

Sensoteq Ltd

Vibration Monitoring System

FCC 15.231:2017

Periodic Transmitter

Report # ELEM0040.1

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government of the United States of America. This Report shall not be reproduced, except in full without written approval of the laboratory.

CERTIFICATE OF TEST

Last Date of Test: September 6, 2017

Sensoteq Ltd

Model: Vibration Monitoring System

Radio Equipment Testing

Standards

Specification	Method	
FCC 15.231:2017	ANSI C63.10:2013	

Results

Method Clause	Test Description	Applied	Results	Comments
6.2	Powerline Conducted Emissions	No	N/A	Not required for a battery powered EUT.
6.5, 6.6	Field Strength of Fundamental	Yes	Pass	
6.5, 6.6	Spurious Radiated Emissions	Yes	Pass	
6.9.2	Occupied Bandwidth	Yes	Pass	
7.5	Duty Cycle	Yes	Pass	

Deviations From Test Standards

None

Approved By:

Victor Ratinoff, Operations Manager

Product compliance is the responsibility of the client; therefore, the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test. This report reflects only those tests from the referenced standards shown in the certificate of test. It does not include inspection or verification of labels, identification, marking or user information.

REVISION HISTORY

Revision Number	Description	Date	Page Number
00	None		

ACCREDITATIONS AND AUTHORIZATIONS

United States

FCC - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

A2LA - Accredited by A2LA to ISO / IEC 17065 as a product certifier. This allows Element to certify transmitters to FCC and IC specifications.

NVLAP - Each laboratory is accredited by NVLAP to ISO 17025

Canada

ISED - Recognized by Innovation, Science and Economic Development Canada as a Certification Body (CB). Certification chambers and Open Area Test Sites are filed with ISED.

European Union

European Commission - Within Element, we have a EU Notified Body validated for the EMCD and RED Directives.

Australia/New Zealand

ACMA - Recognized by ACMA as a CAB for the acceptance of test data.

Korea

MSIP / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data.

Japan

VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

Taiwan

BSMI – Recognized by BSMI as a CAB for the acceptance of test data.

NCC - Recognized by NCC as a CAB for the acceptance of test data.

Singapore

IDA - Recognized by IDA as a CAB for the acceptance of test data.

Israel

MOC – Recognized by MOC as a CAB for the acceptance of test data.

Hong Kong

OFCA – Recognized by OFCA as a CAB for the acceptance of test data.

Vietnam

MIC – Recognized by MIC as a CAB for the acceptance of test data.

SCOPE

For details on the Scopes of our Accreditations, please visit:

http://portlandcustomer.element.com/ts/scope/scope.htm http://gsi.nist.gov/global/docs/cabs/designations.html

MEASUREMENT UNCERTAINTY

Measurement Uncertainty

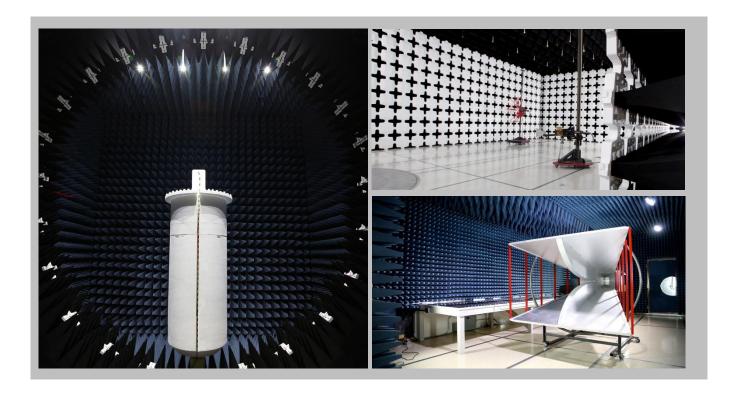
When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. Measurement uncertainty is a statistical expression of measurement error qualified by a probability distribution.

A measurement uncertainty estimation has been performed for each test per our internal quality document QM205.4.6. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty (K=2) can be found included as part of the applicable test description page. Our measurement data meets or exceeds the measurement uncertainty requirements of the applicable specification; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for estimating measurement uncertainty are based upon ETSI TR 100 028 (or CISPR 16-4-2 as applicable), and are available upon request.

The following table represents the Measurement Uncertainty (MU) budgets for each of the tests that may be contained in this report.

Test	+ MU	- MU
Frequency Accuracy (Hz)	0.0007%	-0.0007%
Amplitude Accuracy (dB)	1.2 dB	-1.2 dB
Conducted Power (dB)	0.3 dB	-0.3 dB
Radiated Power via Substitution (dB)	0.7 dB	-0.7 dB
Temperature (degrees C)	0.7°C	-0.7°C
Humidity (% RH)	2.5% RH	-2.5% RH
Voltage (AC)	1.0%	-1.0%
Voltage (DC)	0.7%	-0.7%
Field Strength (dB)	5.2 dB	-5.2 dB
AC Powerline Conducted Emissions (dB)	2.4 dB	-2.4 dB

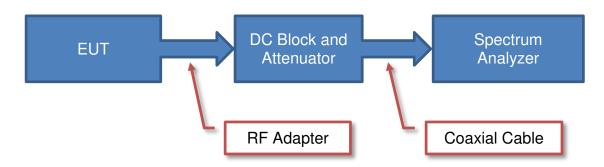
FACILITIES

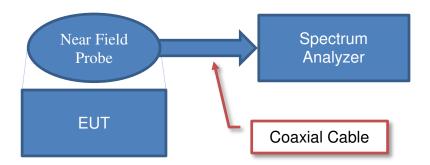

California
Labs OC01-13
41 Tesla
Irvine, CA 92618
(949) 861-8918

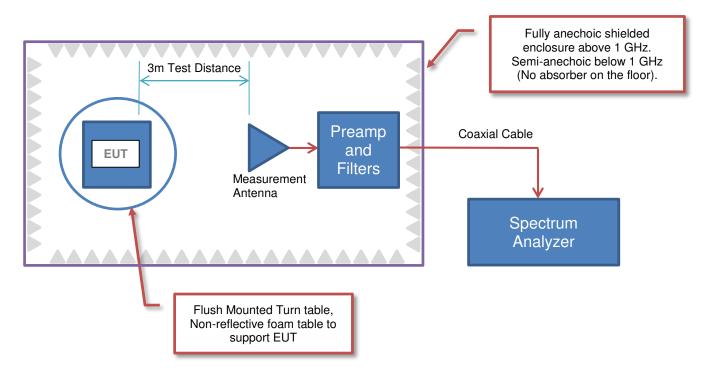
Minnesota Labs MN01-08, MN10 9349 W Broadway Ave. Brooklyn Park, MN 55445 (612)-638-5136 New York Labs NY01-04 4939 Jordan Rd. Elbridge, NY 13060 (315) 554-8214 Oregon
Labs EV01-12
22975 NW Evergreen Pkwy
Hillsboro, OR 97124
(503) 844-4066

TexasLabs TX01-09
3801 E Plano Pkwy
Plano, TX 75074
(469) 304-5255

WashingtonLabs NC01-05
19201 120th Ave NE
Bothell, WA 98011
(425)984-6600


Irvine, CA 92618 (949) 861-8918	Brooklyn Park, MN 55445 (612)-638-5136	Elbridge, NY 13060 (315) 554-8214	Hillsboro, OR 97124 (503) 844-4066	Plano, TX 75074 (469) 304-5255	Bothell, WA 98011 (425)984-6600			
	NVLAP							
NVLAP Lab Code: 200676-0	NVLAP Lab Code: 200881-0	NVLAP Lab Code: 200761-0	NVLAP Lab Code: 200630-0	NVLAP Lab Code:201049-0	NVLAP Lab Code: 200629-0			
	Innov	ation, Science and Eco	nomic Development Car	ada				
2834B-1, 2834B-3	2834E-1, 2834E-3	N/A	2834D-1, 2834D-2	2834G-1	2834F-1			
		BS	МІ					
SL2-IN-E-1154R	SL2-IN-E-1152R	N/A	SL2-IN-E-1017	SL2-IN-E-1158R	SL2-IN-E-1153R			
		VC	CI					
A-0029	A-0109	N/A	A-0108	A-0201	A-0110			
	Recognized Phase I CAB for ACMA, BSMI, IDA, KCC/RRA, MIC, MOC, NCC, OFCA							
US0158	US0175	N/A	US0017	US0191	US0157			


Test Setup Block Diagrams


Antenna Port Conducted Measurements

Near Field Test Fixture Measurements

Spurious Radiated Emissions

PRODUCT DESCRIPTION

Client and Equipment Under Test (EUT) Information

Company Name:	Sensoteq Ltd
Address:	Unit 18 Ormeau Business Park
City, State, Zip:	8 Cromac Avenue, Belfast BT7 2JZ Northern Ireland
Test Requested By:	Alex Toohie of Element Materials Technology Warwick Ltd.
Model:	Vibration Monitoring System
First Date of Test:	September 6, 2017
Last Date of Test:	September 6, 2017
Receipt Date of Samples:	September 6, 2017
Equipment Design Stage:	Production
Equipment Condition:	No Damage
Purchase Authorization:	Verified

Information Provided by the Party Requesting the Test

Functional Description of the EUT:

Vibration Monitoring System containing a low power transmitter which operates at 433 MHz utilizing GFSK modulation.

Testing Objective:

To demonstrate compliance of the periodic radio to FCC 15.231(e) requirements.

CONFIGURATIONS

Configuration ELEM0040- 1

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
Vibration Monitoring System (10 sec)	Sensoteq Ltd	ANTS1001	16BE04

Configuration ELEM0040-2

EUT						
Description	Manufacturer	Model/Part Number	Serial Number			
Vibration Monitoring System (100%)	Sensoteq Ltd	ANTS1001	16BE03			

MODIFICATIONS

Equipment Modifications

Item	Date	Test	Modification	Note	Disposition of EUT
		Field Strength	Tested as	No EMI suppression	EUT remained at
1	9/6/2017	of	delivered to	devices were added or	Element following the
		Fundamental	Test Station.	modified during this test.	test.
		Spurious	Tested as	No EMI suppression	EUT remained at
2	2 9/6/2017	Radiated	delivered to	devices were added or	Element following the
		Emissions	Test Station.	modified during this test.	test.
		Occupied	Tested as	No EMI suppression	EUT remained at
3	9/6/2017	Bandwidth	delivered to	devices were added or	Element following the
	Danuwiutii	Test Station.	modified during this test.	test.	
			Tested as	No EMI suppression	Scheduled testing
4	9/6/2017	Duty Cycle	delivered to	devices were added or	was completed.
		Test Station.	modified during this test.	was completed.	

Report No. ELEM0040.1 10/23

FIELD STRENGTH OF FUNDAMENTAL

PSA-ESCI 2017.06.01

11/23

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Continuously Transmitting at 433 MHz

POWER SETTINGS INVESTIGATED

Battery

CONFIGURATIONS INVESTIGATED

ELEM0040 - 2

FREQUENCY RANGE INVESTIGATED

Start Frequency	432 MHz	Stop Frequency	434 MHz
Clart I Toquericy	TOE IVII IE	Otop i requeries	1 TO T 1 WIT 12

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Cable	Element	10kHz-1GHz RE Cables	OCH	8/1/2017	12 mo
Antenna - Biconilog	EMCO	3142	AXB	11/6/2015	24 mo
Analyzer - Spectrum Analyzer	Agilent	N9010A	AFJ	1/28/2017	12 mo

TEST DESCRIPTION

The antennas to be used with the EUT were tested. The EUT was configured for continuous modulated operation at its single transmit frequency. The field strength of the transmit frequency was maximized by rotating the EUT, adjusting the measurement antenna height and polarization, and manipulating the EUT in 2 orthogonal planes (per ANSI C63.10:2013).

To derive average emission measurements, a duty cycle correction factor was utilized:

Duty Cycle = On time/100 milliseconds (or the period, whichever is less)

Where "On time" = N1L1 +N2L2 +....

Where N1 is the number of type 1 pulses, L1 is length of type 1 pulses, N2 is the number of type 2 pulses, L2 is the length of type 2 pulses, etc.

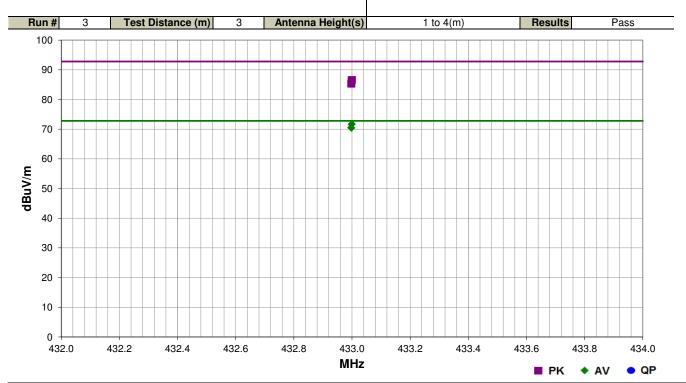
Therefore, Duty Cycle = (N1L1 +N2L2 +...)/100mS or T, whichever is less. (Where T is the period of the pulse train.)

The measured values for the EUT's pulse train are as follows:

Period = 98.43 mSec Pulsewidth of Type 1 Pulse = 17.73 mSec Number of Type 1 Pulses = 1

Duty Cycle = $20 \log [((1)(17.73))/98.43] = -14.89 dB$

The duty cycle correction factor of –14.89 dB was added to the peak readings to mathematically derive the average levels. Peak measurements were made with a resolution bandwidth of 100kHz and a video bandwidth of 300kHz.


FIELD STRENGTH OF FUNDAMENTAL

				EmiR5 2017.07.11 PSA-ESCI 2017.06.01
Work Order:	ELEM0040	Date:	09/06/17	
Project:	None	Temperature:	22.9 °C	for d. latter
Job Site:	OC10	Humidity:	45.2% RH	
Serial Number:	16BE03	Barometric Pres.:	1017 mbar	Tested by: Johnny Candelas
EUT:	Vibration Monitoring S	System		
Configuration:	2			
Customer:	Sensoteq Ltd			
Attendees:	Idir Boudaoud			
EUT Power:	Battery			
Operating Mode:	Continuously Transmi	tting at 433 MHz		
Deviations:	None			
Comments:	Power Setting -6, usin	g -14.89dB DCCF		
Test Specifications			Test Meth	nod

FCC 15.231:2017

ANSI C63.10:2013

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Duty Cycle Correction Factor (dB)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
433.000	63.2	23.4	1.3	180.0	-14.9	0.0	Vert	AV	0.0	71.7	72.8	-1.1	EUT Horiz
432.998	63.1	23.4	1.3	351.0	-14.9	0.0	Vert	AV	0.0	71.6	72.8	-1.2	EUT Vert
432.997	62.0	23.4	1.0	271.0	-14.9	0.0	Horz	AV	0.0	70.5	72.8	-2.3	EUT Horiz
432.998	61.9	23.4	2.1	37.0	-14.9	0.0	Horz	AV	0.0	70.4	72.8	-2.4	EUT Vert
433.000	63.2	23.4	1.3	180.0		0.0	Vert	PK	0.0	86.6	92.8	-6.2	EUT Horiz
432.998	63.1	23.4	1.3	351.0		0.0	Vert	PK	0.0	86.5	92.8	-6.3	EUT Vert
432.997	62.0	23.4	1.0	271.0		0.0	Horz	PK	0.0	85.4	92.8	-7.4	EUT Vert
432.998	61.9	23.4	2.1	37.0		0.0	Horz	PK	0.0	85.3	92.8	-7.5	EUT Horiz

SPURIOUS RADIATED EMISSIONS

PSA-ESCI 2017.06.01

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Continuously Transmitting at 433 MHz

POWER SETTINGS INVESTIGATED

Battery

CONFIGURATIONS INVESTIGATED

ELEM0040 - 2

FREQUENCY RANGE INVESTIGATED

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Amplifier - Pre-Amplifier	Miteq	AMF-4D-010120-30-10P-1	AOP	7/13/2017	12 mo
Cable	Element	1-8GHz RE Cables	OCJ	7/13/2017	12 mo
Antenna - Double Ridge	EMCO	3115	AHB	3/21/2016	24 mo
Attenuator	Fairview Microwave	SA18H-10	TKP	NCR	0 mo
Amplifier - Pre-Amplifier	Miteq	AM-1402	AOZ	8/1/2017	12 mo
Cable	Element	10kHz-1GHz RE Cables	OCH	8/1/2017	12 mo
Antenna - Biconilog	EMCO	3142	AXB	11/6/2015	24 mo
Analyzer - Spectrum Analyzer	Agilent	N9010A	AFJ	1/28/2017	12 mo

Report No. ELEM0040.1 13/23

TEST DESCRIPTION

The highest gain antenna of each type to be used with the EUT was tested. The EUT was configured for the required transmit frequency in each operational band and the modes as showed in the data sheets.

For each configuration, the spectrum was scanned throughout the specified range as part of the exploratory investigation of the emissions. These "pre-scans" are not included in the report. Final measurements on individual emissions were then made and included in this test report.

The individual emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and EUT antenna in three orthogonal axis, and adjusting the measurement antenna height and polarization (per ANSI C63.10). A preamp and high pass filter (and notch filter) were used for this test in order to provide sufficient measurement sensitivity.

Measurements were made with the required detectors and annotated on the data for each individual point using the following annotation:

QP = Quasi-Peak Detector PK = Peak Detector AV = RMS Detector

To derive average emission measurements, a duty cycle correction factor was utilized:

Duty Cycle = On time/100 milliseconds (or the period, whichever is less)

Where "On time" = N1L1 +N2L2 +....

Where N1 is the number of type 1 pulses, L1 is length of type 1 pulses, N2 is the number of type 2 pulses, L2 is the length of type 2 pulses, etc.

Therefore, Duty Cycle = (N1L1 +N2L2 +...)/100mS or T, whichever is less. Where T is the period of the pulse train.

The measured values for the EUT's pulse train are as follows:

Period = 98.43 mSec Pulsewidth of Type 1 Pulse = 17.73 mSec Number of Type 1 Pulses = 1

Duty Cycle = $20 \log [((1)(17.73))/98.43] = -14.89 dB$

The duty cycle correction factor of –14.89 dB was added to the peak readings to mathematically derive the average levels. Peak measurements were made with a resolution bandwidth of 100kHz and a video bandwidth of 300kHz for measurements at or below 1GHz. Above 1GHz, a resolution bandwidth of 1MHz and a video bandwidth of 3MHz was used.

SPURIOUS RADIATED EMISSIONS

2.0

1.0

158.0

140.0 92.0

-14.9

3030.945

3030.825

865.637

46.2

46.1

20.9

5.9

5.9

15.2

										EmiR5 2017.07.11		PSA-ESCI 2017.06.0	11
Wo	rk Order:	ELEN	10040		Date:	09/0	6/17		0		-		T
	Project:			Ter	nperature:	23.8		1	ee s	1.	- Alexander	-	1
	Job Site:				Humidity:	48.49							
	Number:	16B		Barome	etric Pres.:	1017			Tested by:	Johnny Ca	ndelas		
	EUT:	Vibration M	Ionitorina S	/stem						,			_
Confi	guration:	2	· · · · · · · · · · · · · · · · · · ·										_
		Sensoteq L	td										_
	ttendees:		-10										_
	T Power:												_
			sly Transmit	ting at 422) N/ILI¬								_
Operati	ng Mode:	Continuous	biy ITalisiili	illy at 433	IVII IZ								
		None											_
De	eviations:	INOTIC											
		Power Sett	ing -6, using	1 -14 80dE	R DCCE								_
C	mments:	li ower sett	ing -o, usin	j - 14.03uL	DOOI								
	minicino.												
est Speci							Test Meth						_
CC 15.23	1:2017						ANSI C63.	10:2013					
Run#	4	Test Dis	stance (m)	3	Antenna	Height(s)		1 to 4(m)		Results	Pa	ass	_ _
80													
70													
70						1 1111							
						1 1111							
60						\perp							
•						1 1111							
						┛╙╙		┸			v		
_ 50 +													
E							J J			-			
≥								T					
m//ngp			-							*			
ס										↑ ★			
20													
30 +													
									•				
20													
_													
10												++	
0 +								4600				10000	
10				100				1000				10000	
						MHz				■ DV	◆ AV	QP	
										■ FK	▼ AV	- ∪(Γ	
							Polarity/						
Eroe	Amplitude	Foctor	Antonno Heist	Azimuth	Duty Cycle	External	Transducer	Detector	Distance	Adjusted	Cnoo Limit	Compared to Spec.	
Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	(degrees)	Correction Factor	Attenuation (dB)	Туре	Detector	Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Spec. (dB)	
(IVITIZ)	(0.50)	(30)	((409.003)	(dB)	(02)			(30)	(000 7/11)	(0504/111)	(00)	Comme
3031.015	48.5	5.9	1.9	258.0	-14.9	0.0	Horz	AV	0.0	39.5	52.8	-13.3	EUT Ve
3031.005	47.3	5.9	1.5	307.0	-14.9	0.0	Vert	AV	0.0	38.3	52.8	-14.5	EUT H
3030.945	46.2	5.9	2.0	158.0	-14.9	0.0	Horz	AV	0.0	37.2	52.8	-15.6	EUT Ho
3030.825	46.1	5.9	1.3	140.0	-14.9	0.0	Vert	AV	0.0	37.1	52.8	-15.7	EUT Ve
3463.940	43.0	7.2	2.2	294.0	-14.9	0.0	Vert	AV	0.0	35.3	52.8	-17.5	EUT H
3031.015	48.5	5.9	1.9	258.0	140	0.0	Horz	PK	0.0	54.4	72.8	-18.4	EUT V
3463.960 3031.005	42.0 47.3	7.2 5.9	1.6 1.5	300.0 307.0	-14.9	0.0 0.0	Horz Vert	AV PK	0.0 0.0	34.3 53.2	52.8 72.8	-18.5 -19.6	EUT Ve
3031.005	46.2	5.9	2.0	158.0		0.0	Horz	PK	0.0	50.2 52.1	72.0 72.8	-20.7	FUT H

Report No. ELEM0040.1 15/23

Horz

Vert

Horz

0.0

0.0

10.0

0.0 0.0 0.0 52.1

52.0

31.2

72.8

72.8

52.8

-20.7

-20.8 -21.6 EUT Horiz

EUT Vert

EUT Vert

PK

PK

ΑV

Freq (MHz)	Amplitude (dBuV)	Factor (dB)	Antenna Height (meters)	Azimuth (degrees)	Duty Cycle Correction Factor (dB)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)	Comments
2164.980	43.1	2.5	2.5	307.0	-14.9	0.0	Horz	AV	0.0	30.7	52.8	-22.1	EUT Vert
2164.955	43.1	2.5	1.0	168.0	-14.9	0.0	Vert	AV	0.0	30.7	52.8	-22.1	EUT Horiz
866.057	20.4	15.1	1.0	347.0	-14.9	10.0	Vert	AV	0.0	30.6	52.8	-22.2	EUT Horiz
3463.940	43.0	7.2	2.2	294.0		0.0	Vert	PK	0.0	50.2	72.8	-22.6	EUT Horiz
3463.960	42.0	7.2	1.6	300.0		0.0	Horz	PK	0.0	49.2	72.8	-23.6	EUT Vert
1299.060	44.3	-1.7	1.0	305.0	-14.9	0.0	Vert	AV	0.0	27.7	52.8	-25.1	EUT Horiz
1732.000	41.3	0.7	1.3	326.0	-14.9	0.0	Vert	AV	0.0	27.1	52.8	-25.7	EUT Horiz
1731.855	40.5	0.7	1.0	289.0	-14.9	0.0	Horz	AV	0.0	26.3	52.8	-26.5	EUT Vert
866.273	20.9	15.2	1.0	92.0		10.0	Horz	PK	0.0	46.1	72.8	-26.7	EUT Vert
1299.000	42.3	-1.7	1.4	269.0	-14.9	0.0	Horz	AV	0.0	25.7	52.8	-27.1	EUT Vert
2164.980	43.1	2.5	2.5	307.0		0.0	Horz	PK	0.0	45.6	72.8	-27.2	EUT Vert
2164.955	43.1	2.5	1.0	168.0		0.0	Vert	PK	0.0	45.6	72.8	-27.2	EUT Horiz
865.962	20.4	15.1	1.0	347.0		10.0	Vert	PK	0.0	45.5	72.8	-27.3	EUT Horiz
1299.060	44.3	-1.7	1.0	305.0		0.0	Vert	PK	0.0	42.6	72.8	-30.2	EUT Horiz
1732.000	41.3	0.7	1.3	326.0		0.0	Vert	PK	0.0	42.0	72.8	-30.8	EUT Horiz
1731.855	40.5	0.7	1.0	289.0		0.0	Horz	PK	0.0	41.2	72.8	-31.6	EUT Vert
1299.000	42.3	-1.7	1.4	269.0		0.0	Horz	PK	0.0	40.6	72.8	-32.2	EUT Vert

OCCUPIED BANDWIDTH

XMit 2017.02.08

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

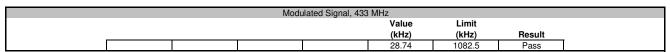
Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Probe - Near Field Set	EMCO	7405	IPI	NCR	NCR
Cable	Fairview Microwave	SCA1814-0101-120	OCZ	NCR	NCR
Block - DC	Fairview Microwave	SD3379	AMV	1/11/2017	1/11/2018
Analyzer - Spectrum Analyzer	Agilent	E4440A	AFA	11/2/2016	11/2/2017

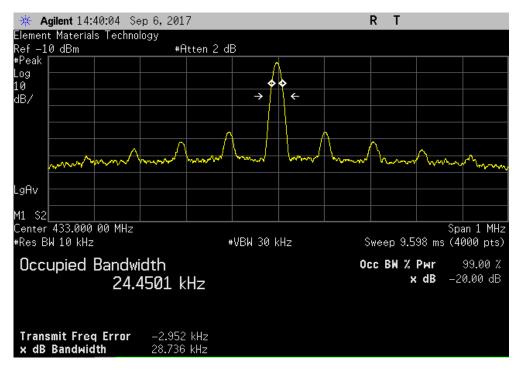
TEST DESCRIPTION

A near-field probe was placed near the transmitter. A low-loss coaxial cable was used to connect the near-field probe to the spectrum analyzer. The EUT was transmitting at its maximum data rate.

The 20 dB occupied bandwidth is required to be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz.

OCCUPIED BANDWIDTH


						XMit 2017.02.08
EUT:	Vibration Monitoring System			Work Order:	ELEM0040	
Serial Number:	16BE04			Date:	09/06/17	
Customer:	Sensoteq Ltd			Temperature:	24.7 °C	
Attendees:	Idir Boudaoud			Humidity:		
Project:	None			Barometric Pres.:		,
Tested by:	Johnny Candelas	Power:	Battery	Job Site:	OC13	
TEST SPECIFICATION	ONS		Test Method			
FCC 15.231:2017			ANSI C63.10:2013			
COMMENTS						
Power Setting -6						
ŭ						
DEVIATIONS FROM	I TEST STANDARD					
None						
Configuration #	1	C. L	Colle			
Configuration #	Signature					
				Value	Limit	
				(kHz)	(kHz)	Result
Modulated Signal						
	433 MHz			28.74	1082.5	Pass


Report No. ELEM0040.1 18/23

OCCUPIED BANDWIDTH

XMit 2017.02.08

Report No. ELEM0040.1 19/23

XMit 2017.02.08

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Cal. Due
Probe - Near Field Set	EMCO	7405	IPI	NCR	NCR
Cable	Fairview Microwave	SCA1814-0101-120	OCZ	NCR	NCR
Block - DC	Fairview Microwave	SD3379	AMV	1/11/2017	1/11/2018
Analyzer - Spectrum Analyzer	Agilent	E4440A	AFA	11/2/2016	11/2/2017

TEST DESCRIPTION

A near-field probe was placed near the transmitter. A low-loss coaxial cable was used to connect the near-field probe to the spectrum analyzer. For software controlled or pre-programmed devices, the manufacturer shall declare the duty cycle class or classes for the equipment under test. For manually operated or event dependant devices, with or without software controlled functions, the manufacturer shall declare whether the device once triggered, follows a pre-programmed cycle, or whether the transmission is constant until the trigger is released or manually reset. The manufacturer shall also give a description of the application for the device and include a typical usage pattern. The typical usage pattern as declared by the manufacturer shall be used to determine the duty cycle and hence the duty class.

Where an acknowledgement is required, the additional transmitter on-time shall be included and declared by the manufacturer.

To derive average emission measurements, a duty cycle correction factor was utilized:

Duty Cycle = On time/100 milliseconds (or the period, whichever is less)

Where "On time" = N1L1 + N2L2 + ...

Where N1 is the number of type 1 pulses, L1 is length of type 1 pulses, N2 is the number of type 2 pulses, L2 is the length of type 2 pulses, etc.

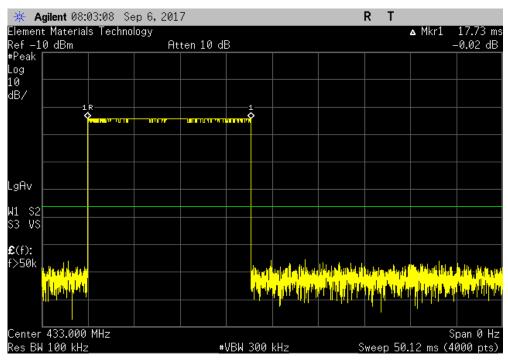
Therefore, Duty Cycle = (N1L1 +N2L2 +...)/100mS or T, whichever is less. (Where T is the period of the pulse train.)

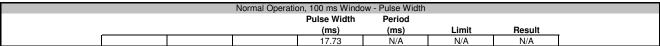
The measured values for the EUT's pulse train are as follows:

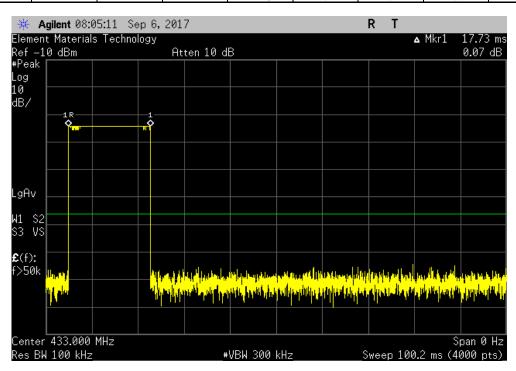
Period = 98.43 mSec Pulsewidth of Type 1 Pulse = 17.73 mSec Number of Type 1 Pulses = 1

Duty Cycle = $20 \log [((1)(17.73))/98.43] = -14.89 dB$

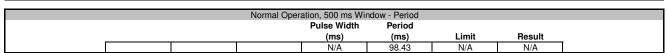
The duty cycle correction factor of **-14.89 dB** was added to the peak readings to mathematically derive the average levels. Peak measurements were made with a resolution bandwidth of 100kHz and a video bandwidth of 300kHz.

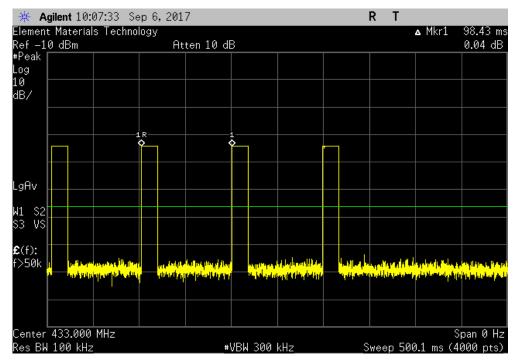


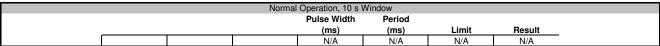

								XMit 2017.02.08
EUT:	Vibration Monitoring Sys	stem				Work Order:	ELEM0040	
Serial Number:	16BE04					Date:	09/06/17	
Customer:	Sensoteq Ltd					Temperature:	24.7 °C	
Attendees:	Idir Boudaoud				Humidity:			
Project:	None					Barometric Pres.:	1015 mbar	
Tested by:	Johnny Candelas		Powers	Battery		Job Site:	OC13	
TEST SPECIFICAT	IONS			Test Method				
FCC 15.231:2017				ANSI C63.10:2013				
COMMENTS								
Power Setting -6								
DEVIATIONS FROM	M TEST STANDARD							
None								
Configuration #	1	Signature	fe d.	Collen				
					Pulse Width	Period		
					(ms)	(ms)	Limit	Result
Normal Operation								
	50 ms Window - Pulse Wid	dth			17.73	N/A	N/A	N/A
	100 ms Window - Pulse W	/idth			17.73	N/A	N/A	N/A
	500 ms Window - Period				N/A	98.43	N/A	N/A
	10 s Window				N/A	N/A	N/A	N/A

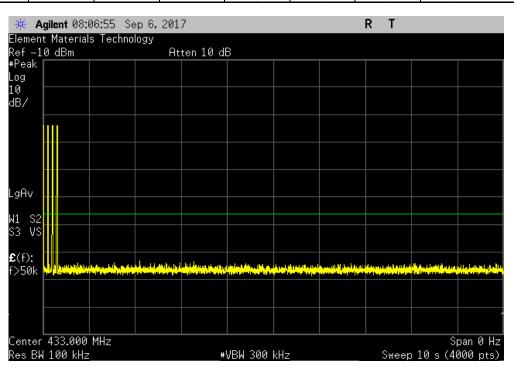

Report No. ELEM0040.1 21/23

Normal Operation, 50 ms Window - Pulse Width
Pulse Width Period
(ms) (ms) Limit Result
17.73 N/A N/A N/A






Report No. ELEM0040.1 22/23



XMit 2017.02.08

Report No. ELEM0040.1 23/23