

TEST REPORT

Compiled by

(position+printed name+signature)..: File administrators Jinghua Xiao

Supervised by

(position+printed name+signature)..: Project Engineer Lushan Kong

Approved by

(position+printed name+signature)..:

Date of issue...... Jun. 18, 2024

Testing Laboratory Name Shenzhen CTA Testing Technology Co., Ltd.

RF Manager Eric Wang

Fuhai Street, Bao'an District, Shenzhen, China

Applicant's name Shanghai Yuge information technology Co., Ltd.

Room 204-1, No. 6, Lane 88, Shengrong Road, China (Shanghai)

pilot Free Trade Zone, China

Test specification....::

IEC 62209-2:2010; IEEE 1528:2013; FCC 47 CFR Part 2.1093;

Ingtwa storo

Standard ANSI/IEEE C95.1:2005; Reference FCC KDB 447498;

KDB 865664; KDB 941225; KDB 616217

Shenzhen CTA Testing Technology Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen CTA Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen CTA Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description.....: 4G LTE Wireless Communication Module

Trade Mark N/A

Manufacturer...... Shanghai Yuge information technology Co., Ltd.

Model/Type reference: CLR903

CLR901, CLR902, CLR905, CLR906, CLR907, CLR908, CLR909,

CTATES

CLR808, CLR809, CLR920

Rating DC 5.0V From external circuit

Result..... PASS

Page 2 of 88 Report No.: CTA24053101207

TEST REPORT

CTA TESTING **Equipment under Test** 4G LTE Wireless Communication Module

Model /Type : CLR903

CTATESTING Listed Models CLR901, CLR902, CLR905, CLR906, CLR907, CLR908, CLR909,

CLR910, CLR801, CLR802, CLR803, CLR805, CLR806, CLR807,

CLR808, CLR809, CLR920

: Shanghai Yuge information technology Co., Ltd. **Applicant**

: Room 204-1, No. 6, Lane 88, Shengrong Road, China (Shanghai) pilot Address

Free Trade Zone, China

: Shanghai Yuge information technology Co., Ltd. Manufacturer

: Room 204-1, No. 6, Lane 88, Shengrong Road, China (Shanghai) pilot Address

Free Trade Zone, China

TESTING			
CTA	Test Result:	PASS	

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Report No.: CTA24053101207

Page 3 of 88

* * Revision History * *				
REV.	ISSUED DATE	DESCRIPTION		
Rev.1.0	Jun. 18, 2024	Initial Test Report Release		
	(CIP)	TATEST		
		(a)		
		Car		

CTATESTING

Report No.: CTA24053101207

Contents

	General Remarks	
	2.3 Device Category and SAR Limits	
	2.5 Test Facility	
3//	2.6 Environment of Test Site	
^	2.7 Test Configuration	
3	Specific Absorption Rate (SAR)	
	3.1 Introduction	10
	3.2 SAR Definition	10
4		
	4.1 E-Field Probe	
	4.2 Data Acquisition Electronics (DAE)	
	4.3 Robot	
	4.4 Measurement Server	
	4.5 Phantom	
	4.6 Device Holder	
	4.7 Data Storage and Evaluation	
5	Test Equipment List	17
6	Tissue Simulating Liquids	18
7	System Verification Procedures	20
8	EUT Testing Position	22
	8.1 DONGLE TESTING PROCEDURES	22
	8.2 Test Distance for SAR Evaluation	22
9	Measurement Procedures	23
	9.1 Spatial Peak SAR Evaluation	23
	9.2 Power Reference Measurement	23
	9.3 Area Scan Procedures	
	9.4 Zoom Scan Procedures	24
	9.5 Volume Scan Procedures	2
	9.6 Power Drift Monitoring	2!
10	TEST CONDITIONS AND RESULTS	
	10.1 Conducted Power Results	20
	10.2 Transmit Antennas	39
	10.3 SAR Test Exclusion and Estimated SAR	40
	10,4 SAR Test Results	4 ⁻
	10.5 SAR Measurement Variability	
	10.6 Simultaneous Transmission Analysis	
11	Measurement Uncertainty	
		T/

Report No.: CTA24053101207	Page 5 of 88
Appendix B. Plots of SAR System Check	
Appendix C. Plots of SAR Test Data	
Appendix D. DASY System Calibration Certificate	59
Appendix D. DASY System Calibration Certificate	CTATESTING
CTATESTING CTATESTING	
ESTING	
CTATESTING CTATESTING	
	CTATESTING
	CIT
CTATESTING	
TES!	
CTA	
CTATES!	CTATES
	CTATESTING
TESI	
CTATESTING CTATESTING CTATESTING	
	TESTIN
	CTATESTING
CTATESTING CTATESTING	
CTING	
CONTRACTOR OF THE PARTY OF THE	CTATESTING
	CTAIL

Report No.: CTA24053101207 Page 6 of 88

Statement of Compliance

<Highest SAR Summary>

This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-2005, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2013 The maximum results of Specific Absorption Rate (SAR) found during testing are as follows.

-59	ring <h< th=""><th>ighest SAR Summary></th><th>Can</th></h<>	ighest SAR Summary>	Can
CTATES	Francisco Dand	Highest Reported 1g-SAR(W/Kg)	Simultaneous
	Frequency Band	Body (5mm)	Reported SAR (W/Kg)
	WCDMA band V	1.051	. (
	LTE Band 5	0.839	ESTIN
	LTE Band 7	0.547	N/A
G	LTE Band 40A	0.606	IN/A
	LTE Band 40B	0.668	
	LTE Band 41/ LTE Band 38	0.714	
	SAR Test Limit (W/Kg)	1.60	
	Test Result	PASS	

Note: LTE Band 38 SAR was covered by LTE Band 41; according to April 2015 TCB workshop, SAR test for overlapping LTE bands can be reduced if a. the maximum output power, including tolerance, for the smaller band is ≤ the larger band to qualify for the SAR test exclusion. b. the channel bandwidth and other operating parameters for the smaller band are fully CTATES supported by the larger band.

Report No.: CTA24053101207 Page 7 of 88

General Information

2.1 General Remarks

2.1 General Remarks			
Date of receipt of test sample		May 31, 2024	ESTING
Testing commenced on	:	June 11, 2024	CTATE
			Control of the contro
Testing concluded on	:	June 13, 2024	

2.2 Description of Equipment Under Test (EUT)

		=
Product Name:	4G LTE Wireless Communication Module	
Model/Type reference:	CLR903	
Power supply:	DC 5.0V From external circuit	G
Tasting comple ID:	CTA240531012-1# (Engineer sample)	
Testing sample ID:	CTA240531012-2# (Normal sample)	
Hardware version:	C36SM#01	
Software version:	C36SM_HLT_A13M_OVERSEA_V1.0	
	WCDMA:	1
	Band 5: TX: 826.40~846.60MHz	
	LTE: TESTING	
Ty Fraguency	FDD Band 5: TX: 824~849MHz FDD Band 7: TX: 2500~2570MHz	
Tx Frequency:	FDD Band 7: TX: 2500~2570MHz	
	TDD Band 38: TX: 2570~2620MHz	
	TDD Band 40: TX: 2305~2315MHz&2350~2360MHz	TATE
	TDD Band 41: TX: 2496~2690MHz	0
Type of Madulation.	WCDMA: QPSK,16QAM	
Type of Modulation:	LTE: QPSK,16QAM	
Category of device:	Body close device	
	(IX.)	1

Remark:

The above DUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

2.3 Device Category and SAR Limits

This device, because its radiating structure is allowed to be used within 20 centimeters of the body of the user. Limit for General Population/Uncontrolled exposure should be applied for this device, it is 1.6 W/kg as averaged over any 1 gram of tissue.

2.4 Applied Standard

The Specific Absorption Rate (SAR) testing specification, method, and procedure for this device is in accordance with the following standards:

- FCC 47 CFR Part 2 (2.1093:2013)
- ANSI/IEEE C95.1:2005

Report No.: CTA24053101207

- IEEE Std 1528:2013
- KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04
- KDB 865664 D02 RF Exposure Reporting v01r02
- KDB 447498 D01 General RF Exposure Guidance v06
- KDB 941225 D01 3G SAR Procedures v03r01
- KDB 941225 D05 SAR for LTE Devicesv02r05
- KDB 616217 D04 SAR for laptop and tablets v01r02
- GTA TESTING KDB 447498 D02 SAR Procedures for Dongle Xmtr v02r01

2.5 Test Facility

FCC-Registration No.: 517856 **Designation Number: CN1318**

Shenzhen CTA Testing Technology Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6534.01

Shenzhen CTA Testing Technology Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

CAB identifier: CN0127 ISED#: 27890

Shenzhen CTA Testing Technology Co., Ltd. has been listed by Innovation, Science and Economic Development Canada to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010. CTATES

Page 9 of 88 Report No.: CTA24053101207

2.6 **Environment of Test Site**

Items	Required		Actual	
Temperature (°C)	18-25		22~23	
Humidity (%RH)	30-70	C C	55~65	

2.7 Test Configuration

The device was controlled by using a base station emulator. Communication between the device and the emulator was established by air link. The distance between the EUT and the antenna of the emulator is larger than 50 cm and the output power radiated from the emulator antenna is at least 30 dB smaller than the output power of EUT. The EUT was set from the emulator to radiate maximum output power during all tests. For WLAN SAR testing, WLAN engineering testing software installed on the EUT can CTA CTA provide continuous transmitting RF signal.

Report No.: CTA24053101207 Page 10 of 88

Specific Absorption Rate (SAR)

3.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

3.2 **SAR Definition**

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation CTA TESTING description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{odv} \right)$$

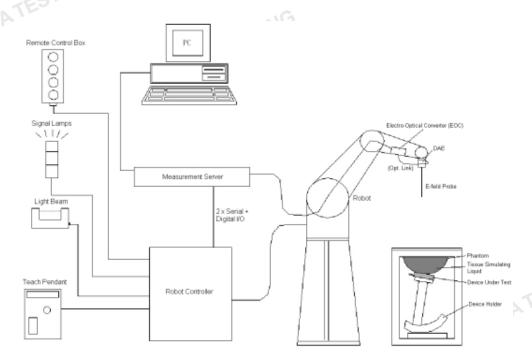
SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be either related to the temperature elevation in tissue by

$$SAR = C\left(\frac{\delta T}{\delta t}\right)$$

Where: C is the specific head capacity, δT is the temperature rise and δtisthe exposure duration, or related to the electrical field in the tissue by

$$SAR = \frac{\sigma |E|^2}{\rho}$$


Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical

However for evaluating SAR of low power transmitter, electrical field measurement is typically applied. CTA TESTING

Report No.: CTA24053101207 Page 11 of 88

SAR Measurement System

DASY System Configurations

The DASY system for performance compliance tests is illustrated above graphically. This system consists of the following items:

- A standard high precision 6-axis robot with controller, a teach pendant and software
- A data acquisition electronic (DAE) attached to the robot arm extension
- A dosimetric probe equipped with an optical surface detector system
- The electro-optical converter (EOC) performs the conversion between optical and electrical signals
- A measurement server performs the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the accuracy of the probe positioning
- A computer operating Windows XP
- DASY software
- CTA TESTING Remove control with teach pendant and additional circuitry for robot safety such as warming lamps, etc.
- The SAM twin phantom
- A device holder
- Tissue simulating liquid
- Dipole for evaluating the proper functioning of the system

components are described in details in the following sub-sections.

4.1 E-Field Probe

The SAR measurement is conducted with the dosimetric probe (manufactured by SPEAG). The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special CTATES calibration in liquid at different frequency. This probe has a built in optical surface detection system to prevent from collision with phantom. CTATESTING

Report No.: CTA24053101207

> E-Field Probe Specification

<EX3DV4 Probe>

Construction	Symmetrical design with triangular core	
	Built-in shielding against static charges	
	PEEK enclosure material (resistant to organic	
	solvents, e.g., DGBE)	
Frequency	10 MHz to 6 GHz; Linearity: ± 0.2 dB	
Directivity	± 0.3 dB in HSL (rotation around probe axis)	
	± 0.5 dB in tissue material (rotation normal to	112
	probe axis)	
Dynamic Range	10 μW/g to 100 W/kg; Linearity: ± 0.2 dB (noise:	_
	typically< 1 µW/g)	
Dimensions	Overall length: 330 mm (Tip: 20 mm)	G
	Tip diameter: 2.5 mm (Body: 12 mm)	Photo of EX3DV4
	Typical distance from probe tip to dipole	ESTIN
	centers: 1 mm	CTAIL

> E-Field Probe Calibration

Each probe needs to be calibrated according to a dosimetric assessment procedure with accuracy better than \pm 10%. The spherical isotropy shall be evaluated and within \pm 0.25dB. The sensitivity parameters (NormX, NormY, and NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested. The calibration data can be referred to appendix C of this report.

4.2 Data Acquisition Electronics (DAE)

The data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock. The input impedance of the DAE is 200MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80dB.

Photo of DAE

Report No.: CTA24053101207 Page 13 of 88

4.3 Robot

The SPEAG DASY system uses the high precision robots (DASY5: TX60XL) type from Stäubli SA (France). For the 6-axis controllersystem, the robot controller version (DASY5: CS8c) from Stäubli is used. The Stäublirobot series have many features that are important for our application:

- High precision (repeatability ±0.035 mm)
- High reliability (industrial design)
- Jerk-free straight movements
- > Low ELF interference (the closed metallic construction shields against motor control fields)

Photo of DASY5

4.4 Measurement Server

The measurement server is based on a PC/104 CPU board with CPU (DASY5: 400 MHz, Intel Celeron), chipdisk (DASY5: 128 MB), RAM (DASY5: 128 MB). The necessary circuits for communication with the DAE electronic box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY I/O board, which is directly connected to the PC/104 bus of the CPU board.

The measurement server performs all the real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operations.

Photo of Server for DASY5

Report No.: CTA24053101207 Page 14 of 88

4.5 Phantom

<SAM Twin Phantom>

4.5 Phantom		
<sam phantom="" twin=""></sam>	TESTIN	
Shell Thickness	2 ± 0.2 mm;	
	Center ear point: 6 ± 0.2 mm	
Filling Volume	Approx. 25 liters	G CES
Dimensions	Length: 1000 mm; Width: 500 mm;	- TAT
	Height: adjustable feet	
Measurement Areas	Left Hand, Right Hand, Flat Phantom	
	TATESTING	
	- A TE	Photo of SAM Phantom

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

<ELI4 Phantom>

Shell Thickness	2 ± 0.2 mm (sagging: <1%)		
Filling Volume	Approx. 30 liters		
Dimensions	Major ellipse axis: 600 mm Minor axis:400 mm	Photo of ELI4 Phantom	

The ELI4 phantom is intended for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI4 is fully compatible with standard and all known tissue simulating liquids.

4.6 **Device Holder**

The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5 mm distance, a positioning uncertainty of ±0.5mm would produce a SAR uncertainty of ± 20%. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards.

The DASY device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation center for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.

Report No.: CTA24053101207 Page 15 of 88

The DASY device holder is constructed of low-loss POM material having the following dielectric parameters: relative permittivity $\varepsilon = 3$ and loss tangent $\delta = 0.02$. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

Device Holder

4.7 Data Storage and Evaluation

Data Storage

The DASY software stores the assessed data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all the necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files. The post-processing software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of erroneous parameter settings. For example, if a measurement has been performed with an incorrect crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be reevaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type (e.g., [V/m], [A/m], [W/kg]). Some of these units are not available in certain situations or give meaningless results, e.g., a SAR-output in a non-lose media, will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

Data Evaluation

The DASY post-processing software (SEMCAD) automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

> **Probe parameters:** - Sensitivity Normi, aio, ai1, ai2

> > - Conversion factor ConvFi

- Diode compression point dcpi CTATESTING

Device parameters: - Frequency

> - Crest factor cf

- Conductivity Media parameters:

- Density

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY components. In the direct measuring mode of the multi-meter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power.

The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

with V_i = compensated signal of channel i, (i = x, y, z)

 U_i = input signal of channel i, (i = x, y, z)

cf = crest factor of exciting field (DASY parameter)

dcp_i = diode compression point (DASY parameter)

From the compensated input signals, the primary field data for each channel can be evaluated:

E-field Probes:
$$E_i = \sqrt{\frac{V_i}{Norm_i \cdot ConvF}}$$

H-field Probes:
$$H_i = \sqrt{V_i} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}f^2}{f}$$

with V_i = compensated signal of channel i,(i= x, y, z)

Norm_i= sensor sensitivity of channel i, (i= x, y, z), µV/(V/m)² for E-field Probes

ConvF= sensitivity enhancement in solution

aij= sensor sensitivity factors for H-field probes

f = carrier frequency [GHz]

Ei= electric field strength of channel iin V/m

H_i= magnetic field strength of channel iin A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude): CTATESTING

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1000}$$

with SAR = local specific absorption rate in W/kg

Etot= total field strength in V/m

 σ = conductivity in [mho/m] or [Siemens/m]

 ρ = equivalent tissue density in g/cm³

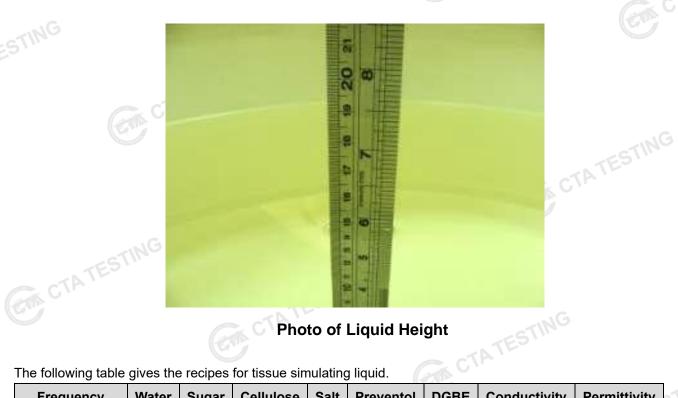
CTATES Note that the density is set to 1, to account for actual head tissue density rather than the density of the tissue simulating liquid.

Report No.: CTA24053101207 Page 17 of 88

5 Test Equipment List

Manufacturar	Name of Environment	Type/Model	Sorial Number	Calib	ration
Manufacturer	Name of Equipment	Type/Model	Serial Number	Last Cal.	Due Date
SPEAG	835MHz System Validation Kit	D835V2	484	Aug. 25,2023	Aug. 24,2026
SPEAG	2300MHz System Validation Kit	D2300V2	1103	Feb. 16,2023	Feb. 15,2026
SPEAG	2600MHz System Validation Kit	D2600V2	1073	Feb. 17,2023	Feb. 16,2026
Rohde & Schwarz	UNIVERSAL RADIO COMMUNICATION TESTER	CMW500	1201.0002K50- 104209-JC	Nov.05, 2023	Nov.04, 2024
SPEAG	Data Acquisition Electronics	DAE3	428	Aug.30,2023	Aug.29,2024
SPEAG	Dosimetric E-Field Probe	EX3DV4	7380	June 21,2023	June 20,2024
Agilent	ENA Series Network Analyzer	E5071C	MY46317418	Oct.25, 2023	Oct.24, 2024
SPEAG	DAK	DAK-3.5	1226	NCR	NCR
SPEAG	SAM Twin Phantom	QD000P40CD	1802	NCR	NCR
SPEAG	ELI Phantom	QDOVA004AA	2058	NCR	NCR
AR	Amplifier	ZHL-42W	QA1118004	NCR	NCR
Agilent	Power Meter	N1914A	MY50001102	Oct.25, 2023	Oct.24, 2024
Agilent	Power Sensor	N8481H	MY51240001	Oct.25, 2023	Oct.24, 2024
R&S	Spectrum Analyzer	N9020A	MY51170037	Oct.25, 2023	Oct.24, 2024
Agilent	Signal Generation	N5182A	MY48180656	Oct.25, 2023	Oct.24, 2024
Worken	Directional Coupler	0110A05601O-10	COM5BNW1A2	Oct.25, 2023	Oct.24, 2024

Note:


- 1. The calibration certificate of DASY can be referred to appendix C of this report.
- 2. The dipole calibration interval can be extended to 3 years with justification. The dipoles are also not physically damaged, or repaired during the interval.
- 3. The Insertion Loss calibration of Dual Directional Coupler and Attenuator were characterized via the network analyzer and compensated during system check.
- 4. The dielectric probe kit was calibrated via the network analyzer, with the specified procedure (calibrated in pure water) and calibration kit (standard) short circuit, before the dielectric measurement. The specific procedure and calibration kit are provided by Agilent.
- 5. In system check we need to monitor the level on the power meter, and adjust the power amplifier level to have precise power level to the dipole; the measured SAR will be normalized to 1W input power according to the ratio of 1W to the input power to the dipole. For system check, the calibration of the power amplifier is deemed not critically required for correct measurement; the power meter is critical and we do have calibration for it

Report No.: CTA24053101207 Page 18 of 88

Tissue Simulating Liquids

For the measurement of the field distribution inside the SAM phantom with DASY, the phantom must be filled with around 25 liters of homogeneous body tissue simulating liquid. For head SAR testing, the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm, which is shown in Fig. 6.1. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm, which is shown as followed:

Photo of Liquid Height

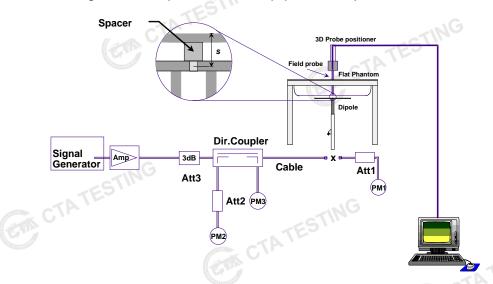
Frequency	Water	Sugar	Cellulose	Salt	Preventol	DGBE	Conductivity	Permittivity
(MHz)	(%)	(%)	(%)	(%)	(%)	(%)	(σ)	(εr)
835				For H	ead			
835	40.3	57.9	0.2	1.4	0.2	0	0.90	41.5
1800,1900,2000	55.2	0	0	0.3	0	44.5	1.40	40.0
2450	55.0	0	0	0	0	45.0	1.80	39.2
2600	54.8	0	0	0.1	G 0	45.1	1.96	39.0
				For B	ody			
835	50.8	48.2	0	0.9	0.1	0	0.97	55.2
1800,1900,2000	70.2	0	0	0.4	0	29.4	1.52	53.3
2450	68.6	0	0	0	0	31.4	1.95	52.7
2600	65.5	0	0	0	G 0	31.5	2.16	52.5
			CTATE	51"		- cT	ATESTING	

The following table shows the measuring results for simulating liquid.

						<u> </u>				_
	Measured	Target	Tissue		Measure	ed Tissue		Liquid		
	Frequency (MHz)	εr	σ	εr	Dev. (%)	σ	Dev. (%)	Temp.	Test Data	
	835	41.5	0.90	42.251	1.81%	0.861	-4.38%	22.8	06/11/2024	
	2300	39.5	1.67	38.947	-1.40%	1.611	-3.51%	22.6	06/12/2024	-65
	2600	39.0	1.96	39.109	0.28%	1.881	-4.01%	22.5	06/13/2024	CTATES
CTATE	STING		TESTIN							

Report No.: CTA24053101207 Page 20 of 88

7 System Verification Procedures


Each DASY system is equipped with one or more system validation kits. These units, together with the predefined measurement procedures within the DASY software, enable the user to conduct the system performance check and system validation. System validation kit includes a dipole, tripod holder to fix it underneath the flat phantom and a corresponding distance holder.

Purpose of System Performance check

The system performance check verifies that the system operates within its specifications. System and operator errors can be detected and corrected. It is recommended that the system performance check be performed prior to any usage of the system in order to guarantee reproducible results. The system performance check uses normal SAR measurements in a simplified setup with a well characterized source. This setup was selected to give a high sensitivity to all parameters that might fail or vary over time. The system check does not intend to replace the calibration of the components, but indicates situations where the system uncertainty is exceeded due to drift or failure.

System Setup

In the simplified setup for system evaluation, the EUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave that comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below:

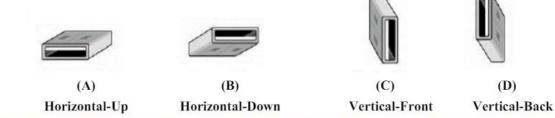
System Setup for System Evaluation

Report No.: CTA24053101207 Page 21 of 88

Photo of Dipole Setup

Validation Results

Comparing to the original SAR value provided by SPEAG, the verification data should be within its specification of 10%. The table below shows that the control of 10%. specification of 10%. The table below shows the target SAR and measured SAR after normalized to 1W input power. It indicates that the system performance check can meet the variation criterion and the plots can be referred to Appendix A of this report.


(-	Date	Frequency (MHz)	Power fed onto reference dipole (mW)	Targeted SAR 1g (W/kg)	Measured SAR1g (W/kg)	Normalized SAR (W/kg)	Deviation (%)	
	06/11/2024	835	250	9.68	2.39	9.56	-1.34%	
	06/12/2024	2300	250	49.2	12.44	49.76	1.17%	-175
	06/13/2024	2600	250	56.8	13.68	54.72	-3.68%	CIL

Report No.: CTA24053101207 Page 22 of 88

8 EUT Testing Position

8.1 DONGLE TESTING PROCEDURES

Test all USB orientations [see figure below: (A) Horizontal-Up, (B) Horizontal-Down, (C) Vertical-Front, and (D) Vertical-Back] with a device-to-phantom separation distance of 5 mm or less, according to KDB Publication 447498 D01 requirements. These test orientations are intended for the exposure conditions found in typical laptop/notebook/netbook or tablet computers with either horizontal or vertical USB connector configurations at various locations in the keyboard section of the computer. Current generation portable host computers should be used to establish the required SAR measurement separation distance. The same test separation distance must be used to test all frequency bands and modes in each USB orientation. The typical Horizontal-Up USB connection (A), found in the majority of host computers, must be tested using an appropriate host computer. A host computer with either Vertical-Front (C) or Vertical Back (D) USB connection should be used to test one of the vertical USB orientations. If a suitable host computer is not available for testing the Horizontal-Down (B) or the remaining Vertical USB orientation, a high-quality USB cable, 12 inches or less, may be used for testing these other orientations. It must be documented that the USB cable does not influence the radiating characteristics and output power of the transmitter.

Note: These are USB connector orientations on laptop computers; USB dongles have the reverse configuration for plugging into the corresponding laptop computers.

Figure 1 – USB Connector Orientations Implemented on Laptop Computers

8.2 Test Distance for SAR Evaluation

In this case the EUT(Equipment under Test) is set 5mm away from the phantom, the test distance is 5mm.

Page 23 of 88 Report No.: CTA24053101207

Measurement Procedures

The measurement procedures are as follows:

- (a) Use base station simulator (if applicable) or engineering software to transmit RF power continuously (continuous Tx) in the middle channel.
- (b) Keep EUT to radiate maximum output power or 100% duty factor (if applicable)
- (c) Measure output power through RF cable and power meter.
- (d) Place the EUT in the positions as setup photos demonstrates.
- (e) Set scan area, grid size and other setting on the DASY software.
- Measure SAR transmitting at the middle channel for all applicable exposure positions.
- (g) Identify the exposure position and device configuration resulting the highest SAR
- (h) Measure SAR at the lowest and highest channels attheworst exposure position and device configuration if applicable.

According to the test standard, the recommended procedure for assessing the peak spatial-average CTATES SAR value consists of the following steps:

- (a) Power reference measurement
- (b) Area scan
- (c) Zoom scan
- (d) Power drift measurement

9.1 Spatial Peak SAR Evaluation

The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY software includes all numerical procedures necessary to evaluate the spatial peak SAR value.

10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a province.

The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- (a) Extraction of the measured data (grid and values) from the Zoom Scan
- (b) Calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- (c) Generation of a high-resolution mesh within the measured volume
- (d) Interpolation of all measured values form the measurement grid to the high-resolution grid
- (e) Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
- Calculation of the averaged SAR within masses of 1g and 10g

9.2 Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface CTATES: determines the closest measurement point to phantom surface. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

Report No.: CTA24053101207

9.3 Area Scan Procedures

The area scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum found in the scanned area, within a range of the global maximum. The range (in dB0 is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan), if only one zoom scan follows the area scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of zoom scans has to be increased accordingly.

Area scan parameters extracted from FCC KDB 865664 D01 SAR measurement 100 MHz to 6 GHz.

	≤3 GHz	> 3 GHz	
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	5 mm ± 1 mm	$\frac{1}{2} \cdot \delta \cdot \ln(2) \text{ mm} \pm 0.5 \text{ mm}$	
Maximum probe angle from probe axis to phantom surface normal at the measurement location	30° ± 1°	20° ± 1°	16
	≤ 2 GHz: ≤ 15 mm 2 – 3 GHz: ≤ 12 mm	3 – 4 GHz: ≤ 12 mm 4 – 6 GHz: ≤ 10 mm	ESTING
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension measurement plane orientat above, the measurement res corresponding x or y dimen at least one measurement po	ion, is smaller than the olution must be \leq the sion of the test device with	

9.4 Zoom Scan Procedures

Zoom scans are used assess the peak spatial SAR values within a cubic averaging volume containing 1 gram and 10gram of simulated tissue. The zoom scan measures points (refer to table below) within a cube shoes base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the zoom scan evaluates the averaged SAR for 1 gram and 10 gram and displays these values next to the job's label.

Zoom scan parameters extracted from FCC KDB 865664 D01 SAR measurement 100 MHz to 6 GHz.

			≤3 GHz	> 3 GHz
Maximum zoom scan	spatial res	olution: Δx _{Zoom} , Δy _{Zoom}	\leq 2 GHz: \leq 8 mm 2 - 3 GHz: \leq 5 mm*	$3 - 4 \text{ GHz: } \le 5 \text{ mm}^*$ $4 - 6 \text{ GHz: } \le 4 \text{ mm}^*$
	uniform	grid: Δz _{Zoom} (n)	≤ 5 mm	$3 - 4 \text{ GHz}$: $\leq 4 \text{ mm}$ $4 - 5 \text{ GHz}$: $\leq 3 \text{ mm}$ $5 - 6 \text{ GHz}$: $\leq 2 \text{ mm}$
Maximum zoom scan spatial resolution, normal to phantom surface	graded grid	Δz _{Zoom} (1): between 1 st two points closest to phantom surface	≤ 4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm
	gna	Δz _{Zoom} (n>1): between subsequent points	$\leq 1.5 \cdot \Delta z_{Zoo}$	om(n-1) mm
Minimum zoom scan volume	x, y, z		≥ 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see IEEE Std 1528-2013 for details.

ATESTING

^{*} When zoom scan is required and the <u>reported</u> SAR from the <u>area scan based 1-g SAR estimation</u> procedures of KDB Publication 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

Report No.: CTA24053101207 Page 25 of 88

9.5 Volume Scan Procedures

The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregateSAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software, SEMCAD postprocessor can combine and subsequently superpose these measurement data to calculating the multiband SAR.

9.6 Power Drift Monitoring

All SAR testing is under the EUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drift more than 5%, the SAR will be retested.

Report No.: CTA24053101207 Page 26 of 88

10 TEST CONDITIONS AND RESULTS

10.1 Conducted Power Results

<WCDMA Conducted Power>

The following tests were conducted according to the test requirements outlines in 3GPP TS 34.121 specification. CTATES A summary of these settings are illustrated below:

HSDPA Setup Configuration:

- The EUT was connected to Base Station Agilent E5515C referred to the Setup Configuration.
- The RF path losses were compensated into the measurements.
- A call was established between EUT and Base Station with following setting:
 - Set Gain Factors (βc and βd) and parameters were set according to each
 - ii. Specific sub-test in the following table, C10.1.4, quoted from the TS 34.121
 - iii. Set RMC 12.2Kbps + HSDPA mode.
 - iv. Set Cell Power = -86 dBm
 - Set HS-DSCH Configuration Type to FRC (H-set 1, QPSK)
 - vi. Select HSDPA Uplink Parameters
 - vii. Set Delta ACK, Delta NACK and Delta CQI = 8
 - viii. Set Ack-Nack Repetition Factor to 3
 - ix. Set CQI Feedback Cycle (k) to 4 ms
 - x. Set CQI Repetition Factor to 2
 - xi. Power Ctrl Mode = All Up bits
- The transmitted maximum output power was recorded.

Table C.10.1.4: β values for transmitter characteristics tests with HS-DPCCH

Sub-test	βο	βd	βd (SF)	βс/βа	βнs (Note1, Note 2)	CM (dB) (Note 3)	MPR (dB) (Note 3)
1	2/15	15/15	64	2/15	4/15	0.0	0.0
2	12/15	15/15	64	12/15	24/15	1.0	0.0
	(Note 4)	(Note 4)		(Note 4)			
3	15/15	8/15	64	15/8	30/15	1.5	0.5
4	15/15	4/15	64	15/4	30/15	1.5	0.5

Note 1: Δ_{ACK} , Δ_{NACK} and Δ_{CQI} = 30/15 with β_{hs} = 30/15 * β_c .

Note 2: For the HS-DPCCH power mask requirement test in clause 5.2C, 5.7A, and the Error Vector Magnitude (EVM) with HS-DPCCH test in clause 5.13.1A, and HSDPA EVM with phase discontinuity in clause 5.13.1AA, \triangle_{ACK} and \triangle_{NACK} = 30/15 with β_{hs} = 30/15 * β_c , and \triangle_{CQI} = 24/15 with $\beta_{hs} = 24/15 * \beta_{c}$.

ESTING

CM = 1 for β_c/β_d =12/15, β_{hs}/β_c =24/15. For all other combinations of DPDCH, DPCCH and HS-Note 3: DPCCH the MPR is based on the relative CM difference. This is applicable for only UEs that support HSDPA in release 6 and later releases.

For subtest 2 the $\beta_{\text{o}}/\beta_{\text{d}}$ ratio of 12/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to β_c = 11/15 and β_d CTATESTI = 15/15

Jon CTATESTIN Setup Configuration

HSUPA Setup Configuration:

- The EUT was connected to Base Station Agilent E5515C referred to the Setup Configuration.
- The RF path losses were compensated into the measurements.
- A call was established between EUT and Base Station with following setting *:
 - Call Configs = 5.2B, 5.9B, 5.10B, and 5.13.2B with QPSK
 - Set the Gain Factors (βc and βd) and parameters (AG Index) were set according to each specific sub-CTATES. test in the following table, C11.1.3, quoted from the TS 34.121
 - Set Cell Power = -86 dBm
 - iv. Set Channel Type = 12.2k + HSPA
 - Set UE Target Power
- CTATESTING vi. Power Ctrl Mode= Alternating bits
 - vii. Set and observe the E-TFCI
 - viii. Confirm that E-TFCI is equal to the target E-TFCI of 75 for sub-test 1, and other subtest's E-TFCI
 - The transmitted maximum output power was recorded.

Table C.11.1.3: β values for transmitter characteristics tests with HS-DPCCH and E-DCH

	Sub- test	βο	βa	β _d (SF)	βc/βd	βнs (Note1)	βес	β _{ed} (Note 5) (Note 6)	β _{ed} (SF)	β _{ed} (Codes)	CM (dB) (Note 2)	MPR (dB) (Note 2)	AG Index (Note 6)	E- TFCI
	1	11/15 (Note 3)	15/15 (Note 3)	64	11/15 (Note 3)	22/15	209/2 25	1309/225	4	1	1.0	0.0	20	75
	2	6/15	15/15	64	6/15	12/15	12/15	94/75	4	1	3.0	2.0	12	67
CTI	3	15/15	9/15	64	15/9	30/15	30/15	β _{ed} 1: 47/15 β _{ed} 2: 47/15	4 4	2	2.0	1.0	15	92
Carl U.	4	2/15	15/15	64	2/15	4/15	2/15	56/75	4	1	3.0	2.0	17	71
2) WHAT THE	5	15/15 (Note 4)	15/15 (Note 4)	64	15/15 (Note 4)	30/15	24/15	134/15	4	1	1.0	0.0	21	81

 $\Delta_{\rm ACK}, \Delta_{\rm NACK}$ and $\Delta_{\rm CQI}$ = 30/15 with $~\beta_{hs}$ = 30/15 * β_c . Note 1:

CM = 1 for β_c/β_d =12/15, β_{hs}/β_c =24/15. For all other combinations of DPDCH, DPCCH, HS- DPCCH, E-DPDCH Note 2: and E-DPCCH the MPR is based on the relative CM difference.

Note 3: For subtest 1 the β_c/β_d ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to β_c = 10/15 and β_d = 15/15.

Note 4: For subtest 5 the β_c/β_d ratio of 15/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to β_c = 14/15 and β_d = 15/15.

In case of testing by UE using E-DPDCH Physical Layer category 1, Sub-test 3 is omitted according to Note 5: TS25,306 Table 5.1g.

Note 6: β_{ed} can not be set directly, it is set by Absolute Grant Value. CTATES

Setup Configuration CTA TESTING Report No.: CTA24053101207 <WCDMA Conducted Power>

	WCDMA		Band \	/ (dBm)	
	TX Channel	Tune-up limit	4132	4183	4233
	Frequency (MHz)	(dBm)	826.4	836.6	846.6
	RMC 12.2Kbps	24.00	23.26	23.58	23.23
	RMC AMR	24.00	23.28	23.10	23.00
	HSDPA Subtest-1	23.00	21.92	22.53	22.07
	HSDPA Subtest-2	22.00	21.85	21.81	21.45
CTATES	HSDPA Subtest-3	22.00	21.09	20.81	20.91
	HSDPA Subtest-4	21.00	20.79	20.46	20.22
	HSUPA Subtest-1	23.00	22.28	22.51	22.07
	HSUPA Subtest-2	22.00	20.79	21.33	20.88
	HSUPA Subtest-3	22.00	21.16	20.75	21.60
	HSUPA Subtest-4	21.00	20.24	20.74	19.73
C	HSUPA Subtest-5	21.00	19.80	19.71	20.43

General Note

- 1. Per KDB 941225 D01 v02, RMC 12.2kbps setting is used to evaluate SAR as primary mode. When the maximum output power and tune-up tolerance specified for production units in a secondary mode is ≤ ¼ dB higher than the primary mode or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is ≤ 1.2 W/kg, SAR measurement is not required for the secondary mode.
- It is expected by the manufacturer that MPR for some HSDPA/HSUPA subtests may differ from the specification of 3GPP, according to the chipset implementation in this model. The implementation and expected deviation are detailed in tune-up procedure exhibit.

Report No.: CTA24053101207

<LTE Conducted Power>

				L	TE Band 5			
E	3W	Modulation	RB Size	DD Offers	Cha	annel/Frequency(N	lHz)	Tune-up limit
(N	⁄lHz)	Modulation	KD SIZE	RB Offset	20450	20525	20600	(dBm)
					829	836.5	844	
	10	QPSK	1	0	23.85	23.33	23.48	
	10	QPSK	1	25	23.17	23.72	23.26	24.0
	10	QPSK	1	49	23.51	23.64	23.06	(EVA
	10	QPSK	25	0	22.18	22.39	22.09	The state of the s
	10	QPSK	25	12	22.22	22.35	22.06	23.0
	10	QPSK	25	25	22.10	22.07	22.19	
	10	QPSK	50	0	22.02	22.34	22.24	
	10	16QAM	1	0	22.07	22.20	22.19	
	10	16QAM	1	25	22.24	22.05	22.18	23.0
	10	16QAM	1	49	22.45	22.20	22.31	TATES
	10	16QAM	25	0	21.46	21.33	21.44	J * *
	10	16QAM	25	12	21.46	21.52	21.16	22.0
	10	16QAM	25	25	21.17	21.15	21.24	22.0
	10	16QAM	50	0	21.23	21.19	21.30	
Е	3W				Cha	annel/Frequency(M	lHz)	Tune-up limit
	ИHz)	Modulation	RB Size	RB Offset	20425	20525	20625	(dBm)
(,				826.5	836.5	846.5	
	5	QPSK	1	0	23.25	23.73	23.64	
	5	QPSK	1	12	23.66	23.59	23.72	24.0
	5	QPSK	1	24	23.57	23.52	23.56	Tarita .
	5	QPSK	12	0	22.14	22.14	22.14	The state of the s
	5	QPSK	12	7	22.44	22.20	22.24	
	5	QPSK	12	13	22.36	22.05	22.08	23.0
	5	QPSK	25	0	22.38	22.34	22.16	1
	5	16QAM	1	0	22.35	22.11	22.15	
	5	16QAM	1	12	22.34	22.34	22.41	23.0
	5	16QAM	1	24	22.02	22.42	22.22	TESI
	5	16QAM	12	0	21.44	21.22	21.31	JAN.
	5	16QAM	12	7	21.47	21.36	21.32	1
	5	16QAM	12	13	21.18	21.46	21.20	22.0
	5	16QAM	25	0	21.28	21.55	21.25	
	CTA	TES		CTATES	STING		CTINC	>
						CTA CTA	TES	

		1207				Pa	
BW				Cha	annel/Frequency	(MHz)	Tune-up limit
(MHz)	Modulation	RB Size	RB Offset	20415	20525	20635	(dBm)
				825.5	836.5	844	
3	QPSK	1	0	23.45	23.89	23.78	
3	QPSK	1	8	23.71	23.87	23.16	24.0
3	QPSK	1	14	23.64	23.13	23.89	
3	QPSK	8	0	22.28	22.36	22.23	
3	QPSK	8	4	22.04	22.40	22.37	22
3	QPSK	8	7	22.04	22.09	22.16	23.0
3 3	QPSK	15	0	22.13	22.02	22.24	
3	16QAM	1	0	22.34	22.30	22.35	
3	16QAM	1	8	22.27	22.12	22.24	23.0
3	16QAM	1	14	22.44	22.37	22.10	
3	16QAM	8	0	21.49	21.15	21.51	GTIN
3	16QAM	8	4	21.31	21.28	21.42	TATES!
3	16QAM	8	7	21.20	21.39	21.19	22.0
3	16QAM	15	0	21.19	21.31	21.45	
BW				Cha	annel/Frequency	(MHz)	Tune-up limit
(MHz)	Modulation	RB Size	RB Offset	20407	20525	20643	(dBm)
,				824.7	836.5	848.3	, ,
1.4	QPSK	1	0	23.76	23.19	23.93	
1.4	QPSK	1	3	23.07	23.53	23.98	24.0
1.4	QPSK	1	5	23.71	23.82	23.28	
1.4	QPSK	3	0	22.39	22.14	22.35	
1.4	QPSK	3	1	22.41	22.19	22.44	to tid
1.4	QPSK	3	3	22.05	22.27	22.25	23.0
1.4	QPSK	6	0	22.21	22.45	22.44	
1.4	16QAM	1	0	22.17	22.31	22.16	
1.4	16QAM	1	3	22.01	22.35	22.19	23.0
1.4	16QAM	1	5	22.07	22.28	22.07	
1.4	16QAM	3	0	21.39	21.51	21.50	TIN
1.4	16QAM	3	1	21.30	21.35	21.31	TES "
1.4	16QAM	3	3	21.54	21.19	21.28	22.0
	16QAM	6	0	21.19	21.37	21.53	-

				L	TE Band 7			
	DW				Chai	nnel/Frequency(M	IHz)	Tura a una limait
and of	BW (MHz)	Modulation	RB Size	RB Offset	20850	21100	21350	Tune-up limit (dBm)
	,				2510	2535	2560	
	20	QPSK	1	0	23.84	23.81	23.39	
	20	QPSK	1	49	23.61	23.37	23.66	24.0
	20	QPSK	1	99	23.08	23.55	23.42	
	20	QPSK	50	0	22.22	22.36	22.35	To see with the
TES	20	QPSK	50	24	22.12	22.37	22.11	22.0
	20	QPSK	50	50	22.34	22.03	22.15	23.0
	20	QPSK	100	0	22.01	22.34	22.29	
	20	16QAM	1	0	22.02	22.27	22.13	
	20	16QAM	1	49	22.13	22.24	22.32	23.0
	20	16QAM	1	99	22.29	22.03	22.35	TATES
	20	16QAM	50	0	21.44	21.51	21.20	
	20	16QAM	50	24	21.19	21.42	21.53	
	20	16QAM	50	50	21.55	21.22	21.31	22.0
	20	16QAM	100	0	21.20	21.33	21.27	
	BW				Chai	nnel/Frequency(M	IHz)	Tune-up limit
No.	(MHz)	Modulation	RB Size	RB Offset	20825	21100	21375	(dBm)
	(IVIIIZ)				2507.5	2535	2562.5	(ubili)
ŀ	15	QPSK	1	0	23.74	23.32	23.33	
			1	37	23.94		23.48	24.0
-	15	QPSK	1		23.94	23.84	23.40	24.0
-	15 15	QPSK QPSK	1		23.94	23.84	23.46	
	15 15	QPSK	1	74	23.61			24.0
ES	15 15	QPSK QPSK		74 0	23.61 22.12	23.41 22.11	23.17	Con.
ES	15 15	QPSK QPSK QPSK	1 36 36	74 0 20	23.61 22.12 22.17	23.41 22.11 22.18	23.17 22.12 22.39	23.0
TES	15 15	QPSK QPSK	1 36	74 0	23.61 22.12	23.41 22.11	23.17 22.12	Con.
ES	15 15 15 15	QPSK QPSK QPSK QPSK	1 36 36 36	74 0 20 39	23.61 22.12 22.17 22.30	23.41 22.11 22.18 22.22	23.17 22.12 22.39 22.04	Con.
ES	15 15 15 15 15	QPSK QPSK QPSK QPSK QPSK	1 36 36 36 75	74 0 20 39 0	23.61 22.12 22.17 22.30 22.31	23.41 22.11 22.18 22.22 22.04	23.17 22.12 22.39 22.04 22.24	23.0
(Es	15 15 15 15 15 15	QPSK QPSK QPSK QPSK QPSK 16QAM	1 36 36 36 75 1	74 0 20 39 0	23.61 22.12 22.17 22.30 22.31 22.26	23.41 22.11 22.18 22.22 22.04 22.27	23.17 22.12 22.39 22.04 22.24 22.22	Con.
(ES	15 15 15 15 15 15 15	QPSK QPSK QPSK QPSK QPSK 16QAM	1 36 36 36 75 1	74 0 20 39 0 0 37	23.61 22.12 22.17 22.30 22.31 22.26 22.01	23.41 22.11 22.18 22.22 22.04 22.27 22.18	23.17 22.12 22.39 22.04 22.24 22.22 22.10	23.0
ES	15 15 15 15 15 15 15 15	QPSK QPSK QPSK QPSK QPSK 16QAM 16QAM	1 36 36 36 75 1 1	74 0 20 39 0 0 37 74	23.61 22.12 22.17 22.30 22.31 22.26 22.01 22.42	23.41 22.11 22.18 22.22 22.04 22.27 22.18 22.40	23.17 22.12 22.39 22.04 22.24 22.22 22.10 22.33	23.0
ES	15 15 15 15 15 15 15 15 15	QPSK QPSK QPSK QPSK QPSK 16QAM 16QAM 16QAM	1 36 36 36 75 1 1 1 36	74 0 20 39 0 0 37 74	23.61 22.12 22.17 22.30 22.31 22.26 22.01 22.42 21.22	23.41 22.11 22.18 22.22 22.04 22.27 22.18 22.40 21.20	23.17 22.12 22.39 22.04 22.24 22.22 22.10 22.33 21.42	23.0

			Cha	nnel/Frequency(I	MHz)	Tune-up limit
Modulation	RB Size	RB Offset	20800	21100	21400	(dBm)
			2505	2535	2565	(32)
QPSK	1	0	23.65	23.41	23.52	
QPSK	1	25	23.83	23.33	23.32	24.0
QPSK	1	49	23.29	23.36	23.49	
QPSK	25	0	22.17	22.17	22.29	
QPSK	25	12	22.04	22.03	22.43	
QPSK	25	25	22.07	22.01	22.20	23.0
QPSK	50	0	22.12	22.36	22.05	
16QAM	1	0	22.33	22.15	22.40	
16QAM	1	25	22.20	22.33	22.26	23.0
16QAM	1	49	22.29	22.16	22.30	
16QAM	25	0	21.50	21.50	21.45	CTIN
16QAM	25	12	21.27	21.26	21.49	TATES
16QAM	25	25	21.40	21.46	21.21	22.0
16QAM	50	0	21.42	21.26	21.30	
			Cha	nnel/Frequency(I	MHz)	Tune-up limit
Modulation	RB Size	RB Offset	20775	21100	21425	(dBm)
			2502.5	2535	2567.5	, ,
QPSK	1	0	23.30	23.98	23.04	
QPSK	1	12	23.45	23.24	23.69	24.0
QPSK	1	24	23.04	23.81	23.06	
QPSK	12	0	22.08	22.07	22.40	
QPSK	12	7	22.06	22.05	22.06	22.2
QPSK	12	13	22.08	22.25	22.02	23.0
QPSK	25	0	22.15	22.41	22.01	
16QAM	1	0	22.44	22.01	22.23	
16QAM	1	12	22.40	22.43	22.27	23.0
16QAM	1	24	22.24	22.09	22.19	
16QAM	12	0	21.19	21.22	21.50	TIN
16QAM	12	7	21.49	21.25	21.18	TES !!
16QAM	12	13	21.30	21.46	21.36	22.0
	25	0	21.35	21.28	21.17	
	QPSK QPSK QPSK QPSK QPSK QPSK QPSK 16QAM 16QAM 16QAM 16QAM 16QAM Modulation QPSK QPSK QPSK QPSK QPSK QPSK QPSK QPS	QPSK 1 QPSK 1 QPSK 1 QPSK 25 QPSK 25 QPSK 25 QPSK 50 16QAM 1 16QAM 1 16QAM 25 16QAM 25 16QAM 25 16QAM 50 Modulation RB Size QPSK 1 QPSK 1 QPSK 1 QPSK 1 QPSK 12 QPSK 12 QPSK 25 16QAM 1 16QAM 1 16QAM 1 16QAM 1 16QAM 1 16QAM 1 16QAM 1	QPSK 1 0 QPSK 1 25 QPSK 1 49 QPSK 25 0 QPSK 25 12 QPSK 25 25 QPSK 50 0 16QAM 1 0 16QAM 1 25 16QAM 25 0 16QAM 25 12 16QAM 25 25 16QAM 50 0 Modulation RB Size RB Offset QPSK 1 0 QPSK 1 0 QPSK 1 24 QPSK 12 7 QPSK 12 7 QPSK 12 7 QPSK 12 13 QPSK 25 0 16QAM 1 0	QPSK 1 0 23.65 QPSK 1 25 23.83 QPSK 1 49 23.29 QPSK 25 0 22.17 QPSK 25 12 22.04 QPSK 25 25 22.07 QPSK 50 0 22.12 16QAM 1 0 22.33 16QAM 1 0 22.33 16QAM 1 0 22.33 16QAM 1 0 22.33 16QAM 1 49 22.29 16QAM 25 0 21.50 16QAM 25 12 21.50 16QAM 25 12 21.40 16QAM 50 0 21.42 Modulation RB Size RB Offset 20775 2502.5 202.5 2202.5 QPSK 1 0 23.30 QPSK 1 0	QPSK 1 0 23.65 23.41 QPSK 1 25 23.83 23.33 QPSK 1 49 23.29 23.36 QPSK 25 0 22.17 22.17 QPSK 25 12 22.04 22.03 QPSK 25 25 22.07 22.01 QPSK 50 0 22.12 22.36 16QAM 1 0 22.33 22.15 16QAM 1 25 22.20 22.33 16QAM 1 25 22.20 22.33 16QAM 25 0 21.50 21.50 16QAM 25 0 21.50 21.50 16QAM 25 12 21.27 21.26 16QAM 25 25 21.40 21.46 16QAM 25 25 21.40 21.46 16QAM 50 0 21.42 21.26	QPSK 1 0 2505 2535 2565 QPSK 1 0 23.65 23.41 23.52 QPSK 1 25 23.83 23.33 23.32 QPSK 1 49 23.29 23.36 23.49 QPSK 25 0 22.17 22.17 22.29 QPSK 25 12 22.04 22.03 22.43 QPSK 25 25 22.07 22.01 22.20 QPSK 50 0 22.12 22.36 22.05 16QAM 1 0 22.33 22.15 22.40 16QAM 1 25 22.20 22.33 22.26 16QAM 1 49 22.29 22.16 22.30 16QAM 25 12 21.50 21.50 21.45 16QAM 25 25 21.40 21.46 21.21 16QAM 25 25 21.40 <

				ΓE Band 38			
BW	Modulation	RB Size	RB Offset		innel/Frequency(Tune-up limit
(MHz)				37850 2580	38000 2595	38150 2610	(dBm)
20	QPSK	1	0	23.79	23.84	23.13	
20	QPSK	1	49	23.70	23.66	23.71	24.0
20	QPSK	1	99	23.34	23.07	23.88	
20	QPSK	50	0	22.41	22.33	22.06	
20	QPSK	50	24	22.41	22.11	22.27	-
20	QPSK	50	50	22.36	22.45	22.37	23.0
20	QPSK	100	0	22.16	22.43	22.10	
20	16QAM	1	0	22.33	22.04	22.10	
20	16QAM	1	49	22.37	22.45	22.02	23.0
20	16QAM	1	99	22.31	22.45	22.33	
20	16QAM	50	0	21.38	21.25	21.37	TESTIN
20	16QAM	50	24	21.15	21.16	21.26	STA.
20	16QAM	50	50	21.13	21.10	21.28	22.0
20	16QAM	100	0	21.53	21.48	21.25	
20	TOQAM	100	0				
BW	3W	RB Size	RB Offset	Channel/Frequency(MHz)			Tune-up limit
(MHz)	Modulation			37825	38000	38175	(dBm)
				2577.5	2595	2612.5	
15	QPSK	1	0	23.64	23.27	23.02	
15	QPSK	1	37	23.54	23.98	23.32	24.0
15	QPSK	1	74	23.21	23.15	23.16	
15	QPSK	36	0	22.07	22.05	22.08	The state of the s
15	QPSK	36	20	22.24	22.23	22.41	23.0
15 15	QPSK	36	39	22.39	22.26	22.40	23.0
15	QPSK	75	0	22.44	22.01	22.42	
15	16QAM	1	0	22.23	22.19	22.04	
15	16QAM	1	37	22.27	22.23	22.16	23.0
15	16QAM	1	74	22.44	22.15	22.14	TIN
15	16QAM	36	0	21.43	21.25	21.55	CATES
15	16QAM	36	20	21.24	21.53	21.43	22.0
15	16QAM	36	39	21.47	21.29	21.49	22.0
15	16QAM	75	0	21.53	21.38	21.27	
	IOQAW			•	•	•	•
	ATE		S CTATES				

				Chr			
BW	Modulation	RB Size	RB Offset	Channel/Frequency(MHz)			Tune-up limit
(MHz)	Wodulation			37800	38000	38200	(dBm)
				2575	2595	2615	
10	QPSK	1	0	23.56	23.19	23.10	
10	QPSK	1	25	23.33	23.36	23.87	24.0
10	QPSK	1	49	23.60	23.22	23.45	
10	QPSK	25	0	22.25	22.28	22.33	
10	QPSK	25	12	22.03	22.41	22.16	23.0
10	QPSK	25	25	22.04	22.23	22.30	
10	QPSK	50	0	22.32	22.12	22.21	
10	16QAM	1	0	22.26	22.38	22.14	23.0
10	16QAM	1	25	22.14	22.14	22.45	
10	16QAM	1	49	22.45	22.14	22.07	
10	16QAM	25	0	21.21	21.17	21.36	22.0
10	16QAM	25	12	21.26	21.53	21.20	
10	16QAM	25	25	21.48	21.28	21.15	
10	16QAM	50	0	21.27	21.20	21.49	
BW (MHz)	Modulation	RB Size	RB Offset	Cha	Tune-up limit		
				37775	38000	38225	(dBm)
				2572.5	2595	2617.5	
5	QPSK	1	0	23.92	23.51	23.39	
5	QPSK	1	12	23.09	23.22	23.85	24.0
5	QPSK	1	24	23.03	23.71	23.64	
5	QPSK	12	0	22.01	22.44	22.11	
5	QPSK	12	7	22.17	22.26	22.32	Trans.
5	QPSK	12	13	22.22	22.14	22.26	23.0
5	QPSK	25	0	22.37	22.44	22.40	
5	16QAM	1	0	22.41	22.05	22.35	
5	16QAM	1	12	22.09	22.37	22.36	23.0
5	16QAM	1	24	22.18	22.21	22.18	_
5	16QAM	12	0	21.22	21.39	21.34	MIN
5	16QAM	12	7	21.25	21.42	21.40	TES!"
5	16QAM	12	13	21.24	21.40	21.22	22.0
5	16QAM	25		21.46	21.38	21.40	•
5 5 5 5 5	16QAM 16QAM 16QAM 16QAM	1 1 12 12 12 12 25	12 24 0 7	22.09 22.18 21.22 21.25 21.24 21.46	22.37 22.21 21.39 21.42	22.36 22.18 21.34 21.40	23.0

			LTE Band 40	A 2305MHz~23	15MHz			
BW	Modulatio	n RB Size	RB Offset	Cha	Tune-up limit			
(MF	lz)				(dBm)			
10) QPSK	1	0		2310	-651"		
10		1	25		23.57	71-	24.0	
10		1	49		23.39		<u>-</u> - - - -	
			0		Kousu!		(in the second	
10		25	12		22.24			
10		25					23.0	
10		25	25	<u> </u>	22.22		-	
10		50	0		22.12		1	
10		1	0		22.25			
10		1	25	22.17			23.0	
10		1	49		22.13		TESTIN	
10			0		21.24	630	TAIL	
10		25	12		21.31	(eth)	22.0	
10		25	25	21.53			_	
10	D 16QAM	50	0		21.45			
BV	N Modulatio	n RB Size	RB Offset	Channel/Frequency(MHz)			Tune-up limit	
(MH	lz)	1 100.20	TED Offset	38725	38750	38775	(dBm)	
	2701/			2307.5	2310	2312.5		
5		1	0	23.54	23.91	23.43	_	
5		1	12	23.36	23.48	23.77	24.0	
5		1	24	23.41	23.38	23.60	Lid	
5		12	0	22.43	22.34	22.16	(EVA	
	QPSK	12	7	22.38	22.14	22.29	Mary to won the last	
5		$\overline{}$	+		+ 1	!	⊣ 23.0	
5	QPSK	12	13	22.40	22.40	22.20	23.0	
5		12 25	13 0		22.40 22.41	22.20 22.39	23.0	
5	QPSK			22.40			23.0	
5 5	QPSK 16QAM	25 1	0	22.40 22.08	22.41	22.39	23.0	
5 5 5	QPSK 16QAM 16QAM	25 1	0	22.40 22.08 22.40	22.41 22.15	22.39 22.29		
5 5 5 5	QPSK 16QAM 16QAM 16QAM	25 1 1 1	0 0 12	22.40 22.08 22.40 22.10	22.41 22.15 22.39	22.39 22.29 22.40		
5 5 5 5 5	QPSK 16QAM 16QAM 16QAM 16QAM	25 1 1 1	0 0 12 24	22.40 22.08 22.40 22.10 22.06	22.41 22.15 22.39 22.34	22.39 22.29 22.40 22.05	23.0	
5 5 5 5 5 5	QPSK 16QAM 16QAM 16QAM 16QAM 16QAM	25 1 1 1 1 12	0 0 12 24 0	22.40 22.08 22.40 22.10 22.06 21.20	22.41 22.15 22.39 22.34 21.22	22.39 22.29 22.40 22.05 21.36		

				LTE Band 40	B 2350MHz~23	60MHz		1		
1	BW Modulation		RB Size	RB Offset	Channel/Frequency(MHz)			Tune-up limit		
(MI	Hz)			ND Olloct	39200			(dBm)		
1	10	QPSK	1	0		2355	-6511			
						23.40	TE	-		
	10	QPSK	1	25		23.32		24.0		
	10	QPSK	1	49		23.47				
	10	QPSK	25	0		22.27		CIA		
1	10	QPSK	25	12		22.04		23.0		
	10	QPSK	25	25		22.34		-		
- 1	10	QPSK	50	0		22.19				
	0	16QAM	1	0		22.32				
1	10	16QAM	1	25	22.27			23.0		
1	10	16QAM	1	49	C.	22.32		ESTIN		
1	10	16QAM	25	0		21.37		TATE		
1	0	16QAM	25	12		21.25		22.0		
1	10	16QAM	25	25	21.31			22.0		
1	10	16QAM	50	0		21.49		1		
1	W Hz)	Modulation	RB Size	RB Offset	Channel/Frequency(MHz) 39175 39200 39225 2352.5 2355 2357.5			Tune-up limit (dBm)		
!	 5	QPSK	1	0	23.87	23.18	23.07			
!	5	QPSK	1	12	23.82	23.25	23.23	24.0		
	5	QPSK	1	24	23.49	23.58	23.47	-		
	5	QPSK	12	0	22.14	22.41	22.12	110 110		
	5	QPSK	12	7	22.40	22.38	22.25	-		
	5	QPSK	12	13	22.12	22.06	22.08	23.0		
	5 5	QPSK	25	0	22.07	22.16	22.31	-		
							22.44			
	5	160AM	1	0	□ 22.36	22 18				
ţ	5 5	16QAM	1	12	22.36	22.18		23.0		
ţ	5	16QAM	1	12	22.45	22.31	22.29	23.0		
ţ	5 5	16QAM 16QAM	1	12 24	22.45 22.09	22.31 22.17	22.29 22.14	23.0		
ţ	5 5 5	16QAM 16QAM 16QAM	1 1 12	12 24 0	22.45 22.09 21.46	22.31 22.17 21.17	22.29 22.14 21.15	23.0		
, t	5 5 5 5	16QAM 16QAM 16QAM 16QAM	1 1 12 12	12 24 0 7	22.45 22.09 21.46 21.28	22.31 22.17 21.17 21.25	22.29 22.14 21.15 21.47	23.0		
£	5 5 5	16QAM 16QAM 16QAM	1 1 12	12 24 0	22.45 22.09 21.46	22.31 22.17 21.17	22.29 22.14 21.15	TATESTIN		

					LTE B	Band 41				
						Channe	el/Frequency	y(MHz)		Tune-up
	BW (MHz)	Modulation	RB Size	RB Offset	39750	40185	40620	41055	41490	limit
	(IVII IZ)		SIZE	Oliset	2506	2549.5	2593	2636.5	2680	(dBm)
	20	QPSK	1	0	23.41	23.64	23.94	23.71	23.65	
	20	QPSK	1	49	23.54	23.44	23.46	23.23	23.10	24.0
	20	QPSK	1	99	23.92	23.81	23.87	23.82	23.95	JI 110
	20	QPSK	50	0	22.12	22.05	22.11	22.28	22.45	10 may 10 mg
TES	20	QPSK	50	24	22.18	22.31	22.45	22.32	22.35	
	20	QPSK	50	50	22.20	22.20	22.21	22.21	22.38	23.0
	20	QPSK	100	0	22.21	22.08	22.11	22.07	22.13	
	20	16QAM	1	0	22.25	22.21	22.29	22.17	22.12	
	20	16QAM	1	49	22.02	22.01	22.18	22.12	22.10	23.0
	20	16QAM	1	99	22.22	22.21	22.28	22.16	22.10	LES.
	20	16QAM	50	0	21.48	21.29	21.28	21.31	21.35	
	20	16QAM	50	24	21.37	21.29	21.33	21.26	21.29	000
	20	16QAM	50	50	21.47	21.41	21.51	21.36	21.38	22.0
	20	16QAM	100	0	21.39	21.27	21.26	21.25	21.34	
	BW		RB	RB		Channe	el/Frequency	y(MHz)		Tune-up
	(MHz)	Modulation	Size	Offset	39725	40173	40620	41068	41515	limit
	(1011 12)		Size	Oliset	2503.5	2548.5	2593	2637.8	2682.5	(dBm)
	15	QPSK	1	0	23.79	23.55	23.50	23.21	23.00	
	15	QPSK	1	37	23.74	23.52	23.43	23.30	23.34	24.0
	15	QPSK	1	74	23.59	23.29	23.07	23.34	23.64	100 110
	15	QPSK	36	0	22.08	22.19	22.33	22.29	22.41	To understand
(ES	15	QPSK	36	20	22.25	22.16	22.08	22.25	22.42	•
		0.001/		39	22.36	22.15	22.13	22.16	22.29	23.0
	15	QPSK	36	39			22.13	_		
	15 15	QPSK QPSK	36 75	0	22.02	21.98	22.13	22.04	22.03	
	15	QPSK	75	0	22.02	21.98	22.11	22.04	22.03	23.0
TES	15 15	QPSK 16QAM	75 1	0	22.02 22.24	21.98 22.24	22.11 22.39	22.04 22.39	22.03 22.41	23.0
	15 15 15	QPSK 16QAM 16QAM	75 1 1	0 0 37	22.02 22.24 22.06	21.98 22.24 22.12	22.11 22.39 22.36	22.04 22.39 22.16	22.03 22.41 22.02	23.0
	15 15 15 15	QPSK 16QAM 16QAM 16QAM	75 1 1 1	0 0 37 74	22.02 22.24 22.06 22.19	21.98 22.24 22.12 22.17	22.11 22.39 22.36 22.30	22.04 22.39 22.16 22.16	22.03 22.41 22.02 22.17	TESI
	15 15 15 15 15	QPSK 16QAM 16QAM 16QAM 16QAM	75 1 1 1 1 36	0 0 37 74 0	22.02 22.24 22.06 22.19 21.45	21.98 22.24 22.12 22.17 21.45	22.11 22.39 22.36 22.30 21.55	22.04 22.39 22.16 22.16 21.31	22.03 22.41 22.02 22.17 21.22	23.0

ESTING

BW		RB	RB		Channe	el/Frequency	y(MHz)		Tune-up
(MHz)	Modulation	Size	Offset	39700	40160	40620	41080	41540	limit
(1711 12)		O IZC	Oliset	2501	2547	2593	2639	2685	(dBm)
10	QPSK	1	0	23.01	23.29	23.71	23.45	23.25	
10	QPSK	1	25	23.80	23.76	23.74	23.45	23.33	24.0
10	QPSK	1	49	23.55	23.43	23.45	23.55	23.72	
10	QPSK	25	0	22.33	22.27	22.28	22.18	22.14	THE WE
10	QPSK	25	12	22.37	22.37	22.45	22.31	22.19	
10	QPSK	25	25	22.07	22.21	22.38	22.27	22.34	23.0
10	QPSK	50	0	22.08	22.09	22.16	22.21	22.27	
10	16QAM	1	0	22.43	22.35	22.29	22.08	22.07	
10	16QAM	1	25	22.26	22.15	22.17	22.13	22.16	23.0
10	16QAM	1	49	22.34	22.33	22.35	22.33	22.38	
10	16QAM	25	0	21.49	21.38	21.36	21.25	21.23	GTING
10	16QAM	25	12	21.46	21.40	21.41	21.30	21.32	TES.
10	16QAM	25	25	21.42	21.33	21.44	21.34	21.39	22.0
10	16QAM	50	0	21.49	21.30	21.15	21.23	21.35	
BW		RB	RB		Chann	el/Frequency	y(MHz)		Tune-up
(MHz)	Modulation	Size	Offset	39675	40148	40620	41093	51565	limit
				2498.5	2545.8	2593	2640.3	2687.5	(dBm)
5	QPSK	1	0	23.36	23.46	23.62	23.77	23.97	
5	QPSK	1	12	23.60	23.21	23.02	23.19	23.43	24.0
5	QPSK	1	24	23.00	23.23	23.61	23.70	23.80	
5	QPSK	12	0	22.11	22.00	22.07	22.10	22.30	(m. 114
5	QPSK	12	7	22.03	22.14	22.42	22.23	22.06	23.0
5	QPSK	12	13	22.30	22.22	22.26	22.28	22.32	23.0
5 5	QPSK	25	0	22.36	22.32	22.30	22.11	22.05	
5	16QAM	1	0	22.10	22.03	22.11	22.03	22.12	
5	16QAM	1	12	22.16	22.17	22.19	22.20	22.31	23.0
_	16QAM	1	24	22.01	22.01	22.20	22.13	22.13	
5		40	0	21.39	21.29	21.22	21.25	21.41	TING
5	16QAM	12	U						
	16QAM 16QAM	12	7	21.34	21.32	21.41	21.26	21.30	22.0
5					21.32 21.20	21.41 21.28	21.26 21.27	21.30 21.32	22.0

STING

Page 39 of 88

Report No.: CTA24053101207 10.2 Transmit Antennas CTATES

Antenna Distance to Edge

		7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			
Antenna Distan	ce to Edge	C	VIII.		CTATESTIN
		ce of The Antenna t	o the EUT surfa	ce and edge	
Antennas	Back	Front	Left	Right	Тор
WWAN Main	1 0mm	0mm	0mm	0mm	0mm
CTA		CTATEST		- CTATESTIN	

Report No.: CTA24053101207 Page 40 of 88

10.3 SAR Test Exclusion and Estimated SAR

SAR Test Exclusion Considerations

Per KDB 447498 D01v06, the 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR

- f(GHz) is the RF channel transmit frequency in GHz.
- Power and distance are rounded to the nearest mW and mm before calculation.
- The result is rounded to one decimal place for comparison.

Per KDB 447498 D01v06, at 100 MHz to 6 GHz and for test separation distances > 50 mm, the SAR test exclusion threshold is determined according to the following:

- a) [Threshold at 50mm)+(test separation distance-50mm)*(f(MHz)/150)]mW, at 100MHz to 1500MHz
- b) [Threshold at 50mm)+(test separation distance-50mm)*10]mW at > 1500MHz and ≤ 6GHz

Estimated SAR

Per KDB447498 requires when the standalone SAR test exclusion of section 4.3.1 is applied to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to the following to determine simultaneous transmission SAR test exclusion;

• (max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] • [√ f(GHz)/x] W/kg for test separation distances ≤ 50 mm;

where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR.

• 0.4 W/kg for 1-g SAR and 1.0 W/kg for 10-g SAR, when the test separation distances is > 50 mm

The below table, exemption limits for routine evaluation based on frequency and separation distance was according to SAR-based Exemption – §1.1307(b)(3)(i)(B).

			Star	ndalone SAF	Test Exclus	sion and Estim	nated SAR		
Wireless			Max	. Power	Distance	Calculation	SAR	Standalone	Estimated
Interface	Frequency	Configuration	With	tune-up			Exclusion	SAR	SAR
interface	(MHz)		dBm	mW	(mm)	Result	Thresholds	Exclusion	(W/Kg)
	111	Back	24.0	251.189	10	23.0	G 3	No	N/A
	(EVI)	Front	24.0	251.189	5	45.9	3	No	N/A
WWAN	836.6	Left	24.0	251.189	5	45.9	3	No	N/A
		Right	24.0	251.189	5	45.9	3	No	N/A
		Тор	24.0	251.189	5	45.9	3	No	N/A

Remark:

- 1. Maximum average power including tune-up tolerance;
- 2. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion
- 3. when the distance is < 50 mm exclusion threshold is "Ratio", when the distance is > 50 mm exclusion threshold is "mW".

Report No.: CTA24053101207 Page 41 of 88

10.4 SAR Test Results

General Note:

1 Per KDB 447498 D01v06, the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance.

- a) Tune-up scaling Factor = tune-up limit power (mW) / EUT RF power (mW), where tune-up limit is the maximum rated power among all production units.
- b) For SAR testing of WLAN signal with non-100% duty cycle, the measured SAR is scaled-up by the duty cycle scaling factor which is equal to "1/(duty cycle)"
- c) For WLAN/Bluetooth: Reported SAR(W/kg)= Measured SAR(W/kg)* Duty Cycle scaling factor * Tuneup scaling factor
- Per KDB 447498 D01v06, for each exposure position, testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is:
 - ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz
 - ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
 - ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz
- 3 Per KDB 865664 D01v01r04, for each frequency band, repeated SAR measurement is required only when the measured SAR is ≥0.8W/kg.

Report No.: CTA24053101207

<Body SAR>

SAR Values [WCDMA band V]

	Plot No.	Mode	Test Position	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Scaling Factor	Power Drift (dB)	Measured SAR1g (W/kg)	Reported SAR1g (W/kg)	
			Mea	sured / I	Reported	SAR num	bers-Body	distance 5	imm			
	#1	RMC 12.2K	Front	4183	836.6	23.58	24.00	1.102	0.05	0.905	0.997	
		RMC 12.2K	Back	4183	836.6	23.58	24.00	1.102	-0.04	0.756	0.833	CTATES
		RMC 12.2K	Left	4183	836.6	23.58	24.00	1.102	-0.07	0.885	0.975	0.,
	TIN	RMC 12.2K	Right	4183	836.6	23.58	24.00	1.102	-0.05	0.836	0.921	
CTATES		RMC 12.2K	Тор	4183	836.6	23.58	24.00	1.102	0.06	0.901	0.992	
C		RMC 12.2K	Front	4132	826.4	23.26	24.00	1.186	-0.11	0.886	1.051	
		RMC 12.2K	Left	4132	826.4	23.26	24.00	1.186	0.03	0.737	0.874	
		RMC 12.2K	Right	4132	826.4	23.26	24.00	1.186	0.05	0.864	1.025	
		RMC 12.2K	Тор	4132	826.4	23.26	24.00	1.186	-0.10	0.810	0.960	3
		RMC 12.2K	Front	4233	846.6	23.23	24.00	1.194	0.03	0.857	1.023	
		RMC 12.2K	Left	4233	846.6	23.23	24.00	1.194	-0.08	0.704	0.841	
		RMC 12.2K	Right	4233	846.6	23.23	24.00	1.194	0.09	0.834	0.996	
		RMC 12.2K	Тор	4233	846.6	23.23	24.00	1.194	0.05	0.780	0.931	

SAR Values [LTE Band 5]

Plot No.	Mode	Test Position	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Scaling Factor	Power Drift (dB)	Measured SAR1g (W/kg)	Reported SAR1g (W/kg)
			/leasured	/ Reporte	d SAR numb		stance 5mr		(******3)	(*****3)
#2	10MHz/1RB#0	Front	20450	829	23.85	24.00	1.035	-0.05	0.735	0.761
	10MHz/1RB#0	Back	20450	829	23.85	24.00	1.035	-0.06	0.577	0.597
TIN	10MHz/1RB#0	Left	20450	829	23.85	24.00	1.035	-0.02	0.709	0.734
911	10MHz/1RB#0	Right	20450	829	23.85	24.00	1.035	0.06	0.660	0.683
STIP	10MHz/1RB#0	Тор	20450	829	23.85	24.00	1.035	0.05	0.725	0.750
	10MHz/25RB#0	Front	20525	836.5	22.39	23.00	1.151	0.03	0.708	0.815
	10MHz/25RB#0	Back	20525	836.5	22.39	23.00	1.151	-0.09	0.548	0.631
	10MHz/25RB#0	Left	20525	836.5	22.39	23.00	1.151	-0.08	0.682	0.785
	10MHz/25RB#0	Right	20525	836.5	22.39	23.00	1.151	-0.02	0.631	0.726
	10MHz/25RB#0	Тор	20450	836.5	22.39	23.00	1.151	0.08	0.702	0.808
	10MHz/25RB#12	Front	20450	829	22.22	23.00	1.197	0.05	0.701	0.839
	10MHz/25RB#12	Тор	20450	829	22.22	23.00	1.197	-0.07	0.685	0.820
	10MHz/25RB#25	Front	20600	844	22.19	23.00	1.205	0.06	0.692	0.834
	10MHz/25RB#25	Тор	20600	844	22.19	23.00	1.205	-0.11	0.681	0.821
				CTAT	22.19				TING	

SAR Values [LTE Band 7]

				•	L					
Plot No.	Mode	Test Position	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Scaling Factor	Power Drift (dB)	Measured SAR1g (W/kg)	Reported SAR1g (W/kg)
Tage of the same o		ı	Measured	/ Reporte	ed SAR numb	ers-Body di	stance 5mr	n		
#3	20MHz/1RB#0	Front	20850	2510	23.84	24.00	1.038	-0.04	0.489	0.507
	20MHz/1RB#0	Back	20850	2510	23.84	24.00	1.038	0.07	0.329	0.341
	20MHz/1RB#0	Left	20850	2510	23.84	24.00	1.038	0.11	0.462	0.479
	20MHz/1RB#0	Right	20850	2510	23.84	24.00	1.038	-0.05	0.410	0.425
711	20MHz/1RB#0	Тор	21100	2510	23.84	24.00	1.038	0.03	0.476	0.494
9	20MHz/50RB#24	Front	21100	2535	22.37	23.00	1.156	-0.10	0.473	0.547
	20MHz/50RB#24	Back	21100	2535	22.37	23.00	1.156	-0.09	0.316	0.365
	20MHz/50RB#24	Left	21100	2535	22.37	23.00	1.156	0.06	0.450	0.520
	20MHz/50RB#24	Right	21100	2535	22.37	23.00	1.156	-0.07	0.399	0.461
	20MHz/50RB#24	Тор	21100	2535	22.37	23.00	1.156	0.01	0.465	0.538
<u> </u>				SAR Va	alues [LTE	Band 40	\]		CTA	TES
Dist		T1		F	Average	Tune-Up	Casling	Power	Measured	Reported

SAR Values [LTE Band 40A]

İ					_		_	El.			Ī	
	Plot		Test		Freq.	Average	Tune-Up	Scaling	Power	Measured	Reported	
	No.	Mode	Position	Ch.	(MHz)	Power	Limit	Factor	Drift	SAR _{1g}	SAR _{1g}	
	10.		1 03111011		(141112)	(dBm)	(dBm)	1 dotoi	(dB)	(W/kg)	(W/kg)	
				Measur	ed / Repo	orted SAR	numbers-B	ody 5mm				
	#4	10MHz/1RB#25	Front	38750	2310	23.57	24.00	1.104	-0.11	0.525	0.580	
	12) way talify	10MHz/1RB#25	Back	38750	2310	23.57	24.00	1.104	0.07	0.368	0.406	
		10MHz/1RB#25	Left	38750	2310	23.57	24.00	1.104	0.02	0.503	0.555	
		10MHz/1RB#25	Right	38750	2310	23.57	24.00	1.104	0.07	0.452	0.499	
		10MHz/1RB#25	Тор	38750	2310	23.57	24.00	1.104	-0.11	0.510	0.563	TAT
		10MHz/25RB#0	Front	38750	2310	22.24	23.00	1.191	-0.12	0.509	0.606	0.
_C	TIN	10MHz/25RB#0	Back	38750	2310	22.24	23.00	1.191	0.05	0.353	0.421	
ATES		10MHz/25RB#0	Left	38750	2310	22.24	23.00	1.191	0.10	0.480	0.572	
		10MHz/25RB#0	Right	38750	2310	22.24	23.00	1.191	0.08	0.438	0.522	
		10MHz/25RB#0	Тор	38750	2310	22.24	23.00	1.191	-0.05	0.497	0.592	
						CM'	CTATE			CTA	TESTING	

SAR Values [LTE Band 40B]

						-		•				
	Plot No.	Mode	Test Position	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Scaling Factor	Power Drift (dB)	Measured SAR _{1g} (W/kg)	Reported SAR _{1g} (W/kg)	
				Measur	ed / Repo	orted SAR	numbers-B	ody 5mm				
	#5	10MHz/1RB#49	Front	39200	2355	23.47	24.00	1.130	0.14	0.591	0.668	
		10MHz/1RB#49	Back	39200	2355	23.47	24.00	1.130	0.03	0.432	0.488	CTA
		10MHz/1RB#49	Left	39200	2355	23.47	24.00	1.130	0.01	0.566	0.639	CTA
		10MHz/1RB#49	Right	39200	2355	23.47	24.00	1.130	0.00	0.520	0.587	
	3711	10MHz/1RB#49	Тор	39200	2355	23.47	24.00	1.130	-0.11	0.585	0.661	
TATES		10MHz/25RB#25	Front	39200	2355	22.34	23.00	1.164	-0.08	0.573	0.667	
		10MHz/25RB#25	Back	39200	2355	22.34	23.00	1.164	0.13	0.415	0.483	
		10MHz/25RB#25	Left	39200	2355	22.34	23.00	1.164	-0.06	0.550	0.640	
		10MHz/25RB#25	Right	39200	2355	22.34	23.00	1.164	0.10	0.498	0.580	3
		10MHz/25RB#25	Тор	39200	2355	22.34	23.00	1.164	0.07	0.563	0.655	

SAR Values [LTE Band 41]

	10MHz/25RB#25	Тор	39200	2355	22.34	23.00	1.164	0.07	0.563	0.655
				045.1/	To be a second s	- 5 . 1.44			CTA	
				SAR V	_	E Band 41]	-		
Plot No.	Mode	Test Position	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Scaling Factor	Power Drift (dB)	Measured SAR1g (W/kg)	Reported SAR1g (W/kg)
		N	/leasured	/ Reporte	d SAR numb	ers-Body di	stance 5mr	n		
#6	20MHz/1RB#99	Front	41490	2680	23.95	24.00	1.012	-0.05	0.657	0.665
23 nauturity	20MHz/1RB#99	Back	41490	2680	23.95	24.00	1.012	-0.09	0.504	0.510
	20MHz/1RB#99	Left	41490	2680	23.95	24.00	1.012	0.13	0.637	0.644
	20MHz/1RB#99	Right	41490	2680	23.95	24.00	1.012	-0.10	0.584	0.591
	20MHz/1RB#99	Тор	41490	2680	23.95	24.00	1.012	0.05	0.650	0.658
	20MHz/50RB#24	Front	40620	2593	22.45	23.00	1.135	-0.10	0.629	0.714
TIN	20MHz/50RB#24	Back	40620	2593	22.45	23.00	1.135	-0.07	0.472	0.536
	20MHz/50RB#24	Left	40620	2593	22.45	23.00	1.135	0.12	0.600	0.681
	20MHz/50RB#24	Right	40620	2593	22.45	23.00	1.135	0.13	0.559	0.634
	20MHz/50RB#24	Тор	40620	2593	22.45	23.00	1.135	-0.05	0.620	0.704
	CA					TATE	9,			NG.
						CTATES				TESTING
									CIA	

10.5 SAR Measurement Variability

SAR measurement variability must be assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media are required for SAR measurements in a frequency band, the variability measurement procedures should be applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. The following procedures are applied to determine if repeated measurements are required.

- Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps
 2) through 4) do not apply.
- 2 When the original highest measured SAR is \geq 0.80 W/kg, repeat that measurement once.
- Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥1.45 W/kg (~ 10% from the 1-g SAR limit).
- 4 Perform a third repeated measurement only if the original, first or second repeated measurement is ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

SAR Measurement Variability

		O		• • • • • • • • • • • • • • • • • • • •				_
Band	Mode	Test Position	Ch.	Original SAR (W/kg)	First Repeated SAR (W/kg)	The Ratio	Second Repeated SAR (W/kg)	
CTA	RMC 12.2K	Front	4183	0.894	0.905	1.012	N/A	
SVIN	RMC 12.2K	Left	4183	0.870	0.885	1.018	N/A	
25 113	RMC 12.2K	Right	4183	0.836	0.825	1.013	N/A	
MACONAA band	RMC 12.2K	Тор	4183	0.878	0.901	1.027	N/A	
WCDMA band	RMC 12.2K	Front	4132	0.886	0.883	1.004	N/A	CTATES
V	RMC 12.2K	Right	4132	0.864	0.859	1.006	N/A	CTA
TING	RMC 12.2K	Тор	4132	0.810	0.784	1.034	N/A	
Llie	RMC 12.2K	Front	4233	0.857	0.844	1.015	N/A	
	RMC 12.2K	Right	4233	0.813	0.834	1.026	N/A	1
	RMC 12.2K	55,	(EN	CTATES	TING		CTATESTING	3

Report No.: CTA24053101207 Page 46 of 88

10.6 Simultaneous Transmission Analysis

Per FCC KD B447498 D01, simultaneous transmission SAR test exclusion may be applied when the sum of the 1-g SAR for all the transmitting antenna in a specific a physical test configuration is ≤1.6 W/Kg. When the sum is greater than the SAR limit, SAR test exclusion is determined by the SAR to peak location separation ratio.

Ratio=
$$\frac{(SAR_1+SAR_2)^{1.5}}{(peak location separation,mm)} < 0.04$$

The following procedures adopted from "FCC SAR Considerations for Cell Phones with Multiple Transmitters" are applicable to handsets with built-in unlicensed transmitters such as 802.11 a/b/g/n and Bluetooth devices which may simultaneously transmit with the licensed transmitter.

CTATESTING **Application Simultaneous Transmission information:**

N/A

Evaluation of Simultaneous SAR

The device only one transmitter.

Report No.: CTA24053101207 Page 47 of 88

11 Measurement Uncertainty

NO	Source	Uncert. ai (%)	Prob. Dist.	Div. k	ci (1g)	ci (10g)	Stand.U ncert. ui (1g)	Stand.U ncert. ui (10g)	Veff
1	Repeat	0.4	N	1	1	1	0.4	0. 4	9
	·		Instru	ument		(AM)	0		
2	Probe calibration	7	N	2	1	To Day Sulfa	3.5	3.5	∞
3	Axial isotropy	4.7	R	$\frac{-}{\sqrt{3}}$	0.7	0.7	1.9	1.9	∞
4	Hemispherical isotropy	9.4	R	_ 3	0.7	0.7	3.9	3.9	∞
5	Boundary effect	1.0	R	_ 3	1	1	0.6	0.6	∞
6	Linearity	4.7	R	$\sqrt{3}$	15	5 1	2.7	2.7	∞
7	Detection limits	1.0	R		1	1	0.6	0.6	∞
8	Readout electronics	0.3	N	1	1	1	0.3	0.3	∞
9	Response time	0.8	R	_ √3	1	1	0.5	0.5	∞
10	Integration time	2.6	R	√3	1	1	1.5	1.5	∞
11	Ambient noise	3.0	R	$\sqrt{3}$	1	1	1.7	1.7	∞
12	Ambient reflections	3.0	R		1	1	1.7	1.7	∞
13	restrictions	0.4	R	√3	1	1	0.2	0.2	∞
14	Probe positioning with respect to phantom shell	2.9	R	√3	1	1	1.7	1.7	∞
15	Max.SAR evaluation	1.0	R		1	1	0.6	0.6	8
15	CTATE!	STING				TING	3		
									ESTIN

Report No.: CTA24053101207 Page 48 of 88

		ING		Test samp	le rel	ated					
	16	Device positioning	3.8	N	1	1	1	3.8	3.8	99	
a constant	17	Device holder	5.1	N	NY	1	1	5.1	5.1	5	
	18	Drift of output power	5.0	R	$\sqrt{3}$	1	1	2.9	2.9	∞	
			CVI	Phantom a	nd s	et-up		TATE	511		
	19	Phantom uncertainty	4.0	R	√3	1	1	2.3	2.3	∞	TES
	20	Liquid conductivity (target)	5.0	R	- √3	0.64	0.43	1.8	1.2	∞	CTATES
TATEST	21	Liquid conductivity (meas)	2.5	N	1	0.64	0.43	1.6	1.2	8	
(A)	22	Liquid Permittivity (target)	5.0	R	$\sqrt{3}$	0.6	0.49	1.7	1.5	∞	
	23	Liquid Permittivity (meas)	2.5	N	1	0.6	0.49	1.5	1.2	∞	
	C	combined standard		RSS	H_{\bullet}	$=\sqrt{\sum_{i=1}^{n}C_{i}}$	² <i>I</i> J ²	11.4%	11.3%	236	(G
	u	Expanded incertainty(P=95%)	U =	k U		√; <u>K</u> =	2	22.8%	22.6%	TESTI	
									CIA		-

Report No.: CTA24053101207 Page 49 of 88

Appendix A. EUT Photos and Test Setup Photos

Top(5mm)

Report No.: CTA24053101207 Page 50 of 88

Date: 06/11/2024

Appendix B. Plots of SAR System Check

835MHz System Check

DUT: Dipole 835 MHz; Type: D835V2; Serial: 484

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 835 MHz; $\sigma = 0.861 \text{ S/m}$; $\epsilon_r = 42.251$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN7380; ConvF(9.62, 9.62, 9.62); Calibrated: 6/21/2023

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

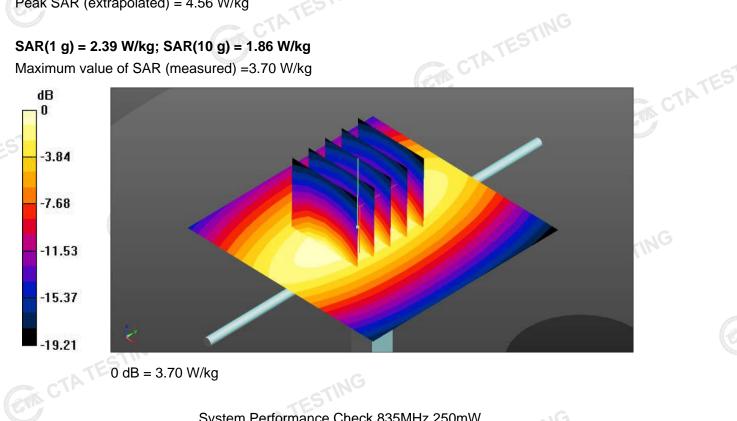
• Electronics: DAE3 Sn428; Calibrated: 08/30/2023

Phantom: Twin-SAM V8.0; Type: QD 000 P41 AA; Serial: 1974

• DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Area Scan (61x61x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 3.76 W/kg


Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 56.47 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 4.56 W/kg

SAR(1 g) = 2.39 W/kg; SAR(10 g) = 1.86 W/kg

Maximum value of SAR (measured) =3.70 W/kg

CTATESTING System Performance Check 835MHz 250mW

2300MHz System Check Date: 06/12/2024

DUT: Dipole 2300 MHz; Type: D2300V2; Serial: 1130

Communication System: CW; Frequency: 2300 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2300 MHz; $\sigma = 1.611 \text{ S/m}$; $\epsilon r = 38.947$; $\rho = 1000 \text{ kg/m}$ 3

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN7380; ConvF(7.50, 7.50, 7.50); Calibrated: 6/21/2023

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

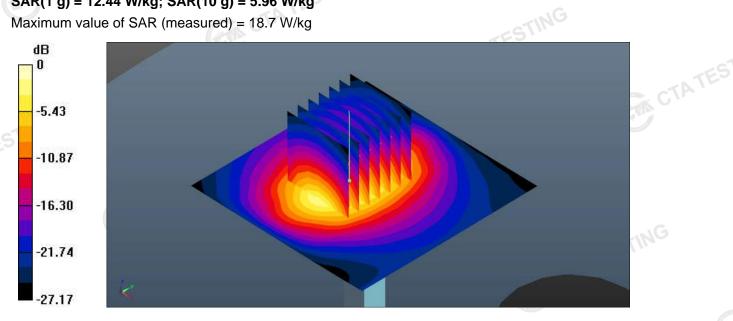
• Electronics: DAE3 Sn428; Calibrated: 08/30/2023

Phantom: Twin-SAM V8.0; Type: QD 000 P41 AA; Serial: 1974

DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Area Scan (71x71x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 19.5 W/kg


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 100.8 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 26.5 W/kg

SAR(1 g) = 12.44 W/kg; SAR(10 g) = 5.96 W/kg

Maximum value of SAR (measured) = 18.7 W/kg

0 dB = 18.7 W/kgCTA TESTIN

System Performance Check 2450MHz 250mW CTATES

2600MHz System Check Date: 06/13/2024

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: 1073

Communication System: CW; Frequency: 2600 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2600 MHz; $\sigma = 1.881 \text{ S/m}$; $\epsilon r = 39.109$; $\rho = 1000 \text{ kg/m}$ 3

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN7380; ConvF(7.35, 7.35, 7.35); Calibrated: 6/21/2023

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

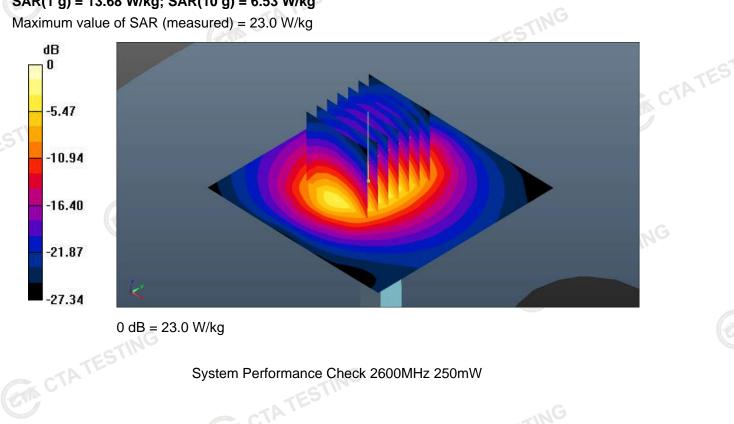
• Electronics: DAE3 Sn428; Calibrated: 08/30/2023

Phantom: Twin-SAM V8.0; Type: QD 000 P41 AA; Serial: 1974

DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Area Scan (91x101x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Maximum value of SAR (interpolated) = 23.2 W/kg


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 94.74 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 29.6 W/kg

SAR(1 g) = 13.68 W/kg; SAR(10 g) = 6.53 W/kg

Maximum value of SAR (measured) = 23.0 W/kg

0 dB = 23.0 W/kg

System Performance Check 2600MHz 250mW CTATES

Report No.: CTA24053101207 Page 53 of 88

Appendix C. Plots of SAR Test Data

Date: 06/11/2024

WCDMA Band V_RMC 12.2K_Front_5mm_Ch4183

Communication System: UID 0, Generic WCDMA (0); Frequency: 836.6 MHz; Duty Cycle: 1:1

Medium parameters used: f = 836.6 MHz; σ = 0.901 S/m; ϵ_r = 40.765; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN7380; ConvF(9.62, 9.62, 9.62); Calibrated: 6/21/2023

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn428; Calibrated: 08/30/2023

Phantom: Twin-SAM V8.0; Type: QD 000 P41 AA; Serial: 1974

DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Front /Area Scan (41x81x1): Interpolated grid: dx=1.500 mm, dy= 1.500 mm Maximum value of SAR (interpolated) = 1.04 W/kg

Front /Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 28.56 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 1.54 W/Kg

SAR(1 g) = 0.905 W/Kg; SAR(10 g) = 0.525 W/Kg

Maximum value of SAR (measured) = 1.14 W/kg

0 dB = 1.14 W/kg

Report No.: CTA24053101207 Page 54 of 88

#2

Date: 06/11/2024

LTE Band 5_10MHz/1RB#0_Front_5mm_Ch20450

Communication System: UID 0, Generic LTE (0); Frequency: 829 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 829 MHz; $\sigma = 0.901$ S/m; $\varepsilon_r = 40.871$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN7380; ConvF(9.62, 9.62, 9.62); Calibrated: 6/21/2023

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn428; Calibrated: 08/30/2023

Phantom: Twin-SAM V8.0 ; Type: QD 000 P41 AA; Serial: 1974

DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Front /Area Scan (41x81x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.958 W/kg

Front /Zoom Scan (5x5x7)/Cube 0:Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 22.36 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 1.21 W/kg

SAR(1 g) = 0.735 W/kg; SAR(10 g) = 0.424 W/kg

Maximum value of SAR (measured) = 1.05 W/kg

Date: 06/13/2024

LTE Band 7_20MHz/1RB#0_Back_5mm_Ch20850

Communication System: UID 0, Generic LTE (0); Frequency 2510 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2510 MHz; $\sigma = 1.981 \text{ S/m}$; $\epsilon r = 38.779$; $\rho = 1000 \text{ kg/m}$ 3

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN7380; ConvF(7.35, 7.35, 7.35); Calibrated: 6/21/2023

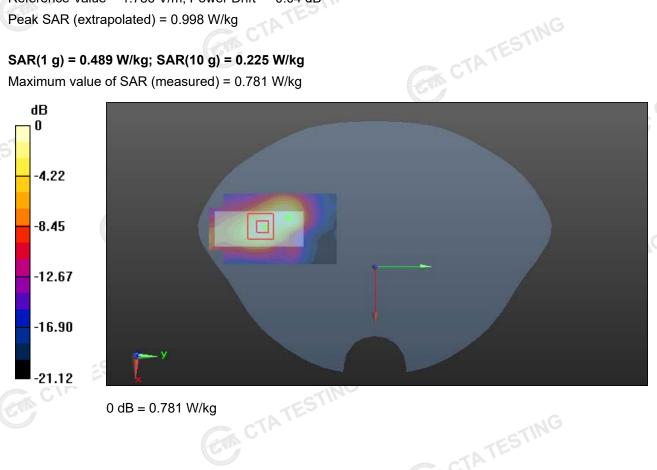
Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn428; Calibrated: 08/30/2023

Phantom: Twin-SAM V8.0; Type: QD 000 P41 AA; Serial: 1974

DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Front /Area Scan (51x91x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 0.755 W/kg


Front /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 1.736 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 0.998 W/kg

SAR(1 g) = 0.489 W/kg; SAR(10 g) = 0.225 W/kg

Maximum value of SAR (measured) = 0.781 W/kg

0 dB = 0.781 W/kg

Date: 06/12/2024

LTE Band 40A_10MHz/1RB#25_Front_5mm_Ch38750

Communication System: UID 0, Generic LTE (0); Frequency: 2310 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2310 MHz; $\sigma = 1.405 \text{ S/m}$; $\epsilon_r = 39.627$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN7380; ConvF(7.75, 7.75, 7.75); Calibrated: 6/21/2023

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn428; Calibrated: 08/30/2023

Phantom: Twin-SAM V8.0; Type: QD 000 P41 AA; Serial: 1974

DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Area Scan (41x71x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.826 W/Kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value =1.778 V/m; Power Drift = -0.11 dB

Peak SAR (extrapolated) = 0.945 W/kg

SAR(1 g) = 0.525 W/Kg; SAR(10 g) = 0.323 W/Kg

Maximum value of SAR (measured) = 0.755 W/Kg

0 dB = 0.755 W/kg

Date: 06/12/2024

LTE Band 40B_10MHz/1RB#49_Front_5mm_Ch39200

Communication System: UID 0, Generic LTE (0); Frequency: 2355 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2355 MHz; $\sigma = 1.405$ S/m; $\varepsilon_r = 39.627$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN7380; ConvF(7.75, 7.75, 7.75); Calibrated: 6/21/2023

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

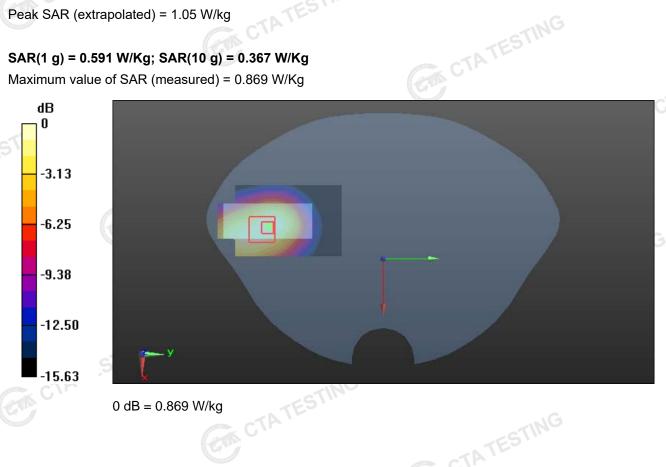
Electronics: DAE3 Sn428; Calibrated: 08/30/2023

Phantom: Twin-SAM V8.0; Type: QD 000 P41 AA; Serial: 1974

DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Area Scan (41x71x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm

Maximum value of SAR (interpolated) = 0.936 W/Kg


Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value =1.185 V/m; Power Drift = 0.14 dB

Peak SAR (extrapolated) = 1.05 W/kg

SAR(1 g) = 0.591 W/Kg; SAR(10 g) = 0.367 W/Kg

Maximum value of SAR (measured) = 0.869 W/Kg

0 dB = 0.869 W/kg

Date: 06/13/2024

LTE Band 41_20MHz/1RB#99_Front_5mm_Ch41490

Communication System: UID 0, Generic LTE (0); Frequency: 2680 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2680 MHz; $\sigma = 2.005 \text{ S/m}$; $\epsilon r = 39.225$; $\rho = 1000 \text{ kg/m}$ 3

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN7380; ConvF(7.35, 7.35, 7.35); Calibrated: 6/21/2023

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn428; Calibrated: 08/30/2023

Phantom: Twin-SAM V8.0 ; Type: QD 000 P41 AA; Serial: 1974

DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Front /Area Scan (41x71x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

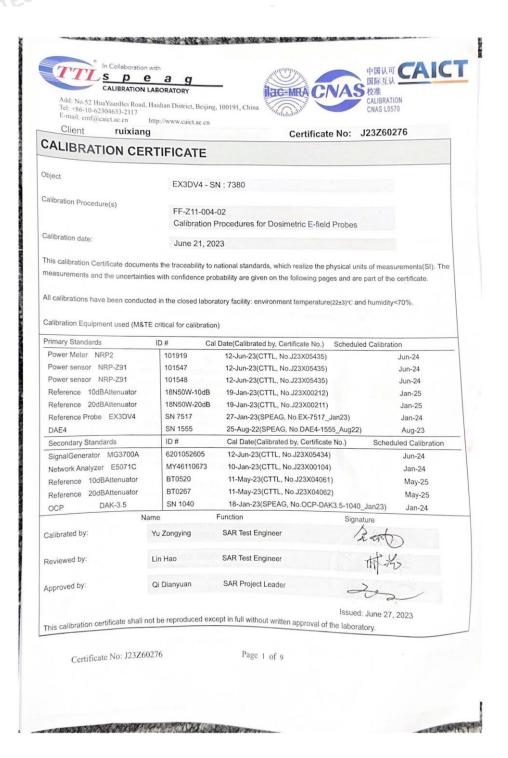
Maximum value of SAR (interpolated) = 1.02 W/kg

Front /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 1.758 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 1.36 W/kg

SAR(1 g) = 0.657 W/Kg; SAR(10 g) = 0.369 W/Kg


Maximum value of SAR (measured) = 1.10 W/kg

0 dB = 1.10 W/kg

Report No.: CTA24053101207 Page 59 of 88

Appendix D. DASY System Calibration Certificate

CTA TESTING

Page 60 of 88 Report No.: CTA24053101207

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 http://www.caict.ac.cn

E-mail: emf@caict.ac.cn

Glossary:

tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A,B,C,D modulation dependent linearization parameters Φ rotation around probe axis Polarization Φ

Polarization θ

 θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i

θ=0 is normal to probe axis

Connector Angle

information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013

b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)",

c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication

devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March

d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

NORMx,y,z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the

E²-field uncertainty inside TSL (see below ConvF).

NORM(f)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.

DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (polymertainty required). DCP does not depend on frequency nor media

(no uncertainty required). DCP does not depend on frequency nor media.

PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal

characteristics

Ax,y,z; Bx,y,z; Cx,y,z;VRx,y,z:A,B,C are numerical linearization parameters assessed based on the

Ax,y,z; Bx,y,z; Cx,y,z;Vxx,y,z:A,B,C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters realized for houndary compensation (alpha, depth) of which typical uncertainty volved as a setup and the parameters. applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to allows extending the validity from ±50MHz to±100MHz.

allows extending the validity from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.

phantom exposed by a patent antenno.

Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the

probe tip (on probe axis). No tolerance required.

Connector Angle: The angle is assessed using the information gained by determining the NORMX

Certificate No:J23Z60276

Company of the Company of the Company

Page 2 of 9

Page 61 of 88 Report No.: CTA24053101207

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: cmf@caict.ac.cn http://www.caict.ac.cn

· 有四次以外中學以及所有所有的一個在120日日

DASY/EASY – Parameters of Probe: EX3DV4 – SN:7380

Basic Calibration Parameters

.,	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm(μV/(V/m)²) ^A	0.44	0.35	0.41	±10.0%
DCP(mV) ^B	100.5	101.6	100.6	2101070

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dB√uV	С	D dB	VR mV	Unc ^E (k=2)
0	CM	X	0.0	0.0	1.0	0.00	161.9	±2.2%
		Y	0.0	0.0	1.0		139.0	
		Z	0.0	0.0	1.0		149.3	

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

A The uncertainties of Norm X, Y, Z do not affect the E2-field uncertainty inside TSL (see Page 4).

B Numerical linearization parameter: uncertainty not required.

E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Certificate No:J23Z60276

A STATE OF THE STA

Page 3 of 9

Page 62 of 88 Report No.: CTA24053101207

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117

E-mail: emf@caict.ac.cn http://www.caict.ac.cn http://www.caict.ac.cn

THE MOST OF THE PARTY OF THE PA

DASY/EASY – Parameters of Probe: EX3DV4 – SN:7380

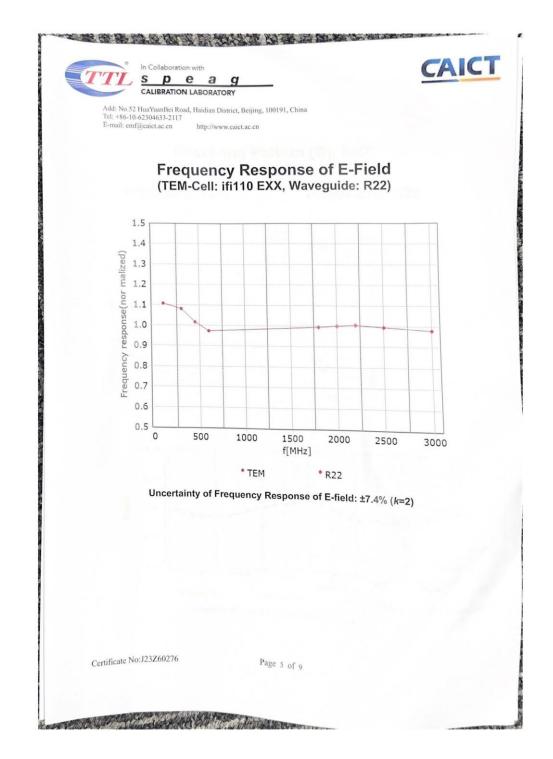
Calibration Parameter Determined in Head Tissue Simulating Media

41.9	(S/m) F		ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
44.0	0.89	10.02	10.02	10.02	0.17	1.27	±12.7%
41.5	0.90	9.62	9.62	9.62	0.18	1.30	±12.7%
40.1	1.37	8.35	8.35				
40.0							±12.7%
39.8							±12.7%
39.5			12.000				±12.7%
39.2	11.00000						±12.7%
39.0	1.96			1.000.00	-		±12.7%
37.9	2.91		1.000.00				±12.7%
37.7	3.12						±13.9%
37.5							±13.9%
37.2			10.100				±13.9%
37.1	3.63						±13.9%
36.9	3.84			The state of the s			±13.9%
36.7	4.04						±13.9%
36.4	4.25						±13.9%
36.3	4.40			77.57.77			±13.99
35.9	4.71						±13.99
35.5	5.07						±13.99
35.4	5.22						±13.9
	40.0 39.8 39.5 39.2 39.0 37.9 37.7 37.5 37.2 37.1 36.9 36.7 36.4 36.3 35.9 35.5	40.0 1.40 39.8 1.49 39.5 1.67 39.2 1.80 39.0 1.96 37.9 2.91 37.7 3.12 37.5 3.32 37.2 3.53 37.1 3.63 36.9 3.84 36.7 4.04 36.4 4.25 36.3 4.40 35.9 4.71 35.5 5.07	40.0 1.40 8.05 39.8 1.49 8.00 39.5 1.67 7.75 39.2 1.80 7.50 39.0 1.96 7.35 37.9 2.91 6.85 37.7 3.12 6.69 37.5 3.32 6.58 37.2 3.53 6.62 37.1 3.63 6.52 36.9 3.84 6.44 36.7 4.04 6.41 36.4 4.25 6.36 36.3 4.40 5.95 35.9 4.71 5.45 35.5 5.07 4.86	40.0 1.40 8.05 8.05 39.8 1.49 8.00 8.00 39.5 1.67 7.75 7.75 39.2 1.80 7.50 7.50 39.0 1.96 7.35 7.35 37.9 2.91 6.85 6.85 37.7 3.12 6.69 6.69 37.5 3.32 6.58 6.58 37.2 3.53 6.62 6.62 37.1 3.63 6.52 6.52 36.9 3.84 6.44 6.41 36.4 4.25 6.36 6.36 36.3 4.40 5.95 5.95 35.9 4.71 5.45 5.45 35.5 5.07 4.86 4.86	40.0 1.40 8.05 8.05 8.05 39.8 1.49 8.00 8.00 8.00 39.5 1.67 7.75 7.75 7.75 39.2 1.80 7.50 7.50 7.50 39.0 1.96 7.35 7.35 7.35 37.9 2.91 6.85 6.85 6.85 37.7 3.12 6.69 6.69 6.69 37.5 3.32 6.58 6.58 6.58 37.2 3.53 6.62 6.62 6.62 37.1 3.63 6.52 6.52 6.52 36.9 3.84 6.44 6.44 6.44 36.7 4.04 6.41 6.41 6.41 36.3 4.40 5.95 5.95 5.95 35.9 4.71 5.45 5.45 5.45 35.5 5.07 4.86 4.86 4.86	40.0 1.40 8.05 8.05 8.05 0.24 39.8 1.49 8.00 8.00 8.00 0.24 39.5 1.67 7.75 7.75 7.75 0.65 39.2 1.80 7.50 7.50 7.50 0.65 39.0 1.96 7.35 7.35 7.35 0.47 37.9 2.91 6.85 6.85 6.85 0.41 37.7 3.12 6.69 6.69 6.69 0.43 37.5 3.32 6.58 6.58 6.58 0.30 37.2 3.53 6.62 6.62 6.62 0.35 37.1 3.63 6.52 6.52 6.52 0.30 36.9 3.84 6.44 6.44 6.44 0.30 36.7 4.04 6.41 6.41 6.41 0.35 36.3 4.40 5.95 5.95 5.95 0.35 35.9 4.71 5.45	40.0 1.40 8.05 8.05 8.05 0.24 1.11 39.8 1.49 8.00 8.00 8.00 0.24 1.11 39.5 1.67 7.75 7.75 7.75 0.65 0.67 39.2 1.80 7.50 7.50 7.50 0.65 0.69 39.0 1.96 7.35 7.35 7.35 0.47 0.85 37.9 2.91 6.85 6.85 6.85 0.41 1.03 37.7 3.12 6.69 6.69 6.69 0.43 1.03 37.2 3.53 6.62 6.62 6.62 0.35 1.25 37.1 3.63 6.52 6.52 6.52 0.30 1.45 36.9 3.84 6.44 6.44 6.44 0.30 1.50 36.3 4.40 5.95 5.95 5.95 0.35 1.50 35.9 4.71 5.45 5.45 5.45 0.40

© Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

150 and 220 km is the FALL of the validity of tissue parameters (ε and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

tissue parameters.

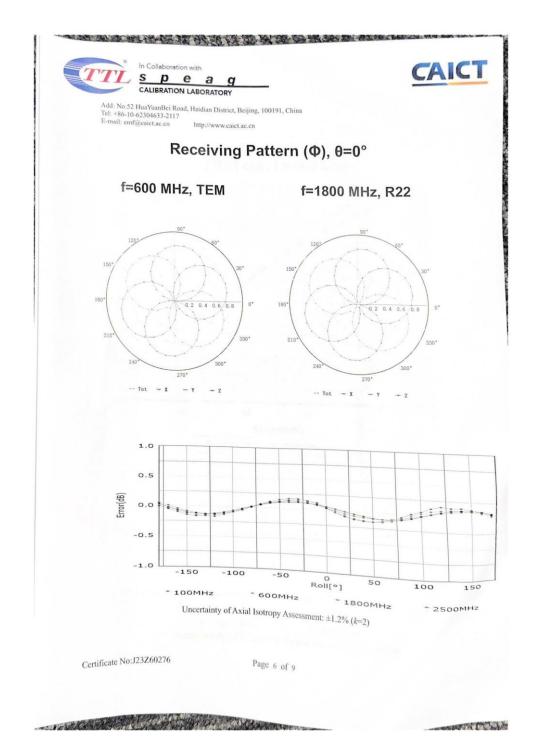

6 Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary eAlpha/Depth are documents always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No:J23Z60276

Section 1997 The Section 1998 To the Section 1

Page 4 of 9

Report No.: CTA24053101207 Page 63 of 88

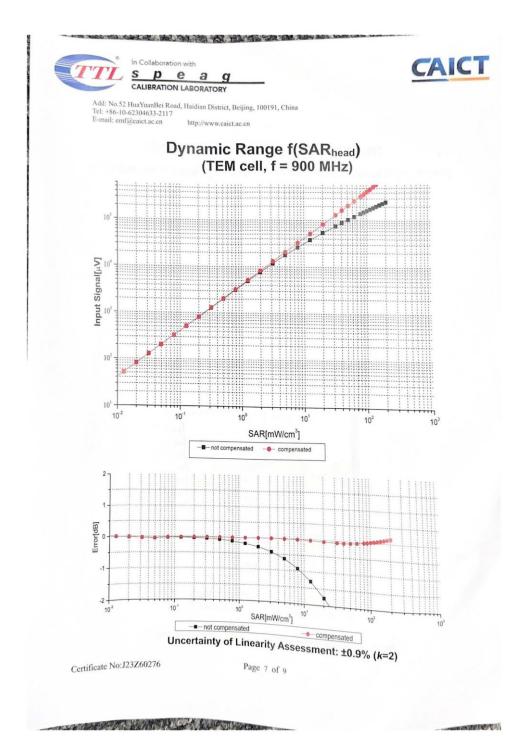

CTA TESTING

CTATESTING

CATESTING

STING

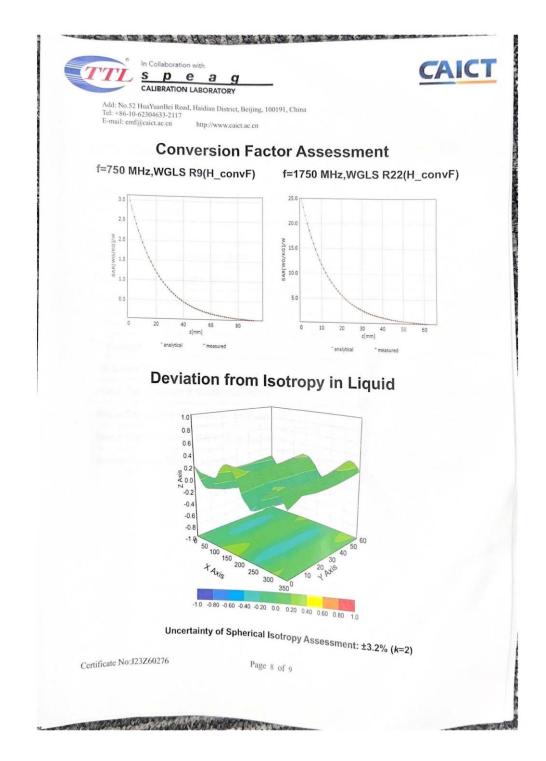
Report No.: CTA24053101207 Page 64 of 88


CTA TESTING

CTA TESTING

CATESTING

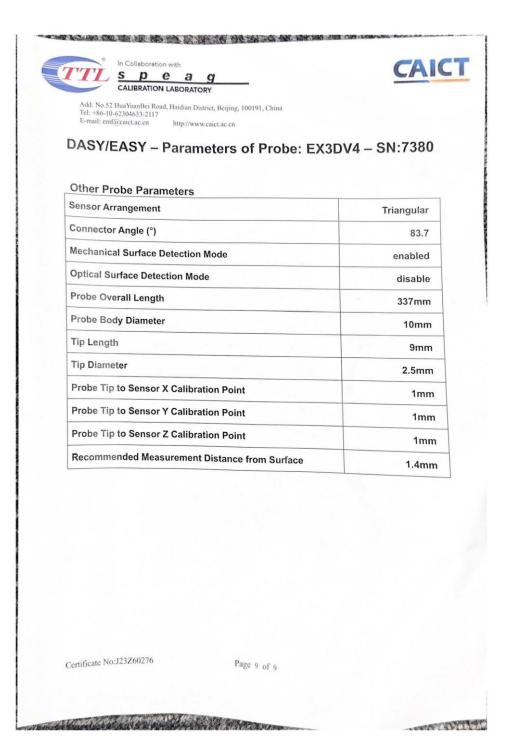
STING


Report No.: CTA24053101207 Page 65 of 88

CTA TESTING

· C

Report No.: CTA24053101207 Page 66 of 88



CTA TESTING

CTATE!

GTING

Report No.: CTA24053101207 Page 67 of 88

CTATESTING

CTA TESTING

ESTING

Report No.: CTA24053101207 Page 68 of 88

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117
E-mail: emf@caict.ac.en http://www.caict.ac.en

c.en http://www.caict.ac.en

Certificate No: J23Z60391

CALIBRATION CERTIFICATE

Object

DAE3 - SN: 428

Calibration Procedure(s)

Client :

FF-Z11-002-01

Calibration Procedure for the Data Acquisition Electronics

(DAEx)

Calibration date:

August 30, 2023

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3) $^{\circ}$ C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards ID # Cal Date(Calibrated by, Certificate No.) Scheduled Calibration

Process Calibrator 753 1971018

1018 12-Jun-23 (CTTL, No.J23X05436)

Jun-24

Calibrated by:

Name

Yu Zongying

Function

SAR Test Engineer

Reviewed by:

Lin Hao

ao SAR Test Engineer

Approved by:

Qi Dianyuan SAR Project Leader

Issued: September 06, 2023

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: J23Z60391

Page 1 of 3

CTATESTING

CTATESTING

Page 69 of 88 Report No.: CTA24053101207

Glossary:

DAE data acquisition electronics

Connector angle information used in DASY system to align probe sensor X

to the robot coordinate system.

Methods Applied and Interpretation of Parameters:

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The report provide only calibration results for DAE, it does not contain other performance test results.

Certificate No; J23Z60391

Page 2 of 3

Report No.: CTA24053101207

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn

DC Voltage Measurement

A/D - Converter Resolution nominal

High Range: 1LSB = 6.1μV , full range = -100...+300 mV

Low Range: 1LSB = 61nV , full range = -1......+3mV

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	Х	Υ	Z
High Range	404.468 ± 0.15% (k=2)	404.804 ± 0.15% (k=2)	404.579 ± 0.15% (k=2)
Low Range	3.95934 ± 0.7% (k=2)	3.95437 ± 0.7% (k=2)	3.91875 ± 0.7% (k=2)

Connector Angle

Connector Angle to be used in DASY system	258.5° ± 1 °

Certificate No: J23Z60391

Page 3 of 3

Page 71 of 88 Report No.: CTA24053101207

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191 Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn

http://www.caict.ac.cn

CTA Client

J23Z60387 Certificate No:

CALIBRATION CERTIFICATE

Object

D835V2 - SN: 484

Calibration Procedure(s)

FF-Z11-003-01

Calibration Procedures for dipole validation kits

Calibration date:

August 25, 2023

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	106277	22-Sep-22 (CTTL, No.J22X09561)	Sep-23
Power sensor NRP8S	104291	22-Sep-22 (CTTL, No.J22X09561)	Sep-23
Reference Probe EX3DV4	SN 3617	31-Mar-23(CTTL-SPEAG,No.Z23-60161)	Mar-24
DAE4	SN 1556	11-Jan-23(CTTL-SPEAG,No.Z23-60034)	Jan-24
Secondary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Signal Generator E4438C	MY49071430	05-Jan-23 (CTTL, No. J23X00107)	Jan-24
NetworkAnalyzer E5071C	MY46110673	10-Jan-23 (CTTL, No. J23X00104)	Jan-24

	Name	Function	Signature
Calibrated by:	Zhao Jing	SAR Test Engineer	老型
Reviewed by:	Lin Hao	SAR Test Engineer	林光
Approved by:	Qi Dianyuan	SAR Project Leader	2003

Issued: September 1, 2023

This calibration certificate shall not be reproduced except in full without written approval of the laboratory

Certificate No: J23Z60387

Page 1 of 6

Report No.: CTA24053101207 Page 72 of 88

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn

Glossary:

TSL tissue simulating liquid
ConvF sensitivity in TSL / NORMx,y,z
N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

a) IEC/IEEE 62209-1528, "Measurement Procedure for The Assessment of Specific Absorption Rate of Human Exposure to Radio Frequency Fields from Hand-held and Body-mounted Wireless Communication Devices- Part 1528: Human Models, Instrumentation and Procedures (Frequency range of 4 MHz to 10 GHz)", October 2020

b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: J23Z60387

Page 2 of 6

Report No.: CTA24053101207 Page 73 of 88

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117
E-mail: emf@caict.ac.cn http://www.caict.ac.cn

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	42.1 ± 6 %	0.90 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C	_	

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	TV TW TO THE
SAR measured	250 mW input power	2.42 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.68 W/kg ± 18.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	1.56 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	6.24 W/kg ± 18.7 % (k=2)

Certificate No: J23Z60387

Page 3 of 6

ESTING

IING

Report No.: CTA24053101207 Page 74 of 88

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117
E-mail: emf@caict.ac.cn http://www.caict.ac.cn

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	49.8Ω- 2.74jΩ
Return Loss	- 31.2dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.299 ns	
----------------------------------	----------	--

After long term use with 100W radiated power, only a slight warming of the dipole near the feed-point can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feed-point may be damaged.

Additional EUT Data

Manufactured by	SPEAG
-----------------	-------

Certificate No: J23Z60387

Page 4 of 6

Report No.: CTA24053101207 Page 75 of 88

Date: 2023-08-25

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn

DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 484

Communication System: UID 0, CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz; σ = 0.904 S/m; ϵ_r = 42.11; ρ = 1000 kg/m³

Phantom section: Right Section

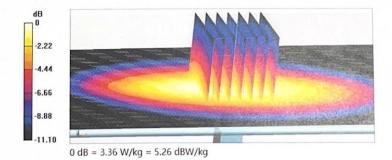
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: EX3DV4 SN3617; ConvF(10.1, 10.1, 10.1) @ 835 MHz; Calibrated: 2023-03-31
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1556; Calibrated: 2023-01-11
- Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 57.93 V/m; Power Drift = -0.01 dB

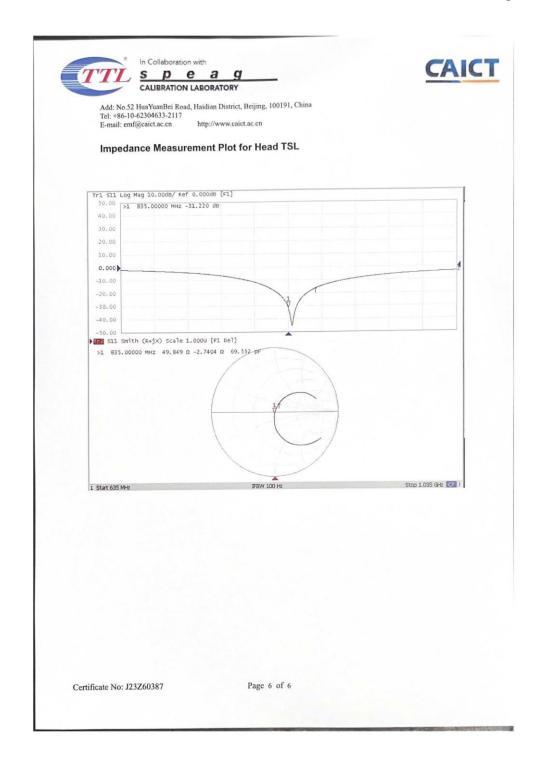

Peak SAR (extrapolated) = 3.92 W/kg

SAR(1 g) = 2.42 W/kg; SAR(10 g) = 1.56 W/kg

Smallest distance from peaks to all points 3 dB below = 16.3 mm

Ratio of SAR at M2 to SAR at M1 = 62.1%

Maximum value of SAR (measured) = 3.36 W/kg


Certificate No: J23Z60387

Page 5 of 6

ESTING

Report No.: CTA24053101207

Page 76 of 88

CTA TESTING

CTATESTING

CATESTING

STING

TING

CTATE

MING

Report No.: CTA24053101207 Page 77 of 88

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191 Tel: +86-10-62304633-2117

E-mail: emf@caict.ac.cn http://www.caict.ac.cn

Client ATC Certificate No: Z23-60085

CALIBRATION CERTIFICATE

Object D2300V2 - SN: 1103

Calibration Procedure(s)

FF-Z11-003-01

Calibration Procedures for dipole validation kits

Calibration date: February 16, 2023

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22\pm3)^{\circ}$ C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	106276	10-May-22 (CTTL, No.J22X03103)	May-23
Power sensor NRP6A	101369	10-May-22 (CTTL, No.J22X03103)	May-23
Reference Probe EX3DV4	SN 7464	19-Jan-23 (CTTL-SPEAG,No.Z22-60565)	Jan-24
DAE4	SN 1556	11-Jan-23(CTTL-SPEAG,No.Z23-60034)	Jan-24
Secondary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Signal Generator E4438C	MY49070393	17-May-23 (CTTL, No.J22X03157)	May-24
NetworkAnalyzer E5071C	MY46110673	10-Jan-23 (CTTL, No. J23X00104)	Jan-24

	Name	Function	Signature
Calibrated by:	Zhao Jing	SAR Test Engineer	32
Reviewed by:	Lin Hao	SAR Test Engineer	林杨
Approved by:	Qi Dianyuan	SAR Project Leader	-2/5/

Issued: February 24, 2023

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z23-60085

Page 1 of 6

