

2/F., Garment Centre, 576 Castle Peak Road, Kowloon, Hong Kong.

Telephone: (852) 2173 8888 Facsimile: (852) 2785 5487

www.intertek.com

SPECIFIC ABSORPTION RATE (SAR) EVALUATION REPORT

For Tablet

Model Number: WT9L10C44GD11

Brand Name: VENTURER

Add. Model Number: 100002435

Add. Brand Name: ONN

FCC ID: A2HWT9L10

Prepared for

ALCO Electronics Ltd

11/F Metropole Square, 2 On Yiu St., Sha Tin, New Territories, Hong Kong

PREPARED AND CHECKED BY:

fisky du

APPROVED BY:

Ricky Xu
Assistant Manager
Shenzhen UnionTrust Quality and
Technology Co., Ltd.

Terry Chan Manager Intertek Testing Services Hong Kong Date: Sep. 12, 2019

Intertek's standard Terms and Conditions can be obtained at our website http://www.intertek.com/terms/.

The test report only allows to be revised within the retention period unless further standard or the requirement was noticed.

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

TABLE OF CONTENTS

1 Test Result Summary	3
2 General Information	4
3 SAR Measurement System Description	9
4 Tissue Verificaiton	16
5 SAR Measurement System Verification	20
6 SAR Evaluation	22
7 Test Equipment List	34
8 Measurement Uncertainty	35
9 E-Field Probe and Dipole Antenna Calibration	35
APPENDIX A – System Check Data	36
APPENDIX B – SAR Evaluation Data	40
APPENDIX C – E-Field Probe and Dipole Antenna Calibration	44

1. TEST RESULT SUMMARY

Applicant: ALCO Electronics Ltd

Applicant Address: 11/F Metropole Square, 2 On Yiu St., Sha Tin, New Territories,

Hong Kong

Model: WT9L10C44GD11

Add. Model: 100002435

Brand Name: VENTURER

Add. Brand Name: ONN
Serial Number: N/A

FCC ID: A2HWT9L10

Test Device: Production Unit

Exposure Category: General Population/Uncontrolled Exposure

Date of Test: Aug. 30, 2019 to Sep. 05, 2019

Shenzhen UnionTrust Quality and Technology Co., Ltd.

Place of Testing: 16/F, Block A, Building 6, Baoneng Science and Technology

Park, Qingxiang Road No.1, Longhua New District, Shenzhen,

China

Environmental Conditions: Temperature: +18 to 25°C

Humidity 25 to 75%

ANSI/IEEE C95.1

IEEE Std 1528: 2013

Test Specification: FCC KDB Publication 447498 D01 v06

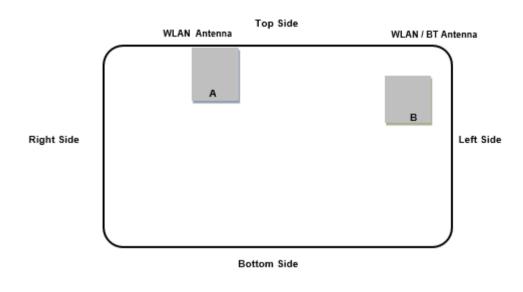
FCC KDB Publication 865664 D01 v01r04

FCC KDB Publication 865664 D02 v01r02 FCC KDB Publication 248227 D01 v02r02

The maximum spatial peak SAR value for the sample device averaged over 1g was found to be:

Band	Operating Mode	TX Frequency (MHz)	Highest Reported SAR Body
	Widde		воиу
2.4GHz WiFi	Data	2412 - 2472	1.08
5.2GHz WiFi	Data	5180 - 5240	1.16
5.3GHz WiFi	Data	5260 - 5320	1.16
5.6GHz WiFi	Data	5500 - 5700	1.15
5.8GHz WiFi	Data	5745 - 5825	1.17
ВТ	Data	2402 - 2480	N/A

This wireless portable device has been shown to be capable of compliance for localized specific absorption rate (SAR) for uncontrolled environment / general population exposure limits specified in ANSI/IEEE C95.1.


2. GENERAL INFORMATION

2.1. Description of Equipment under test (EUT)

Manufacturer:	ALCO Electronics Ltd		
Manufacturer Address:	11/F Metropole Square, 2 On Yiu St.,Sha Tin, New Territories, Hong Kong		
Device dimension (L x W) :	251mm x 168mm		
Device thickness:	10mm		
	Band	Ant. A	Ant. B
	ВТ	/	-0.1 dBi
	2.4G WIFI	-0.1 dBi	0.2 dBi
Antenna Gain:	5G Band 1	-2.7 dBi	2.7 dBi
	5G Band 2	-2.4 dBi	4.1 dBi
	5G Band 3	-0.1 dBi	4.3 dBi
	5G Band 4	-0.1 dBi	4.3 dBi
Operating Configuration(s) / mode: Tx Frequency (MHz): Duty Cycle*:	Body (Data) 2412MHz to 2472MHz (2.4GHz WiFi) 5180MHz to 5240MHz (5.2GHz WiFi) 5260MHz to 5320MHz (5.3GHz WiFi) 5500MHz to 5700MHz (5.6GHz WiFi) 5745MHz to 5825MHz (5.8GHz WiFi) 2402MHz to 2480MHz (BT) 2.4GHz 802.11b: 98.48%, BT: 76.80% 5GHz 802.11a: 97.61%, 5GHz 802.11n(HT20): 98.45% 5GHz 802.11ac(VHT20): 97.96% 5GHz 802.11ac(VHT40): 96.94% 5GHz 802.11ac(VHT80): 94.42%		
H/W Version:	V1.0		
S/W Version:	V1.0		
Battery Type:	3.7V; 3200mAh; Li-ion Model name: PT327293-2S Brand name: POW-TECH		
Body-worn Accessories:	keyboard		

2.2. EUT Antenna Locations

<EUT Rear View>

E B W	Separation Distance from the Antenna to the Outer Surface			
Exposure Position	А	В		
Front	0 mm	0 mm		
Back	0 mm	0 mm		
Left	158 mm	7 mm		
Right	58 mm	227 mm		
Тор	0 mm	14 mm		
Bottom	140 mm	135 mm		

Details of antenna specification are shown in separate antenna dimension document.

2.3. Nominal and Maximum Output Power Specifications

The EUT operates using the following maximum and nominal output power specifications. SAR values were scaled to the maximum allowed power to determine compliance per KDB Publication 447498.

For 2.4GHz WiFi

Antenna A

		TV Fragueray	Outpu	t Power
Band	Operating Mode	TX Frequency (MHz)	Nominal (dBm)	Maximum (dBm)
2.4GHz	802.11b	2412 - 2472	+13.5	+14.0
2.4GHz	802.11g	2412 - 2472	+13.5	+14.0
2.4GHz	802.11n (HT20)	2412 - 2472	+13.0	+13.5
2.4GHz	802.11n (HT40)	2422 - 2462	+13.0	+13.5

Antenna B

		TV Fraguency	Outpu	t Power
Band	Operating Mode	TX Frequency (MHz)	Nominal (dBm)	Maximum (dBm)
2.4GHz	802.11b	2412 - 2472	+15.5	+16.0
2.4GHz	802.11g	2412 - 2472	+14.0	+14.5
2.4GHz	802.11n (HT20)	2412 - 2472	+14.0	+14.5
2.4GHz	802.11n (HT40)	2422 - 2462	+13.5	+14.0

For Bluetooth

		TV Fraguency	Output Power	
Band	Operating Mode	TX Frequency (MHz)	Nominal (dBm)	Maximum (dBm)
	GFSK	2402 – 2480	+4.5	+5.0
BR + EDR	π/4DQPSK	2402 – 2480	-1.0	-0.5
	8DPSK	2402 – 2480	-1.0	-0.5
LE	GFSK	2402 – 2480	+2.0	+2.5

For 5.2GHz WiFi

	Operating Mode		Output	Power	
Band			A	1	В
Ballu		Nominal (dBm)	Maximum (dBm)	Nominal (dBm)	Maximum (dBm)
	802.11a	+11.5	+12.0	+13.0	+13.5
	802.11n HT20	+11.5	+12.0	+13.0	+13.5
F 20U-	802.11n HT40	+10.5	+11.0	+12.5	+13.0
5.2GHz	802.11ac VHT20	+11.5	+12.0	+13.0	+13.5
	802.11ac VHT40	+10.5	+11.0	+12.5	+13.0
	802.11ac VHT80	+10.5	+11.0	+11.5	+12.0

For 5.3GHz WiFi

	Ou anating Made	Output Power			
Band		4	A		3
Dallu	Operating Mode	Nominal (dBm)	Maximum (dBm)	Nominal (dBm)	Maximum (dBm)
	802.11a	+12.0	+12.5	+12.5	+13.0
	802.11n HT20	+12.0	+12.5	+12.5	+13.0
5.3GHz	802.11n HT40	+11.5	+12.0	+12.0	+12.5
3.3 G HZ	802.11ac VHT20	+12.0	+12.5	+12.5	+13.0
	802.11ac VHT40	+11.5	+12.0	+12.0	+12.5
	802.11ac VHT80	+11.0	+11.5	+12.0	+12.5

For 5.6GHz WiFi

			Output	tput Power	
Donal	Operating Mode		A		8
Band		Nominal (dBm)	Maximum (dBm)	Nominal (dBm)	Maximum (dBm)
	802.11a	+10.5	+11.0	+11.0	+11.5
	802.11n HT20	+10.5	+11.0	+11.0	+11.5
F (C)	802.11n HT40	+10.0	+10.5	+10.5	+11.0
5.6GHz	802.11ac VHT20	+10.5	+11.0	+11.0	+11.5
	802.11ac VHT40	+10.0	+10.5	+10.5	+11.0
	802.11ac VHT80	+9.0	+9.5	+10.0	+10.5

For 5.8GHz WiFi

	Outputing Made	Output Power			
Band		4	A	1	В
Dallu	Operating Mode	Nominal (dBm)	Maximum (dBm)	Nominal (dBm)	Maximum (dBm)
	802.11a	+11.0	+11.5	+9.5	+10.0
	802.11n HT20	+11.0	+11.5	+9.5	+10.0
5.8GHz	802.11n HT40	+11.0	+11.5	+9.5	+10.0
3.8GHZ	802.11ac VHT20	+11.0	+11.5	+9.5	+10.0
	802.11ac VHT40	+11.0	+11.5	+9.5	+10.0
	802.11ac VHT80	+11.0	+11.5	+10.0	+10.5

3. SAR MEASUREMENT SYSTEM DESCRIPTION

SAR is related to the rate at which energy is absorbed per unit mass in object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of given mass density (ρ). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dV} \right)$$

SAR is expressed in units of Watts per kilogram (W/Kg) SAR can be obtained using either of the following equations:

$$SAR = \frac{\sigma E^2}{\rho}$$

$$SAR = c_h \frac{dT}{dt}\Big|_{t=0}$$

Where

SAR is the specific absorption rate in watts per kilogram;

E is the r.m.s. value of the electric field strength in the tissue in volts per meter;

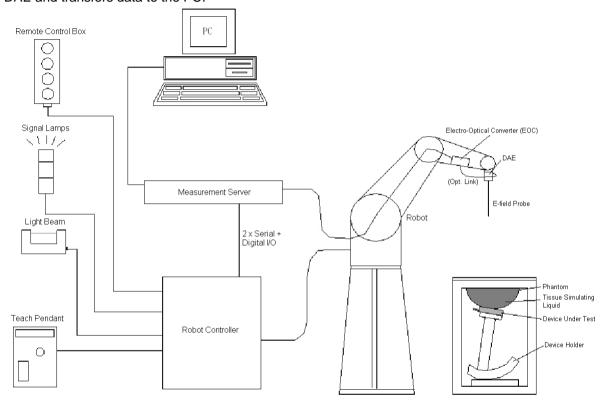
σ is the conductivity of the tissue in siemens per metre;

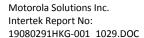
ρ is the density of the tissue in kilograms per cubic metre;

ch is the heat capacity of the tissue in joules per kilogram and Kelvin;

 $\frac{dT}{dt}$ | t=0 is the initial time derivative of temperature in the tissue in kelvins per second

DASY system consists of high precision robot, probe alignment sensor, phantom, robot controller, controlled measurement server and near-field probe. The robot includes six axes that can move to the precision position of the DASY5 software defined. The DASY software can define the area that is detected by the probe. The robot is connected to controlled box. Controlled measurement server is connected to the controlled robot box. The DAE includes amplifier, signal multiplexing, AD converter, offset measurement and surface detection. It is connected to the Electro-optical coupler (ECO). The ECO performs the conversion form the optical into digital electric signal of the DAE and transfers data to the PC.




Figure 1: Schematic diagram of the SAR measurement system

ROBOT

The DASY system uses the high precision robots from Stäubli SA (France). For the 6-axis controller system, the robot controller version from Stäubli is used. The Stäubli robot series have many features that are important for our application:

- High precision (repeatability ±0.02 mm)
- High reliability (industrial design)
- Jerk-free straight movements
- Low ELF interference (the closed metallic construction shields against motor control fields)

E-FIELD PROBE

Dimensions

The SAR measurement is conducted with the dosimetric probe. The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency.

Model EX3DV4

Symmetrical design with triangular core. Built-in shielding against static charges. PEEK enclosure material (resistant to Construction

organic solvents, e.g., DGBE).

10 MHz to 6 GHz **Frequency** Linearity: ± 0.2 dB

± 0.3 dB in HSL (rotation around probe axis) **Directivity**

± 0.5 dB in tissue material (rotation normal to probe axis)

10 μW/g to 100 mW/g **Dynamic Range**

Linearity: \pm 0.2 dB (noise: typically < 1 μ W/g)

Overall length: 337 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm)

Typical distance from probe tip to dipole centers: 1 mm

Model

Symmetrical design with triangular core. Interleaved sensors. Construction

Built-in shielding against static charges. PEEK enclosure

material (resistant to organic solvents, e.g., DGBE).

10 MHz to 4 GHz Frequency Linearity: ± 0.2 dB

± 0.2 dB in HSL (rotation around probe axis) **Directivity**

± 0.3 dB in tissue material (rotation normal to probe axis)

 $5 \mu W/g$ to 100 mW/g**Dynamic Range** Linearity: ± 0.2 dB

Overall length: 337 mm (Tip: 20 mm)

Tip diameter: 3.9 mm (Body: 12 mm) **Dimensions**

< 5µV (with auto zero)

Distance from probe tip to dipole centers: 2.0 mm

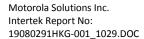
Data Acquisition Electronics (DAE)

DAE3, DAE4 Model

Signal amplifier, multiplexer, A/D converter and control logic. Serial optical link for communication with DASY embedded Construction system (fully remote controlled). Two step probe touch detector

for mechanical surface detection and emergency robot stop. -100 to +300 mV (16 bit resolution and two range settings: 4mV,

Measurement 400mV)


Range **Input Offset** Voltage **Input Bias**

Current

< 50 fA

60 x 60 x 68 mm **Dimensions**

Construction

SAM TWIN PHANTOM

Model Twin SAM

The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528 and IEC 62209-1. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the

liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement

grids by teaching three points with the robot.

Vinylester, glass fiber reinforced (VE-GF)

Shell Thickness $2 \pm 0.2 \text{ mm}$ (6 ± 0.2 mm at ear point)

Length: 1000 mm Width: 500 mm

Height: adjustable feet

Filling Volume approx. 25 liters

Model ELI

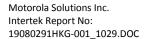
Construction

Phantom for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI is fully compatible with the IEC 62209-2 standard and all known tissue simulating liquids. ELI has been optimized regarding its performance and can be integrated into our standard phantom tables. A cover prevents evaporation of the liquid. Reference markings on the phantom allow installation of the complete setup, including all predefined phantom positions and measurement grids, by teaching three points. The phantom is compatible with all SPEAG dosimetric probes and dipoles.

Material Vinylester, glass fiber reinforced (VE-GF)

Shell Thickness 2.0 ± 0.2 mm (bottom plate)

Dimensions


Major axis: 600 mm

Minor axis: 400 mm

Filling Volume approx. 30 liters

DEVICE HOLDER

Construction

Model Mounting Device

In combination with the Twin SAM Phantom or ELI4, the Mounting Device enables the rotation of the mounted transmitter device in spherical coordinates. Rotation point is the ear opening point. Transmitter devices can be easily and accurately positioned according to IEC, IEEE, FCC or other specifications. The device holder can be locked for positioning at different

phantom sections (left head, right head, flat).

Material POM

Model Laptop Extensions Kit

Simple but effective and easy-to-use extension for Mounting Device that facilitates the testing of larger devices according to IEC 62209-2 (e.g., laptops, cameras, etc.). It is lightweight and fits easily on the upper part of the Mounting Device in place of

the phone positioner.

Material POM, Acrylic glass, Foam

System Validation Dipoles

Model D-Serial

Symmetrical dipole with I/4 balun. Enables measurement of feed point impedance with NWA. Matched for use near flat phantoms

filled with tissue simulating solutions.

Frequency 750 MHz to 5800 MHz

Return Loss > 20 dB

Power Capability > 100 W (f < 1GHz), > 40 W (f > 1GHz)

During measurement, the system first does an area (2D) scan at a fixed depth within the liquid from the inside wall of the phantom scanning area is greater than the projection of EUT and antenna.

Area Scan Parameters extracted from KDB 865664

	≤3 GHz	> 3 GHz	
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	5 mm ± 1 mm	$\frac{1}{2} \cdot \delta \cdot \ln(2) \text{ mm} \pm 0.5 \text{ mm}$	
Maximum probe angle from probe axis to phantom surface normal at the measurement location	30° ± 1°	20° ± 1°	
	≤ 2 GHz: ≤ 15 mm 2 – 3 GHz: ≤ 12 mm	3 – 4 GHz: ≤ 12 mm 4 – 6 GHz: ≤ 10 mm	
Maximum area scan spatial resolution: Δx _{Area} , Δy _{Area}	When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be ≤ the corresponding x or y dimension of the test device with at least one measurement point on the test device.		

When the maximum SAR point has been found, the system will then carry out a zoom (3D) scan centered at that point to determine volume averaged SAR level.

Zoom Scan Parameters extracted from KDB 865664

Maximum zoom scan	spatial res	olution: Δx_{Zoom} , Δy_{Zoom}	≤ 2 GHz: ≤ 8 mm 2 – 3 GHz: ≤ 5 mm*	3 – 4 GHz: ≤ 5 mm* 4 – 6 GHz: ≤ 4 mm*
Maximum zoom scan spatial resolution, normal to	uniform	grid: Δz _{Zoom} (n)	≤ 5 mm	3 – 4 GHz: ≤ 4 mm 4 – 5 GHz: ≤ 3 mm 5 – 6 GHz: ≤ 2 mm
	graded	Δz _{Zoom} (1): between 1 st two points closest to phantom surface	≤ 4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm
	gna	Δz _{Zoom} (n>1): between subsequent points	$\leq 1.5 \cdot \Delta z_{Zoom}(n-1) \text{ mm}$	
Minimum zoom scan volume	x, y, z		≥ 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see IEEE Std 1528-2013 for details.

^{*} When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB Publication 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

4. TISSUE VERIFICATION

For SAR measurement of field distribution inside phantom, homogeneous tissue simulating liquid as below liquid recipes were filled to a depth of 15cm \pm 0.5cm for below 3GHz measurement and of 10cm \pm 0.5cm for above 3GHz.

HEAD TISSUE RECIPES

			Ingredie	ents		
Frequency	De-ionized Water	Salt	1,2 propanediol	DGBE	DGMH	Triton X100
450 MHz	33.5%	3.4%	63.1%			
750 MHz	34.2%	1.4%	64.4%			
900 MHz	35.3%	1.0%	63.7%			
1800 MHz	55.2%	0.6%		13.8%		30.4%
1900 MHz	55.3%	0.5%		13.8%		30.4%
2000 MHz	55.3%	0.4%		13.8%		30.5%
2450 MHz	55.7%	0.3%		18.7%		25.3%
5000 MHz	65.3%				17.2%	17.5%

BODY TISSUE RECIPES

			Ingredie	nts		
Frequency	De-ionized Water	Salt	1,2 propanediol	DGBE	DGMH	Triton X100
450 MHz	52.4%	1.9%	45.7%			
750 MHz	55.4%	1.3%	43.3%			
900 MHz	52.9%	1.0%	46.1%			
1800 MHz	70.8%	0.5%		8.7%		20.0%
1900 MHz	70.1%	0.4%		8.9%		20.6%
2000 MHz	70.2%	0.3%		8.6%		20.9%
2450 MHz	70.8%	0.3%		8.7%		20.2%
5000 MHz	76.8%				11.7%	11.5%

The head tissue dielectric parameters recommended by the IEEE Std 1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. For other head and body tissue parameters, they are recommended by KDB 865664.

Target Frequency	h	ead	bo	ody
(MHz)	εr	σ (S/m)	εr	σ (S/m)
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	1.01	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800 – 2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73
5800	35.3	5.27	48.2	6.00

($\varepsilon r = relative permittivity, \sigma = conductivity and \rho = 1000 kg/m3)$

When a transmission band overlaps with one of the target frequencies, the tissue dielectric parameters of the tissue medium at the middle of a device transmission band should be within ±5% of the parameters specified at that target frequency.

The dielectric parameters of the liquids were verified prior to the SAR evaluation.

The dielectric parameters were:

Body Liquid

Freq.	Temp.	ε _r /Rela	tive Perm	ittivity	σ / Conductivity			ρ
(MHz)	(°C)	measured	Target*	Δ (±5%)	measured	Target*	Δ (±5%)	**(kg/m ³)
2450	22.3	52.889	52.7.0	0.36	2.006	1.95	2.87	1000

^{*} Target values refer to KDB 865664

Note:

1. Date of tissue verification measurement: Aug. 30, 2019

2. Ambient temperature: 23.1 deg C

3. The temperature condition is within +/- 2 deg. C during the SAR measurements.

Body Liquid

F	Freq. Temp. ϵ_r / Relative Permittivity				ittivity	σ/	ty	ρ	
(1)	ΛHz)	(°C)	measured	Target*	Δ (±5%)	measured	Target*	Δ (±5%)	**(kg/m³)
5	250	22.2	48.293	48.90	-1.24	5.494	5.36	2.50	1000

^{*} Target values refer to KDB 865664

Note:

1. Date of tissue verification measurement: Sep. 04, 2019

2. Ambient temperature: 23.0 deg C

3. The temperature condition is within +/- 2 deg. C during the SAR measurements.

Body Liquid

Freq.	Temp.	ε _r / Rela	$\epsilon_{\rm r}$ / Relative Permittivity			ਰ / Conductivity		
(MHz)	(°C)	measured	Target*	Δ (±5%)	measured	Target*	Δ (±5%)	**(kg/m³)
5600	22.0	47.703	48.50	-1.64	5.957	5.77	3.24	1000

^{*} Target values refer to KDB 865664

Note:

1. Date of tissue verification measurement: Sep. 03, 2019

2. Ambient temperature: 23.1 deg C

3. The temperature condition is within +/- 2 deg. C during the SAR measurements.

^{**} Worst-case assumption

^{**} Worst-case assumption

^{**} Worst-case assumption

Body Liquid

Freq.	Temp.	ε _r / Rela	ative Permi	ittivity	σ/	σ / Conductivity			
(MHz)	(°C)	measured	Target*	Δ (±5%)	measured	Target*	Δ (±5%)	**(kg/m³)	
5800	22.0	47.400	48.20	-1.66	6.221	6.00	3.68	1000	

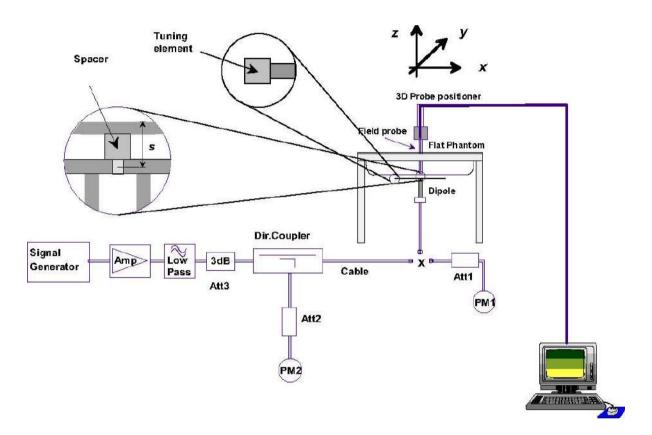
^{*} Target values refer to KDB 865664

Note:

1. Date of tissue verification measurement: Sep. 05, 2019

2. Ambient temperature: 23.1 deg C

3. The temperature condition is within +/- 2 deg. C during the SAR measurements.


^{**} Worst-case assumption

5. SAR MEASUREMENT SYSTEM VERIFICATION

Each DASY system is equipped with one or more system check kits. These units, together with the predefined measurement procedures within the DASY software, enable user to conduct the system check. System kit includes a dipole, and dipole device holder.

The system check verifies that the system operates within its specifications. It's performed daily or before every SAR measurement. The system check uses normal SAR measurement in the flat section of the phantom with a matched dipole at a specified distance. The system check setup is shown as below.

VALIDATION DIPOLE

The dipoles used is based on the IEEE Std 1528, and is complied with mechanical and electrical specifications in line with the requirements of both FCC and KDB requirement.

SYSTEM CHECK RESULTS

System Verification								
Date	Freq. (MHz)	Liquid Type	System Diople	Serial No.	Target SAR _{1g} (W/kg)	Measured SAR _{1g} (W/kg)	Normalized SAR _{1g} (W/kg)	Deviation (±10%)
Aug. 30, 2019	2450	Body	D2450V 2	1014	50.50	0.522	52.20	3.37

^{*} the target was quoted from dipole calibration report

^{*} Input power level = 10dBm (10mW)

	System Verification									
Date	Freq. (MHz)	Liquid Type	System Diople	Serial No.	Target SAR _{1g} (W/kg)	Measured SAR _{1g} (W/kg)	Normalized SAR _{1g} (W/kg)	Deviation (±10%)		
Sep. 04, 2019	5250	Body	D5GHzV 2	1280	74.80	7.610	76.10	1.74		
Sep. 03, 2019	5600	Body	D5GHzV 2	1280	79.20	8.180	81.80	3.28		
Sep. 05, 2019	5800	Body	D5GHzV 2	1280	74.80	7.450	74.50	-0.40		

^{*} the target was quoted from dipole calibration report

 SAR_{1g} ambient measured value < 12 mW/kg

Details of System Verification plots are shown in the Appendix A - plot 1, 2, 3, 4.

^{*} Input power level = 20dBm (0.1W)

6. SAR EVALUATION

6.1. Body Exposure Conditions

RF Exposure Conditions	Test Position	Separation Distance	SAR test exclusion
Body	Bottom Surface	0 cm	N/A

Note: The required minimum test separation distance for incorporating transmitters and antennas into laptop computer display is determined with the display screen opened at an angle of 90° to the keyboard compartment

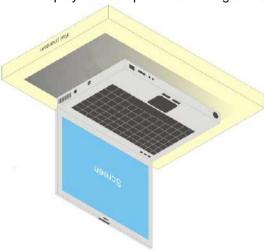


Fig-4.1 Test Positions for Laptop

RF Exposure Conditions	Test Position	Separation Distance	SAR test exclusion	
	Rear Face			
	Left Side	_		
Body	Right Side	0 cm	Note 4	
_	Top Side	_		
	Bottom Side	_		

Note:

- Exposures from antennas through the front surface of the display section of a tablet are generally limited to
 the user's hands. Exposures to hands for typical consumer transmitters used in tablets are not expected to
 exceed the extremity SAR limit; therefore, SAR evaluation for the front surface of tablet display screens are
 generally not necessary.
- 2. When voice mode is supported on a tablet and it is limited to speaker mode or headset operations only, additional SAR testing for this type of voice use is not required.
- 3. Next to the ear operation is generally not expected for tablets with overall diagonal dimension > 20 cm. However, when next to the ear voice mode is supported, regardless of the overall dimension, phablets must be tested according to the requirements described in KDB Publication 648474 D04.
- 4. For SAR test exclusion, please refer to section 4.4.

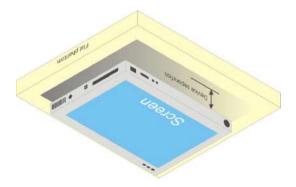


Fig-4.2 Test Positions for Tablet

WLAN Configuration and Testing

In general, various vendor specific external test software and chipset based internal test modes are typically used for SAR measurement. These chipset based test mode utilities are generally hardware and manufacturer dependent, and often include substantial flexibility to reconfigure or reprogram a device. A Wi-Fi device must be configured to transmit continuously at the required data rate, channel bandwidth and signal modulation, using the highest transmission duty factor supported by the test mode tools for SAR measurement. The test frequencies established using test mode must correspond to the actual channel frequencies. When 802.11 frame gaps are accounted for in the transmission, a maximum transmission duty factor of 92 - 96% is typically achievable in most test mode configurations. A minimum transmission duty factor of 85% is required to avoid certain hardware and device implementation issues related to wide range SAR scaling. In addition, a periodic transmission duty factor is required for current generation SAR systems to measure SAR correctly. The reported SAR must be scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit.

According to KDB 248227 D01, this device has installed WLAN engineering testing software which can provide continuous transmitting RF signal. During WLAN SAR testing, this device was operated to transmit continuously at the maximum transmission duty with specified transmission mode, operating frequency, lowest data rate, and maximum output power.

6.2. RF Output Power Measurements For 2.4GHz WiFi

VVIFI					•
Mode /	Date Rate	Channel	Freq. (MHz)		_
				Α	В
		1	2412	13.02	14.92
		6	2437	13.51	15.25
2.4G	1Mbps	11	2462	13.82	15.11
		12	2467	13.78	15.43
		13	2472	13.71	14.91
		1	2412	12.81	13.64
	6Mbps _	6	2437	13.44	13.97
2.4G		11	2462	12.79	13.85
		12	2467	12.86	14.25
		13	2472	12.87	13.66
		1	2412	12.58	13.46
		6	2437	12.88	13.87
2.4G	MCS0	11	2462	12.69	14.15
		12	2467	12.71	14.19
		13	2472	12.77	13.61
		3	2422	12.85	13.26
		6	2437	12.78	13.62
2.4G	MCS0	9	2452	12.71	13.35
		10	2457	12.79	12.41
	•	11	2462	12.77	11.55
	2.4G 2.4G	Date Rate 2.4G 1Mbps 2.4G 6Mbps 2.4G MCS0	Mode / Mode / Mode Date Rate Channel 2.4G 1Mbps 11 12 13 12 13 2.4G 6Mbps 11 12 13 13 1 6 12 13 6 2.4G MCSO 11 12 13 3 6 2.4G MCSO 9 10 10	Mode / In the process of the	Mode / Date Rate

For BT

Operating Mode	Band	Channel	Freq. (MHz)	Measured Average Conducted Power (dBm)
BR+EDR		0	2402	4.47
(GFSK)		19	2440	4.46
		39	2480	4.20
BR+EDR		0	2402	-1.46
π /4DQPSK)	BT	19	2440	-1.19
" / 4DQF3K)		39	2480	-1.41
DD . EDD		0	2402	-1.44
BR+EDR		19	2440	-1.15
(8DPSK)		39	2480	-1.38

Operating Mode	Band	Channel	Freq. (MHz)	Measured Average Conducted Power (dBm)
LE (GFSK)		0	2402	1.85
	BT	19	2440	2.07
		39	2480	1.75

For 5GHz WiFi

Operating Mode	Band	Channel	Freq. (MHz)		d Average ed Power Bm)
				Α	В
		36	5180	10.61	12.15
	5.2G	40	5200	11.29	13.36
	3.20	44	5220	11.06	12.11
		48	5240	11.07	12.36
		52	5260	11.45	12.41
	5.3G	56	5280	12.14	12.81
	3.30	60	5300	11.39	12.35
_		64	5320	11.28	12.14
		100	5500	9.44	10.12
		104	5520	10.52	10.71
802.11a	5.6G	108	5540	10.43	10.76
0U2.11d		112	5560	9.92	10.74
		116	5580	10.84	10.68
		120	5600	9.23	9.95
		124	5620	10.81	10.82
		128	5640	10.55	10.95
		132	5660	10.67	11.01
		136	5680	10.74	11.05
		140	5700	9.96	10.44
		149	5745	11.15	9.48
	5.8G	157	5785	10.78	9.51
		165	5825	10.36	9.62
		36	5180	10.78	12.05
	F 2C	40	5200	11.31	13.21
	5.2G	44	5220	10.76	12.01
		48	5240	10.81	12.38
802.11n		52	5260	11.27	12.28
(HT20)	F 3C	56	5280	12.21	12.78
	5.3G	60	5300	11.11	12.19
		64	5320	11.08	12.16
_	F (C	100	5500	9.44	10.22
	5.6G	104	5520	10.68	10.84

		108	5540	10.38	10.75
	·	112	5560	10.49	10.63
	·	116	5580	10.57	10.59
	·	120	5600	9.22	9.79
	- -	124	5620	10.44	10.77
	-	128	5640	10.36	10.96
	-	132	5660	10.41	10.99
	-	136	5680	10.53	11.02
	-	140	5700	9.85	10.33
_		149	5745	11.02	9.45
	5.8G	157	5785	10.68	9.38
		165	5825	10.26	9.61
		38	5190	10.55	11.84
	5.2G	46	5230	10.63	12.08
_		54	5270	11.09	12.11
	5.3G	62	5310	11.37	11.95
_		102	5510	9.24	9.68
802.11n	-	110	5550	9.82	10.42
(HT40)	5.6G	118	5590	9.07	9.56
	3.00	126	5630	9.88	10.56
	-	134	5670	9.58	10.24
-		151	5755	10.82	9.33
	5.8G	159	5795	10.47	9.18
		36	5180	10.77	12.08
	-	40	5200	11.33	13.35
	5.2G	44	5220	10.69	12.05
	-	48	5240	11.28	12.46
-		52	5260	11.22	12.40
	-	56	5280	12.29	12.39
	5.3G	60	5300	11.16	12.32
	-	64	5320	11.16	12.32
-					
	-	100	5500	9.43	10.24
002 1100	-	104	5520	10.54	10.76
802.11ac	-	108	5540	10.33	10.68
(VHT20)	-	112	5560	10.22	10.69
	F. C.C.	116	5580	10.19	10.55
	5.6G	120	5600	9.15	9.84
	-	124	5620	10.56	10.64
	-	128	5640	10.46	10.97
	-	132	5660	10.41	11.04
	-	136	5680	10.39	11.08
_		140	5700	9.82	10.39
	-	149	5745	11.01	9.56
	5.8G	157	5785	10.68	9.47
		165	5825	10.18	9.67
802.11ac	5.2G	38	5190	10.58	11.93

(VHT40)		46	5230	10.68	12.31
	5.3G -	54	5270	11.06	12.19
	5.30	62	5310	11.36	12.02
		102	5510	9.22	9.73
		110	5550	9.53	10.36
	5.6G	118	5590	8.99	9.64
		126	5630	9.61	10.67
		134	5670	9.51	10.28
	5.8G -	151	5755	10.81	9.34
	5.80	159	5795	10.45	9.25
	5.2G	42	5210	10.25	11.62
802.11ac	5.3G	58	5290	10.82	11.98
	5.6G -	106	5530	8.43	9.62
(VHT80)	5.00	122	5610	8.89	9.96
	5.8G	155	5775	10.68	9.89

Note:

- 1. Fully charged battery was used for each measurement.
- 2. There was no power reduction used for any band/mode implemented in this device

6.3. Exposure Conditions Body Exposure Conditions

For 2.4GHz WiFi Antenna A

Test Configurations	Distance to phantom	SAR Exemption limit (mW)	Maximum Time-averaged Conducted power (mW)	SAR Exclusion Result
Front Face	0	N/A		N/A
Rear Face	0	10		Test Required
Left Side	158	1176	- 25.12	Excluded
Right Side	58	176	23.12	Excluded
Top Side	0	10		Test Required
Bottom	140	996		Excluded

Antenna B

Test Configurations	Distance to phantom	SAR Exemption limit (mW)	Maximum Time-averaged Conducted power (mW)	SAR Exclusion Result
Front Face	0	N/A		N/A
Rear Face	0	10		Test Required
Left Side	7	10	20.91	Test Required
Right Side	227	1866	- 39.81	Excluded
Top Side	14	19	•	Test Required
Bottom	135	946	-	Excluded

For BT

Test Configurations	Distance to phantom	SAR Exemption limit (mW)	Maximum Time-averaged Conducted power (mW)	SAR Exclusion Result
Front Face	0	N/A		N/A
Rear Face	0	10	- 3.16 -	Excluded
Left Side	7	10		Excluded
Right Side	227	1865		Excluded
Top Side	14	19		Excluded
Bottom	135	945	_	Excluded

For 5.2GHz WiFi Antenna A

Test Configurations	Distance to phantom	SAR Exemption limit (mW)	Maximum Time-averaged Conducted power (mW)	SAR Exclusion Result
Front Face	0	N/A		N/A
Rear Face	0	6.31		Test Required
Left Side	158	1146	15.05	Excluded
Right Side	58	146	- 15.85	Excluded
Top Side	0	6.31		Test Required
Bottom	140	966	-	Excluded

Antenna B

Test Configurations	Distance to phantom	SAR Exemption limit (mW)	Maximum Time-averaged Conducted power (mW)	SAR Exclusion Result
Front Face	0	N/A		N/A
Rear Face	0	6.31		Test Required
Left Side	7	8.91	- 22 20	Test Required
Right Side	227	1836	- 22.39	Excluded
Top Side	14	17.78	•	Test Required
Bottom	135	916		Excluded

For 5.3GHz WiFi

Antenna A

Test Configurations	Distance to phantom	SAR Exemption limit (mW)	Maximum Time-averaged Conducted power (mW)	SAR Exclusion Result
Front Face	0	N/A		N/A
Rear Face	0	6.31		Test Required
Left Side	158	1145	17.70	Excluded
Right Side	58	145	- 17.78	Excluded
Top Side	0	6.31	•	Test Required
Bottom	140	965	-	Excluded

Antenna B

Test Configurations	Distance to phantom	SAR Exemption limit (mW)	Maximum Time-averaged Conducted power (mW)	SAR Exclusion Result
Front Face	0	N/A		N/A
Rear Face	0	6.31		Test Required
Left Side	7	8.91	- - 19.95	Test Required
Right Side	227	1835	19.95	Excluded
Top Side	14	17.78	_	Test Required
Bottom	135	915		Excluded

For 5.6GHz WiFi Antenna A

Test Configurations	Distance to phantom	SAR Exemption limit (mW)	Maximum Time-averaged Conducted power (mW)	SAR Exclusion Result
Front Face	0	N/A		N/A
Rear Face	0	6.17		Test Required
Left Side	158	1143	- 12.59	Excluded
Right Side	58	143	12.59	Excluded
Top Side	0	6.17		Test Required
Bottom	140	963	-	Excluded

Antenna B

Test Configurations	Distance to phantom	SAR Exemption limit (mW)	Maximum Time-averaged Conducted power (mW)	SAR Exclusion Result
Front Face	0	N/A		N/A
Rear Face	0	6.17		Test Required
Left Side	7	8.51	14.12	Test Required
Right Side	227	1833	- 14.13	Excluded
Top Side	14	16.98		Excluded
Bottom	135	913	_	Excluded

For 5.8GHz WiFi Antenna A

Test Configurations	Distance to phantom	SAR Exemption limit (mW)	Maximum Time-averaged Conducted power (mW)	SAR Exclusion Result
Front Face	0	N/A		N/A
Rear Face	0	6.17		Test Required
Left Side	158	1142	14.12	Excluded
Right Side	58	142	- 14.13	Excluded
Top Side	0	6.17	-	Test Required
Bottom	140	962	-	Excluded

Antenna B

Distance to phantom	SAR Exemption limit (mW)	Maximum Time-averaged Conducted power (mW)	SAR Exclusion Result
0	N/A	_	N/A
0	6.17		Test Required
7	8.51	11 22	Test Required
227	1832	11.22	Excluded
14	16.98	_	Excluded
135	912		Excluded
	phantom 0 0 7 227 14	Distance phantom Exemption limit (mW) 0 N/A 0 6.17 7 8.51 227 1832 14 16.98	Distance phantom Exemption limit (mW) Maximum Time-averaged Conducted power (mW) 0 N/A 0 6.17 7 8.51 227 1832 14 16.98

6.4. Test Result

The results on the following page(s) were obtained when the device was tested in the condition described in this report. Detailed measurement data and plots, which reveal information about the location of the maximum SAR with respect to the device, are reported in Appendix B.

Body SAR

Plot No.	Band	Mode	Test Position	Separation Distance (cm)	Ch.	Ant. Status	keyboard	Max. Tune- up Power (dBm)	Measured Conducted Power (dBm)	Power Drift (dB)	Measured SAR-1g (W/kg)	Scaling Factor	Scaled SAR- 1g (W/kg)
2.40	GHz WiFi												
	802.11b	-	Rear Face	0	11	Α	w/o	14.0	13.82	-0.07	0.994	1.04	1.04
	802.11b	-	Top Side	0	11	Α	w/o	14.0	13.82	-0.03	0.259	1.04	0.27
1	802.11b	-	Rear Face	0	12	Α	w/o	14.0	13.78	-0.07	1.02	1.05	1.07
	802.11b	-	Rear Face	0	12	В	w/o	16.0	15.43	0.02	0.944	1.14	1.08
	802.11b	-	Left Side	0	12	В	w/o	16.0	15.43	-0.02	0.138	1.14	0.16
	802.11b	-	Top Side	0	12	В	w/o	16.0	15.43	-0.04	0.1	1.14	0.11
	802.11b	-	Rear Face	0	6	В	w/o	16.0	15.25	0.05	0.841	1.19	1.00
	802.11b	-	Rear Face	0	12	Α	w/	14.0	13.78	-0.03	0.369	1.05	0.39
	802.11b	-	Rear Face	0	12	Α	w/o	14.0	13.78	0.02	1.01	1.05	1.06
5.30	GHz WiFi												
2	802.11a	-	Rear Face	0	56	Α	w/o	12.5	12.14	-0.09	1.07	1.09	1.16
	802.11a	-	Top Side	0	56	Α	w/o	12.5	12.14	0.01	0.547	1.09	0.59
	802.11a	-	Rear Face	0	52	Α	w/o	12.5	11.45	0.16	0.89	1.27	1.13
	802.11a	-	Rear Face	0	40	В	w/o	13.5	13.36	0.00	1.02	1.03	1.05
	802.11a	-	Left Side	0	40	В	w/o	13.5	13.36	0.01	0.248	1.03	0.26
	802.11a	-	Top Side	0	40	В	w/o	13.5	13.36	-0.09	0.061	1.03	0.06
	802.11a	-	Rear Face	0	48	В	w/o	13.5	12.36	0.00	0.81	1.30	1.05
	802.11a	-	Rear Face	0	56	Α	w/	12.5	12.14	0.13	0.422	1.09	0.46
	802.11a	-	Rear Face	0	56	Α	w/o	12.5	12.14	0.03	1.05	1.09	1.14
5.60	GHz WiFi												
3	802.11a	-	Rear Face	0	116	Α	w/o	11.0	10.84	0.09	1.08	1.04	1.12
	802.11a	-	Top Side	0	116	Α	w/o	11.0	10.84	0.07	0.361	1.04	0.37
	802.11a	-	Rear Face	0	124	Α	w/o	11.0	10.81	0.05	1.03	1.04	1.08
	802.11a	-	Rear Face	0	136	В	w/o	11.5	11.05	0.02	1.02	1.11	1.13
	802.11a	-	Left Side	0	136	В	w/o	11.5	11.05	0.01	0.203	1.11	0.23
	802.11a	-	Rear Face	0	132	В	w/o	11.5	11.01	0.00	1.03	1.12	1.15
	802.11a	-	Rear Face	0	116	Α	w/	11.0	10.84	0.08	0.361	1.04	0.37
	802.11a	-	Rear Face	0	116	Α	w/o	11.0	10.84	0.03	1.02	1.04	1.06
5.80	GHz WiFi												
	802.11ac	VHT80	Rear Face	0	155	Α	w/o	11.5	10.68	0.01	0.97	1.21	1.17
	802.11ac	VHT80	Top Side	0	155	Α	w/o	11.5	10.68	0.03	0.304	1.21	0.37
4	802.11ac	VHT80	Rear Face	0	155	В	w/o	10.5	9.89	0.02	1.02	1.15	1.17
	802.11ac	VHT80	Left Side	0	155	В	w/o	10.5	9.89	0.00	0.288	1.15	0.33
	802.11ac	VHT80	Rear Face	0	155	В	w/	10.5	9.89	0.04	0.561	1.15	0.65
	802.11ac	VHT80	Rear Face	0	155	В	w/o	10.5	9.89	0.13	1.01	1.15	1.16

Note:

- 1. Fully charged batteries were used at the beginning of each SAR measurement.
- 2. Per KDB 447498, when the maximum output power variation across the required test channels was < 0.5dB, measurement on middle channel was required.
- 3. Per KDB 447498, if the reported SAR value was \leq 0.8 W/kg and the transmission band was \leq 100MHz, SAR testing was not required for the other test channels in the band.

- 4. Per KDB 865664, repeated measurement was not required when the original highest measured SAR was < 0.8W/kg.
- 5. There was no power reduction used for any band/mode implemented in this device.
- 6. This device doesn't support MIMO, and Antenna A and B can't transmit at the same time.
- 7. This device have keyboard, SAR was tested without keyboard and with keyboard, in SAR result table, w/o means without keyboard, w/ means with keyboard, rear face with 90 degree was test for SAR test with keyboard.
- 8. SAR repeated measurement procedure:
- a. When the highest measured SAR is < 0.80 W/kg, repeated measurement is not required.
- b. When the highest measured SAR is \geq 0.80 W/kg, repeat that measurement once.
- c. If the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20, or when the original or repeated measurement is >= 1.45 W/kg, perform a second repeated measurement.
- d. If the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20, and the original, first or second repeated measurement is >= 1.5 W/kg, perform a third repeated measurement.

Band	Mode	Test Position	Ch.	Original Measured SAR-1g (W/kg)	1st Repeated SAR-1g (W/kg)	L/S Ratio	2nd Repeated SAR-1g (W/kg)	L/S Ratio	3rd Repeated SAR-1g (W/kg)	L/S Ratio
Body Exposure Condition										
802.11b	-	Rear Face	12	1.02	1.01	1.01	N/A	N/A	N/A	N/A
802.11a	-	Rear Face	56	1.07	1.05	1.02	N/A	N/A	N/A	N/A
802.11a	-	Rear Face	116	1.08	1.02	1.06	N/A	N/A	N/A	N/A
802.11ac	VHT80	Rear Face	155	1.02	1.01	1.01	N/A	N/A	N/A	N/A

6.5. SAR Limits

The following FCC limits (Std. C95.1-1992) for SAR apply to devices operate in General Population/Uncontrolled Exposure and Controlled environment:

GENERAL POPULATION / UNCONTROLLED ENVIRONMENTS:

Defined as location where there is the exposure of individuals who have no knowledge or control of their exposure.

EXPOSURE (General Population/Uncontrolled Exposure environment)	SAR (W/kg)
	,
Spatial Peak SAR (Head)*	1.60
Spatial Peak SAR (Partial Body)*	1.60
Spatial Peak SAR (Whole Body)*	0.08
Spatial Peak SAR (Hands / Wrists / Feet / Ankles)**	4.00

OCCUPATIONAL / CONTROLLED ENVIRONMENTS:

Defined as location where there is the exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation)

EXPOSURE (Occupational/Controlled Exposure environment)	SAR (W/kg)
Spatial Peak SAR (Head)*	8.00
Spatial Peak SAR (Partial Body)*	8.00
Spatial Peak SAR (Whole Body)*	0.40
Spatial Peak SAR (Hands / Wrists / Feet / Ankles)**	20.00

Notes:

- The Spatial Peak value of the SAR averaged over any 1 gram of tissue.
 (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time
- ** The Spatial Peak value of the SAR averaged over any 10 gram of tissue.

 (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time

7. TEST EQUIPMENT LIST

Equipment	Manufactur	Model No.	SN	Calibration Date	Cal. interval
Cyatam	er			Date	
System Validation Dipole	SPEAG	D2450V2	1014	Jun. 07, 2018	3 Year
System Validation Dipole	SPEAG	D5GHzV2	1280	Jun. 24, 2019	3 Year
Dosimetric E- Field Probe	SPEAG	EX3DV4	7506	Jun. 27, 2019	1 Year
Dosimetric E- Field Probe	SPEAG	ES3DV3	3090	Apr. 12, 2019	1 Year
Data Acquisition Electronics	SPEAG	DAE4	662	Apr. 11, 2019	1 Year
Data Acquisition Electronics	SPEAG	DAE4	1557	Jun. 18, 2019	1 Year
ENA Series Network Analyzer	Agilent	8753ES	US39170317	Dec. 12, 2018	1 Year
Dielectric Assessment Kit	SPEAG	DAK-3.5	1056	N/A	N/A
USB/GPIB Interface	Agilent	82357B	N10149	N/A	N/A
Signal Generator	R&S	SMT06	100796	May. 14, 2019	1 Year
Signal Generator	R&S	SMB100A	103718	Dec. 12, 2018	1 Year
POWER METER	R&S	NRP	101293	Dec. 18, 2018	1 Year
Thermometer	Shanghai Gao Zhi Precision Instrument Co., Ltd.	HB6801	120100323	May. 16, 2019	1 Year
Coupler	REBES	TC-05180-10S	161221001	N/A	N/A
Amplifier	Mini-Circuit	ZHL42	QA1252001	N/A	N/A
DC Source	Agilent	66319B	MY43000795	N/A	N/A

1. MEASUREMENT UNCERTAINTY

Per FCC KDB 865884, the extensive SAR measurement uncertainty analysis was not required when the highest measured SAR was < 1.5W/kg for all frequency band.

2. E-FIELD PROBE AND DIPOLE ANTENNA CALIBRATION

Probe calibration factors and dipole antenna calibration are included in Appendix C.

APPENDIX A – SYSTEM CHECK DATA

Plot #1

Test Laboratory: UnionTrust Date: 8/30/2019

System Check B2450

DUT: Dipole 2450 MHz

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: B2450 Medium parameters used (extrapolated): f = 2450 MHz; $\sigma = 2.006$ mho/m; $\epsilon_r =$

52.889; $\rho = 1000 \text{ kg/m}^3$

DASY4 Configuration:

- Probe: ES3DV3 SN3090; ConvF(4.47, 4.47, 4.47); Calibrated: 2019-4-12
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn662; Calibrated: 2019-4-11
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1125
- -; Postprocessing SW: SEMCAD, V1.8 Build 186

Area Scan (51x71x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (interpolated) = 0.688 mW/g

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.17 V/m; Power Drift = 0.020 dB

Peak SAR (extrapolated) = 1.09 W/kg

SAR(1 g) = 0.522 mW/g; SAR(10 g) = 0.242 mW/gMaximum value of SAR (measured) = 0.679 mW/g

Plot #2

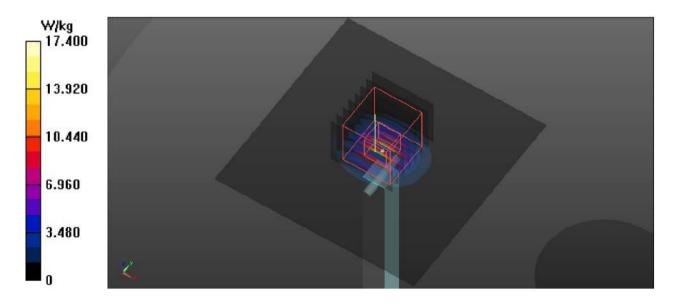
Test Laboratory: UnionTrust Date: 9/4/2019

System Check B5250

DUT: Dipole D5GHzV2

Communication System: CW; Frequency: 5250 MHz; Duty Cycle: 1:1

Medium: B5G Medium parameters used: f = 5250 MHz; $\sigma = 5.494 \text{ S/m}$; $\varepsilon_r = 48.293$; $\rho = 1000 \text{ kg/m}^3$


DASY4 Configuration:

- Probe: EX3DV4 SN7506; ConvF(5.03, 5.03, 5.03); Calibrated: 6/27/2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1557; Calibrated: 6/18/2019
- Phantom: SAM 2; Type: QD 000 P40 CB; Serial: TP-1376
- -; Postprocessing SW: SEMCAD, V1.8 Build 186

Pin=100mW/Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 17.4 W/kg

Pin=100mW/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 66.86 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 28.5 W/kg SAR(1 g) = 7.61 W/kg; SAR(10 g) = 2.18 W/kg

Maximum value of SAR (measured) = 17.5 W/kg

Plot #3

Test Laboratory: UnionTrust Date: 9/3/2019

System Check B5600

DUT: Dipole D5GHzV2

Communication System: CW; Frequency: 5600 MHz; Duty Cycle: 1:1

Medium: B5G Medium parameters used: f = 5600 MHz; $\sigma = 5.957 \text{ S/m}$; $\varepsilon_r = 47.703$; $\rho = 1000 \text{ kg/m}^3$

DASY4 Configuration:

- Probe: EX3DV4 SN7506; ConvF(4.34, 4.34, 4.34); Calibrated: 6/27/2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1557; Calibrated: 6/18/2019
- Phantom: SAM 2; Type: QD 000 P40 CB; Serial: TP-1376
- -; Postprocessing SW: SEMCAD, V1.8 Build 186

Pin=100mW/Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 19.9 W/kg

Pin=100mW/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 67.76 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 33.4 W/kg

SAR(1 g) = 8.18 W/kg; SAR(10 g) = 2.31 W/kgMaximum value of SAR (measured) = 19.4 W/kg

Plot #4

Test Laboratory: UnionTrust Date: 9/5/2019

System Check B5800

DUT: Dipole D5GHzV2

Communication System: CW; Frequency: 5800 MHz; Duty Cycle: 1:1 Medium: B5G Medium parameters used: f = 5800 MHz; $\sigma = 6.221$ S/m; $\varepsilon_r = 47.4$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: EX3DV4 SN7506; ConvF(4.41, 4.41, 4.41); Calibrated: 6/27/2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1557; Calibrated: 6/18/2019
- Phantom: SAM 2; Type: QD 000 P40 CB; Serial: TP-1376
- -; Postprocessing SW: SEMCAD, V1.8 Build 186

Pin=100mW/Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 17.9 W/kg

Pin=100mW/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 64.13 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 32.1 W/kg

SAR(1 g) = 7.45 W/kg; SAR(10 g) = 2.11 W/kgMaximum value of SAR (measured) = 17.8 W/kg

17.900
14.320
10.740
7.160
3.580
0

APPENDIX B - SAR EVALUATION DATA

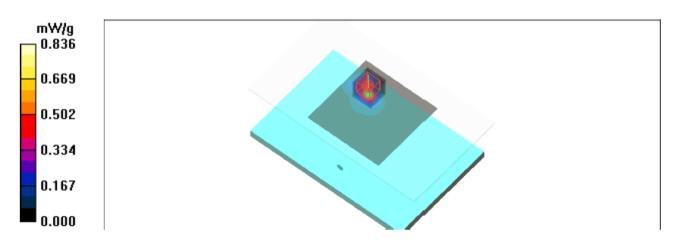
Test Laboratory: UnionTrust Date: 8/30/2019

P01 802.11b Rear Face 0mm 12 A

DUT: EUT

Communication System: Wlan 802.11b; Frequency: 2467 MHz; Duty Cycle: 1:1 Medium: B2450 Medium parameters used: f = 2467 MHz; $\sigma = 1.953$ mho/m; $\epsilon_r = 52.977$; $\rho = 1000$ kg/m³

DASY4 Configuration:


- Probe: ES3DV3 SN3090; ConvF(4.47, 4.47, 4.47); Calibrated: 2019-4-12
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn662; Calibrated: 2019-4-11
- Phantom: Triple Flat Phantom 5.1C; Type: QD 000 P51 CA; Serial: 1125
- -; Postprocessing SW: SEMCAD, V1.8 Build 186

Test/Area Scan (61x61x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (interpolated) = 0.836 mW/g

Test/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 9.99 V/m; Power Drift = -0.07 dB

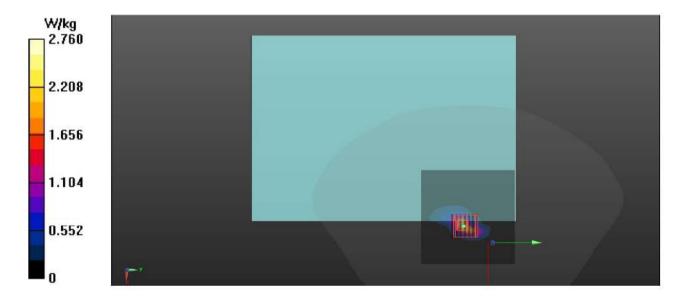
Peak SAR (extrapolated) = 2.27 W/kg

SAR(1 g) = 1.020 mW/g; SAR(10 g) = 0.389 mW/gMaximum value of SAR (measured) = 1.54 mW/g

Test Laboratory: UnionTrust Date: 9/4/2019

P02 802.11a Rear Face 0cm Ch56 Antenna A

DUT: WT9L


Communication System: 802.11a; Frequency: 5280 MHz; Duty Cycle: 1:1.02

Medium: B5G Medium parameters used: f = 5280 MHz; $\sigma = 5.51$ S/m; $\varepsilon_r = 48.273$; $\rho = 1000$ kg/m³

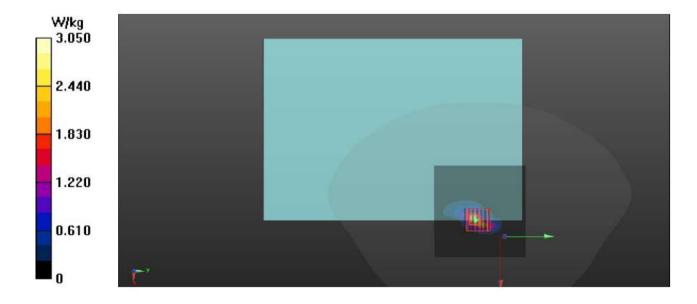
DASY4 Configuration:

- Probe: EX3DV4 SN7506; ConvF(5.03, 5.03, 5.03); Calibrated: 6/27/2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1557; Calibrated: 6/18/2019
- Phantom: SAM 2; Type: QD 000 P40 CB; Serial: TP-1376
- ; Postprocessing SW: SEMCAD, V1.8 Build 186
- Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 2.76 W/kg
- Zoom Scan (7x7x6)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 14.47 V/m; Power Drift = -0.09 dBPeak SAR (extrapolated) = 7.27 W/kgSAR(1 g) = 1.07 W/kg; SAR(10 g) = 0.318 W/kg

Maximum value of SAR (measured) = 2.72 W/kg

Test Laboratory: UnionTrust Date: 9/3/2019

P03 802.11a Rear Face 0cm Ch116 Antenna A


DUT: WT9L

Communication System: 802.11a; Frequency: 5580 MHz; Duty Cycle: 1:1.02

Medium: B5G Medium parameters used: f = 5580 MHz; $\sigma = 6.045$ S/m; $\varepsilon_r = 47.609$; $\rho = 1000$ kg/m³

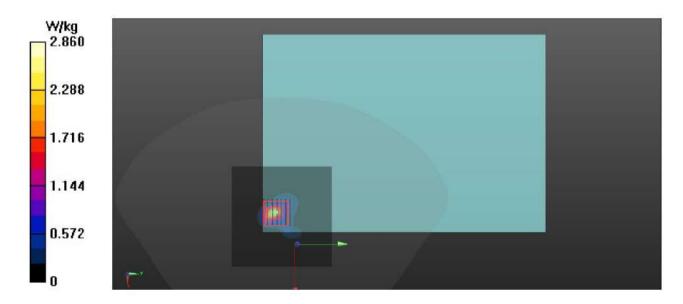
DASY4 Configuration:

- Probe: EX3DV4 SN7506; ConvF(4.34, 4.34, 4.34); Calibrated: 6/27/2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1557; Calibrated: 6/18/2019
- Phantom: SAM 2; Type: QD 000 P40 CB; Serial: TP-1376
- -; Postprocessing SW: SEMCAD, V1.8 Build 186
- Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 3.05 W/kg
- Zoom Scan (7x7x6)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 13.09 V/m; Power Drift = 0.09 dB Peak SAR (extrapolated) = 7.04 W/kg SAR(1 g) = 1.08 W/kg; SAR(10 g) = 0.286 W/kg Maximum value of SAR (measured) = 2.71 W/kg

Test Laboratory: UnionTrust Date: 9/5/2019

P04 802.11ac_VHT80_Rear Face_0cm_Ch155_Antenna B

DUT: WT9L


Communication System: 802.11ac; Frequency: 5775 MHz; Duty Cycle: 1:1.06

Medium: B5G Medium parameters used: f = 5775 MHz; $\sigma = 6.189$ S/m; $\varepsilon_r = 47.455$; $\rho = 1000$ kg/m³

DASY4 Configuration:

- Probe: EX3DV4 SN7506; ConvF(4.41, 4.41, 4.41); Calibrated: 6/27/2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1557; Calibrated: 6/18/2019
- Phantom: SAM 2; Type: QD 000 P40 CB; Serial: TP-1376
- -; Postprocessing SW: SEMCAD, V1.8 Build 186
- Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 2.86 W/kg
- Zoom Scan (7x7x6)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 13.05 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 5.27 W/kg SAR(1 g) = 1.02 W/kg; SAR(10 g) = 0.243 W/kg

Maximum value of SAR (measured) = 3.05 W/kg

APPENDIX C - E-FIELD PROBE AND DIPOLE ANTENNA CALIBRATION

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 Http://www.chinattl.cn

Client

UnionTrust

Certificate No: Z19-60101

CALIBRATION CERTIFICATE

Object

ES3DV3 - SN:3090

Calibration Procedure(s)

FF-Z11-004-01

Calibration Procedures for Dosimetric E-field Probes

Calibration date:

April 12, 2019

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards		ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NR	RP2	101919	20-Jun-18 (CTTL, No.J18X05032)	Jun-19
Power sensor NR	P-Z91	101547	20-Jun-18 (CTTL, No.J18X05032)	Jun-19
Power sensor NR	P-Z91	101548	20-Jun-18 (CTTL, No.J18X05032)	Jun-19
Reference10dBAtte	enuator	18N50W-10dB	09-Feb-18(CTTL, No.J18X01133)	Feb-20
Reference20dBAtte	enuator	18N50W-20dB	09-Feb-18(CTTL, No.J18X01132)	Feb-20
Reference Probe E.	X3DV4	SN 7514	27-Aug-18(SPEAG,No.EX3-7514_Aug18/2)	Aug-19
DAE4		SN 1555	20-Aug-18(SPEAG, No.DAE4-1555_Aug18)	Aug -19
Secondary Standard	ds	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
SignalGeneratorMG	33700A	6201052605	21-Jun-18 (CTTL, No.J18X05033)	Jun-19
Network Analyzer E	5071C	MY46110673	24-Jan-19 (CTTL, No.J19X00547)	Jan -20
	١	Name	Function	Signature
Calibrated by:		Yu Zongying	SAR Test Engineer	South
Reviewed by: Lin Hao		Lin Hao	SAR Test Engineer	机光
Approved by:		Qi Dianyuan	SAR Project Leader	SOR

Issued: April 14, 2019

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z19-60101

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com Http://www.chinattl.cn

Glossary:

TSL tissue simulating liquid NORMx,y,z sensitivity in free space

ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A,B,C,D modulation dependent linearization parameters

Polarization Φ Φ rotation around probe axis

Polarization θ θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i

 θ =0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ =0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E^2 -field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics.
- Ax,y,z; Bx,y,z; Cx,y,z;VRx,y,z:A,B,C are numerical linearization parameters assessed based on the
 data of power sweep for specific modulation signal. The parameters do not depend on frequency nor
 media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: Z19-60101 Page 2 of 11

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 Http://www.chinattl.cn

Probe ES3DV3

SN: 3090

Calibrated: April 12, 2019

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

DASY/EASY - Parameters of Probe: ES3DV3 - SN: 3090

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm(µV/(V/m)²)A	1.22	1.35	1.33	±10.0%
DCP(mV) ^B	104.2	104.9	104.1	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Unc ^E (k=2)
0	CW	Х	0.0	0.0	1.0	0.00	260.9	±2.8%
		Υ	0.0	0.0	1.0		280.0	
		Z	0.0	0.0	1.0		276.1	

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z19-60101

^A The uncertainties of Norm X, Y, Z do not affect the E²-field uncertainty inside TSL (see Page 5 and Page 6).

^B Numerical linearization parameter: uncertainty not required.

^E Uncertainly is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

DASY/EASY - Parameters of Probe: ES3DV3 - SN: 3090

Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	41.9	0.89	6.22	6.22	6.22	0.40	1.45	±12.1%
835	41.5	0.90	6.12	6.12	6.12	0.45	1.45	±12.1%
1750	40.1	1.37	5.36	5.36	5.36	0.65	1.25	±12.1%
1900	40.0	1.40	5.06	5.06	5.06	0.71	1.20	±12.1%
2300	39.5	1.67	4.81	4.81	4.81	0.90	1.08	±12.1%
2450	39.2	1.80	4.57	4.57	4.57	0.90	1.08	±12.1%
2600	39.0	1.96	4.48	4.48	4.48	0.90	1.07	±12.1%

^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

Certificate No: Z19-60101

F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^GAlpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 Http://www.chinattl.cn

DASY/EASY - Parameters of Probe: ES3DV3 - SN: 3090

Calibration Parameter Determined in Body Tissue Simulating Media

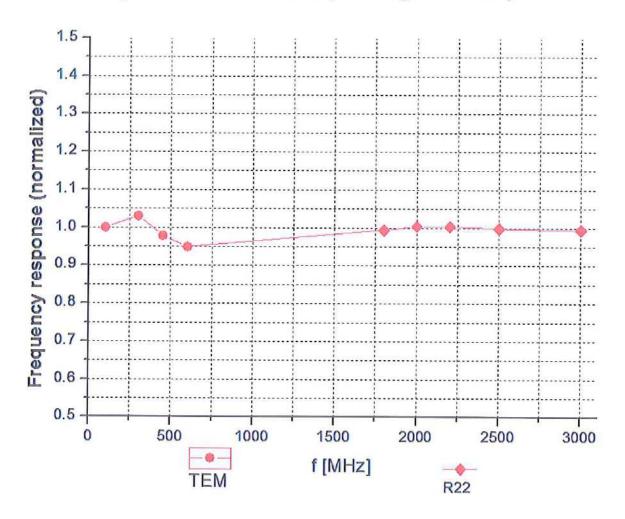
f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	55.5	0.96	6.40	6.40	6.40	0.40	1.35	±12.1%
835	55.2	0.97	6.18	6.18	6.18	0.48	1.46	±12.1%
1750	53.4	1.49	4.95	4.95	4.95	0.64	1.30	±12.1%
1900	53.3	1.52	4.79	4.79	4.79	0.65	1.29	±12.1%
2300	52.9	1.81	4.54	4.54	4.54	0.70	1.32	±12.1%
2450	52.7	1.95	4.47	4.47	4.47	0.75	1.30	±12.1%
2600	52.5	2.16	4.24	4.24	4.24	0.80	1.22	±12.1%

^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

Certificate No: Z19-60101 Page 6 of 11

F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

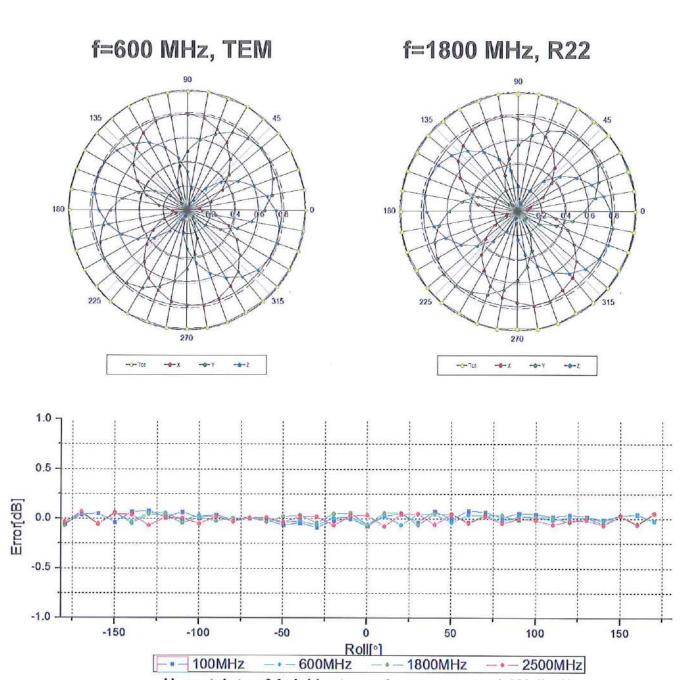


Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504
E-mail: cttl@chinattl.com

Http://www.chinattl.com

Frequency Response of E-Field

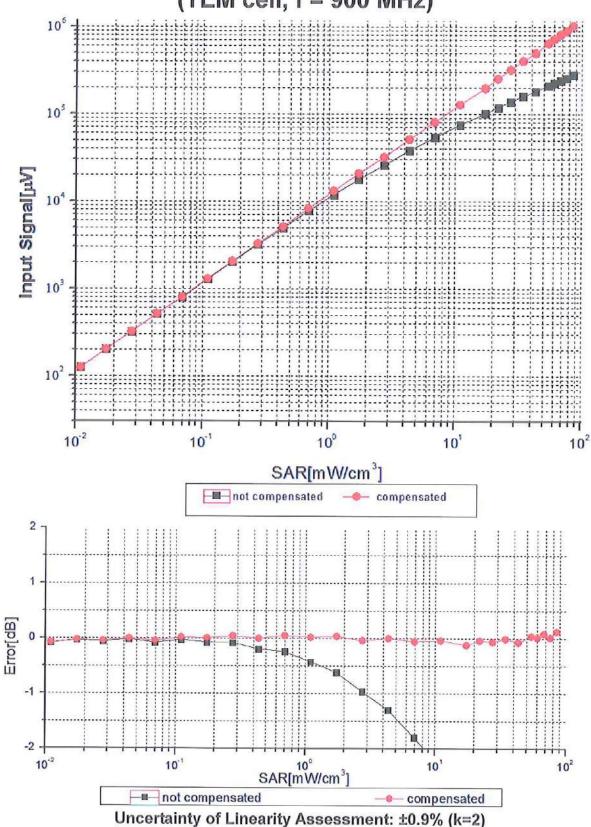
(TEM-Cell: ifi110 EXX, Waveguide: R22)



Uncertainty of Frequency Response of E-field: ±7.4% (k=2)

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

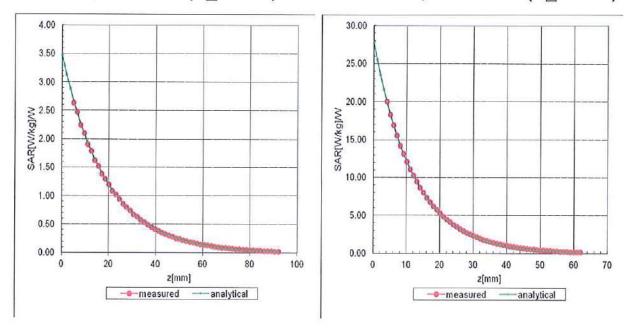
Receiving Pattern (Φ), θ=0°



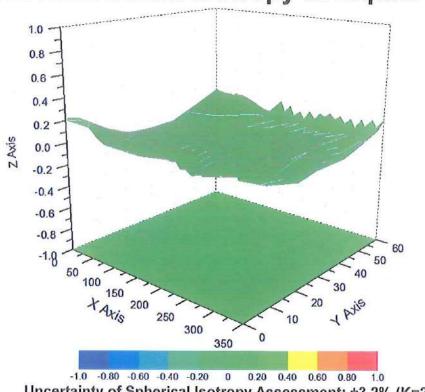
Uncertainty of Axial Isotropy Assessment: ±1.2% (k=2)

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com Http://www.chinattl.cn

Dynamic Range f(SAR_{head}) (TEM cell, f = 900 MHz)



Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn


Conversion Factor Assessment

f=835 MHz, WGLS R9(H_convF)

f=1900 MHz, WGLS R22(H_convF)

Deviation from Isotropy in Liquid

Uncertainty of Spherical Isotropy Assessment: ±3.2% (K=2)

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

DASY/EASY - Parameters of Probe: ES3DV3 - SN: 3090

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	1.2
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disable
Probe Overall Length	337mm
Probe Body Diameter	10mm
Tip Length	10mm
Tip Diameter	4mm
Probe Tip to Sensor X Calibration Point	2mm
Probe Tip to Sensor Y Calibration Point	2mm
Probe Tip to Sensor Z Calibration Point	2mm
Recommended Measurement Distance from Surface	3mm

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurlch, Switzerland

S Schweizerischer Kallbrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client

TuV-CN	(Auden)			
Hora Ma I		You was a series	a ***	

Certificate No: EX3-7506_Jun19

CALIBRATION CERTIFICATE ...

Object

EX3DV4 SN:7506

Calibration procedure(s)

QA CAL-01.v9, QA CAL-12.v9, QA CAL-14.v5, QA CAL-23.v5, QA CAL-25.v7

Calibration procedure for dosimetric E-field probes

Calibration date:

June 27, 2019

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	03-Apr-19 (No. 217-02892/02893)	Apr-20
Power sensor NRP-Z91	SN: 103244	03-Apr-19 (No. 217-02892)	Apr-20
Power sensor NRP-Z91	SN: 103245	03-Apr-19 (No. 217-02893)	Apr-20
Reference 20 dB Attenuator	SN: \$5277 (20x)	04-Apr-19 (No. 217-02894)	Apr-20
DAE4	SN: 660	19-Dec-18 (No. DAE4-660_Dec18)	Dec-19
Reference Probe ES3DV2	SN: 3013	31-Dec-18 (No. ES3-3013_Dec18)	Dec-19
Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-18)	In house check: Jun-20
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-18)	In house check: Oct-19

	Name	Function	Signature
Calibrated by:	Manu Seitz	Laboratory Technician	
Approved by:	Katja Pokovic	Technical Manager	RORS

Issued: June 27, 2019

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurlch, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Catibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid NORMx,y,z sensitivity in free space

ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters

Polarization φ σ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization \$ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is
 implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
 in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

EX3DV4 - SN:7506 June 27, 2019

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7506

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu V/(V/m)^2)^A$	0.56	0.41	0.51	± 10.1 %
DCP (mV) ^B	98.9	94.1	97.4	

Calibration Results for Modulation Response

UID	Communication System Name		A	В	С	D	VR	Max	Unc
			dB	dB√μV		dB	mV	dev.	(k=2)
0	CW	Х	0.0	0.0	1.0	0.00	145.9	±3.3 %	± 4.7 %
		Υ	0.0	0.0	1.0		143.5		
		Z	0.0	0.0	1.0		142.2		

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

<sup>Numerical linearization parameter: uncertainty not required.

Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the</sup> field value.

EX3DV4- SN:7506 June 27, 2019

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7506

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	60
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

EX3DV4- SN:7506 June 27, 2019

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7506

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
450	43.5	0.87	11.26	11.26	11.26	0.11	1.20	± 13.3 %
750	41.9	0.89	10.49	10.49	10.49	0.61	0.80	± 12.0 %
835	41.5	0.90	10.23	10.23	10.23	0.53	0.81	± 12.0 %
900	41.5	0.97	10.02	10.02	10.02	0.44	0.94	± 12.0 %
1750	40.1	1.37	8.93	8.93	8.93	0.32	0.90	± 12.0 %
1900	40.0	1.40	8.57	8.57	8.57	0.35	0.86	± 12.0 %
2000	40.0	1.40	8.46	8.46	8.46	0.33	0.86	± 12.0 %
2300	39.5	1.67	8.07	8.07	8.07	0.32	0.88	± 12.0 %
2450	39.2	1.80	7.85	7.85	7.85	0.32	0.99	± 12.0 %
2600	39.0	1.96	7.59	7.59	7.59	0.34	0.96	± 12.0 %
3500	37.9	2.91	6.91	6.91	6.91	0.30	1.30	± 13.1 %
3700	37.7	3.12	6.90	6.90	6.90	0.30	1.30	± 13.1 %
5250	35.9	4.71	5.40	5.40	5.40	0.40	1.80	± 13.1 %
5600	35.5	5.07	4.92	4.92	4.92	0.40	1.80	± 13.1 %
5800	35.3	5.27	5.05	5.05	5.05	0.40	1.80	± 13.1 %

Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4.9 MHz and ConvF assessed at 13 MHz is 9.19 MHz.

Certificate No: EX3-7506_Jun19

⁶ MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz.

At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

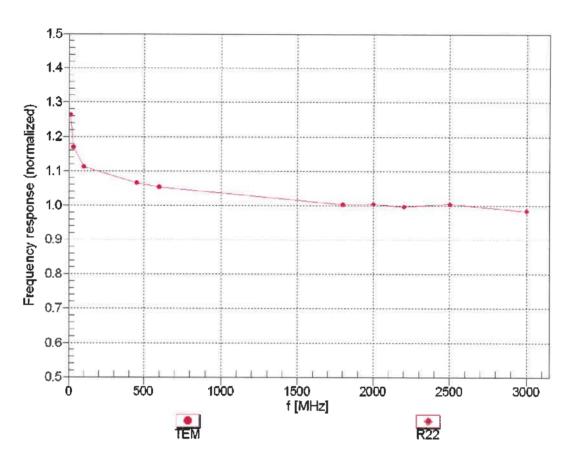
the ConvF uncertainty for indicated target tissue parameters.

Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

EX3DV4- SN:7506 June 27, 2019

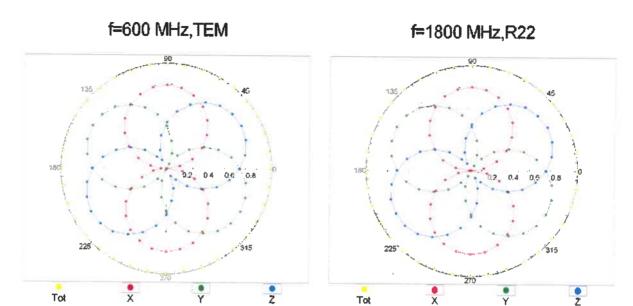
DASY/EASY - Parameters of Probe: EX3DV4 - SN:7506

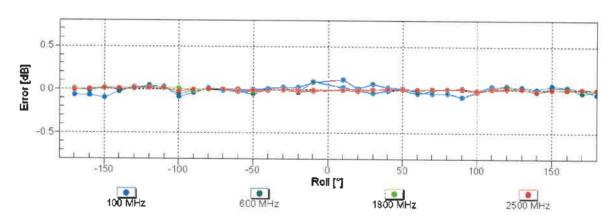
Calibration Parameter Determined in Body Tissue Simulating Media


f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
450	56.7	0.94	10.85	10.85	10.85	0.08	1.20	± 13.3 %
750	55.5	0.96	10.44	10.44	10.44	0.50	0.80	± 12.0 %
835	55.2	0.97	10.18	10.18	10.18	0.47	0.80	± 12.0 %
900	55.0	1.05	10.02	10.02	10.02	0.48	0.80	± 12.0 %
1750	53.4	1.49	8.48	8.48	8.48	0.37	0.90	± 12.0 %
1900	53.3	1.52	8.06	8.06	8.06	0.42	0.86	± 12.0 %
2000	53.3	1.52	7.97	7.97	7.97	0.42	0.86	± 12.0 %
2300	52.9	1.81	7.86	7.86	7.86	0.43	0.90	± 12.0 %
2450	52.7	1.95	7.67	7.67	7.67	0.37	0.96	± 12.0 %
2600	52.5	2.16	7.58	7.58	7.58	0.33	0.96	± 12.0 %
3500	51.3	3.31	6.68	6.68	6.68	0.40	1.30	± 13.1 %
3700	51.0	3.55	6.66	6.66	6.66	0.40	1.30	± 13.1 %
5250	48.9	5.36	5.03	5.03	5.03	0.50	1.90	± 13.1 %
5600	48.5	5.77	4.34	4.34	4.34	0.50	1.90	± 13.1 %
5800	48.2	6.00	4.41	4.41	4.41	0.50	1.90	± 13.1 %

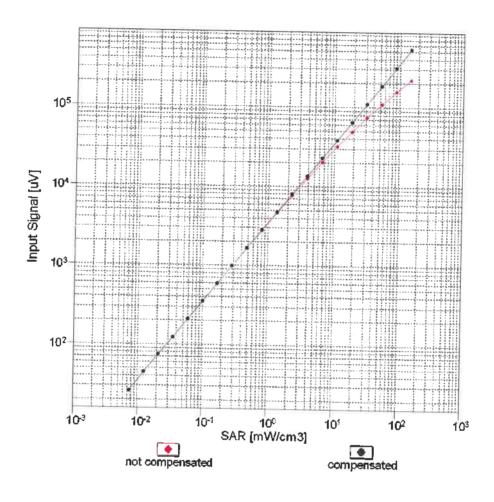
Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz.

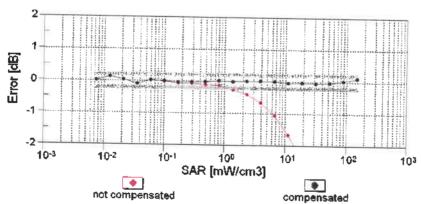
F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.


Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

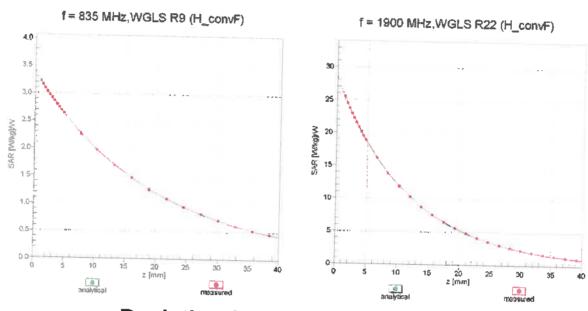

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

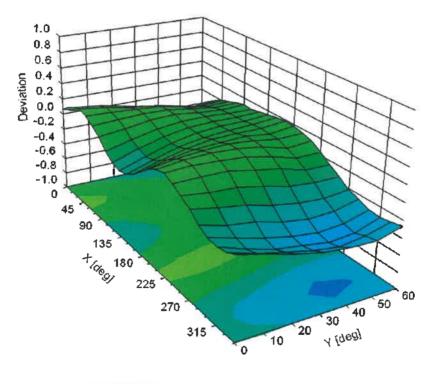
Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)


Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$



Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)


Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)



Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment

Deviation from Isotropy in Liquid Error (φ, θ), f = 900 MHz

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

Service suisse d'étalonnage

Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

TüV China (Auden)

Certificate No: D2450V2-1014 Jun18

CALIBRATION CERTIFICATE

Object D2450V2 - SN:1014

Calibration procedure(s)

QA CAL-05.v10

Calibration procedure for dipole validation kits above 700 MHz

Calibration date: June 07, 2018

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-18 (No. 217-02682)	Apr-19
Type-N mismatch combination	SN: 5047.2 / 06327	04-Apr-18 (No. 217-02683)	Apr-19
Reference Probe EX3DV4	SN: 7349	30-Dec-17 (No. EX3-7349_Dec17)	Dec-18
DAE4	SN: 601	26-Oct-17 (No. DAE4-601_Oct17)	Oct-18
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power meter EPM-442A	SN: GB37480704	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-16)	In house check: Oct-18
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-16)	In house check: Oct-18
Network Analyzer HP 8753E	SN: U\$37390585	18-Oct-01 (in house check Oct-17)	In house check: Oct-18
	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	101
		And the state of t	with the second of the second
Approved by:	Katja Pokovic	Technical Manager	
	W. W.		

Issued: June 7, 2018

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

C

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio evizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2450V2-1014_Jun18 Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.1
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	
	1	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.2 ± 6 %	1.85 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.1 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	51.4 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.09 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.1 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	52.3 ± 6 %	2.03 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	12.9 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	50.5 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.02 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	23.8 W/kg ± 16.5 % (k=2)

Certificate No: D2450V2-1014_Jun18 Page 3 of 8

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$55.0 \Omega + 3.3 j\Omega$
Return Loss	- 24.9 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	49.8 Ω + 4.1 jΩ
Return Loss	- 27.7 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.144 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	October 17, 2017

Certificate No: D2450V2-1014_Jun18

DASY5 Validation Report for Head TSL

Date: 07.06.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:1014

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.85 \text{ S/m}$; $\varepsilon_r = 38.2$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(7.88, 7.88, 7.88) @ 2450 MHz; Calibrated: 30.12.2017

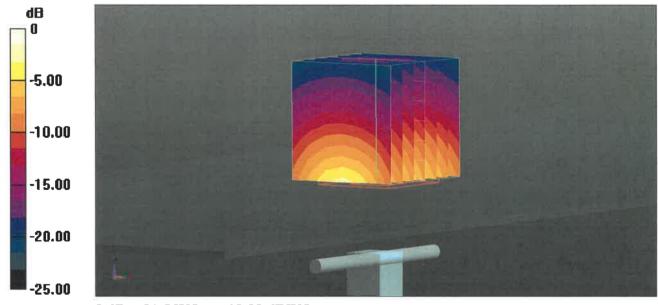
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 26.10.2017

Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001

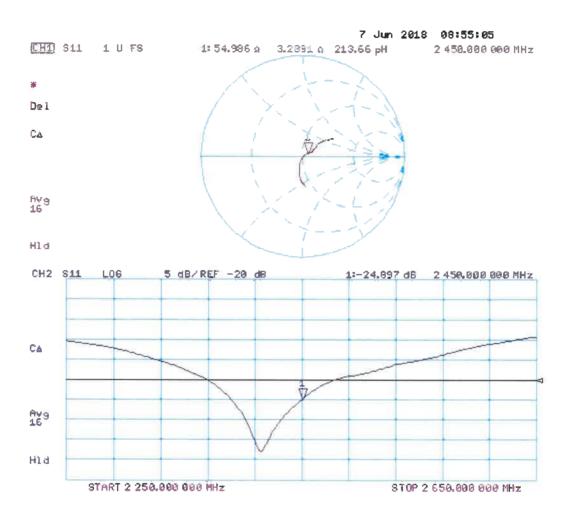
DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 115.1 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 25.9 W/kg


SAR(1 g) = 13.1 W/kg; SAR(10 g) = 6.09 W/kg

Maximum value of SAR (measured) = 21.5 W/kg

0 dB = 21.5 W/kg = 13.32 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 07.06.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:1014

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 2.03 \text{ S/m}$; $\varepsilon_r = 52.3$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(8.01, 8.01, 8.01) @ 2450 MHz; Calibrated: 30.12.2017

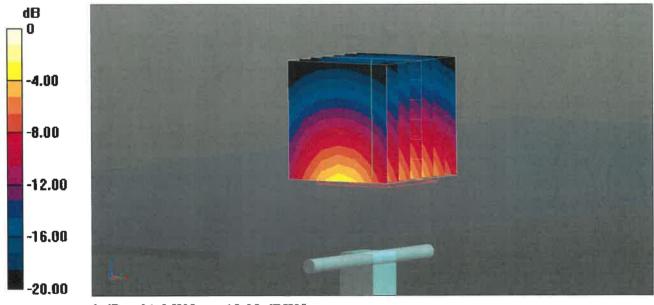
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 26.10.2017

Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002

DASY52 52.10.1(1476); SEMCAD X 14.6.11(7439)

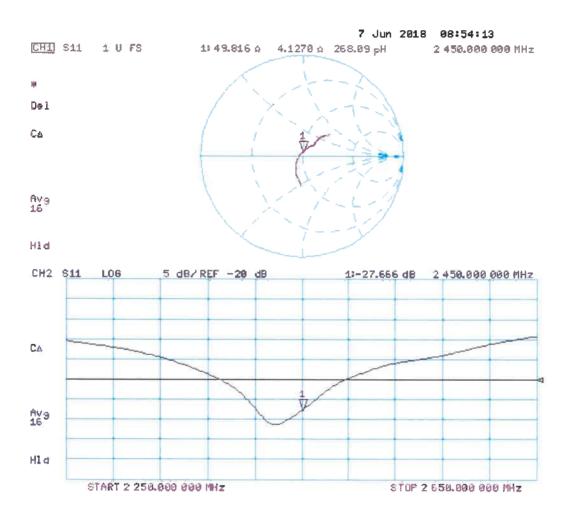
Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 107.4 V/m; Power Drift = -0.07 dB

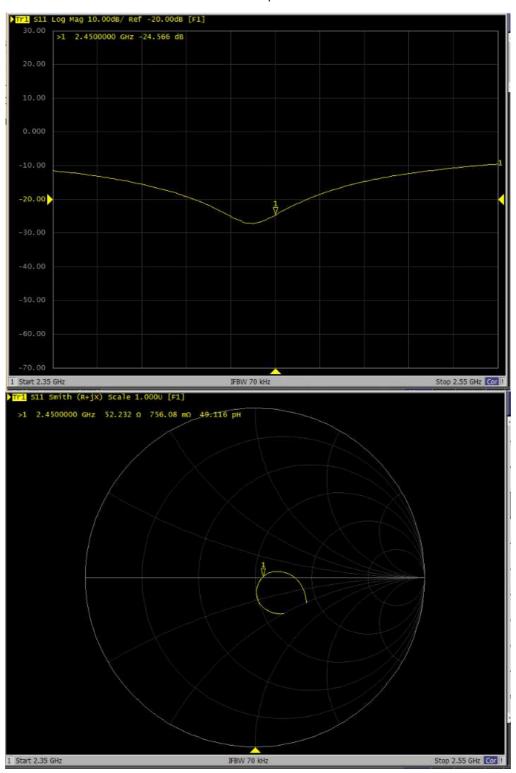
Peak SAR (extrapolated) = 25.5 W/kg

SAR(1 g) = 12.9 W/kg; SAR(10 g) = 6.02 W/kg


Maximum value of SAR (measured) = 21.0 W/kg

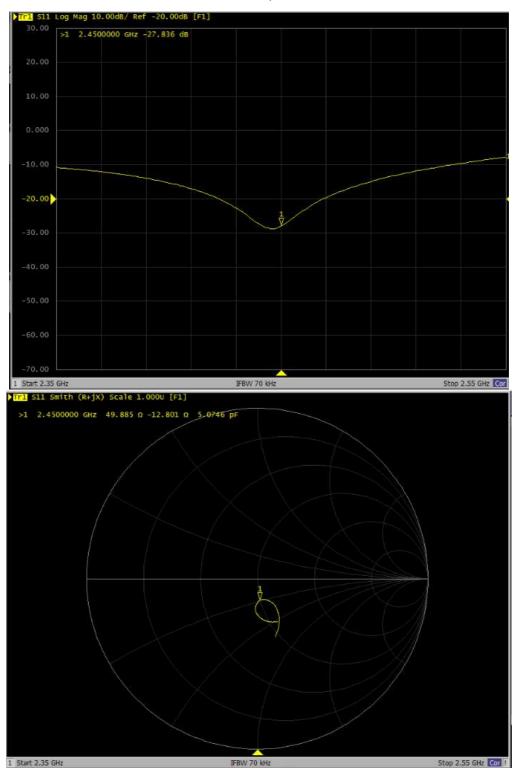
0 dB = 21.0 W/kg = 13.22 dBW/kg

Certificate No: D2450V2-1014_Jun18 Page 7 of 8


Impedance Measurement Plot for Body TSL

Justification for Extended SAR Dipole Calibrations

Dipole	Date of Measurement	Return Loss (dB)	Delta (%)	Impedance	Delta(ohm)
Head	Jun. 07, 2018	-24.9	-	55	-
2450 MHz	Apr. 17, 2019	-24.6	-1.20	52.2	-2.8


Note: The return loss is <-20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification results meet the requirement of extended calibration.

Justification for Extended SAR Dipole Calibrations

Dipole	Date of Measurement	Return Loss (dB)	Delta (%)	Impedance	Delta(ohm)
Body	Jun. 07, 2018	-27.7	-	49.8	-
2450 MHz	Apr. 17, 2019	-27.8	0.36	49.9	0.1

Note: The return loss is <-20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification results meet the requirement of extended calibration.

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurlch, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service**

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Certificate No. D5GHZV2-1280 Jun 1

Accreditation No.: SCS 0108

Object Calibration procedure(s) Calibration date: June 24, 2019

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 \pm 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	03-Apr-19 (No. 217-02892/02893)	Apr-20
Power sensor NRP-Z91	SN: 103244	03-Apr-19 (No. 217-02892)	Apr-20
Power sensor NRP-Z91	SN: 103245	03-Apr-19 (No. 217-02893)	Apr-20
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-19 (No. 217-02894)	Apr-20
Type-N mismatch combination	SN: 5047.2 / 06327	04-Apr-19 (No. 217-02895)	Apr-20
Reference Probe EX3DV4	SN: 3503	25-Mar-19 (No. EX3-3503_Mar19)	Mar-20
DAE4	SN: 601	30-Apr-19 (No. DAE4-601_Apr19)	Apr-20
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	30-Oct-14 (in house check Feb-19)	In house check: Oct-20
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-18)	In house check: Oct-20
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-18)	In house check: Oct-19
	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	216
Approved by:	Katja Pokovic	Technical Manager	Muc

Issued: June 24, 2019

This calibration certificate shall not be reproduced except in full without written approval of the laboratory,

Certificate No: D5GHzV2-1280_Jun19

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage

Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D5GHzV2-1280_Jun19 Page 2 of 13

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5250 MHz ± 1 MHz 5600 MHz ± 1 MHz	
	5800 MHz ± 1 MHz	

Head TSL parameters at 5250 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.71 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.4 ± 6 %	4.52 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		****

SAR result with Head TSL at 5250 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.96 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	80.1 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.30 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.1 W/kg ± 19.5 % (k=2)

Page 3 of 13 Certificate No: D5GHzV2-1280_Jun19

Head TSL parameters at 5600 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.9 ± 6 %	4.88 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.40 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	83.6 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.40 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.8 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5800 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.3	5.27 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.6 ± 6 %	5.08 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5800 MHz

SAR averaged over 1 cm³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.04 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	79.9 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.27 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.6 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1280_Jun19

Body TSL parameters at 5250 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.9	5.36 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.5 ± 6 %	5.49 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	44	****

SAR result with Body TSL at 5250 MHz

SAR averaged over 1 cm³ (1 g) of Body TSL Condition		
SAR measured	100 mW input power	7.3 7 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	74.8 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.06 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.9 W/kg ± 19.5 % (k=2)

Body TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.5	5.77 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.8 ± 6 %	5.97 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	7-7-	****

SAR result with Body TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.81 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	79.2 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.19 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	22.2 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1280_Jun19 Page 5 of 13

Body TSL parameters at 5800 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.2	6.00 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	46.5 ± 6 %	6.25 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL at 5800 MHz

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	100 mW input power	7.37 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	74.8 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	100 mW input power	2.06 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	20.9 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1280_Jun19 Page 6 of 13

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL at 5250 MHz

Impedance, transformed to feed point	49.0 Ω - 4.4 jΩ	
Return Loss	- 26.9 dB	

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	51.6 Ω + 2.1 jΩ	
Return Loss	- 31.7 dB	

Antenna Parameters with Head TSL at 5800 MHz

Impedance, transformed to feed point	52.4 Ω + 5.0 jΩ				
Return Loss	- 25.3 dB				

Antenna Parameters with Body TSL at 5250 MHz

Impedance, transformed to feed point	49.0 Ω - 2.2 jΩ			
Return Loss	- 32.1 dB			

Antenna Parameters with Body TSL at 5600 MHz

Impedance, transformed to feed point	$52.5 \Omega + 2.6 j\Omega$			
Return Loss	- 29.0 dB			

Antenna Parameters with Body TSL at 5800 MHz

Impedance, transformed to feed point	52.9 Ω + 5.7 jΩ				
Return Loss	- 24.2 dB				

General Antenna Parameters and Design

Electrical Delay (one direction)	1.188 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Certificate No: D5GHzV2-1280_Jun19

DASY5 Validation Report for Head TSL

Date: 21.06.2019

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1280

Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5800 MHz

Medium parameters used: f = 5250 MHz; $\sigma = 4.52$ S/m; $\epsilon_r = 35.4$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5600 MHz; $\sigma = 4.88$ S/m; $\epsilon_r = 34.9$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5800 MHz; $\sigma = 5.08$ S/m; $\epsilon_r = 34.6$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.4, 5.4, 5.4) @ 5250 MHz,
 ConvF(4.95, 4.95, 4.95) @ 5600 MHz, ConvF(4.96, 4.96, 4.96) @ 5800 MHz; Calibrated: 25.03.2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.04.2019
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.2(1504); SEMCAD X 14.6.12(7470)

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 74.91 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 27.1 W/kg

SAR(1 g) = 7.96 W/kg; SAR(10 g) = 2.30 W/kg

Maximum value of SAR (measured) = 17.0 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 75.18 V/m: Power Drift = 0.03 dB

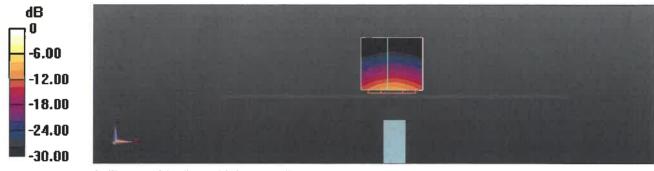
Peak SAR (extrapolated) = 31.0 W/kg

SAR(1 g) = 8.4 W/kg; SAR(10 g) = 2.4 W/kg

Maximum value of SAR (measured) = 19.6 W/kg

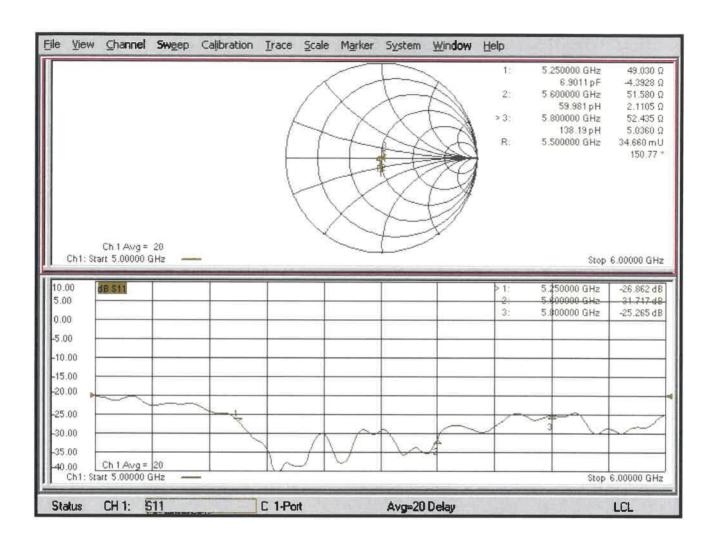
Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm


Reference Value = 72.67 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 31.7 W/kg

SAR(1 g) = 8.04 W/kg; SAR(10 g) = 2.27 W/kg


Maximum value of SAR (measured) = 19.2 W/kg

Certificate No: D5GHzV2-1280_Jun19 Page 8 of 13

0 dB = 17.0 W/kg = 12.31 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 24.06.2019

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1280

Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5800 MHz

Medium parameters used: f = 5250 MHz; $\sigma = 5.49$ S/m; $\epsilon_r = 47.5$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5600 MHz; $\sigma = 5.97$ S/m; $\epsilon_r = 46.8$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5800 MHz; $\sigma = 6.25$ S/m; $\epsilon_r = 46.5$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.26, 5.26, 5.26) @ 5250 MHz,
 ConvF(4.74, 4.74, 4.74) @ 5600 MHz, ConvF(4.62, 4.62, 4.62) @ 5800 MHz; Calibrated: 25.03.2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.04.2019
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.2(1504); SEMCAD X 14.6.12(7470)

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 66.87 V/m: Power Drift = -0.05 dB

Peak SAR (extrapolated) = 28.5 W/kg

SAR(1 g) = 7.37 W/kg; SAR(10 g) = 2.06 W/kg

Maximum value of SAR (measured) = 17.3 W/kg

Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 66.69 V/m; Power Drift = -0.03 dB

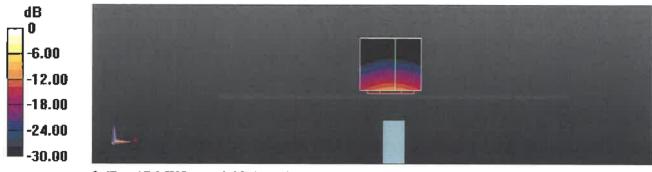
Peak SAR (extrapolated) = 33.1 W/kg

SAR(1 g) = 7.81 W/kg; SAR(10 g) = 2.19 W/kg

Maximum value of SAR (measured) = 19.0 W/kg

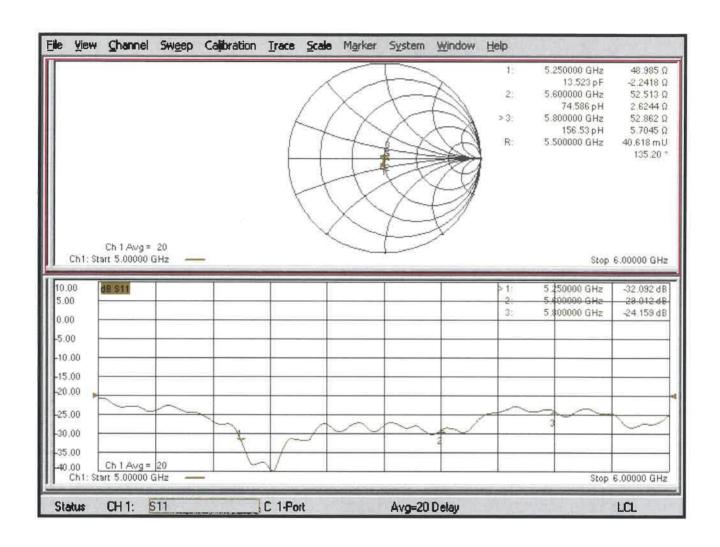
Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm


Reference Value = 64.87 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 31.9 W/kg

SAR(1 g) = 7.37 W/kg; SAR(10 g) = 2.06 W/kg


Maximum value of SAR (measured) = 18.2 W/kg

Certificate No: D5GHzV2-1280_Jun19 Page 11 of 13

0 dB = 17.3 W/kg = 12.39 dBW/kg

Impedance Measurement Plot for Body TSL

TEST REPORT

APPENDIX D – SAR SYSTEM VALIDATION

Per KDB 865664, SAR system validation status should be documented to confirm measurement accuracy. SAR measurement systems are validated according to procedures in KDB 865664. The validation status is documented according to the validation date(s), measurement frequencies, SAR probe and tissue dielectric parameters. When multiple SAR system is used, the validation status of each SAR system is needed to be documented separately according to the associated system components.

A tabulated summary of the system validation status including the validation date(s), measurement frequencies, SAR probe and tissue dielectric parameters are shown as below.

	Total		CW Validation			า	Mod. Validation				
Date	Probe S/N	Tested Freq. (MHz)	Tissue Type	Perm	Cond	Sensitivity	Probe Linearity	Probe Isotropy	Mod. Type	Duty Factor	Peak to average power ratio
Apr. 19, 2019	3090	2450	Body	2.020	50.710	Pass	Pass	Pass	OFDM	N/A	Pass
Jul. 28, 2019	7506	5250	Body	5.244	49.380	Pass	Pass	Pass	OFDM	N/A	Pass
Jul. 28, 2019	7506	5600	Body	5.582	49.220	Pass	Pass	Pass	OFDM	N/A	Pass
Jul. 28, 2019	7506	5800	Body	5.851	48.640	Pass	Pass	Pass	OFDM	N/A	Pass