

RF Exposure / MPE Calculation

No.	15058381
Customer	ALPS ALPINE CO., LTD.
Description of EUT	Head unit
Model Number of EUT	AH00ICB 4
FCC ID	A269ZUA171

ALPS ALPINE CO., LTD. declares that Model: AH00ICB 4 complies with FCC radiation exposure requirement specified in the FCC Rule 2.1091 (for mobile).

RF Exposure Calculations:

The following information provides the minimum separation distance for the highest gain antenna provided with the "AH00ICB 4" as calculated from (B) Limits for General Population / Uncontrolled Exposure of TABLE 1- LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE) of §1.1310 Radiofrequency radiation exposure limits.

[Bluetooth part]

This calculation is based on the highest EIRP possible from the system, considering maximum power and antenna gain, and considering a 1mW/cm² uncontrolled exposure limit. The Friis formula used was:

$$S = \frac{P \times G}{4 \times \pi \times r^2}$$

Where

P = 1.81 mW (Maximum average output power)

Time average was used for the above value in consideration of 6-minutes time-averaging
 Burst power average was used for the above value in consideration of worst condition.

G = 0.955 Numerical Antenna gain; equal to -0.2 dBi

r = 20 cm (Separation distance)

Power Density Result $S = 0.00034$ mW/cm²

[Bluetooth Low Energy part]

This calculation is based on the highest EIRP possible from the system, considering maximum power and antenna gain, and considering a 1mW/cm² uncontrolled exposure limit. The Friis formula used was:

$$S = \frac{P \times G}{4 \times \pi \times r^2}$$

Where

P = 2.37 mW (Maximum average output power)

Time average was used for the above value in consideration of 6-minutes time-averaging
 Burst power average was used for the above value in consideration of worst condition.

G = 0.955 Numerical Antenna gain; equal to -0.2 dBi

r = 20 cm (Separation distance)

Power Density Result $S = 0.00045$ mW/cm²

[WLAN 2.4 GHz band part]

This calculation is based on the highest EIRP possible from the system, considering maximum power and antenna gain, and considering a 1 mW/cm² uncontrolled exposure limit. The Friis formula used was:

$$S = \frac{P \times G}{4 \times \pi \times r^2}$$

Where

$P = 23.55$ mW (Maximum average output power)

Time average was used for the above value in consideration of 6-minutes time-averaging
 Burst power average was used for the above value in consideration of worst condition.

$G = 0.836$ Numerical Antenna gain; equal to -0.78 dBi

$r = 20$ cm (Separation distance)

Power Density Result $S = 0.00391$ mW/cm²

[WLAN 5 GHz band part]

This calculation is based on the highest EIRP possible from the system, considering maximum power and antenna gain, and considering a 1 mW/cm² uncontrolled exposure limit. The Friis formula used was:

$$S = \frac{P \times G}{4 \times \pi \times r^2}$$

Where

$P = 11.94$ mW (Maximum average output power)

Time average was used for the above value in consideration of 6-minutes time-averaging
 Burst power average was used for the above value in consideration of worst condition.

$G = 1.866$ Numerical Antenna gain; equal to 2.71 dBi

$r = 20$ cm (Separation distance)

Power Density Result $S = 0.00443$ mW/cm²

Therefore, if WLAN (2.4 GHz band and 5 GHz band) and Bluetooth (BR/EDR) transmit simultaneously,

$$\begin{aligned} S &= 0.00391 \text{ mW/cm}^2 + 0.00443 \text{ mW/cm}^2 + 0.00034 \text{ mW/cm}^2 \\ &= 0.00868 \text{ mW/cm}^2 \end{aligned}$$

Therefore, if WLAN (2.4 GHz band and 5 GHz band) and Bluetooth Low Energy transmit simultaneously,

$$\begin{aligned} S &= 0.00391 \text{ mW/cm}^2 + 0.00443 \text{ mW/cm}^2 + 0.00045 \text{ mW/cm}^2 \\ &= 0.00879 \text{ mW/cm}^2 \end{aligned}$$