

1F., Block A of Tongsheng Technology Building, Huahui Road, Dalang Street, Longhua District, Shenzhen, China

Telephone: +86-755-26648640 Fax: +86-755-26648637

Website: www.cqa-cert.com Report Template Version: V05 Report Template Revision Date: 2018-07-06

Test Report

Report No.: CQASZ20230200180E-02

Applicant: Shenzhen panlei Intelligent Technology Co., Ltd.

Address of Applicant: 501 Building A, Weihuada Industrial Park, No.5, Lirong Road, Dalang Street,

Longhua District, Shenzhen, Guangdong, China

Equipment Under Test (EUT):

Product: Mini PC Model No.: HI-3 **Teat Model No.:** HI-3 **Brand Name:** N/A

FCC ID: 2BAGPHI-3

Standards: 47 CFR Part 15, Subpart E Section 15.407

KDB 789033 D02 General UNII Test Procedures New Rules v02

KDB 558074 D01 Meas Guidance v05

Date of Receipt: 2023-02-17

Date of Test: 2023-02-17 to 2023-03-10

Date of Issue: 2023-03-23 **Test Result:** PASS*

*In the configuration tested, the EUT complied with the standards specified above.

Tested By: [Lewis 2h0u]

Reviewed By:

(Timo Lei)

Approved By: (Jack Ai)

Report No.: CQASZ20230200180E-02

1 Version

Revision History Of Report

Report No.	Version	Description	Issue Date
CQASZ20230200180E-02	Rev.01	Initial report	2023-03-23

Report No.: CQASZ20230200180E-02

2 Test Summary

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203	ANSI C63.10-2013; KDB789033	PASS
AC Power Line Conducted Emission	47 CFR Part 15 Subpart E Section 15.207	E ANSI C63.10-2013; KDB789033	
Maximum Conducted Output Power	47 CFR Part 15 Subpart C Section 15.407 (a)	ANSI C63.10-2013; KDB789033	PASS
Emission Bandwidth	47 CFR Part 15 Subpart C Section 15.407 (a)(e)	ANSI C63.10-2013; KDB789033	PASS
Maximum Power Spectral Density	47 CFR Part 15 Subpart E Section 15.407 (a)	ANSI C63.10-2013; KDB789033	PASS
Band Edge Measurements	47 CFR Part 15 Subpart C Section 15.209 &15.407(b)	ANSI C63.10-2013; KDB789033	PASS
Frequency stability	Frequency stability 47 CFR Part 15 Subpart E Section 15.407 (g) ANSI C63.10-2013; KDB789033		PASS
Operation in the absence of information to the transmit	' // (ER Part 15 Suppart E		PASS
Radiated Spurious Emissions	47 CFR Part 15 Subpart E Section 15.407 (b)	ANSI C63.10-2013; KDB789033	PASS

Remark:

The tested sample(s) and the sample information are provided by the client.

Tx: In this whole report Tx (or tx) means Transmitter.

Rx: In this whole report Rx (or rx) means Receiver.

RF: In this whole report RF means Radiated Frequency.

CH: In this whole report CH means channel. Volt: In this whole report Volt means Voltage.

Temp: In this whole report Temp means Temperature.

Humid: In this whole report Humid means humidity.

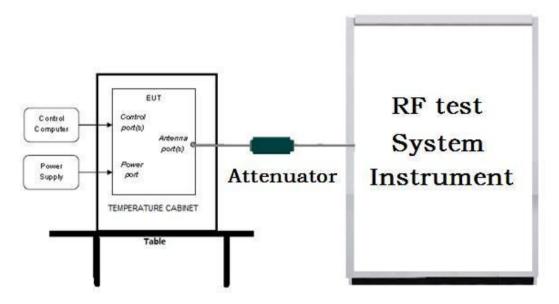
Press: In this whole report Press means Pressure.

N/A: In this whole report not application

Report No.: CQASZ20230200180E-02

3 Content

	Page
1 VERSION	2
2 TEST SUMMARY	3
3 CONTENT	4
4 TEST REQUIREMENT	
4.1 TEST SETUP	
4.1.2 For Radiated Emissions test setup	
4.1.3 For Conducted Emissions test setup	
4.2 Test Environment	
4.3 TEST CONDITION	7
5 GENERAL INFORMATION	9
5.1 CLIENT INFORMATION	Q
5.2 GENERAL DESCRIPTION OF EUT	
5.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD	
5.4 DESCRIPTION OF SUPPORT UNITS	11
5.5 Test Location	
5.6 TEST FACILITY	
5.7 DEVIATION FROM STANDARDS	
5.8 ABNORMALITIES FROM STANDARD CONDITIONS	
5.10 MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2)	
6 EQUIPMENT LIST	
7 RADIO TECHNICAL REQUIREMENTS SPECIFICATION	
Appendix A): Emission Bandwidth	
Appendix B): Maximum Conduct Output Power	
Appendix C): Maximum Power Spectral Density	
Appendix D): Band Edge Measurements	
Appendix E): Frequency Stability	
Appendix G): Operation in the absence of information to the transmit	
Appendix H): AC Power Line Conducted Emission	
Appendix I): Restricted bands around fundamental frequency (Radiated Emission)	46
Appendix J): Radiated Spurious Emissions	48
8 PHOTOGRAPHS - EUT TEST SETUP	52
8.1 RADIATED SPURIOUS EMISSION	52
8.2 CONDUCTED EMISSION	53
9 PHOTOGRAPHS - EUT CONSTRUCTIONAL DETAILS	54



Report No.: CQASZ20230200180E-02

4 Test Requirement

4.1 Test setup

4.1.1 For Conducted test setup

4.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

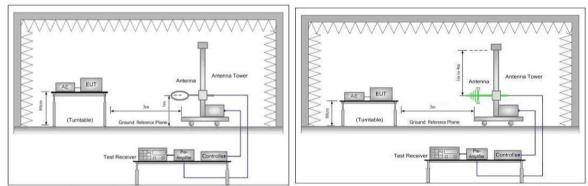


Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

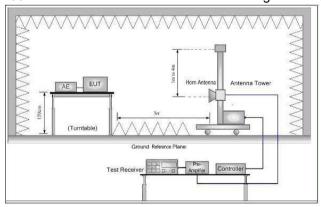
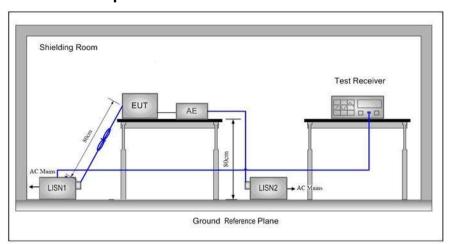



Figure 3. Above 1GHz

Report No.: CQASZ20230200180E-02

4.1.3 For Conducted Emissions test setup Conducted Emissions setup

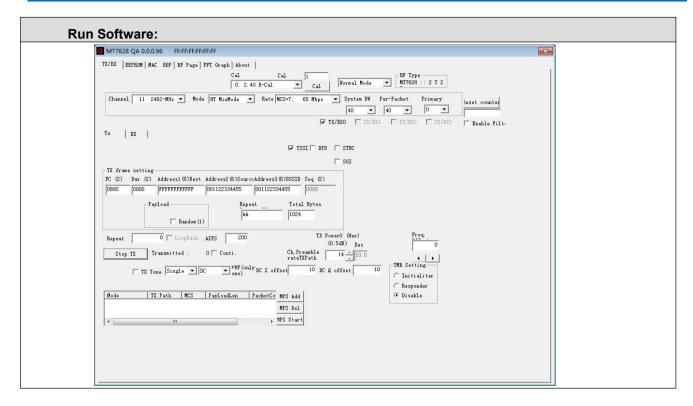
4.2 Test Environment

Operating Environment			
Conducted Emissions:			
Temperature:	25.6 °C		
Humidity:	60 % RH		
Atmospheric Pressure:	1009 mbar		
Radiated Emissions:			
Temperature:	25.5 °C		
Humidity:	54 % RH		
Atmospheric Pressure:	1009mbar		
Radio conducted item t	est (RF Conducted test room):		
Temperature:	25.3 °C		
Humidity:	50 % RH		
Atmospheric Pressure:	1009 mbar		
Test Condition	Temperature (°C)	Voltage (V)	
TN/VN	-10 to +50	7.6	
TL/VL	-10	6.84	
TH/VL	50	6.84	
TL/VH	-10	8.36	
TH/VH	50	8.36	

Remark:

- 1)The EUT just work in such extreme temperature of -10 $^{\circ}\text{C}$ to 50 $^{\circ}\text{C}$ and the extreme voltage of 6.84V to
- 8.36V, so here the EUT is tested in the temperature of -10 °C to 50 °C and the voltage of 6.84V to 8.36V.
- 2)VN: Normal Voltage; TN: Normal Temperature;
- TL: Low Extreme Test Temperature; TH: High Extreme Test Temperature;
- VL: Low Extreme Test Voltage; VH: High Extreme Test Voltage.

Report No.: CQASZ20230200180E-02


4.3 Test Condition

Test channel:

Test Mode	Tx/Rx	RF Channel			
		Low(L)	Middle(M)	High(H)	
802.11a(20M)	5725MHz ~5850 MHz	Channel 149	Channel 157	Channel 165	
		5745MHz	5785MHz	5825MHz	

Report No.: CQASZ20230200180E-02

Test mode:

Pre-scan under all rate at lowest channel for Ant1

Through Pre-scan, 6Mbps is the worst case of 802.11a (20M)

Report No.: CQASZ20230200180E-02

5 General Information

5.1 Client Information

Applicant:	Shenzhen panlei Intelligent Technology Co., Ltd.		
Address of Applicant:	501 Building A, Weihuada Industrial Park, No.5, Lirong Road, Dalang Street,		
	Longhua District, Shenzhen, Guangdong, China		
Manufacturer:	Shenzhen panlei Intelligent Technology Co., Ltd.		
Address of Manufacturer:	501 Building A, Weihuada Industrial Park, No.5, Lirong Road, Dalang Street,		
	Longhua District, Shenzhen, Guangdong, China		
Factory:	Shenzhen Aierben Electronics Co.,Ltd.		
Address of Factory:	South partition, 5th floor, building 2, No. 387, Huating Road, Langkou		
	Community, Dalang street, Longhua District, Shenzhen		

5.2 General Description of EUT

Product Name:	Mini PC
Model No.:	HI-3
Test Model No.:	HI-3
Trade Mark:	N/A
Software Version:	V1.0
Hardware Version:	V1.0
EUT Power Supply:	Power supply DC19V form adaptor
	Model No.:JC190472
	Input:100-240V~50-60Hz 1.5A
	Output:19V 4.74A
EUT Supports Radios	2.4GHz: Wi-Fi: 802.11b/g/n(HT20): 2412MHz~2462MHz;
application:	802.11n(HT40): 2422MHz~2452MHz
	5GHz: Wi-Fi: U-NII-3: 5.725-5.850GHz
EUT Type:	Client devices

Report No.: CQASZ20230200180E-02

5.3 Product Specification subjective to this standard

•	•
Operation Frequency:	IEEE 802.11a(20M): 5725MHz ~5850 MHz
Channel Numbers:	IEEE 802.11a(20M): 5725MHz ~5850MHz/ 5 channel
Type of Modulation:	OFDM
Sample Type:	
Test Software of EUT:	MT7628 QA
Antenna Type:	FPC antenna
Antenna gain:	4.03dBi

Report No.: CQASZ20230200180E-02

Operation Frequency each of channel

- 1	- F					
For 802.11a(20M) Operation in the 5725MHz ~5850 MHz band						
Channel	Frequency					
149	149 5745MHz		5805MHz			
153 5765MHz		165	5825MHz			
157	5785MHz	NA	NA			

5.4 Description of Support Units

The EUT has been tested with associated equipment below.

Description	Manufacturer	Model No.	Certification	Supplied by
1	/	1	1	/

Report No.: CQASZ20230200180E-02

5.5 Test Location

All tests were performed at:

Shenzhen Huaxia Testing Technology Co., Ltd.

1F., Block A of Tongsheng Technology Building, Huahui Road, Dalang Street, Longhua New District, Shenzhen, Guangdong, China

5.6 Test Facility

• A2LA (Certificate No. 4742.01)

Shenzhen Huaxia Testing Technology Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 4742.01.

• FCC Registration No.: 522263

Shenzhen Huaxia Testing Technology Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No.:522263

5.7 Deviation from Standards

None.

5.8 Abnormalities from Standard Conditions

None.

5.9 Other Information Requested by the Customer

None.

5.10 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	3 x 10 ⁻⁸
2	RF power, conducted	0.86dB
3	Padiated Spurious emission test	5.12dB (Below 1GHz)
3	Radiated Spurious emission test	4.6dB (Above 1GHz)
4	Conduction emission	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.8°C
6	Humidity test	2.0%
7	DC power voltages	0.5%

Report No.: CQASZ20230200180E-02

6 Equipment List

Test Equipment	Manufacturer	Model No.	Instrument No.	Calibration Date	Calibration Due Date
EMI Test Receiver	R&S	ESR7	CQA-005	2022/09/09	2023/09/08
Spectrum analyzer	R&S	FSU26	CQA-038	2022/09/09	2023/09/08
Spectrum analyzer	R&S	FSU40	CQA-075	2022/09/09	2023/09/08
Preamplifier	MITEQ	AFS4-00010300-18- 10P-4	CQA-035	2022/09/09	2023/09/08
Preamplifier	MITEQ	AMF-6D-02001800- 29-20P	CQA-036	2022/09/09	2023/09/08
Preamplifier	EMCI	EMC184055SE	CQA-089	2022/09/09	2023/09/08
Loop antenna	Schwarzbeck	FMZB1516	CQA-060	2021/09/16	2024/09/15
Bilog Antenna	R&S	HL562	CQA-011	2021/09/16	2024/09/15
Horn Antenna	R&S	HF906	CQA-012	2021/09/16	2024/09/15
Horn Antenna	Schwarzbeck	BBHA 9170	CQA-088	2021/09/16	2024/09/15
Coaxial Cable (Above 1GHz)	CQA	N/A	C007	2022/09/09	2023/09/08
Coaxial Cable (Below 1GHz)	CQA	N/A	C013	2022/09/09	2023/09/08
RF cable(9KHz~40GHz)	CQA	RF-01	CQA-079	2022/09/09	2023/09/08
Antenna Connector	CQA	RFC-01	CQA-080	2022/09/09	2023/09/08
Power Sensor	KEYSIGHT	U2021XA	CQA-30	2022/09/09	2023/09/08
N1918A Power Analysis Manager Power Panel	Agilent	N1918A	CQA-074	2022/09/09	2023/09/08
Power meter	R&S	NRVD	CQA-029	2022/09/09	2023/09/08
Power divider	MIDWEST	PWD-2533-02-SMA- 79	CQA-067	2022/09/09	2023/09/08
EMI Test Receiver	R&S	ESR7	CQA-005	2022/09/09	2023/09/08
LISN	R&S	ENV216	CQA-003	2022/09/09	2023/09/08
Coaxial cable	CQA	N/A	CQA-C009	2022/09/09	2023/09/08
DC power	KEYSIGHT	E3631A	CQA-028	2022/09/09	2023/09/08

Test software:

	Manufacturer	Software brand
Radiated Emissions test software	Tonscend	JS1120-3
Conducted Emissions test software	Audix	e3
RF Conducted test software	Audix	e3

Report No.: CQASZ20230200180E-02

7 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15E	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices
3	KDB 789033 D02 General U-NII Test Procedures New Rules v02r01	Guidelines for compliance testing of unlicensed national information infrastructure (U-NII) device part 15, subpart E
4	KDB 662911 D01 Multiple Transmitter Output v02r01	Emissions Testing of Transmitters with Multiple Outputs in the Same Band

Report No.: CQASZ20230200180E-02

Appendix A): Emission Bandwidth

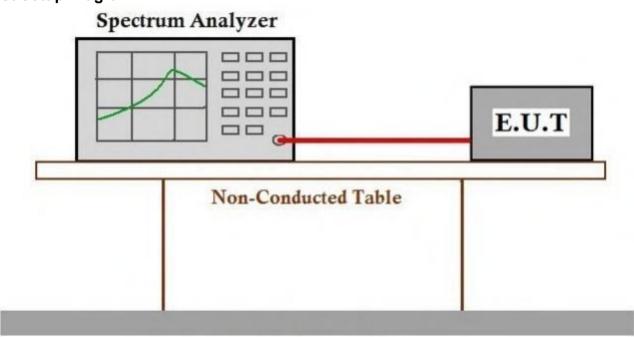
26dB Emission bandwidth

Test Requirement: 47 CFR Part 15, Subpart C 15.407 (a)

Test Method: KDB 789033 D02 II C 1

6 dB bandwidth (5.725-5.85 GHz band)

Test Requirement 47 CFR Part 15, Subpart C 15.407 (e)


Test Method: KDB 789033 D02 II C 2

Limit: ≥500 kHz

Test Procedure:

- a) Set RBW = approximately 1% of the emission bandwidth.
- b) Set the VBW > RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Measure the maximum width of the emission that is 26 dB down from the maximum of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.

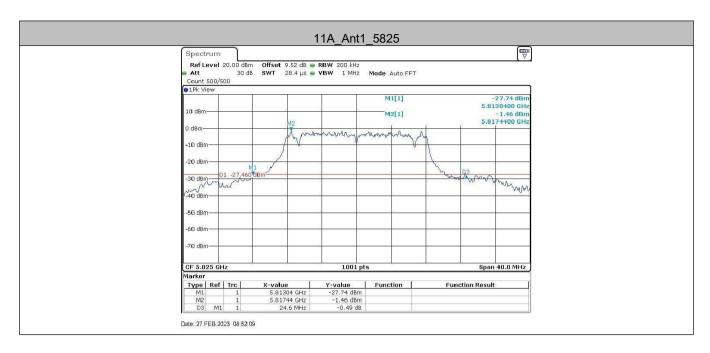
Test Setup Diagram

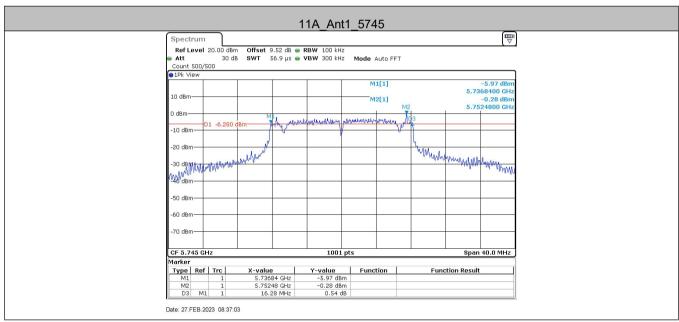
Ground Reference Plane

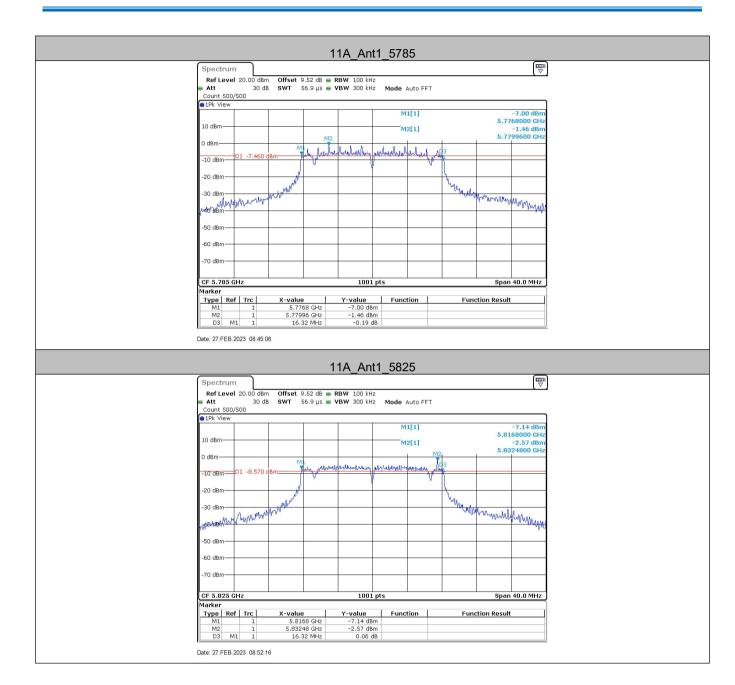
Report No.: CQASZ20230200180E-02


Result Table

TestMode	Antenna	Freq(MHz)	26db EBW [MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
		5745	29.96	5732.64	5762.60		
11A	Ant1	5785	24.28	5773.36	5797.64		
		5825	24.60	5813.04	5837.64		


TestMode	Antenna	Channel	6db EBW [MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
		5745	16.28	5736.84	5753.12	0.5	PASS
11A	Ant1	5785	16.32	5776.80	5793.12	0.5	PASS
		5825	16.32	5816.80	5833.12	0.5	PASS





Report No.: CQASZ20230200180E-02

Appendix B): Maximum Conduct Output Power

1.Duty Cycle (x)

Test Requirement KDB 789033 D02 II B 1

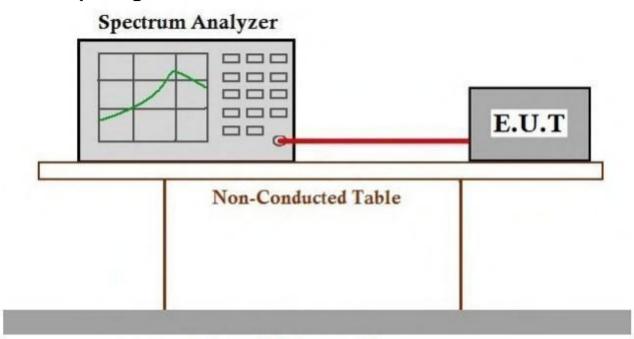
Test Method: KDB 789033 II B 1

Test Procedure:

Set RBW = 20MHz

Set VBW = 40MHz

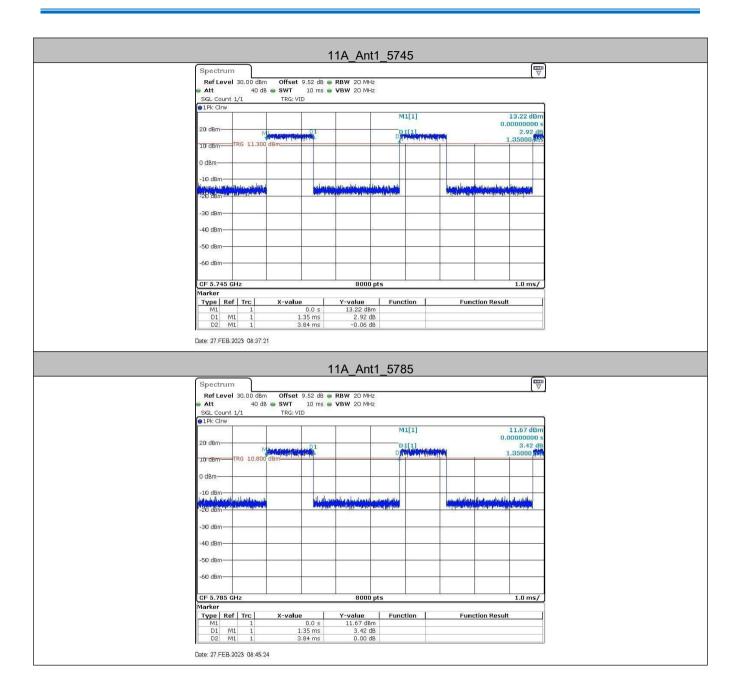
Set detector = peak.


Set span =0Hz

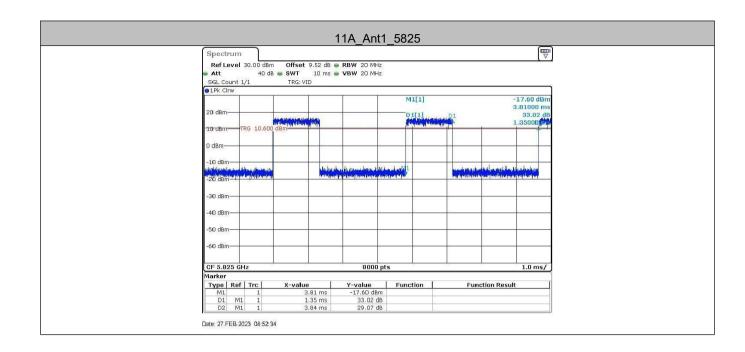
Report No.: CQASZ20230200180E-02

Test Setup Diagram

Ground Reference Plane



Report No.: CQASZ20230200180E-02


Measurement Data

TestMode	Freq(MHz)	Transmission Duration [ms]	Transmission Period [ms]	Duty Cycle [%]	Limit	Verdict
	5745	1.35	3.84	35.16		
11A	5785	1.35	3.84	35.16		
	5825	1.35	3.84	35.16		

Report No.: CQASZ20230200180E-02

2. Maximum Conducted Output Power

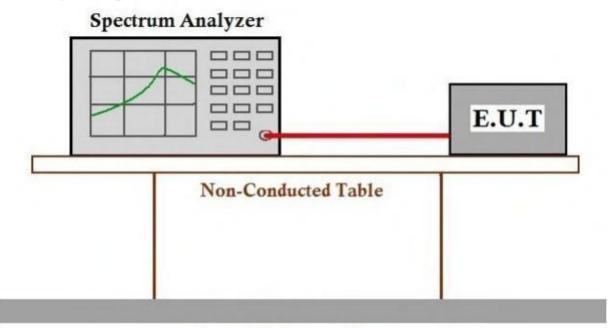
Test Requirement 47 CFR Part 15, Subpart C 15.407 (a)

Test Method: KDB 789033 D02 II E

Limit:

Frequency band(MHz)		Limit		
5150-5250		≤1W(30dBm) for master device		
		≤250mW(24dBm) for client device		
5250-5350		≤250mW(24dBm) for client device or 11dBm+10logB*		
5470-5725		≤250mW(24dBm) for client device or 11dBm+10logB*		
5725-5850		≤1W(30dBm)		
Remark:	* Where B is the 26	6dB emission bandwidth in MHz.		
	The maximum co continuous transm voltage.	onducted output power must be measured over any interval of dission using instrumentation calibrated in terms of an rms-equivalent		

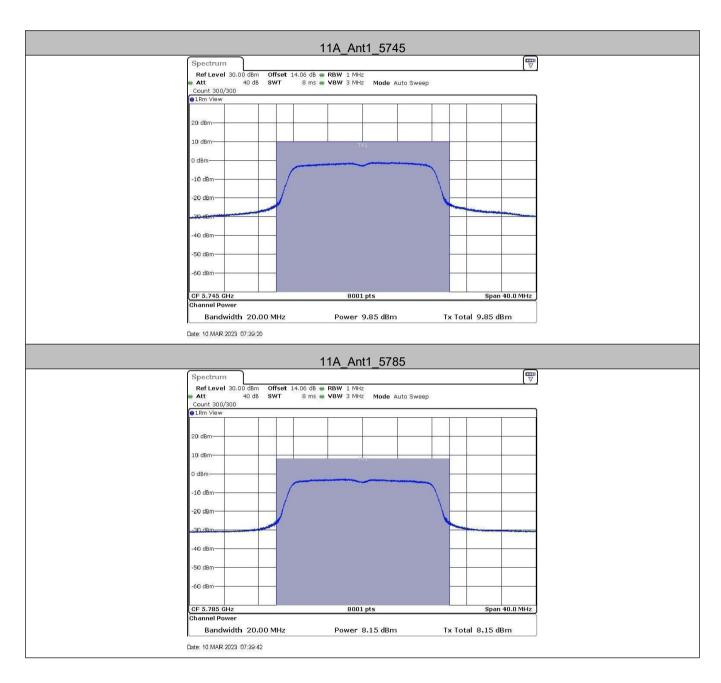
Test Procedure:


Method SA-2 (trace averaging across on and off times of the EUT transmissions, followed by duty cycle correction).

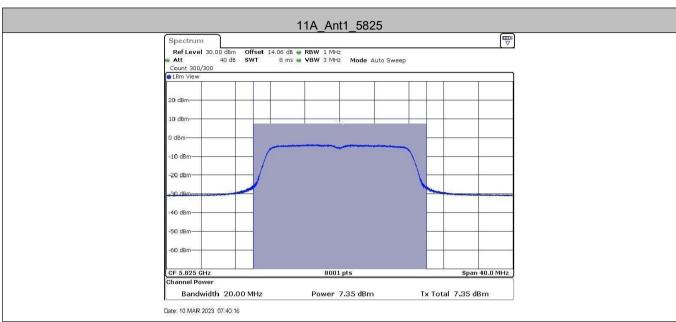
- (1) Set RBW = 1 MHz.
- (2) Set VBW ≥ 3 MHz.
- (3) Detector = power average
- (4) Sweep time = auto.
- (5) Add duty cycle to the measured average power.

Report No.: CQASZ20230200180E-02

Test Setup Diagram


Ground Reference Plane

Report No.: CQASZ20230200180E-02


Measurement Data

TestMode	Antenna	Channel	Result[dBm]	Limit[dBm]	Verdict
		5745	9.85	≤30.00	PASS
11A	Ant1	5785	8.15	≤30.00	PASS
		5825	7.35	≤30.00	PASS

Report No.: CQASZ20230200180E-02

Remark:

Av.Power=Meas.Level+10 log (1/duty cycle)

E.i.r.p=Av.Power+G,

G = antenna gain in dBi.

Report No.: CQASZ20230200180E-02

Appendix C): Maximum Power Spectral Density

Test Requirement 47 CFR Part 15, Subpart C 15.407 (a)

Test Method: KDB 789033 D02 II F

Test Procedure:

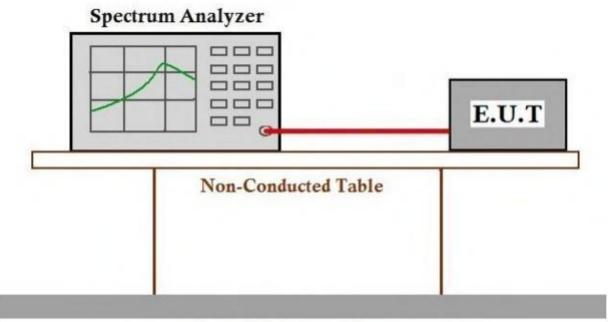
For 5150-5725MHz:

- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2. Set the EUT Work on operation frequency individually.
- 3. Set RBW = 1MHz.
- 4. Set the VBW ≥3*RBW. Detector = Peak. Trace mode = max hold.

For 5725-5850MHz:

- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2. Set the EUT Work on operation frequency individually.
- 3. Set RBW = 500KHz.
- 4. Set the VBW ≥3*RBW. Detector = Peak. Trace mode = max hold.

Limit:

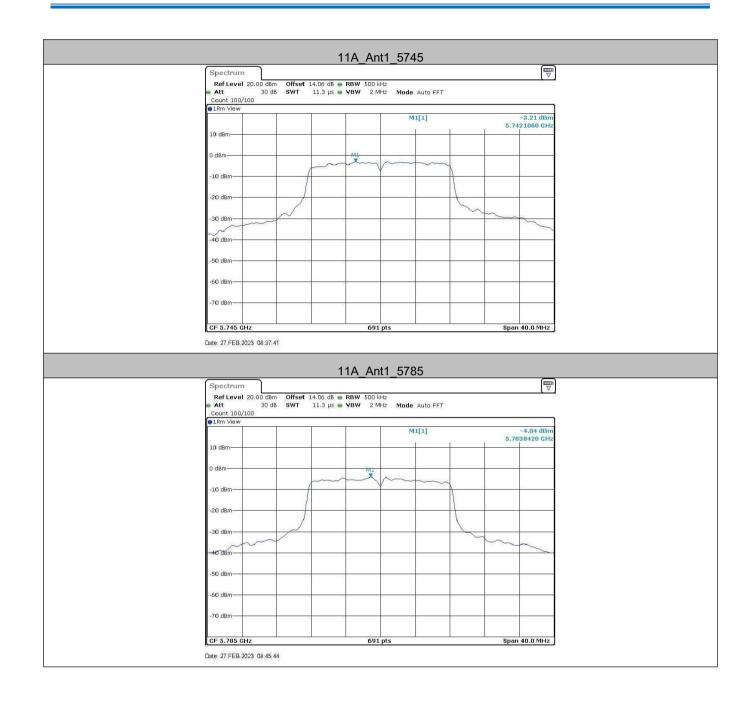

Frequency band(MHz)		Limit		
5150-5250		≤17dBm in 1MHz for master device		
		≤11dBm in 1MHz for client device		
5250-5350		≤11dBm in 1MHz for client device		
5470-5725		≤11dBm in 1MHz for client device		
5725-5850		≤30dBm in 500 kHz		
		wer spectral density is measured as a conducted emission by direct librated test instrument to the equipment under test.		

Report No.: CQASZ20230200180E-02

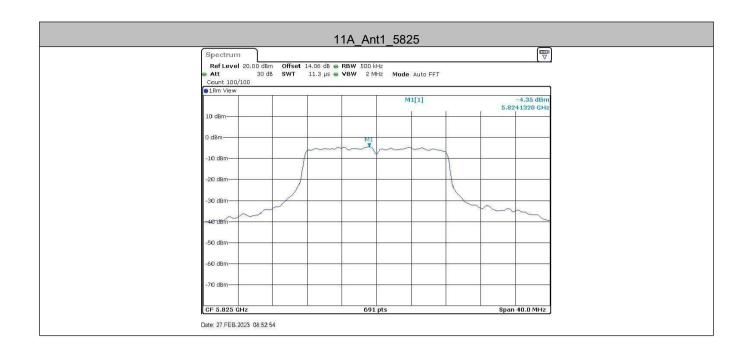
Test Setup Diagram

Ground Reference Plane

Report No.: CQASZ20230200180E-02


Result Table

TestMode	Antenna	Freq(MHz)	Result [dBm/MHz]	Limit[dBm/MHz]	Verdict
		5745	-3.21	≤30.00	PASS
11A	Ant1	5785	-4.04	≤30.00	PASS
		5825	-4.35	≤30.00	PASS


Remark:

PSD = Meas PSD + Duty Cycle Factor

Report No.: CQASZ20230200180E-02

Appendix D): Band Edge Measurements

Test Requirement 47 CFR Part 15, Subpart C 15.209 & 15.407(b)

Test Method: KDB 789033 D02 II G

Test Procedure:

- 1. The EUT operates at transmitting mode. The operate channel is tested to verify the largest transmission and spurious emissions power at the continuous transmission mode.
- 2. Set the spectrum analyzer in the following setting in order to capture the lower and upper band-edges of the emission:

(a) PEAK: RBW=VBW=1MHz / Sweep=AUTO

(b) AVERAGE: RBW=1MHz; VBW=1/on time(1KHz) / Sweep=AUTO

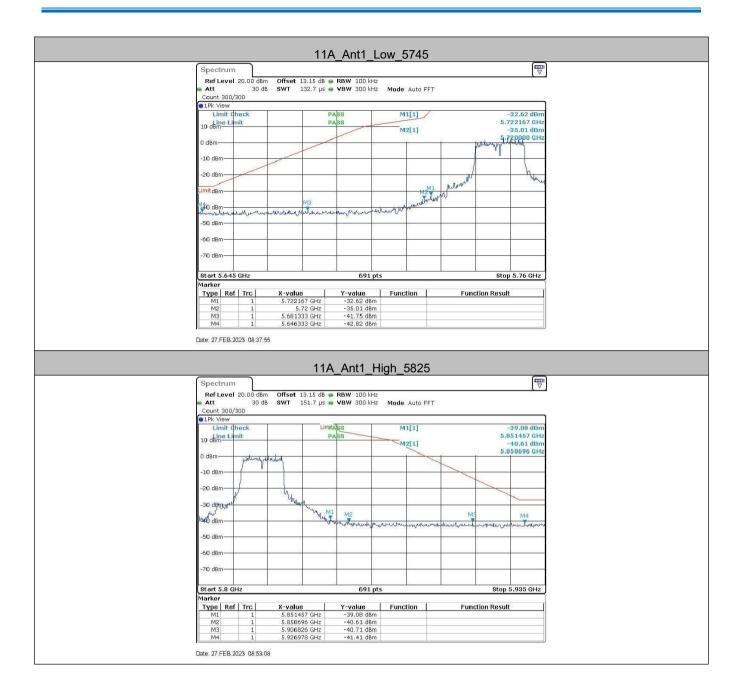
Limit:


For transmitters operating in the	All emissions outside of the 5.15-5.35 GHz band shall not exceed an
5.15-5.25 GHz band:	e.i.r.p. of −27 dBm/MHz (68.2dBuV/m).
For transmitters operating in the	All emissions outside of the 5.15-5.35 GHz band shall not exceed an
5.25-5.35 GHz band:	e.i.r.p. of -27 dBm/MHz (68.2dBuV/m).
3.23-3.33 GHZ ballu.	e.i.i.p. or -27 doi11/1/11/12 (00.2dodv/111).
For transmitters operating in the	All emissions outside of the 5.47-5.725 GHz band shall not exceed an
5.47-5.725 GHz band:	e.i.r.p. of −27 dBm/MHz (68.2dBuV/m).
For transmitters operating in the	(i) All emissions shall be limited to a level of −27 dBm/MHz
5.725-5.85 GHz band:	(68.2dBuV/m) at 75 MHz or more above or below the band edge
	increasing linearly to 10 dBm/MHz (105.2dBuV/m) at 25 MHz above or
	below the band edge, and from 25 MHz above or below the band edge
	increasing linearly to a level of 15.6 dBm/MHz (110.8dBuV/m) at 5 MHz
	above or below the band edge, and from 5 MHz above or below the
	band edge increasing linearly to a level of 27 dBm/MHz (122.2dBuV/m)
	at the band edge.

Report No.: CQASZ20230200180E-02

Test Setup Diagram

Ground Reference Plane

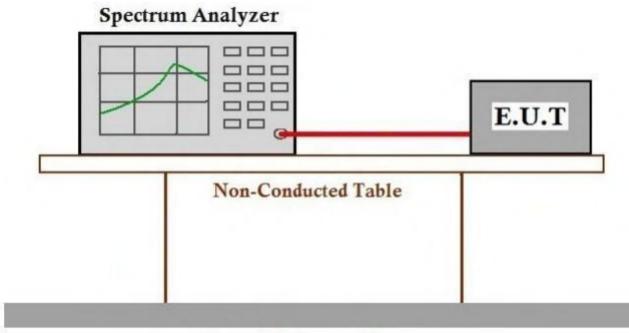

Report No.: CQASZ20230200180E-02

Test Result:

TestMode	Antenna	ChName	Freq(MHz)	FreqRange [MHz]	Result	Limit [dBm]	Verdict
				5650~5700	-41.75	≤-3.81	PASS
				[MHz] [dBm] [dBm]	≤15.60	PASS	
		Low	5745	5720~5725	5 -32.62 ≤20.54 F	PASS	
				5760~5650	-42.82	≤-27	PASS
11A	Ant1			5850~5855	-39.08	≤18.92	PASS
				5855~5875	-40.61	≤11.03	PASS
		High	5825	5875~5925	-40.71	≤-3.45	PASS
				5925~5935	-41.41	≤-27	PASS

Report No.: CQASZ20230200180E-02

Report No.: CQASZ20230200180E-02


Appendix E): Frequency Stability

Test Requirement 47 CFR Part 15, Subpart C 15.407 (g)

Test Method: ANSI C63.10 (2013) Section 6.8

Limit:The frequency tolerance shall be maintained within the band of operation frequency over a temperature variation of 0 degrees to 35 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C.

Test Setup Diagram

Ground Reference Plane

Report No.: CQASZ20230200180E-02

Measurement Data

	Voltage								
TestMode	Antenna	Freq(MHz)	Voltage [Vdc]	Temperat ure (℃)	Deviation (Hz)	Deviation (ppm)	Limit (ppm)	Verdict	
			NV	NT	-39000.00	-6.788512	20	PASS	
		5745	LV	NT	-38000.00	-6.614447	20	PASS	
			HV	NT	-37000.00	-6.440383	20	PASS	
			NV	NT	-39000.00	-6.741573	20	PASS	
11A	Ant1	5785	LV	NT	-39000.00	-6.741573	20	PASS	
			HV	NT	-39000.00	-6.741573	20	PASS	
			NV	NT	-32000.00	-5.493562	20	PASS	
		5825	LV	NT	-32000.00	-5.493562	20	PASS	
			HV	NT	-32000.00	-5.493562	20	PASS	

				Temperature)				
TestMode	Antenna	Freq(MHz)	Voltage [Vdc]	Temperat ure (°ℂ)	Deviation (Hz)	Deviation (ppm)	Limit (ppm)	Verdict	
			NV	-10	-36000.00	-6.266319	20	PASS	
			NV	0	-35000.00	-6.092254	20	PASS	
			NV	10	-35000.00	-6.092254	20	PASS	
		5745	NV	20	-35000.00	-6.092254	20	PASS	
			NV	30	-35000.00	-6.092254	20	PASS	
			NV	40	-35000.00	-6.092254	20	PASS	
			NV	50	-34000.00	-5.918190	20	PASS	
			NV	-10	-37000.00	-6.395851	20	PASS	
	Ant1 5785			NV	0	-37000.00	-6.395851	20	PASS
444		5785		NV	10	-37000.00	-6.395851	20	PASS
11A				NV	20	-36000.00	-6.222990	20	PASS
			NV	30	-36000.00	-6.222990	20	PASS	
			NV	40	-35000.00	-6.050130	20	PASS	
			NV	50	-35000.00	-6.050130	20	PASS	
			NV	-10	-32000.00	-5.493562	20	PASS	
			NV	0	-33000.00	-5.665236	20	PASS	
		5005	NV	10	-33000.00	-5.665236	20	PASS	
		5825	NV	20	-33000.00	-5.665236	20	PASS	
			NV	30	-33000.00	-5.665236	20	PASS	
			NV	40	-33000.00	-5.665236	20	PASS	

Report No.: CQASZ20230200180E-02

N//	50	-33000 00	-5 665236	20	DAGG
INV	30	-33000.00	-3.003230	20	1 700

Note: All the modulation and channels had been tested, but only the worst data recorded in the report.

Report No.: CQASZ20230200180E-02

Appendix F): Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.407(a)(1) (2) requirement:

The conducted output power limit specified in paragraph (a) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (a) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power and the peak power spectral density shall be reduced by the by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is FPC antenna with ipex connector. The best case gain of the 5G WiFi antenna is 4.03dBi

Report No.: CQASZ20230200180E-02

Appendix G): Operation in the absence of information to the transmit

15.407(c) requirement:

The device shall automatically discontinue transmission in case of either absence of information to transmit or operational failure. These provisions are not intended to preclude the transmission of control or signal ling information or the use of repetitive codes used by certain digital technologies to complete frame or burst intervals. Applicants shall include in their application for equipment authorization a description of how this requirement is met.

Operation in the absence of information to the transmit

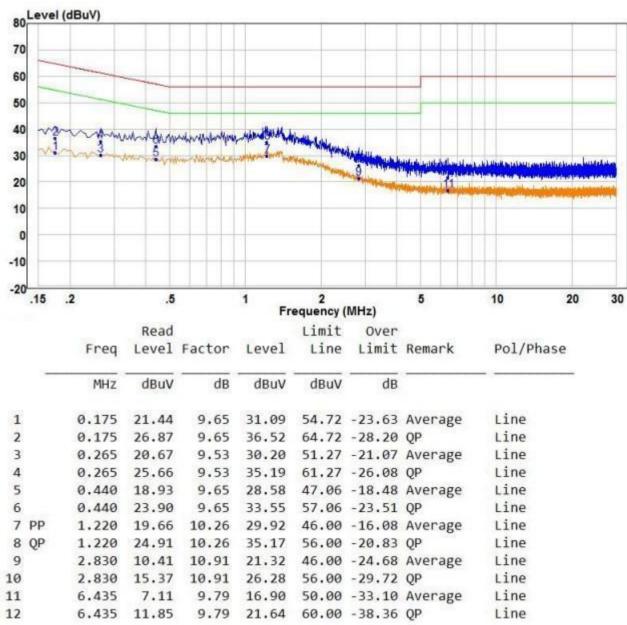
While the EUT is not transmitting any information, the EUT can automatically discontinue transmission and become standby mode for power saving. The EUT can detect the controlling signal of ASK message transmitting from remote device and verify whether it shall resend or discontinue transmission. (manufacturer declare)

Report No.: CQASZ20230200180E-02

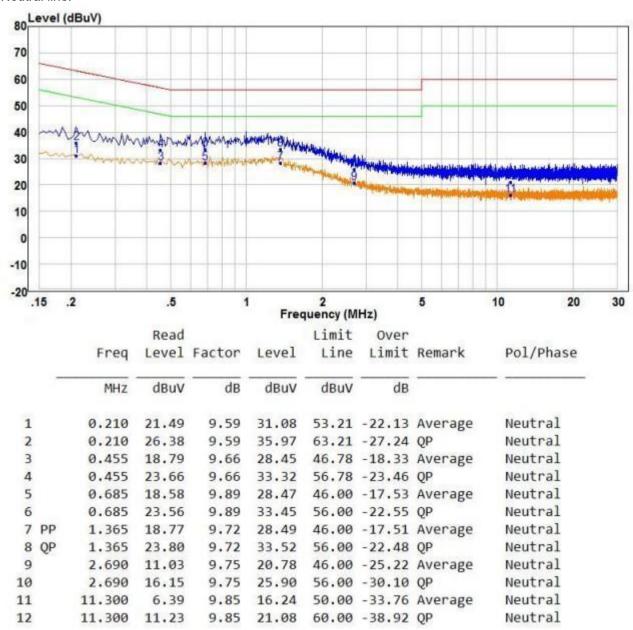
Appendix H): AC Power Line Conducted Emission

Appoilaix IIII	o i ower Line oonde		•		
Test Procedure:	Test frequency range :150KHz 1)The mains terminal disturba 2) The EUT was connected to Stabilization Network) which power cables of all other u which was bonded to the g for the unit being measure multiple power cables to a exceeded. 3)The tabletop EUT was place reference plane. And for flo horizontal ground reference 4) The test was performed wi EUT shall be 0.4 m from the reference plane was bonded 1 was placed 0.8 m from ground reference plane for plane. This distance was b All other units of the EUT a LISN 2. 5) In order to find the maximu all of the interface cables conducted measurement.	nce voltage test was con AC power source through provides a 50Ω/50μ units of the EUT were pround reference plane and A multiple socket of single LISN provided the dupon a non-metallic por-standing arrangement a vertical ground reference to the horizontal ground associated equipment associated equipment memission, the relative	ough a LISN 1 (Line of IH + 5Ω linear impedented to a secon in the same way as outlet strip was used the rating of the LISN of table 0.8m abovement, the EUT was planed and reference plane. The verticular reference plane int under test and be not top of the ground ints of the LISN 1 and the positions of equive positions of equiversity.	Impedance dance. The nd LISN 2, the LISN 1 to connect was not the ground aced on the rear of the ical ground. The LISN onded to a reference d the EUT. m from the	
Limit:	5 (441)	Limit (d	BμV)		
	Frequency range (MHz)	Quasi-peak	Average		
	0.15-0.5	66 to 56* 56 to 46*			
	0.5-5	56	46		
	5-30	60 50			
	* The limit decreases linearly MHz to 0.50 MHz. NOTE : The lower limit is appli	· ·		range 0.15	

Measurement Data


An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.


Live line:

Neutral line:

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. The 6Mbps of rate of 802.11A 5240 is the worst case, only the worst data recorded in the report.

Report No.: CQASZ20230200180E-02

Appendix I): Restricted bands around fundamental frequency (Radiated Emission)

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
	Ab 4011-	Peak	1MHz	3MHz	Peak	
	Above 1GHz	Peak	1MHz	10Hz	Average	
Test Procedure:	Below 1GHz test procedural. a. The EUT was placed of at a 3 meter semi-aneodetermine the position. b. The EUT was set 3 me was mounted on the toto. c. The antenna height is determine the maximural polarizations of the antenna was tuned was turned from 0 deg. The test-receiver system Bandwidth with Maximural from 0 deg.	on the top of a rochoic camber. The of the highest raters away from the poof a variable-rochem value of the firm are set to mission, the EUT to heights from the rees to 360 degrees to 360 degrees to 360 degreem was set to perform analyzer place of the restrict of the pliance. Also much an analyzer place of the test site of the test site of the performance of the test site of the performance of the test site of the performance of the test site of the test site of the performance of the performance of the test site of the performance of the	ne table was adiation. the interfer neight anter meter to foeld strength make the n was arran 1 meter to rees to find eak Detect ted band of easure any ot. Repeat f e, change fr e form table meter and the Highest rmed in X, kis positioni	ence-receinna tower. ur meters n. Both horneasureme ged to its 4 meters the maxin Function a closest to the emissions for each point com Semi- 0.8 metre table is 1.6 channel Y, Z axis p ng which i	above the grorizontal and verent. worst case an and the rotata num reading. and Specified the transmit is in the restrict ower and mode. Anechoic Charton 1.5 metre).	which und to ertical d ther ble ted ulation
	Frequency	Limit (dBµV/			mark	
	30MHz-88MHz	40.0		· ·	eak Value	
	88MHz-216MHz	43.5			eak Value	
	216MHz-960MHz	46.0		· ·	eak Value	
	960MHz-1GHz	54.0		· ·	eak Value	
	Above 1GHz	54.0		ļ	ge Value	
		74.0	1	Dook	Value	

Report No.: CQASZ20230200180E-02

Test plot as follows:

Worse case	mode:	802.11a(6Mbps) Test channel:		el:	149		
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
5725	57.38	-2.77	54.61	74	-19.39	peak	Н
5725	44.30	-2.77	41.53	54	-12.47	AV	Н
5725	58.30	-2.77	55.53	74	-18.47	peak	V
5725	43.25	-2.77	40.48	54	-13.52	AV	V

Worse case	mode:	802.11a(6Mbps)		Test channe	el:	165	
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	H/V
5850	49.70	-2.74	46.96	74	-27.04	peak	Н
5850	39.73	-2.74	36.99	54	-17.01	AV	Н
5850	50.50	-2.74	47.76	74	-26.24	peak	V
5850	38.28	-2.74	35.54	54	-18.46	AV	V

Note:

Final Test Level =Receiver Reading - Correct Factor
Correct Factor = Preamplifier Factor—Antenna Factor—Cable Factor

¹⁾ Through Pre-scan transmitting mode with all kind of modulation and data rate, Only the worst case is recorded in the report.

²⁾ The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Report No.: CQASZ20230200180E-02

Appendix J): Radiated Spurious Emissions

Receiver Setup:

Frequency	Detector	RBW	VBW	Remark
0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak
0.009MHz-0.090MHz	Average	10kHz	30kHz	Average
0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak
0.110MHz-0.490MHz	Average	10kHz	30kHz	Average
0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak
30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak
Above 1GHz	Peak	1MHz	3MHz	Peak
ADOVE IGHZ	Peak	1MHz	10Hz	Average

Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

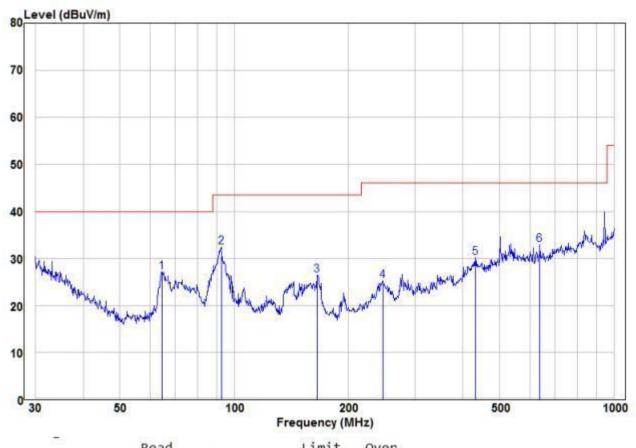
Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 metre to 1.5 metre(Above 18GHz the distance is 1 meter and table is 1.5 metre)
- h. Test the EUT in the lowest channel .the middle channel .the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- i. Repeat above procedures until all frequencies measured was complete.

L	ir	n	it:	
_	••	٠.	•••	

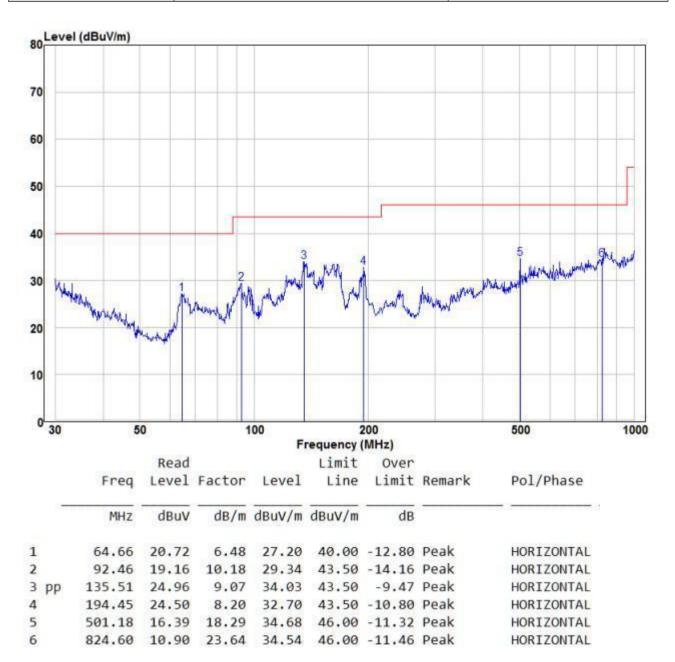
Frequency	Field strength (microvolt/meter)	Limit (dBµV/cm)	Remark	Measurement distance (cm)
0.009MHz-0.490MHz	2400/F(kHz)	-	-	300
0.490MHz-1.705MHz	24000/F(kHz)	-	-	30
1.705MHz-30MHz	30	-	-	30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.


Test result: PASS

Test Data: Radiated Emission below 1GHz

T		30MHz~1GHz
Test mode: Transmitting (802.11a 149CH) Vertical	Transmitting (802.11a 149CH) Vertical	Test mode:



	Freq	Read Level	Factor	Level	Limit Line	Over Limit	Remark	Pol/Phase
2	MHZ	dBuV	dB/m	dBuV/m	dBuV/m	dB	-	
1	64.66	20.72	6.48	27.20	40.00	-12.80	Peak	VERTICAL
2 pp	92.46	22.16	10.18	32.34	43.50	-11.16	Peak	VERTICAL
3	165.49	18.77	7.70	26.47	43.50	-17.03	Peak	VERTICAL
4	245.95	13.25	11.95	25.20	46.00	-20.80	Peak	VERTICAL
5	431.03	14.09	16.13	30.22	46.00	-15.78	Peak	VERTICAL
6	638.37	13.41	19.47	32.88	46.00	-13.12	Peak	VERTICAL

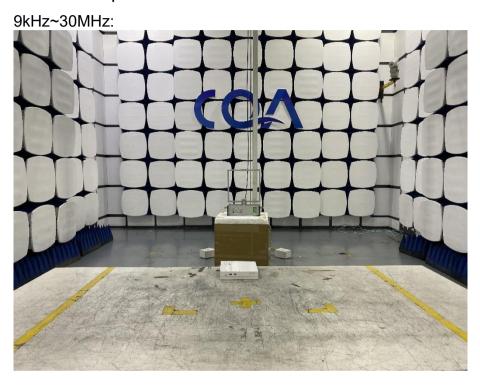
Report No.: CQASZ20230200180E-02

Test mode:	Transmitting (802.11a 149CH)	Horizontal
------------	------------------------------	------------

Report No.: CQASZ20230200180E-02

Transmitter Emission above 1GHz

Transmitter Emission above Tonz								
Test mode:	802.11a(6Mbps)		Test channel:		149			
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	1 1/ V	
11490	47.85	6.97	54.82	68.2	-13.38	peak	Н	
11490	36.20	6.97	43.17	54	-10.83	AVG	Н	
17235	41.21	15.71	56.92	68.2	-11.28	peak	Н	
17235	27.82	15.71	43.53	54	-10.47	AVG	Н	
11490	49.43	6.97	56.40	68.2	-11.80	peak	V	
11490	38.06	6.97	45.03	54	-8.97	AVG	V	
17235	42.50	15.71	58.21	68.2	-9.99	peak	V	
17235	29.33	15.71	45.04	54	-8.96	AVG	V	


Test mode:	802.11a(6Mbps)		Test channel:		165		
Frequency	Meter Reading	Factor	Emission Level	Limits	Over	Detector	Ant. Pol.
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type	H/V
11650	48.56	6.97	55.53	68.2	-12.67	peak	Н
11650	36.05	6.97	43.02	54	-10.98	AVG	Н
17475	43.31	15.71	59.02	68.2	-9.18	peak	Н
17475	30.28	15.71	45.99	54	-8.01	AVG	Н
11650	47.90	6.97	54.87	68.2	-13.33	peak	V
11650	37.72	6.97	44.69	54	-9.31	AVG	V
17475	42.21	15.71	57.92	68.2	-10.28	peak	V
17475	27.91	15.71	43.62	54	-10.38	AVG	V

Remark:

- 1) The 802.11a 6Mbps of rate is the worst case, only the worst data recorded in the report.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
 - Final Test Level =Receiver Reading + Antenna Factor + Cable Factor Preamplifier Factor
- 3) Scan from 9kHz to 40GHz, The disturbance above 18GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

8 Photographs - EUT Test Setup

8.1 Radiated Spurious Emission

8.2 Conducted Emission

Report No.: CQASZ20230200180E-02

9 Photographs - EUT Constructional Details

Refer to Photographs - EUT Constructional Details OF EUT for CQASZ20230200180E-01.

*** END OF REPORT ***