

MRT Technology (Suzhou) Co., Ltd Phone: +86-512-66308358 Web: www.mrt-cert.com Report No.: 2004RSU019-U1 Report Version: V01 Issue Date: 04-19-2020

MEASUREMENT REPORT

FCC PART 15.247 WLAN 802.11b/g/n

FCC ID:	A2HCN6F14			
APPLICANT:	ALCO Electronics Limited.			
Application Type:	Certification			
Product:	Notebook			
Model No.:	NS14A5			
Serial Model No.:	CN6F14			
Brand Name:				
FCC Classification:	Digital Transmission System (DTS)			
FCC Rule Part(s):	Part 15 Subpart C (Section 15.247)			
Test Procedure(s):	ANSI C63.10-2013, KDB 662911 D01v02r01			
Test Date:	April 10 ~ 15, 2020			

Reviewed By:

Approved By:

Kevin Guo) bin Wu (Robin Wu)

The test results relate only to the samples tested.

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in ANSI C63.10-2013. Test results reported herein relate only to the item(s) tested.

The test report shall not be reproduced except in full without the written approval of MRT Technology (Suzhou) Co., Ltd.

Revision History

Report No.	Version	Description	Issue Date	Note
2004RSU019-U1	Rev. 01	Initial Report	04-19-2020	Valid

CONTENTS

Des	scriptio	n	Page
Ger	neral In	formation	5
1.	INTRO	ODUCTION	6
	1.1.	Scope	6
	1.2.	MRT Test Location	6
2.	PROD	DUCT INFORMATION	7
	2.1.	Feature of Equipment under Test	7
	2.2.	Product Specification Subjective to this Report	7
	2.3.	Working Frequencies for this report	8
	2.4.	Description of Available Antennas	
	2.5.	Test Mode	9
	2.6.	Test Software	9
	2.7.	Duty Cycle	9
	2.8.	EMI Suppression Device(s)/Modifications	10
	2.9.	Labeling Requirements	10
3.	DESC	RIPTION of TEST	11
	3.1.	Evaluation Procedure	11
	3.2.	AC Line Conducted Emissions	11
	3.3.	Radiated Emissions	12
4.	ANTE	NNA REQUIREMENTS	13
5.	TEST	EQUIPMENT CALIBRATION DATE	14
6.	MEAS	SUREMENT UNCERTAINTY	16
7.	TEST	RESULT	17
	7.1.	Summary	
	7.2.	6dB Bandwidth Measurement	
	7.2.1.	Test Limit	
	7.2.2.	Test Procedure used	
	7.2.3.	Test Setting	
	7.2.4.	Test Setup	18
	7.2.5.	Test Result	19
	7.3.	Output Power Measurement	24
	7.3.1.	Test Limit	
	7.3.2.	Test Procedure Used	
	7.3.3.	Test Setting	24

	7.3.4.	Test Setup	25		
	7.3.5.	Test Result			
	7.4.	Power Spectral Density Measurement	29		
	7.4.1.	Test Limit	29		
	7.4.2.	Test Procedure Used	29		
	7.4.3.	Test Setting	29		
	7.4.4.	Test Setup	29		
	7.4.5.	Test Result	30		
	7.5.	Conducted Band Edge and Out-of-Band Emissions	39		
	7.5.1.	Test Limit	39		
	7.5.2.	Test Procedure Used	39		
	7.5.3.	Test Settitng	39		
	7.5.4.	Test Setup	40		
	7.5.5.	Test Result	41		
	7.6.	Radiated Spurious Emission Measurement	50		
	7.6.1.	Test Limit	50		
	7.6.2.	Test Procedure Used	50		
	7.6.3.	Test Setting	50		
	7.6.4.	Test Setup	52		
	7.6.5.	Test Result	53		
	7.7.	Radiated Restricted Band Edge Measurement	67		
	7.7.1.	Test Limit	67		
	7.7.2.	Test Procedure Used	68		
	7.7.3.	Test Setting	68		
	7.7.4.	Test Setup	69		
	7.7.5.	Test Result	70		
	7.8.	AC Conducted Emissions Measurement	102		
	7.8.1.	Test Limit	102		
	7.8.2.	Test Setup	102		
	7.8.3.	Test Result	103		
8.	CONC	LUSION	105		
Арр	Appendix A - Test Setup Photograph106				
Арр	endix E	B - EUT Photograph	107		

General Information

Applicant:	ALCO Electronics Limited.			
Applicant Address:	11/F Metropole Square, 2 On Yiu Street, Sha Tin, New Territories, Hong			
	Kong			
Manufacturer:	ALCO Electronics (Dongguan) Limited.			
Manufacturer Address:	Gong Ye Xi Road, Houjie Technology Industrial Park, Dongguan,			
	Guangdong, P.R.C. Postal Code:523960			
Test Site:	MRT Technology (Suzhou) Co., Ltd			
Test Site Address:	D8 Building, No.2 Tian'edang Rd., Wuzhong Economic Development			
	Zone, Suzhou, China			
Test Device Serial No.:	N/A Production Pre-Production Engineering			

Test Facility / Accreditations

Measurements were performed at MRT Laboratory located in Tian'edang Rd., Suzhou, China.

- MRT facility is a FCC registered (MRT Designation No. CN1166) test facility with the site description report on file and has met all the requirements specified in ANSI C63.4-2014.
- MRT facility is an IC registered (MRT Reg. No. 11384A-1) test laboratory with the site description on file at Industry Canada.
- MRT facility is a VCCI registered (R-20025, G-20034, C-20020, T-20020) test laboratory with the site description on file at VCCI Council.
- MRT Lab is accredited to ISO 17025 by the American Association for Laboratory Accreditation (A2LA) under the American Association for Laboratory Accreditation Program (A2LA Cert. No. 3628.01) in EMC, Telecommunications, Radio and SAR testing.

1. INTRODUCTION

1.1. Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Innovation, Science and Economic Development Canada and Certification and Engineering Bureau.

1.2. MRT Test Location

The map below shows the location of the MRT LABORATORY, its proximity to the Taihu Lake. These measurement tests were conducted at the MRT Technology (Suzhou) Co., Ltd. Facility located at D8 Building, No.2 Tian'edang Rd., Wuzhong Economic Development Zone, Suzhou, China. The measurement facility compliant with the test site requirements specified in ANSI C63.4-2014.

2. PRODUCT INFORMATION

2.1. Feature of Equipment under Test

Product Name:	Notebook			
Model No.:	NS14A5			
Serial Model No.:	CN6F14			
Brand Name:				
Wi-Fi Specification:	302.11a/b/g/n/ac			
Bluetooth Version:	v4.2 dual mode			
Accessory				
AC Adapter:	MODEL: A17-065N1A			
	INPUT: 100-240V ~ 50/60Hz, Max. 1.8A			
	OUTPUT: 20Vdc, 3.25A/15Vdc, 3A/9Vdc, 2A/5Vdc, 2A			

Note: The different models are only for marketing different clients, others are the same.

2.2. Product Specification Subjective to this Report

Frequency Range	802.11b/g/n-HT20: 2412 ~ 2462 MHz
	802.11n-HT40: 2422 ~ 2452 MHz
Type of Modulation	802.11b: DSSS
	802.11g/n: OFDM
Data Rate	802.11b: 1/2/5.5/11Mbps
	802.11g: 6/9/12/18/24/36/48/54Mbps
	802.11n: up to 300Mbps

Note: For other features of this EUT, test report will be issued separately.

2.3. Working Frequencies for this report

802.11b/g/n-HT20

Channel	Frequency	Channel	Frequency	Channel	Frequency
01	2412 MHz	02	2417 MHz	03	2422 MHz
04	2427 MHz	05	2432 MHz	06	2437 MHz
07	2442 MHz	08	2447 MHz	09	2452 MHz
10	2457 MHz	11	2462 MHz		

802.11n-HT40

Channel	Frequency	Channel	Frequency	Channel	Frequency
03	2422 MHz	04	2427 MHz	05	2432 MHz
06	2437 MHz	07	2442 MHz	08	2447 MHz
09	2452 MHz				

2.4. Description of Available Antennas

Antenna Type	Frequency	T _x Paths	Max Antenna Gain	CDD Directio	nal Gain (dBi)	
	Band (MHz)		(dBi)	For Power	For PSD	
Wi-Fi Antenna	Wi-Fi Antenna					
	2412 ~ 2462					
PIFA Antenna	5150 ~ 5250	2	0.45	0.45	4.46	
	5725 ~ 5850					
Bluetooth Antenna						
PIFA Antenna	2402 ~ 2480	1	0.45			

Note 1: Device supports two antennas (Main Ant and AUX Ant), we defined AUX Ant as Ant A and Main Ant as Ant B.

Note 2: The EUT supports Cyclic Delay Diversity (CDD) mode, and CDD signals are correlated.

For CDD transmissions, directional gain is calculated as follows, $N_{ANT} = 2$, $N_{SS} = 1$.

If all antennas have the same gain, G_{ANT} , Directional gain = G_{ANT} + Array Gain, where Array Gain is as follows.

For power spectral density (PSD) measurements on all devices,

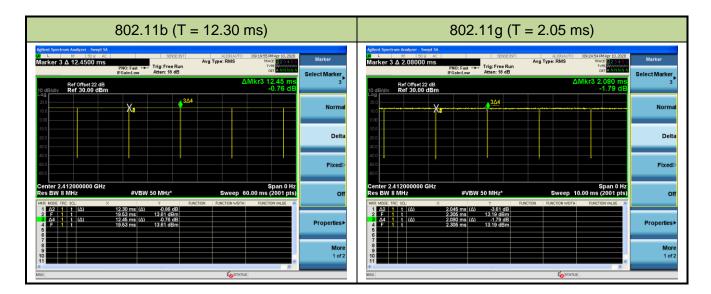
Array Gain = 10 log (N_{ANT}/ N_{SS}) dB = 3.01;

• For power measurements on IEEE 802.11 devices,

Array Gain = 0 dB for $N_{ANT} \le 4$;

2.5. Test Mode

Test Mode	Mode 1: Transmit by 802.11b (1Mbps)
	Mode 2: Transmit by 802.11g (6Mbps)
	Mode 3: Transmit by 802.11n-HT20 (MCS0)
	Mode 3: Transmit by 802.11n-HT40 (MCS0)


2.6. Test Software

The test utility software used during testing was "DRTU", and the version was "11.1823.0-07788".

2.7. Duty Cycle

2.4GHz WLAN (DTS) operation is possible in 20MHz and 40MHz channel bandwidth. The maximum achievable duty cycles for all modes were determined based on measurements performed on a spectrum analyzer in zero-span mode with RBW = 8MHz, VBW = 50MHz, and detector = peak. The RBW and VBW were both greater than 50/T, where T is the minimum transmission duration, and the number of sweep points across T was greater than 100. The duty cycles are as follows:

Test Mode	Duty Cycle
802.11b	98.80%
802.11g	98.32%
802.11n-HT20	98.93%
802.11n-HT40	98.50%

802.11n-HT20	(T = 18.48 ms)	802.11n-HT40 (T = 8.88 ms)		
Aglunt Spectrum Analyzer - Somp & A Description - Spectrum - Spec	Aug Type: RMS Proc. Proc. Proc. Communication Marker Communication Marker Marker Select Marker 3 ΔMkr3 18.68 ms 3 3 3	Andrem Spectrum Analyzer Service 301 #1011010 092344119400 1023000 Marker Marker 3 Δ 9,01333 ms FR00 rate Trigs Free Run Figure 18 dB Avg Type: RMS Trick Based trick 18 dB Marker Select Marker Marker Ref Offset 22 dB CHM rd 9,0133 ms CHM rd 9,013 ms Select Marker Select Marker Select Marker 10 dB/dW Ref 30,00 dBm		
200 X3	Normal			
100	Delta			
400	Fixed⊳	400 Fixe		
Center 2.412000000 GHz Res BW 8 MHz #VBW 50 MHz* MKR MODE TRC: SCL X Y FUR	Span 0 Hz Sweep 80.00 ms (2001 pts)	Center 2.422000000 GHz Span 0 Hz Span 0 Hz Res BW 8 MHz #VBW 50 MHz* Sweep 45.07 ms (2001 pts) Mm Rw6c TRC S0. × Y Ruction wohiti R Ruction wohiti R		
1 Δ2 1 t 19.48 ms (Δ) -2.99 dB 2 F 1 t 2120 ms 12.90 dBm 0.44 1 t (Δ) 19.68 ms (Δ) -2.09 dB 0.44 1 t (Δ) 19.68 ms (Δ) -2.09 dB 6 F 1 t 21.20 ms 12.90 dBm 6 G G G 12.90 dBm 12.90 dBm	Properties►	1 1		
7 8 9 10 11 11	More 1 of 2	7		
MSG	€ <mark>0</mark> STATUS	MSG 🛛		

2.8. EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and/or no modifications were made during testing.

2.9. Labeling Requirements

Per 2.1074 & 15.19; Docket 95-19

The label shall be permanently affixed at a conspicuous location on the device; instruction manual or pamphlet supplied to the user and be readily visible to the purchaser at the time of purchase. However, when the device is so small wherein placement of the label with specified statement is not practical, only the FCC ID must be displayed on the device per Section 15.19(a)(5). Please see attachment for FCC ID label and label location.

3. DESCRIPTION of TEST

3.1. Evaluation Procedure

The measurement procedure described in the document titled "American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices" (ANSI C63.10-2013) was used in the measurement.

3.2. AC Line Conducted Emissions

The line-conducted facility is located inside an 8'x4'x4' shielded enclosure. A 1m x 2m wooden table 80cm high is placed 40cm away from the vertical wall and 80cm away from the sidewall of the shielded room. Two 10kHz-30MHz, $50\Omega/50$ uH Line-Impedance Stabilization Networks (LISNs) are bonded to the shielded room floor. Power to the LISNs is filtered by external high-current high-insertion loss power line filters. These filters attenuate ambient signal noise from entering the measurement lines. These filters are also bonded to the shielded enclosure.

The EUT is powered from one LISN and the support equipment is powered from the second LISN. All interconnecting cables more than 1 meter were shortened to a 1 meter length by non-inductive bundling (serpentine fashion) and draped over the back edge of the test table. All cables were at least 40cm above the horizontal reference ground-plane. Power cables for support equipment were routed down to the second LISN while ensuring that that cables were not draped over the second LISN.

Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the receiver and exploratory measurements were made to determine the frequencies producing the maximum emission from the EUT. The receiver was scanned from 150kHz to 30MHz. The detector function was set to peak mode for exploratory measurements while the bandwidth of the analyzer was set to 9kHz. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Each emission was also maximized by varying: power lines, the mode of operation or data exchange speed, or support equipment whichever determined the worst-case emission. Once the worst case emissions have been identified, the one EUT cable configuration/arrangement and mode of operation that produced these emissions are used for final measurements on the same test site. The analyzer is set to CISPR quasi-peak and average detectors with a 9kHz resolution bandwidth for final measurements.

An extension cord was used to connect to a single LISN which powered by EUT. The extension cord was calibrated with LISN, the impedance and insertion loss are compliance with the requirements as stated in ANSI C63.10-2013.

3.3. Radiated Emissions

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. For measurements above 1GHz absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections. For measurements below 1GHz, the absorbers are removed. A MF Model 210SS turntable is used for radiated measurement. It is a continuously rotatable, remote controlled, metallic turntable and 2 meters (6.56 ft.) in diameter. The turn table is flush with the raised floor of the chamber in order to maintain its function as a ground plane. An 80cm high PVC support structure is placed on top of the turntable. For all measurements, the spectrum was scanned through all EUT azimuths and from 1 to 4 meter receive antenna height using a broadband antenna from 30MHz up to the upper frequency shown in 15.33(b)(1) depending on the highest frequency generated or used in the device or on which the device operates or tunes. For frequencies above 1GHz, linearly polarized double ridge horn antennas were used. For frequencies below 30MHz, a calibrated loop antenna was used. When exploratory measurements were necessary, they were performed at 1 meter test distance inside the semi-anechoic chamber using broadband antennas, broadband amplifiers, and spectrum analyzers to determine the frequencies and modes producing the maximum emissions. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The test set-up for frequencies below 1GHz was placed on top of the 0.8 meter high, 1 x 1.5 meter table; and test set-up for frequencies 1-40GHz was placed on top of the 1.5 meter high, 1 x 1.5 meter table. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Appropriate precaution was taken to ensure that all emissions from the EUT were maximized and investigated. The system configuration, clock speed, mode of operation or video resolution, if applicable, turntable azimuth, and receive antenna height was noted for each frequency found.

Final measurements were made in the semi-anechoic chamber using calibrated, linearly polarized broadband and horn antennas. The test setup was configured to the setup that produced the worst case emissions. The spectrum analyzer was set to investigate all frequencies required for testing to compare the highest radiated disturbances with respect to the specified limits. The turntable containing the EUT was rotated through 360 degrees and the height of the receive antenna was varied 1 to 4 meters and stopped at the azimuth and height producing the maximum emission. Each emission was maximized by changing the orientation of the EUT through three orthogonal planes and changing the polarity of the receive antenna, whichever produced the worst-case emissions. According to 3dB Beam-Width of horn antenna, the horn antenna should be always directed to the EUT when rising height.

4. ANTENNA REQUIREMENTS

Excerpt from §15.203 of the FCC Rules/Regulations:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

- The antenna of the unit is **permanently attached.**
- There are no provisions for connection to an external antenna.

Conclusion:

The unit complies with the requirement of §15.203.

5. TEST EQUIPMENT CALIBRATION DATE

Conducted Emissions - SR2

Instrument	Manufacturer	Type No.	Asset No.	Cali. Interval	Cali. Due Date
EMI Test Receiver	R&S	ESR3	MRTSUE06185	1 year	2021/01/18
Two-Line V-Network	R&S	ENV 216	MRTSUE06002	1 year	2020/06/13
Two-Line V-Network	R&S	ENV 216	MRTSUE06003	1 year	2020/06/13
Thermohygrometer	Testo	608-H1	MRTSUE06404	1 year	2020/08/08
Shielding Room	MIX-BEP	Chamber-SR2	MRTSUE06215	N/A	N/A

Radiated Emissions - AC1

Instrument	Manufacturer	Type No.	Asset No.	Cali. Interval	Cali. Due Date
EMI Test Receiver	R&S	ESR7	MRTSUE06001	1 year	2020/08/01
PXA Signal Analyzer	Keysight	9030B	MRTSUE06395	1 year	2020/09/03
Loop Antenna	Schwarzbeck	FMZB 1519	MRTSUE06025	1 year	2020/11/10
Bilog Period Antenna	Schwarzbeck	VULB 9168	MRTSUE06172	1 year	2021/04/03
Broad Band Horn Antenna	Schwarzbeck	BBHA 9120D	MRTSUE06023	1 year	2020/10/13
Broad Band Horn Antenna	Schwarzbeck	BBHA 9170	MRTSUE06024	1 year	2021/02/23
Microwave System Amplifier	Agilent	83017A	MRTSUE06076	1 year	2020/11/15
Preamplifier	Schwarzbeck	BBV 9721	MRTSUE06121	1 year	2020/06/11
Thermohygrometer	Testo	608-H1	MRTSUE06403	1 year	2020/08/08
Anechoic Chamber	ТDК	Chamber-AC1	MRTSUE06212	1 year	2020/04/30

Radiated Emission - AC2

Instrument	Manufacturer	Type No.	Asset No.	Cali. Interval	Cali. Due Date
Spectrum Analyzer	Keysight	N9038A	MRTSUE06125	1 year	2020/08/01
Loop Antenna	Schwarzbeck	FMZB 1519	MRTSUE06025	1 year	2020/11/10
Bilog Period Antenna	Schwarzbeck	VULB 9162	MRTSUE06022	1 year	2020/10/13
Horn Antenna	Schwarzbeck	BBHA9120D	MRTSUE06171	1 year	2020/10/27
Broad Band Horn Antenna	Schwarzbeck	BBHA 9170	MRTSUE06024	1 year	2021/02/23
Broadband Coaxial Preamplifier	Schwarzbeck	BBV 9718	MRTSUE06176	1 year	2020/11/15
Preamplifier	Schwarzbeck	BBV 9721	MRTSUE06121	1 year	2020/06/11
Temperature/Humidity Meter	Minggao	ETH529	MRTSUE06170	1 year	2020/12/15
Anechoic Chamber	RIKEN	Chamber-AC2	MRTSUE06213	1 year	2020/04/30

Conducted Test Equipment - TR3

Instrument	Manufacturer	Type No.	Asset No.	Cali. Interval	Cali. Due Date
EXA Signal Analyzer	Agilent	N9020A	MRTSUE06106	1 year	2021/04/14
EXA Signal Analyzer	Keysight	N9010B	MRTSUE06452	1 year	2020/07/11
Signal Analyzer	R&S	FSV40	MRTSUE06218	1 year	2021/04/14
Power Meter	Agilent	U2021XA	MRTSUE06030	1 year	2020/11/18
USB wideband power sensor	Keysight	U2021XA	MRTSUE06446	1 year	2020/06/30
USB wideband power sensor	Keysight	U2021XA	MRTSUE06447	1 year	2020/06/30
Bluetooth Test Set	Anritsu	MT8852B-042	MRTSUE06389	1 year	2020/06/13
Audio Analyzer	Agilent	U8903B	MRTSUE06143	1 year	2020/06/13
Modulation Analyzer	HP	8901A	MRTSUE06098	1 year	2020/10/10
Wideband Radio Communication Tester	R&S	CMW 500	MRTSUE06243	1 year	2020/11/07
DC Power Supply	GWINSTEK	DPS-3303C	MRTSUE06064	N/A	N/A
Temperature & Humidity Chamber	BAOYT	BYH-150CL	MRTSUE06051	1 year	2020/11/07
Thermohygrometer	testo	608-H1	MRTSUE06401	1 year	2020/08/08

Software	Version	Function
EMI Software	V3	EMI Test Software

6. MEASUREMENT UNCERTAINTY

Where relevant, the following test uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Conducted Emis	ssion Measurement - SR2				
	um measurement uncertainty is evaluated as:				
9kHz~150k	Hz: 3.84dB				
150kHz~30	MHz: 3.46dB				
Radiated Emiss	ion Measurement - AC1				
The maxim	um measurement uncertainty is evaluated as:				
Horizontal:	30MHz~300MHz: 4.07dB				
	300MHz~1GHz: 3.63dB				
	1GHz~18GHz: 4.16dB				
Vertical:	30MHz~300MHz: 4.18dB				
	300MHz~1GHz: 3.60dB				
	1GHz~18GHz: 4.76dB				
Radiated Emiss	ion Measurement - AC2				
The maxim	um measurement uncertainty is evaluated as:				
Horizontal:	30MHz~300MHz: 3.75dB				
	300MHz~1GHz: 3.53dB				
	1GHz~18GHz: 4.28dB				
Vertical:	30MHz~300MHz: 3.86dB				
	300MHz~1GHz: 3.53dB				
	1GHz~18GHz: 4.33dB				

7. TEST RESULT

7.1. Summary

FCC Part Section(s)	Test Description	Test Limit	Test Condition	Test Result	Reference
15.247(a)(2)	6dB Bandwidth	≥ 500kHz		Pass	Section 7.2
15.247(b)(3)	Output Power	≤ 30dBm		Pass	Section 7.3
15.247(e)	Power Spectral Density	Refer to Section 7.4	Conducted	Pass	Section 7.4
15.247(d)	Band Edge / Out-of-Band Emissions	≤ 20dBc (Peak)		Pass	Section 7.5
15.205 15.209	General Field Strength Limits (Restricted Bands and Radiated Emission Limits)	Emissions in restricted bands must meet the radiated limits detailed in 15.209	Radiated	Pass	Section 7.6 & 7.7
15.207	AC Conducted Emissions 150kHz - 30MHz	< FCC 15.207 limits	Line Conducted	Pass	Section 7.8

Notes:

1) All modes of operation and data rates were investigated. For radiated emission test, the test results shown in the following sections represent the worst case emissions.

- 2) The analyzer plots shown in this section were all taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables and attenuators used as part of the system to connect the EUT to the analyzer at all frequencies of interest.
- Test Items "6dB Bandwidth" & "Band Edge / Out-of-Band Emissions" have been assessed MIMO transmission, and showed the worst test data in this report.

7.2. 6dB Bandwidth Measurement

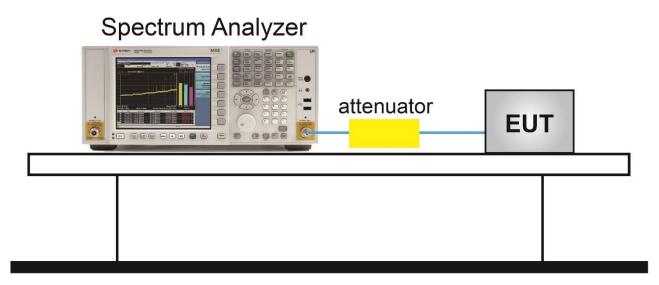
7.2.1.Test Limit

The minimum 6dB bandwidth shall be at least 500 kHz.

7.2.2.Test Procedure used

ANSI C63.10-2013 Section 11.8

7.2.3.Test Setting


1. The Spectrum's automatic bandwidth measurement capability was used to perform the 6dB

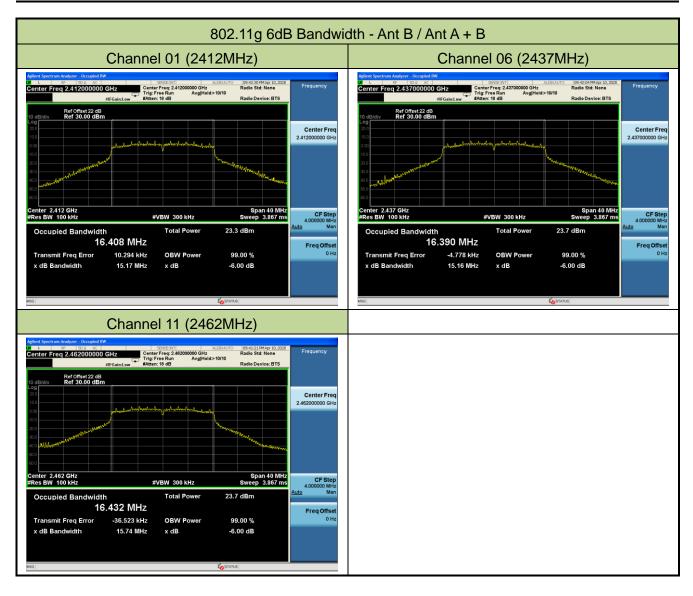
bandwidth measurement. The "X" dB bandwidth parameter was set to X = 6. The bandwidth

measurement was not influenced by any intermediate power nulls in the fundamental emission.

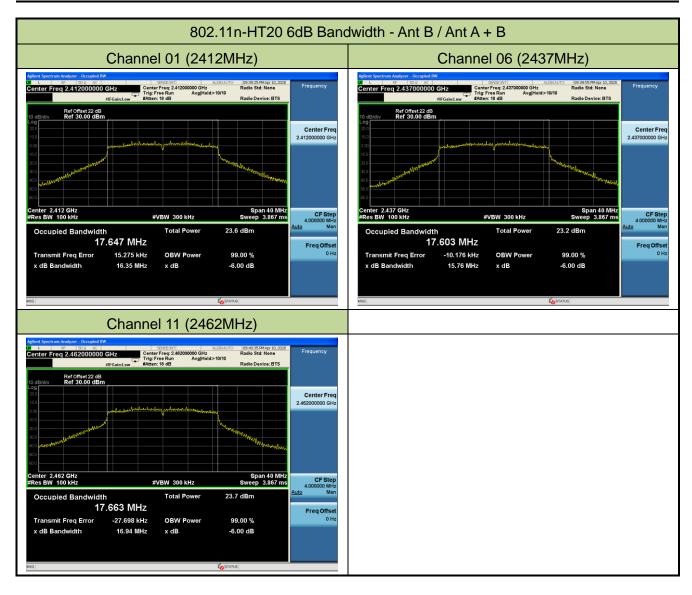
- 2. Set RBW = 100 kHz
- 3. VBW \ge 3 × RBW
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep = auto couple
- 7. Allow the trace was allowed to stabilize

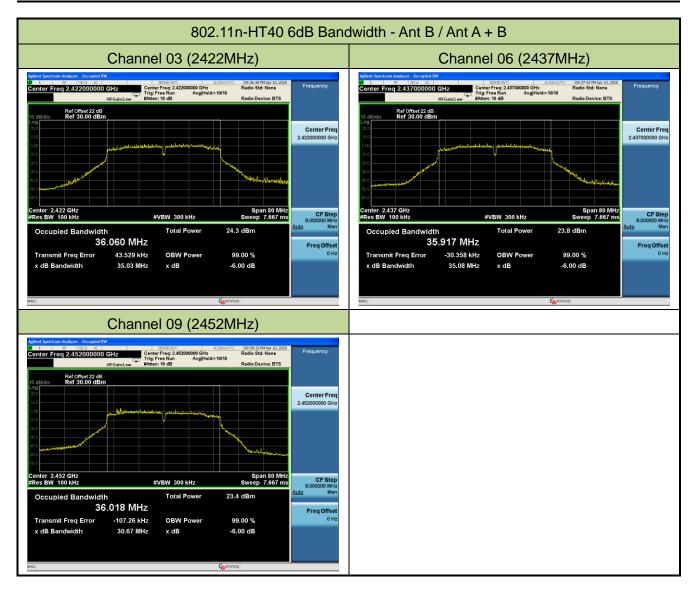
7.2.4.Test Setup

7.2.5.Test Result


Product	Notebook	Temperature	25.5°C
Test Engineer	Flag Yang	Relative Humidity	67%
Test Site	TR3	Test Date	2020/04/10

Test Mode	Data Rate	Channel No.	Frequency	6dB Bandwidth	Limit	Result
	(Mbps)		(MHz)	(MHz)	(MHz)	
Ant B / Ant A	+ B					
11b	1Mbps	01	2412	10.15	≥ 0.5	Pass
11b	1Mbps	06	2437	10.15	≥ 0.5	Pass
11b	1Mbps	11	2462	10.16	≥ 0.5	Pass
11g	6Mbps	01	2412	15.17	≥ 0.5	Pass
11g	6Mbps	06	2437	15.16	≥ 0.5	Pass
11g	6Mbps	11	2462	15.74	≥ 0.5	Pass
11n-HT20	MCS0	01	2412	16.35	≥ 0.5	Pass
11n-HT20	MCS0	06	2437	15.76	≥ 0.5	Pass
11n-HT20	MCS0	11	2462	16.94	≥ 0.5	Pass
11n-HT40	MCS0	03	2422	35.03	≥ 0.5	Pass
11n-HT40	MCS0	06	2437	35.08	≥ 0.5	Pass
11n-HT40	MCS0	09	2452	30.67	≥ 0.5	Pass





7.3. Output Power Measurement

7.3.1.Test Limit

The maximum out power shall be less 1 Watt (30dBm).

The conducted output power limit specified in paragraph FCC Part 15.247(b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs FCC Part 15.247(b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

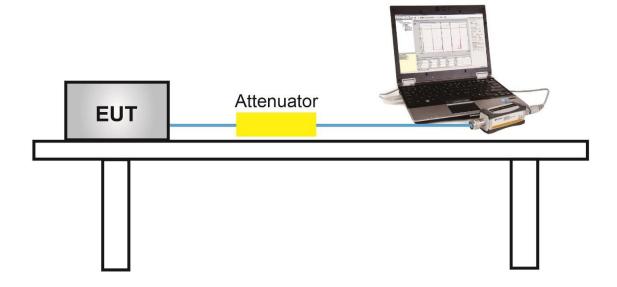
7.3.2.Test Procedure Used

ANSI C63.10 Section 11.9.1.3

ANSI C63.10 Section 11.9.2.3.2

7.3.3.Test Setting

PKPM1 Peak-reading power meter method


The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall utilize a fast-responding diode detector.

Method AVGPM-G (Measurement using a gated RF average-reading power meter)

Measurements may be performed using a wideband gated RF power meter provided that the gate parameters are adjusted such that the power is measured only when the EUT is transmitting at its maximum power control level. Since this measurement is made only during the ON time of the transmitter, no duty cycle correction is required.

7.3.4.Test Setup

7.3.5.Test Result

Power output test was verified over all data rates of each mode shown as below, and then choose

the maximum power output (Gray marker) for final test of each channel.

Output power at various	s data rates for Ant B / Ant A + B port:
-------------------------	--

Test Mode	Bandwidth (MHz)	Channel No.	Frequency (MHz)	Data Rate/ MCS	Average Power (dBm)
				1Mbps	15.64
802.11b	20	6	2437	5.5Mbps	15.43
				11Mbps	15.31
				6Mbps	16.34
802.11g	20	6	2437	24Mbps	16.16
				54Mbps	16.01
				MCS0	16.20
802.11n	20	6	2437	MCS3	16.07
				MCS7	15.93
				MCS0	15.91
802.11n	40	6	2437	MCS3	15.75
				MCS7	15.61

Product	Notebook	Temperature	25.5°C
Test Engineer	Flag Yang	Relative Humidity	67%
Test Site	TR3	Test Date	2020/04/11

Test Mode	Data	Channel	Freq.	Ant A	Ant B	Total	Limit	Result	
	Rate/	No.	(MHz)	Peak Power	Peak Power	Peak Power	(dBm)		
	MCS			(dBm)	(dBm)	(dBm)			
Peak Outpu	Peak Output Power								
11b	1Mbps	01	2412	18.13	18.46	21.31	≤ 30.00	Pass	
11b	1Mbps	06	2437	18.37	18.43	21.41	≤ 30.00	Pass	
11b	1Mbps	11	2462	17.95	18.51	21.25	≤ 30.00	Pass	
11g	6Mbps	01	2412	21.55	21.87	24.72	≤ 30.00	Pass	
11g	6Mbps	06	2437	21.49	21.72	24.62	≤ 30.00	Pass	
11g	6Mbps	11	2462	21.35	22.11	24.76	≤ 30.00	Pass	
11n-HT20	MCS0	01	2412	21.55	21.95	24.76	≤ 30.00	Pass	
11n-HT20	MCS0	06	2437	21.72	21.71	24.73	≤ 30.00	Pass	
11n-HT20	MCS0	11	2462	21.50	22.12	24.83	≤ 30.00	Pass	
11n-HT40	MCS0	03	2422	20.31	20.71	23.52	≤ 30.00	Pass	
11n-HT40	MCS0	06	2437	20.18	20.34	23.27	≤ 30.00	Pass	
11n-HT40	MCS0	09	2452	19.98	20.59	23.31	≤ 30.00	Pass	

Note: Total Peak Power (dBm) = $10^{\log\{10^{(Ant A Peak Power/10)} + 10^{(Ant B Peak Power/10)}\}}$ (dBm).

Test Mode	Data	Channel	Freq.	Ant A	Ant B	Total	Limit	Result	
	Rate/	No.	(MHz)	AV Power	AV Power	AV Power	(dBm)		
	MCS			(dBm)	(dBm)	(dBm)			
Average Ou	Average Output Power (Reporting Only)								
11b	1Mbps	01	2412	15.05	15.68	18.39	≤ 30.00	Pass	
11b	1Mbps	06	2437	15.57	15.64	18.62	≤ 30.00	Pass	
11b	1Mbps	11	2462	15.18	15.65	18.43	≤ 30.00	Pass	
11g	6Mbps	01	2412	16.16	16.38	19.28	≤ 30.00	Pass	
11g	6Mbps	06	2437	16.18	16.34	19.27	≤ 30.00	Pass	
11g	6Mbps	11	2462	15.85	16.42	19.15	≤ 30.00	Pass	
11n-HT20	MCS0	01	2412	15.99	16.21	19.11	≤ 30.00	Pass	
11n-HT20	MCS0	06	2437	16.15	16.20	19.19	≤ 30.00	Pass	
11n-HT20	MCS0	11	2462	15.88	16.32	19.12	≤ 30.00	Pass	
11n-HT40	MCS0	03	2422	15.72	15.95	18.85	≤ 30.00	Pass	
11n-HT40	MCS0	06	2437	15.73	15.91	18.83	≤ 30.00	Pass	
11n-HT40	MCS0	09	2452	15.34	15.62	18.49	≤ 30.00	Pass	

Note: Total AV Power (dBm) = $10^{\log\{10^{(Ant A AV Power / 10)} + 10^{(Ant B AV Power / 10)}\}}$ (dBm).

7.4. Power Spectral Density Measurement

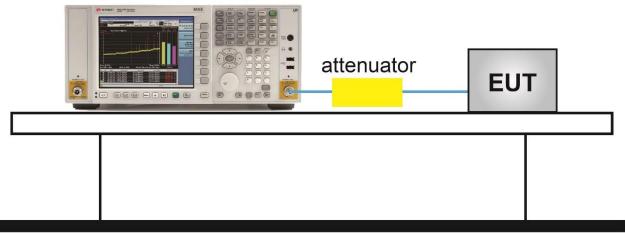
7.4.1.Test Limit

The maximum permissible power spectral density is 8dBm in any 3 kHz band.

The same method of determining the conducted output power shall be used to determine the power

spectral density.

7.4.2.Test Procedure Used

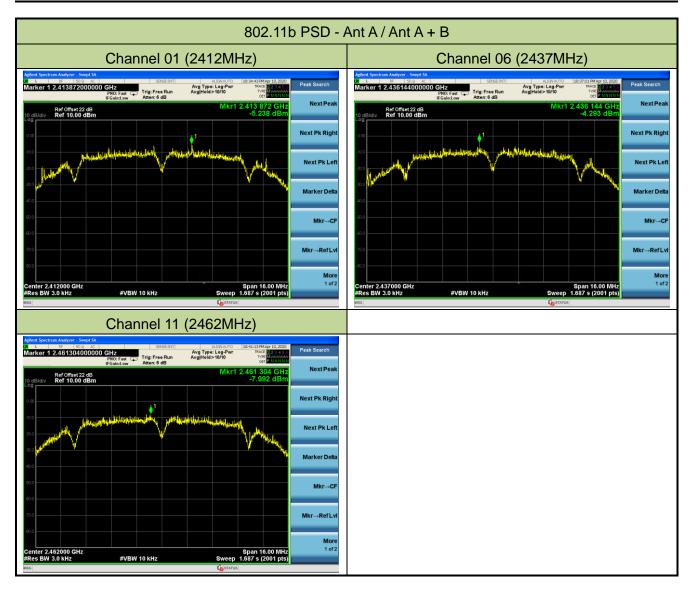

ANSI C63.10 Section 11.10.2

7.4.3.Test Setting

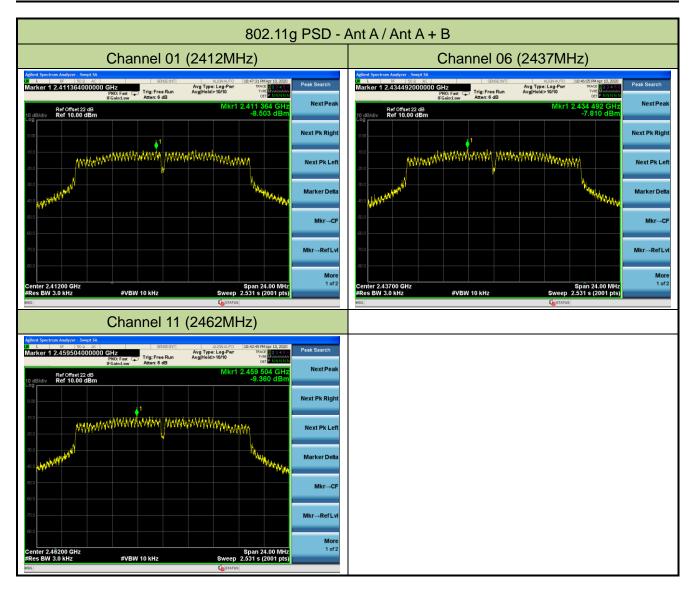
- 1. Analyzer was set to the center frequency of the DTS channel under investigation
- 2. Span = 1.5 times the DTS channel bandwidth
- 3. RBW = 3kHz
- 4. VBW = 10kHz
- 5. Detector = peak
- 6. Sweep time = auto couple
- 7. Trace mode = max hold
- 8. Trace was allowed to stabilize

7.4.4.Test Setup

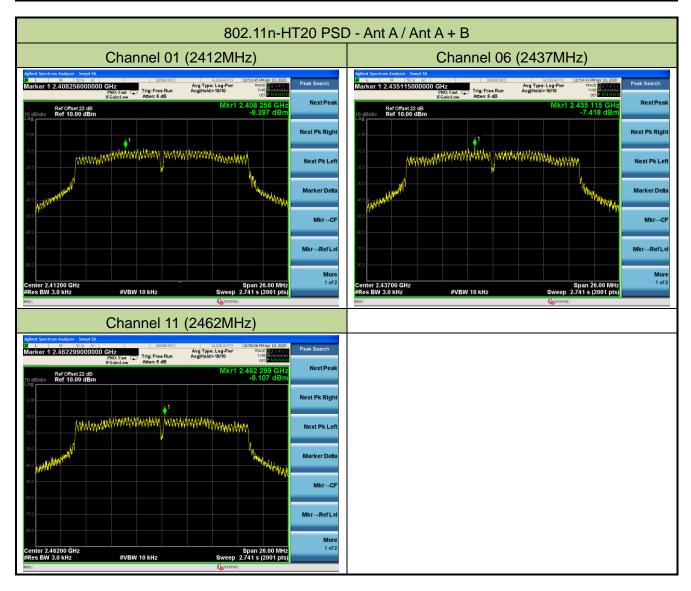
Spectrum Analyzer

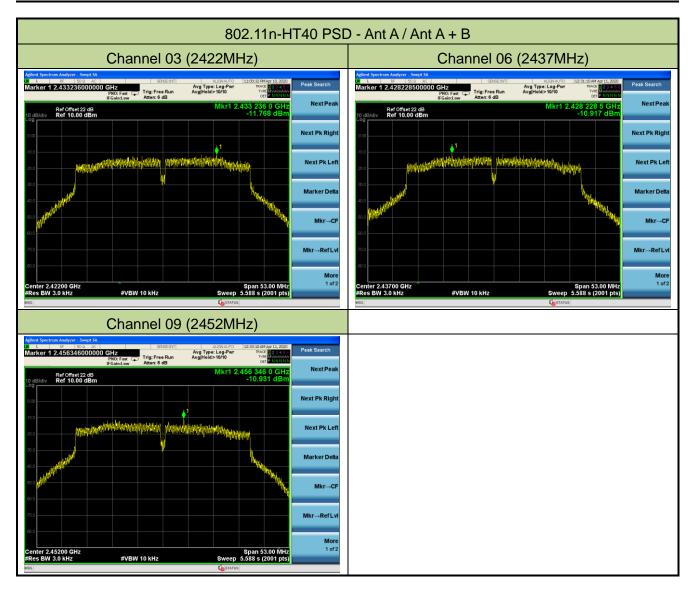

7.4.5.Test Result

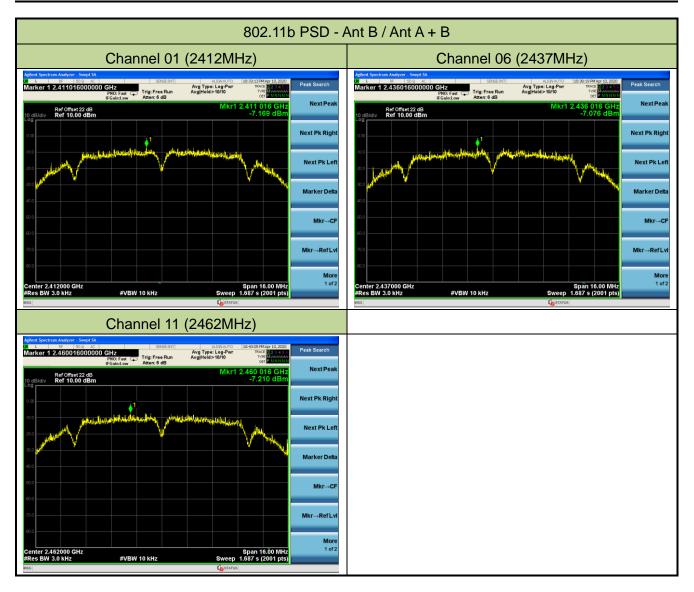
Product	Notebook	Temperature	25.5°C
Test Engineer	Flag Yang	Relative Humidity	67%
Test Site	TR3	Test Date	2020/04/10

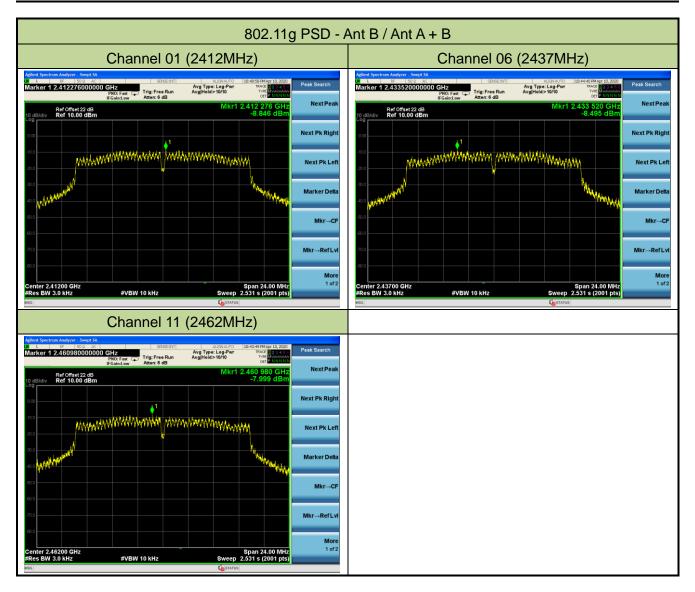

Test Mode	Data Rate/ MCS	Channel No.	Freq. (MHz)	Ant A PK PSD (dBm / 3kHz)	Ant B PK PSD (dBm /	Total PK PSD (dBm /	Limit (dBm / 3kHz)	Result
				,	3kHz)	3kHz)		
11b	1Mbps	1	2412	-5.24	-7.17	-3.09	≤ 8.00	Pass
11b	1Mbps	6	2437	-4.29	-7.08	-2.45	≤ 8.00	Pass
11b	1Mbps	11	2462	-7.99	-7.21	-4.57	≤ 8.00	Pass
11g	6Mbps	1	2412	-8.50	-8.85	-5.66	≤ 8.00	Pass
11g	6Mbps	6	2437	-7.81	-8.50	-5.13	≤ 8.00	Pass
11g	6Mbps	11	2462	-9.36	-8.00	-5.62	≤ 8.00	Pass
11n-HT20	MCS0	1	2412	-8.29	-7.83	-5.04	≤ 8.00	Pass
11n-HT20	MCS0	6	2437	-7.42	-7.87	-4.63	≤ 8.00	Pass
11n-HT20	MCS0	11	2462	-9.11	-8.26	-5.65	≤ 8.00	Pass
11n-HT40	MCS0	3	2422	-11.77	-10.51	-8.08	≤ 8.00	Pass
11n-HT40	MCS0	6	2437	-10.92	-12.17	-8.49	≤ 8.00	Pass
11n-HT40	MCS0	9	2452	-10.93	-11.65	-8.26	≤ 8.00	Pass

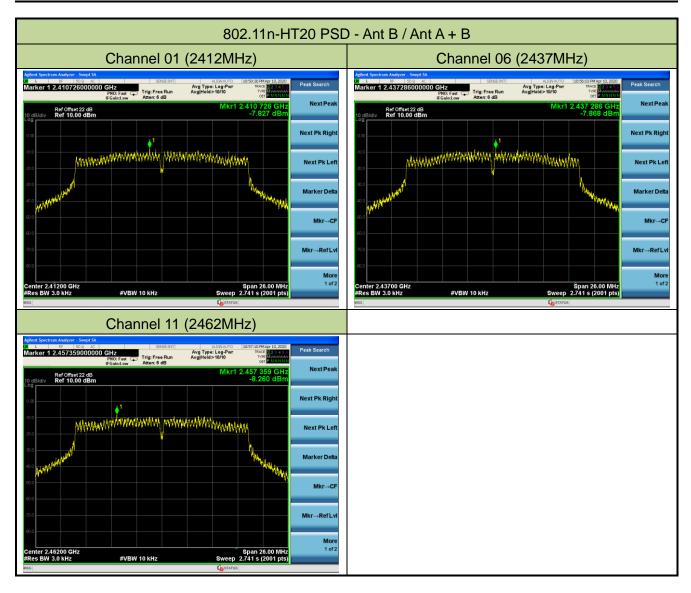
Note: Total PK PSD (dBm / 3kHz) = $10^{\text{Note}} = 10^{\text{Note}} + 10^{(\text{Ant B PK PSD/10})}$

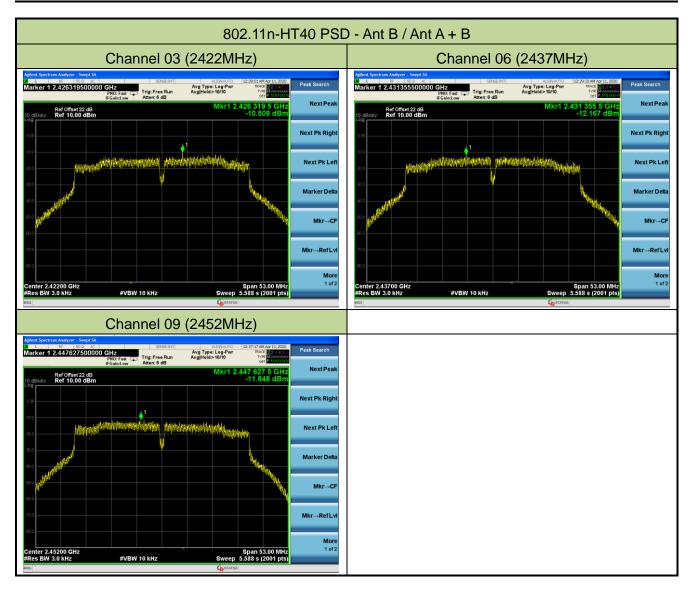












7.5. Conducted Band Edge and Out-of-Band Emissions

7.5.1.Test Limit

The limit for out-of-band spurious emissions at the band edge is 20dB below the fundamental

emission level, as determined from the in-band power measurement of the DTS channel performed

in a 100 kHz bandwidth per the PSD procedure.

7.5.2.Test Procedure Used

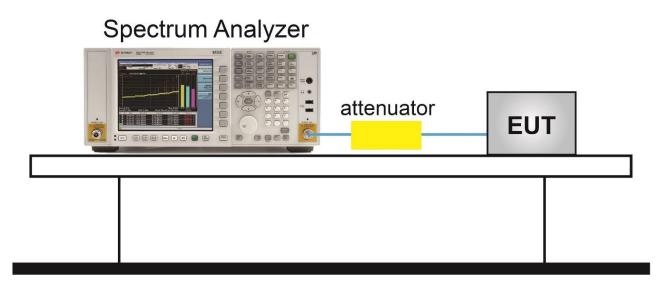
ANSI C63.10 Section 11.11

7.5.3.Test Settitng

Reference level measurement

- 1. Set instrument center frequency to DTS channel center frequency
- 2. Set the span to \geq 1.5 times the DTS bandwidth
- 3. Set the RBW = 100 kHz
- 4. Set the VBW \geq 3 x RBW
- 5. Detector = peak
- 6. Sweep time = auto couple
- 7. Trace mode = max hold
- 8. Allow trace to fully stabilize

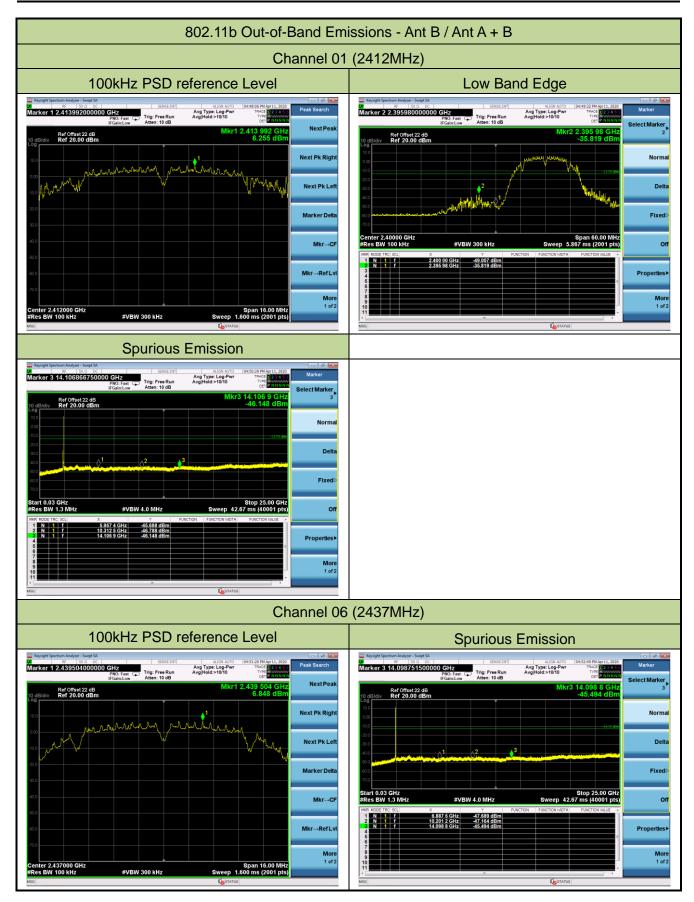
Emission level measurement


- 1. Set the center frequency and span to encompass frequency range to be measured
- 2. RBW = 1.3MHz
- 3. VBW = 4MHz
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep time = auto couple
- 7. The trace was allowed to stabilize

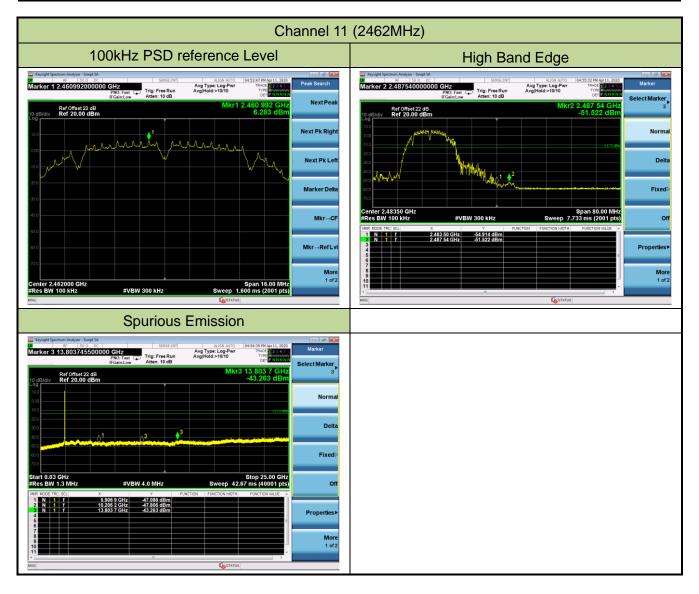
Test Notes

- 1. RBW was set to 1.3MHz rather than 100kHz in order to increase the measurement speed.
- 2. The display line shown in the following plots denotes the limit at 20dB below the fundamental emission level measured in a 100kHz bandwidth. However, since the traces in the following plots are measured with a 1.3MHz RBW, the display line may not necessarily appear to be 20dB below the level of the fundamental in a 1.3MHz bandwidth.
- 3. For plots showing conducted spurious emissions near the limit, the frequencies were investigated with a reduced RBW to ensure that no emissions were present.

7.5.4.Test Setup



7.5.5.Test Result


Product	Notebook	Temperature	25.5°C
Test Engineer	Flag Yang	Relative Humidity	67%
Test Site	TR3	Test Date	2020/04/11

Test Mode	Data Rate (Mbps)	Channel No.	Frequency (MHz)	Limit	Result	
Ant B / Ant A + B						
802.11b	1Mbps	01	2412	20dBc	Pass	
802.11b	1Mbps	06	2437	20dBc	Pass	
802.11b	1Mbps	11	2462	20dBc	Pass	
802.11g	6Mbps	01	2412	20dBc	Pass	
802.11g	6Mbps	06	2437	20dBc	Pass	
802.11g	6Mbps	11	2462	20dBc	Pass	
802.11n-HT20	MCS0	01	2412	20dBc	Pass	
802.11n-HT20	MCS0	06	2437	20dBc	Pass	
802.11n-HT20	MCS0	11	2462	20dBc	Pass	
802.11n-HT40	MCS0	03	2422	20dBc	Pass	
802.11n-HT40	MCS0	06	2437	20dBc	Pass	
802.11n-HT40	MCS0	09	2452	20dBc	Pass	

