

FCC RF Test Report

APPLICANT	:	FAIRPHONE B. V.
EQUIPMENT	:	Fairphone 4 5G
BRAND NAME	:	FAIRPHONE
MODEL NAME	:	FP4
FCC ID	:	2AUWUFP4
STANDARD	:	FCC Part 15 Subpart C §15.247
CLASSIFICATION	:	(DTS) Digital Transmission System
TEST DATE(S)	:	Mar. 02, 2022 ~ Mar. 24, 2022

We, Sporton International Inc. (Kunshan), would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International Inc. (Kunshan), the test report shall not be reproduced except in full.

JasonJia

Reviewed by: Jason Jia / Supervisor

Alexand

Approved by: Alex Wang / Manager

Sporton International Inc. (Kunshan) No. 1098, Pengxi North Road, Kunshan Economic Development Zone Jiangsu Province 215300 People's Republic of China

TABLE OF CONTENTS

		N HISTORY	
SUI	MMAR	Y OF TEST RESULT	4
1	GENE	ERAL DESCRIPTION	5
	1.1	Applicant	5
	1.2	Manufacturer	5
	1.3	Product Feature of Equipment Under Test	5
	1.4	Product Specification of Equipment Under Test	5
	1.5	Modification of EUT	5
	1.6	Testing Location	6
	1.7	Test Software	
	1.8	Applicable Standards	6
2	TEST	CONFIGURATION OF EQUIPMENT UNDER TEST	7
	2.1	Carrier Frequency Channel	7
	2.2	Test Mode	
	2.3	Connection Diagram of Test System	9
	2.4	Support Unit used in test configuration and system	
	2.5	EUT Operation Test Setup	9
	2.6	Measurement Results Explanation Example	
3	TEST	RESULT	
	3.1	6dB Bandwidth Measurement	11
	3.2	Output Power Measurement	
	3.3	Power Spectral Density Measurement	13
	3.4	Conducted Band Edges and Spurious Emission Measurement	15
	3.5	Radiated Band Edges and Spurious Emission Measurement	16
	3.6	AC Conducted Emission Measurement	20
	3.7	Antenna Requirements	22
4	LIST	OF MEASURING EQUIPMENT	23
5	UNCE	ERTAINTY OF EVALUATION	24
API	PENDI	IX A. CONDUCTED TEST RESULTS	
API	PENDI	IX B. AC CONDUCTED EMISSION TEST RESULT	
API	PENDI	IX C. RADIATED SPURIOUS EMISSION	
API	PENDI	IX D. DUTY CYCLE PLOTS	

APPENDIX E. SETUP PHOTOGRAPHS

REVISION HISTORY

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR152403-02B	Rev. 01	Initial issue of report	Apr. 08, 2022

Report Section	FCC Rule	Description	Limit	Result	Remark	
3.1	15.247(a)(2)	6dB Bandwidth	6dB Bandwidth ≥ 0.5MHz Pass		-	
3.1	-	99% Bandwidth	-	Report only	-	
3.2	15.247(b)(3)	Peak Output Power	≤ 30dBm	Pass	-	
3.3	15.247(e)	Power Spectral Density	≤ 8dBm/3kHz	Pass	-	
3.4	15.247(d)	Conducted Band Edges and Spurious Emission	≤ 20dBc	Pass	-	
3.5	15.247(d)	Radiated Band Edges and Spurious Emission	15.209(a) & 15.247(d)	Pass	Under limit 6.27 dB at 2483.500 MHz	
3.6	15.207	AC Conducted Emission	15.207(a)	Pass	Under limit 10.76 dB at 0.199 MHz	
3.7	15.203 & 15.247(b)	Antenna Requirement	15.203 & 15.247(b)	Pass	-	
Remark: Not required means after assessing, test items are not necessary to carry out.						

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

1 General Description

1.1 Applicant

FairPhone B. V.

Van Diemenstraat 200, 1013 CP, Amsterdam, The Netherlands

1.2 Manufacturer

FairPhone B. V.

Van Diemenstraat 200, 1013 CP, Amsterdam, The Netherlands

1.3 Product Feature of Equipment Under Test

Product Feature				
Equipment Fairphone 4 5G				
Brand Name	FAIRPHONE			
Model Name	FP4			
FCC ID	2AUWUFP4			
IMEI Code Conducted: 355870090016855/3558700900168 IMEI Code Conduction: 355870090012011/3558700900120 Radiation: N/A Radiation: N/A				
HW Version	1.0			
SW Version FP4.FC1G.A.017-userdebug.20210804				
EUT Stage Identical Prototype				

Remark: The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

1.4 Product Specification of Equipment Under Test

Standards-related Product Specification				
Tx/Rx Frequency Range	2402 MHz ~ 2480 MHz			
Number of Channels	40			
Carrier Frequency of Each Channel	40 Channel(37 hopping + 3 advertising channel)			
Maximum Output Power to Antenna	Bluetooth LE 1Mbps:7.25dBm (0.0053 W) Bluetooth LE 2Mbps:7.66dBm (0.0058 W)			
Antenna Type / Gain	Fixed Internal Antenna with gain 0.26dBi			
Type of Modulation	Bluetooth LE : GFSK			

1.5 Modification of EUT

No modifications are made to the EUT during all test items.

1.6 Testing Location

Sporton International Inc. (Kunshan) is accredited to ISO/IEC 17025:2017 by American Association for Laboratory Accreditation with Certificate Number 5145.02.

Test Firm	Sporton International Inc. (Kunshan)					
	No. 1098, Pengxi North Road, Kunshan Economic Development Zone					
Test Site Location	Jiangsu Province 215300 People's Republic of China					
Test Sile Location	TEL : +86-512-57900158					
	FAX : +86-512-57900958					
	Sporton Site No.	FCC Designation No.	FCC Test Firm			
Test Site No.	Sporton Site No.	FCC Designation No.	Registration No.			
Test one no.	CO01-KS 03CH06-KS TH01-KS	CN1257	314309			

1.7 Test Software

ltem	Site	Manufacturer	Name	Version
1.	03CH06-KS	AUDIX	E3	6.2009-8-24al
2.	CO01-KS	AUDIX	E3	6.2009-8-24

1.8 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR Part 15 Subpart C §15.247
- FCC KDB 558074 D01 15.247 Meas Guidance v05r02
- ANSI C63.10-2013

Remark:

- 1. All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

2 Test Configuration of Equipment Under Test

2.1 Carrier Frequency Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	0	2402	21	2444
	1	2404	22	2446
	2	2406	23	2448
	3	2408	24	2450
	4	2410	25	2452
	5	2412	26	2454
	6	2414	27	2456
	7	2416	28	2458
	8	2418	29	2460
	9	2420	30	2462
2400-2483.5 MHz	10	2422	31	2464
	11	2424	32	2466
	12	2426	33	2468
	13	2428	34	2470
	14	2430	35	2472
	15	2432	36	2474
	16	2434	37	2476
	17	2436	38	2478
	18	2438	39	2480
	19	2440	-	-
	20	2442	-	-

2.2 Test Mode

- a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, pre-scanned in three orthogonal panels, X, Y, Z. The worst cases (Z plane) were recorded in this report.
- b. AC power line Conducted Emission was tested under maximum output power.

The following summary table is showing all test modes to demonstrate in compliance with the standard.

	Summary table of Test Cases				
Test Item	Data Rate / Modulation				
rest item	Bluetooth – LE / GFSK				
Conducted	Mode 1: Bluetooth Tx CH00_2402 MHz				
TCs	Mode 2: Bluetooth Tx CH19_2440 MHz				
105	Mode 3: Bluetooth Tx CH39_2480 MHz				
Radiated	Mode 1: Bluetooth Tx CH00_2402 MHz				
TCs	Mode 2: Bluetooth Tx CH19_2440 MHz				
105	Mode 3: Bluetooth Tx CH39_2480 MHz				
AC	Mode 1: GSM 850 Idle + Bluetooth Link + WLAN Link (2.4G) + USB Cable 1(Charging				
Conducted	from Adapter)				
Emission					

Remark:

- 1. For Radiated Test Cases, the EUT with earphone configuration was determined to be worst-case configurations; therefore, all final tests were performed on the EUT with earphone
- 2. All the test modes of Radiated Spurious Emission (RSE) were tested at the worst data rate; only the worse data shown in report.

Simultaneous transmission

BT 5.0 CH39(2480)+PCS1900

2.3 Connection Diagram of Test System

2.4 Support Unit used in test configuration and system

ltem	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	LTE Base Station	Anritus	MT8821C	N/A	N/A	Unshielded,1.8m
2.	WLAN AP	D-link	DIR-655	KA21R655B1	N/A	Unshielded,1.8m
3.	Notebook	Lenovo	G480	QDS-BRCM1050I	N/A	AC I/P: Unshielded, 1.8 m DC O/P: Shielded, 1.8 m
4.	Bluetooth Earphone	Lenovo	LBH308	N/A	N/A	N/A
5.	SD Card	Kingston	8GB	N/A	N/A	N/A

2.5 EUT Operation Test Setup

For BLE function, the engineering test program was provided and enabled to make EUT continuous transmit.

For AC power line conducted emissions, the EUT was set to connect with the WLAN AP under large package sizes transmission.

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example :

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 2.59 dB and 10dB attenuator.

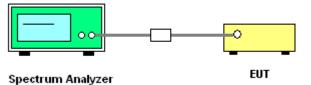
 $Offset(dB) = RF \ cable \ loss(dB) + attenuator \ factor(dB).$ = 2.59 + 10 = 12.59 (dB)

3 Test Result

3.1 6dB Bandwidth Measurement

3.1.1 Limit of 6dB Bandwidth

The minimum 6 dB bandwidth shall be at least 500 kHz.


3.1.2 Measuring Instruments

The section 4.0 of List of Measuring Equipment of this test report is used for test.

3.1.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 11.8
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6 dB bandwidth must be greater than 500 kHz.
- 5. Measure and record the results in the test report.

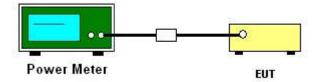
3.1.4 Test Setup

3.1.5 Test Result of 6dB Bandwidth

3.2 Output Power Measurement

3.2.1 Limit of Output Power

For systems using digital modulation in the 2400-2483.5MHz, the limit for peak output power is 30dBm. If transmitting antenna of directional gain greater than 6dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6 dBi.


3.2.2 Measuring Instruments

The section 4.0 of List of Measuring Equipment of this test report is used for test.

3.2.3 Test Procedures

- The testing follows the Measurement Procedure of ANSI C63.10-2013 clause 11.9.1.3 PKPM1 Peak power meter or ANSI C63.10-2013 clause 11.9.2.3.1 Method AVGPM method.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Measure the conducted output power and record the results in the test report.

3.2.4 Test Setup

3.2.5 Test Result of Peak Output Power

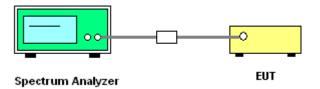
Please refer to Appendix A.

3.2.6 Test Result of Average Output Power (Reporting Only)

3.3 Power Spectral Density Measurement

3.3.1 Limit of Power Spectral Density

The peak power spectral density shall not be greater than 8dBm in any 3kHz band at any time interval of continuous transmission.


3.3.2 Measuring Instruments

The section 4.0 of List of Measuring Equipment of this test report is used for test.

3.3.3 Test Procedures

- 1. The testing follows Measurement Procedure of ANSI C63.10-2013 clause 11.10.2 Method PKPSD.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 3 kHz.
 Video bandwidth VBW = 10 kHz In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6dB BW)
- 5. Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level.
- 6. Measure and record the results in the test report.
- 7. The Measured power density (dBm)/ 100kHz is a reference level and used as 20dBc down limit line for Conducted Band Edges and Conducted Spurious Emission.

3.3.4 Test Setup

3.3.5 Test Result of Power Spectral Density

3.3.6 Test Result of Power Spectral Density Plots (100kHz)

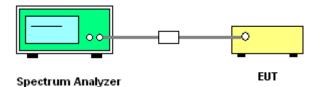
Please refer to Appendix A.

3.3.7 Test Result of Power Spectral Density Plots (3kHz)

3.4 Conducted Band Edges and Spurious Emission Measurement

3.4.1 Limit of Conducted Band Edges and Spurious Emission

All harmonics/spurious must be at least 20 dB down from the highest emission level within the authorized band.


3.4.2 Measuring Instruments

The section 4.0 of List of Measuring Equipment of this test report is used for test.

3.4.3 Test Procedure

- 1. The testing follows ANSI C63.10-2013 clause 11.13
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

3.4.4 Test Setup

3.4.5 Test Result of Conducted Band Edges Plots

Please refer to Appendix A.

3.4.6 Test Result of Conducted Spurious Emission Plots

3.5 Radiated Band Edges and Spurious Emission Measurement

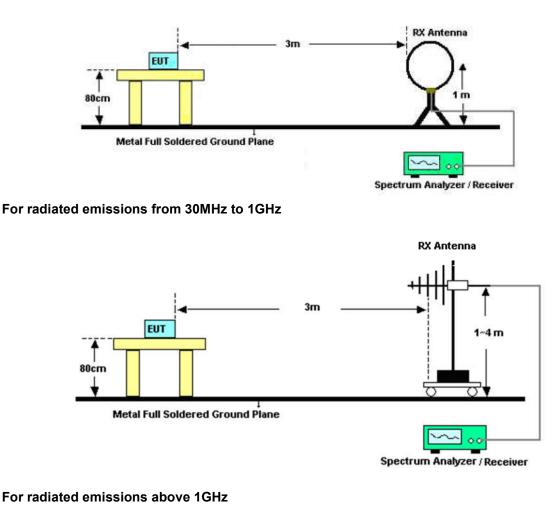
3.5.1 Limit of Radiated Band Edges and Spurious Emission

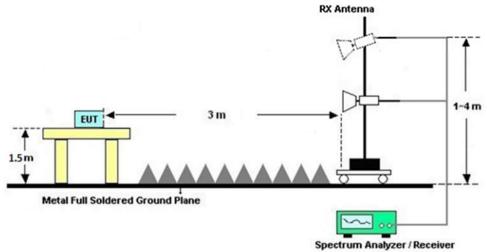
In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. If the output power of this device was measured by spectrum analyzer, the attenuation under this paragraph shall be 30 dB instead of 20 dB. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

3.5.2 Measuring Instruments

The section 4.0 of List of Measuring Equipment of this test report is used for test.


3.5.3 Test Procedures


- 1. The testing follows ANSI C63.10-2013 clause 11.11 & 11.12
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level.
- 3. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 6. For testing below 1GHz, if the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then peak values of EUT will be reported, otherwise, the emissions will be repeated one by one using the CISPR quasi-peak method and reported.
- 7. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than peak limit (that means the emission level in average mode also complies with the limit in average mode), then peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 8. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW=100 kHz for f < 1 GHz; VBW RBW; Sweep = auto; Detector function = peak; Trace = max hold;
 - (3) Set RBW = 1 MHz, VBW= 3MHz for f 1 GHz for peak measurement.For average measurement:
 - VBW = 10 Hz, when duty cycle is no less than 98 percent.
 - VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.

3.5.4 Test Setup

For radiated emissions below 30MHz

Sporton International Inc. (Kunshan) TEL : +86-512-57900158 FAX : +86-512-57900958 FCC ID: 2AUWUFP4

3.5.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

There is a comparison data of both open-field test site and semi-Anechoic chamber, and the result came out very similar.

3.5.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix C.

3.5.7 Duty Cycle

Please refer to Appendix D.

3.5.8 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic or 40GHz, whichever is lower)

3.6 AC Conducted Emission Measurement

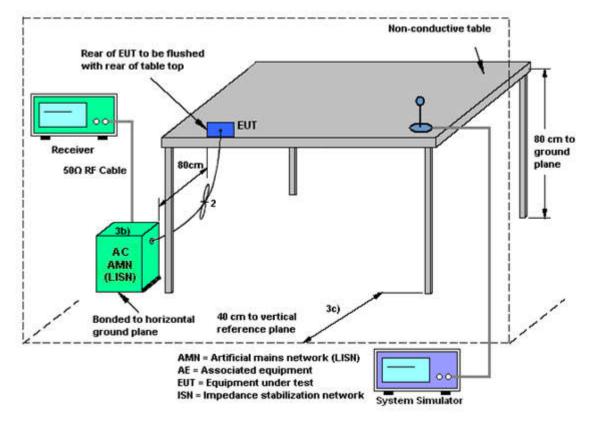
3.6.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of omission (MHz)	Conducted limit (dBµV)					
Frequency of emission (MHz)	Quasi-peak	Average				
0.15-0.5	66 to 56*	56 to 46*				
0.5-5	56	46				
5-30	60	50				

*Decreases with the logarithm of the frequency.

3.6.2 Measuring Instruments


The section 4.0 of List of Measuring Equipment of this test report is used for test.

3.6.3 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

3.6.4 Test Setup

3.6.5 Test Result of AC Conducted Emission

3.7 Antenna Requirements

3.7.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6dBi, the power shall be reduced by the same level in dB comparing to gain minus 6dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

3.7.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.7.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Spectrum Analyzer	R&S	FSV40	101040	10Hz~40GHz	Oct. 14, 2021	Mar. 02, 2022	Oct. 13, 2022	Conducted (TH01-KS)
Pulse Power Senor	Anritsu	MA2411B	0917070	300MHz~40GHz	Jan. 05, 2022	Mar. 02, 2022	Jan. 04, 2023	Conducted (TH01-KS)
Power Meter	Anritsu	ML2495A	1005002	50MHz Bandwidth	Jan. 05, 2022	Mar. 02, 2022	Jan. 04, 2023	Conducted (TH01-KS)
EMI Test Receiver	Keysight	N9038A	MY564000 04	3Hz~8.5GHz;Ma x 30dBm	Oct. 16, 2021	Mar. 24, 2022	Oct. 15, 2022	Radiation (03CH06-KS)
EXA Spectrum Analyzer	Keysight	N9010A	MY551502 08	10Hz-44GHz	Apr. 12, 2021	Mar. 24, 2022	Apr. 11, 2022	Radiation (03CH06-KS)
Loop Antenna	R&S	HFH2-Z2	100321	9kHz~30MHz	Oct. 30, 2021	Mar. 24, 2022	Oct. 29, 2022	Radiation (03CH06-KS)
Bilog Antenna	TeseQ	CBL6111D	49921	30MHz-1GHz	May 27, 2021	Mar. 24, 2022	May 26, 2022	Radiation (03CH06-KS)
Double Ridge Horn Antenna	ETS-Lindgren	3117	00218652	1GHz~18GHz	Apr. 25, 2021	Mar. 24, 2022	Apr. 24, 2022	Radiation (03CH06-KS)
SHF-EHF Horn	Com-power	AH-840	101093	18GHz~40GHz	Jan. 05, 2022	Mar. 24, 2022	Jan. 04, 2023	Radiation (03CH06-KS)
Amplifier	SONOMA	310N	187289	9KHz ~1GHZ	Apr. 12, 2021	Mar. 24, 2022	Apr. 11, 2022	Radiation (03CH06-KS)
Amplifier	MITEQ	EM18G40GG A	060728	18~40GHz	Jan. 05, 2022	Mar. 24, 2022	Jan. 04, 2023	Radiation (03CH06-KS)
high gain Amplifier	MITEQ	AMF-7D-001 01800-30-10 P	2025788	1Ghz-18Ghz	Jul. 30, 2021	Mar. 24, 2022	Jul. 29, 2022	Radiation (03CH06-KS)
Amplifier	Keysight	83017A	MY532702 03	500MHz~26.5GH z	Apr. 13, 2021	Mar. 24, 2022	Apr. 12, 2022	Radiation (03CH06-KS)
AC Power Source	Chroma	61601	F10409000 4	N/A	NCR	Mar. 24, 2022	NCR	Radiation (03CH06-KS)
Turn Table	ChamPro	EM 1000-T	060762-T	0~360 degree	NCR	Mar. 24, 2022	NCR	Radiation (03CH06-KS)
Antenna Mast	ChamPro	EM 1000-A	060762-A	1 m~4 m	NCR	Mar. 24, 2022	NCR	Radiation (03CH06-KS)
EMI Receiver	R&S	ESCI7	100768	9kHz~7GHz;	Apr. 21, 2021	Mar. 09, 2022	Apr. 20, 2022	Conduction (CO01-KS)
AC LISN (for auxiliary equipment)	MessTec	AN3016	060103	9kHz~30MHz	Oct. 14, 2021	Mar. 09, 2022	Oct. 13, 2022	Conduction (CO01-KS)
AC LISN	R&S	ENV216	100334	9kHz~30MHz	Oct. 14, 2021	Mar. 09, 2022	Oct. 13, 2022	Conduction (CO01-KS)
AC Power Source	Chroma	61602	ABP00000 0811	AC 0V~300V, 45Hz~1000Hz	Oct. 14, 2021	Mar. 09, 2022	Oct. 13, 2022	Conduction (CO01-KS)

NCR: No Calibration Required

5 Uncertainty of Evaluation

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI 63.10-2013. All the measurement uncertainty value were shown with a coverage K=2 to indicate 95% level of confidence. The measurement data show herein meets or exceeds the CISPR measurement uncertainty values specified in CISPR 16-4-2 and can be compared directly to specified limit to determine compliance.

Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence	2.94dB
of 95% (U = 2Uc(y))	2.940B

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	5.0dB
of 95% (U = 2Uc(y))	3.VUB

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	5.0dB
of 95% (U = 2Uc(y))	3.VUD

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

Measuring Uncertainty for a Level of Confidence	5.0dB
of 95% (U = 2Uc(y))	3.VUB

----- THE END ------

Appendix A. Conducted Test Results

Report Number : FR152403-02A

Bluetooth Low Energy

Test Engineer:	Jiang Jun	Temperature:	20~26	°C
Test Date:	2022/3/2	Relative Humidity:	40~51	%

<u>TEST RESULTS DATA</u> <u>Peak Power Table</u>											
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Peak Conducted Power (dBm)	Conducted Power Limit (dBm)	DG (dBi)	EIRP Power (dBm)	EIRP Power Limit (dBm)	Pass /Fail	
BLE	1Mbps	1	0	2402	7.15	30.00	0.26	7.41	36.00	Pass	
BLE	1Mbps	1	19	2440	5.89	30.00	0.26	6.15	36.00	Pass	
BLE	1Mbps	1	39	2480	7.25	30.00	0.26	7.51	36.00	Pass	

	<u>TEST RESULTS DATA</u> <u>Average Power Table</u> <u>(Reporting Only)</u>									
Mod.	Data Rate	Ντx	CH.	Freq. (MHz)	Duty Factor (dB)	Average Conducted Power (dBm)				
BLE	1Mbps	1	0	2402	2.04	6.83				
BLE	1Mbps	1	19	2440	2.04	5.88				
BLE	1Mbps	1	39	2480	2.04	7.08				
BLE	1Mbps	1	39	2480	2.04	7.08	I			

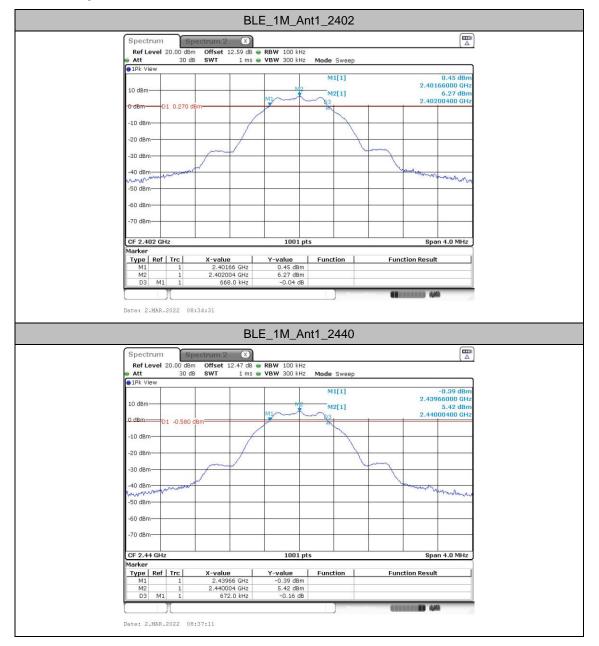
Bluetooth Low Energy

Test Engineer:	Jiang Jun	Temperature:	20~26	°C
Test Date:	2022/3/2	Relative Humidity:	40~51	%

<u>TEST RESULTS DATA</u> <u>Peak Power Table</u>											
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Peak Conducted Power (dBm)	Conducted Power Limit (dBm)	DG (dBi)	EIRP Power (dBm)	EIRP Power Limit (dBm)	Pass /Fail	
BLE	2Mbps	1	0	2402	7.30	30.00	0.26	7.56	36.00	Pass	
BLE	2Mbps	1	19	2440	6.34	30.00	0.26	6.60	36.00	Pass	
BLE	2Mbps	1	39	2480	7.66	30.00	0.26	7.92	36.00	Pass	

	<u>TEST RESULTS DATA</u> <u>Average Power Table</u> <u>(Reporting Only)</u>						
Mod.	Data Rate	Ντx	CH.	Freq. (MHz)	Duty Factor (dB)	Average Conducted Power (dBm)	
BLE	2Mbps	1	0	2402	4.83	6.87	
BLE	2Mbps	1	19	2440	4.83	5.94	
BLE	2Mbps	1	39	2480	4.83	7.06	

Ambient Condition: <u>25</u> ℃, <u>45</u> %RH,	
Test Date: 2022.3.2	Test Engineer: <u>Jiang Jun</u>


DTS Bandwidth

Test Result

TestMode	Antenna	Frequency[MHz]	DTS BW [MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
BLE_1M	Ant1	2402	0.67	2401.66	2402.33	0.5	PASS
		2440	0.67	2439.66	2440.33	0.5	PASS
		2480	0.67	2479.66	2480.33	0.5	PASS
BLE_2M	Ant1	2402	1.13	2401.44	2402.57	0.5	PASS
		2440	1.16	2439.42	2440.58	0.5	PASS
		2480	1.15	2479.42	2480.58	0.5	PASS

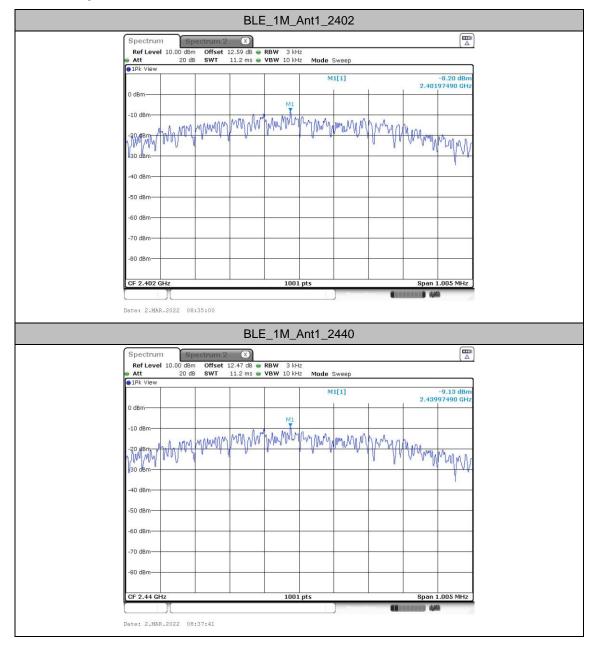
Test Graphs


Occupied Channel Bandwidth

Test Result

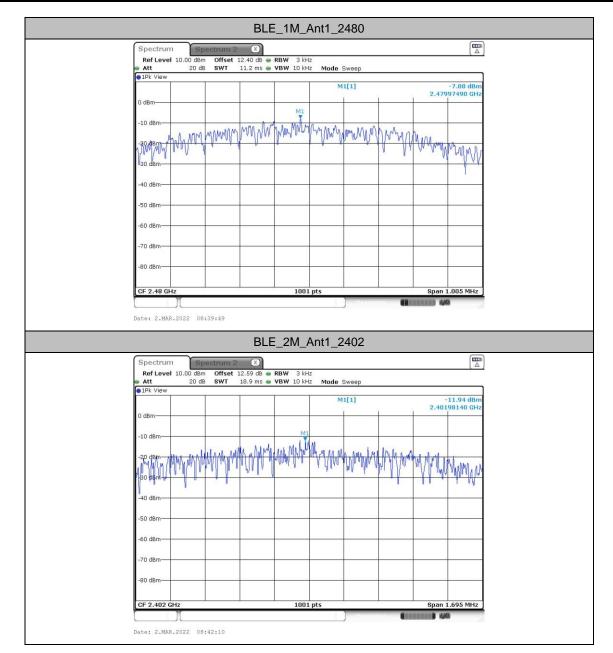
TestMode	Antenna	Frequency[MHz]	OCB [MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
BLE_1M		2402	1.027	2401.493	2402.519		
	Ant1	2440	1.027	2439.493	2440.519		
		2480	1.031	2479.489	2480.519		
BLE_2M	Ant1	2402	2.042	2400.993	2403.035		
		2440	2.042	2438.993	2441.035		
		2480	2.046	2478.989	2481.035		

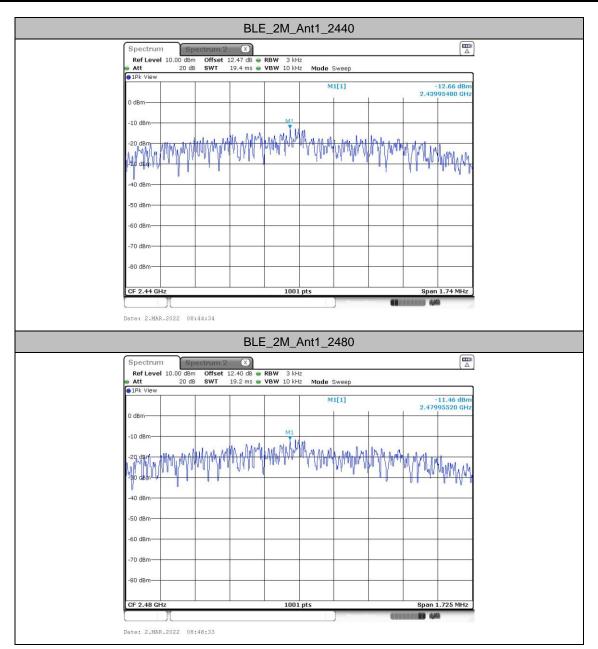
Test Graphs



Maximum power spectral density

Test Result


TestMode	Antenna	Frequency[MHz]	Result[dBm/3kHz]	Limit[dBm/3kHz]	Verdict
		2402	-8.2	≤8.00	PASS
BLE_1M	Ant1	2440	-9.13	≤8.00	PASS
		2480	-7.88	≤8.00	PASS
	Ant1	2402	-11.94	≤8.00	PASS
BLE_2M		2440	-12.66	≤8.00	PASS
		2480	-11.46	≤8.00	PASS



Reference level measurement

Test Result

TestMode	Antenna	Freq(MHz)	Max.Point[MHz]	Result[dBm]
		2402	2402.00	6.34
BLE_1M	Ant1	2440	2440.00	5.37
		2480	2480.00	6.67
		2402	2401.99	6.23
BLE_2M	Ant1	2440	2440.01	5.29
		2480	2480.00	6.70

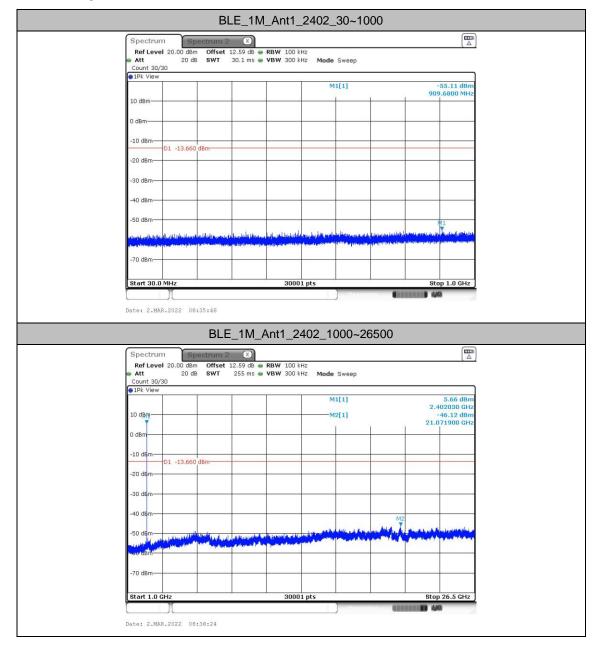
Band edge measurements

Test Result

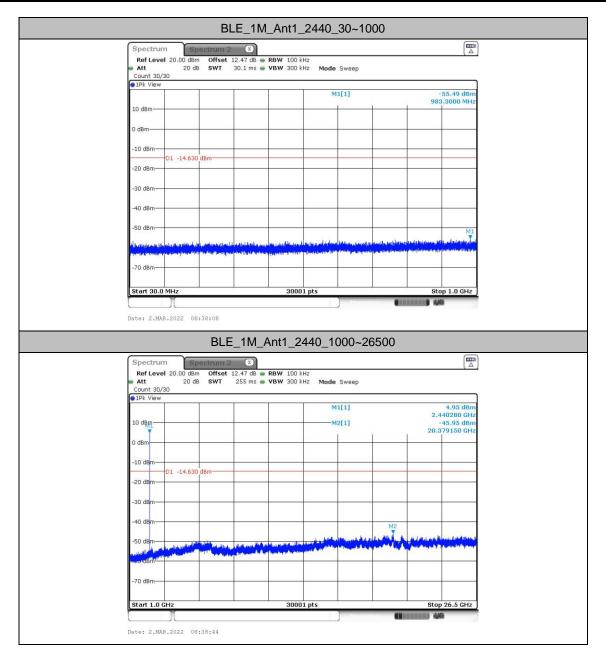
TestMode	Antenna	ChName	Frequency[MHz]	RefLevel[dBm]	Result[dBm]	Limit[dBm]	Verdict
BLE 1M	Ant1	Low	2402	6.34	-42.53	≤-13.66	PASS
DLE_IN	Anti	High	2480	6.67	-43.48	≤-13.33	PASS
BLE 2M	Ant1	Low	2402	6.23	-38.58	≤-13.77	PASS
	AILT	High	2480	6.70	-43.16	≤-13.3	PASS

Spectru	_	Spectrum 2							
Ref Lev Att	el 20.00 d 30	Bm Offset dB SWT		RBW 100 kHz VBW 300 kHz		ер			
1Pk View									
					M2[1]			2 40	42.64 (00000
10 dBm—			-		M3[1]				45.65
0 dBm						-		2.39	00000
							-		11
-10 dBm-	D1 -13.6	60 dBm				_			
-20 dBm-		-		-		-			
-30 dBm—									
-40 dBm—	+			+ +		P	ИЗ		12/ V
-50 dBm-	ntherm	www.un	Unnum	waterwater	manaphr	mound	Summer	monthe	5
50 dbill									
-60 dBm-	+		-						
-70 dBm-	-	-	-						
Start 2.3	5 GHz			691 pt	ts			Stop 2	2.405 G
Marker	-61-7-1	,, ,	- 1		1 50 1				
Type R M2	et Irc 1	X-valu	2.4 GHz	Y-value -42.64 dBm	Function		Funct	ion Result	
M3 M4	1	2	.39 GHz 783 GHz	-45.65 dBm -42.53 dBm					
1914	1	5.2333		-42.55 dBm			-	and the second	
Date: 2.M	AR.2022		BLE_1	IM_Ant1	_High_2	2480			
Spectru	m	Spectrum 2	X		-	2480			
Spectru	m 61 20.00 d	Spectrum 2	12.40 dB •	RBW 100 kHz VBW 300 kHz					
Spectru Ref Lev	m el 20.00 d 30	Spectrum 2 Bm Offset	12.40 dB •	RBW 100 kHz	Mode Swe	ер			
Spectru Ref Lev Att PPk View	m el 20.00 d 30	Spectrum 2 Bm Offset	12.40 dB •	RBW 100 kHz	1	ер			44.94 (
Spectru Ref Lev Att	m el 20.00 d 30	Spectrum 2 Bm Offset	12.40 dB •	RBW 100 kHz	Mode Swe	ер		2.4	44.94 (83500 44.75 (
Spectru Ref Lev Att PPk View	m el 20.00 d 30	Spectrum 2 Bm Offset	12.40 dB •	RBW 100 kHz	Mode Swe	ер		2.4	44.94 (83500
Spectru Ref Lev Att 1Pk View 10 dBm- 0 dBm-	m el 20.00 d 30	Spectrum 2 Bm Offset	12.40 dB •	RBW 100 kHz	Mode Swe	ер		2.4	44.94 (83500 44.75 (
Spectru Ref Lev Att 10 dBm—	m el 20.00 d 30	Spectrum 2 Bm Offset	12.40 dB •	RBW 100 kHz	Mode Swe	ер		2.4	44.94 (83500 44.75 (
Spectru Ref Lev Att 1Pk View 10 dBm- 0 dBm-	m el 20.00 d 30	Bm Offset dB SWT	12.40 dB •	RBW 100 kHz	Mode Swe	ер		2.4	44.94 (83500 44.75 (
Spectru Ref Lev Att 10 dBm- 0 dBm- -10 dBm- -20 dBm-	m el 20.00 d 30	Bm Offset dB SWT	12.40 dB •	RBW 100 kHz	Mode Swe	ер		2.4	44.94 (83500 44.75 (
Spectru Ref Lev Att 10 dBm	m el 20.00 d 30	Bm Offset dB SWT	12.40 dB •	RBW 100 kHz	Mode Swe	ер		2.4	44.94 (83500 44.75 (
Spectru Ref Lev Att 10 dBm	m lel 20.00 d 30	Spectrum 2 Bm Offset dB SWT	2 X 12.40 dB 1.1 ms	RBW 100 kHz VBW 300 kHz	Mode Swe M2[1] M3[1]	M4		2.4	44.94 (83500 44.75 (
Spectru Ref Lev Att 10 dBm	m lel 20.00 d 30	Spectrum 2 Bm Offset dB SWT	12.40 dB •	RBW 100 kHz VBW 300 kHz	Mode Swe M2[1] M3[1]	M4		2.4	44.94 (83500 44.75 (
Spectru Ref Lev Att 10 dBm	m lel 20.00 d 30	Spectrum 2 Bm Offset dB SWT	2 X 12.40 dB 1.1 ms	RBW 100 kHz VBW 300 kHz	Mode Swe M2[1] M3[1]	M4		2.4	44.94 (83500 44.75 (
Spectru Ref Lev Att 10 dBm	m lel 20.00 d 30	Spectrum 2 Bm Offset dB SWT	2 X 12.40 dB 1.1 ms	RBW 100 kHz VBW 300 kHz	Mode Swe M2[1] M3[1]	M4		2.4	44.94 (83500 44.75 (
Spectru Ref Lev Att 10 dBm	m lel 20.00 d 30	Spectrum 2 Bm Offset dB SWT	2 X 12.40 dB 1.1 ms	RBW 100 kHz VBW 300 kHz	Mode Swe M2[1] M3[1]	M4		2.4	44.94 (83500 44.75 (
Spectru Ref Lev Att 1D dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -50 dBm -70 dBm	D1 -13.3	Spectrum 2 Bm Offset dB SWT	2 X 12.40 dB 1.1 ms	RBW 100 kHz VBW 300 kHz	Mode Swe M2[1] M9[1]	M4		2.4 2.5	44.94 (83500 44.75 (00000
Spectru Ref Lev Att 10 dBm 0 dBm -20 dBm -20 dBm -30 dBm -30 dBm -50 dBm -70 dBm -70 dBm -70 dBm	D1 -13.3	Spectrum 2 Bm Offset dB SWT	2 X 12.40 dB 1.1 ms	RBW 100 kHz VBW 300 kHz	Mode Swe M2[1] M9[1]	M4		2.4 2.5	44.94 (83500 44.75 (
Spectru Ref Lev Att 1D dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -50 dBm -70 dBm	m el 20.00 d 30 7 D1 -13.3 D1 -13.3 D1 -13.3 7 GHz	Spectrum 2 Bm Offset d8 SWT	x 112.40 dB 1.1 ms 1	RBW 100 kHz VBW 300 kHz 	Mode Swe M2[1] M3[1]	M4		2.4 2.5	44.94 (83500 44.75 (00000
Spectru Ref Lev Att 10 dBm- 10 dBm- -20 dBm- -20 dBm- -30 dBm- -40 dBm- -50 dBm- -70 d	PI -13.3 P	Spectrum 2 Bm Offset Bm Offset Bm Offset 30 dBm 30 dBm		RBW 100 kHz VBW 300 kHz	Mode Swe M2[1] M3[1]	M4		2.4 2.5 00000000000000000000000000000000000	44.94 (83500 44.75 (00000
Spectru Ref Lev Att 1D dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm -80 dBm -50 dBm -50 dBm -50 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm	el 20.00 d 30 7 01 -13.3 7 GHz ef [Trc]	Spectrum 2 Bm Offset d8 SWT 30 dBm X-valu 2.4	x 112.40 dB 1.1 ms 1	RBW 100 kHz VBW 300 kHz 	Mode Swe M2[1] M3[1] M3[1]	M4		2.4 2.5 00000000000000000000000000000000000	44.94 (83500 44.75 (00000

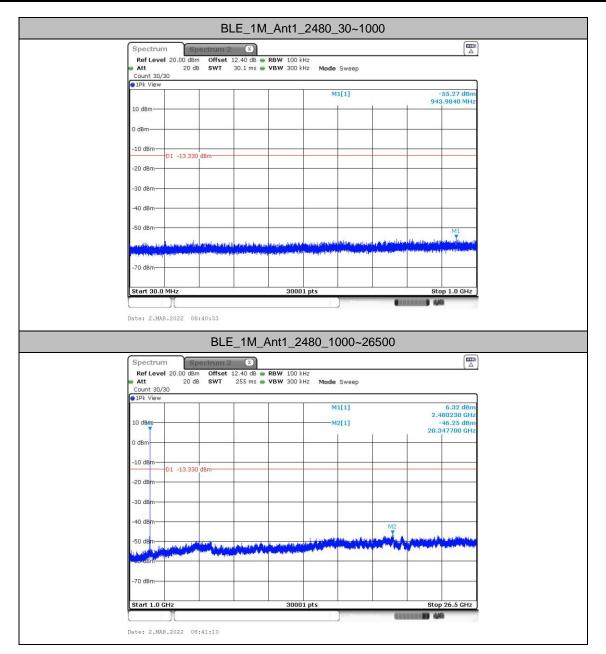
Spectrum	Spectrum 2 🛛 🔊				
Ref Level 20.00 d	Bm Offset 12.59 dB				(-
Att 30 9 1Pk View	dB SWT 1.1 ms 🖷	VBW 300 kHz	Mode Sweep		
TLY AIGM			M2[1]		-38.09 dBm
10 dBm					000000 GH2
10 0011			M3[1]	2.3	-46.09 dBn 900000, GHa
0 dBm		4		2.0	
-10 dBm					11
D1 -13.7	70 dBm				
-20 dBm					
-30 dBm					
					Ma h
-40 dBm	all and an and and and and and and and and	Monumenter	www.www.	M3 martin from the	
-50 dBm	and a constant and		and merenan company	and a second second	1
000000000000					
-60 dBm					
-70 dBm		+ +		+ +	
Start 2.35 GHz		691 pt:	s	Stop	2.405 GHz
Marker _Type Ref Trc	X-value	Y-value	Function	Function Resul	
M2 1	2.4 GHz	-38.09 dBm	Function	Function Resul	ι <u> </u>
M3 1	2.39 GHz	-46.09 dBm			
M4 1	2.3999783 GHz	-38.58 dBm			-
Date: 2.MAR.2022		2M_Ant1_	_High_248(0	
		2M_Ant1_	_High_2480	0	
Spectrum	BLE_3	• RBW 100 kHz	-	0	
Spectrum Ref Level 20.00 d Att 30	BLE_3			0	
Spectrum	BLE_3	• RBW 100 kHz	-		-45.75 dBm
Spectrum Ref Level 20.00 d • Att • IPk View	BLE_3	• RBW 100 kHz	Mode Sweep M2[1]	2.	-45.75 dBm 483500 GHz
Spectrum Ref Level 20.00 d Att 30 PIPk View 10 dBm	BLE_3	• RBW 100 kHz	Mode Sweep	2.	-45.75 dBm 483500 GHz -45.63 dBm
Spectrum Ref Level 20.00 d • Att • IPk View	BLE_3	• RBW 100 kHz	Mode Sweep M2[1]	2.	-45.75 dBm 483500 GHz
Spectrum Ref Level 20.00 d Att 30 IPk View 10 dBm -10 dBm	BLE_: Spectrum 2 2) Bm Offset 12.40 dB 4 dB SWT 1.1 ms 4	• RBW 100 kHz	Mode Sweep M2[1]	2.	-45.75 dBm 483500 GHz -45.63 dBm
Spectrum E Ref Level 20.00 d 414 30 I D dBm 0 30 0 dBm 10 40 -10 dBm 01 -13.3	BLE_3	• RBW 100 kHz	Mode Sweep M2[1]	2.	-45.75 dBm 483500 GHz -45.63 dBm
Spectrum Ref Level 20.00 d Att 30 IPk View 10 dBm -10 dBm	BLE_: Spectrum 2 2) Bm Offset 12.40 dB 4 dB SWT 1.1 ms 4	• RBW 100 kHz	Mode Sweep M2[1]	2.	-45.75 dBm 483500 GHz -45.63 dBm
Spectrum E Ref Level 20.00 d 414 30 I D dBm 0 30 0 dBm 10 40 -10 dBm 01 -13.3	BLE_: Spectrum 2 2) Bm Offset 12.40 dB 4 dB SWT 1.1 ms 4	• RBW 100 kHz	Mode Sweep M2[1]	2.	-45.75 dBm 483500 GHz -45.63 dBm
Spectrum S Ref Level 20.00 d Att 30 • IPk View 10 d8m -10 d8m -10 d8m • 10 d8m • 1 - 13.3 -20 d8m -13.3 • 20 d8m • 1 - 13.3 -20 d8m -10 - 13.3	BLE_:	• RBW 100 kHz	Mode Sweep M2[1]	2.	-45.75 dBm 483500 GHz -45.63 dBm
Spectrum Ref Level 20.00 d Att 30 IPk View 10 dBm 0 dBm 0 -10 dBm 01 -20 dBm 01	BLE_:	RBW 100 kHz VBW 300 kHz	Mode Sweep M2[1]	2.	-45.75 dBm 483500 GHz -45.63 dBm
Spectrum E Ref Level 20.00 d 40.00 d Att 30 ID dBm 0 0 dBm 40.00 d -10 dBm 01 -30 dBm -13.3 -40 dBm 100	BLE_:	RBW 100 kHz VBW 300 kHz	Mode Sweep M2[1] M3[1]	2.	-45.75 dBm 183500 GH; -45.63 dBm 500000 GH;
Spectrum E Ref Level 20.00 d Att 30 IDR View 10 dBm 10 dBm 01 -13.3 -20 dBm -10 dBm -30 dBm -10 dBm -40 dBm -10 dBm -50 dBm -50 dBm	BLE_:	RBW 100 kHz VBW 300 kHz	Mode Sweep M2[1] M3[1]	2.	-45.75 dBm 183500 GH; -45.63 dBm 500000 GH;
Spectrum Ref Level 20.00 d Att 30 IPK View 10 dBm -10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -40 dBm	BLE_:	RBW 100 kHz VBW 300 kHz	Mode Sweep M2[1] M3[1]	2.	-45.75 dBm 183500 GH; -45.63 dBm 500000 GH;
Spectrum E Ref Level 20.00 d Att 30 IDR View 10 dBm 10 dBm 01 -13.3 -20 dBm -10 dBm -30 dBm -10 dBm -40 dBm -10 dBm -50 dBm -50 dBm	BLE_:	RBW 100 kHz VBW 300 kHz	Mode Sweep M2[1] M3[1]	2.	-45.75 dBm 183500 GH; -45.63 dBm 500000 GH;
Spectrum Ref Level 20.00 d Att 30 IPk View 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm -70 dBm	BLE_:	RBW 100 kHz VBW 300 kHz	Mode Sweep M2[1] M3[1]	2. 2.	-45.75 dBn H83500 GHz 45.63 dBn 500000 GHz
Spectrum E Ref Level 20.00 d 10 dBm 30 0 dBm 0 10 dBm 0 -10 dBm 01 - 13.3 -20 dBm -13.3 -30 dBm -50 dBm -50 dBm -60 dBm -70 dBm -70 dBm -70 dBm -70 dBm	BLE_:	RBW 100 kHz VBW 300 kHz	Mode Sweep M2[1] M3[1]	2. 2.	-45.75 dBm 183500 GH; -45.63 dBm 500000 GH;
Spectrum Ref Level 20.00 d Att 30 ID dBm 0 0 dBm 0 -10 dBm 01 -20 dBm -13.3 -30 dBm -30 dBm -60 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm	BLE_:	RBW 100 kHz VBW 300 kHz	Mode Sweep M2[1] M3[1]	2. 2.	-45.75 dBm H83500 GH3 45.63 dBn 500000 GH2
Spectrum E Ref Level 20.00 d 10 dBm 30 0 dBm 10 dBm -10 dBm 01 - 13.3 -20 dBm -13.3 -30 dBm -13.3 -60 dBm -60 dBm -50 dBm -50 dBm -60 dBm -70 dBm Start 2.47 GHz Marker Type Ref Trc Marker 1 1	BLE_:	RBW 100 kHz VBW 300 kHz	Mode Sweep M2[1] M3[1] M3[1] M3[1]	2. 2.	-45.75 dBm H83500 GH3 45.63 dBn 500000 GH2
Spectrum Ref Level 20.00 d Att 30 ID dBm 0 0 dBm 0 -10 dBm 01 -20 dBm -13.3 -30 dBm -30 dBm -60 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm -70 dBm	BLE_:	RBW 100 kHz VBW 300 kHz	Mode Sweep M2[1] M3[1] M3[1] M3[1]	2. 2.	-45.75 dBm H83500 GH3 45.63 dBn 500000 GH2

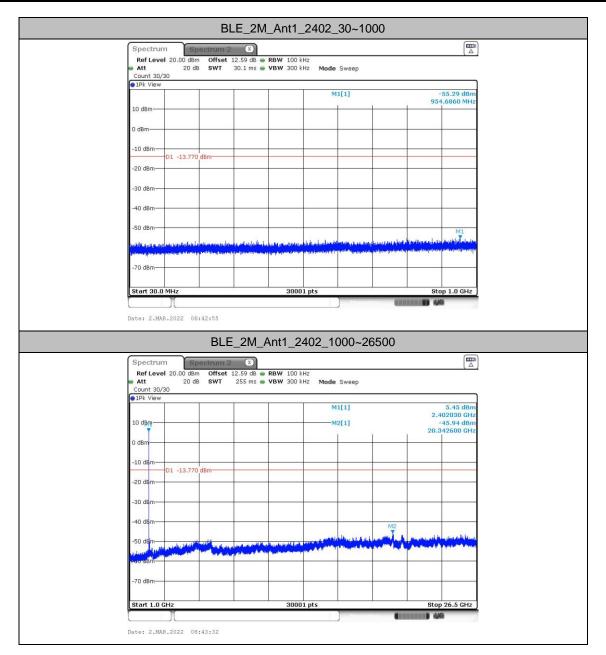


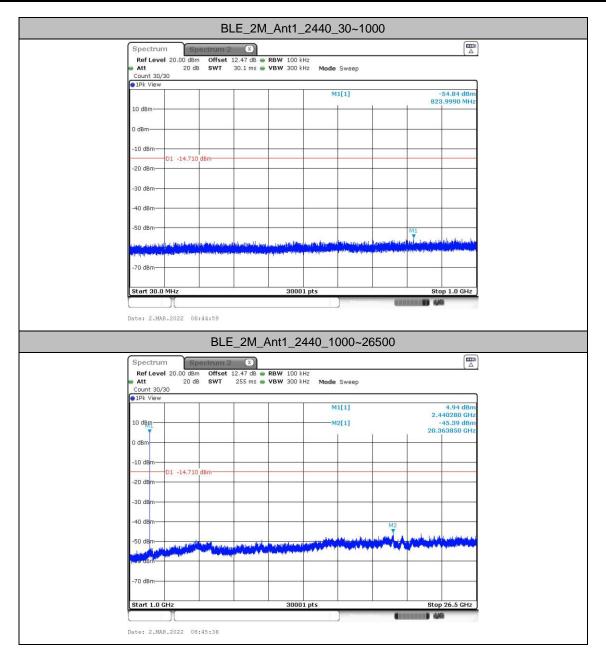
Conducted Spurious Emission

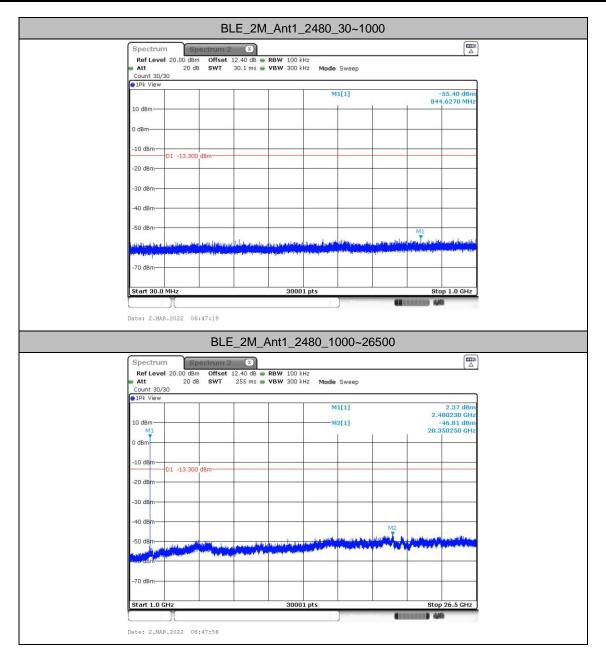

Test Result

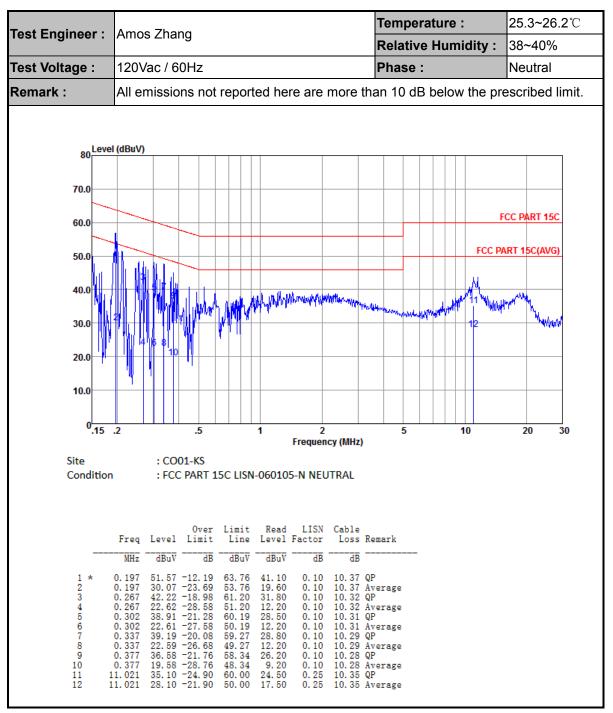
TestMode	Antenna	Frequency[MHz]	FreqRange [MHz]	RefLevel [dBm]	Result[dBm]	Limit[dBm]	Verdict
		2402	30~1000	6.34	-55.11	≤-13.66	PASS
		2402	1000~26500	6.34	-46.12	≤-13.66	PASS
	E_1M Ant1	2440	30~1000	5.37	-55.49	≤-14.63	PASS
		2440	1000~26500	5.37	-45.95	≤-14.63	PASS
		2480	30~1000	30~1000 6.67		≤-13.33	PASS
		2400	1000~26500	6.67	-46.25	≤-13.33	PASS
		2402	30~1000	6.23	-55.29	≤-13.77	PASS
		2402	1000~26500	6.23	-45.94	≤-13.77	PASS
	A pt1	2440	30~1000	5.29	-54.84	≤-14.71	PASS
DLE_2W	BLE_2M Ant1	2440	1000~26500	5.29	-45.39	≤-14.71	PASS
		2480	30~1000	6.70	-55.4	≤-13.3	PASS
		2400	1000~26500	6.70	-46.81	≤-13.3	PASS











Appendix B. AC Conducted Emission Test Results

Toot Engineer	Amon Zhang		Temperature :	25.3~26.2℃
Test Engineer :	Amos Zhang		Relative Humidity :	38~40%
Fest Voltage :	120Vac / 60Hz		Phase :	Line
Remark :	All emissions no	t reported here are more th	an 10 dB below the pre	escribed limit.
80 Leve 70.0 60.0 50.0 40.0 20.0 10.0	I (dBuV)	1 2 Frequency (MHz)	F	CC PART 15C ART 15C(AVG) ART 15C(AVG)
	Over Freq Level Limit	: Limit Read LISN Cable : Line Level Factor Loss R	emark	
	MHz dBuV dI	<u>dBuV</u> <u>dBuV</u> <u>dB</u> <u>dB</u>		
4 5 6 7 8 9 10 11 12 13 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	verage P P verage P verage P verage P verage P	

Note:

1. Level(dBµV) = Read Level(dBµV) + LISN Factor(dB) + Cable Loss(dB)

2. Over Limit(dB) = Level(dB μ V) – Limit Line(dB μ V)

BLE

Note

Ant

Table Peak Pol.

Appendix C. Radiated Spurious Emission

Test Engineer :	Henzy LI	Temperature :	22~23°C
rest Engineer .		Relative Humidity :	41~42%

2.4GHz 2400~2483.5MHz

BLE (Band Edge @ 3m)FrequencyLevelOverLimitReadAntennaPathPreampLimitLineLevelFactorLossFactor(MHz)(dBµV/m)(dB)(dBµV/m)(dBµV)(dB/m)(dB)(dB)2400.0050.4547.057440.0020.07.020.57

			Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
	(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
	2492.86	56.15	-17.85	74	48.82	32.6	7.3	32.57	262	312	Р	Н
	2483.5	47.35	-6.65	54	40.14	32.58	7.27	32.64	262	312	А	Н
D / E	2480	95.36	-	-	88.15	32.58	7.27	32.64	262	312	Ρ	Н
BLE	2480	93.88	-	-	86.67	32.58	7.27	32.64	262	312	А	Н
CH 39 2480MHz	2498.02	56.54	-17.46	74	49.21	32.6	7.3	32.57	165	312	Ρ	V
240010112	2483.62	47.06	-6.94	54	39.85	32.58	7.27	32.64	165	312	А	V
	2480	93.5	-	-	86.29	32.58	7.27	32.64	165	312	Р	V
	2480	91.97	-	-	84.76	32.58	7.27	32.64	165	312	А	V
Remark	o other spurious I results are PA		eak and	Average lim	it line.							

2.4GHz 2400~2483.5MHz

BLE (Harmonic @ 3m)

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		4960	42.65	-31.35	74	59.4	34.53	10.43	61.71	300	0	Р	н
BLE CH 39		7440	45.2	-28.8	74	58.49	35.9	12.88	62.07	300	0	Ρ	Н
2480MHz		4965	43.2	-30.8	74	59.95	34.53	10.43	61.71	100	0	Р	V
240011112		7440	43.05	-30.95	74	56.34	35.9	12.88	62.07	100	0	Р	V
Remark		o other spurious results are PA		Peak and	Average lim	it line.							

Emission below 1GHz

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		83.35	26.62	-13.38	40	42.92	14.06	1.38	31.74	-	-	Р	н
		191.99	27.62	-15.88	43.5	41.08	15.63	2.25	31.34	-	-	Р	Н
		250.19	23.4	-22.6	46	33.62	18.58	2.56	31.36	-	-	Р	Н
		288.02	33.77	-12.23	46	43.54	19.05	2.75	31.57	-	-	Ρ	Н
0.4011-		431.58	31.89	-14.11	46	37.43	22.33	3.38	31.25	-	-	Р	Н
2.4GHz BLE		862.26	35.22	-10.78	46	35.02	26.69	4.79	31.28	-	-	Р	Н
LF		42.61	27.02	-12.98	40	39.57	18.34	0.77	31.66	-	-	Р	V
		76.56	28.17	-11.83	40	45.04	13.71	1.27	31.85	-	-	Р	V
		94.02	26.51	-16.99	43.5	40.06	16.84	1.54	31.93	-	-	Р	V
		172.59	23.89	-19.61	43.5	36.14	16.96	2.12	31.33	-	-	Ρ	V
		287.05	28.28	-17.72	46	37.11	20	2.74	31.57	-	-	Р	V
		431.58	27.16	-18.84	46	31.76	23.27	3.38	31.25	-	-	Р	V
	1. No	o other spurious	s found.										
Remark	2. All	results are PA	SS against li	mit line.									

<Simultaneous transmission>

2.4GHz 2400~2483.5MHz

BLE+PCS1900 (Band Edge @ 3m)

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		2496.28	56.97	-17.03	74	49.64	32.6	7.3	32.57	262	313	Р	Н
		2483.5	47.73	-6.27	54	40.52	32.58	7.27	32.64	262	313	А	Н
		2480	95.31	-	-	88.1	32.58	7.27	32.64	262	313	Ρ	Н
BLE		2480	93.79	-	-	86.58	32.58	7.27	32.64	262	313	А	Н
CH 39 2480MHz		2495.26	56.53	-17.47	74	49.2	32.6	7.3	32.57	198	306	Ρ	V
240010112		2495.26	47.2	-6.8	54	39.87	32.6	7.3	32.57	198	306	Α	V
		2480	92.51	-	-	85.3	32.58	7.27	32.64	198	306	Ρ	V
		2480	91.02	-	-	83.81	32.58	7.27	32.64	198	306	А	V
Remark		o other spurious results are PA		Peak and	Average lim	it line.							

2.4GHz 2400~2483.5MHz

BLE+PCS1900 (Harmonic @ 3m)

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
BLE CH 39 2480MHz		4965	42.98	-31.02	74	59.73	34.53	10.43	61.71	300	0	Р	н
		7440	43.42	-30.58	74	56.71	35.9	12.88	62.07	300	0	Р	Н
		4965	41.74	-32.26	74	58.49	34.53	10.43	61.71	100	0	Р	V
		7440	43.33	-30.67	74	56.62	35.9	12.88	62.07	100	0	Р	V
Remark	 No other spurious found. All results are PASS against Peak and Average limit line. 												

Note symbol

*	Fundamental Frequency which can be ignored. However, the level of any					
	unwanted emissions shall not exceed the level of the fundamental frequency.					
!	Test result is over limit line.					
P/A	Peak or Average					
H/V	Horizontal or Vertical					

A calculation example for radiated spurious emission is shown as below:

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
BLE		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	н
CH 00													
2402MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	А	Н

- 1. Path Loss(dB) = Cable loss(dB) + Filter loss(dB) + Attenuator loss(dB)
- 2. Level($dB\mu V/m$) =

Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

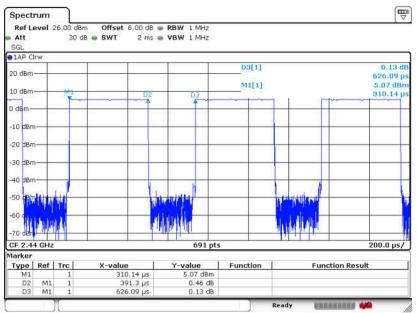
3. Over Limit(dB) = Level(dB μ V/m) – Limit Line(dB μ V/m)

For Peak Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- = 32.22(dB/m) + 4.58(dB) + 54.51(dBµV) 35.86 (dB)
- = 55.45 (dBµV/m)
- 2. Over Limit(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

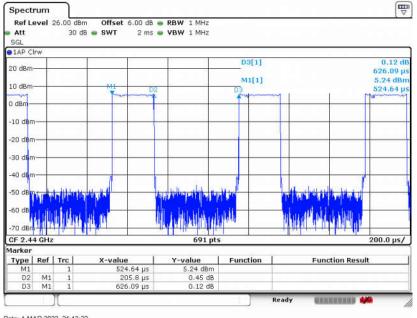
For Average Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 42.6(dB\mu V) 35.86 (dB)$
- = 43.54 (dBµV/m)
- 2. Over Limit(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)


Both peak and average measured complies with the limit line, so test result is "PASS".

Appendix D. Duty Cycle Plots

Band	Duty Cycle(%)	T(ms)	1/T(kHz)	VBW Setting	
Bluetooth LE 1Mbps	62.50	0.391	2.556	2.7KHz	
Bluetooth LE 2Mbps	32.87	0.206	4.859	5.1KHz	


Bluetooth LE 1Mbps

Date: 1.MAR.2022 21:05:57

Bluetooth LE 2Mbps

Date: 1.MAR.2022 21:13:22