.1.2. Test Result of RF Exposure Evaluation

Test Item : RF Exposure Evaluation Data

Test Mode : No rmal Operation

### 8.1.3. Output Power into Antenna & RF Exposure Evaluation Distance

**DSSS: 802.11b Ant 1** 

| Channel | Channel<br>Frequency<br>(쌘) | Output Average<br>Power to Antenna<br>(dB m) | Antenna<br>Gain<br>(dB i) | Power<br>Density<br>at 20cm<br>(IW/cii) | LIMITS<br>(mW/cm²) |
|---------|-----------------------------|----------------------------------------------|---------------------------|-----------------------------------------|--------------------|
| Low     | 2 412                       | 21.44                                        | 4.887                     | 0.085 39                                | 1                  |
| Middle  | 2 437                       | 21.55                                        | 4.887                     | 0.087 59                                | 1                  |
| High    | 2 462                       | 23.85                                        | 4.887                     | 0.148 74                                | 1                  |

DSSS: 802.11b Ant 2

| Channel | Channel<br>Frequency<br>(쌘) | Output Average<br>Power to Antenna<br>(dB m) | Antenna<br>Gain<br>(dB i) | Power<br>Density<br>at 20cm<br>(mW/cm) | LIMITS<br>(mW/cm²) |
|---------|-----------------------------|----------------------------------------------|---------------------------|----------------------------------------|--------------------|
| Low     | 2 412                       | 18.13                                        | 2.873                     | 0.025 06                               | 1                  |
| Middle  | 2 437                       | 16.61                                        | 2.873                     | 0.017 66                               | 1                  |
| High    | 2 462                       | 17.72                                        | 2.873                     | 0.022 81                               | 1                  |

OFDM: 802.11g Ant 1

| Channel | Channel<br>Frequency<br>(쌘) | Output Average<br>Power to Antenna<br>(dB m) | Antenna<br>Gain<br>(dB i) | Power<br>Density<br>at 20cm<br>(mW/cm) | LIMITS<br>(nW/cn²) |
|---------|-----------------------------|----------------------------------------------|---------------------------|----------------------------------------|--------------------|
| Low     | 2 412                       | 16.27                                        | 4.887                     | 0.025 97                               | 1                  |
| Middle  | 2 437                       | 16.34                                        | 4.887                     | 0.026 39                               | 1                  |
| High    | 2 462                       | 18.67                                        | 4.887                     | 0.045 13                               | 1                  |



Report Number: F690501/RF-RTL004757-1 Page: 86 of 86

OFDM: 802.11g Ant 2

| Channel | Channel<br>Frequency<br>(쌘) | Output Average<br>Power to Antenna<br>(dB m) | Antenna<br>Gain<br>(dB i) | Power Density at 20cm ("W/c#) | LIMITS<br>(mW/cm²) |
|---------|-----------------------------|----------------------------------------------|---------------------------|-------------------------------|--------------------|
| Low     | 2 412                       | 16.00                                        | 2.873                     | 0.015 35                      | 1                  |
| Middle  | 2 437                       | 14.61                                        | 2.873                     | 0.011 14                      | 1                  |
| High    | 2 462                       | 15.79                                        | 2.873                     | 0.014 62                      | 1                  |

OFDM: 802.11n HT20 ANT 1+Ant 2

| Channel | Channel<br>Frequency<br>(쌘) | Output Average<br>Power to Antenna<br>(dB m)<br>Combined<br>(ANT1 +ANT2) | Antenna<br>Gain<br>(dB i) | Power<br>Density<br>at 20cm<br>(ﷺ/ﷺ) | LIMITS<br>(m/cd) |
|---------|-----------------------------|--------------------------------------------------------------------------|---------------------------|--------------------------------------|------------------|
| Low     | 2 412                       | 15.01                                                                    | 7.006                     | 0.031 65                             | 1                |
| Middle  | 2 437                       | 16.04                                                                    | 7.006                     | 0.040 12                             | 1                |
| High    | 2 462                       | 15.20                                                                    | 7.006                     | 0.033 06                             | 1                |

OFDM: 802.11n HT40 ANT 1+Ant 2

| Channel | Channel<br>Frequency<br>(쌘) | Output Average<br>Power to Antenna<br>(dB m)<br>Combined<br>(ANT1 +ANT2) | Antenna<br>Gain<br>(dB i) | Power<br>Density<br>at 20cm<br>(ﷺ/ﷺ) | LIMITS<br>(mW/cm²) |
|---------|-----------------------------|--------------------------------------------------------------------------|---------------------------|--------------------------------------|--------------------|
| Low     | 2 422                       | 17.71                                                                    | 7.006                     | 0.058 93                             | 1                  |
| Middle  | 2 437                       | 18.01                                                                    | 7.006                     | 0.063 14                             | 1                  |
| High    | 2 452                       | 17.83                                                                    | 7.006                     | 0.060 58                             | 1                  |

Simultaneous Multiple band RF Exposure results

| Band     | Mode               | Output Average<br>Power to Antenna<br>(dB m) | Antenna<br>Gain<br>(dB i) | Power<br>Density<br>at 20cm<br>(ﷺ/ﷺ) | LIMITS<br>(mW/cm²) |
|----------|--------------------|----------------------------------------------|---------------------------|--------------------------------------|--------------------|
| 2.4 GHz  | WLAN               | 23.85                                        | 4.887                     | 0.148 74                             | 1                  |
| 2.4 GHz  | Zigbee<br>module 1 | 4.25                                         | 0.477                     | 0.000 59                             | 1                  |
| 2.4 GHz  | Zigbee<br>module 2 | 2.32                                         | 0.447                     | 0.000 38                             | 1                  |
| Combined |                    |                                              |                           | 0.149 71                             | 1                  |

#### Note:

<sup>1.</sup> The power density Pd (5th column) at a distance of 20cm calculated from the friis transmission formula is far below the limit of 1 mW/cm<sup>2</sup>.