

FCC §1.1310 & §2.1091- MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Applicable Standard

According to Part 1.1310(e), the maximum exposure level to the public from the RF power of the EUT shall not exceed a power density, S as per the respective limits in the below table, at a distance, d, of 20 cm from the EUT.

Limits for General Population/Uncontrolled Exposure

Limits for General Population/Uncontrolled Exposure				
Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm ²)	Averaging Time (Minutes)
0.3-1.34	614	1.63	*(100)	30
1.34-30	824/f	2.19/f	*(180/f ²)	30
30-300	27.5	0.073	0.2	30
300-1500	/	/	f/1500	30
1500-100,000	/	/	1.0	30

f = frequency in MHz

* = Plane-wave equivalent power density

Result

Calculated Formulary:

Predication of MPE limit at a given distance

$$S = \frac{PG}{4\pi R^2}$$

S = power density (in appropriate units, e.g. mW/cm²)

P = power input to the antenna (in appropriate units, e.g., mW).

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain.

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm)

Frequency (MHz)	Antenna Gain		Max Tune Up Conducted Power		Evaluation Distance (cm)	Power Density (mW/cm ²)	MPE Limit (mW/cm ²)
	(dBi)	(numeric)	(dBm)	(mW)			
5745-5825	5.7	3.72	18.50	70.79	20	0.052	1.0

The Wi-Fi and UWB can transmit simultaneously,

Refer to the UWB report, the power density of UWB is 0.00003mW/cm^2 , the limit is 1mW/cm^2 .

so consider the transmitting simultaneously case:

The ratio= $\text{MPE/Limit}_{\text{UWB}} + \text{MPE/Limit}_{\text{WiFi}} = 0.00003/1 + 0.052/1 = 0.05203 < 1.0$

Note: To maintain compliance with the FCC's RF exposure guidelines, place the equipment at least 20cm from nearby persons.

Result: Pass