

TEST REPORT

Report Number: 103436674MPK-002 Project Numbers: G103436674, G103442604 April 05, 2018

> Testing performed on Controllers Model: FAST-60-601-000002 FCC ID: 2APK7-9705079V1-0 IC: 23979-9705079V10

> > to

FCC Part 15 Subpart C (15.247) Industry Canada RSS-247 Issue 2 FCC Part 15, Subpart B Industry Canada ICES-003

For

Fastenal Company

Test Performed by:
Intertek
1365 Adams Court
Menlo Park, CA 94025 USA

Test Authorized by: Fastenal Company 2001 Theurer Blvd Winona, MN 55987 USA

Prepared by:	Aaron Chang	Date:	April 05, 2018	
Reviewed by:	Krishna K Vemuri	Date:	April 05, 2018	

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to copy or distribute this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program. This report must not be used to claim product endorsement by A2LA, NIST nor any other agency of the U.S. Government.

EMC Report for Fastenal on the Controllers File: 103436674MPK-002

Page 1 of 59

Report No. 103436674MPK-002

Equipment Ui	nder Test [.]	Controllers

Trade Name: Fastenal Company **Model Number**: FAST-60-601-000002

Applicant: Fastenal Company

Contact: Lee Zenke

Address: Fastenal Company

2001 Theurer Blvd Winona, MN 55987

Country USA

Tel. Number: (317) 429-4773

Email: Lee.zenke@fastenal.com

Applicable Regulation: FCC Part 15 Subpart C (15.247)

Industry Canada RSS-247 Issue 2

FCC Part 15, Subpart B

Industry Canada ICES-003 Issue 6

Date of Test: March 5-27, 2018

We attest to the accuracy of this report:

Aaron Chang

Project Engineer

Krishna K Vemuri Engineering Team Lead

EMC Report for Fastenal on the Controllers File: 103436674MPK-002

TABLE OF CONTENTS

1.0	Sumi	mary of Tests	5
2.0	Gene	ral Information	6
	2.1	Product Description	6
	2.2	Related Submittal(s) Grants	7
	2.3	Test Facility	
	2.4	Test Methodology	
	2.5	Measurement Uncertainty	
3.0	Syste	m Test Configuration	8
	3.1	Support Equipment	8
	3.2	Block Diagram of Test Setup	8
	3.3	Justification	9
	3.4	Software Exercise Program	9
	3.5	Mode of Operation during Test	
	3.5	Modifications Required for Compliance	
	3.6	Additions, Deviations and Exclusions from Standards	
4.0	Meas	surement Results	10
	4.1	6-dB Bandwidth and 99% Occupied Bandwidth	
		4.1.1 Requirement	
		4.1.2 Procedure	
		4.1.3 Test Result	
	4.2	Maximum Peak Conducted Output Power at Antenna Terminals	
		4.2.1 Requirement	
		4.2.2 Procedure	
		4.3.3 Test Result	
	4.3	Maximum Power Spectral Density	
	1.0	4.3.1 Requirement	
		4.3.2 Procedure	
		4.3.3 Test Result	
	4.4	Unwanted Conducted Emissions	
	7,7	4.4.1 Requirement	
		4.4.2 Procedure	
		4.4.3 Test Result	
	4.5	Transmitter Radiated Emissions	
	7.5	4.5.1 Requirement	
		4.5.2 Procedure	
		4.5.3 Field Strength Calculation	
		4.5.4 Antenna-port conducted measurements	
		4.5.6 General Procedure for conducted measurements in restricted bands	
		4.5.7 Test Results	
		4.5.8 Test kesuits 4.5.8 Test setup photographs	
	4.6	Radiated Emissions	
	4.0		
		4.6.1 Requirement	
		4.6.2 Procedures	
	4.7	4.6.4 Test Configuration Photographs	
	4./	AC LINE CONGUCTED EMISSION	3

	4.7.1	Requirement	53
		Procedure	
	4.7.3	Test Result	55
	4.7.4	Test Configuration Photographs	57
5.0	List of Test E	quipment	58
6.0	Document Hi	story	50

Page 4 of 59

1.0 Summary of Tests

Test	Reference	Reference	Result
	FCC	Industry Canada	
RF Output Power	15.247(b)(3)	RSS-247, 5.4.4	Complies
6 dB Bandwidth	15.247(a)(2)	RSS-247, 5.2.1	Complies
Power Density	15.247(e)	RSS-247, 5.2.2	Complies
Out of Band Antenna Conducted Emission	15.247(d)	RSS-247, 5.5	Complies
Transmitter Radiated Emissions	15.247(d), 15.209, 15.205	RSS-247, 5.5	Complies
AC Line Conducted Emission	15.207	RSS-GEN	Complies
Antenna Requirement	15.203	RSS-GEN	Complies (Internal Antenna)
RF Exposure	15.247(i), 2.1093(d)	RSS-102	Complies
Radiated Emissions	15.109	ICES-003	Complies
AC Line Conducted Emission	15.107	ICES-003	Complies

EUT receive date: March 05, 2018

EUT receive condition: The pre-production version of the EUT was received in good condition

with no apparent damage. As declared by the Applicant, it is identical to

the production units.

Test start date: March 5, 2018 **Test completion date:** March 27, 2018

The test results in this report pertain only to the item tested.

Page 5 of 59

2.0 General Information

2.1 Product Description

Fastenal Company supplied the following description of the EUT:

Device that receives LoRa messages from in-range Repeaters, Readers, and BLE Bins. Messages received by the Controller will be forwarded to the Fastenal Store after filtering out all redundant information. Method of forwarding data is by Ethernet, WiFi, or Cellular connections.

Information about the LoRa radio is presented below:

For more information, refer to the following product specification, declared by the manufacturer.

Information about the 900 MHz radio is presented below:

Applicant	Fastenal Company	
Model No.	FAST-60-601-000002	
FCC Identifier	2APK7-9705079V1-0	
IC Identifier	23979-9705079V10	
Type of transmission	Digital Transmission System (DTS)	
Rated RF Output	17.67 dBm	
Antenna(s) & Gain	PCB Antenna, Gain: 5.1 dBi	
Frequency Range	923.3 – 927.5 MHz (Tx); 903 – 914.2 MHz (Rx)	
Type of modulation	LoRa® Technology	
Data rate	1760 bps	
Number of Channel(s)	16 Total (8 Tx and 8 Rx)	
Applicant Name &	Fastenal Company	
Address	2001 Theurer Blvd	
	Winona, MN 55987	
	USA	

Page 6 of 59

2.2 Related Submittal(s) Grants

None.

2.3 Test Facility

The test site used to collect the radiated data is site 1 (10-m semi-anechoic chamber). This test facility and site measurement data have been fully placed on file with the FCC, IC and A2LA accredited.

2.4 Test Methodology

Antenna conducted measurements were performed according to the FCC documents "Guidance for Performing Compliance Measurement on Digital Transmission Systems (DTS) Operating under §15.247" (KDB 558074 D01 DTS Meas Guidance v04), and RSS-247, RSS-GEN Issue 4.

Radiated emissions and AC mains conducted emissions measurements were performed according to the procedures in ANSI C63.10: 2013. Radiated tests were performed at an antenna to EUT distance of 3 meters, unless stated otherwise in the "Data Sheet" of this report.

2.5 Measurement Uncertainty

Compliance with the limits was based on the results of the measurements and doesn't take into account the measurement uncertainty.

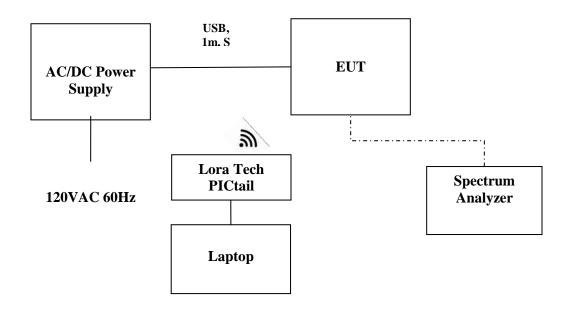
Estimated Measurement Uncertainty

Measurement	Expanded Uncertainty (k=2)		
	0.15 MHz – 1 GHz	1 GHz – 2.5 GHz	> 2.5 GHz
RF Power and Power Density – antenna conducted	-	0.7 dB	-
Unwanted emissions - antenna conducted	1.1 dB	1.3 dB	1.9 dB
Bandwidth – antenna conducted	-	30 Hz	-

Measurement	Expanded Uncertainty (k=2)			
	0.15 MHz -	30 – 200 MHz	200 MHz -	1 GHz – 18
	30MHz	30MHz 30 - 200 MHz	1 GHz	GHz
Radiated emissions	-	4.7	4.6	5.1 dB
AC mains conducted emissions	2.1 dB	-	-	-

File: 103436674MPK-002 Page 7 of 59

3.0 System Test Configuration


3.1 Support Equipment

Description	Manufacturer	Model Number
Laptop	HP	ProBook 430
LoRa Tech PICtail	MicroChip	MTI160581148

3.2 Block Diagram of Test Setup

Equipment Under Test						
Description	Description Manufacturer Model Number Serial Number					
Controllers	Fastenal Company	FAST-60-601- 000002	C-0000007			
AC/DC Power Supply	CUI Inc	SWI12-5-N	No markings			

Antenna was removed and co-axial connector with a cable was installed for Conducted Measurements.

S = Shielded	F = With Ferrite
U = Unshielded	m = Length in Meters

EMC Report for Fastenal on the Controllers

3.3 Justification

For radiated emission measurements the EUT is placed on a non-conductive table.

3.4 Software Exercise Program

The EUT exercise program used during radiated and conducted testing was provided by Fastenal Company

3.5 Mode of Operation during Test

During transmitter testing, the transmitter was setup to transmit at maximum RF power on low, middle and high frequencies/channels.

3.5 Modifications Required for Compliance

No modifications were made by the manufacturer or Intertek to the EUT in order to bring the EUT into compliance.

3.6 Additions, Deviations and Exclusions from Standards

No additions, deviations or exclusions from the standard were made.

Page 9 of 59

4.0 Measurement Results

4.1 6-dB Bandwidth and 99% Occupied Bandwidth FCC Rule: 15.247(a)(2); RSS-247 A8.2 and RSS-GEN;

4.1.1 Requirement

The minimum 6-dB bandwidth shall be at least 500 kHz

4.1.2 Procedure

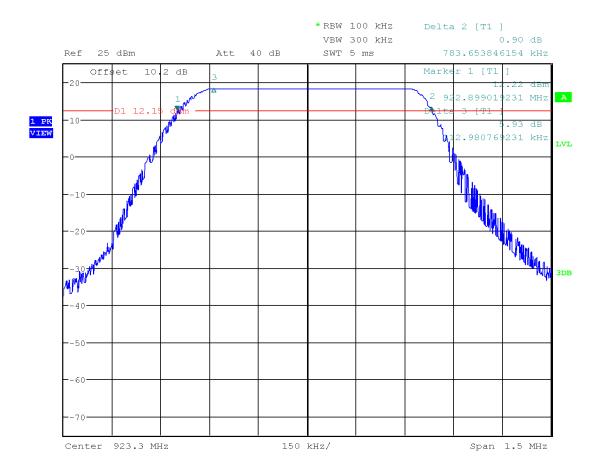
A spectrum analyzer was connected to the antenna port of the transmitter.

For FCC 6dB Channel Bandwidth the Procedure described in the FCC Publication 558074 D01 DTS Meas Guidance v04 was used to determine the DTS occupied bandwidth. Section 8.1 Option 1 was used.

- 1. Set RBW = 100 kHz.
- 2. Set the video bandwidth (VBW) \geq 3 x RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.
- 7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

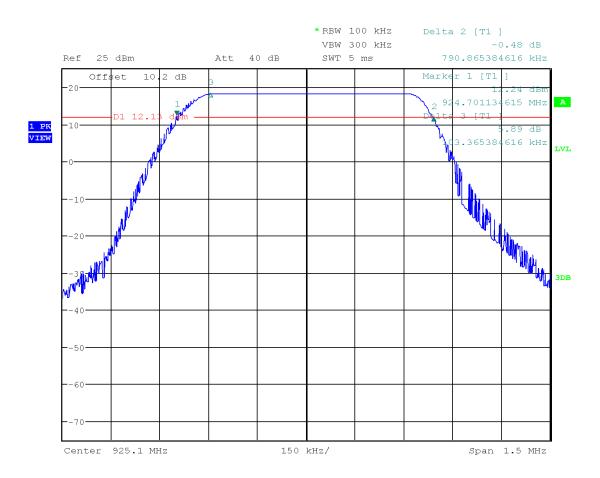
For 99% power bandwidth measurement, the bandwidth was determined by using the built-in 99% occupied bandwidth function of the spectrum analyzer. The resolution bandwidth is set to 1% of the selected span as is without being below 1%. The video bandwidth shall be set to 3 times the resolution bandwidth.

4.1.3 Test Result

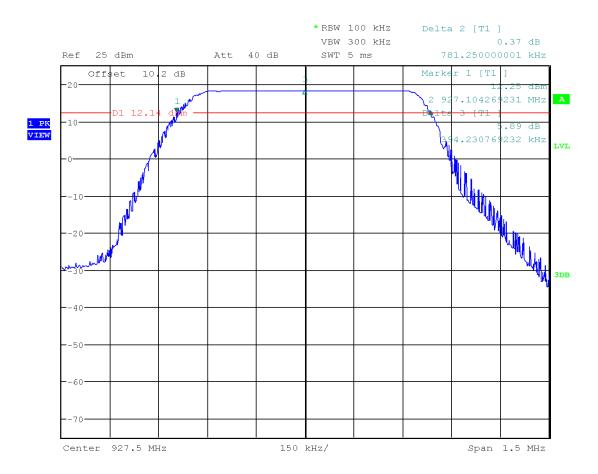

Frequency (MHz)	6-dB bandwidth FCC 15.247 &	Occupied bandwidth, RSS-GEN,	Plot
	RSS-GEN, kHz	kHz	
022.2	783.654		1.1
923.3		640	1.4
925.1	790.865		1.2
923.1		636	1.5
927.5	781.250		1.3
941.3		634	1.6

Date of Test:	March 9, 2018
Results	Complies

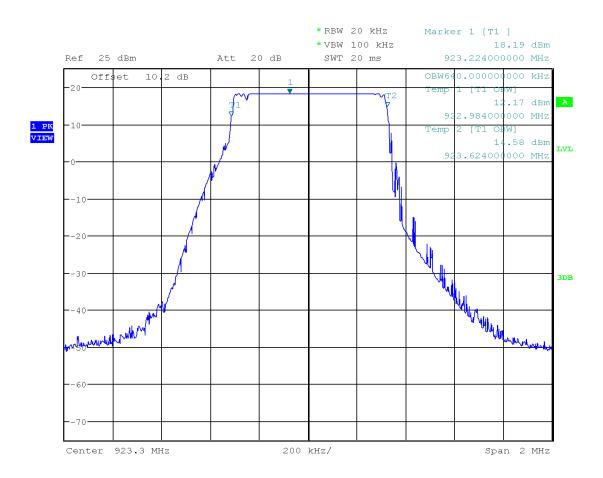
File: 103436674MPK-002 Page 10 of 59


Plot 1. 1

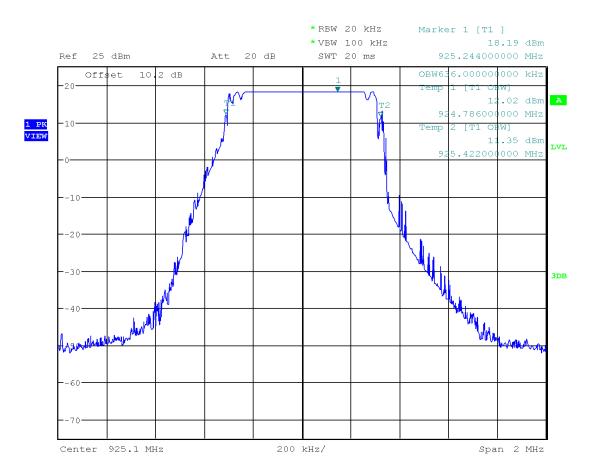
Date: 9.MAR.2018 17:52:27


Plot 1. 2

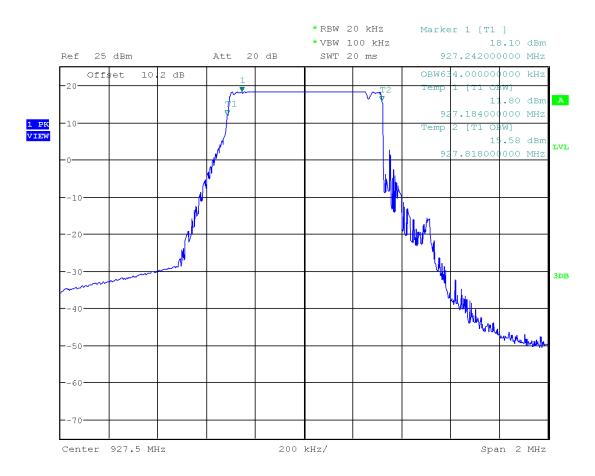
Date: 9.MAR.2018 18:01:28


Plot 1. 3

Date: 9.MAR.2018 18:09:27


Plot 1. 4

Date: 9.MAR.2018 18:27:50


Plot 1.5

Date: 9.MAR.2018 18:34:11

Plot 1.6

Date: 9.MAR.2018 18:14:20

4.2 Maximum Peak Conducted Output Power at Antenna Terminals FCC Rule: 15.247(b)(3); RSS-247 A8.4;

4.2.1 Requirement

For antennas with gains of 6 dBi or less, maximum allowed transmitter output is 1 watt or 30 dBm. For antennas with gains greater than 6 dBi, transmitter output level must be decreased appropriately, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

4.2.2 Procedure

The procedure described in FCC Publication 558074 D01 DTS Meas Guidance v04 was used. Specifically, section 9.2.2.1 Method AVGSA-1 Alternative (RMS detection with slow sweep and EUT transmitting continuously at full power) was utilized.

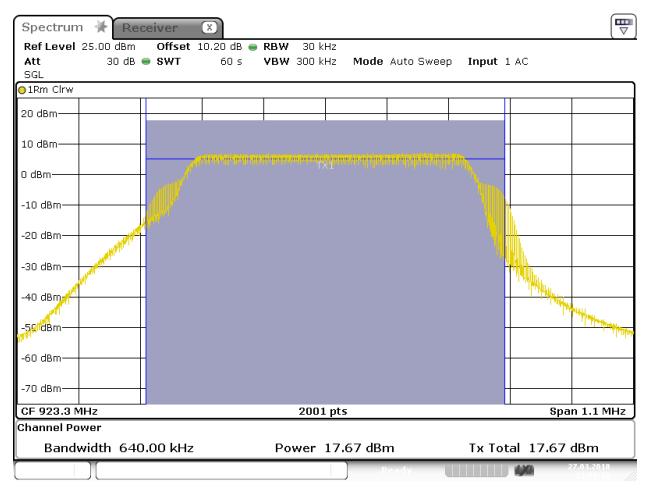
- 1. Set span to at least 1.5 x OBW.
- 2. Set RBW = 1 % to 5 % of the OBW, not to exceed 1 MHz.
- 3. Set $VBW \ge 3 \times RBW$.
- 4. Number of points in sweep $\geq 2 \times \text{span} / \text{RBW}$.
- 5. Manually set sweep time ≥ 10 x (number of points in sweep) x (transmission symbol period), but not less than the automatic default sweep time.
- 6. Detector = RMS
- 7. The EUT shall be operated at \geq 98 % duty cycle or sweep triggering/signal gating shall be employed such that the sweep time is less than or equal to the transmission duration T.
- 8. Perform a single sweep.
- 9. Compute power by integrating the spectrum across the OBW of the signal using the instrument's band power measurement function, with band limits set equal to the OBW band edges. If the instrument does not have a band power function, sum the spectrum levels (in power units) at intervals equal to the RBW extending across the entire OBW of the spectrum.

A spectrum analyzer was connected to the antenna port of the transmitter.

4.3.3 Test Result

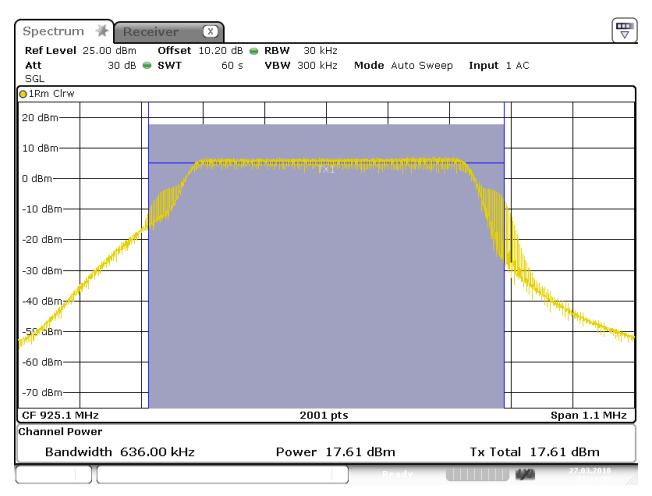
Refer to the following plots 2.1 - 2.3 for the test details.

Frequency, MHz	Conducted Power (peak), dBm	Conducted Power (peak), mW	Plot
923.3	17.67	58.48	2.1
925.1	17.61	57.68	2.2
927.5	17.59	57.41	2.3

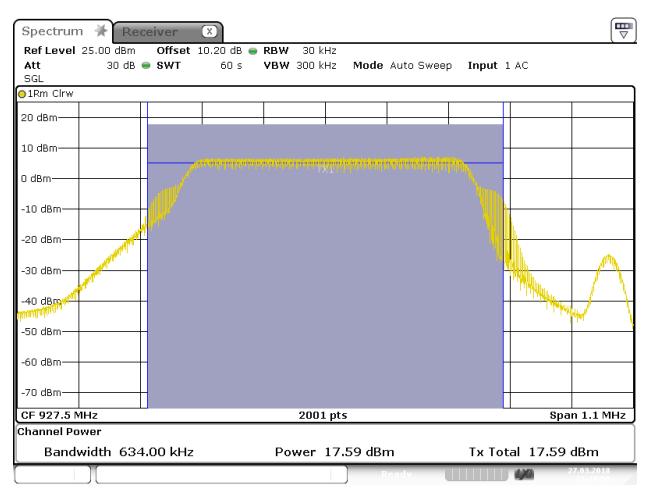

Date of Test:	March 27, 2018
Results	Complies

EMC Report for Fastenal on the Controllers

File: 103436674MPK-002 Page 17 of 59


Plot 2. 1

Date: 27.MAR.2018 21:08:18


Plot 2. 2

Date: 27.MAR.2018 21:14:15

Plot 2. 3

Date: 27.MAR.2018 21:19:50

4.3 Maximum Power Spectral Density FCC: 15.247 (e); RSS-247 A8.2b;

4.3.1 Requirement

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna should not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

4.3.2 Procedure

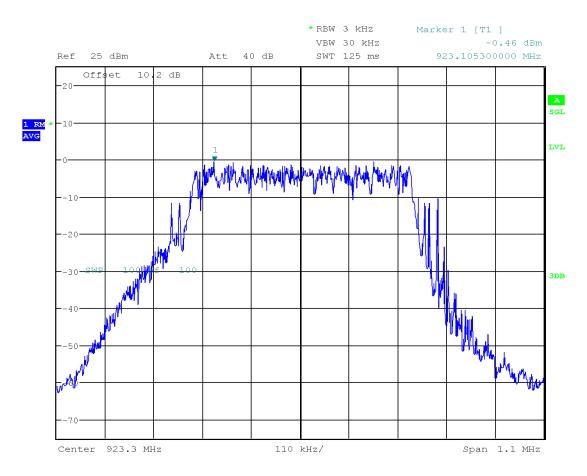
A spectrum analyzer was connected to the antenna port of the transmitter.

The procedure described in FCC Publication 558074 D01 DTS Meas Guidance v04, specifically section 10.3 Method AVGPSD-1 (trace averaging with EUT transmitting at full power throughout each sweep).

- 1. Set instrument center frequency to DTS channel center frequency.
- 2. Set the span to at least 1.5 x OBW.
- 3. Set the RBW to: $3 \text{ kHz} \le \text{RBW} \le 100 \text{ kHz}$.
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = power averaging (RMS) or sample detector (when RMS not available).
- 6. Ensure that the number of measurement points in the sweep ≥ 2 x span/RBW.
- 7. Sweep time = auto couple.
- 8. Employ trace averaging (RMS) mode over a minimum of 100 traces.
- 9. Use the peak marker function to determine the maximum amplitude level.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat (note that this may require zooming in on the emission of interest and reducing the span in order to meet the minimum measurement point requirement as the RBW is reduced).

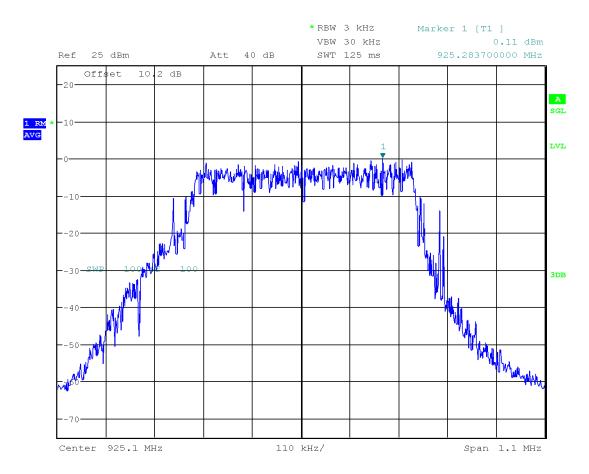
4.3.3 Test Result

Refer to the following plots for the test result

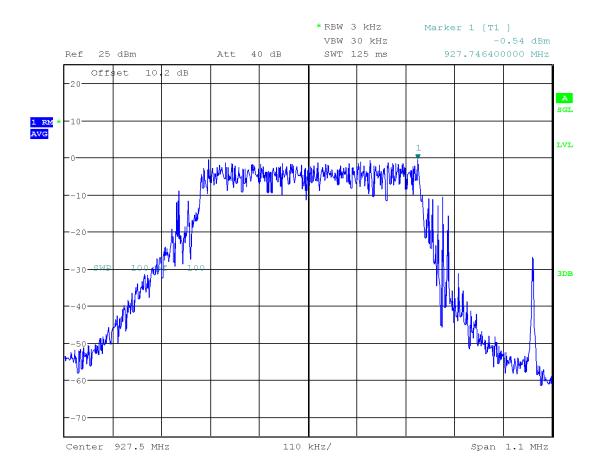

Frequency,	Spectral Density, Density Limit,		Margin,	Plot
MHz	dBm	dBm	dB	
923.3	-0.46	8.0	-8.46	3.1
925.1	0.11	8.0	-7.89	3.2
927.5	-0.54	8.0	-8.54	3.3

Date of Test:	March 9, 2018
Results	Complies

EMC Report for Fastenal on the Controllers


Plot 3. 1

Date: 9.MAR.2018 18:49:32


Plot 3. 2

Date: 9.MAR.2018 18:47:38

Plot 3. 3

Date: 9.MAR.2018 18:45:38

4.4 Unwanted Conducted Emissions FCC: 15.247(d); RSS-247 A8.5;

4.4.1 Requirement

In any 100 kHz bandwidth outside the EUT pass-band, the RF power shall be below the maximum in-band 100 kHz emissions by at least 20 dB (if peak power of in-band emission is measured) or 30 dB (if average power of in-band emission is measured).

In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)

4.4.2 Procedure

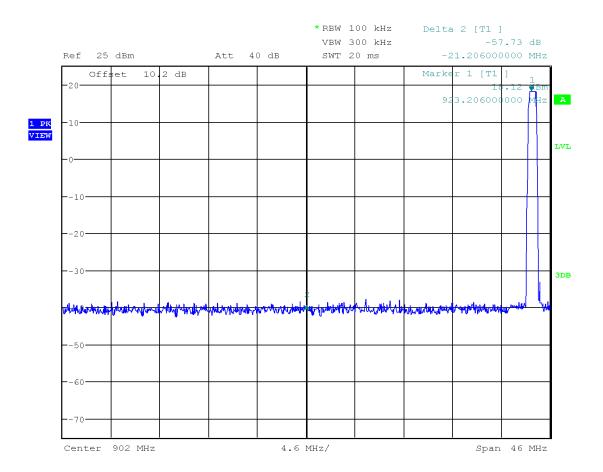
The procedure described in FCC Publication 558074 D01 DTS Meas Guidance v04, specifically section 11.0 Emissions in non-restricted frequency bands.

A spectrum analyzer was connected to the antenna port of the transmitter.

- 1. Set the RBW = 100 kHz.
- 2. Set the VBW \geq 3 x RBW.
- 3. Detector = peak.
- 4. Sweep time = auto couple.
- 5. Trace mode = max hold.
- 6. Allow trace to fully stabilize.
- 7. Use the peak marker function to determine the maximum amplitude level.

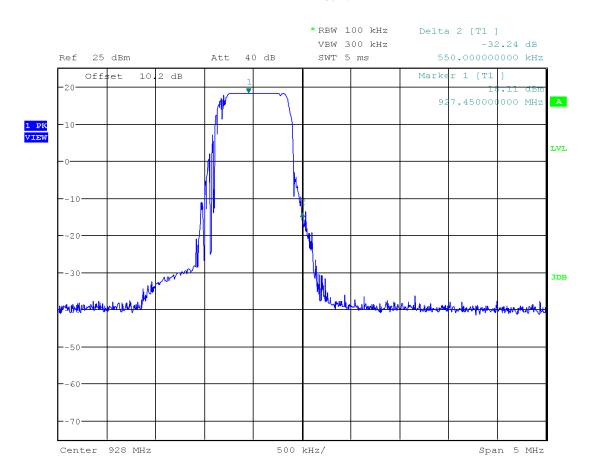
The unwanted emissions were measured from 30 MHz to 25 GHz. Plots below are corrected for cable loss and then compared to the limits.

4.4.3 Test Result

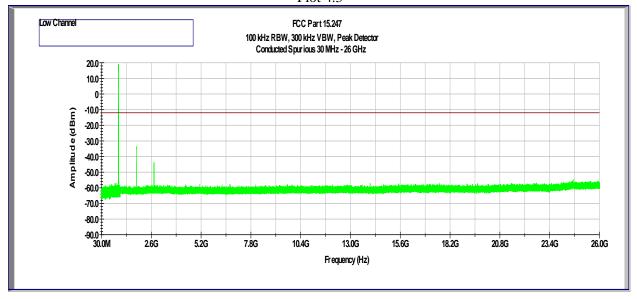

Refer to the following plots 4.1 - 4.5 for unwanted conducted emissions. The plot shows -20dB attenuation limit line.

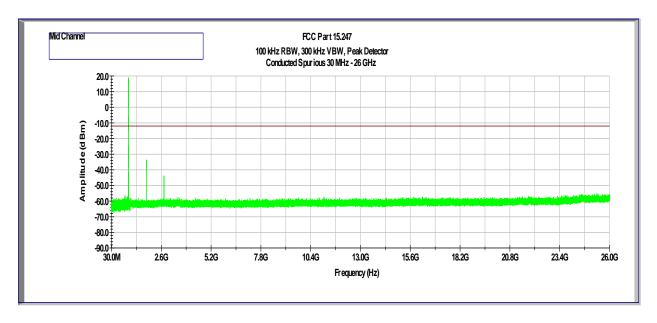
Date of Test:	March 9, 2018	
Results	Complies	

File: 103436674MPK-002 Page 25 of 59

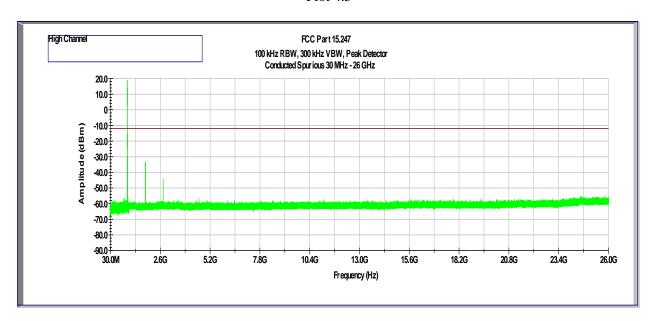

Tx @ Low Channel, 902 MHz Band Edge Plot 4.1

Date: 9.MAR.2018 18:53:57


Tx @ High Channel, 928 MHz Band Edge Plot 4.2


Date: 9.MAR.2018 19:01:50

Tx @ Low Channel, 923.3 MHz 30MHz -26GHz Conducted Spurious Plot 4.3



Tx @ Mid Channel, 925.1 MHz 30MHz -26GHz Conducted Spurious Plot 4.4

Tx @ High Channel, 927.5 MHz 30MHz -26GHz Conducted Spurious Plot 4.5

4.5 Transmitter Radiated Emissions

FCC Rules: 15.247(d), 15.209, 15.205; RSS-247;

4.5.1 Requirement

Radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

For out of band radiated emissions (except for frequencies in restricted bands), in any 100 kHz bandwidths outside the EUT pass-band, the RF power shall be at least 20dB (peak) or 30 dB (average) below that of the maximum in-band 100 kHz emissions.

4.5.2 Procedure

Radiated emission measurements were performed from 30 MHz to 25 GHz according to the procedure described in ANSI C63.10: 2013. Spectrum Analyzer Resolution Bandwidth is 100 kHz or greater for frequencies 30 MHz to 1000 MHz, 1 MHz for frequencies above 1000 MHz. Above 1000 MHz Peak and Average measurements were performed.

The EUT is placed on a plastic turntable that is 80 cm in height for below 1000MHz and 1.5m in height for above 1GHz. If the EUT attaches to peripherals, they are connected and operational (as typical as possible). During testing, all cables were manipulated to produce worst-case emissions. The signal is maximized through rotation. The antenna height and polarization are varied during the search for maximum signal level. The antenna height is varied from 1 to 4 meters.

Radiated emissions are taken at 3 meters for frequencies above 1 GHz and at 10 meters for frequencies below 1 GHz.

A preamp was used from 30MHz to 26GHz.

All measurements were made with a Peak Detector and compared to QP limits for 30MHz - 1GHz and Average limits for 1GHz - 26GHz.

Data is included of the worst-case configuration (the configuration which resulted in the highest emission levels).

File: 103436674MPK-002 Page 30 of 59

4.5.3 Field Strength Calculation

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CF - AG; if measurement is performed at a distance other than specified in the rule, a Distance Correction Factor (DCF) shall be added.

Where $FS = Field Strength in dB(\mu V/m)$

RA = Receiver Amplitude (including preamplifier) in $dB(\mu V)$; AF = Antenna Factor in dB(1/m)

CF = Cable Attenuation Factor in dB; AG = Amplifier Gain in dB

Assume a receiver reading of 52.0 dB(μ V) is obtained. The antennas factor of 7.4 dB(1/m) and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving field strength of 32 dB(μ V/m). This value in dB(μ V/m) was converted to its corresponding level in μ V/m.

 $RA = 52.0 dB(\mu V)$

AF = 7.4 dB(1/m)

CF = 1.6 dB

 $AG = 29.0 \, dB$

 $FS = 52.0+7.4+1.6-29.0 = 32 dB(\mu V/m).$

Level in $\mu V/m = Common Antilogarithm [(32 dB \mu V/m)/20] = 39.8 \mu V/m$.

EMC Report for Fastenal on the Controllers File: 103436674MPK-002

4.5.4 Antenna-port conducted measurements

Antenna-port conducted measurements may also be used as an alternative to radiated measurements for demonstrating compliance in the restricted frequency bands. If conducted measurements are performed, then proper impedance matching must be ensured and an additional radiated test for cabinet/case spurious emissions is required.

4.5.6 General Procedure for conducted measurements in restricted bands

- a) Measure the conducted output power (in dBm) using the detector specified for determining quasi-peak, peak, and average conducted output power, respectively.
- b) Add the maximum transmit antenna gain (in dBi) to the measured output power level to determine the EIRP level (see 12.2.5 for guidance on determining the applicable antenna gain)
- c) Add the appropriate maximum ground reflection factor to the EIRP level (6 dB for frequencies \leq 30 MHz, 4.7 dB for frequencies between 30 MHz and 1000 MHz, inclusive and 0 dB for frequencies > 1000 MHz).
- d) For devices with multiple antenna-ports, measure the power of each individual chain and sum the EIRP of all chains in linear terms (*e.g.*, Watts, mW).
- e) Convert the resultant EIRP level to an equivalent electric field strength using the following relationship:

E = EIRP - 20log D + 104.8 + DCF (DCF for Average measurements)

where:

 $E = electric field strength in dB\mu V/m$,

EIRP = equivalent isotropic radiated power in dBm

D = specified measurement distance in meters.

DCF = Duty Cycle Correction Factor

- f) Compare the resultant electric field strength level to the applicable limit.
- g) Perform radiated spurious emission test

4.5.7 Test Results

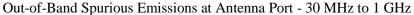
The data on the following pages list the significant emission frequencies, the limit and the margin of compliance where emissions are within 3dB of the limit.

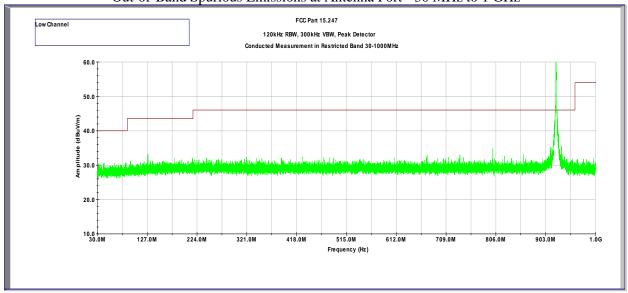
All conducted antenna port plots are corrected with the consideration of a 5.1 dBi Antenna Gain.

All radiated measurements were conducted with the AC adapter. The worst case data was reported.

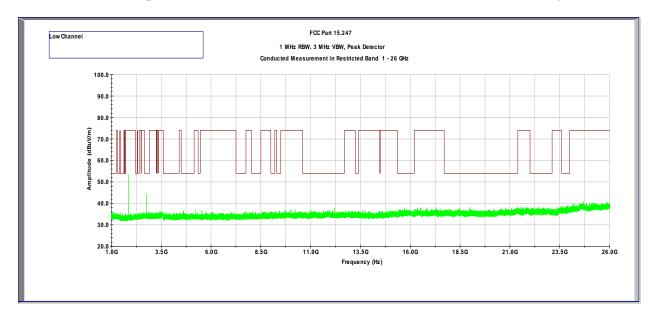
Vertical and Horizontal orientations were pre-tested. Worst case orientation was used throughout emission measurements.

Date of Test:	March 4 - 5, 2018
Results	Complies


EMC Report for Fastenal on the Controllers



Test Results: 15.209/15.205 Restricted Band Emissions at Antenna Port

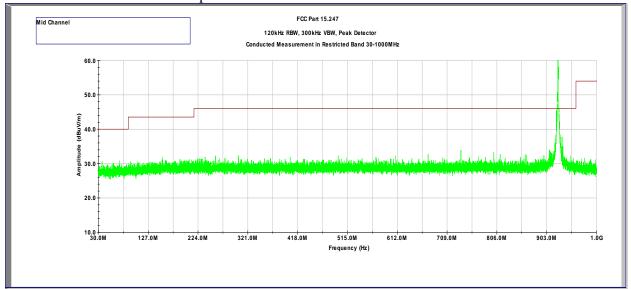

Out-of-Band Conducted Spurious Emissions (at Antenna Port)

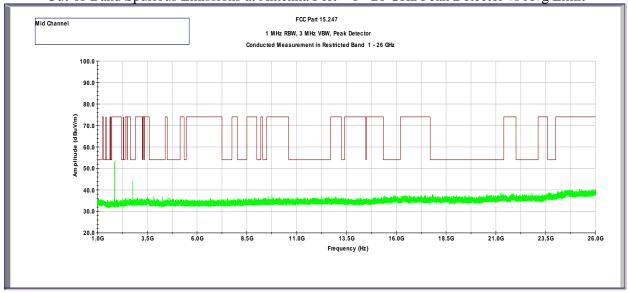
Tx @ 923.3 MHz

Out-of-Band Spurious Emissions at Antenna Port – 1 - 26 GHz Peak Detector vs Avg Limit

Frequency	Corrected Amplitude	Avg Limit	Margin	Detector	Results
GHz	dBμV/m	dBμV/m	dB		
2.77	44.11	54	-9.89	Peak	Pass

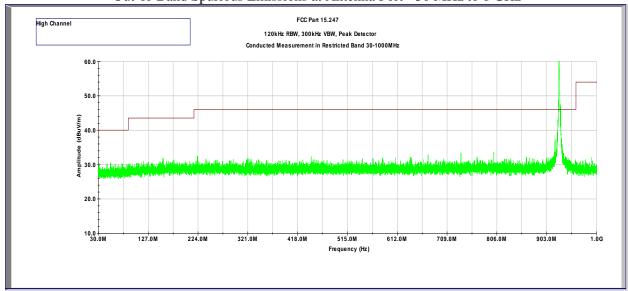
EMC Report for Fastenal on the Controllers

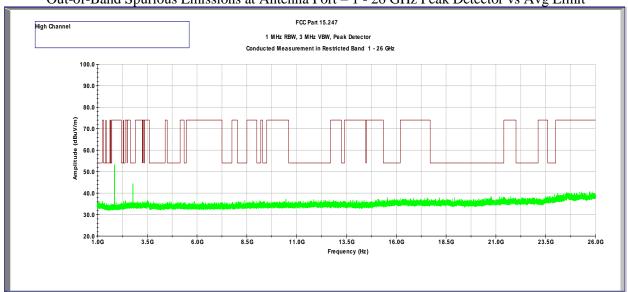

File: 103436674MPK-002 Page 33 of 59


Out-of-Band Conducted Spurious Emissions (at Antenna Port)

Tx @ 925.1 MHz

Out-of-Band Spurious Emissions at Antenna Port - 30 MHz to 1 GHz


Frequency	Corrected Amplitude	Avg Limit	Margin	Detector	Results
GHz	dBμV/m	dBμV/m	dB		
2.774	44.3	54	-7.8	Peak	Pass

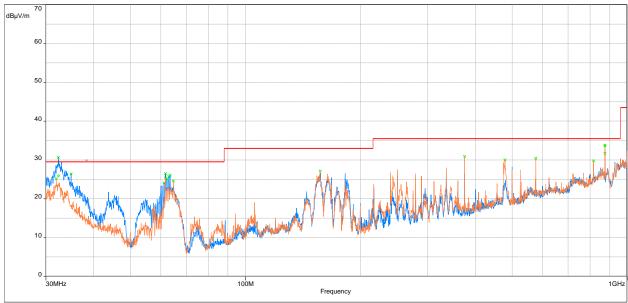

Out-of-Band Conducted Spurious Emissions (at Antenna Port)

Tx @ 927.5 MHz

Out-of-Band Spurious Emissions at Antenna Port - 30 MHz to 1 GHz

Out-of-Band Spurious Emissions at Antenna Port – 1 - 26 GHz Peak Detector vs Avg Limit

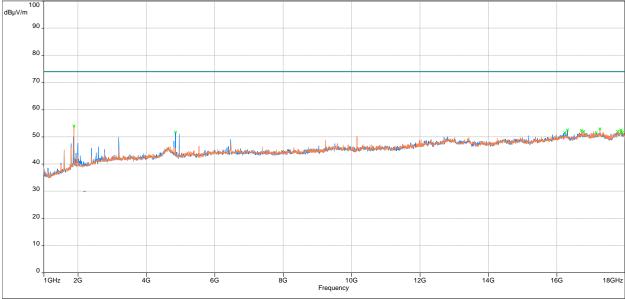
Frequency	Corrected Amplitude	Avg Limit	Margin	Detector	Results
GHz	dBμV/m	dBμV/m	dB		
2.783	44.2	54	-9.8	Peak	Pass


Out-of-Band Radiated Spurious Emissions (Cabinet Radiation)

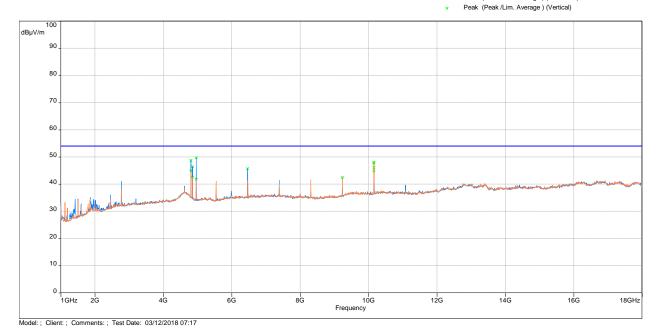
Test Results: 15.209 Radiated Spurious Emissions Low Channel, Tx at 923.3 MHz

Radiated Spurious Emissions 30 MHz - 1000 MHz

- Peak (Peak /Lim. QPeak) (Horizontal)
- Peak (Peak /Lim. QPeak) (Vertical) FS (Final QP) (Horizontal)
- FS (Final QP) (Vertical)


Model: ; Client: ; Comments: ; Test Date: 03/13/2018 08:33

Radiated Spurious Emissions 1000 - 18000 MHz, Peak Scan vs Peak Limit

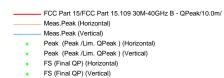

Model: ; Client: ; Comments: ; Test Date: 03/12/2018 07:26

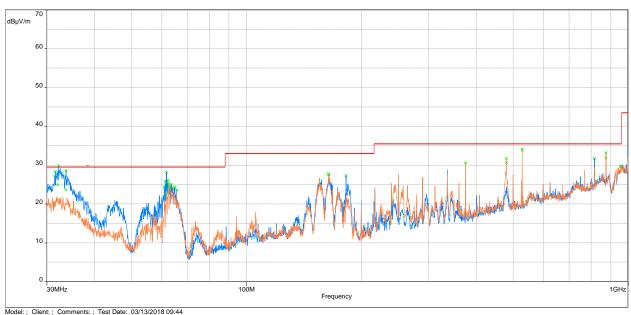
Radiated Spurious Emissions 1000 - 18000 MHz, Avg Scan vs Avg Limit

FCC Part 15/FCC Part 15.109 30M-40GHz B - Average/3.0m/
FCC Part 15/FCC Part 15.109 30M-40GHz B - QPeak/3.0m/
Meas.Peak (Horizontal)
Meas.Peak (Vertical)

× Peak (Peak/Lim. Average) (Horizontal)

Frequency	FS@3m	$\begin{array}{c ccccc} FS@3m & Avg\ Limit & Margin \\ \hline dB\mu V/m & dB\mu V/m & dB \\ \end{array} D$		Dotootow	Dogulta
MHz	dBμV/m			Detector	Results
4801.767	48.8	54	-5.2	Avg	Pass


Note: FS@3m = RA + AF + CF - Preamp


Results	Complies	
Itcourts	Complies	

Test Results: 15.209 Radiated Spurious Emissions Mid Channel, Tx at 925.1 MHz

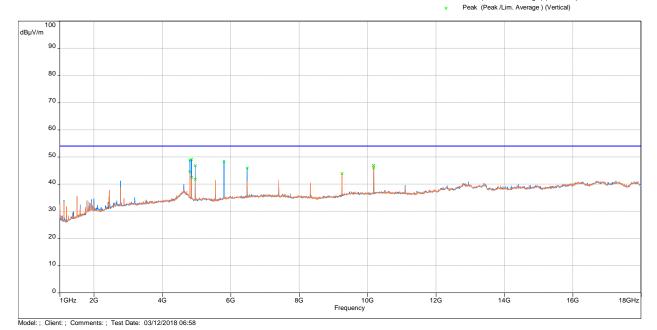
Radiated Spurious Emissions 30 MHz - 1000 MHz



Radiated Spurious Emissions 1000 - 18000 MHz, Peak Scan vs Peak Limit

18GHz

10G Frequency


Model: ; Client: ; Comments: ; Test Date: 03/12/2018 06:46

Radiated Spurious Emissions 1000 - 18000 MHz, Avg Scan vs Avg Limit

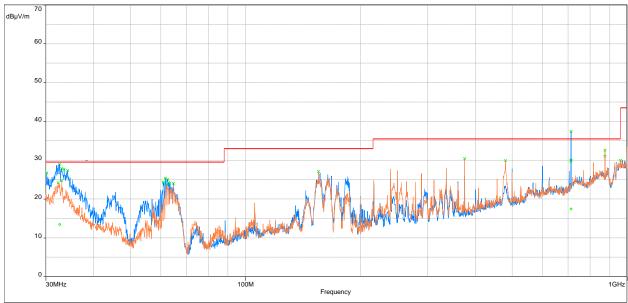
FCC Part 15/FCC Part 15.109 30M-40GHz B - Average/3.0m/
FCC Part 15/FCC Part 15.109 30M-40GHz B - QPeak/3.0m/
Meas.Peak (Horizontal)
Meas.Peak (Vertical)

× Peak (Peak /Lim. Average) (Horizontal)

Frequency	FS@3m	Avg Limit	Margin	Detector	Dogulta	
MHz	MHz dBμV/m		dBμV/m dB		Results	
4849.933	49.0	54	-5.0	Avg	Pass	

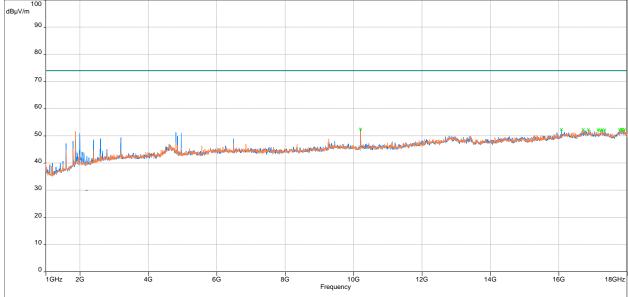
Note: FS@3m = RA + AF + CF - Preamp

Results	Complies	
Itcourts	Complies	


Page 41 of 59

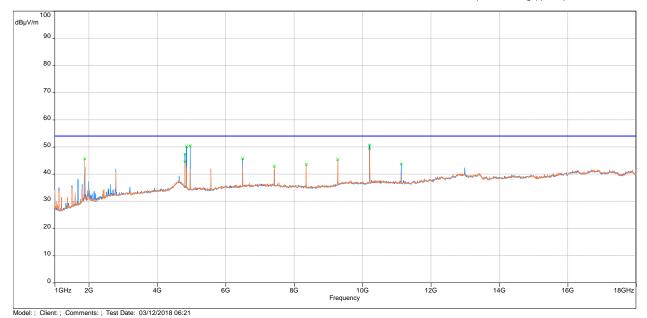
Test Results: 15.209 Radiated Spurious Emissions High Channel, Tx at 927.5 MHz

Radiated Spurious Emissions 30 MHz - 1000 MHz


Model: ; Client: ; Comments: ; Test Date: 03/13/2018 09:18

Radiated Spurious Emissions 1000 - 18000 MHz, Peak Scan vs Peak Limit

- peak (peak /lim. peak) (horizontal) (Vertical)


Model: ; Client: ; Comments: ; Test Date: 03/12/2018 06:32

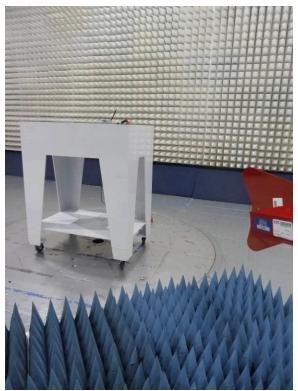
Radiated Spurious Emissions 1000 - 18000 MHz, Avg Scan vs Avg Limit

- FCC Part 15/FCC Part 15.109 30M-40GHz B Average/3.0m/
 FCC Part 15/FCC Part 15.109 30M-40GHz B QPeak/3.0m/
 Meas.Peak (Horizontal)
 Meas.Peak (Vertical)

 Peak (Peak /Lim. Average) (Horizontal)
 - Peak (Peak /Lim. Average) (Notizona
 Peak (Peak /Lim. Average) (Vertical)

Frequency FS@3m Avg Limit Margin **Detector** Results $dB\mu V/m$ $dB\mu V/m$ MHz $d\mathbf{B}$ 4849.933 50.4 54 -3.6 Pass Avg

Note: FS@3m = RA + AF + CF - Preamp


Results	Complies
---------	----------

4.5.8 Test setup photographs

The following photographs show the testing configurations used.

4.6 Radiated Emissions

FCC Ref: 15.109, ICES 003

4.6.1 Requirement

Limits for Electromagnetic Radiated Emissions FCC Section 15.109(b), ICES 003*, RSS GEN

Frequency (MHz)	Class A at 10m dB(µV/m)	Class B at 3m dB(μV/m)
30-88	39	40.0
88-216	43.5	43.5
216-960	46.4	46.0
Above 960	49.5	54.0

^{*} According to FCC Part 15.109(g) an alternative to the radiated emission limits shown above, digital devices may be shown to comply with the limit of CISPR Pub. 22

4.6.2 Procedures

Measurements are conducted with a quasi-peak detector instrument in the frequency range of 30 MHz to 1000 MHz and with the average detector instrument in the frequency range above 1000 MHz. The measuring receiver meets the requirements of Section One of CISPR 16 and the measuring antenna correlates to a balanced dipole.

Measurements of the radiated field are made with the antenna located at a distance of 10 meters from the EUT. If the field-strength measurements at 10m cannot be made because of high ambient noise level or for other reasons, measurements of Class B equipment may be made at a closer distance, for example 3m. An inverse proportionality factor of 20 dB per decade should be used to normalize the measured data to the specified distance for determining compliance.

The antenna is adjusted between 1m and 4m in height above the ground plane for maximum meter reading at each test frequency.

The antenna-to-EUT azimuth is varied during the measurement to find the maximum field-strength readings.

The antenna-to-EUT polarization (horizontal and vertical) is varied during the measurements to find the maximum field-strength readings.

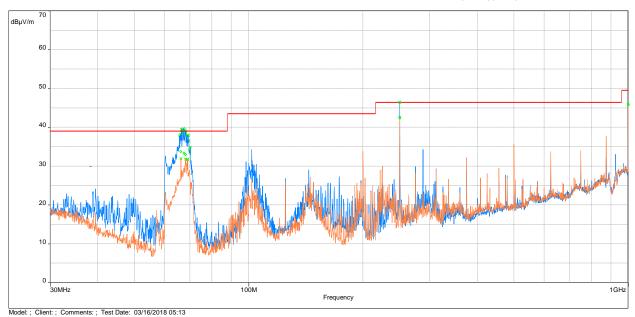
The EUT, where intended for tabletop use, is placed on a table whose top is 0.8m above the ground plane. The table is constructed of non-conductive materials. Its dimensions are 1m by 1.5m, but may be extended for a larger EUT.

Floor standing EUT are placed on a horizontal metal ground plane and isolated from the ground plane by resting on an insulating material.

Equipment setup for radiated disturbance tests followed the guidelines of ANSI C63.4-2014.

Tested By:	Aaron Chang
Test Date:	March 16, 2018

File: 103436674MPK-002 Page 47 of 59


4.6.3 Test Results

The EUT met the radiated disturbance requirements of FCC & ICES 003 for a Class A device.

FCC & ICES 003 Radiated Disturbance 30MHz to 1GHz 120V 60Hz

FCC Part 15/FCC Part 15.109 30M-40GHz A - QPeak/10.0m/ Meas.Peak (Horizontal) Meas.Peak (Vertical)

- Peak (Peak /Lim. QPeak) (Horizontal)
 Peak (Peak /Lim. QPeak) (Vertical)
 FS (Final QP) (Horizontal)
- FS (Final QP) (Vertical)

Frequency	FS	Limit	Margin	Azimuth	Height	Polarity	RA	Correction
MHz	$dB\mu V/m$	dBuV/m	dB	deg	m		dBuV	dB
250.007	42.35	46.4	-4.05	49	3.46	Horizontal	55.76	-13.41
999.987	45.85	49.5	-3.65	324.5	1	Horizontal	43.11	2.74
66.209	33.72	39	-5.28	98.75	1.72	Vertical	54.64	-20.95
67.491	33.33	39	-5.67	118.75	1.94	Vertical	54.14	-20.8
68.224	32.97	39	-6.03	122.25	1.85	Vertical	53.67	-20.71
250.007	46.30	46.4	-0.10	322.75	1	Vertical	59.71	-13.41

Page 48 of 59

FCC & ICES 003 Radiated Disturbance 1GHz to 18GHz, Average 120V 60Hz

FCC Part 15/FCC Part 15.109 30M-40GHz B - Average/3.0m/
FCC Part 15/FCC Part 15.109 30M-40GHz B - QPeak/3.0m/
Meas.Peak (Horizontal)
Meas.Peak (Vertical)

Peak (Peak /Lim. Average) (Horizontal)

Peak (Peak /Lim. Average) (Vertical)

14G

16G

18GHz

12G

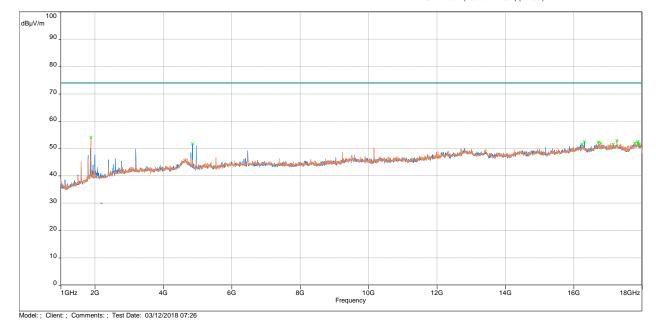
Frequency

Model: ; Client: ; Comments: ; Test Date: 03/12/2018 07:17

2G

10

1GHz


FCC & ICES 003 Radiated Disturbance IGHz to 18GHz, Peak 120V 60Hz

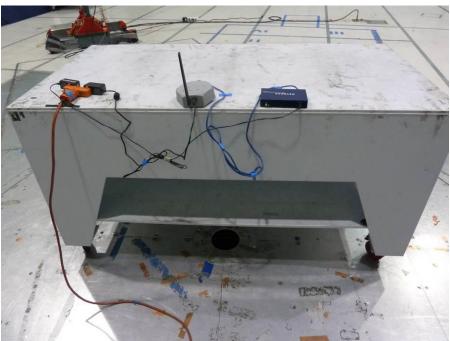
FCC Part 15/FCC Part 15.109 Peak 1GHz to 40GHz B - Peak/3.0m/
Meas.Peak (Horizontal)
Meas.Peak (Vertical)

Peak (Peak /Lim. Peak) (Horizontal)

Peak (Peak /Lim. Peak) (Nortical)

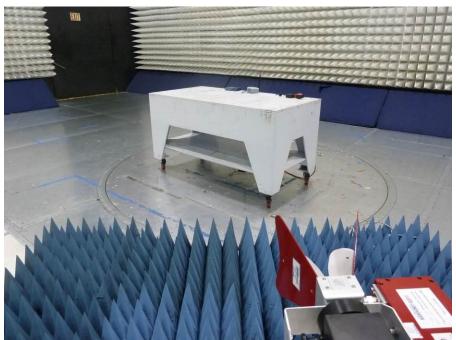
Peak (Peak /Lim. Peak) (Vertical)

Result: Complies by 0.10* dB


*Measured result is below the specification limit by a margin less than the measurement uncertainty; it is not therefore possible to determine compliance at confidence level of 95%. However, the measured result indicates a higher probability that the product tested complies with the specification limit.

4.6.4 Test Configuration Photographs

The following photographs show the testing configurations used.



Electromagnetic Radiated Disturbance Setup Photograph

4.6.4 Test Configuration Photographs (Continued)

Electromagnetic Radiated Disturbance Setup Photograph

4.7 AC Line Conducted Emission FCC: 15.207, 15.107; RSS-GEN;

4.7.1 Requirement

Frequency Band	FCC 15.207 L	imit dB(μV)	FCC 15.107 Class A Limit dB(μV)			
MHz	Quasi-Peak	Average	Quasi-Peak	Average		
0.15-0.50	66 to 56 *	56 to 46 *	79	66		
0.50-5.00	56	46	73	60		
5.00-30.00	60	50	73	60		

Note: *Decreases linearly with the logarithm of the frequency. At the transition frequency the lower limit applies.

Page 53 of 59

4.7.2 Procedure

Measurements are carried out using quasi-peak and average detector receivers in accordance with CISPR 16. An AMN is required to provide defined impedance at high frequencies across the power feed at the point of measurement of terminal voltage and also to provide isolation of the circuit under test from the ambient noise on the power lines. An AMN as defined in CISPR 16 shall be used.

The EUT is located so that the distance between the boundary of the EUT and the closest surface of the AMN is 0.8m.

Where a flexible mains cord is provided by the manufacturer, this shall be 1m long or if in excess of 1m, the excess cable is folded back and forth as far as possible so as to form a bundle not exceeding 0.4m in length.

The EUT is arranged and connected with cables terminated in accordance with the product specification.

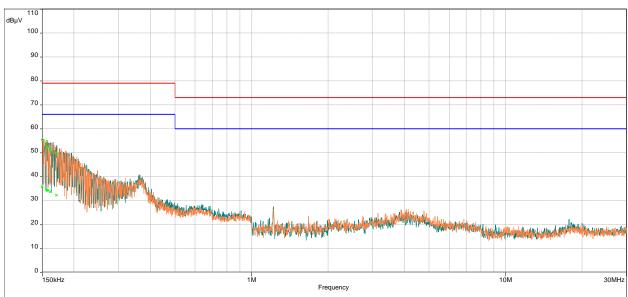
Conducted disturbance is measured between the phase lead and the reference ground, and between the neutral lead and the reference ground. Both measured values are reported.

The EUT, where intended for tabletop use, is placed on a table whose top is 0.8m above the ground plane. A vertical, metal reference plane is placed 0.4m from the EUT. The vertical metal reference-plane is at least 2m by 2m. The EUT shall be kept at least 0.8m from any other metal surface or other ground plane not being part of the EUT. The table is constructed of non-conductive materials. Its dimensions are 1m by 1.5m, but may be extended for larger EUT.

Floor standing EUTs are placed on a horizontal metal ground plane and isolated from the ground plane by an insulating material up to 12mm thick. The metal ground plane extends at least 0.5m beyond the boundaries of the EUT and has minimum dimensions of 2m by 2m.

Equipment setup for conducted disturbance tests followed the guidelines of ANSI C63.10: 2013 & ANSI C63.4-2014.

Tested By:	Aaron Chang
Test Date:	March 13, 2018


4.7.3 Test Result

The EUT met the conducted disturbance requirement of FCC & ICES 003 for a Class A device.

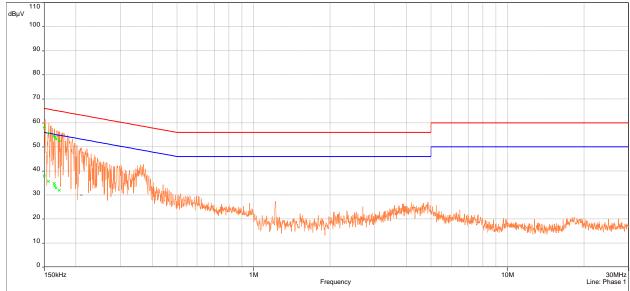
15.107 FCC & ICES 003 Conducted Disturbance at AC Mains 120V 60Hz

Ave Level (dBuV) (Final QP and Ave) (Phase 1)
 QP Level (dBuV) (Final QP and Ave) (Phase 1)

Model: ; Client: ; Comments: ; Test Date: 03/13/2018 10:52

Freq.	Ave Level	QP Level	Ave Limit	QP Limit	Ave Margin	QP Margin	Line	Correction
MHz	dΒμV	dΒμV	dΒμV	dΒμV	dB	dB		dB
0.150	35.71	55.43	66	79	-30.29	-23.57	Phase 1	11.01
0.156	34.22	54.67	66	79	-31.78	-24.33	Phase 1	11.02
0.156	34.31	52.31	66	79	-31.69	-26.69	Phase 1	11.02
0.158	34.22	52.27	66	79	-31.78	-26.73	Phase 1	11.02
0.161	33.67	51.16	66	79	-32.33	-27.84	Phase 1	11.02
0.171	32.15	49.54	66	79	-33.85	-29.46	Phase 1	11.02

Result: Complies by 23.57 dB


Page 55 of 59

15.207 FCC & ICES 003 Conducted Disturbance at AC Mains 120V 60Hz

CISPR Limit/CISPR Limit B - Average/
CISPR Limit/CISPR Limit B - QPeak/
Meas.Peak (Phase 1)

- × Ave Level (dBuV) (Final QP and Ave) (Phase 1)
- QP Level (dBuV) (Final QP and Ave) (Phase 1)

Model: ; Client: ; Comments: ; Test Date: 03/13/2018 10:40

Freq.	Ave Level	QP Level	Ave Limit	QP Limit	Ave Margin	QP Margin	Line	Correction
MHz	dBμV	dΒμV	dΒμV	dΒμV	dB	dB		dB
0.150	37.83	58.04	56	66	-18.17	-7.96	Phase 1	11.01
0.156	35.64	55.61	55.69	65.69	-20.05	-10.08	Phase 1	11.02
0.164	34.69	54.45	55.24	65.24	-20.55	-10.79	Phase 1	11.02
0.165	33.77	54.05	55.22	65.22	-21.45	-11.17	Phase 1	11.02
0.167	32.88	53.34	55.11	65.11	-22.24	-11.78	Phase 1	11.02
0.172	31.96	52.45	54.85	64.85	-22.89	-12.41	Phase 1	11.02

Result: Complies by 7.96 dB

4.7.4 Test Configuration Photographs

The following photographs show the testing configurations used.

AC Mains Line-Conducted Disturbance Setup Photograph

5.0 List of Test Equipment

Measurement equipment used for emission compliance testing utilized the equipment on the following list:

Equipment	Manufacturer	nufacturer Model/Type		Cal Int	Cal Due
Spectrum Analyzer	Rohde and Schwarz FSU		ITS 00913	12	01/24/19
Spectrum Analyzer	Rohde and Schwarz ESR		ITS 01607	12	10/09/18
Active Horn Antenna	ETS-Lindgren	3117-PA	ITS 01636	12	01/11/19
EMI Receiver	Rohde and Schwarz	ESU	ITS 00961	12	07/10/18
BI-Log Antenna	Teseq	CBL 6111D	ITS 01058	12	08/11/18
Pre-Amplifier	Sonoma Instrument	310	ITS 00942	12	01/26/19
RF Cable	TRU Corporation	TRU CORE 300	ITS 01462	12	08/19/18
RF Cable	TRU Corporation	TRU CORE 300	ITS 01465	12	08/19/18
RF Cable	TRU Corporation	TRU CORE 300	ITS 01470	12	08/19/18
Attenuator	Narda	FSCM99899	ITS 01583	12	08/31/18
RF Cable	Megaphase	EMC1-K1K1-236	ITS 01538	12	06/13/18
LISN	FCC	FCC-LISN-50-50-M-H	ITS 00552	12	11/14/18
LISN	FCC	FCC-LISN-50-50-M-H	ITS 00551	12	09/15/18
LISN	COM-POWER	LIN-120A	ITS 01612	12	02/05/19

[#] No Calibration required

Software used for emission compliance testing utilized the following:

Name	Manufacturer	Version	Template/Profile
Tile	Quantum Change	3.4.K.22	Conducted Restricted Band Edge_Avg
			Conducted Restricted Band Edge_Peak
			Conducted Restricted Band_1-26GHz
			Conducted Restricted Band_30M-1GHz
			Conducted Spurious_30M-26GHz
BAT-EMC	Nexio	3.16.0.64	Fastenal G103406457 3-12-2018.bpp
RS Commander	Rohde Schwarz	1.6.4	Not Applicable (Screen grabber)

Page 58 of 59

6.0 Document History

Revision/ Job Number	Writer Initials	Reviewers Initials	Date	Change
1.0 / G103436674	AC	KV	April 05, 2018	Original document

EMC Report for Fastenal on the Controllers

File: 103436674MPK-002 Page 59 of 59