

TEST REPORT

BNetzA-CAB-02/21-102

Test report no.: 1-1329/20-01-03-A

Testing laboratory

CTC advanced GmbH

Untertuerkheimer Strasse 6 – 10 66117 Saarbruecken / Germany Phone: + 49 681 5 98 - 0 Fax: + 49 681 5 98 - 9075

Internet: https://www.ctcadvanced.com

e-mail: mail@ctcadvanced.com

Accredited Testing Laboratory:

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2018-03) by the Deutsche Akkreditierungsstelle GmbH (DAkkS)

The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate starting with the registration number: D-PL-12076-01.

Applicant

Sensire Oy

Rantakatu 24

80100 Joensuu / FINLAND

Phone: -/-

Contact: Elina Kukkonen

e-mail: elina.kukkonen@sensire.com

Manufacturer

Sensire Oy

Rantakatu 24

80100 Joensuu / FINLAND

Test standard/s

FCC - Title 47 CFR Part 15 FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio

frequency devices

RSS - 247 Issue 2 Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and

Licence - Exempt Local Area Network (LE-LAN) Devices

For further applied test standards please refer to section 3 of this test report.

Test Item

Kind of test item: Portable temperature sensor

Model name: TSX

FCC ID: 2AYEK-TSX IC: 26767-TSX

Frequency: DTS band 2400 MHz to 2483.5 MHz

Technology tested: Proprietary FHSS

Antenna: Integrated PCB antenna

Power supply: 3.6 V DC by 2x Li-SoCL2 LS14500 batteries

Temperature range: -30°C to +75°C

Radio Communications

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorized:	Test performed:		
Michael Dorongovski	Marco Bertolino		
Lab Manager	Lab Manager		

Radio Communications

Table of contents 1 Table of contents _______2 2.1 Notes and disclaimer3 Application details3 2.2 2.3 Test standard/s, references and accreditations......4 3 Reporting statements of conformity – decision rule5 4 Test environment6 5 Test item6 6.1 General description6 6.2 Additional information7 7 Description of the test setup.......8 Shielded semi anechoic chamber9 7.1 Shielded fully anechoic chamber......10 7.2 7.3 Radiated measurements > 18 GHz......11 Sequence of testing radiated spurious 9 kHz to 30 MHz13 8.1 8.2 Sequence of testing radiated spurious 30 MHz to 1 GHz14 Sequence of testing radiated spurious 1 GHz to 18 GHz15 8.3 8.4 Sequence of testing radiated spurious above 18 GHz16 9 10 Summary of measurement results......18 Additional comments19 11 12 12.1 Antenna gain20 Carrier frequency separation......21 12.2 Number of hopping channels22 12.3 12.4 Time of occupancy (dwell time)23 12.5 Spectrum bandwidth of a FHSS system......24 Maximum output power......25 12.6 12.7 12.8 Spurious emissions conducted28 Spurious emissions radiated below 30 MHz......29 12.9 12.10 Spurious emissions radiated 30 MHz to 1 GHz32 Spurious emissions radiated above 1 GHz36 12.11 13 Observations40 14 Glossary.......41 Document history42 15 Accreditation Certificate - D-PL-12076-01-0442 16 Accreditation Certificate - D-PL-12076-01-0543 17

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CTC advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CTC advanced GmbH.

The testing service provided by CTC advanced GmbH has been rendered under the current "General Terms and Conditions for CTC advanced GmbH".

CTC advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CTC advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CTC advanced GmbH test report include or imply any product or service warranties from CTC advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CTC advanced GmbH.

All rights and remedies regarding vendor's products and services for which CTC advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by CTC advanced GmbH. In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

This test report replaces the test report with the number 1-1329/20-01-03 and dated 2021-03-16.

2.2 Application details

Date of receipt of order: 2020-11-15
Date of receipt of test item: 2021-01-25
Start of test:* 2021-01-28
End of test:* 2021-02-18

Person(s) present during the test: -/-

2.3 Test laboratories sub-contracted

None

© CTC advanced GmbH Page 3 of 43

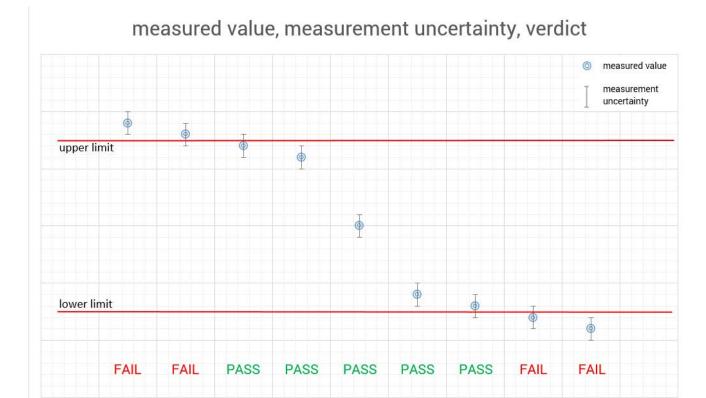
^{*}Date of each measurement, if not shown in the plot, can be requested. Dates are stored in the measurement software.

3 Test standard/s, references and accreditations

Test standard	Date	Description
FCC - Title 47 CFR Part 15	-/-	FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices
RSS - 247 Issue 2	February 2017	Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence - Exempt Local Area Network (LE- LAN) Devices
RSS - Gen Issue 5 incl. Amendment 1	March 2019	Spectrum Management and Telecommunications Radio Standards Specification - General Requirements for Compliance of Radio Apparatus

Guidance	Version	Description
KDB 558074 D01	v05r02	GUIDANCE FOR COMPLIANCE MEASUREMENTS ON DIGITAL TRANSMISSION SYSTEM, FREQUENCY HOPPING SPREAD SPECTRUM SYSTEM, AND HYBRID SYSTEM DEVICES OPERATING UNDER SECTION 15.247 OF THE FCC RULES
ANSI C63.4-2014	-/-	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
ANSI C63.10-2013	-/-	American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices

Accreditation	Description	
D-PL-12076-01-04	Telecommunication and EMC Canada https://www.dakks.de/as/ast/d/D-PL-12076-01-04e.pdf	DAKKS Deutsche Akkreditierungsstelle D-PL-12076-01-04
D-PL-12076-01-05	Telecommunication FCC requirements https://www.dakks.de/as/ast/d/D-PL-12076-01-05e.pdf	Deutsche Akkreditierungsstelle D-P1-12076-01-05


© CTC advanced GmbH Page 4 of 43

4 Reporting statements of conformity – decision rule

Only the measured values related to their corresponding limits will be used to decide whether the equipment under test meets the requirements of the test standards listed in chapter 3.

The measurement uncertainty is mentioned in this test report, see chapter 9, but is not taken into account neither to the limits nor to the measurement results. Measurement results with a smaller margin to the corresponding limits than the measurement uncertainty have a potential risk of more than 5% that the decision might be wrong."

© CTC advanced GmbH Page 5 of 43

5 Test environment

Temperature :		T _{nom} T _{max}	+20 °C during room temperature tests No tests under extreme temperature conditions required.
		T_{min}	No tests under extreme temperature conditions required.
Relative humidity content	:		42 %
Barometric pressure	:		1020 hpa
		V_{nom}	3.6 V DC by 2x Li-SoCL2 LS14500 batteries
Power supply	:	V_{max}	No tests under extreme voltage conditions required.
		V_{min}	No tests under extreme voltage conditions required.

6 Test item

6.1 General description

Kind of test item :	Portable temperature sensor			
Model name :	TSX			
HMN :	-/-			
PMN :	TSX TSX:TE1			
	TSX:TE2 TSX:THE1			
HVIN :	TSX			
FVIN :	-/-			
	Radiated units: 3000014 RF tests			
S/N serial number :	3000031 Timing behavior			
	Conducted unit: 300003E			
Hardware status :	1.4			
Software status :	8c.00			
Firmware status :	n/a			
	DTS band 2400 MHz to 2483.5 MHz			
Frequency band :	Lowest channel: 2403 MHz (channel 0)			
	Middle channel: 2445 MHz (channel 14)			
	Highest channel: 2479 MHz (channel 19)			
Type of radio transmission: Use of frequency spectrum:	Proprietary FHSS			
Type of modulation :	-/-			
Number of channels :	20			
Antenna :	Integrated PCB antenna			
Power supply :	3.6 V DC by 2x Li-SoCL2 LS14500 batteries			
Temperature range :	-30°C to +75°C			

© CTC advanced GmbH Page 6 of 43

6.2 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup and EUT photos are included in test report: 1-1329/20-01-01_AnnexA

1-1329/20-01-01_AnnexB 1-1329/20-01-01_AnnexD

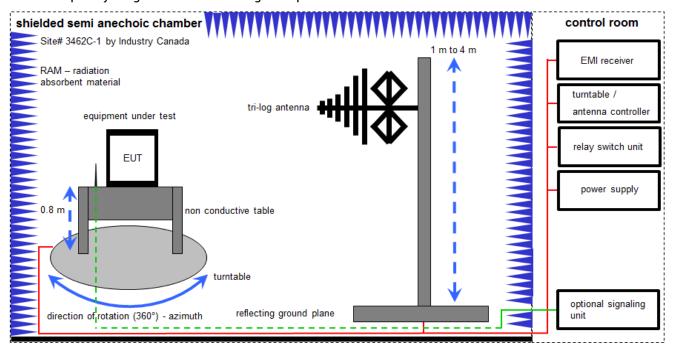
© CTC advanced GmbH Page 7 of 43

7 Description of the test setup

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

Agenda: Kind of Calibration


k	calibration / calibrated	EK	limited calibration
ne	not required (k, ev, izw, zw not required)	zw	cyclical maintenance (external cyclical
			maintenance)
ev	periodic self verification	izw	internal cyclical maintenance
Ve	long-term stability recognized	g	blocked for accredited testing
vlkl!	Attention: extended calibration interval		
NK!	Attention: not calibrated	*)	next calibration ordered / currently in progress

© CTC advanced GmbH Page 8 of 43

7.1 Shielded semi anechoic chamber

The radiated measurements are performed in vertical and horizontal plane in the frequency range from 30 MHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are conform to specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

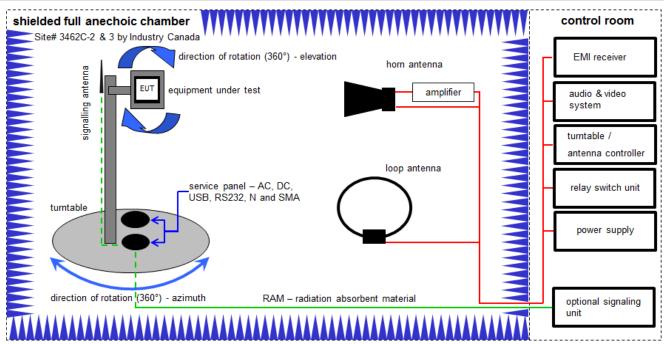
Measurement distance: tri-log antenna 10 meter; EMC32 software version: 10.59.00

FS = UR + CL + AF

(FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)

Example calculation:

FS $[dB\mu V/m] = 12.35 [dB\mu V/m] + 1.90 [dB] + 16.80 [dB/m] = 31.05 [dB\mu V/m] (35.69 \mu V/m)$


Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Switch-Unit	3488A	HP	2719A14505	300000368	ev	-/-	-/-
2	А	Semi anechoic chamber	3000023	MWB AG	-/-	300000551	ne	-/-	-/-
3	Α	Antenna Tower	Model 2175	ETS-Lindgren	64762	300003745	izw	-/-	-/-
4	А	Positioning Controller	Model 2090	ETS-Lindgren	64672	300003746	izw	-/-	-/-
5	А	Turntable Interface- Box	Model 105637	ETS-Lindgren	44583	300003747	izw	-/-	-/-
6	А	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck Mess - Elektronik	295	300003787	vlKI!	19.02.2019	18.02.2021
7	Α	Turntable	2089-4.0	EMCO	-/-	300004394	ne	-/-	-/-
8	Α	PC	TecLine	F+W	-/-	300004388	ne	-/-	-/-
9	Α	EMI Test Receiver	ESR3	Rohde & Schwarz	102587	300005771	k	10.12.2020	09.06.2022

© CTC advanced GmbH Page 9 of 43

7.2 Shielded fully anechoic chamber

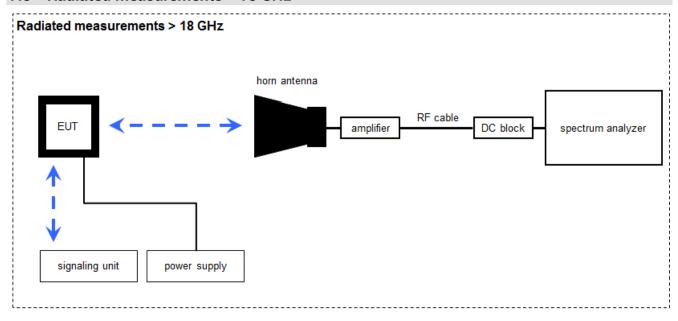
Measurement distance: horn antenna 3 meter; loop antenna 3 meter / 1 meter

FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)

Example calculation:

FS $[dB\mu V/m] = 40.0 [dB\mu V/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dB\mu V/m] (71.61 \(\mu V/m \))$


Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	A	Active Loop Antenna 9 kHz to 30 MHz	6502	EMCO	2210	300001015	vlKI!	13.06.2019	12.06.2021
2	A, B, C	Anechoic chamber	FAC 3/5m	MWB / TDK	87400/02	300000996	ev	-/-	-/-
3	B, C	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	9107-3697	300001605	vlKI!	27.02.2019	26.02.2021
4	A, C	Switch / Control Unit	3488A	HP	*	300000199	ne	-/-	-/-
5	В	Band Reject filter	WRCG2400/2483- 2375/2505-50/10SS	Wainwright	11	300003351	ev	-/-	-/-
6	A, B, C	EMI Test Receiver 20Hz- 26,5GHz	ESU26	R&S	100037	300003555	k	11.12.2020	10.12.2021
7	В	Highpass Filter	WHK1.1/15G-10SS	Wainwright	3	300003255	ev	-/-	-/-
8	В	Highpass Filter	WHKX7.0/18G-8SS	Wainwright	19	300003790	ne	-/-	-/-
9	В	Broadband Amplifier 0.5-18 GHz	CBLU5184540	CERNEX	22049	300004481	ev	-/-	-/-
10	A, B, C	4U RF Switch Platform	L4491A	Agilent Technologies	MY50000037	300004509	ne	-/-	-/-
11	A, B, C	NEXIO EMV- Software	BAT EMC V3.20.0.13	EMCO	-/-	300004682	ne	-/-	-/-
12	A, B, C	PC	ExOne	F+W	-/-	300004703	ne	-/-	-/-
13	В	RF-Amplifier	AMF-6F06001800- 30-10P-R	NARDA-MITEQ Inc	2011572	300005241	ev	-/-	-/-

© CTC advanced GmbH Page 10 of 43

7.3 Radiated measurements > 18 GHz

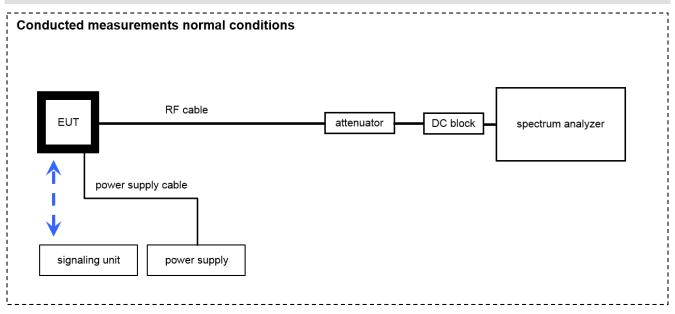
Measurement distance: horn antenna 50 cm

FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss signal path & distance correction; AF-antenna factor)

Example calculation:

FS $[dB\mu V/m] = 40.0 [dB\mu V/m] + (-60.1) [dB] + 36.74 [dB/m] = 16.64 [dB\mu V/m] (6.79 \(\mu V/m \))$


Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	А	Microwave System Amplifier, 0.5-26.5 GHz	83017A	HP	00419	300002268	ev	-/-	-/-
2	Α	Std. Gain Horn Antenna 18.0-26.5 GHz	638	Narda	01096	300000486	vlKI!	21.01.2020	20.01.2022
3	А	Signal Analyzer 40 GHz	FSV40	R&S	101042	300004517	k	07.12.2020	06.12.2021
4	А	RF-Cable	ST18/SMAm/SMAm /48	Huber & Suhner	Batch no. 600918	400001182	ev	-/-	-/-
5	А	DC-Blocker 0.1-40 GHz	8141A	Inmet	-/-	400001185	ev	-/-	-/-

© CTC advanced GmbH Page 11 of 43

7.4 Conducted measurements

OP = AV + CA

(OP-output power; AV-analyzer value; CA-loss signal path)

Example calculation:

OP [dBm] = 6.0 [dBm] + 11.7 [dB] = 17.7 [dBm] (58.88 mW)

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	А	Signal Analyzer 40 GHz	FSV40	R&S	101042	300004517	k	07.12.2020	06.12.2021
2	Α	RF-Cable	ST18/SMAm/SMAm /48	Huber & Suhner	Batch no. 600918	400001182	ev	-/-	-/-
3	Α	DC-Blocker 0.1-40 GHz	8141A	Inmet	-/-	400001185	ev	-/-	-/-
4	Α	Hygro-Thermometer	-/-, 5-45°C, 20- 100%rF	Thies Clima	-/-	400000108	ev	13.08.2020	12.08.2022
5	А	PC Tester R005	Intel Core i3 3220/3,3 GHz, Prozessor	-/-	2V2403033A45 23	300004589	ne	-/-	-/-
6	Α	RF-Cable	ST18/SMAm/SMAm /60	Huber & Suhner	Batch no. 606844	400001181	ev	-/-	-/-
7	Α	Coax Attenuator 10 dB 2W 0-40 GHz	MCL BW-K10-2W44+	Mini Circuits	-/-	400001186	ev	-/-	-/-
8	Α	Synchron Power Meter	SPM-4	СТС	1	300005580	ev	-/-	-/-
9	Α	DC Power Supply	HMP2020	Rohde & Schwarz	102850	300005517	vlKI!	12.12.2019	11.12.2021
10	А	Tester Software RadioStar (C.BER2 for BT Conformance)	Version 1.0.0.X	CTC advanced GmbH	0001	400001380	ne	-/-	-/-

© CTC advanced GmbH Page 12 of 43

8 Sequence of testing

8.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, it is placed on a table with 0.8 m height.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement*

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all emissions.

Final measurement

- Identified emissions during the pre-measurement are maximized by the software by rotating the turntable from 0° to 360°.
- Loop antenna is rotated about its vertical axis for maximum response at each azimuth about the EUT.
 (For certain applications, the loop antenna plane may also need to be positioned horizontally at the specified distance from the EUT)
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

© CTC advanced GmbH Page 13 of 43

^{*)}Note: The sequence will be repeated three times with different EUT orientations.

8.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with guasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable
 angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the
 premeasurement with marked maximum final results and the limit is stored.

© CTC advanced GmbH Page 14 of 43

8.3 Sequence of testing radiated spurious 1 GHz to 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 m.
- At each turntable position and antenna polarization the analyzer sweeps with positive peak detector to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximizes the peaks by rotating the turntable from 0° to 360°. This measurement is repeated for different EUT-table positions (0° to 150° in 30°-steps) and for both antenna polarizations.
- The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

© CTC advanced GmbH Page 15 of 43

8.4 Sequence of testing radiated spurious above 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet.
- The measurement distance is as appropriate (e.g. 0.5 m).
- The EUT is set into operation.

Premeasurement

• The test antenna is handheld and moved carefully over the EUT to cover the EUT's whole sphere and different polarizations of the antenna.

Final measurement

- The final measurement is performed at the position and antenna orientation causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement and the limit is stored.

© CTC advanced GmbH Page 16 of 43

9 Measurement uncertainty

Measurement uncertainty						
Test case	Uncertainty					
Antenna gain	± 3 dB					
Spectrum bandwidth	± 21.5 kHz absolute; ± 15.0 kHz relative					
Maximum field strength	± 3 dB					
Band edge compliance radiated	± 3 dB					
Spurious emissions radiated below 30 MHz	± 3 dB					
Spurious emissions radiated 30 MHz to 1 GHz	± 3 dB					
Spurious emissions radiated 1 GHz to 12.75 GHz	± 3.7 dB					
Spurious emissions radiated above 12.75 GHz	± 4.5 dB					
Spurious emissions conducted below 30 MHz (AC conducted)	± 2.6 dB					

© CTC advanced GmbH Page 17 of 43

10 Summary of measurement results

\boxtimes	No deviations from the technical specifications were ascertained
	There were deviations from the technical specifications ascertained
	This test report is only a partial test report. The content and verdict of the performed test cases are listed below.

TC Identifier	Description	Verdict	Date	Remark
RF-Testing	CFR Part 15 RSS - 247, Issue 2	See table!	2022-04-06	-/-

Test specification clause	Test case	Temperature conditions	Power source voltages	Mode	С	NC	NA	NP	Remark
§15.247(b)(4) RSS - 247 / .4.(f)(ii)	Antenna gain	Nominal	Nominal	TX single carrier		-,	/-		Declared by the customer
§15.247(a)(1) RSS - 247 / 5.1.(b)	Carrier frequency separation	Nominal	Nominal	TX single carrier	X				-/-
§15.247(a)(1) RSS - 247 / 5.1 (d)	Number of hopping channels	Nominal	Nominal	Hopping	×				-/-
§15.247(a)(1) (iii) RSS - 247 / 5.1 (c)	Time of occupancy (dwell time)	Nominal	Nominal	Hopping	X				-/-
§15.247(a)(1) RSS - 247 / 5.1 (a)	Spectrum bandwidth of a FHSS system bandwidth	Nominal	Nominal	TX single carrier	\boxtimes				-/-
§15.247(b)(1) RSS - 247 / 5.4 (b)	Maximum output power	Nominal	Nominal	TX single carrier	\boxtimes				-/-
§15.205 RSS - 247 / 5.5 RSS - Gen	Band edge compliance radiated	Nominal	Nominal	TX single carrier					-/-
§15.247(d) RSS - 247 / 5.5	Spurious emissions conducted	Nominal	Nominal	TX single carrier Hopping	\boxtimes				-/-
§15.209(a) RSS - Gen	Spurious emissions radiated below 30 MHz	Nominal	Nominal	TX single carrier	×				-/-
§15.247(d) RSS - 247 / 5.5 §15.109 RSS - Gen	Spurious emissions radiated 30 MHz to 1 GHz	Nominal	Nominal	TX single carrier	×				-/-
§15.247(d) RSS - 247 / 5.5 §15.109 RSS - Gen	Spurious emissions radiated above 1 GHz	Nominal	Nominal	TX single carrier	×				-/-
§15.107(a) §15.207	Conducted emissions below 30 MHz (AC conducted)	Nominal	Nominal	-/-			\boxtimes		Battery powered only

Notes:

C	Compliant	NC	Not compliant	NA	Not applicable	NP	Not performed
•	Compilant	110	riot compilant	117	140t applicable	141	140t perioritied

© CTC advanced GmbH Page 18 of 43

11 Additional comments

Reference documents: TSX Datasheet v1.4.pdf

TSX test guide NFC v2.pdf

TSX Cover letter for test partner.pdf

11d Antenna data sheet 2.4 GHz.pdf

Special test descriptions: None

Configuration descriptions: None

Test mode: Special software is used.

EUT is transmitting pseudo random data by itself

Antennas and transmit operating modes:

- Equipment with 1 antenna,

 Equipment with 2 diversity antennas operating in switched diversity mode by which at any moment in time only 1 antenna is used,

 Smart antenna system with 2 or more transmit/receive chains, but operating in a mode where only 1 transmit/receive chain is used)

© CTC advanced GmbH Page 19 of 43

12 Measurement results

12.1 Antenna gain

Limits:

FCC	IC
6 dBi / > 6 dBi output power and	power density reduction required

Results:

T _{nom}	V _{nom}	DTS band 2400 MHz to 2483.5 MHz
Declared by the cust	[dBi] omer / see document sheet 2.4 GHz.pdf	+2.04

© CTC advanced GmbH Page 20 of 43

12.2 Carrier frequency separation

Description:

Measurement of the carrier frequency separation of a hopping system. EUT in hopping mode.

Measurement parameters				
External result file	1-1329_20-01-03_log1_conducted.pdf FCC Part 15.247 Carrier Frequency Separation FHSS			
Test setup	See sub clause 7.4 A			
Measurement uncertainty	See sub clause 9			

Limits:

FCC	IC		
Carrier frequency separation			
Minimum 25 kHz or two-thirds of the 20 dB bandwidth of the hopping system whichever is greater.			

Result:

Carrier frequency separation	500.5 kHz
------------------------------	-----------

© CTC advanced GmbH Page 21 of 43

12.3 Number of hopping channels

Description:

Measurement of the total number of used hopping channels. EUT in hopping mode.

Measurement parameters				
External result file	1-1329_20-01-03_log1_conducted.pdf FCC Part 15.247 Number Of Hopping Channels FHSS			
Test setup	See sub clause 7.4 A			
Measurement uncertainty	See sub clause 9			

Limits:

FCC	IC		
Number of hopping channels			
At least 15 non overlapping hopping channels			

Result:

Number of hopping channels	20
----------------------------	----

© CTC advanced GmbH Page 22 of 43

12.4 Time of occupancy (dwell time)

Description:

Measurement of the total number of used hopping channels. EUT in hopping mode.

Measurement parameters		
External result file	1-1329_20-01-03_log1_conducted.pdf	
Test setup See sub clause 7.4 A		
Measurement uncertainty	See sub clause 9	

Limits:

FCC	IC	
Time of occupancy (dwell time)		
The frequency hopping operation shall have an average time of occupancy on any frequency not exceeding 0.4 seconds within a duration in seconds equal to the number of hopping frequencies multiplied by 0.4.		

Observation time: 0.4 s * 20 hopping channels = 8 s

Burst time: 90.2 ms

Number of burst during observation: 3

Dwell time: 3 * 90.2 ms = 270.6 ms

© CTC advanced GmbH Page 23 of 43

12.5 Spectrum bandwidth of a FHSS system

Description:

Measurement of the 20dB bandwidth and 99% bandwidth of the modulated signal. The measurement is performed according to the "Measurement Guidelines" (DA 00-705, March 30, 2000). EUT in single channel mode.

Measurement parameters		
External result file 1-1329_20-01-03_log1_conducted.pdf FCC Part 15.247 Bandwidth 99PCT		
Test setup	See sub clause 7.4 A	
Measurement uncertainty	See sub clause 9	

Limits:

FCC	IC
Spectrum bandwidt	h of a FHSS system
< 1500 kHz	

Results:

	20 dB bandwidth		
Frequency	2403 MHz	2445 MHz	2479 MHz
[kHz]	22	22	22

Results:

	99 % bandwidth		
Frequency	2403 MHz	2445 MHz	2479 MHz
[kHz]	19	21	21

© CTC advanced GmbH Page 24 of 43

12.6 Maximum output power

Description:

Measurement of the maximum output power conducted and radiated. EUT in single channel mode. The measurement is performed according to the ANSI C63.10.

Measurement parameters		
External result file	1-1329_20-01-03_log1_conducted.pdf FCC Part 15.247 Maximum Peak Conducted Output Power FHSS	
Test setup	See sub clause 7.4 A	
Measurement uncertainty	See sub clause 9	

Limits:

FCC	IC	
Maximum output power		
Systems using more that	antenna gain max. 6 dBi] an 75 hopping channels: ntenna gain max. 6 dBi	

Results:

Maximum output power conducted			
Frequency	2403 MHz	2445 MHz	2479 MHz
[dBm]	3.41	2.22	3.37

© CTC advanced GmbH Page 25 of 43

12.7 Band edge compliance radiated

Description:

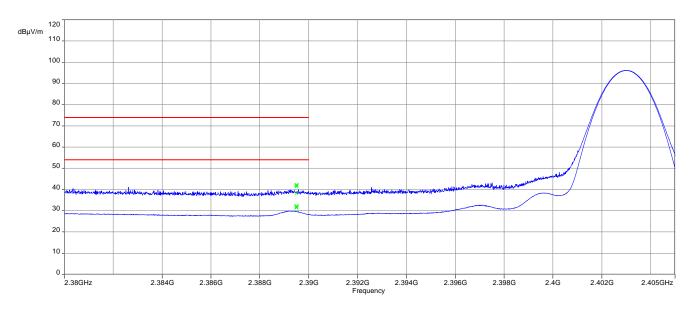
Measurement of the radiated band edge compliance. The EUT is turned in the position that results in the maximum level at the band edge. Then a sweep over the corresponding restricted band is performed. The EUT is set to single channel mode and the transmit frequency 2403 MHz for the lower restricted band and 2479 MHz for the upper restricted band. Measurement distance is 3m.

Measurement parameters		
Detector	Peak / RMS	
Sweep time	Auto	
Resolution bandwidth	1 MHz	
Video bandwidth	3 MHz	
Span	Lower Band: 2300 – 2400 MHz higher Band: 2480 – 2500 MHz	
Trace mode	Max hold	
Test setup	See sub clause 7.2 C	
Measurement uncertainty	See sub clause 9	

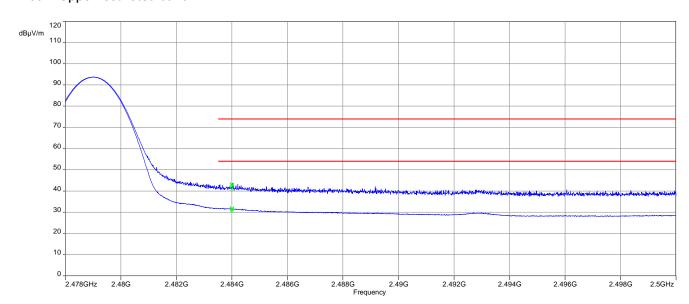
Limits:

FCC	IC
Band edge compliance radiated	
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 5.205(c)).	
54 dBμV/m AVG 74 dBμV/m Peak	

Result:


Scenario	Band edge compliance radiated [dBµV/m]
Lower restricted band	32.3 dBμV/m AVG
	42.2 dBμV/m Peak
Upper restricted band	31.5 dBµV/m AVG
	43.0 dBμV/m Peak

© CTC advanced GmbH Page 26 of 43



Plots:

Plot 1: Lower restricted band

Plot 2: Upper restricted band

© CTC advanced GmbH Page 27 of 43

12.8 Spurious emissions conducted

Description:

Measurement of the conducted spurious emissions in transmit mode. The EUT is set to hopping mode and single channel transmit mode with channel 00, channel 14 and channel 19.

Measurement parameters				
External result file	1-1329_20-01-03_log1_conducted.pdf FCC Part 15.247 TX Spurious Conducted			
Test setup	See sub clause 7.4 A			
Measurement uncertainty	See sub clause 9			

Limits:

FCC	IC
TX spurious emis	ssions conducted

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required

Results:

		TX spi	urious emissions condu	ucted	
f [MHz]		amplitude of emission [dBm]	limit max. allowed emission power	actual attenuation below frequency of operation [dB]	results
2403		3.46	30 dBm		Operating frequency
	d emissions are be . Please take a loo		-20 dBc		compliant
2445		2.19	30 dBm		Operating frequency
	d emissions are be . Please take a loo		-20 dBc		compliant
2479		3.36	30 dBm		Operating frequency
	d emissions are be . Please take a loc		-20 dBc		compliant
Hopping		4.08	30 dBm		Operating frequency
All detected	d emissions are be . Please take a loc		-20 dBc		compliant

© CTC advanced GmbH Page 28 of 43

12.9 Spurious emissions radiated below 30 MHz

Description:

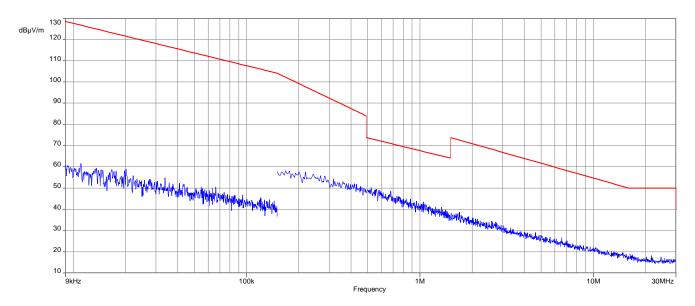
Measurement of the radiated spurious emissions in transmit mode below 30 MHz. The EUT is set to single channel mode and the transmit frequencies are 2403 MHz, 2445 MHz and 2479 MHz. The limits are recalculated to a measurement distance of 3 m according the ANSI C63.10.

Measurement parameters					
Detector	Peak / Quasi peak				
Sweep time	Auto				
Resolution bandwidth	F < 150 kHz: 200 Hz				
nesolution bandwidth	F > 150 kHz: 9 kHz				
Video bandwidth	F < 150 kHz: 1 kHz				
video bandwidth	F > 150 kHz: 30 kHz				
Span	9 kHz to 30 MHz				
Trace mode	Max hold				
Test setup	See sub clause 7.2 A				
Measurement uncertainty	See sub clause 9				

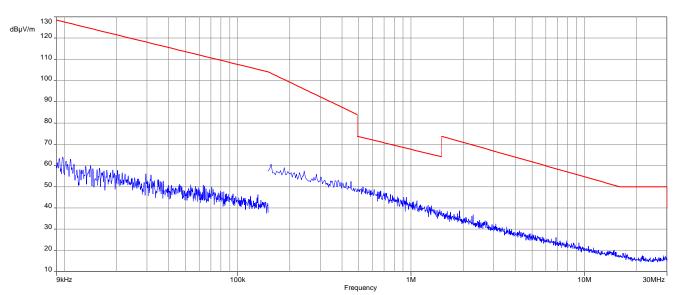
Limits:

FCC		IC				
TX	radiated below 30 M	IHz				
Frequency (MHz)	Field streng	th (dBµV/m)	Measurement dista	nce		
0.009 - 0.490	2400/F(kHz)		300			
0.490 - 1.705	24000/F(kHz)		24000/F(kHz)		30	
1.705 – 30.0	3	0	30			

Results:

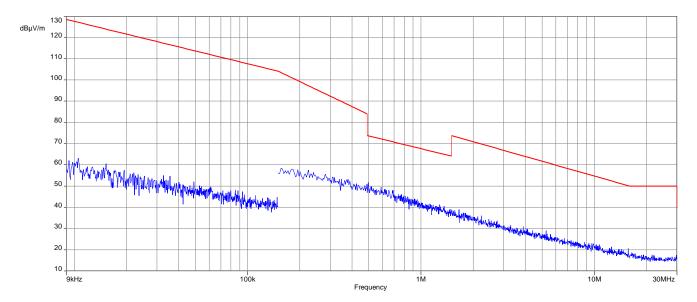

TX spurious emissions radiated below 30 MHz [dBµV/m]								
F [MHz] Detector Level [dBμV/m]								
All detect	ed emissions are more than 20 dB below	the limit.						

© CTC advanced GmbH Page 29 of 43



Plots:

Plot 1: 9 kHz to 30 MHz, low channel


Plot 2: 9 kHz to 30 MHz, mid channel

© CTC advanced GmbH Page 30 of 43

Plot 3: 9 kHz to 30 MHz, high channel

© CTC advanced GmbH Page 31 of 43

12.10 Spurious emissions radiated 30 MHz to 1 GHz

Description:

Measurement of the radiated spurious emissions in transmit mode. The EUT is set to single channel mode and the transmit frequencies are 2403 MHz, 2445 MHz and 2479 MHz.

Measur	Measurement parameters				
Detector	Peak / Quasi Peak				
Sweep time	Auto				
Resolution bandwidth	120 kHz				
Video bandwidth	3 x RBW				
Span	30 MHz to 1 GHz				
Trace mode	Max hold				
Measured modulation	GFSK				
Test setup	See sub clause 7.1 A				
Measurement uncertainty	See sub clause 9				

Limits:

FCC	IC
TX spurious em	issions radiated

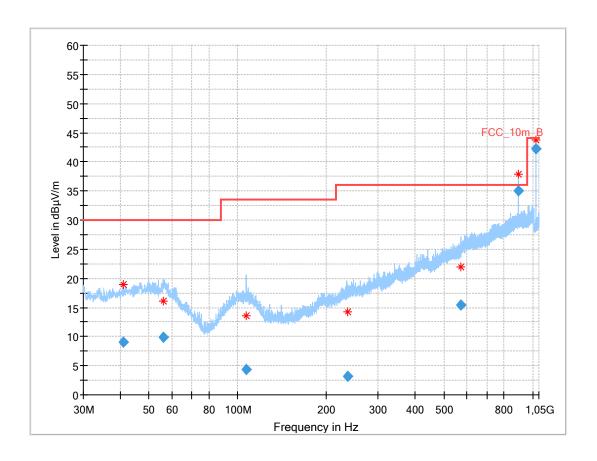
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).


	§15.209	
Frequency (MHz)	Field strength (dBµV/m)	Measurement distance
30 - 88	30.0	10
88 – 216	33.5	10
216 - 960	36.0	10
Above 960	54.0	3

© CTC advanced GmbH Page 32 of 43

Plots: Transmit mode

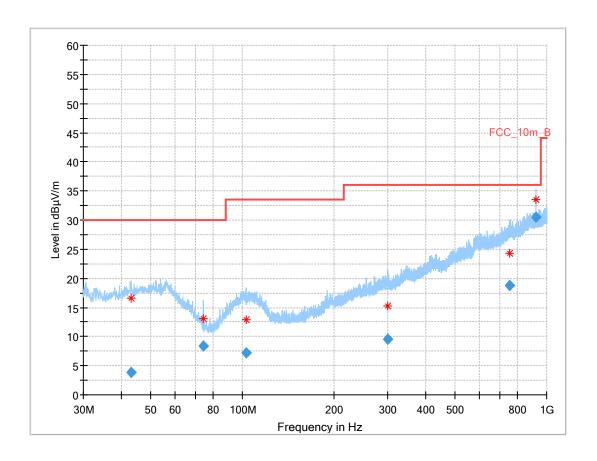
Plot 1: 30 MHz to 1 GHz, low channel, vertical & horizontal polarization


Final results:

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
33.586	8.02	30.0	22.0	1000	120.0	106.0	V	0	12
56.030	5.26	30.0	24.7	1000	120.0	216.0	Н	77	15
106.238	7.54	33.5	26.0	1000	120.0	200.0	V	0	12
436.735	13.24	36.0	22.8	1000	120.0	224.0	Н	340	17
732.538	12.86	36.0	23.1	1000	120.0	169.0	Н	-45	22
877.136	15.26	36.0	20.7	1000	120.0	200.0	Н	135	23
983.868	33.62	44.0	10.4	1000	120.0	106.0	Н	326	24

© CTC advanced GmbH Page 33 of 43

Plot 2: 30 MHz to 1 GHz, mid channel, vertical & horizontal polarization


Final results:

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
41.079	9.02	30.0	21.0	1000	120.0	355.0	Н	90	14
56.128	9.89	30.0	20.1	1000	120.0	200.0	Н	186	15
107.012	4.28	33.5	29.2	1000	120.0	400.0	Н	147	13
235.353	3.21	36.0	32.8	1000	120.0	216.0	Н	180	13
570.914	15.47	36.0	20.5	1000	120.0	400.0	Н	90	19
893.407	35.11	36.0	0.9	1000	120.0	102.0	Н	-19	24
1025.071	42.30	44.0	1.7	1000	120.0	101.0	Н	336	25

© CTC advanced GmbH Page 34 of 43

Plot 3: 30 MHz to 1 GHz, high channel, vertical & horizontal polarization

Final results:

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
43.106	3.84	30.0	26.2	1000	120.0	102.0	Н	165	14
74.260	8.32	30.0	21.7	1000	120.0	160.0	Н	345	8
103.009	7.24	33.5	26.3	1000	120.0	160.0	Н	208	13
300.277	9.63	36.0	26.4	1000	120.0	160.0	Н	355	14
756.898	18.72	36.0	17.3	1000	120.0	160.0	Н	262	22
924.340	30.51	36.0	5.5	1000	120.0	120.0	Н	24	24

© CTC advanced GmbH Page 35 of 43

12.11 Spurious emissions radiated above 1 GHz

Description:

Measurement of the radiated spurious emissions in transmit mode. The EUT is set to single channel mode and the transmit frequencies are 2403 MHz, 2445 MHz and 2479 MHz.

Measurement parameters		
Detector	Peak / RMS	
Sweep time	Auto	
Resolution bandwidth	1 MHz	
Video bandwidth	3 x RBW	
Span	1 GHz to 26 GHz	
Trace mode	Max hold	
Measured modulation	GFSK	
Test estup	See sub clause 7.2 B (1 GHz - 18 GHz)	
Test setup	See sub clause 7.3 A (18 GHz - 26 GHz)	
Measurement uncertainty	See sub clause 9	

Limits:

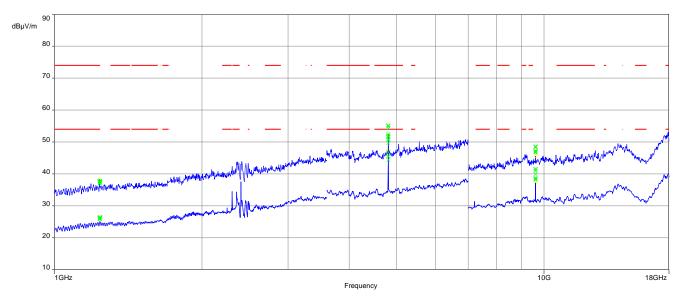
FCC	IC	
TX spurious emissions radiated		

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

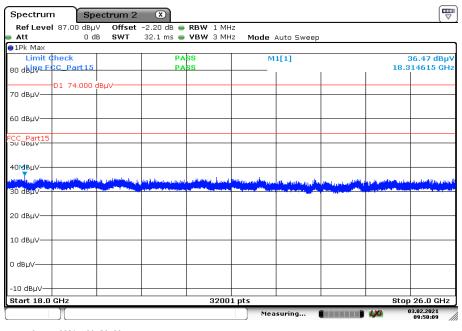
§15.209		
Frequency (MHz)	Field strength (dBµV/m)	Measurement distance
Above 960	54.0 (Average)	3
Above 960	74.0 (Peak)	3

© CTC advanced GmbH Page 36 of 43

Results:


TX spurious emissions radiated [dBμV/m]								
Lowest channel Mic		liddle channel		Highest channel				
F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]
1236	Peak	37.0	4890	Peak	54.5	4958	Peak	55.6
1230	AVG	25.8		AVG	50.0	4956	AVG	52.0
4806	Peak	55.1	7335	Peak	44.5	7437	Peak	44.6
	AVG	51.6	1335	AVG	35.0	1431	AVG	35.7
9612	Peak	48.6	9780	Peak	49.3	9916	Peak	49.5
9012	AVG	40.9		AVG	43.2	9910	AVG	41.6

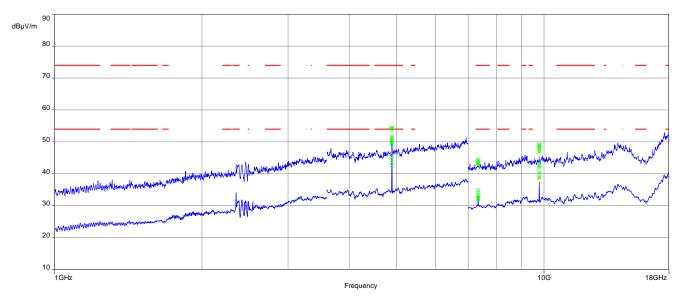
© CTC advanced GmbH Page 37 of 43


Plots: Transmitter mode

Plot 1: 1 GHz to 18 GHz, lowest channel, vertical & horizontal polarization

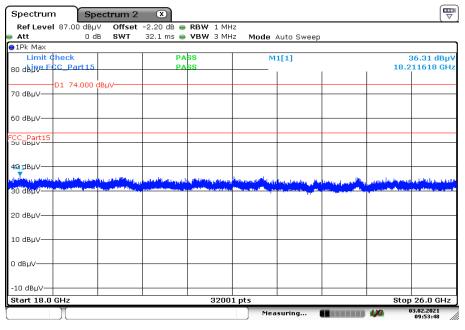
The carrier signal is notched with a 2.4 GHz band rejection filter.

Plot 2: 18 GHz to 26 GHz, lowest channel, vertical & horizontal polarization



Date: 3.FEB.2021 09:50:09

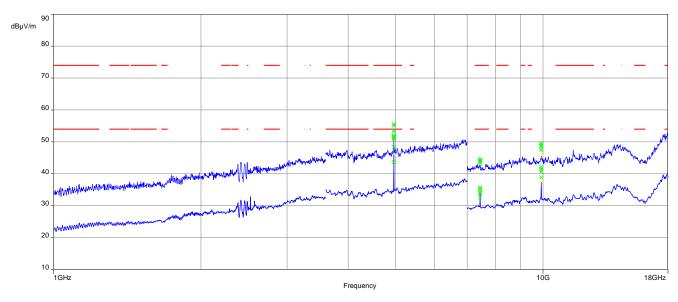
© CTC advanced GmbH Page 38 of 43



Plot 3: 1 GHz to 18 GHz, mid channel, vertical & horizontal polarization

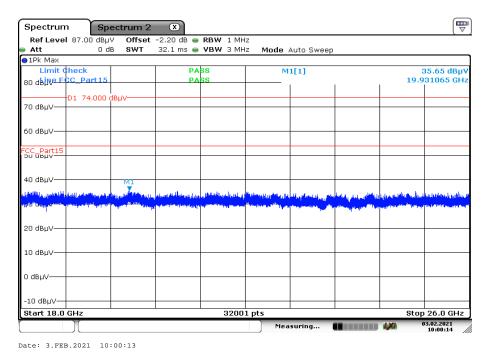
The carrier signal is notched with a 2.4 GHz band rejection filter.

Plot 4: 18 GHz to 26 GHz, mid channel, vertical & horizontal polarization



Date: 3.FEB.2021 09:53:47

© CTC advanced GmbH Page 39 of 43



Plot 5: 1 GHz to 18 GHz, high channel, vertical & horizontal polarization

The carrier signal is notched with a 2.4 GHz band rejection filter.

Plot 6: 18 GHz to 26 GHz, high channel, vertical & horizontal polarization

13 Observations

No observations except those reported with the single test cases have been made.

© CTC advanced GmbH Page 40 of 43

14 Glossary

EUT	Equipment under test
DUT	Device under test
UUT	Unit under test
GUE	GNSS User Equipment
ETSI	European Telecommunications Standards Institute
EN	European Standard
FCC	Federal Communications Commission
FCC ID	Company Identifier at FCC
IC	Industry Canada
PMN	Product marketing name
HMN	Host marketing name
HVIN	Hardware version identification number
FVIN	Firmware version identification number
EMC	Electromagnetic Compatibility
HW	Hardware
SW	Software
Inv. No.	Inventory number
S/N or SN	Serial number
С	Compliant
NC	Not compliant
NA	Not applicable
NP	Not performed
PP	Positive peak
QP	Quasi peak
AVG	Average
OC	Operating channel
OCW	Operating channel bandwidth
OBW	Occupied bandwidth
OOB	Out of band
DFS	Dynamic frequency selection
CAC	Channel availability check
OP	Occupancy period
NOP	Non occupancy period
DC	Duty cycle
PER	Packet error rate
CW	Clean wave
MC	Modulated carrier
WLAN	Wireless local area network
RLAN	Radio local area network
DSSS	Dynamic sequence spread spectrum
OFDM	Orthogonal frequency division multiplexing
FHSS	Frequency hopping spread spectrum
GNSS	Global Navigation Satellite System
C/N ₀	Carrier to noise-density ratio, expressed in dB-Hz

© CTC advanced GmbH Page 41 of 43

15 Document history

Version	Applied changes	Date of release
-/-	Initial release	2021-03-16
Α	PMNs changed	2022-04-06

16 Accreditation Certificate - D-PL-12076-01-04

first page	last page
DakkS Deutsche Akkreditierungsstelle Deutsche Akkreditierungsstelle GmbH	Deutsche Akkreditierungsstelle GmbH
Entrusted according to Section 8 subsection 1 AkkStelleG in connection with Section 1 subsection 1 AkkStelleGBV Signatory to the Multilateral Agreements of EA, ILAC and IAF for Mutual Recognition Accreditation The Deutsche Akkreditierungsstelle GmbH attests that the testing laboratory CTC advanced GmbH Untertürkheimer Straße 6-10, 66117 Saarbrücken	Office Berlin Office Frankfurt am Main Office Braunschweig Spittelmarkt 10 Europa-Allee 52 Bundesaltee 100 10117 Berlin 60327 Frankfurt am Main 38116 Braunschweig
is competent under the terms of DIN EN ISO/IEC 17025:2018 to carry out tests in the following fields: Telecommunication (TC) and Electromagnetic Compatibility (EMC) for Canadian Standards The accreditation certificate shall only apply in connection with the notice of accreditation of 09.06.2020 with the accreditation number D-Pt-12076-01. It comprises the cover sheet, the	The publication of extracts of the accreditation certificate is subject to the prior written approval by Deutsche Akkreditierungsstelle GmbH (DAkS), Exempted is the unchanged form of separate disseminations of the cover sheet by the conformity assessment body mentioned overleaf. No impression shall be made that the accreditation also extends to fields beyond the scope of accreditation attested by DAkS. The accreditation was granted pursuant to the Act on the Accreditation Body (AkSfelleG) of 31 July 2009 [Federal used scates to 1,625] and the Regulation (ECN to 765/2056 of the European Parliament and of the Council of 9 July 2008 setting out the requirements for accreditation and market surveillance relating to the marketing of products Official Journal of the European Lincul 212 6f 9 July 2008, B. 90.) DAkS is a signatory to the Multilateral Agreements for Mutual Recognition of the European co-operation for Accreditation (EA), International Accreditation for Accreditation of Accreditation of Accreditation (Accreditation for Accreditation (Accreditation for Accreditation of Accreditation of Accreditation of Accreditation of the European co-operation for Accreditation (Accreditation for Accreditation of Accred
USJAC. 2020 With the accretion humber LP-LS-12076-03. It Comprises the cover sheet, the reverses side of the cover sheet and the following armsex with total of 07 pages. Registration number of the certificate: D-PL-12076-01-04 Frankfurt am Main, 09.06.2020 by order [gla-ling, infigiral Egner Head of Division] The certificate register with its amore reflects the status of the lime of the date of accretion on the found in he database of occretion bodies of Deutsche Akkreditierungsteile Gibbs. http://www.dakks.de/ne/content/accredited-bodies-dakks tensesses.	Accreditation (EA), International Accreditation Forum (IAF) and International Laboratory Accreditation Cooperation (IAC), the signatories to these agreements recognise each other's accreditations. The up-to-date state of membership can be retrieved from the following websites: EA: www.european-accreditation.org IAC: www.infl.corg IAF: www.infl.corg

Note: The current certificate annex is published on the website (link see below) of the Accreditation Body DAkkS or may be received by CTC advanced GmbH on request

https://www.dakks.de/as/ast/d/D-PL-12076-01-04e.pdf

© CTC advanced GmbH Page 42 of 43

17 Accreditation Certificate - D-PL-12076-01-05

first page	last page
Deutsche Akkreditierungsstelle GmbH Entrusted according to Section 8 subsection 1 AkkStelleG in connection with Section 1 subsection 1 AkkStelleGBV Signatory to the Multilateral Agreements of EA, ILAC and IAF for Mutual Recognition Accreditation The Deutsche Akkreditierungsstelle GmbH attests that the testing laboratory CTC advanced GmbH Untertürkheimer Straße 6-10, 66117 Saarbrücken is competent under the terms of DIN EN ISO/IEC 17025-2018 to carry out tests in the following fields: Telecommunication (FCC Requirements)	Office Berlin Office Frankfurt am Main Spittelmarkt 10 Europa-Allee 52 Bundesallee 100 10117 Berlin 60327 Frankfurt am Main Substelmarkt 10 Europa-Allee 52 Bundesallee 100 38116 Braunschweig Bundesallee 100 38116 Braunschweig The publication of extracts of the accreditation certificate is subject to the prior written approval by Deutsche Akkreditierungsstelle GmbH (DAXES). Exempted is the unchanged form of separate disseminations of the cover sheet by the conformity assessment body mentioned overleaf. No impression shall be made that the accreditation also extends to fields beyond the scope of accreditation in successful and the spatial conformation of the fundamental and of the Council of 9 July 2008 setting out the requirements for accreditation and market surveillance relating to the transfering of products of Official Journal of the European Horio 12 13 ef 9 July 2008, 30, 30, 03 AkS is a signatory to the Multilateral Agreements for Mutual Recognition of the European co-operation for Accreditation (E), international Accreditation for Caccreditation of Accreditation for Accreditation (E), international Accreditation for Caccreditation of Accreditation for Accreditation (E), international Accreditation for Accreditation of Accreditation for
09.06.2020 with the accreditation number D-Pt-12076-01. It comprises the cover sheet, the reverse side of the cover sheet and the following annex with a total of 0S pages. Registration number of the certificate: D-Pt-12076-01-05 Frankfurt am Main, 09.06.2020 by origh Oss. Ing. (Prit) aff Egner Head of Ossionin	Cooperation (ILAC). The signatories to these agreements recognise each other's accreditations. The up-to-date state of membership can be retrieved from the following websites: EA: www.uropean-accreditation.org ILAC: www.ilac.org IAF: www.iaf.nu
The certificate together with its annex reflects the status at the time of the date of issue. The current status of the scape of accreditation can be found in the distribute of accredited badies of Deutsche Akkreditiorungsstelle GmbH. https://www.ads.sd/en/content/foccrediter-badies-daks Tot selso worked.	

Note: The current certificate annex is published on the website (link see below) of the Accreditation Body DAkkS or may be received by CTC advanced GmbH on request

https://www.dakks.de/as/ast/d/D-PL-12076-01-05e.pdf

© CTC advanced GmbH Page 43 of 43